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Résumé

Cette thèse porte sur l’application du retournement temporel en électromagnétisme à la localisation
de sources de perturbations transitoires et l’utilisation de la théorie asymptotique à la modélisation
de leur interaction avec des lignes de transmission.

Tout d’abord, quelques aspects de la phénoménologie et de la modélisation de la décharge de
foudre sont présentés, de même que le calcul des champs électromagnétiques associés. En effet, la
méthode de localisation de sources transitoire proposée dans cette thèse va être appliquée au cas
des décharges orageuses. Les systèmes actuels de détection et de localisation de la foudre (SLF)
sont passés en revue. Les erreurs moyennes des SLF sont inférieures à quelques centaines de mètres;
cependant, dans certains cas, l’erreur peut être bien supérieure. Le retournement temporel (RT) a
de nombreuses applications dans le domaine du traitement du signal et des ondes, et peut servir à
la localisation de sources de rayonnement. Le RT a été récemment appliqué à la localisation de la
foudre, dans le cas d’un sol parfaitement conducteur.

Nous démontrons que la méthode des temps d’arrivée, qui est une des méthodes les plus couram-
ment utilisées pour localiser la foudre, peut être vue comme un cas particulier de la théorie du RT.
Le problème d’un sol comportant des pertes qui affectent la propagation des transitoires électromag-
nétiques générés par un coup de foudre est discuté en proposant trois modèles de rétro-propagation
et en comparant leurs performances en termes de précision de localisation. Les approches proposées
sont évaluées par deux types de simulations.

Le premier type de simulation utilise des champs générés numériquement et l’algorithme pro-
posé donne de très bons résultats même pour un sol comportant des pertes. En particulier, nous
montrons qu’un modèle pour lequel les pertes sont inversées durant la rétro-propagation fournit des
résultats de localisation quasiment exacts. Si la forme complète de l’onde n’est pas disponible, les
erreurs de localisation peuvent être plus importantes, même si les erreurs obtenues sont du même
ordre ou inférieures à celles des SLF actuels.

Un deuxième groupe de simulations utilise des données du système autrichien de localisation de
la foudre (ALDIS). Les localisations obtenues au moyen de la méthode du RT utilisant uniquement
les données disponibles (amplitude, temps d’arrivée et temps de montée) diffèrent des estimations
fournies par le SLF de quelques kilomètres. Nous discutons des causes possibles de cette divergence
dans cette thèse.

La seconde partie de ce document concerne le calcul du courant induit dans une ligne sous
l’effet d’un champ électromagnétique. Différentes approches peuvent être utilisées pour résoudre ce
problème : la méthode quasi-statique, les méthodes numériques basées sur la théorie des antennes,
la théorie des lignes de transmission et les théories des lignes de transmission dites améliorées,
parmi lesquelles figurent la théorie asymptotique. Du fait des limitations fréquentielles du modèle
quasi-statique et de la théorie des lignes de transmissions et des besoins importants en ressources
de calcul des modèles numériques, les modèles de lignes de transmission améliorés nous semblent
être des modèles intermédiaires intéressants.
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ii RÉSUMÉ

Parmi ces modèles, la méthode asymptotique est particulièrement prometteuse, puisqu’elle four-
nit une expression analytique pour le courant et donc donne une perception de la physique du
problème. Elle fournit des résultats précis au-delà de la fréquence limite de la théorie des lignes
de transmission classique et peut aussi être appliquée à des terminaisons arbitraires. Comme elle
permet d’éviter l’application de méthodes numériques ou de les appliquer sur de plus petits sys-
tèmes, elle est particulièrement efficace pour des lignes électriquement longues. Cependant, avant
le début de ce travail, cette méthode était limitée à des lignes à un seul conducteur.

Nous dérivons des expressions valables en haute fréquence pour le courant induit par une onde
plane le long d’une ligne à plusieurs conducteurs. Plusieurs approches sont proposées pour calculer
les matrices de dispersion et de réflexion qui modélisent les effets de terminaisons. Des expressions
mathématiques de ces matrices sont dérivées dans le cas particulier de lignes ouvertes en utilisant
une méthode itérative. Pour le cas général de terminaisons arbitraires, une approche utilisant des
lignes auxiliaires courtes résolues numériquement est proposée. En basse fréquence, la formulation
proposée peut être adaptée à des lignes avec pertes et des expressions analytiques pour les coeffi-
cients peuvent être calculées, ce qui correspond à une formulation nouvelle et élégante de la théorie
des lignes de transmission classique. La théorie proposée est validée par des simulations numériques
et des expériences et est nettement plus efficace que les approches numériques traditionnelles en
termes de ressources de mémoire et de calcul.

La méthode asymptotique est aussi appliquée à des sources localisées avec une méthode analogue
à celle utilisée pour le couplage d’une onde plane. Une méthode pour la détermination des matrices
de coefficients est aussi présentée.

Mots clefs

Retournement temporel (RT) en électromagnétisme, modèles de ligne de transmission améliorés,
champ électromagnétique à haute fréquence, systèmes de localisation de la foudre (SLF), méthode
des temps d’arrivée, théorie des lignes de transmission.



Abstract

This thesis deals with the application of electromagnetic time reversal to locating transient dis-
turbance sources and the use of the asymptotic theory for the modelling of their interaction with
transmission lines.

First, some aspects of the phenomenology and modelling of lightning discharge are discussed, to-
gether with the computation of the associated electromagnetic fields. Indeed, the proposed method
for locating transient sources will be applied to the case of lightning discharges. The currently
used classical lightning detection and location systems (LLSs) are reviewed. Mean location errors
of LLSs are within a few hundreds of meters; however, in some cases, the error can be consider-
ably larger. The electromagnetic time reversal (EMTR) theory has found numerous applications
in the field of signal processing and waves and has been applied to locate electromagnetic radiation
sources. EMTR has recently been considered as a mean to locate lightning discharges above a
perfectly-conducting ground plane.

We demonstrate that the time-of-arrival, which is one of the most commonly used methods
to locate lightning discharges, can be seen as a special case of time reversal. The problem of
a lossy ground that affects the propagation of electromagnetic transient fields generated by a
lightning strike is addressed by proposing three different back-propagation models and comparing
their performances in terms of location accuracy. Two sets of simulations are carried out to evaluate
the accuracy of the proposed approaches.

The first set of simulations is performed using numerically-generated fields and the proposed
algorithm is shown to yield very good results even if the soil is not perfectly conducting. In
particular, it is shown that considering a model in which losses are inverted in the back-propagation
yields theoretically exact results for the source location. We also show that a lack of access to the
complete recorded waveforms may lead to higher location errors, although the computed errors are
found to be within the range of performance of the present LLSs.

A second set of simulations is performed using the sensor data reported by the Austrian Light-
ning Location System (ALDIS). The locations obtained by way of the EMTR method using only
the available sensor data (amplitude, arrival time and time-to-peak), are observed to be within a
few kilometres of the locations supplied by the LLS. The possible sources of this discrepancy are
discussed in the thesis.

The second part of this document deals with the computation of the current induced in a line
due to an external electromagnetic field. Different approaches can be used to solve this problem:
the ‘quasi-static’ method, the ‘full-wave’ methods, the ‘transmission line’ theory, and the so-called
‘enhanced’ transmission line theories, and among them the ‘asymptotic’ theory. Due to the fre-
quency limitation of the ‘quasi-static’ and transmission line theories and the large requirements
in terms of computer resources of full-wave models, we focus on the ‘enhanced’ transmission line
theories.

Among these theories, the asymptotic theory is particularly promising, because it offers an
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iv ABSTRACT

analytical expression for the current and hence gives insight into the physics of the problem. It
provides accurate results above the frequency limit of the classical transmission line theory and can
also be applied to arbitrary terminals. As it allows to avoid the application of a full-wave method,
or to apply a full-wave method on a smaller system only, it is particularly effective for electrically
long lines.

We derive high-frequency expressions for the current induced along a multiconductor line by an
external plane wave, in which the effects of the terminals of the line are modelled by matrices of
scattering and reflection coefficients. Different approaches are proposed to compute the coefficients
that feed the analytical expression for the current induced along the line. Using an iterative method,
mathematical expressions are derived, for the particular case of open-circuit lines. For the general
case of arbitrary line terminations, an approach using auxiliary short lines, solved with a numerical
solver is proposed. At low frequencies, the proposed three-term formulation can be adapted to lossy
lines and analytical expressions for the coefficients, providing a new and elegant formulation for the
classical transmission line theory. The proposed theory is validated through numerical simulations
and experiments and is found to be much more effective than the traditional full-wave approaches
in terms of memory requirements and computational times.

The asymptotic theory is also applied to a lumped source excitation, according to a procedure
analogous to the one for a plane wave excitation. A method for the determination of matrices of
coefficients is also presented.

Keywords

Electromagnetic Time Reversal (EMTR), enhanced transmission line model (ETL), high frequency
electromagnetic field excitation, lightning location systems (LLS), time-of-arrival (ToA), transmis-
sion line (TL) theory.
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Chapter 1

Introduction

1.1 Context

New technological trends involving complex systems operating at lower power levels, and the emer-
gence of sources of disturbances with higher frequency content (such as high power microwave
and ultra-wide band systems) make today’s systems more susceptible to external electromagnetic
interferences. Therefore, the electromagnetic compatibility (EMC) of modern electronic systems
represents a challenging task. In particular, locating sources of disturbances and evaluating their
effects on systems are among important topics of research in EMC.

The increase in the operating frequency of disturbance sources has led to a breakdown of the
classical transmission line approximation’s basic assumptions for a number of applications. In the
last decade or so, the generalization of the TL theory to take into account high frequency effects
has emerged as an important topic of study in electromagnetic compatibility (e.g., [1])

Within this context, the objective of this thesis is twofold. In the first part of the thesis, we will
describe the application of electromagnetic time reversal to locating transient disturbance sources,
with particular reference to lightning discharges. The second part of the thesis deals with the
problem of the high-frequency modelling of the electromagnetic coupling with transmission lines,
by means of the so-called asymptotic theory.

1.2 Locating transient sources

Time reversal, which corresponds to the idea of reversing the direction of time, was popularised
during the 1990s by experimental applications in the area of waves [2] and aroused a large attention
among the scientific community. In particular, electromagnetic time reversal, EMTR, gave rise to
plenty of applications based on its captivating properties. One of these properties is the ability
under certain circumstances for a transient field to propagate back to its source. This effect can be
used notably for the location of transient disturbance sources.

Lightning is a major source of electromagnetic radiation. The interest of locating lightning in
real time or afterwards is shared in numerous and various fields such as aviation, weather services,
land management entities, forest services, public utilities, geophysical research and in forensic and
insurance applications [3]. An estimation of the strike point can be provided by so-called lightning
location systems (LLSs), which typically measure and process the electromagnetic fields radiated
by lightning strikes.

What is the link between lightning and time reversal? It is in fact possible to apply EMTR to
lightning location [4]. The idea is to measure the field transients generated by a lightning strike

1
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and propagate them back, by simulation, to their source. A theoretical and simulation study in
the case of an ideal, lossless model indicated that the method was promising [4]; EMTR could be
an elegant way to take the propagation medium into account and eventually increase the location
accuracy of lightning location systems. An associated challenge would be the adaptation of the
method to the case of a lossy propagation medium, for which EMTR does not apply in theory.

1.3 Electromagnetic coupling to transmission lines

Sources of transients, such as intentional electromagnetic interferences [5], can contain frequency
components much higher than lightning. Their potential effects on electrical or electronic systems
have been a concern in the past decade (e.g. [6–8]). Since measurements are not always possible or
desirable, the computation of the transfer function between an external electromagnetic field and
the current or voltage induced at the inputs of a device is of importance.

Lines and interconnects act as antennas which catch the electromagnetic field and propagate
them to the devices to which they are connected. Electromagnetic coupling to transmission lines
(TL) is in fact an important problem in electromagnetic compatibility and is approached classically
by three kinds of methods [1, 9, 10]. The quasi-static method or circuit theory is the most simple
one, but can be applied only when the line is electrically short. For lines that are electrically
long, but have an electrically small cross-section, one can use the so-called transmission line theory.
When the cross-section of the line is larger than the wavelength of the field, numerical ‘full-wave’
methodologies directly based on Maxwell’s equations can be adopted. When electrically long lines
are involved, however, these numerical approaches require long computational times and large
computer resources, which become prohibitive when multiple computations are required, in the
case of parametric analysis for example.

Additionally, in the last decades or so, ‘enhanced’ transmission lines theories were developed,
which aim at keeping the relative simplicity of the classical transmission line theory, while modelling
high-frequency effects such as radiation and providing more accurate solution at high frequencies
that the classical TL theory. Among these methods, the asymptotic theory is based on the fact
that non-TEM (transverse electromagnetic) modes tend to vanish after a long propagation along a
uniform transmission line under certain conditions. The asymptotic theory is a promising method,
but was derived only for the case of single conductor lines. In this study, we propose a generalization
of the asymptotic theory to multiconductor lines.

1.4 Organisation of the thesis

This report is divided into two main parts. The first part (Chapters 2 and 3) deals with the
location of transient disturbance sources using the theory of time reversal with special reference to
lightning location. The second part (Chapters 4, 5 and 6) concerns the electromagnetic coupling
to transmission lines with special reference to high-frequency excitation for which the classical
transmission line is not applicable.

In Chapter 2, some characteristics of lightning discharges and location systems are reviewed.
After a brief presentation of the lightning discharge phenomenology, some aspects of the modelling
of lightning discharge and the computation of the associated electromagnetic fields are discussed.
Further, the currently used classical detection and location systems are reviewed. The chapter ends
with concluding remarks and the need for further research.

In Chapter 3, electromagnetic time reversal is applied to lightning location. First, the basics
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of EMTR are reviewed. An algorithm for lightning location is presented and justified theoreti-
cally. The problem of a lossy ground that affects the propagation of electromagnetic transient
fields generated by a lightning strike is addressed by comparing different back-propagation models.
The proposed algorithm is validated using numerical simulations and experimental data from the
Austrian lightning location system.

Chapter 4 presents the available analysis methods for the classical problem of the computation
of the current induced in a line due to an external electromagnetic wave. After a brief introduction
concerning the ‘quasi-static’ and ‘full-wave’ methods, we review two other types of approaches,
i.e. the transmission line theory, and the so-called enhanced transmission line theories, and among
them the ‘asymptotic’ theory.

Chapter 5 is devoted to the elaboration of an enhanced TL model for field-to-transmission
line interaction. We derive expressions for the current induced along a multiconductor line by an
external plane wave, in which the effects of the terminals of the line are modelled by matrices
of scattering and reflection coefficients. These coefficients are then computed analytically in the
particular case of open boundaries or at low frequencies, and with numerical methods in the general
case. The proposed theory is validated using full-wave simulations and experimental data.

In Chapter 6, the asymptotic theory is applied to a lumped source excitation. The theory
is developed in a procedure analogous to the one in the previous chapter. A method for the
determination of the matrices of reflection and coupling coefficients is then presented. In the case
of a single-conductor line, an expression for the current in the vertical risers is derived. At low
frequencies, analytical expressions are derived for the scattering coefficients. The use of a radiation
resistance allows to account for the radiation occurring near the line terminals. The developed
models are validated using full-wave simulations and experimental measurements.

Finally, general conclusions and perspectives for future work are presented in Chapter 7.





Part I

Location of transient disturbance sources
with special reference to lightning
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Chapter 2

Lightning discharge and classical
detection systems

2.1 Introduction

Lightning is one of the largest causes of transients, faults, and outages in power grids and can have
harmful effects on electronic systems. In order to locate lightning and help to identify damages
caused by it, automatic lightning locating systems (LLSs) have been developed since the 1920s [3].
Modern LLSs are able to determine the location, intensity, and movement of thunderstorms in real
time. Archived and real-time lightning data are used by weather services, aviation, land manage-
ment entities, forest services, public utilities, geophysical research and in forensic and insurance
applications [3].

2.1.1 Content

In this chapter, we will review some characteristics of lightning discharges and location systems
that will be useful for the next chapter. After a brief presentation of the lightning discharge phe-
nomenology, some aspects of the modelling of lightning discharge and computation of the associated
electromagnetic fields are discussed. Further, the currently used classical detection and location
systems are reviewed. The chapter ends with concluding remarks and the need for further research.

2.2 Lightning discharge phenomenology

Cumulonimbus are the main source of lightning phenomena, even though in general, stratiform
clouds [11], covering territories hundreds of times larger than thunderclouds, can in some cases
be highly charged [12, 13]. The cloud electrification is thought to be caused by either micro-scale
phenomena involving collisions of hydrometeors in different phases [14], or charge by induction,
melting, freezing and capturing / releasing of free ions on charged aerosol particles [15] or by large
scale phenomena. Large scale phenomena are in general associated with air current convection
transport of charge or involve cosmic-ray particles that were shown to contribute to the electric
field enhancement process [16].

The net result of electrification is that an excess of charge develops and gets accumulated in
different parts of the cloud, thus generating large electric fields gradients [13]. The cloud electrical
distribution model is also still an object of research. In general, the classical tripolar electric model
provides a charge distribution compatible with various measurement campaigns and experiments

7
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[11]. In this model, positive charges are located in the upper part of the cumulonimbus cloud,
negative charges in the middle, and small pockets of positive charges in the cloud bottom. In some
cases, however, the electrical structure of the thunderstorm cloud may be more complex than a
dipole or a tripole, with reduced regions of alternate polarity in the cloud base [17, 18].

Lightning discharges can be classified in four groups according to their discharge paths: i)
intra-cloud lightning, ii) inter-cloud or cloud-to-cloud lightning (CC), iii) cloud-to-ground (CG)
and ground-to-cloud (GC) lightning, iv) cloud-to-air lightning, and, finally, iv) middle and upper
atmospheric discharges [13, 19]. Even if intra-cloud lightning (IC) is thought to account for the
majority of the discharges [20], this work will focus on cloud-to-ground CG or GC lightning, due
to its impact on humans activities and as a cause of possible damages on ground systems.

2.2.1 Downward Negative Lightning Flash

Cloud-to-ground lightning flashes can be classified into four categories depending on the direction of
propagation of the ionised channel (either downward and upward) and the sign of charge transferred
to ground (either positive or negative) [21]. The majority of cloud-to-ground flashes are of downward
negative type. A preliminary discharge within the electrified thundercloud initiates the sequence
of processes which concur in the development of a cloud-to-ground strike, described in Figure
2.1 [22, 23].

A gas discharge may be initiated when gas pressure and electric field exceed a threshold sufficient
to start an electron avalanche and create a conductive channel or region. The most accepted
theories for the breakdown are the emission of positive streamers from hydrometeors induced by high
surrounding electric fields [24,25] and the cosmic ray participation to runaway electron avalanches
(the so-called runaway breakdown) [13,24,26,27].

Figure 2.1: Illustration of some of the various processes comprising a negative cloud-to-ground lightning
flash (adapted from [23]).

A stepped leader (see Figure 2.1) induced by the preliminary discharge propagates from the
thundercloud to ground in a series of discrete steps. As the leader tip nears ground, the electric
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field at sharp objects on the ground or at irregularities of the ground itself exceeds the breakdown
value of air and one or more upward-moving discharges from the ground are initiated at those
points, thus starting the attachment process [23].

When one of the upward-moving discharges from the ground contacts the downward moving
stepped leader some tens of meters above ground, the leader tip is connected to ground potential.
The leader channel is then discharged when the first return-stroke propagates continuously up the
previously ionised and charged leader path [22].

After the return-stroke current has ceased to flow, the flash may end. Otherwise, if additional
charge is available at the top of the channel, a continuous dart leader may propagate down the
residual first-stroke channel. The dart leader then initiates the second or any subsequent (up to
about 20) return-strokes. The current of the return-strokes ranges from a few kA up to about
300 kA, and generates an electromagnetic field with a spectrum ranging from DC to a few tens of
MHz, even if emissions happen also at higher frequencies, for example in the visible light [11].

2.3 Electric field radiated by lightning

2.3.1 Classes of return-stroke models

Lightning return-stroke models can be categorised into four different classes, essentially distin-
guished by the type of governing equations [11,22].

The first defined class of models, the so-called gas-dynamic or “physical” models, is primarily
concerned with the radial evolution of a short segment of the lightning channel and its associated
shock wave. The principal model outputs include temperature, pressure and mass density as a
function of the radial coordinate and time (e.g. [28–30]).

The second class is represented by the electromagnetic models which are usually based on a
lossy, thin-wire antenna approximation of the lightning channel. A numerical solution of Maxwell’s
equations allows to find the current distribution along the channel from which remote electric and
magnetic field can be computed (e.g. [31–33]).

The third class of models is the distributed-circuit models, also called RLC transmission line
models. They can be viewed as an approximation to the electromagnetic models and they represent
the lightning discharge as a transient process on a transmission line characterised by per-unit-length
resistance, inductance and capacitance (e.g. [34,35]).

The last class of models corresponds to the engineering models, in which a temporal and spatial
distribution of the channel current or the channel line charge density is specified based on such
characteristics as the current at the channel base, the speed of the upward-propagating front, and
the channel luminosity profile (e.g. [36]). In these models, the emphasis is placed on achieving
agreement between the model-predicted electromagnetic fields and those observed experimentally
at distances from tens of meters to hundreds of kilometres.

Within this last class of so-called engineering models, the model that is used in this work is
the transmission line (TL) model [37]. In this model, the return-stroke channel is represented as a
lossless transmission line along which a current pulse travels upward undistorted at the return-stroke
velocity. The advantage of this model is the fact that the electric field can be readily computed as
a function of the channel base current. It is worth noting, however, that the developments made
in Chapter 3 can be extended to any return-stroke model.
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2.3.2 Radiated field in the case of a lossless ground

According to the transmission line model, the radiated (far field) vertical electrical far field can be
expressed as [3, 38,39].

Ez(�r, t) = − v

2πε0c2 ‖�r − �rs‖ is
(
t− ‖�r − �rs‖

c

)
= − μ0v

2π ‖�r − �rs‖ is
(
t− ‖�r − �rs‖

c

)
(2.1)

where v is the return stroke speed, generally in the order of one-third to two-third the speed of
light in vacuum, and is(t) is the current at the base of the channel. ε0 is the vacuum permittivity,
μ0 the vacuum permeability, c the speed of light in vacuum, �rs the stroke location and is(t) is the
channel base current.

Formula (2.1) indicates that the radiated field has the same shape as the channel base current.
This shape is time shifted, due to the propagation of the wave at the speed of light c. The amplitude
decreases as a function of 1/r due to the fact that the wave spreads in space.

2.3.3 Radiated field in the case of a lossy ground

Electromagnetic fields generated by lightning change their character as they propagate over ground
surface due to selective attenuation of high-frequency components by a finitely conducting ground
[40]. These effects are often referred to as propagation effects. In the case of a lossy ground, the
equations of the field involve Sommerfeld’s integrals, the solution of which is complex and in general
require a careful numerical integration [40].

Simplified methods have been proposed to compute the radiated electric field. In particular,
a method to compute the radiated field with a finite-conductivity ground is presented in [20],
p. 372-373. It was shown that this approximated expression provides accurate results better than
10% in the distance range of 10 m to 1 km , the accuracy increasing with increasing distance of
propagation [41]. According to this model, the field is first propagated under the assumption of
a perfectly conducting ground and then the effect of the finite ground conductivity is taken into
account by a convolution product with an impulse response sf (D, t) accounting for the propagation
effect along a lossy line.

Ez,σ(D, t) =

∫ t

0
Ez(D, t− τ)sf (D, τ)dτ (2.2)

where D is the distance between the source and the observation point, Ez,σ(D, t) is the radiated
field over a lossy ground, Ez(D, t) is the radiated field over a lossless ground. sf (D, t) is expressed
as follows [20].

sf (D, t) =
d

dt

{
1− exp

(
− t2

4ζ2

)
+ 2β(εr + 1)

J(x)

t

}
(2.3)

with:
J(x) = x2(1− x2) exp(−x2) x =

t

2ζ

β =
1

μ0σc2
ζ2 =

D

2μ0σc3

(2.4)

It depends mainly on the distance of propagation and the ground electric parameters.
For a computer implementation, the division by t poses a problem at t = 0. On the other hand,

the time derivative can be computed analytically in order not to have to implement a numerical
derivative, which is a source of inaccuracies. The explicit expression of the derivative in (2.3)
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reads [42]:

sf (D, t) =
2t

4ζ2
exp

(
− t2

4ζ2

)
+ 2β(εr + 1)

d

dt

J(x)

t
(2.5)

where the derivative of the second term can be computed explicitly.

d

dt

J(x)

t
=

∂

∂x

(
J(x)

x · 2ζ
)
· dx
dt

=

[
1

2ζ
· (1− x2) · exp(−x2) +

+
x

2ζ
· (−2x) · exp(−x2) +

x

2ζ
· (1− x2) · (−2x) exp(−x2)

]
1

2ζ
(2.6)

In the frequency domain, the electric field measured by a sensor at a location �rn can be written
as follows:

En(ω) = − v

2πε0c2
1

‖�rn − �rs‖︸ ︷︷ ︸
geometric

attenuation

e−jω
‖�rn−�rs‖

c︸ ︷︷ ︸
propagation

delay

Sf (‖�rn − �rs‖ , ω)︸ ︷︷ ︸
effect of
losses

F{is(t)} (2.7)

where F denotes the Fourier transform of a time function. The presence of the ground attenuates
mostly high frequencies; hence Sf (ω) is a low-pass filter attenuating the peak value of the lightning
electromagnetic pulse as it propagates and it also introduces dispersion, which increases its rise
time.

Note that the attenuation effect is nowadays modelled in operational LLSs using an exponential
decay model. Cramer et al. [43] suggest that an exponential model

RNSS = SS ·
( r

100

)b · exp(r − 100

L

)
(2.8)

employing b = 1 and a space constant L (e.g. L = 1000 km) results in a better fit than a power-law
model with b = 1.13 (e.g. [44]), especially for networks with long base lines or large networks, when
sensors at large distances (> 600 km) contribute. In (2.8), RNSS stands for range-normalised signal
strength and SS for signal strength.

In contrast to (2.8) which applies only to the amplitude of the signal, expression (2.3) applies
to the whole waveform.

2.4 Classical detection and location methods

Lightning Location Systems (LLSs) provide information about the location, intensity and movement
of thunderstorms in real time, and can be used to locate lightning-caused damages [3]. The most
widely used lightning location techniques are the Time-of-Arrival method (ToA) and the Magnetic
Direction Finding (MDF) method [11]. The mean location errors associated with these methods
are within a few hundreds of meters [3].

Several sectors of human activity are concerned with data about lightning, for example: weather
forecast, outdoor activities exposed to lightning, sensitive installations, air-traffic control, forest fire
forecast, etc [45].

All emissions due to lightning can produce a location method. Hence the entire electromagnetic
spectrum, from low to high frequencies, even visible light and also acoustic waves (thunder) can
be used. Three methods which are often used in LLSs are described in the following sections,
namely [11]:

• time of arrival;
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• interferometry;

• magnetic direction finding.

Other methods exist as well, such as the use of the field amplitude, satellite observation, optical
detection from the Earth, sound, radar, etc [11]. The obtained location accuracy highly depends
on the used method.

2.4.1 Time of arrival

Time of arrival (ToA) is based on the fact that the propagation time is proportional to the travelling
distance [3, 11].

There are three types of networks, classified as a function of the distance between the sensors.

• When the distance between the sensors is very short, in the order of few tens to hundreds of
meters, the VHF radiation is used. Such a system can determine the azimuth and elevation
angles of the stroke, but cannot localise it.

• When the distance between the sensors is short, in the order of few tens of kilometres, the
HF radiation is used. This kind of system allows locating lightning in 3 dimensions.

• When the distances between sensors are large, in the order of hundreds of kilometres, the
LF or VLF radiation is used. The first system of this type was realised in 1960. Location
is considered as a mean location or as the stroke location at the ground. This third kind of
network is the most widely used in present commercial LLSs [46] and it is considered in this
work.

Figure 2.2: Determination of the lightning stroke location by three ToA receivers. Adapted from [11].

Let us assume that the receiver number 1, located at �r1, measures the time of arrival of the EM
field radiated by the return stroke at time t1. Similarly, another receiver, numbered as 2, located at
�r2, measures the time of arrival at t2. Assuming that a lightning strikes at point �rs and at time t0,
and that it radiates a field travelling at speed c , the times of arrival at the sensors are as follows.

t1 = t0 +
‖�r1 − �rs‖

c

t2 = t0 +
‖�r2 − �rs‖

c

(2.9)

Δt12 is defined as the difference of time of arrival:

Δt12 := t1 − t2 =
1

c

(‖�r1 − �rs‖ − ‖�r2 − �rs‖
)

(2.10)
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This corresponds to the equation of a conic (hyperbola), which can be defined for each pair of
sensors. The intersection between these curves is the estimation of the lightning location (see
Figure 2.2). If three sensors are used, the obtained location is not necessarily unique – it can be
double – because the instant of the stroke is not known in absolute terms. As soon as more than
three sensors are available, the intersections between the hyperbolas may not appear at a single
point, due to measurements errors for example, and a χ2 minimisation method can be used.

2.4.2 Interferometry

Interferometry is based on the same principle than ToA, for very close sensors, and using the
difference of phase instead of the difference of time of arrival [3, 11]. The first interferometer for
the study of lightning was designed in 1979.

Lightning does not only radiate isolated pulses, but also produces noise-like bursts of radiation
which are arduous to locate using ToA techniques, due to the difficulty in identifying individual
pulses. However, the measurement of the phase difference allows to use these data.

With a single station, it is possible to determine the azimuth and elevation angles of the radiation
source. With two stations or more, location is possible, with a method similar to direction finding
(see next section).

If the sensors are limited in bandwidth, it is useful to use two inter-sensor distances: a long
distance, in order to have a good accuracy; a short one, to suppress the ambiguity due to the
2π uncertainty of the phase. If the sensors have a large bandwidth, the electric distance – the
geometrical distance divided by the wavelength – varies as a function of the frequency so a single
inter-sensor distance is enough.

2.4.3 Magnetic direction finding

Magnetic Direction Finding (MDF) was used from the 1920s onwards [3, 11]. The sensors which
measure the magnetic field are generally made of two orthogonal loops (north-south and east-west
oriented). The ratio of the measured field is proportional to the tangent of the azimuth angle to
the stroke point. There is nevertheless a 180◦ indeterminacy, so such sensors are often associated
to an electric field sensor to determine the direction of the electric field and hence the propagation
direction.

The uncertainty on the direction is in the order of one degree, but it can be much higher in
certain sites [11]. Location is already possible with two sensors only. Starting from three sensors,
the impact point can be determined with an optimisation method. For example, by minimising the
χ2 function below [11]:

χ2 =

N∑
n=1

(
ϑmn − ϑn

σϑn

)
+

N∑
n=1

(
Emn − En

σEn

)
(2.11)

where ϑn and En are the unknown azimuths and amplitudes of the electric fields, ϑmn and Emn

are the azimuths and amplitudes of the measured electric fields and σ are the measurement error
estimates.

This optimisation method has the double advantage of providing the most probable location
and also an estimation of the uncertainty of this location. Note that as presented in (2.11), the
method does not use only the MDF, but also the electric field amplitude.
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2.4.4 Combination of several methods

In practice, in order to improve the accuracy, several of these methods can be used simultane-
ously. For example, the ToA method can be combined with magnetic direction finding in IMPACT
(IMProved Accuracy from Combined Technology) sensors used in the ALDIS (Austrian Lightning
Detection and Information System) LLS networks [47].

2.5 Need of further research

Mean location errors of LLSs are within a few hundreds of meters [3]. However, in some cases,
the error can be much larger [48, 49]. In order to go beyond the accuracy limit of the classical
detection systems, we would like to develop a method with the ability to intrinsically consider the
propagation effects and inhomogeneity of the propagation path. For this reason, in Chapter 3, a
lightning location algorithm based on the electromagnetic time reversal is described, assessed and
tested.



Chapter 3

Application of EMTR to lightning
location

3.1 Introduction

Electromagnetic time reversal (EMTR) is based on the fact that Maxwell’s equations remain valid
after a change of the direction of time. The idea of applying EMTR to create an algorithm for
lightning location was proposed by Mora et al. [4]. This chapter presents further developments of
EMTR to lightning location and is based on [42,50–53].

3.1.1 History and characteristics of electromagnetic time reversal

The first experiment using time reversal in electromagnetism was reported by Bogert in 1957 [54].
He experimented a method of correcting delay distortion by time reversal on a slow-speed picture
transmission system. It was followed in 1965 by experiments of signal transmission under the ocean
based on time reversal [55].

The time reversal process has been popularised later among the scientific community by Fink
and his colleagues in the 1990s in articles which described the application of time reversal in
acoustics [2, 56–58]. Results obtained in acoustics are of interest for EM application because they
can often be translated into electromagnetism, due to the similarity of the equations in the two
fields. In particular, time reversal in acoustics or using elastic waves is used in varied applications
such as under-ocean communication [59, 60], medical applications, such as destruction of tumours
and kidney stones [61], or landmine detection [62,63].

However, there are also important differences between acoustics and electromagnetism. Acous-
tics deals with scalar fields, whereas electromagnetism deals with vector fields. Electromagnetic
antennas do not have the same properties as electro-acoustic transducers. The frequencies associ-
ated to the acquisition, time reversal and re-generation of the signals are much lower when using
ultrasound than microwaves. Hence, the adaptation of techniques from acoustics to electromag-
netism has been discussed by several authors (e.g. [64]).

Lerosey et al. [65] reported the first experimental demonstration of time reversal focusing with
electromagnetic microwaves. The wave is found to converge to its initial source and is compressed in
time. The quality of focusing is determined by the frequency bandwidth and the spectral correlation
of the field within the cavity.

Chaiken et al. [66] showed the poor time reversal behaviour in regimes of chaotic particle
motion. This effect was confirmed by Snieder [67] who showed that in classical particle chaos,

15



16 CHAPTER 3. APPLICATION OF EMTR TO LIGHTNING LOCATION

perturbations in the system grow exponentially in time, while for the corresponding wave system,
perturbations grow as the square root of time. This is a reason why time reversal works much
better experimentally for electromagnetic or acoustic waves, as it does in mechanics, even though
laws of mechanics are also theoretically invariant under time reversal.

Time reversal experiments usually use a large number of transducers. Draeger et al. [68, 69]
showed that it is possible to perform a time reversal using a single element in a reflecting cavity
with negligible absorption. Bal et al. [70] showed that the focusing of a wave is affected by the fact
that the propagation medium is different in time reversal from the medium in normal time. In a
cluttered environment and under certain conditions, the resolution of the refocused signal can be
better than the diffraction limit that would be obtained in a homogeneous medium; this is called
super-resolution [71]. Not only the propagation environment, but also the window duration and
the bandwidth of the time-reversed signals, affect the time reversal process [72].

3.1.2 Applications of EMTR

Time reversal in electromagnetism (EMTR) has been used in a large number of applications. As
EMTR is a powerful technique for the compensation of phase distortions [73], it was used in wireless
communications [74–78] and power line communication (PLC) [79,80].

EMTR can be used as an iterative process in order to focus a field to the strongest scatterer in
a multi-target medium [81] and for target focusing in a cluttered background [82]. It can be also
used for source localisation [83] and identification [84].

Reflectometry-based methods can be used to detect soft faults in wire networks based on the
DORT (décomposition de l’opérateur de retournement temporel) method [85,86]. EMTR has also
been applied successfully to locating faults in power networks [87–92]

Baba et al. [93] presented a way to shape an EM field using time reversal by simulation. In [94],
time reversal is used to generate high power microwave pulses from a low power arbitrary wave
generator. Similarly, Cozza et al. [95] proposed a technique, named time reversal electromagnetic
chamber (TREC), which operates a reverberation chamber as a generator of deterministic pulsed
wavefronts. Non-linear EMTR [96,97] can also lead to interesting applications.

3.1.3 On the concept of time reversal in electromagnetism

Dyab et al. [98–100] raised a controversy about the definition of time reversal. They stated that
the term ‘time reversal’ cannot be considered as a back-propagation process and should instead be
considered as a signal processing method. Their argumentation is based on the fact that a single
antenna, considered as a voltage-to-field transducer, is non-reciprocal. However, a two-antenna
system is reciprocal.

In our opinion, the problem raised is mainly semantic. If one applies TR in an experiment,
one has to use two antennas (or sensors), then the measurable quantities are at the ports of the
antennas, which form a reciprocal system. If one applies the process by simulation, no antennas
are needed, and the non-reciprocity of an single antenna is no more an issue. The link between
reciprocity and time reversal was analysed in detail in [101]. In particular, in a lossless system,
reciprocity was shown to be equivalent to time reversal invariance.

Dyab et al. claimed that focusing is not an ‘intrinsic’ property of TR. In fact, the implementation
of time reversal is generally based on one or several transducers or sources, a propagation medium
and an algorithm. This complete system as a whole has some features which can be assessed and
from which, it is possible to derive properties such as focusing. Moreover, a number of very different
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algorithms inspired by time reversal theory has been proposed. They may not refer to a single and
strict definition, but that is not a problem in our opinion. The term ‘back-propagation’ refers
generally and in particular in our work to the propagation of a re-emitted, time-reversed version
of a measured signal. In realistic configurations, it does not correspond exactly to the initial field
that would be played in reverse.

Moreover, Roux et al. [102] showed that the experimental implementation of a time reversal
mirror (TRM) does not require a probe source collocated with the receiver array. They also showed
that nonreciprocity-based time reversal procedure can yield better results than the classical time
reversal method.

3.1.4 Chapter outline

This chapter is organised as follows. First, the basics of electromagnetic time reversal are reviewed.
An algorithm for lightning location is presented and justified theoretically. The problem of a lossy
ground that affects the propagation of electromagnetic transient fields generated by a lightning
stroke is addressed by comparing different back-propagation models. The proposed algorithm is
validated using numerical simulations and experimental data from the Austrian lightning location
system. Finally concluding remarks are given.

3.2 Basics of EMTR

In this section, we present the basic theory and properties of EMTR.

3.2.1 Time reversal operator

The TR method is based on the “reversal" of the direction of time (see e.g. [103]):

t �→ − t (3.1)

The definition (3.1) can be applied directly to the electric field �E(�r, t) and to the charge density
ρ(�r, t) (equation (3.2a)). The electric field and charge density are said to be even functions under
time reversal. Additionally, when time-reversing an EM field, the propagation direction, given by
the cross-product of the electric and magnetic fields, must also be reversed. For that reason, the
time reversal of the magnetic field �H(�r, t) requires, in addition to (3.1), an inversion of the vector
direction (equation (3.2b)). Similarly, time-reversing the current �J(�r, t) also yields a vector in the
opposite direction (equation (3.2b)). The magnetic field and current are said to be odd functions
under time reversal. The time reversal operator in electromagnetism can be written as follows:

�E(�r, t) �→ �E(�r,−t) ρ(�r, t) �→ ρ(�r,−t) (3.2a)
�H(�r, t) �→ − �H(�r,−t) �J(�r, t) �→ − �J(�r,−t) (3.2b)

A necessary condition for the application of time reversal is the invariance of the physical
equations. An equation is said to be time reversal invariant if the time-reversed versions of its
solutions are also valid solutions of the physical equations.
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3.2.2 Time reversal invariance of Maxwell’s equations

In a linear medium of permittivity ε(�r) and permeability μ(�r), Maxwell’s equations can be written
as:

∇ ·
(
ε(�r) �E(�r, t)

)
= ρ(�r, t)

∇ ·
(
μ(�r) �H(�r, t)

)
= 0

∇× �E(�r, t) = −μ(�r)
∂ �H(�r, t)

∂t

∇× �H(�r, t) = ε(�r)
∂ �E(�r, t)

∂t
+ �J(�r, t)

(3.3)

Applying the TR operator to the fields, currents and charges as defined in (3.1) and (3.2), and
using the linearity of the derivative, one obtains:

∇ ·
(
ε(�r) �E(�r,−t)

)
= ρ(�r,−t)

−∇ ·
(
μ(�r) �H(�r,−t)

)
= 0

∇× �E(�r,−t) = −μ(�r)
−∂ �H(�r,−t)

∂t

−∇× �H(�r,−t) = ε(�r)
∂ �E(�r,−t)

∂t
− �J(�r,−t)

(3.4)

Equations (3.4) can be shown through straightforward mathematical manipulations (including a
change of variable t′ = −t, going along with ∂t′ = −∂t) to be identical to equations (3.3). The
detailed proof of the TR invariance of Maxwell’s equations can be found, for instance, in [103].

A small controversy was raised by a statement [104] that Maxwell’s equation would not be time
reversal invariant due to the necessity of changing the sign of the magnetic field (see (3.2b)). In fact,
Earman [105], Malament [106], Arntzenius and Greaves [107] showed that the magnetic field must
in fact be reversed by application of the time reversal operator, using symmetry considerations,
four-vector formalism or quantum field theory.

3.2.3 Properties of EMTR

Frequency domain

Although EMTR is defined in the time domain, it can also be applied in the frequency domain.
The Fourier transform of the function �E(�r, t) is defined as follows:

F
{
�E(�r, t)

}
=

∫ +∞

−∞
�E(�r, t)e−jωtdt (3.5)

The Fourier transform of the time-reversed version of the function is hence:

F
{
�E(�r,−t)

}
=

∫ +∞

−∞
�E(�r,−t)e−jωtdt (3.6)

The application of the change of variable t′ = −t leads to dt′ = −dt and the integration boundaries
are inverted:

F
{
�E(�r,−t)

}
=

∫ −∞

+∞
�E(�r, t′)e+jωt′(−dt′) (3.7)
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This expression can be rewritten as follows:

F
{
�E(�r,−t)

}
=

∫ +∞

−∞
�E(�r, t′)

(
e−jωt′

)∗
dt′ (3.8)

where ∗ denotes the complex conjugate. If �E(�r, t) is a real function, its imaginary part is equal to
zero and one has �E(�r, t) = �E∗(�r, t). Finally:

F
{
�E(�r,−t)

}
=

(∫ +∞

−∞
�E(�r, t′)e−jωt′dt′

)∗
(3.9)

In conclusion, time-reversing a real function corresponds to taking the complex conjugate in the
frequency domain [101].

F
{
�E(�r,−t)

}
=
(
F
{
�E(�r, t)

})∗
(3.10)

Losses

Lossy media are not TR invariant. This can be shown by considering for example Ohm’s law,
�J(�r, t) = σ(�r) �E(�r, t). Applying the TR operator one obtains:

− �J(�r,−t) �= σ(�r) �E(�r,−t) (3.11)

where σ(�r) is the conductivity of the medium. A reason why a lossy medium is not time reversal
invariant is the fact that losses are associated with the increase of entropy. Reversing time would
lead to a decrease of entropy, which is impossible according to the second law of thermodynamics.

For Ohm’s law to be TR invariant, the sign of the conductivity would need to be changed by
the time reversal transformation (σ(�r) �→ −σ(�r)). A more complete analysis of the question of
losses is addressed with back-propagation models in Section 3.5

Time delay

In practical implementations, a signal is necessarily measured only during a finite time period from
an initial time selected here as the origin t = 0 to a final time t = T , where T is the duration of
the signal. That is to say, we will consider only 0 < t < T . To avoid effects of windowing [108], we
will assume here that the time origin and the duration T are chosen in such a way that the signal
is not truncated. To make the argument of the time-reversed variables positive for the duration of
the signal, we will add, in addition to time reversal, a time delay T :

t �→ T − t (3.12)

3.2.4 Location of a source of radiation

This section presents an illustration of how EMTR can be used for localising a radiation source.
The used algorithm requires two main steps. In the first step, a source generates an EM field which
propagates and is measured by one or several sensors. This step will be referred to as the ‘normal’
time. During the second step, the stored waveforms at the previous step at time-reversed. The
sensors, which become emitters, re-emit this time-reversed version of the waveform they measured.
All the contribution of the sensors-emitters somehow mimic the initial wave in normal time, but
time-reversed. For this reason, the produced waveform resembles a concentric waveform which
focuses on the original source (e.g. [65]).
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3.2.5 Example

In Figure 3.1, the source point (red triangle) generates a field which is reflected by the two walls
represented by grid patterns. According to image theory, the walls could be replaced by three
additional mirrored sources. Hence, the sensor (blue triangle) receives four successive waves.

Click to start the animation

Figure 3.1: Positive time.

In Figure 3.2, the sensor re-emits the time-reversed version of the field which it measured in
Figure 3.1. Note that due to the presence of the reflecting walls, the sensor (and each of its three
mirrored versions) re-emit four successive waves, which are in turn reflected, creating 16 waves.
Indeed, in this case, this single sensor is enough to generate a field that concentrates into the
source point. If the area had not be limited by reflecting walls, a minimum of three sensors would
have been needed to have a focusing effect.

Click to start the animation

Figure 3.2: Time reversal.
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3.3 Application to lightning location

The use of the so-called electromagnetic time reversal (EMTR) technique as a means of locating
lightning was investigated by Mora et al. [4, 39], who derived equations for the focusing of electro-
magnetic fields back to the source by time reversal, and demonstrated that the wavefronts generated
by back-propagating the time-reversed fields will add up in phase at the lightning stroke location.
Based on this observation, they proposed an algorithm to locate lightning discharges that requires
at least three field sensors, and they showed it to yield excellent results under the ideal conditions
of propagation along a perfectly conducting ground.

In this section, we further discuss the use of EMTR to locate lightning, by addressing the effect
of propagation along a lossy ground.

3.3.1 Theoretical justification

Consider a lightning stroke at point �rs, and N sensors located at �rn, where n = 1, 2, ..., N , that
measure and record the electric fields En(t) from the lightning discharge, as shown in figure 3.3.

�rs∗
�r1
•

�r2
•

�r3•

•
�rn•

•

�rN
•

Figure 3.3: Schematic diagram of N sensors • that record the far-field from the lightning discharge ∗.
Adapted from [4].

In the EMTR method, the fields recorded at each sensor are flipped over in time, retransmitted
using the sensors as emitters and propagated back by simulation. We will first illustrate the
application of the EMTR method to lightning location for the case of a perfectly conducting ground
as shown in [4, 39]. In this case, the far electric field �E(�r, t) radiated by a lightning return stroke
can be written as:

�E(�r, t) =

�φ
(
t− ‖�r−�rs‖

c

)
‖�r − �rs‖ (3.13)

where �φ(t) is a function whose form depends on the temporal-spatial behaviour of the return
stroke current along the lightning channel. For example, if the Transmission Line (TL) model is
assumed [37], �φ(t) is the radiation component of the vertical electric field normalised to a distance
of 1 m equal to φ(t) = − v

2πε0c2
is(t), with is(t) the channel-base lightning current. c is the speed

of light, v is the return stroke speed and ε0 is the dielectric permittivity of vacuum. The relation
between the channel-base current and the radiated fields for other engineering models can be found
in [37].

Using the aforementioned model, the electric field �En(t), measured by the sensor at location �rn
is equal to:

�En(t) = �E(�rn, t) =

�φ
(
t− ‖�rn−�rs‖

c

)
‖�rn − �rs‖ (3.14)
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This field can be time reversed using expression (3.12):

�En(T − t) =

�φ
(
T − t+ ‖�rn−�rs‖

c

)
‖�rn − �rs‖ (3.15)

The sensors are now used as emitters that re-radiate the time-reversed version of the received
electric field as illustrated schematically in figure 3.4.

�r1
•

�r2
•

�r3•

•
�rn•

•

�rN
•

∗

Figure 3.4: Schematic diagram of N sensors • that emit time-reversed versions of the recorded fields. The
lightning discharge is shown as ∗. To be compared with Figure 3.3.

Note that, according to the EMTR technique, after having recorded the field waveform, each
sensor injects the time-reversed field back into the same medium. Therefore, the back-propagation
will be characterised by the same geometric (1/r) dependence as in the direct propagation. As a
result, the contribution from each sensor might become prohibitively small beyond some critical
distances, leading to numerical errors. To prevent this effect and also to remove the singularities
arising at the positions of the sensors (during back-propagation), it is convenient to keep the field
amplitude constant while field back propagates, as explained in [4, 39, 109]. As a result, the back-
propagation and the propagation models are not exactly the same. Hence, the contribution of each
sensor n to the time-reversed (TR) field in this 1st model is:

�ETRn1(�r, t) = �En(T − t− ‖�r − �rn‖
c

) (3.16)

The total back-propagated field is, therefore, equal to:

�ETR1(�r, t) =

N∑
n=1

�ETRn1(�r, t) =

N∑
n=1

�φ
(
T − t+ ‖�rn−�rs‖

c − ‖�r−�rn‖
c

)
‖�rn − �rs‖ (3.17)

At the stroke point, equation (3.17) reduces to the following expression:

�ETR1(�rs, t) = �φ (T − t)

N∑
n=1

1

‖�rs − �rn‖ (3.18)

At the source point, the contributions of the different sensors are in phase. It follows that, at this
location, the back-propagated fields will combine constructively to reach a maximum. This is the
condition that will be used to locate the source.

It should be noted that in the analysis, we considered only the radiation component of the field
and disregarded the static and induction terms. These components may have an influence at close
distances. However, as far as the early-time response of the field is concerned, the effect of the
static and induction components can be disregarded down to distances of a few kilometres or so
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(e.g. [110]).
In the case of an elevated source such as a cloud-to-cloud lightning discharge, the same general

methodology could be used.

3.3.2 Physical limits

Apart from the limitations of the technique such as the electromagnetic noise and measurements
errors, the uncertainty of the soil parameters, the GPS synchronisation error, etc., the physical
limitation for the accuracy, that is the spatial resolution is determined by the upper frequency
used. However, using time-reversal, the size of the focal spot, which is related to the spatial
resolution, could be reduced in a cluttered environment where important diffraction effects appear.
This phenomenon is called super-resolution (eg. [71]) However, it is not possible to count on it in
the case of a lightning discharge, where the propagation happens mainly in an open environment.

3.3.3 Practical implementation

Method 1: Maximum of the electric field amplitude

The method requires the measurement of the electric (or magnetic) field waveform generated by a
lightning discharge by at least three sensors. By simulation, each waveform is then time-reversed us-
ing equation (3.12), re-emitted by the respective sensor and back-propagated. The peak amplitude
at location �r is computed as the time maximum of the back-propagated field at this location:

ETR1(�r) = max
t

∥∥∥ �ETR1(�r, t)
∥∥∥ (3.19)

From this information, the estimation �rs,estimated of the stroke point location is the point in which
the field reaches its maximum peak:

�rs,estimated = argmax
�r

(
ETR1(�r)

)
(3.20)

Note that, if only two sensors are used, the solution is not unique, leading to an ambiguity in the
location. Three sensors can also have in certain cases an ambiguity on the location. Four sensors
or more provide, in general, a single location.

The application of this method when the complete waveform is not available is challenging.
This problem will be addressed in Section 3.6.2.

Method 2: Maximum of the electric field energy

A variant of the previous algorithm is to consider the energy of the signal associated to the electric
field.

ξ(�r) =

∫ t1

t2

�E2
TR1(�r, t)dt (3.21)

One could multiply this equation by a factor expressed in m2Ω−1 in order to have a quantity
homogeneous to an energy. Integration limits t1 and t2 must be chosen adequately; they are
typically depending on the measured waveforms. The stroke point location is then evaluated as the
point which minimises the energy.

�rs,estimated = argmax
�r

(ξ(�r)) (3.22)
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This method is expected to be less sensitive to noise than the previous one.

Method 3: Correlation matrix

For sake of completeness, we describe now another method proposed by Jemaïel in [52]. The
correlation matrix is a mathematical description of the interdependency between several variables.
If N sensors are involved, the correlation matrix is a square matrix of size N ×N which elements
are as follow:

Rmn =
cov(Xm, Xn)√

cov(Xm, Xm)cov(Xn, Xn)
(3.23)

where cov is the covariance operator. The coefficients Rmn are contained between -1 and 1. Two
variables are positively correlated if this coefficient is positive, negatively if the coefficient is nega-
tive; two variables are said independent if this coefficient is equal to zero. If all the variables are
independent, the correlation matrix is equal to the unit matrix.

The application of this method to the back-propagated fields �ETRi(�r, t) shows that at the stroke
location, the back-propagated field are in phase, and hence the correlation matrix elements have
larger values than at other locations [52]. In order to locate the stroke point, one searches for
the point �r which maximises the sum of the elements of the correlation matrix applied to the
back-propagated fields associated to the different sensors.

�rs,estimated = argmax
�r

(
N∑

m=1

N∑
n=1

Rmn

)
(3.24)

3.3.4 Matrix Pencil method

As discussed in [53], the implementation of an EMTR-based lightning location system requires that
a certain number of practical difficulties be overcome, including the fact that most of the deployed
lightning location networks (e.g. ALDIS [47]) do not record the complete electric or magnetic
field waveforms but only certain information such as the trigger time, the peak time and the peak
amplitude. The main reason is limited available memory to store more data. A way of tackling
this problem could be through the use of the matrix pencil method (MPM) [111], which allows to
minimise the amount of information needed to reconstruct lightning waveforms in an accurate way.
This method consists in approximating a function y(t) by a sum of M exponential functions:

y(t) ∼=
M−1∑
i=0

Rie
sit (3.25)

where si et Ri are respectively the poles and the residues of the system.
When considering the discrete version of y(t) into N samples, with Ts being the sampling time,

one obtains:

y(kTs) 	
M−1∑
i=0

Riz
k
i (3.26)

with k = 0, 1, · · · , N − 1 and zki = esiTs . A detailed computation of the parameters M , si and Ri

can be found in [111].
The performance of the MPM was evaluated in [53] using measured waveforms of electric and

magnetic fields from distant natural lightning and it is shown that using only 46 poles and residues,
it is possible to reproduce the measured waveforms very accurately.
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3.4 Deriving ToA from EMTR

Starting from equation (3.17), we will now demonstrate mathematically that the Time-of-Arrival
(ToA) method to locate lightning [11] is actually a particular case of EMTR.

Let us consider only the vertical component of the electric field. The vector quantities �φ(t)

and �ETR1(�r, t) have only one component and can therefore be considered scalar. Since ‖�rn − �rs‖
is fixed, the maximum amplitude of ETR1(�r, t) is obtained when the functions φ(t) all have the
same phase shift (and therefore interfere constructively), and it coincides in time with the peak of
φ(t). For the back-propagated signals to interfere constructively, the phase term in (3.17) should
be equal for all the sensors:

T +
‖�rn − �rs‖

c
− ‖�r − �rn‖

c
= K ∀ �rn (3.27)

where K is an undetermined constant.
The left-hand side of this equation becomes independent of �r for �r = �rs leading to K = T .

Under this condition, the function ETR1(�r, t) reaches its maximum.
Let us now re-arrange equation (3.27) and write it for two different sensors at location �ri and

�rj:

‖�ri − �rs‖ − ‖�r − �ri‖ = c(K − T ) (3.28a)

‖�rj − �rs‖ − ‖�r − �rj‖ = c(K − T ) (3.28b)

Subtracting these two equations, simplifying and dividing by c, we obtain:

‖�ri − �rs‖
c

− ‖�rj − �rs‖
c

=
‖�r − �ri‖

c
− ‖�r − �rj‖

c
(3.29)

The left hand side is recognised as the difference in time of arrival from the stroke point to the
sensors i and j, which can be determined from the waveforms recorded at those two sensors. The
right hand side represents the difference in time of arrival from a general point �r to the same two
sensors. The equation defines a hyperbola and it is the basic equation used to locate lightning
using the ToA technique (e.g. [11]).

3.5 Time reversal with lossy medium

We have used the approach based on (2.3) to account for losses, according to which not only the
amplitude, but the whole waveform, is affected by the ground conductivity.

We showed in Section 3.2.3 that a propagation along a lossy ground is not time reversal invariant
unless the sign of the ground conductivity is reversed. Three different propagation models are
proposed in the next three sections to cope with this problem.

It should be noted that, in a practical implementation, the measured electromagnetic field
waveforms are affected by propagation effects along a lossy ground whose electrical parameters are
often not well known. On the other hand, as the back-propagation is carried out by simulation,
a back-propagation model is needed. Hence, in the following paragraphs, we will describe three
models for the back-propagation which will be analysed in Section 3.6. In the following development,
we will assume that the (direct) propagation takes place along a homogeneous, lossy ground for
which the field can be evaluated using (2.7).
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3.5.1 Model 1: Perfect ground back-propagation

In this model, the losses in the back-propagation are simply disregarded. Under this condition, the
contribution of sensor n to the time-reversed field is given by

ETRn1(�r, ω) = E∗
n(ω)e

−jω
‖�r−�rn‖

c (3.30)

Recall that E∗
n(ω) is the time-reversed version of the field captured by the sensor at location �rn.

This first model neglects attenuation and dispersion effects, but it accounts for the time delay
(‖�r − �rn‖)/c due to the back-propagation. Note that the dispersion and attenuation effects due to
propagation from the lightning channel to the sensors are still present.

Introducing Equation (2.7) into (3.30), we obtain, at the stroke location:

ETRn1(�rs, ω) = S∗
f (‖�rs − �rn‖ , ω) · 1

‖�rs − �rn‖ φ∗(ω) (3.31)

Since, as seen from (3.31), propagation effects influence the fields computed at the stroke location,
the computed contributions from the different sensors will, in general, be out of phase with each
other. This is in contrast with the results for a lossless ground (equation (3.18)).

3.5.2 Model 2: Lossy ground back-propagation

This model takes into account the losses while calculating the back-propagating field:

ETRn2(�r, ω) = E∗
n(ω)e

−jω
‖�r−�rn‖

c Sf (‖�r − �rn‖, ω) (3.32)

Inserting (2.7) into (3.32), we obtain, at the stroke location:

ETRn2(�rs, ω) = |Sf (‖�rs − �rn‖ , ω)|2 · 1

‖�rs − �rn‖ φ∗(ω) (3.33)

During propagation from the lightning to the sensors, phase distortion is introduced by the effect
of the finite ground conductivity. This phase distortion is compensated in model 2, since losses are
taken into account in the back propagation of the time-reversed fields.

3.5.3 Model 3: Inverted losses back-propagation

In this model, an inverted filter Sf is used in the back propagation to equalise the propagation
effects. The equalisation filter can be viewed as having the effect of propagation over a fictitious
‘inverted-loss’ ground:

ETRn3(�r, ω) = E∗
n(ω)e

−jω
‖�r−�rn‖

c
1

S∗
f (‖�r − �rn‖ , ω) (3.34)

Again, inserting (2.7) into (3.34), we obtain at the stroke location

ETRn3(�rs, ω) =
1

‖�rs − �rn‖ φ∗(ω) (3.35)

It can be seen that the effect of losses is absent in (3.35), since the effects of the propagation filter
and of the inverted filter cancel out. This assumes, of course, that the back-propagation model
corresponds exactly to the propagation model.
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This model presents two drawbacks. The first one is the fact that 1
Sf (‖�r−�rn‖,ω) tends to infinity

when ω goes to infinity. This can be addressed by introducing a properly specified low-pass filter
H(ω) so that the expression H(ω)

Sf (‖�r−�rn‖,ω) decreases as ω increases to infinity. To avoid changes in
the phase, a zero-phase filter could be used.

The second drawback is the fact that, under this model, the signal amplitude increases with
propagation distance. Due to this effect, the maximum of the field is no longer usable as a means
to detect the stroke location.

It is nevertheless possible to avert this difficulty by dividing the signal by a factor An to keep
the amplitude constant regardless of the propagation distance. In the time domain, An can be
chosen to be:

An =
max

t
(En,filtered(t))

max
t

(En(t))
(3.36)

where max
t

(·) is the maximum over time of its argument and En,filtered(t) is the field En(t) after

filtering by H(ω)
Sf (‖�r−�rn‖,ω) .

Finally, the characteristic equation of this third model reads

ETRn3(�r, ω) = E∗
n(ω)e

−jω
‖�r−�rn‖

c

(
H(ω)

Sf (‖�r − �rn‖ , ω)
)∗ 1

An
(3.37)

with H(ω) and An chosen as described above.
Inserting (2.7) into (3.37), it can be readily seen that the effect of the losses will disappear in

the bandwidth of H(ω).

3.5.4 Remarks on the considered models

Note that, from a theoretical point of view, the back-propagation model 3 corresponds to a soil of
negative electric conductivity for which, as discussed in Section 3.2.3, Ohm’s law is TR invariant.
As a result, model 3 can be considered as the most rigorous among the three considered models.
However, since in the real world the propagation is affected by uncertainties (ground electrical
parameters, terrain profile, etc.), and since some commercial simulation programs does not allow
negative values for the conductivity, models 1 and 2 could be useful to implement.

Note that, as expected, if the losses are neglected (Sf (ω) ≡ 1, H(ω) ≡ 1), all the three models
become identical.

3.6 Simulations

In this section, we use simulations to test the three proposed models.
The studied area is a surface of 100 km× 100 km. A lightning discharge is assumed to occur at

�rs. Three sensors are considered and their locations (�r1, �r2, �r3) are shown in figure 3.5.
The ground, described by its electric permittivity ε and conductivity σ, is assumed to be flat and

homogeneous. We have found, after several simulations, that the propagation effect from equation
(2.3) is essentially determined by the ground electric conductivity, and the ground permittivity does
not significantly affect the generated electromagnetic fields. Consequently, the relative permittivity
was set equal to 10 in all of our simulations. We used three values for the conductivity: (i) 1 S/m,
corresponding to an almost ideally conducting ground for the considered distances, (ii) 0,01 S/m,
and (iii) 0,002 S/m.
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100 km

Figure 3.5: Simulation domain. The sensor locations are marked by dots •. The stroke location is shown
as an asterisk ∗. Back-propagation is made on the grey-coloured surface, which measures 100 km×100 km.

Two sets of simulations were performed, the first one using the complete waveforms measured by
the sensors and the second using only a small number of parameters extracted from the waveforms.

3.6.1 First set of simulations

The diagram illustrating the different steps involved in the first set of simulations is shown in
Figure 3.6. The first step involves the definition of the waveshape of the return stroke current and
the specification of the position of the stroke point. The sampling interval is set to 20 ns for all the
simulations.

Once the source has been specified, the electric fields at the locations of all the sensors are
computed using the propagation model described by (2.7).

Parameters

Shape of current

Source

Field computing

Backpropagation

Maximum Location

Back-
propa-
gation

parameters

Propagation

Location

Figure 3.6: Structure of algorithm for the first set of simulations.

The fields at the sensor locations are then time-reversed and back-propagated using each one
of the three models described in section 3.5 and a space sampling of 10 m × 10 m.

The sum of the contributions from each sensor gives the total field, from which the peak value
is extracted. The spatial maximum gives an estimate of the stroke location.

The results of the simulations are shown in Table 3.1. In this Table, the specified values for
the soil conductivity were used for the direct propagation model. For back-propagation (reversed
time), the same value of the soil conductivity was used for models 2 and 3. For model 1, the
back-propagation was carried out assuming the soil as a perfect conductor. The third proposed



3.6. SIMULATIONS 29

model, i.e. the one that inverts the losses, provides correct results for all three conductivities. Note
that the error is not exactly zero due to the non-zero size of the discrete elements of the space grid
used in the simulations.

Table 3.1: Location error in m, as a function of soil conductivity and backpropagation model used.

Soil conductivity σ (S/m)

1 0.01 0.002

Backpropagation model Location error (m)

Model #1 5.4 138.7 260.5

Model #2 3.6 64.1 115.1

Model #3 3.6 3.6 3.6

Model #3, ∗ 10.6 13.2 25.9
∗ σ underestimated by a factor of 2 in the back-propagation.

The size of the discrete elements is 10 m× 10 m.

When the finite conductivity of the ground is neglected in the back-propagation (model #1),
the errors observed are of the order of hundreds of meters. On the other hand, if losses are inverted
(model #3), the error due to the method itself is zero and the only remaining errors are due to
the finite size of the discrete spatial grid. To test the sensitivity of model #3 to errors in the
conductivity, a test was performed using, for the back-propagation, a conductivity underestimated
by a factor of 2. The results, presented in the last line of Table 3.1, show that, at least in the cases
tested in our simulations, the errors are as low as a few tens of meters.

Note also that the use of three sensors may lead to a location ambiguity (more than one fix for
a return stroke). This is also an issue in the ToA method. A solution, both for TR and for ToA,
is the use of additional sensors.

3.6.2 Location with finite number of waveform parameters

Many LLS, such as EUCLID [47] and NLDN [44], do not record the complete electric or magnetic
fields. Instead, they extract and store only a number of signal parameters such as typically the
triggering time, the rise-time and the peak value [47]. This is not the case for other networks such
as GLD360 [46] or LINET [112], where the waveforms are stored for each flash.

Figure 3.7 presents a diagram of the steps followed in the second set of simulations, in which
only some parameters of the signals will be used. A comparison between the algorithms presented
in figures 3.6 and 3.7 reveals that the only difference lies in the blocks “sampling” and “fitting”
that have been added to the latter.

We now describe the sampling process with reference to Figure 3.8 which illustrates the idealised,
noiseless initial part of the radiation return stroke electric field. From the electric field computed
at the location of the sensors, called “captured field ” in Figure 3.8, we can extract the signal’s onset
time ton, the peak value Ep, and the time tp at which this value is reached. These parameters are
labelled “memorised data” in Figure 3.8 and they are similar to the ones provided by a real LLS.

To implement the time reversal method, we use the onset time, peak amplitude and time to
peak to derive a complete wave labelled “extrapolated curve” in Figure 3.8. This process is named
the fitting process. The shape of the extrapolated curve is deliberately chosen to be different from
the original waveform in order to evaluate the impact of the sampling-fitting process and study
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Figure 3.7: Diagram illustrating the algorithm for the second set of simulations.
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• Memorised data

Extrapolated curve

Figure 3.8: Diagram of sampling and extrapolation. From the captured field (solid line), only two points
(•) are stored. A dashed curve labelled extrapolated is drawn based on these two points. ton is the onset
time of the signal and Ep is the peak value, reached at time tp .

its effect on the location accuracy. Although the amplitude and the onset time are the same, the
frequency content of the modified waveform is different from the original field waveform. This may
lead to differences in the timing and amplitude of the back-propagated waveform for methods 2
and 3 where frequency-dependent propagation losses are included in the back-propagation process.

The extrapolated waveform is reproduced using a Heidler function, whose analytical expression
is given by [113]:

E(t) =
Ep

η

(
kns

1 + kns

)
e−(t−ton)/τ2 ε(t− ton) (3.38)

where ks =
t−ton
τ1

, η = e

(
− τ1

τ2
(nτ2

τ1 )
1

n+1

)
, τ1 and τ2 are time constants, Ep is the peak value and ε(t)

is the step function. The parameters τ1 and τ2 are chosen such that the extrapolated curved fits
the two memorised points, as in Figure 3.8.

Table 3.2 contains the results obtained in the second set of simulations using only the onset
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Table 3.2: Location error, as a function of soil conductivity and used back-propagation model

Soil conductivity σ (S/m)

1 0.01 0.002

Backpropagation model Location error (m)

Model #1, ∗ 15.8 120.2 304.4

Model #2, ∗ 7.1 57.0 190.4

Model #3, ∗ 7.1 95.1 139.5
∗ with sampling-fitting (see figure 3.8).

The size of the discrete elements is 10 m× 10 m.

time, the time to peak and the amplitude. A comparison with the results in Table 3.1 reveals
that the accuracy reduces considerably if only a finite number of waveform parameters are used.
However, the resulting location errors remain, for all the considered cases, within acceptable limits
(below 300 m or so).

3.7 Application to experimental data from LLS

In this section, we present simulations based on data from the Austrian lightning location system
ALDIS [47]. The ALDIS system is made up of the 8 sensors installed across Austria as shown in
figure 3.9. Based on ground-truth data from lightning to an instrumented tower in Austria the CG
(cloud to ground) flash detection efficiency of ALDIS (EUCLID) was determined to be higher than
98%. A stroke detection efficiency of 85% and 99% was determined for all strokes and strokes with
peak currents above 10 kA, respectively. The median location accuracy of ALDIS detected strokes
to the Gaisberg Tower in 2000 - 2005 was about 370 m [114].

No Name

1 Hitzging
2 Schwaz
3 Hohenems
4 Niederöblarn
5 Nötsch
6 Fürstenfeld
7 Bad Vöslau
8 Dobersberg

Figure 3.9: Position of ALDIS sensors in Austria.

We have used data for 8 different strokes for which three or more ALDIS sensors were involved
in the determination of the location, as summarised in Table 3.3. These strokes were selected to
have occurred in the central area of Austria in order to have relatively short distances (maximum
300 to 400 km) to the sensors located in Austria, and the strokes are located by a minimum of
three Austrian sensors. This is the reason why these otherwise randomly selected strokes have
relatively high peak currents (see Table 3.3). This selection justifies to some extent the application
of a simple propagation model over a homogeneous soil. Nevertheless, the propagation to some of
the sensors included parts along mountainous regions. For each stroke, the sensors from the ALDIS
involved in its detection are listed (their respective locations are shown in Fig. 7), along with the
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stored parameters, namely:

1. the amplitude of the electric field in LLP units (1158 LLP units corresponds to 52 V/m),

2. the triggering time, which corresponds to the onset time ton in Fig. 3.8, and

3. the risetime, which corresponds to the zero-to-peak time (tp − ton in Fig. 3.8).

Table 3.3: Data on sensors involved in locating the 8 considered strokes, along with their associated data.
1158 LLP units corresponds to 52 V/m.

stroke
no Type

Peak
Current
Estimate

(kA)

Semi-
major
axis
(m)

Sensor
no

Amplitude
(LLP)

Trigger
time
(ns)

Rise
time
(μs)

1 first
stroke 143.2 300

7 938.2 441952778 23.1
6 326.6 442276550 22
4 388.8 442359997 28.8
1 267.1 442490054 28
2 115.5 442884994 25.8
3 97 443361355 26.1

2 first
stroke 87.7 200

6 252.5 344669653 10.5
4 220.3 344750834 10.8
1 207.3 344881607 10
5 122.2 345059348 12.4
2 73.2 345275474 9.8
3 66.7 345752431 9.1

3 first
stroke −43.7 200

8 -380.3 59205843 20.6
7 -310.3 59259010 14.4
6 -122.9 59586597 9.5
4 -126.5 59646679 16.1
1 -89.2 59760762 9
5 -68.5 59962583 14.8
2 -35.5 60161067 11.8
3 -30.3 60632182 8.5

4 first
stroke 30.8 200

8 275.8 918331576 6.5
4 75.2 918721748 9.5
1 58.7 918849898 6
5 43 919031931 10
2 23.6 919245077 8.4
3 19.6 919721080 7.5

5 first
stroke 51.8 300

7 402.8 894199325 17.3
8 435.6 894217444 16.1
6 148.5 894526792 17
4 143.1 894609762 13.8
1 123.2 894739581 13.1
5 79.7 894919468 13.8
2 44.6 895136667 10
3 39.3 895613147 9.5

6 first
stroke −20.9 300

6 -63 766733123 20.1
4 -65.7 766803099 21.8
5 -33.6 767117692 17.6
2 -17.5 767333580 11.8

7 first
stroke 91.6 200

4 192.8 652246786 17.6
1 167 652381969 13.4
5 117.2 652549101 18.6
2 63.2 652775598 15.8
3 56.7 653253270 12.4

8
sub-
sequent
stroke*

−9.5 400
7 -82.4 788471056 2.2
8 -66.7 788496805 18
6 -22.8 788805200 2.3

* Same flash as the stroke #7.
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A coordinate transformation, namely a cylindrical projection, from geographic to a Cartesian
coordinate system, allows the use of the same algorithm as presented before. For the simulations,
the soil conductivity was assumed to be σ = 0.002 S/m. A sensitivity analysis was performed and
showed that the location is not strongly dependent on the value of the soil conductivity.

For each stroke, the difference between the TR location and that given by the LLS is shown in
figure 3.10. The smallest difference is observed for the second model, which implements physical
losses.

# stroke

Difference (km)

1 2 3 4 5 6 7 8

-1
-2
-3
-4
-5
-6
-7

Figure 3.10: Location difference, as a function of stroke number and back-propagation model. For each
stroke, three bars represent from left to right the model 1 (perfect ground back-propagation), model 2 (lossy
ground back-propagation) and model 3 (inverted losses back-propagation).

Figure 3.11 shows, as an example, the peak amplitude of the back-propagated field for the fifth
considered stroke, using the second model. The location provided by the EMTR, corresponding to
the maximum amplitude, is shown by a green star. In the same figure, the location provided by
the LLS is also shown (blue asterisk).

Figure 3.11: Peak amplitude of the back-propagated field for stroke number 5, computed using Model 2
(lossy ground back-propagation). The amplitude is scaled by its spatial maximum and colour coded. The
location provided by the EMTR method (corresponding to the maximum) is shown by a green star (�). The
location provided by the LLS is also shown by a blue asterisk (∗). The (0,0) coordinate does not correspond
to any specific geographical location.

Using the LLS estimated locations as ground-truth, the errors observed from the three methods
can be as large as a few km. The errors come from a number of sources, including

a) The lack of access to the complete curves
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b) The transformation from geographic to Cartesian coordinates

c) The use of a simple propagation model considering the soil as homogeneous

d) The fact that the LLS stroke locations, which are used as ground-truth reference were taken
from the EUCLID network data stream and therefore include the contribution of numerous
sensors (time and angle) located around Austria. For the simulation, only time information
from the 8 sensors located in Austria is used.

In addition to the possible causes of errors of the EMTR method, it is important to note that
lightning location systems are also characterised by location errors. Even though these errors are
generally in the order of a few hundreds of meters on average, higher errors in the order of a few
kilometres or so can be observed for individual strokes. In addition, the ALDIS system optimises
the location using a combination of ToA and DF. Moreover, sensors located outside Austria are
also used for calculating the optimised stroke point. As a result, the presented comparison should
not be considered as a quantitative test of the proposed method.

3.8 Concluding remarks

We discussed the use of the Electromagnetic Time Reversal (EMTR) method to locate lightning
strokes. After a brief description of EMTR and its application to lightning location, we demon-
strated that the Time-of-Arrival method can be seen as a special case of EMTR. We proposed three
different models of back-propagation to address the issue of EMTR not being invariant for lossy
media. Two sets of simulations were carried out to evaluate the accuracy of the proposed methods.

The first set of simulations was performed using numerically-generated fields, and the proposed
algorithm was shown to give very good results even if the soil is not perfectly conducting. In par-
ticular, it was shown that considering a model in which losses are inverted in the back propagation
yields theoretically exact results for the source location. We also showed that a lack of access to
the complete recorded waveforms may lead to higher location errors, although the computed errors
were found to be within the range of performance of the present LLS.

A second set of simulations was performed using the sensor data reported by the Austrian
Lightning Location System. The locations obtained by way of the EMTR method using only
the available sensor data (amplitude, arrival time and time-to-peak) was observed to be within a
few kilometres of the locations supplied by the LLS. The possible sources of error were discussed,
including the fact that the exact stroke location is not known exactly. Work is in progress to use
lightning strokes to instrumented towers for which the exact stroke location is known as ground-
truth data .

Perspectives

Should LLS provide more accurate information in the future, the proposed method which takes
advantage of the whole waveform of the measured fields (including amplitude and time of arrival),
may be very promising in terms of achievable location accuracy and detection efficiency.

It is also possible that progress in the back-propagation models may lead to improvements
in the accuracy over those obtained by current Lightning Location Systems. In particular, a 3D
model, for example using FDTD (finite difference time domain), could be implemented in order
to take the topography (mountains,...) and inhomogeneity of the soil into account during the
back-propagation. In order to run the algorithm in real time, special attention should be paid to
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optimisation of the computation. A possible approach would be the use an another method (for
example ToA) as a first estimation and the application of the EMTR method on a reduced area
around this point.

Another challenge would be the adaptation of the algorithm when two sources of radiation are
radiating simultaneously or almost simultaneously.

Moreover, in order to test and develop the present proposed algorithms, a more complete
experimental data set would be required. These data would include the exact location of strokes
and complete field waveforms measured at different locations and synchronised by GPS.
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Chapter 4

Available Analysis Methods

The coupling between an electromagnetic field and a transmission line, the propagation of tran-
sients along a line or the cross-coupling between parallel conductors can be solved by numerous
approaches [1]. One such approach makes use of the quasi-static approximation in which propaga-
tion is neglected and coupling is described by lumped elements [10]. This approach can be adopted
only when the overall dimensions of the circuit are much smaller than the minimum significant
wavelength of the electromagnetic field. Unfortunately, this condition is not satisfied for many
practical cases.

When the dimensions of the line is longer than the wavelength of the field, ‘antenna-theory’
or ‘full-wave’ methodologies directly based on Maxwell’s equations can be adopted [10]. When
electrically long lines are involved, however, these numerical approaches require long computational
times and large computer resources, which become prohibitive when multiple computations are
required, in the case of parametric analysis for example.

In this chapter, we review two other approaches, the transmission line theory in Section 4.1,
and the so-called enhanced transmission line theories in Section 4.2.

4.1 Transmission line approximation

One of the most used models for the computation of the coupling and propagation along a line
is the classical transmission line (TL) theory [10, 115, 116]. It is relatively ‘simple’ compared to
models based on antenna theory, and it has limited requirements in terms of computer resources.
Another advantage is the fact that in some cases, it provides analytical expressions, which give
insight into the physics of the problem. Its validity domain is, however, limited in frequency.

4.1.1 Assumptions

The assumptions associated with the transmission line approximation are thoroughly discussed in
numerous books on electromagnetism (see e.g. [10,115,116]). Here, we will give a brief overview of
these assumptions.

The propagation is assumed to occur along the line axis. This happens when the cross section
of the line is electrically small; furthermore, the line is assumed to be made of parallel, straight
and uniform wires, exhibiting a translational symmetry along the length of the line. The radius of
the wires is assumed to be small compared to the wavelength and the other dimensions of the line.
This assumption allows the following simplifications: (i) The current flows along an infinitely thin
filament in the central axis of the wire. (ii) All currents are axial. (iii) The boundary conditions

39
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can be expressed on any arbitrary contour along the wire. The fact that the currents are axial
along straight, infinitely thin conductors implies a transverse magnetic (TM) propagation mode.

Another assumption of the classical TL theory is that the sum of the currents flowing in all
the wires (including the reference wire) on a cross-section is zero. This fact is guaranteed by the
presence of a perfect electric conductor (PEC) ground plane, because according to image theory,
the currents flowing in the mirrored wires are equal in amplitude and opposite in direction to the
ones in the real wires [117]. In this case, the electric field generated by the line is perpendicular
to it (transverse electric (TE) mode), except if it is illuminated by an external field, leading to a
scattered field having a component parallel to the line. On the other hand, when the ground plane
is not perfectly conducting or when the wires are in free space, it is possible to have antenna-mode
currents [118].

These assumptions are generally valid when the cross-section of the line is electrically small,
typically less than about one tenth of the wavelength. According to these assumptions, the propaga-
tion along the line is quasi transverse electromagnetic (TEM). It is worth noting that the presence
of discontinuities along the line, such as bends, terminals or lumped impedance, can generate
radiation modes and evanescent modes, which are not considered by the TL theory [1].

Definition of the assessed system

Figure 4.1: Two-wire line illuminated by a plane wave.

An example of the system assessed in this chapter is illustrated in Figure 4.1. N PEC and straight
wires of circular cross-section with diameter 2an and length L are located at a height hn above a
perfect ground plane, at a horizontal position yn, with n = 1, ..., N . The wires are terminated to
ground by impedances given by the matrices Ẑ1 and Ẑ2. The line is illuminated with a plane wave,
characterised by its amplitude E0 and three angles: the elevation angle ψ, the azimuth angle φ,
and the polarisation angle α of the electric field [10].

The exciting field is computed in absence of the line and corresponds to the sum of the incident
field and the reflected field due to the ground. In the case of a plane wave over a perfectly conducting
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ground, the x and z component of the exciting electric field can be written as follows [10]:

Ee
x(x, y, z) = E0Ae

−jkxxejkyy(ejkzz − e−jkzz)

Ee
z(x, y, z) = E0Be−jkxxejkyy(ejkzz + e−jkzz)

(4.1)

where
A = cosα sinψ cosφ+ sinα sinφ

B = cosα cosψ

kx = k cosψ cosφ

ky = k cosψ sinφ

kz = k sinψ

(4.2)

and where k = ω/c is the propagation constant in free space.

4.1.2 Derivation of the coupling equations

Because using the fields often requires working in the spectral domain (as done, for instance,
in [119]), the mixed-potential integral equations (MPIE) are used here, with reference to [120]. In
this section, the case of an infinite line is analysed and the boundary conditions associated with
terminals will be introduced in another section.

The total tangential field, i.e. the sum of the exciting field and the scattered field (the field
generated by the induced currents and charges in the line), is zero at the surface of the PEC wires:

Ee
x,n(x) + Es

x,n(x) = 0 n = 1, .., N (4.3)

where Ee
x,n(x) and Es

x,n(x) are the x-component, respectively, of the scattered and the excitation
electric field at the position of the wire number n. The induced currents and per-unit-length charges
in each wire In(z), Qn(z), n = 1, ..., N , in turn create a scattered field. The scattered electric field
can be expressed using the scalar and vector potentials:

�Es(x, y, z) = −∇ϕ(x, y, z)− jω �A(x, y, z) (4.4)

In particular, the x-component reads:

Es
x(x, y, z) = −∂ϕ(x, y, z)

∂x
− jωAx(x, y, z) (4.5)

We will now express the x-component of the vector potential at the surface of the nth wire in the
Lorenz gauge. The thin-wire approximation allows us to replace the integral over the surface of all
wires by a sum of line integrals along each wire.

Ax,n(x) =
μ0

4π

∞∫
−∞

N∑
n=1

g(�r, �rn
′)In(x′)dx′ (4.6)

where In(x) is the current in the nth wire, �rn′ := (x′, yn, hn) is the position along the nth wire and
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g(�r, �r ′) is a Green’s function that can be expressed as:

g(�r, �r ′) =
e−jk|�r−�r ′|

|�r − �r ′|︸ ︷︷ ︸
real wire

−e−jk|�r−�̃r ′|∣∣∣�r − �̃r ′
∣∣∣︸ ︷︷ ︸

mirrored wire

(4.7)

where the second term corresponds to the mirrored wires located at �rn
′ := (x′, yn,−hn) that

simulate the effect of the ground according to image theory.

The scalar potential applied to the geometry of interest reads:

ϕ(x, y, z) =
1

4πε0

∞∫
−∞

N∑
n=1

g(�r, �rn
′)Q′

n(x
′)dx′ (4.8)

where Q′
n(x) is the per-unit-length charge in the nth wire.

In order to reduce the number of variables, we will express the charge density as a function of
the current through the continuity equation

∇ · �I + jωQ = 0 (4.9)

where �I is the current density and Q is the volume charge density. Due to the thin-wire approxi-
mation, the current flows only along the x-axis, so the continuity equation can be written:

∂In(x)

∂x
+ jωQ′

n(x) = 0 (4.10)

Expressing the per-unit-length charge as a function of the current yields

Q′
n(x) = − 1

jω

∂In(x)

∂x
(4.11)

Introducing (4.11) into (4.8) leads to:

ϕ(x, y, z) = − 1

jω4πε0

∞∫
−∞

N∑
n=1

g(�r, �rn
′)
∂In(x

′)
∂x′

dx′ (4.12)

ϕn(x) is defined as the scalar potential at the location of the nth wire:

ϕn(x) := ϕ(x, yn, hn) (4.13)

Equations (4.3), (4.5) and (4.6) lead to:

∂ϕn(x)

∂x
+ jω

μ0

4π

∞∫
−∞

N∑
m=1

g(�rn, �rm
′)Im(x′)dx′ = Ee

x(x) (4.14)

in which the summation index n was replaced by m to avoid a confusion.
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Equations (4.8) and (4.13) lead to:

ϕn(x) +
1

jω4πε0

∞∫
−∞

N∑
m=1

g(�rn, �rm
′)
∂Im(x′)
∂x′

dx′ = 0 (4.15)

To simplify the notations that include summations, (4.14) and (4.15) are written now using a matrix
notation. For example, the currents, the potentials and electric fields are grouped into vectors:

I(x) =

⎡⎢⎢⎢⎣
I1(x)

...

IN (x)

⎤⎥⎥⎥⎦ ϕ(x) =

⎡⎢⎢⎢⎣
ϕ1(x)

...

ϕN (x)

⎤⎥⎥⎥⎦ Ee
x(x) =

⎡⎢⎢⎢⎣
Ee

x(x, y1, h1)
...

Ee
x(x, yN , hN )

⎤⎥⎥⎥⎦ (4.16)

where the square brackets are used to concatenate numbers or matrices into a matrix. As a
convention of notation, bold roman font is used for matrices (topped by a circumflex) and vectors.
Note that they should not be confused with three component, physical vectors, like the electric
field, which are topped by an arrow. Here, every component of a vector is related to a wire, hence
the size of the vectors is generally N × 1 and the matrices N ×N .

∂

∂x
ϕ(x) + jω

μ0

4π

∞∫
−∞

ĝ(x− x′)I(x′)dx′ = Ee
x(x)

ϕ(x) +
1

jω4πε0

∞∫
−∞

ĝ(x− x′)
∂

∂x′
I(x′)dx′ = 0

(4.17)

where the elements of ĝ(x− x′) are given by:

gmn(x− x′) =
e−jk

√
(x−x′)2+(dmn)2√

(x− x′)2 + (dmn)2
− e−jk

√
(x−x′)2+(d̃mn)2√

(x− x′)2 + (d̃mn)2
(4.18)

with the following geometrical distances:

dmn =

{√
(yn − ym)2 + (hn − hm)2 n �= m

an n = m

d̃mn =

{√
(yn − ym)2 + (hn + hm)2 n �= m

2hn n = m

(4.19)

In (4.18) and (4.19), derived from (4.7), the radius of the wires is disregarded for n �= m. However,
when n = m, the radius of the wire has to be taken into account.

4.1.3 Agrawal’s model

During the development made up to now, only the thin-wire assumption was used. Let us now use
the low-frequency assumption in three steps.

1st step On the one hand, according to the transmission-line assumptions, the wavelength asso-
ciated with the exciting field is much larger than the cross-section of the line. On the other hand,



44 CHAPTER 4. AVAILABLE ANALYSIS METHODS

at low frequencies, the Green’s function becomes negligible when its argument is larger than about
a few times the cross-section. Hence, the current can be considered as almost constant over the
effective length of integration in (4.17) and can be taken out of the integral (see [1], p.128).∫ ∞

−∞
ĝ(x− x′)I(x′)dx′ ∼=

∫ ∞

−∞
ĝ(x− x′)dx′ I(x)∫ ∞

−∞
ĝ(x− x′)

∂

∂x′
I(x′)dx′ ∼=

∫ ∞

−∞
ĝ(x− x′)dx′

d

dx
I(x)

(4.20)

2nd step In the Green’s functions (4.18), taking the low-frequency limit k → 0 allows to get rid
of the exponential terms (e−jkx ∼= 1). The integral in (4.20) can be computed after a change of
variable ξ := x′ − x.

∞∫
−∞

gmn(x− x′)dx′ ∼=
∞∫

−∞

1√
ξ2 + (dmn)2

− 1√
ξ2 + (d̃mn)2

dξ =

= ln
(√

ξ2 + (dmn)2 + ξ
)∣∣∣∞

−∞
− ln

(√
ξ2 + (d̃mn)2 + ξ

)∣∣∣∣∞
−∞

=

= 2 ln

(
d̃mn

dmn

)
=: GTL

mn

(4.21)

In fact, the integral is independent on the position and the frequency.

3rd step The ‘scattered voltage’ is defined as the low-frequency limit of the scattered scalar
potential.

Us(x) := lim
f→0

ϕ(x) (4.22)

Interestingly, a development using the Coulomb gauge, which would provide a different definition
of the potential, would lead to exactly the same result at low frequencies [121].

The per-unit-length matrices of inductance and capacitance are defined as follows [115]:

L̂′
0 :=

μ0

4π
ĜTL

Ĉ′
0 := 4πε0Ĝ

TL−1
(4.23)

The application of definitions (4.22) and (4.23) into (4.17) leads to the telegrapher’s equations in
the formulation proposed by Agrawal, Price and Gurbaxani [122].

d

dx
Us(x) + jωL̂′

0I(x) = Ee
x(x)

d

dx
I(x) + jωĈ′

0U
s(x) = 0

(4.24)

This model expresses the coupling in terms of electric field only.

For the sake of completeness, two different but completely equivalent formulations, known as
Taylor’s and Rachidi’s models, are presented in the next two sections.
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4.1.4 Taylor’s model

The total voltage is linked with the scattered voltage through:

U(x) = Us(x) +Ue(x) = Us(x)−
[

hn∫
0

Ee
z(x, yn, z)dz

]
(4.25)

where the brackets correspond to a vector; the term inside the brackets corresponds to the nth

component of this vector.
Besides, the exciting field must satisfy the Maxwell-Faraday equation.

∇× �Ee(x, y, z) = −jω �Be(x, y, z) (4.26)

In particular the y-component of this equation, at the position y = yn, reads:

d

dx
Ee

z(x, yn, z)−
d

dz
Ee

x(x, yn, z) = −jωBe
y(x, yn, z) (4.27)

This equation can be integrated along z, while considering that the exciting field tangent to the
ground is zero.

d

dx

hn∫
o

Ee
z(x, yn, z)dz − Ee

x(x, yn, hn) =

hn∫
o

−jωBe
y(x, yn, z)dz (4.28)

Applying (4.25) and (4.28) into (4.24) leads to the coupling model of Taylor, Satterwhite and
Harrison [123].

d

dx
U(x) + jωL̂′

0I(x) = −jω

[
hn∫
0

Be
y(x, yn, z)dz

]
d

dx
I(x) + jωĈ′

0U(x) = −jωĈ′
0

[
hn∫
0

Ee
z(x, yn, z)dz

] (4.29)

This model expresses the coupling using directly the total voltage without needing the scattered
voltage.

4.1.5 Rachidi’s model

A ‘scattered current’ can be defined in a similar way as the scattered voltage [38].

I(x) = Is(x) + Ie(x) = Is(x)− L̂′
0
−1

[
hn∫
0

Be
y(x, yn, z)dz

]
(4.30)

Besides, the exciting field must satisfy the Ampere-Maxwell law in absence of current:

∇×Be(x, y, z) = jωμ0ε0E
e(x, y, z) (4.31)

Applying (4.30), (4.31) and the equivalence between the per-unit-length inductance and capacitance
(4.23) into Taylor’s equations (4.29) leads after simplification to Rachidi’s model [38].

d

dx
U(x) + jωL̂′

0I
s(x) = 0

d

dx
Is(x) + jωĈ′

0U(x) = L̂′
0
−1

[
hn∫
0

∂
∂yB

e
x(x, yn, z)dz

] (4.32)
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This model characterises the coupling in terms of magnetic field only.

4.1.6 Boundary conditions

The line terminations are modelled by impedance matrices: Ẑ1 at x = 0 and Ẑ2 at x = L.

U(0) = −Ẑ1I(0)

U(L) = Ẑ2I(L)
(4.33)

In the classical transmission line theory, the terminals are considered as electrically short, allowing
the use of Ohm’s law for a lumped source. However, a more accurate modelling of the risers in the
framework of the TL theory will be presented in Section 4.1.11.

4.1.7 BLT equations

The line response at its terminal loads can be expressed in a compact way by using the Baum, Liu,
Tesche (BLT) equations [10].⎡⎣ I(0)

I(L)

⎤⎦ =

⎡⎣ Ẑ
−1

C 0̂

0̂ Ẑ
−1

C

⎤⎦⎡⎣ 1̂− ρ̂1 0̂

0̂ 1̂− ρ̂2

⎤⎦⎡⎣ −ρ̂1 1̂ejkL

1̂ejkL −ρ̂2

⎤⎦−1 ⎡⎣ S1

S2

⎤⎦ (4.34)

where 1̂ is a unit matrix, ẐC is the characteristic impedance

ẐC := cL̂′
0 =

1

c
Ĉ′−1

0 (4.35)

ρ̂1 and ρ̂2 are the reflection coefficients at the left and right terminal respectively.

ρ̂1 = (Ẑ1 + ẐC)
−1(Ẑ1 − ẐC)

ρ̂2 = (Ẑ2 + ẐC)
−1(Ẑ2 − ẐC)

(4.36)

S1 and S2 are source terms which are defined in the following way for a lumped voltage source U0

located in xs.
S1 =

1

2
U0e

jkxs

S2 = −1

2
U0e

jk(L−xs)
(4.37)

If U′
0(xs) is a distributed source between x = a and x = b, the source terms are defined in the

following way.

S1 =
1

2

∫ b

a
U′

0(xs)e
jkxsdxs

S2 = −1

2

∫ b

a
U′

0(xs)e
jk(L−xs)dxs

(4.38)

The source terms for a plane wave excitation will be defined in the following sections.

4.1.8 Modelling of the risers, in the framework of the TL theory

Three different ways of modelling the vertical risers are reviewed, all in the general framework of
the transmission line theory. These three models will be referred to as:
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• ‘Basic case’, adapted from [10];

• ‘Exact-field’ model, adapted from [1];

• ‘Distributed-source excitation’ model, adapted from [124].

All these models can be integrated into the BLT formulation.

4.1.9 Basic model: approximate solution for the lumped sources

Figure 4.2: Scheme of the ‘basic case’ coupling model.

The application of (4.25) into (4.33) reads

Us(0) = −Ẑ1I(0) +

[
hn∫
0

Ee
z(0, yn, z)dz

]
Us(L) = Ẑ2I(L) +

[
hn∫
0

Ee
z(L, yn, z)dz

] (4.39)

In [10], it is assumed that the vertical variation of the field along the risers can be neglected.
Hence, the integral used in the computation of the ‘exciting’ voltage can be reduced to a product
between the field at the ground level and the height of the riser:

U e
n(x) = −

hn∫
0

Ee
z(x, yn, z)dz

∼= −Ee
z(x, yn, 0)h (4.40)

This modelling corresponds to the scheme in Figure 4.2. Based on (4.37), the source terms can
be expressed as:

S1 = E0e
jkyy
(
ej(k−kx)L − 1

)
jkzh

(
A

j(k − kx)
− B

jkz

)
S2 = −E0e

jkyyejkL
(
e−j(k+kx)L − 1

)
jkzh

(
A

−j(k + kx)
− B

jkz

) (4.41)

with
A = cosα sinψ cosϕ+ sinα sinϕ

B = cosψ cosα
(4.42)

where then exponential of a vector is a taken elementwise and where the angles φ, ψ and α are
defined in Figure 4.1.
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This model is expected to be accurate at low frequencies, when the length of the riser is
electrically short, that is under the classical transmission line assumptions.

4.1.10 Exact-field model: exact solution for the lumped sources

Figure 4.3: Scheme of the ‘exact-field’ coupling model.

If the actual field is used to compute the source associated with the vertical risers, the sources
are given by the following expressions:

S1 =
E0

2
ejkyy

(
ej(k−kx)L − 1

)(
ejkzh − e−jkzh

)( A

j(k − kx)
− B

jkz

)
S2 = −E0

2
ejkyyejkL

(
e−j(k+kx)L − 1

)(
ejkzh − e−jkzh

)( A

−j(k + kx)
− B

jkz

) (4.43)

This model corresponds to the Figure 4.3. It is expected to provide results similar to the basic
model at low frequencies and when ψ is small, and more accurate results than the basic case in other
situations. As this model is not computationally much heavier than the basic case, we recommend
to use this one instead.

4.1.11 Distributed-source model for the risers

Vance [124] modelled the risers as conical transmission lines (see Figure 4.4).

Figure 4.4: Vertical element at the end of a transmission line, adapted from [124].

According to Schelkunoff ( [125], Equation 4-(28) p. 105 or [126], p. 287) the characteristic
impedance of a transmission line formed by a conical tower of half-angle Ψ above a perfect ground
reads:

Zcone
C =

1

2π

√
μ0

ε0
ln cot

(
Ψ

2

)
(4.44)
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In the case of a vertical riser, tanΨ = a
h  1, and (4.44) reduces to [125,126]:

Zcone
C

∼= 1

2π

√
μ0

ε0
ln

(
2h

a

)
(4.45)

Equation (4.45) corresponds to the expression of the horizontal line characteristic impedance.
Hence, an effect of the risers is the lengthening of the line by the length of the risers, modelled
in [124] by modified reflection coefficients:

ρ
′
i = ρie

−2γh i = 1; 2 (4.46)

The field coupling to the risers is modelled as distributed sources along the risers. An expression
for the current at the extremities of the horizontal line, that is at z = h and not at the ground
level, is given in [124].

Degauque and Zeddam [127] considered the lengthening of the line due to the risers in a partic-
ular example when the electric field is horizontal and parallel to the horizontal line, i.e. no direct
coupling occurs to the risers. Later, Degauque et al. [128] applied (4.46) in the classical expres-
sion of the current given in [129], providing a theory for general incidence of the field. However,
they used lumped sources for the coupling to the vertical risers and did not provide readily usable
expressions.

The lengthening effect of the risers was also noticed in [130].
Pignari and Bellan [131] modelled the risers as cylindrical. According to Schelkunoff (for a

symmetrical antenna, [125] Equation 13-(89) p.426), the characteristic impedance of a vertical
cylindrical antenna reads:

Zcylinder
C =

1

2π

√
μ0

ε0

(
ln

(
2h

a

)
− 1

)
(4.47)

In this case, even if h � a, the characteristic impedance is not the same as the impedance of the
horizontal part of the line. Hence, in [131] the system was modelled as three lines connected in
cascade and excited by distributed sources.

Modelling of the risers as transmission lines excited by distributed sources

In this section, the line is modelled as three cascaded transmission lines, corresponding respec-
tively to the left riser, the horizontal part and the right riser. As shown in Figure 4.5, the lines
corresponding to the risers are excited by distributed sources whose amplitude corresponds to the
vertical component of the electric field, whereas the horizontal line is excited by the horizontal
component of the electric field.

Figure 4.5: Modelling of a TL.
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As the three lines in Figure 4.5 are supposed to have the same characteristic impedance, they
can be merged into a single line of length L+ 2h. This simplifies the computations and allows the
use of the standard BLT equation (4.34) where L is replaced by L+ 2h.

The change of coordinates from the TL 1D coordinate along the wire (including the riser) to
the 3D usual coordinates for the field is done differently depending on the part of the line which is
considered. ⎧⎪⎨⎪⎩

0 ≤ l < h x = 0 z = l

h ≤ l ≤ L+ h x = l − h z = h

L+ h < l ≤ L+ 2h x = L z = L+ 2h− l

(4.48)

After the change of coordinate presented in (4.48) and integration of the distributed sources
along the lines, the source terms are derived.

S1 =
E0

2
ejkyy

[
B

(
ej(k+kz)h − 1

j(k + kz)
+

ej(k−kz)h − 1

j(k − kz)

)

+A(ejkzh − e−jkzh)ejkh

(
ej(k−kx)L − 1

j(k − kx)

)

−Be−jkxLejk(L+h)

(
ejkzh

ej(k−kz)h − 1

j(k − kz)
+ e−jkzh e

j(k+kz)h − 1

j(k + kz)

)]

S2 =− E0

2
ejkyyejk(L+2h)

[
B

(
e−j(k−kz)h − 1

−j(k − kz)
+

e−j(k+kz)h − 1

−j(k + kz)

)

+A(ejkzh − e−jkzh)e−jkh

(
e−j(k+kx)L − 1

−j(k + kx)

)

−Be−jkxLe−jk(L+h)

(
ejkzh

e−j(k+kz)h − 1

−j(k + kz)
+ e−jkzh e

−j(k−kz)h − 1

−j(k − kz)

)]

(4.49)

Note that, equations (4.49) are presented, for the case of a single-conductor line. In fact, the used
coordinate is associated to one wire and the extension of this model to a multiconductor line is
not straightforward, as it would require the adaptation of the coordinate to the other wires, which
would be particularly difficult with vertical risers with different heights.

Then one can apply these source terms to the BLT equation (4.34), were the length of the line
L is replaced by L+ 2h.

Note that this model is similar to Pignari and Bellan’s [131] with the exception that the char-
acteristic impedance of the risers is supposed here to be the same as the one of the horizontal line.
This model is expected to provide more accurate solutions than the basic and exact-field models,
but may overestimate the amplitude of the induced current, since it does not consider the radiation
effects.

4.2 Enhanced transmission line theories

Significant efforts have been put into the elaboration of generalisations of the TL theory, to incor-
porate effects that are not considered by the classical TL theory, while keeping as much as possible
the relative simplicity of the TL equations. In these models, one or several of the assumptions
of the classical TL approximation are relaxed. The models reviewed in this section consider for
example lines made of thick wires, non-uniform wires, or they take into account radiation effects
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occurring at high frequency, or non TEM modes, such as radiation, leaky or antenna modes.
Leviatan and Adams showed that not only a TEM mode, but also higher-order modes can occur

into a two-wire infinite line excited either by a plane wave or by a lumped source [132]. In the case
of a lumped source, the higher-order modes propagate with less attenuation at higher frequencies;
they are still attenuated, while the amplitude of the TEM mode remains constant.

Nitsch et Tkachenko showed that the parameters of a thin, infinite and lossless line in fact
depend on the excitation and on the gauge [121]. However, for a grazing incidence (ψ → 0) the
propagation becomes TEM; moreover, at low frequencies, the characteristic impedance becomes
gauge independent and equal to the classical parameters.

Haase et al. [133] presented the modelling of discontinuities and non-uniformities in transmission
lines with the aid of extended telegrapher equations. They proposed simple static models for risers,
bend, wires through holes, and a wire crossing a slit.

4.2.1 Asymptotic theory

Tkachenko et al. [134] derived a TL-like pair of equations for evaluating currents and potentials
induced by external electromagnetic fields on a single wire above a perfect conducting ground.
Based on perturbation theory, an iterative procedure was proposed to solve the derived coupling
equations. Later in 2001, Tkachenko et al. [135] extended their method to take into account the
presence of line terminations and discontinuities. The results of the asymptotic method were also
used in the application of the singularity expansion method in [136,137].

Figure 4.6: Line decomposition into zones. Adapted from [135].

As shown in Figure 4.6, the line can be conceptually split up into three regions [135]:

• Region I and III correspond to the regions near the terminals, where the transverse electro-
magnetic (TEM) mode, leaky modes and radiating modes can be found. The computation of
the solution in these regions requires, in general, a numerical full-wave method.

• Region II corresponds to the region far enough from the terminal that the leaky modes and
radiation modes have asymptotically vanished and only the TEM mode remains.

lbound is the length of the terminal zones; its value is directly related to the cross-section of the line
and frequency; it corresponds to the distance where the leaky and radiation modes due to the line
terminals may be neglected in comparison with the TEM fields associated with the currents along
the wires.

In region II, the current is the sum of three terms.

I(x) = I0e
−jkxx + I1e

jkx + I2e
−jkx (4.50)



52 CHAPTER 4. AVAILABLE ANALYSIS METHODS

I0e
−jkxx corresponds to the current that would flow in an infinite line with the same cross section.

I1e
jkx and I2e

−jkx are TEM respectively backward and forward propagating waves due to the
presence of the terminals.

Analytical expressions exist for the current I0 in an infinite line [119]. On the other hand, for
certain simple types of load, e.g. for an open circuit, analytical solution exist for I1 and I2 [137].
However, in general, the use of a full-wave numerical method is needed to compute I1 and I2.

This method present similarities with the theories developed for microwave networks. In mi-
crowave engineering, a multiport network is typically modelled by a scattering matrix seen from
a reference plane which is placed at a distance from the geometric termination of the waveguide
where the higher-order modes have died out [138,139]. The differences between microwave theories
and the asymptotic theory are the following. Waveguides have typically a bounded cross-section,
which suits well to the application of a port limited in space, whereas the transmission lines stud-
ied by the asymptotic method have a more open structure. Moreover, the asymptotic theory gives
insights into the terminal parts of the structure. Furthermore, the asymptotic theory considers in
a direct manner the effect of an external electromagnetic field coupling to the line.

4.2.2 Transmission line super theory

Researchers from the University of Magdeburg [133, 140–152] developed enhanced versions of the
transmission line theory and proposed in particular a so-called transmission line super theory
(TLST). Maxwell’s equations for a lossless nonuniform multiconductor transmission line above
a perfectly conducting ground can be transformed into generalised telegrapher equations. This
formulation extends to general modes, very high frequencies and include radiation effects.

Among other formulations, the generalised telegrapher’s equations can be written in a superma-
trix notation. The formulation presented here uses current and per-unit-length charge as variables,
expressed as a function of the length parameter ζ [152].

∂

∂ζ

⎡⎣ q(ζ)

I(ζ)

⎤⎦+ jωPq(ζ)

⎡⎣ q(ζ)

I(ζ)

⎤⎦ =

⎡⎣ q
′
s(ζ)

0

⎤⎦ (4.51)

Pq(ζ) is a super-matrix associated with the geometry of the line, and the vector q′
s(ζ) is linked with

the excitation. Equation (4.51) has the same structure as the classical telegrapher equations but
entails the full information of Maxwell’s equations. Only geometric restrictions regarding the form
of the charge and current distribution along the transmission line have been made. In particular,
all information on field modes and radiation effects are kept [152]. Other formulations of (4.51)
exists, using the scalar potential instead of the per-unit-length charge, as in e.g. [133].

Several solution methods can be used, like iterative methods or numerical integration techniques.
In particular, analytical expressions for the reflection and scattering parameters associated to risers
short-circuited to the ground were computed in [153].

Nitsch and Tkachenko [154] applied the full-wave analysis to a vertical half-circular loop above
conducting ground excited by a lumped source. Their approach is based on the symmetry of the
analysed system. They gave analytical expressions for the current and potential lowest modes
appearing in the half loop and obtained in particular that the propagation is characterised by a
phase velocity larger than the speed of light and by an attenuation due to radiation.

Gronwald et al. made a comparison between the generalised transmission line theories and the
singularity expansion and eigenmode expansion methods (SEM/EEM) [155]. Both approaches are
based on a common physical basis and basic procedure. Differences exist in the spatial integration
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procedures which allow to reduce the relevant field problem to a network problem. In general, both
approaches may lead to complex-valued network elements; it is also possible to take into account
radiation effects by redefining the excitation sources rather than by redefining the transmission line
parameters.

4.2.3 Numerical methods

Cui and Chew developed a full-wave numerical model for thick wires with an arbitrary shape
[156]. Poljak et al. developed a generalised form of the telegrapher’s equations for finite-length
transmission lines above a lossy ground [157]. The resulting equations were handled numerically
via the Galerkin-Bubnov indirect boundary element method. Obtained results showed that the
TL approximation can result in a significant underestimation of the induced currents. Later, they
derived a time-domain variant of this theory [158].

Researchers from the universities of Napoli and Cassino [159–162] proposed a full-wave model
for the analysis of lossless lines, able to describe the high-frequency mixed-mode propagation. Their
model consists of a mixed system of differential and integral equations. The solution was computed
by using a numerical method based on the collocation method.

In [163], a regularisation technique is applied to solve the the generalised model proposed
in [134].

4.2.4 Other theories

Vukicevic et al. derived an integral equation describing the antenna-mode currents along a two-
wire transmission line [118]. At low frequencies, the integral equation reduces to a pair of TL-like
equations with equivalent p.u.l. inductance and capacitance. The derived equations make it possible
to compute the antenna-mode currents using any classical TL coupling code with appropriate
parameters.

Nitsch et al. [164] showed that the current propagation along a thin wire of arbitrary geometric
form near a ground-plane can be reduced to a Schrödinger-like differential equation. Using the
formalism of transfer matrices, they found an analytical expression for the transmission coefficient
of the finite number of periodically located non-uniformities which also contains the scattering data
of one non-uniformity.

Chabane et al. [165–167] recompute the transmission line parameters and obtain a frequency-
dependent complex characteristic impedance. Moreover, they propose to add a distributed resis-
tance along the line. Their theory has the advantage to be straightforwardly applicable, but the
physical soundness of this theory is unclear.

4.3 Need of further research

4.3.1 Limitation of the transmission line model

In this section the applicability of classical TL theory for the analysis of the field-to-wire coupling
problem is assessed by comparing the solutions provided by a full wave method, and the three
models for the vertical risers defined in Sections 4.1.9–4.1.11.

In principle, the validity of the solutions provided by TL theory is constrained to transmission
lines having electrically small cross sections. We have tried to assess the deviations from the full
wave solutions occurring at high frequencies when the wavelength becomes much smaller than the
studied lines’ cross sections.
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We analyse the canonical case of a plane wave coupling to a lossless single wire above a ground
plane in the frequency domain. The line is terminated on its characteristic impedance at its first
terminal and short-circuited at its left terminal. A summary of the parameters of the line used for
the comparison is shown in Table 4.1.

Table 4.1: Parameters of the transmission line.

Parameter Value

Length L 3 m

Radius a 0.7 mm

Height h 10 cm

Impedance Z1 339Ω

Impedance Z2 0Ω

Elevation angle ψ 45 ◦

Azimuth angle φ 0 ◦

Polarisation angle α 0 ◦

The transfer function between the incident plane wave and the current induced in the first
terminal at the level of the ground is shown in Figure 4.7. Results obtained using the considered
TL models for the risers are compared with full-wave results using CST Microwave Studio� (using
the finite integration technique (FIT) in the time domain), used here as a reference.
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Figure 4.7: I1/E0 transfer functions calculated with three models based on the classical TL theory (basic
case, exact field, distributed sources) and with a full-wave code (CST).

It can be seen from Figure 4.7 that all the considered models provide basically the same results
at low frequencies up to about kh ∼= 0.13 (60 MHz), while the TL theory is supposed to be valid up
to about kh ∼= 0.31 (150 MHz). The basic model and the exact-field model provide solutions which
are not exact even below the frequency limit of the TL theory. The distributed source model for the
risers provides very accurate results up to about kh ∼= 0.84 (400 MHz), but deviates significantly
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at higher frequencies with respect to full-wave results.
This result indicates, as many examples in the literature e.g. [165,168], that the transmission line

theory could provide inaccurate results when the cross-section cannot be considered as electrically
small. However, as the recourse to a full-wave numerical solution can be prohibitive in terms
of computational resources for electrically very long lines, we will propose improvements of the
modelling of the vertical risers, in order to push back the frequency limitation and increase the
accuracy at high frequencies in Chapter 5.

4.3.2 Enhanced transmission line theories

Among other ‘enhanced’ transmission line theories, the asymptotic theory is particularly promising,
because it proposes an analytical expression for the current and hence gives a physical insight of
the problem. It provides accurate results above the frequency limit of the classical transmission
line theory and can be also applied to arbitrary terminals. As it allow to avoid the application
of a full-wave method, or to apply a full-wave method on a smaller system only, it is particularly
effective for electrically long lines. However, as it is described in the literature [135], it is limited
to monoconductor lines. In real cases, lines are often made of several conductors. For this reason,
the application of the asymptotic theory will also be extended to multi-conductor lines in Chapter
5 and to lumped source excitation in Chapter 6.





Chapter 5

Elaboration of an enhanced TL model
for field-to-transmission line interaction

5.1 Introduction

In this chapter, the asymptotic theory is extended to multiconductor lines [169]. We derive expres-
sions for the current induced along a multiconductor line by an external plane wave, in which the
effects of the terminals of the line are modelled by matrices of scattering and reflection coefficients.
These coefficients are then computed analytically in the particular case of open boundaries or at
low frequencies, and with numerical methods in the general case. The proposed theory is validated
by simulations and experiments.

5.2 Solution of the MPIE for an infinite line

The mixed potential integral equations (MPIE) (equation (4.17)) presented in Chapter 4 are recalled
here.

∂

∂x
ϕ(x) + jω

μ0

4π

∞∫
−∞

ĝ(x− x′)I(x′)dx′ = Ee
x(x) (5.1)

ϕ(x) +
1

jω4πε0

∞∫
−∞

ĝ(x− x′)
∂

∂x′
I(x′)dx′ = 0 (5.2)

If the exciting field is a plane wave, the excitation is in the form Ee
x(x) = Ee

xe
−jkxx with Ee

x,n =

E0Aejkyyn(ejkzhn − e−jkzhn) as defined in Chapter 4. In order to solve (5.1) and (5.2), the solutions
are assumed to be in the same form as the excitation [119]:

I(x) = I0e
−jkxx

ϕ(x) = ϕ0e
−jkxx

(5.3)

Replacing the solution for the current in the integral of (5.1) leads to the following expression:∫ ∞

−∞
ĝ(x− x′)I(x′)dx′ =

∫ ∞

−∞
ĝ(ξ)e−jkxξdξ I0e

−jkxx = Ĝ I0e
−jkxx (5.4)

57
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where we used a change of variable ξ = x′ − x and the symmetry ĝ(−ξ) = ĝ(ξ). The elements of
the Ĝ matrix are defined in the following way:

Gmn :=

∫ ∞

−∞
gmn(ξ)e

−jkxξdξ =

∫ ∞

−∞
e−jkxξe−jk

√
ξ2+dmn

2√
ξ2 + dmn

2
− e−jkxξe−jk

√
ξ2+d̃mn

2√
ξ2 + d̃mn

2

dξ (5.5)

Let us express the first part of this integral by replacing complex exponential functions by sums of
sine and cosine, according to Euler’s formula.

∫ ∞

−∞

(
cos(kxξ)− j sin(kxξ)

)(
cos(k

√
ξ2 + dmn

2)− j sin(k
√

ξ2 + dmn
2)
)

√
ξ2 + dmn

2
dξ

Then, expanding the product, we obtain four terms.

∫ ∞

−∞
cos(kxξ) cos(k

√
ξ2 + dmn

2)√
ξ2 + d2mn

− j cos(kxξ) sin(k
√

ξ2 + dmn
2)√

ξ2 + dmn
2

− j sin(kxξ) cos(k
√

ξ2 + dmn
2)√

ξ2 + dmn
2

− sin(kxξ) sin(k
√

ξ2 + dmn
2)√

ξ2 + dmn
2

dξ

Since the integral of an odd function over a symmetric interval vanishes, the third and fourth terms
in the previous integral are equal to zero. The remaining integrals are even and are evaluated
between 0 and ∞ in [170], 2.5.25, expressions 15 and 9. Using these expressions leads to:

−πY0

(
dmn

√
k2 − k2x

)
− jπJ0

(
dmn

√
k2 − k2x

)
This sum of Bessel functions can be expressed as a Hankel function (see [171], equation 9.1.4).

− jπ
{
J0

(
dmn

√
k2 − k2x

)
− jY0

(
dmn

√
k2 − k2x

)}
= −jπH

(2)
0

(
dmn

√
k2 − k2x

)
(5.6)

The second part of the integral in (5.5) is computed by replacing dmn by d̃mn in (5.6). Hence, the
explicit expression of the elements of Ĝ can be written as a difference of two Hankel functions (as
for a monoconductor wire in [124], equation (3.22)).

Gmn = −jπ
{
H

(2)
0

(
dmn

√
k2 − k2x

)
−H

(2)
0

(
d̃mn

√
k2 − k2x

)}
(5.7)

Injecting (5.3) and (5.4) into (5.1) and (5.2) leads after simplification to the following equations.

−jkxϕ0 + jω
μ0

4π
Ĝ I0 = Ee

x

−jkxI0 + jω4πε0Ĝ
−1

ϕ0 = 0
(5.8)

In order to make the link with the standard transmission line theory, it is possible to define gener-
alised per-unit-length inductance and capacitance.

L̂′ :=
μ0

4π
Ĝ

Ĉ′ := 4πε0Ĝ
−1

(5.9)
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These generalised p.u.l. inductance and capacitance are complex valued and frequency dependent
[151].

Expressions for I0 and ϕ0 are finally obtained by solving the linear system of equations (5.8).

ϕ0 =
kx

j(k2 − k2x)
Ee

x =
cosψ cosφ

jk(1− cos2 ψ cos2 φ)
Ee

x

I0 =
ω4πε0

j(k2 − k2x)
Ĝ

−1
Ee

x =
4π

jωμ0(1− cos2 ψ cos2 φ)
Ĝ

−1
Ee

x

(5.10)

Interestingly, the expression for the potential on a wire depends only on its position, but not on
its diameter or on the position of the other wires. Note also that the expression for the potential
is gauge-dependent [151].

Grazing incidence or low-frequency

When φ, ψ → 0 with the field propagating in the same direction as the direction of the line (kx → k)
or at low frequencies (k → 0), one can apply in (5.7) the small-argument development of the Hankel
function: H

(2)
0 (x  1) ∼= 1− j 2π

(
ln
(
x
2

)
+ γ
)
, where γ = 0.5772... is the Euler’s constant.

Gmn
∼= jπ

{
+j

2

π

(
ln

(
dmn

√
k2 − k2x
2

)
+ γ

)
− j

2

π

(
ln

(
d̃mn

√
k2 − k2x
2

)
+ γ

)}
=

= 2 ln

(
d̃mn

dmn

)
(5.11)

This result corresponds to equation (4.21). Introducing (5.11) into (5.9) provides the classical
values for the p.u.l. parameters.

5.3 Semi-infinite line

To assess the effect of the line terminations, we will consider the same line configuration subjected
to the same excitation field, but terminated at its left end in arbitrary impedances, while extending
to +∞ at the other end (see Figure 5.1). This line will be referred to as the right semi-infinite line.
The line can be conceptually split up into two regions, as defined in [135] and reminded in Chapter
4: Region I corresponds to the region near the terminal, Region II corresponds to the region far
from the terminal, and lbound is the position of the separation between the two zones.

The current induced in the right semi-infinite line (0 ≤ x < ∞) due to an external electromag-
netic field can be written in the following manner:

Ie+(x) = Ψ̂
e

+(x)I0 (5.12)

where I0 is defined in (5.10) and Ψ̂
e

+(x) is an auxiliary function that can have a complex form in
region I (0 ≤ z ≤ lbound, see Figure 5.1) and can be replaced by its asymptotic development in
region II.

Ψ̂
e

+(x) =

⎧⎨⎩ exact solution, 0 ≤ x ≤ lbound (region I)

1̂e−jkxx + Ĉ+e
−jkx, x � lbound (region II)

(5.13)

where 1̂ is the unit matrix and Ĉ+ is a matrix of scattering coefficients that depends on the
termination of the line and the exciting field. This matrix characterises the effect of the line
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Figure 5.1: Right semi-infinite line and the two regions I and II.

terminals on the current directly induced in the horizontal part of the wire by the plane wave. The
response due to a hypothetical current Ĩ1e

jkx is in the same form as the response due to a plane
wave excitation:

I0+(x) = Ψ̂
0

+(x)Ĩ1 (5.14)

where

Ψ̂
0

+(x) =

⎧⎨⎩ exact solution, 0 ≤ x ≤ lbound (region I)

1̂ejkx + R̂+e
−jkx, x � lbound (region II)

(5.15)

where R̂+ is a matrix of reflection coefficients. At low frequencies, it corresponds to the matrix
of reflection coefficients for the currents defined in the classical multiconductor transmission line
theory. Hence, in case of an MTL connected to loads linking each conductor to the ground (i.e.
without any differential loads), this matrix will in fact be diagonal, at low frequencies. The complete
response is the sum of the forced and the free responses:

I+(z) = Ψ̂
e

+(x)I0 + Ψ̂
0

+(x)Ĩ1 (5.16)

Replacing (5.13) and (5.15) in (5.16) in region II leads to the following expression:

I+(x) =
(
1̂e−jkxx + Ĉ+e

−jkx
)
I0 +

(
1̂ejkx + R̂+e

−jkx
)
Ĩ1 (5.17)

Similar developments can be done considering a left semi-infinite line (terminated on its right end
and extending to −∞, Figure 5.2), replacing the subscripts ‘+’ by ‘−’ and k by −k. The response
for a left-semi-infinite line (−∞ < x ≤ L) excited by the same plane wave and simultaneously by
a current Ĩ2 is thus given by (5.18). Note that a shift by L was introduced, corresponding to the
fact that, in this case, the line extremity is not at x = 0 but at x = L. The reason for this choice
will become apparent in the next section.

I−(x) = Ψ̂
e

−(x− L)I0e
−jkxL + Ψ̂

0

−(x− L)̃I2 (5.18)
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Figure 5.2: Left semi-infinite line and the two regions II and III.

With the associated Ψ̂ functions in region II:

Ψ̂
e

−(x) = 1̂e−jkxx + Ĉ−ejkx, x  −lbound

Ψ̂
0

−(x) = 1̂e−jkx + R̂−ejkx, x  −lbound
(5.19)

where Ĉ− and R̂− are, respectively, the scattering and reflection matrices associated with the right
terminal. Replacing (5.19) into (5.18) in the region II leads to the following expression:

I−(x) =
(
1̂e−jkx(x−L) + Ĉ−ejk(x−L)

)
I0e

−jkxL +
(
1̂e−jk(x−L) + R̂−ejk(x−L)

)
Ĩ2 (5.20)

5.4 Finite-length line

In this section, a finite line (see Figure 5.3) is built up as the association of the right and the left
semi-infinite lines presented in the previous section.

Let us focus on Region II, far from the two terminals. First, the expressions for the currents
(5.17) and (5.20) in the two semi-infinite lines are re-arranged in order to display the propagating
modes.

I+(x) = I0e
−jkxx + Ĩ1e

jkx +
(
Ĉ+I0 + R̂+Ĩ1

)
e−jkx (5.21)

I−(x) = I0e
jkxx +

(
Ĉ−I0e−j(k+kx)L + R̂−Ĩ2e−jkL

)
ejkz + Ĩ2e

jkLe−jkx (5.22)

Imposing that the solution in the asymptotic region be the same in the two semi-infinite lines, that
is (5.21) = (5.22) in region II leads to:

I(x) = I+(x) = I−(x) = I0e
−jkxx + I1e

jkx + I2e
−jkx (5.23)

with
I1 = Ĩ1 = Ĉ−I0e−j(k+kx)L + R̂−Ĩ2e−jkL

I2 = Ĩ2e
jkL = Ĉ+I0 + R̂+Ĩ1

(5.24)
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Figure 5.3: Finite-length, loaded multiconductor line excited by a high frequency plane wave. Decomposition
into zones.

When putting the two semi-infinite lines together, the usefulness of Ĩ1 and Ĩ2 becomes clear; these
terms are associated with the currents produced by the opposite terminal. In (5.23), I0e

−jkxx

corresponds to the current that would flow in an infinite line with the same cross section; an
expression for I0 is given by (5.10). I1ejkx and I2e

−jkx are TEM respectively backward and forward
propagating waves due to the presence of the terminals. Their expression is given by solving the
linear system of equations (5.24).

I1 =
(
1̂− R̂−R̂+e

−2jkL
)−1 (

Ĉ−e−j(k+kx)L + R̂−Ĉ+e
−2jkL

)
I0

I2 =
(
1̂− R̂+R̂−e−2jkL

)−1 (
Ĉ+ + R̂+Ĉ−e−j(k+kx)L

)
I0

(5.25)

The goal of the next sections is to provide values for the matrices of scattering and reflection
coefficients.

5.5 Analytical expressions for the scattering and reflection coeffi-
cients: iterative method

The goal of this section is to obtain analytical expressions for the reflection coefficient matrices
Ĉ+,Ĉ−, R̂+ and R̂−, in the case of a multiconductor transmission line that is open-circuited at
its two terminals. To this purpose, we use an iterative method based on perturbation theory, with
reference to [135].

5.5.1 Reformulating the MPIE equations in an appropriate form

First of all, the MPIE equations (5.1) and (5.2) are written in the same form as the standard TL
equations, but with additional “correction” terms. In order to do so, the property of the derivative
of a product of functions f(x) and g(x), i.e. f(x) d

dxh(x) =
d
dx (f(x)h(x))− h(x) d

dxf(x), is applied
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to (5.2): ∫ L

0

∂

∂x′
(
ĝ(x− x′) · I(x′)) dx′ − ∫ L

0

∂ĝ(x− x′)
∂x′

· I(x′)dx′ + jω4πε0φ(x) = 0 (5.26)

The first term of (5.26) can be integrated in a trivial way. For the second term, we use the fact
that ∂

∂x′ (x − x′) = − ∂
∂x(x − x′) = −1, which can be applied in particular to the argument of the

Green’s function.
∂

∂x′
ĝ(x− x′) = − ∂

∂x
ĝ(x− x′) (5.27)

Hence (5.26) becomes

ĝ(x− L) · I(L)− ĝ(x− 0) · I(0) +
∫ L

0

∂

∂x
ĝ(x− x′) · I(x′)dx′ + jω4πε0φ(x) = 0 (5.28)

As the line is open-circuited at both extremities, the boundary conditions reads:

I(0) = 0 (5.29)

I(L) = 0 (5.30)

so we finally find:

∂

∂x
φ(x) + jω

μ0

4π

∫ L

0
ĝ(x− x′) · I(x′)dx′ = Ee

x (5.31)

∂

∂x

∫ L

0
ĝ(x− x′) · I(x′)dx′ + jω4πε0φ(x) = 0 (5.32)

where (5.31) was rewritten and is the same as (5.1). Note that this procedure is also valid if the
line is infinite or semi-infinite (L → ∞), because lim

ξ→∞
ĝ(x− ξ) = 0̂ for an arbitrary but finite x.

This also applies asymptotically to a long but finite line with arbitrary terminals, when considering
a position very far from a terminal or a discontinuity of the line.

Let us re-write equations (5.31) and (5.32) adding the same terms at both sides of the equations:

∂

∂x
φ(x)+jωL̂

′
0I(x) = Ee

x+jωL̂
′
0I(x)− jω

μ0

4π

∫ L

0
ĝ(x− x′) · I(x′)dx′

∂

∂x
I(x) + jωĈ

′
0φ(x) =

∂

∂x
I(x)− ĜTL−1 ∂

∂x

∫ L

0
ĝ(x− x′) · I(x′)dx′

(5.33)

using the p.u.l. inductance and capacitance given by the classical transmission line theory (equation
(4.23)). (5.33) can be written in a more compact way.

∂

∂x
φ(x) + jωL̂

′
0I(x) = Ee

x+jωL̂
′

0F{I(x)}
∂

∂x
I(x) + jωĈ

′
0φ(x) =

∂

∂x
F{I(x)}

(5.34)

where the operator F applies on a current and is defined as follows:

F{I(x)} = I(x)− ĜTL−1
∫ L

0
ĝ(x− x′) · I(x′)dx′ (5.35)
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Equations (5.34) have the same form as the standard TL equations, but with additional correction
terms. At low frequencies, these additional terms vanish and (5.34) reduces to the classical TL
equations.

The system of equations (5.34) could also be written as follows.

∂

∂x
φ(x) + jωL̂

′

0(I(x)− F{I(x)}) = Ee
x

∂

∂x
(I(x)− F{I(x)}) + jωĈ

′

0φ(x) = 0

(5.36)

With this notation, it is clarified that I(x) − F{I(x)} is equal to the TL approximation solution.
Hence F{I(x)} can be considered as a correction term to add to the TL current in order to find the
‘exact’ current. The correction term does not apply on φ(x) which is hence equal to the scattered
voltage given by the transmission line theory.

5.5.2 Iterative expressions

Using the iterative method based on using the perturbation theory, as presented for a monocon-
ductor wire in [1, 134,135], we would like to obtain a solution in the form:

I(x) = I(0)(x) + I(1)(x) + I(2)(x) + ...

ϕ(x) = ϕ(0)(x) +ϕ(1)(x) +ϕ(2)(x) + ...
(5.37)

Here, only the first order result, that is the two first terms, will be considered in order to obtain a
good approximation of the reflection coefficients.

The zeroth iteration term is given by the solution of the equation when the perturbation term
vanishes, that is to say when F{I(x)} = 0 in (5.34). It is hence the solution provided by the
classical TL theory. The following iterations are based on (5.35) and (5.2) and are given by the
perturbation theory.

∂

∂x
φ(n)(x) + jωL̂

′

0I(n)(x) = jωL̂
′

0F{I(n−1)(x)}
∂

∂x
I(n)(x) + jωĈ

′

0φ(n)(x) =
∂

∂x
F{I(n−1)(x)}

(5.38)

Decoupling the current from the potential in (5.38) leads to a Helmoltz equation:(
d2

dx2
+ k2
)(

In(x)− F{I(n−1)(x)}
)
= 0 (5.39)

Imaginary exponential functions are known to be solutions of this kind of equations (e.g. [172]):

I(n)(x)− F{I(n−1)(x)} = D1e
−jkx +D2e

+jkx (5.40)

where the coefficients D1 and D2 can be computed by the application of the appropriate boundary
conditions.

5.5.3 Analytical expression for the reflection coefficient matrices Ĉ+ and Ĉ−

In order to obtain the expressions for the reflection coefficients, we will consider a right semi-infinite
line. Expressions obtained previously are still valid when pushing the right terminal to infinity, i.e.



5.5. ANALYTICAL EXPRESSIONS FOR THE COEFFICIENTS 65

L → ∞. The current inside the line, far from the left terminal, can be written as follows:

Ie+(x) =
(
Îe−jkxx + Ĉ+e

−jkx
)
· I0 = I0e

−jkxx + Ĉ+I0e
−jkx (5.41)

Zeroth iteration: TL approximation

The equation for the zeroth iteration is equal to (5.39) without the correction term F.(
d2

dx2
+ k2
)
Ie+(0)(x) = −jωĈ′

0E
e
x(x) (5.42)

First, we search for a response that has the same structure as the excitation.

Ief (x) = ITL
0 e−jkxx (5.43)

The application of this solution into equation (5.42) leads after simplification to

ITL
0 =

4π

jωμ0(1− cos2 ψ cos2 φ)
ĜTL−1

Ee
x (5.44)

This solution is essentially the same as (5.10) when replacing Ĝ by ĜTL. To find the solution for
a right semi-infinite line, we will also consider a solution of equation (5.42) with no excitation:

Iel (x) = D1e
+jkx +D2e

−jkx (5.45)

As there is no lumped source on the line, there is no backward propagating wave, i.e. D1 = 0. The
total solution is the sum of the two solutions:

Ie+(0)(x) = Ief (x) + Iel (x) = ITL
0 e−jkxx +D2e

−jkx (5.46)

The expression for D2 is obtained by the application of the boundary condition Ie+(0)(0) = 0.

D2 = −ITL
0 (5.47)

The zeroth iteration term is finally:

Ie+(0)(x) =
(
e−jkxx − e−jkx

)
ITL
0 (5.48)

and the associated scattering coefficient is Ĉ+(0) = −Î.

First iteration

We have to consider equation (5.39) and its solution (5.40) in the case of a right semi-infinite line,
that is to say only with boundary condition (5.29). To obtain a third equation, we consider that
the line is lossy, with the losses tending to zero. Hence D2 must vanish, to avoid a divergence
(e(δ+jk)x → ∞ when x → ∞). In this case, the constants are:

D1 = −F{I(n−1)(x)}|x=0

D2 = 0
(5.49)
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and the current can be written as follows:

Ie+(n)(x) = F{Ie+(n−1)(x)} − F{Ie+(n−1)(x)}|x=0 e
−jkx (5.50)

When n = 1, and with L → ∞, because the line is considered to be semi-infinite, expression (5.35)
is as follows:

F{Ie+(0)(x)} = ITL
0 (e−jkxx − e−jkx)− ĜTL−1

∫ ∞

0
ĝ(x− x′)(e−jkxx′ − e−jkx′

)dx′ · ITL
0 (5.51)

In particular, the value of this function for x = 0 is the following:

F{Ie(0)(x)}|x=0 = −D̂1 · ITL
0 (5.52)

where D̂1 is defined as following:

D̂1 := ĜTL−1
∫ ∞

0
ĝ(x′)(e−jkxx′ − e−jkx′

)dx′ (5.53)

Let us now compute the value of the function F{I+(0)}(x) for a very large x.

F{Ie+(0)(x)}|x→∞ = lim
x→∞

{
(e−jkxx − e−jkx) ITL

0

− ĜTL−1
∫ ∞

0
ĝ(x− x′)(e−jkxx′ − e−jkx′

) ITL
0 dx′

}
= lim

x→∞

{
1̂(e−jkxx − e−jkx)− ĜTL−1

(
Ĝe−jkxx − ĜTLe−jkx

)}
ITL
0

= D̂2 · ITL
0 e−jkxx , x → ∞

(5.54)

where D̂2 was defined as follows.
D̂2 := 1̂− ĜTL−1

Ĝ (5.55)

Replacing (5.52) and (5.54) into (5.50)

Ie+(1)(x → ∞) = F{Ie+(0)(x)}|x→∞ − F{Ie+(0)(x)}|x=0e
−jkx =

= D̂2 · ITL
0 e−jkxx + D̂1 · ITL

0 e−jkx (5.56)

Considering the sum of the zeroth and the first iteration as an approximation of the current:

Ie+(x)
∼= Ie+(0)(x) + Ie+(1)(x) =

=
(
e−jkxx − e−jkx

)
ITL
0 + D̂2 · ITL

0 e−jkxx + D̂1 · ITL
0 e−jkx =

=
[(

Î+ D̂2

)
e−jkxx +

(
−Î+ D̂1

)
e−jkx

]
· ITL

0 =

=

[
Îe−jkxx +

(
−Î+ D̂1

)(
Î+ D̂2

)−1
e−jkx

]
·
(
Î+ D̂2

)
· ITL

0

(5.57)

If we use the two first terms of the Taylor series (1+x)−1 = 1−x+ ..., and neglect the upper order
terms (D̂1, D̂2  1 ⇒ D̂1 · D̂2 ≪ 1), we obtain the following result.(

−Î+ D̂1

)(
Î+ D̂2

)−1 ∼=
(
−Î+ D̂1

)(
Î− D̂2

) ∼= −Î+ D̂1 + D̂2 − ... (5.58)
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hence
Ie+

∼=
[
Îe−jkxx +

(
−Î+ D̂1 + D̂2

)
e−jkx

]
·
(
Î+ D̂2

)
· ITL

0 (5.59)

Besides, comparing (5.10) with (5.44) allows to make the following connection:

ITL
0 = ĜTL−1

ĜI0 (5.60)

Introducing (5.55) into (5.60) leads to the following expression:

ITL
0 =

(
1̂− D̂2

)
I0 (5.61)

Using the fact that D̂2  1 and considering the first terms of the Taylor series (1−x)−1 = 1+x+ ...

allows to express I0 as a function of ITL
0 .

I0 ∼=
(
Î− D̂2

)−1
ITL
0

∼=
(
Î+ D̂2

)
ITL
0 (5.62)

Introducing (5.62) into (5.59) leads to

Ie+(x)
∼=
[
Îe−jkxx +

(
−Î+ D̂1 + D̂2

)
e−jkx

]
· I0 (5.63)

The coefficient Ĉ+ is obtained by identification of equations (5.41) and (5.63):

Ĉ+
∼= −Î+ D̂1 + D̂2 (5.64)

Ĉ− can be computed in a similar way, using a left semi-infinite line, or simply replacing kx by −kx.

5.5.4 Analytical expression for the reflection coefficient matrices R̂+ and R̂−

In this section, the expressions for the coefficient matrices R̂+ and R̂−, are computed according to
the development made for a single-conductor line in [1], Section 4.2.4.

In order to compute R̂+, we consider a line which extends to infinity into the right direction
and which is terminated into an open circuit at x = 0. An arbitrary current Ĩejkx is incoming from
the right. Due to this incident current, the left terminal of the line generates a reflected wave.
For an observer located far from the boundary, i.e. mathematically for x → ∞ and physically for
x � lbound, the reflected current can be written as the product of a reflection coefficient matrix
and the incident current with reverse direction of propagation: R̂+ · Ĩe−jkx. Consequently, the total
current is the sum of these two terms.

I0+(x) =
(
Îejkx + R̂+e

−jkx
)
· Ĩ x � lbound (5.65)

As for the scattering coefficient, the reflection coefficient is written as a sum of terms based on the
perturbation theory:

R̂+ = R̂+(0) + R̂+(1) + ... (5.66)

Again, we will only consider the two first terms, assuming that they provide sufficient accuracy.
The zeroth iteration term is given by the TL theory. In this case, the matrix of reflection coefficients
for the voltage, with a load impedance tending toward infinity, is the unit matrix [115].

Γ̂L = (ẐL − ẐC)(ẐL − ẐC)
−1 =

ẐL→∞
Î (5.67)
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The reflection matrix for the current is minus the one for the voltage.

R̂+(0) = −Γ̂L = −Î (5.68)

Hence inserting (5.68) into (5.65), the zero-iteration term reads:

I0+(0)(x) =
(
ejkx − e−jkx

)
Ĩ (5.69)

In the same manner as for the scattering coefficient in (5.50), the first iteration term is given by
the following expression.

I0+(1)(x → ∞) = F{I0+(0)(x)}|x→∞ − F{I0+(0)(x)}|x=0e
−jkx (5.70)

F(0){I0+(x)} vanishes for large arguments.

lim
x→∞F(0)

{
I0+(x)

}
= lim

x→∞

(
I0+(0)(x)− ĜTL−1 · ĜTL · I0+(0)(x)

)
= 0 (5.71)

Hence
I+(1)(x → ∞) = −F

{
I0+(0)(x)

}∣∣∣
x=0

e−jkx = R̂+(1) · Ĩe−jkx (5.72)

where the second equality is obtained by the subtraction of (5.65) − (5.69).
An approximation of the reflection coefficient is given by the first two iteration terms:

R̂+
∼= R̂+(0) + R̂+(1) (5.73)

Using equations (5.68), (5.69), (5.72) and (5.35) leads to the following expression:

R̂+
∼= −Î− I0+(0)(0) + ĜTL−1

∫ ∞

0
ĝ(x′) · I0+(0)(x

′)dx′ · Ĩ−1
=

= −Î+ ĜTL−1
∫ ∞

0
ĝ(x′) ·

(
ejkx

′ − e−jkx′)
dx′ (5.74)

To perform the integration, the matrix of Green’s functions is considered term by term:(
ĜTL ·

(
R̂+ + Î

))
m,n

∼=
∫ ∞

0
gm,n(x

′)
(
ejkx

′ − e−jkx′)
dx′ =

=

∫ ∞

0

e
−jk

(
−x′+

√
x′2+dmn

2
)

√
x′2 + dmn

2
− e

−jk
(
−x′+

√
x′2+d̃mn

2
)

√
x′2 + d̃mn

2

− e
−jk

(
x′+

√
x′2+dmn

2
)

√
x′2 + dmn

2
+

e
−jk

(
x′+

√
x′2+d̃mn

2
)

√
x′2 + d̃mn

2
dx′ =

= 2

∫ kd̃mn

kdmn

1− e−jξ

ξ
dξ =

= 2
(
ln(kd̃mn) + E1(jkd̃mn)− ln(kdmn)− E1(jkdmn)

)

(5.75)

where different changes of variable in the form of ξ = k(±x′ +
√

x′2 + dmn
2) were applied and

where E1(z) is the exponential integral.
A similar development with a left semi-infinite line would lead to the reflection coefficient R̂−.

However, as the two boundaries are assumed to be the same, the associated reflection coefficients
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at the left and at the right are simply the same, that is to say R̂− = R̂+.

Single-conductor line

In the case of a single conductor line, d̃mn is equal to twice the height of the conductor above the
ground and dmn is equal to its radius. Hence the reflection coefficient (5.75) can be expressed as
the following scalar number:

R+
∼= −1 +

1

2 ln(2h/a)
2
(
ln(2kh) + E1(j2kh)− ln(ka)− E1(jka)

)
(5.76)

Considering that a  2h, it is possible to replace the second exponential integral in (5.76) by the
first terms of its series representation:

E1(jx) ∼= −γ − ln(x)− j
π

2
+ ... (5.77)

where γ = 0.5772... is the Euler’s constant. This procedure is equivalent to taking the limit a → 0,
and it is valid here if a  2h. Hence the reflection coefficient becomes:

R+
∼= −1 +

1

ln(2h/a)

(
ln(2kh) + E1(j2kh) + γ + j

π

2

)
(5.78)

The exponential integral is linked with the exponential sine and cosine according to the following
relation:

E1(jx) = j
(
−π

2
+ Si(x)

)
− Ci(x) (5.79)

Introducing this equivalence leads finally to the reflection coefficient found in [1], equation (69) p.
137.

R+
∼= −1 +

1

ln(2h/a)

(
ln(2kh) + jSi(2kh)− Ci(2kh) + γ

)
(5.80)

5.6 Computation of the scattering and reflection coefficients

For certain simple types of load, e.g. for an open circuit as presented in the last section, it is
possible to obtain an analytical solution for the scattering coefficients. However, in general, the use
of a full-wave numerical method is needed.

The proposed method requires the simulations of 2N + 1 auxiliary lines excited either by a
lumped source or a plane wave. At first sight, it could seem that the simulation of several lines
instead of one increases the complexity of the problem. However, the auxiliary lines are chosen
much shorter than the original line, hence significantly reducing the simulation time and computer
resources. Note also that the scattering and reflection coefficients in fact depend on the loads at
the terminals of the line and should hence be recomputed if the loads are changed. Reflection and
scattering coefficients being independent of the line length, shorter auxiliary lines will be used.
The length of the auxiliary lines is denoted L1, with L1 ≥ 3lbound. First, N short lines of length
L1 excited by lumped sources placed at the right terminal are simulated. This is illustrated in
Figure 5.4 for a two-conductor line.

In each case, a lumped source is placed on one of the N wires to excite different modes of the
line. The internal impedance of this source will not affect the procedure and can be chosen as
desired. The line cross-section and the termination opposite to the lumped source (in this case,
left-end termination) should be identical to the original line. For convenience, the terminations
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(a)

(b) (c)

Figure 5.4: Illustration of the method using auxiliary lines to compute reflection coefficients associated with
the line’s left-end terminal (here in the case of a two-conductor line, N = 2). (a) Considered line. (b)
Auxiliary line 1 where a lumped source is placed on the first wire. (c) Auxiliary line 2 where a lumped
source is placed on the second wire.

at the excitation side are replaced by vertical risers, one of which is loaded with a lumped source
(see Figure 5.4(b) and (c) ). Similarly, N short lines excited by lumped sources placed at the left
terminal are simulated as well (Figure 5.5).

(a) (b)

Figure 5.5: Illustration of the method using auxiliary lines to compute reflection coefficients associated with
the line’s right-end terminal (here in the case of a two-conductor line, N = 2). (a) Auxiliary line 1 where
a lumped source is placed on the first wire. (b) Auxiliary line 2 where a lumped source is placed on the
second wire.

Afterwards, a line with the same configuration than the original line but with a reduced length
L1 and excited by the plane wave is simulated. The currents obtained by simulation are then
processed to extract the parameters required to evaluate the reflection and scattering coefficients
that are independent of the length of the line. From these coefficients, the current along a line of
arbitrary length is computed.

5.6.1 Simulation of 2N auxiliary lines excited by lumped sources

First, N short lines of length L1 excited by lumped sources placed at the right terminal are simulated
(see Figure 5.4). For each simulation n = 1, ..., N , one obtains a current that is named In+(x).

Then, N short lines excited by lumped sources placed at the left terminal are simulated as well
(Figure 5.5). As a result of each nth simulation, one obtains the current In−(x).
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5.6.2 Extraction of I1,ls and I2,ls

In the presence of only a lumped source, the current flowing in the central part of the line, in the
asymptotic zone, is the sum of backward and forward propagating waves:

Ils(x) = I1,lse
jkx + I2,lse

−jkx (5.81)

Note that the index ‘ls’ is used to point out that the excitation is a lumped source. Two methods
are proposed to extract the expressions for I1,ls and I2,ls based on the knowledge of Ils(x).

Method 1: by Derivation This method is inspired by [153]. After the computation of the
derivative of (5.81), expressions for I1 and I2 are obtained as follows:

I1,ls =
e−jkx

2jk

(
jkIls(x) +

d

dx
Ils(x)

)
I2,ls =

ejkx

2jk

(
jkIls(x)− d

dx
Ils(x)

) (5.82)

Note that according to this method, I1,ls and I2,ls in fact depend on the position x, especially near
the terminals of the lines. However, in the asymptotic zone, they should be constant [153]. Hence,
for the following steps, the value at the centre of the line can be chosen for convenience.

For the numerical implementation, the following expression ( [171], Table 25.2) was found to
provide the most accurate results to compute the derivative of the current:

d

dx
Ils(x) ∼= 1

12Δx

(
− Ils(x+ 2Δx) + 8Ils(x+Δx)− 8Ils(x−Δx) + Ils(x− 2Δx)

)
(5.83)

Method 2: Least Squares Let us assume that we know the values of the current at location
x1, x2, ..., xi. Equation (5.81) is valid in particular for these values:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ils(x1) = I1,lse
jkx1 + I2,lse

−jkx1

Ils(x2) = I1,lse
jkx2 + I2,lse

−jkx2

...

Ils(xi) = I1,lse
jkxi + I2,lse

−jkxi

(5.84)

Expressions for I1,ls and I2,ls can be found by solving this system of equations using the method
of least squares.

The first method using the derivative is fast, since it only needs the direct computation of an
expression based on five values of the current. On the other hand, the second method based on the
least squares is expected to be numerically more stable, as it uses a significant number of points.
However, it requires more numerical resources.

5.6.3 Matrices of reflection coefficients

For n = 1, ..., N , In1+ and In2+ are extracted from the current In+(x) obtain in Section 5.6.1, through
one of the two methods described in Section 5.6.2. The obtained parameters are grouped into two
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matrices:
Î1+ :=

[
I11+ I21+ · · · IN1+

]
Î2+ :=

[
I12+ I22+ · · · IN2+

] (5.85)

On the other hand, the link with the matrix of reflection coefficients at the left terminal is reminded
here:

R̂+I1 = I2 (5.86)

As this expression is valid in particular for each current In1+ and In2+, the expression for the matrix
of reflection coefficients at the left terminal is as follows.

R̂+ = Î2+

(
Î1+

)−1
(5.87)

Note that in (5.87), the matrices defined in (5.85) were used, because the direct inversion of a
vector does not exist.

An analogue procedure is followed for the right terminal. For n = 1, ..., N , In1− and In2− are
extracted from the current In−(x). The obtained parameters are grouped into two matrices:

Î1− :=
[
I11− I21− · · · IN1−

]
Î2− :=

[
I12− I22− · · · IN2−

] (5.88)

The link with the matrix of reflection coefficients at the right terminal is reminded here:

R̂−I2 = I1e
2jkL (5.89)

Hence the expression for the matrix of reflection coefficients at the right terminal is as follows.

R̂− = Î1−
(
Î2−
)−1

e2jkL (5.90)

5.6.4 Terminations

Near the right terminal, in zone I, the current is expressed as

I+(x) = Ψ̂
0

+(x)I1+ (5.91)

The currents are first grouped into a matrix:

Î+(x) :=
[
I1+(x) I2+(x) · · · IN+ (x)

]
(5.92)

Then
Ψ̂

0

+(x) = Î+(x) (I1+)
−1 (5.93)

Near the left terminal, in zone III, the current is expressed as

I−(x) = Ψ̂
0

−(x− L)I2−e−jkL (5.94)

The currents are first grouped into a matrix:

Î−(x) :=
[
I1−(x) I2−(x) · · · IN− (x)

]
(5.95)
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Then
Ψ̂

0

−(x) = Î−(x+ L1) (I2−)−1 ejkL1 (5.96)

5.6.5 Simulation of an auxiliary line

A line with the same configuration as the original line but with a reduced length L1 and excited
by the plane wave is simulated. As a result of this simulation, the current Ipw(x) is obtained. Note
that the subscript ‘pw’ is used to point out that the source is now a plane wave.

5.6.6 Extraction of I0, I1,pw and I2,pw

The current flowing in the centre of the line, in the asymptotic zone, is given by (5.23). The values
of I1,pw and I2,pw can be derived similarly to the way it was done for the lines excited by lumped
sources in Section 5.6.2, that is to say with two different methods.

Method 1: by Derivation I1,pw and I2,pw are obtained after derivation of (38) and algebraic
manipulations.

I1,pw =
e−jkx

2jk

(
jkIpw(x) +

d

dx
Ipw(x)− j(k − kx)I0e

−jkxx

)
I2,pw =

ejkx

2jk

(
jkIpw(x)− d

dx
Ipw(x)− j(k + kx)I0e

−jkxx

) (5.97)

where I0 was computed with (5.10).

Method 2: Least Squares Let us assume that we know the values of the current at location
x1, x2, ..., xi. Equation (5.23) is valid in particular for these values.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ipw(x1) = I0e
−jkxx1 + I1,pwe

jkx1 + I2,pwe
−jkx1

Ipw(x2) = I0e
−jkxx2 + I1,pwe

jkx2 + I2,pwe
−jkx2

...

Ipw(x3) = I0e
−jkxxi + I1,pwe

jkxi + I2,pwe
−jkxi

(5.98)

Expressions for I0, I1,pw and I2,pw can then be found by solving this system of equations using the
least squares method.

5.6.7 Scattering coefficients

The scattering coefficients are then computed with the following expressions, obtained by algebraic
manipulation of (5.24).

Ĉ+I0 = I2,pw − R̂+I1,pw

Ĉ−I0 = I1,pwe
j(k+kx)L1 − R̂−I2,pwe−j(k−kx)L1

(5.99)

5.6.8 Terminations

The expression of the current near the left terminal reads:

Ipw(x) = Ψ̂
e

+(x)I0 + Ψ̂
0

+(x)I1,pw (5.100)
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Considering that Ψ̂
e

+(x) is always multiplied by I0, only their product has to be computed.

Ψ̂
e

+(x)I0 = Ipw(x)− Ψ̂
0

+(x)I1,pw (5.101)

The expression of the current near the right terminal reads:

Ipw(x) = Ψ̂
e

−(x− L1)I0e
−jkxL1 + Ψ̂

0

−(x− L1)I2,pwe
−jkL1 (5.102)

Similarly, as Ψ̂
e

−(x) is always multiplied by I0, only their product needs to be computed:

Ψ̂
e

−(x)I0 = Ipw(x+ L1)e
jkxL1 − Ψ̂

0

−(x)I2,pwe
−j(k−kx)L1 (5.103)

5.6.9 Current in a line of arbitrary length

After the computation of the reflection and scattering coefficients and the functions as proposed in
the above sections, the current along the line is given by:

I(x) =

⎧⎪⎪⎨⎪⎪⎩
Ψ̂

e

+(x)I0 + Ψ̂
0

+(x)I1 0 ≤x ≤ lbound

I0e
−jkxx + I1e

jkx + I2e
−jkx lbound ≤x ≤ L− lbound

Ψ̂
e

−(x− L)I0e
−jkxL + Ψ̂

0

−(x− L)I2e
−jkL L− lbound ≤x ≤ L

(5.104)

with I0, I1 and I2 given by (5.10) and (5.24).

5.6.10 Synthesis

The procedure is synthesised here:

1. Simulate 2N auxiliary short lines excited by lumped sources.

2. Extract In1± and In2±, for n = 1, ..., N .

3. Compute R̂± and Ψ̂
0

±(x).

4. Simulate a short line with the desired plane wave excitation.

5. Extract I1,pw and I2,pw. Extract or compute I0.

6. Compute Ĉ±I0 and Ψ̂
e

±(x)I0.

7. Compute the current for a line of arbitrary length.

5.7 Non-linear load

In real cases, the line can be terminated by protection equipment such as surge protective devices
(SPD), which have a non-linear current-voltage characteristic. Although the method proposed in
the previous section is strongly based on the linearity of the electromagnetic equations, it could
be applied if one of the terminals has a non-linear response. The procedure that permits the
determination of a non-linear system response in an indirect manner was used among others for an
antenna connected to a non-linear load [173] and applied to lines excited by a field in [10], Section
7.7.
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The basis of the method is to reduce the linear portion of the line into a Thévenin or Norton
equivalent source, at the location of the non-linear element. This equivalent source is then converted
into its time-domain equivalent by an inverse Fourier transform. In addition, if the non-linear device
is specified, a non-linear Volterra integral equation for the load response is obtained and can be
solved by a time-marching procedure.

5.8 Low-frequency approximation, with lossy ground plane and
wires

At low frequencies, the proposed theory converges to the classical TL theory, and the TEM mode is
supposed to be dominant along the whole line. The formulation for the currents in the line remains
the same, but zones I and III are no longer considered and the asymptotic formulation (region II)
is considered to be valid along the whole line.

In this section, the validity of the model is extended by considering lossy ground plane and
wires. The finite conductivity of the ground plane affects the reflected field. On the other hand,
the losses that occur during propagation modifies the transmission line parameters and hence the
modes propagating along it.

In this section, the index TL is used to underline the fact the parameters are now computed
under the classical TL assumptions.

5.8.1 TL Equations

The multiconductor TL equations of a lossy line in Agrawal’s formulation are given by:

d

dx
Us(x) + Ẑ

′
ITL(x) = Ee

x(x)

d

dx
ITL(x) + Ŷ

′
Us(x) = 0

(5.105)

where the superscript ‘TL’ indicates that the solution is computed under the transmission line
theory. Equation (5.105) corresponds to (4.24) where the p.u.l. impedance term jωL̂

′
was replaced

by a more general p.u.l. impedance Ẑ
′ , and where the p.u.l. capacitance term jωĈ

′
was replaced

by a p.u.l. admittance Ŷ
′ .

For example, in the case of a overhead line, these matrices of line parameters are given by the
following expressions [20].

Ẑ
′
= jωL̂

′
+ Ẑ

′
w + Ẑ

′
g

Ŷ
′
= jωĈ

′
+ Ĝ

′ (5.106)

The p.ul. internal impedance of the wire is defined as follows.

Z ′
w,nn =

γwI0(γwan)

2πaσwI1(γwan)
(5.107)

The p.u.l. transverse conductance matrix is defined as follows.

Ĝ
′
=

σair
ε0

Ĉ
′

(5.108)
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The p.u.l. ground impedance is defined as follows.

Z ′
g,mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jωμ0

π

∫ ∞

0

e−2hnx√
x2 + γg2 + x

dx ∼= jωμ0

2π
ln

1 + γghn
γghn

m = n

jωμ0

π

∫ ∞

0

e−(hm+hn)x√
x2 + γg2 + x

cos((ym − yn)x)dx =

∼= jωμ0

4π
ln

(1 + γg(hm + hn)/2)
2 + γg((ym − yn)/2)

2

(γg(hm + hn)/2)2 + γg((ym − yn)/2)2

m �= n

(5.109)

where I0 and I1 are the modified Bessel functions of zeroth and first order, respectively. The
propagation constant in the wire and in the ground are defined as follows.

γw =
√
jωμ0(σw + jωε0εrw)

γg =
√
jωμ0(σg + jωε0εrg)

(5.110)

Uncoupling the current and the voltage in (5.105) leads to an expression in the form of Helmholtz’
equations. (

d2

dx2
− Ŷ

′
Ẑ
′
)
ITL(x) = −Ŷ

′
Ee

x(x)(
d2

dx2
− Ẑ

′
Ŷ

′
)
Us(x) =

d

dx
Ee

x(x)

(5.111)

5.8.2 Exciting field

If the incident field is a plane wave, the x-component of the electric field, parallel to the line, can
be written in the following form [10,124]:

Ee
x(x) = Ee

xe
−jkxx (5.112)

with

Ee
x,n = E0

(
cosα sinψ cosφ

(
ejkzhn −Rve

−jkzhn

)
+sinα sinφ

(
ejkzhn +Rhe

−jkzhn

))
ejkyyn (5.113)

and where Rv and Rh are Fresnel reflection coefficients.

Rv =
εr (1 + σg/(jωεrε0)) sinψ − [εr (1 + σg/(jωεrε0))− cos2 ψ

]1/2
εr (1 + σg/(jωεrε0)) sinψ + [εr (1 + σg/(jωεrε0))− cos2 ψ]1/2

Rh =
sinψ − [εr (1 + σg/(jωεrε0))− cos2 ψ

]1/2
sinψ + [εr (1 + σg/(jωεrε0))− cos2 ψ]1/2

(5.114)

5.8.3 Solution: current induced in an infinite line

The response due to the exciting field, without boundary conditions, will have the same structure
as the excitation [119]:

ITL
0 (x) = ITL

0 e−jkxx

Us
0(x) = Us

0e
−jkxx

(5.115)
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Applying a solution in the form of (5.115) into (5.111) leads after computation to:

ITL
0 =

(
1̂k2x + Ŷ

′
Ẑ
′)−1

Ŷ
′
Ee

x (5.116)

Us
0 = jkx

(
1̂k2x + Ẑ

′
Ŷ

′)−1
Ee

x (5.117)

Hence, Us
0 can be rewritten as:

Us
0 = ẐC0I

TL
0 (5.118)

where the characteristic impedance of the quasi-TEM mode is defined as follows:

ẐC0 := jkx

(
1̂k2x + Ẑ

′
Ŷ

′)−1
Ŷ

′−1
(
1̂k2x + Ŷ

′
Ẑ

′)
(5.119)

5.8.4 Solution: current induced in a finite line

The following expressions are suggested as solutions of (5.111).

ITL(x) = ITL
0 e−jkxx + T̂e+γ̂xi1 + T̂e−γ̂xi2

Us(x) = ẐC0I
TL
0 e−jkxx + ẐC

(
−T̂e+γ̂xi1 + T̂e−γ̂xi2

) (5.120)

where the matrix T̂ contains the eigenvectors and γ̂2 the eigenvalues associated to the diagonali-
sation of Ŷ

′
Ẑ
′
. (

Ŷ
′
Ẑ
′)

T̂ = T̂γ̂2 (5.121)

Introducing the backward propagating waves (i.e. assuming I0 = i2 = Ee
z = 0 ) into (5.111), with

the help of matrix calculus, leads to (5.121) and to(
Ẑ
′
Ŷ

′)(
ẐCT̂

)
=
(
ẐCT̂

)
γ̂2 (5.122)

Hence, the matrix Ẑ
′
Ŷ

′
can be diagonalised with eigenvectors ẐCT̂ and eigenvalues γ̂2.

Introducing the backward propagating wave into equations (5.105), with the help of matrix
calculus, leads to:

−ẐCT̂γ̂e+γ̂zi1 + Ẑ
′
T̂e+γ̂zi1 = 0

T̂γ̂e+γ̂zi1 − Ŷ
′
ẐCT̂e+γ̂zi1 = 0

(5.123)

As these equations must be valid for every i1, the characteristic impedance must be equal to the
following expressions:

ẐC = Ẑ
′
T̂γ̂−1T̂

−1
= Ŷ

′−1
T̂γ̂T̂

−1
(5.124)

Both expressions are equivalent, due to definition (5.121). Note also that proceeding the same way
with the forward propagating wave would lead to the same result.

The terminals are modelled by the following boundary conditions:

Us(0) = −Ẑ1I
TL(0) +U1 (5.125)

Us(L) = Ẑ2I
TL(L) +U2 (5.126)
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where the nth elements of U1 and U2 are defined as follows:

U1,n :=

∫ xn

0
Ee

x(x, yn, z = 0)dx (5.127)

U2,n :=

∫ xn

0
Ee

x(x, yn, z = L)dx (5.128)

A direct computation of (5.127) and (5.128) shows that:

U2 = U1e
−jkxL (5.129)

Hence, (5.126) can be rewritten as:

Us(L) = Ẑ2I
TL(L) +U1e

−jkxL (5.130)

Introducing solutions (5.120) into the boundary conditions (5.125) and (5.130) leads after compu-
tation to:

i2 = r̂1i1 + ĉ1I0

eγ̂Li1 = r̂2e
−γ̂Li2 + ĉ2I

TL
0 e−jkxL

(5.131)

where the modal reflection and scattering coefficients were introduced:

r̂1 := T̂
−1

R̂1T̂

r̂2 := T̂
−1

R̂2T̂

ĉ1I0 := T̂
−1

Ĉ1I
TL
0

ĉ2I0 := T̂
−1

Ĉ2I
TL
0

(5.132)

based on the reflection and scattering coefficients:

R̂1 :=
(
ẐC + Ẑ1

)−1 (
ẐC − Ẑ1

)
R̂2 :=

(
ẐC + Ẑ2

)−1 (
ẐC − Ẑ2

)
Ĉ1I

TL
0 :=

(
ẐC + Ẑ1

)−1 (
(−Ẑ1 − ẐC0)I

TL
0 +U1

)
Ĉ2I

TL
0 :=

(
ẐC + Ẑ2

)−1 (
(−Ẑ2 + ẐC0)I

TL
0 −U1

)
(5.133)

The reflection coefficients R̂1,2 are usual reflection coefficients for the current. They make the link
between a propagated TEM current and the reflected current due to the termination. On the other
hand, the scattering reflection coefficients Ĉ1,2 are not defined in the classical formulation and only
apply to the current ITL

0 . They make the link between the incident field and the scattered current
due to the termination.

Solving the linear system (5.131) finally leads to:

i1 =
(
1̂− r̂1e

−γ̂Lr̂2e
−γ̂L
)−1 (

r̂1e
−γ̂Lĉ2I

TL
0 e−jkxL + ĉ1I

TL
0

)
i2 =

(
1̂− e−γ̂Lr̂2e

−γ̂Lr̂1

)−1 (
e−γ̂Lr̂2e

−γ̂Lĉ1I
TL
0 + e−γ̂Lĉ2I

TL
0 e−jkxL

) (5.134)
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5.8.5 Lossless ground and wires

In the case of a lossless system, T̂ transformation matrix is no longer needed and the solutions can
be simplified.

I(x) = ITL
0 e−jkxx + ITL

1 ejkx + ITL
2 e−jkx

Us(x) = ẐC

(
cosϑ cosφITL

0 e−jkxx − ITL
1 ejkx + ITL

2 e−jkx
) (5.135)

with
ITL
1 =

(
1̂− R̂1R̂2e

−2jkL
)−1 (

R̂1Ĉ2I
TL
0 e−j(k+kx)L + Ĉ1I

TL
0

)
ITL
2 =

(
1̂− R̂2R̂1e

−2jkL
)−1 (

R̂2Ĉ1I
TL
0 e−2jkL + Ĉ2I

TL
0 e−j(k+kx)L

) (5.136)

Note that the reflection coefficients for the current R̂1,2 depend only on the line parameters and
on the terminal loads. The coefficients Ĉ1,2 depend not only on the load, but also on the incident
field. However, none of these coefficients depend on the length of the line.

Note finally that the derived equations (5.135) are equivalent to the general solutions obtained
by the TL theory (e.g., [9, 10, 116]). However, they represent an elegant explicit solution of a
multiconductor transmission line excited by a plane wane.

The derived expressions are compact and given as a sum of three (matrix) exponential functions.
Since the solution is expressed in terms of quasi-TEM mode, backward propagating TEM mode
and forward propagating TEM mode, it gives physical insight into the mechanisms involved in
field-to-transmission line coupling. Moreover, by adapting the reflection and scattering coefficients,
the proposed formulation remains accurate at higher frequencies, where effects such as radiation
appear and where the TL theory is no longer valid.

5.9 Radiation-resistance model

The source terms defined in the paragraph 3.1.10 do not consider the radiation of the risers, which
become very effective when the wavelength of the current is in the same order of magnitude as the
length of the riser. In order to include this effect, an additional resistance, corresponding to the
radiation resistance of an infinitesimal monopole of length h [174], is added to the terminal:

Rrad =
4π

3

√
μ0

ε0

(
h

λ

)2

(5.137)

where λ = c/f is the wavelength. In other words, the impedance at the left (respectively right)
terminal is considered to be constituted of the actual impedance at the left (respectively right)
terminal plus the radiation resistance.

ρi =
(Zi +Rrad)− ZC

(Zi +Rrad) + ZC
i = 1; 2 (5.138)

Then the source terms (4.49) can be applied into the BLT equation (4.34), in which the length
of the line L will have been replaced by L + 2h, and where the reflection coefficients ρ1 and ρ2
have been modified (5.138) to consider the radiation resistance (5.137). This model is expected to
be more accurate than the available models presented in Section 4.1.8 and following, especially at
frequencies above the limit of the TL theory.
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5.10 Validation by simulation

5.10.1 Example 1: Open-circuit line

This first validation example is a two-wire line, open at its two terminals. Its cross-section and the
parameters of the exciting plane wave are defined in Table 5.1.

Table 5.1: Parameters.

Parameter Value

Radius of the wires 1 mm

Height above the ground [0.5; 0.3] m

Horizontal position [0; 0.3] m

Horizontal angle φ 45◦

Elevation angle ψ 90◦

Polarisation angle α 0◦

E-field amplitude 1V/m

A comparison of the coefficients provided by the asymptotic theory using NEC simulation (Sec-
tion 5.6), the explicit mathematical expressions (Section 5.5) and the TL approximation (Section
5.8) are shown in Figures 5.6 and 5.7, as a function of the frequency. As discussed earlier, reflection
and scattering coefficients are independent of the line length.

Frequency (MHz)
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Figure 5.6: Real and imaginary parts of the first component of the left scattering coefficient multiplied by the
current induced in an infinite line. Comparison between the asymptotic theory with numerical simulations,
the explicit mathematical expression, and the TL approximation.

In Figure 5.6, the first component of ĈI0 is plotted. The explicit mathematical expression fits
well with the numerical asymptotic theory, although at some frequencies (e.g. at 100 MHz), some
numerical error is present. The TL approximation provides relatively accurate results even above
its frequency limit (around 30 MHz in this case) due to the absence of vertical risers.
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Figure 5.7: Real and imaginary parts of the R12 element of the matrix of reflection coefficient. Comparison
between the asymptotic theory with numerical simulations, the explicit mathematical expression, and the
TL approximation.

A non-diagonal term of the reflection coefficient matrix is presented in Figure 5.7. According
to the TL theory, this coefficient is equal to zero. Indeed, its value is small in comparison with the
diagonal terms, which are equal to -1 at low frequencies. The values obtained by the numerical
asymptotic theory follow the same trend as the explicit mathematical expression. The spikes in
the numerical values are certainly due to numerical errors.
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Figure 5.8: Induced current. Comparison between NEC, the asymptotic theory with numerical simulations,
the explicit mathematical expression, and the TL approximation at 500 MHz.

The induced current in the second wire of a 20 m long line, at 500MHz, is plotted in Figure 5.8.
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The ‘exact’ current is computed with NEC-4 [175], based on the method of moments. The current
is also computed using the reflection and scattering coefficients presented above. In Figure 5.8, the
asymptotic theory with numerical simulations provides results that are in excellent agreement with
NEC results. The explicit mathematical expressions provide results that are accurate in the centre
of the line; however, they are not supposed to be valid near to the terminals were some additional
modes are present. On the other hand, the amplitudes obtained with the transmission line theory
significantly deviate from the exact results.

5.10.2 Example 2: Arbitrary terminations

Figure 5.9: Three-conductor line system.

In this example, the line is made of three wires above a ground plane, with the geometry and
terminal conditions shown in Fig. 5.9. The excitation field is a plane wave with an elevation angle of
ψ = 45◦ (the azimuth and polarisation angles φ and α are set to zero). The reflection and scattering
coefficients were determined by the proposed method with auxiliary lines of lengths L1 = 10 m
and by use of the least squares method for the extraction of the parameters (see Sections 5.6.2 and
5.6.6). The length of the segments for the sampling is 0.05m.

The current induced along the third wire at 200 MHz is plotted in Figure 5.10. The proposed
method offers results that are in excellent agreement with the “exact” solutions obtained using NEC-
4, whereas the classical TL theory does not provide accurate results for the considered frequency.

Figure 5.11 shows the current at the left termination of the line as a function of the frequency.
The comparison shows that the proposed method provides results that are in excellent agreement
with the full-wave “exact” solutions. Beyond 30 MHz or so, the results obtained using the TL theory
start to deviate significantly from the exact results.

As shown in Table 5.2, the proposed method is particularly effective in terms of memory re-
quirements for long lines when compared with a full-wave method (MoM, method of moments).

It can also be noted that, while the simulation (on a virtual machine with four 2.4GHz Intel
Core i7 and 4 GB RAM) with the full-wave method took about 10 hours, the whole simulation time
was about 1 hour with the proposed method. Finally, it is worth noting that once the coefficients of
the equation are determined for a given line configuration, the proposed method makes it possible
to obtain the solution for any line lengths by means of the analytical expression.
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(a)

(b)

Figure 5.10: Amplitude of the current induced along the horizontal part of the line in the third conductor
at 200MHz. Comparison between the solutions provided by NEC, the proposed asymptotic method and
the classical TL theory. (a) Whole line, (b), expanded view of the left part of the line.

Figure 5.11: Amplitude of the induced current in the second (horizontal) conductor, at the first terminal of
the line. Comparison between NEC, the proposed asymptotic method and the classical TL theory.
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Table 5.2: Memory requirements as a function of the method and line length.

Line length
L

Auxiliary
line length

L1

Segment
length

MoM Proposed

50 m 10 m 5 cm ∼144 MB ∼40 MB

100 m 10 m 5 cm ∼576 MB ∼40 MB

1000 m 10m 5 cm ∼57 GB ∼40 MB

5.11 Experimental validation

We report the measurement of the induced current at the terminal of a single line above a ground
plane illuminated by an electromagnetic plane wave. The goal is to experimentally validate the
models defined in the first part of the chapter.

5.11.1 Setup

The GTEM (gigahertz transverse electromagnetic) cell of Armasuisse in Bern was used to produce a
wave resembling as much as possible a plane wave. Measurements were performed in the frequency
domain, using a VNA (vector network analyser).

The measurements were performed in two steps:

1. measurement of the exciting field, in absence of the line;

2. measurement of the induced voltage at a terminal of a line.

A diagram of the setup for the measurement of the voltage in the frequency domain is shown
in Figure 5.12. For the measurement of the field, the same setup was used with the exception that
the line was replaced by a D-dot sensor.

Figure 5.12: Experimental setup for the measurement of the induced voltage in the frequency domain.

Since the GTEM cell is supposed to create a homogeneous field up to about 1 GHz, and due to
the low-frequency limitations of the used amplifier, the frequency range of the measurement was
set to 1 MHz – 1GHz.
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The list of equipment used in the experiments is given in Table 5.3.

Table 5.3: Equipment list.

Denomination Model and manufacturer Characteristics

VNA ZVRE, Rohde & Schwarz 9 kHz – 4 GHz

Calibration kit 85031 B, Hewlett Packard 7mm

Amplifier 50WD1000, Amplifier Research 0.5 – 1000 MHz

Optic link MOL3000, Montena 200 Hz – 3.5 GHz

Electric-field probe E1602, Mélopée

In addition to the list shown in Table 5.3, the following equipment was also used: laptop
with GPIB link to retrieve the data from the VNA or oscilloscope, BNC attenuators, adapters
(connectors), coaxial cables, etc.

5.11.2 Field measurement

A picture of the measurement of the vertical component of the electric field is shown in Figure 5.13.
The measurement system is made of a D-dot sensor (derivative of the electric field), an attenuator,
and a transmitter for the conversion of the electric signal to an optic signal.

Figure 5.13: Picture of the field measurement, here in presence of the ground plane of the line.
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In order to check the homogeneity of the field inside the cell, the E-field was measured at
different locations listed in Table 5.4. For every location, the field was measured at four different
heights (axis z) above the ground. The coordinate system used is presented in Figure 5.14.

Table 5.4: Field measurement locations.

x (cm) y (cm) z (cm)

0 -90 30 / 40 / 50 / 60

0 90 30 / 40 / 50 / 60

0 0 40

90 0 30 / 40 / 50 / 60

-90 0 30 / 40 / 50 / 60

-63.6 -63.6 30 / 40 / 50 / 60

-63.6 63.6 30 / 40 / 50 / 60

In Figure 5.14, the triplet made up of �E, �H and �k symbolises the wave propagating in the cell.
The coordinates x, y, and z are used to describe the position of the field sensor. The angle φ will
be used to describe the orientation of the line.

Figure 5.14: Coordinate system convention.

5.11.3 Parameters of the line

A single conductor above a ground plane with the parameters presented in Table 5.5 was used.

The length of the line was limited to 1.8 m, to be transportable and to be contained in a zone
of the GTEM cell where the field is homogeneous. The height of the line was adjustable to 10 , 20,
30 or 40 cm. The left terminal was connected to the measurement system, which corresponds to a
50Ω load. The right terminal was terminated either on a short-circuit, or on a 50Ω load.

The ground plane of the transmission line measures 0.4m x 2m and was placed at 20 cm from the
ground of the GTEM cell, in order to have enough place below it for the measurement equipment.

A picture of the line is shown in Figure 5.15. Four towers in polycarbonate maintain the wire
horizontally. The wire is connected with a 4 mm plug to a BNC connector going through the ground
plane.
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Table 5.5: Line parameters.

Fixed parameters Value

Length of the line 1.8 m

Diameter of the wire 2 mm

Left terminal 50 Ω

Variable parameters Values

Height above the ground 0.1/0.2/0.3/0.4 m

Right terminal short circuit/50Ω

Orientation (φ) 0/-45◦/-90◦

Figure 5.15: Picture of the line.

5.11.4 Measurement of the induced voltage

A picture of the connection between the illuminated wire and the fibre optic link, for the voltage
measurement, is shown in Figure 5.16.

An attenuator was placed before the transmitter in order to reduce the amplitude of the signal
to the level (1 dBm) allowed by the transmitter. The connection between the attenuator and the
transmitter was made as short as possible. In particular, the metallic enclosure of the transmitter
was isolated from the ground, to avoid galvanic connection between the ground plane of the wire
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Figure 5.16: Picture of the voltage measurement.

and the ground plane of the GTEM cell, which could add artefacts to the measurement.
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5.11.5 Modelling

The obtained measurement results are compared with the predictions of different models:

• the classical TL theory (Section 5.8);

• the TL theory with the proposed radiation resistance model for the vertical risers (Section
5.9);

• the proposed asymptotic theory (Section 5.6);

• numerical results obtained using NEC-4 (MoM) [175].

In all these models, both line and ground plane were considered perfect electric conductors. The
incident field was considered to be a vertically polarised plane wave, whose amplitude was half the
amplitude of the incident measured electric field, due to image theory.

5.11.6 Results

Field

As a first check, both vertical and horizontal components of the electric field were measured. As
expected, the horizontal component was much smaller than the vertical one, allowing to neglect
the horizontal component and measure only the vertical component.

For the sake of completeness, Figure 5.17 shows the vertical component of the electric field
measured at all the 25 locations listed in Table 5.4 in the empty GTEM cell. Due to the 1/r

attenuation of the field and the GTEM cell imperfections, the field is not exactly the same at all
locations. However, according to Figure 5.17, the field is the most homogeneous between around
10 and 100 MHz.
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Figure 5.17: Vertical electric field amplitude at 25 locations in the cell, as a function of the frequency.

In the following, the field at location (x = 0, y = 0, z = 40) was chosen as the reference exciting
field.
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Induced current

In the following measurements, a logarithmic distribution of the frequency points was used in order
to have a good representation at low frequency.

The transfer function is computed as the ratio of the induced current and the incident electric
field. Note that the incident electric field is half the measured exciting (incident + reflected) field,
due to image theory.

Figure 5.18 shows the transfer function for the induced current in the right terminal for a height
of 30 cm, an orientation of -90◦ and a terminal impedance at the left extremity of 50 Ω.
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Figure 5.18: Transfer function current/field. Comparison between the classical TL theory (BLT), enhanced
TL, NEC simulation, CST simulation and measurements. NEC and asymptotic results are essentially
superimposed.

In this case, the TL theory has an upper frequency limit at about 50 MHz and shows a relatively
good agreement within its domain of validity. At higher frequencies, the resonance frequencies and
amplitudes are not well predicted. The proposed radiation resistance model provides more accurate
resonance frequencies, and the amplitudes are also relatively well predicted at high frequency. The
asymptotic theory and the full-wave simulation using NEC (Method of Moment) provide results
that are essentially identical and in good agreement with measured values.

The results for other line parameters are presented in the appendix. Based on all these measure-
ments, we can say that the classical transmission line provides accurate results at low frequencies,
but the resonance frequencies and amplitude at high frequency are in general inaccurate. The radi-
ation resistance model provides in general substantially better values for the resonance frequencies
and amplitude, below and above the frequency limit of the transmission line theory. The asymp-
totic theory provides results in very good agreement with the results of the full-wave numerical
method NEC, which could be taken as reference. The measurements, which may contain errors,
are also close to the results obtained with NEC.
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5.12 Concluding remarks

Based on the asymptotic theory of Tkachenko et al., we presented a theory and an efficient solution
approach for the problem of electromagnetic field coupling to a long multi-conductor line with
arbitrary terminations. The theory is applicable for a high-frequency plane wave electromagnetic
field excitation, when the transmission line approximation is no longer valid.

Different approaches were proposed to compute the coefficients that feed the analytical ex-
pression for the current induced along the line. Using an iterative method, explicit mathematical
expressions were derived, for the particular case of open-circuit lines. For the general case of arbi-
trary line terminations, an approach using auxiliary short lines and solved with a numerical code
was proposed. At low frequencies, the proposed three-term formulation can be adapted to lossy
lines and analytical expressions for the coefficients, providing another formulation for the classical
transmission line theory.

The proposed method was shown to be very accurate taking as reference full-wave numerical
solutions obtained using NEC-4. The use of the proposed approach to analyse high-frequency
electromagnetic field coupling to long multi-conductor lines is considerably more effective than the
traditional full-wave approach in terms of memory requirements and computational times.

In the framework of the classical transmission line theory, a distributed source model with
radiation resistances was proposed for the vertical risers. The proposed model was shown to be
more accurate than the classical theory, even at frequencies for which the cross-section cannot be
considered electrically short.





Chapter 6

Application of the asymptotic theory to
a lumped source excitation

6.1 Introduction

In Chapter 5, a high frequency model for the computation of the current induced by an external
plane wave excitation was developed. In this chapter, the asymptotic theory is applied to a lumped
source excitation.

First, the theory is developed in a procedure analogous to the one in the previous chapter.
A method for the determination of the matrices of coupling and reflection coefficients is then
presented. In the case of a single-conductor line, an expression for the current in the vertical risers
is derived. At low frequencies, analytical expressions are derived for the scattering coefficients. The
use of a radiation resistance allows to account for the radiation occurring near the line terminals.
The developed models are validated using full-wave simulations and experimental measurements.

6.2 Derivation of the method

As for a plane wave excitation in Section 5.3, in order to analyse the response of a finite-length
line, we will first examine semi-infinite lines.

6.2.1 Right semi-infinite line

The current in a right semi-infinite line such as the one depicted in Figure 6.1 and excited by
lumped sources placed at its (left) terminal can be written as the sum of two terms:

I+(x) = Ψ̂
0

+(x)̃I1 + Ψ̂
s

+(x)Is+ (6.1)

where Is+ is a vector of currents associated with the lumped sources placed at the terminal, and Ĩ1
is an additional vector of currents, the usefulness of which will become apparent afterwards. The
‘+’ subscript is used to indicate that we are assessing the effect of the left terminal. Equation (6.1)
is valid along the whole line, and the functions Ψ̂(x) are a priori unknown, especially near the
line terminal. However, in the asymptotic zone (II), Ψ̂(x) functions can be supposed to have the
following functional forms:

Ψ̂
0

+(x) = 1̂ejkx + R̂+e
−jkx

Ψ̂
s

+(x) = K̂+e
−jkx

(6.2)
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Figure 6.1: Schematic view of a right semi-infinite line excited by a lumped source.

where the matrix of reflection coefficients R̂+ and the matrix of coupling coefficients K̂+ were
introduced and have to be determined. By introducing (6.2) into (6.1), one obtains:

I+(x) = Ĩ1e
jkx +

(
R̂+Ĩ1 + K̂+Is+

)
e−jkx (6.3)

6.2.2 Left semi-infinite line

Figure 6.2: Schematic view of a left semi-infinite line excited by a lumped source.

A similar analysis is carried out for a left semi-infinite line (see Figure 6.2) whose terminal is
at location x = L.

I−(x) = Ψ̂
0

−(x− L)̃I2 + Ψ̂
s

−(x− L)Is− (6.4)

where Is− is a vector of currents associated to lumped sources placed at the terminal, and Ĩ− is a
vector of additional currents. In the asymptotic zone (II), Ψ̂(x) functions have the following form:

Ψ̂
0

−(x) = 1̂e−jkx + R̂−ejkx

Ψ̂
s

−(x) = K̂−ejkx
(6.5)

where the matrices of coefficients R̂− and K̂− were introduced and have to be determined. By
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introducing (6.5) into (6.4), one obtains:

I−(x) =
(
R̂−Ĩ2e−jkL + K̂−Is−e−jkL

)
ejkx + Ĩ2e

jkLe−jkx (6.6)

6.2.3 Finite line

Let us connect the two semi-infinite lines together, in order to create a finite line, as shown in
Figure 6.3.

Figure 6.3: Schematic view of a multiconductor line excited by lumped sources.

Imposing that the current be the same in zone II for the two lines

I(x) = I+(x) = I−(x) (6.7)

leads to the following expression:
I(x) = I1e

jkx + I2e
−jkx (6.8)

with
I1 = Ĩ1 = R̂−Ĩ2e−jkL + K̂−Is−e−jkL

I2 = R̂+Ĩ1 + K̂+Is+ = Ĩ2e
jkL

(6.9)

For the sake of clarity, let us remove Ĩ1 and Ĩ2 from this system of equations:

I1 = R̂−I2e−2jkL + K̂−Is−e−jkL (6.10)

I2 = R̂+I1 + K̂+Is+ (6.11)

Solving this system of equations for I1 and I2 yields:

I1 =
(
1̂− R̂−R̂+e

−2jkL
)−1 (

R̂−K̂+Is+e
−2jkL + K̂−Is−e−jkL

)
I2 =

(
1̂− R̂+R̂−e−2jkL

)−1 (
R̂+K̂−Is−e−jkL + K̂+Is+

) (6.12)

Hence, if the four matrices of coefficients are known, the current along the line in zone II can be
determined. To determine the current in zones I and III, Ψ̂(x) functions have also to be known in
these zones.
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6.2.4 Determination of the matrices of coefficients

Let us consider lines, with the same cross-section and terminal impedances, but with a much shorter
length L1 < L and excited by a lumped source only at the left terminal, or at the right terminal,
on different wires. This is illustrated in the case of a two-wire line in Figure 6.4.

(a) (b)

(c) (d)

Figure 6.4: Example of shorter auxiliary lines: lumped source placed (a) at the right terminal, on the first
wire (the current is I1−(x)); (b) at the right terminal, on the second wire (the current is I2−(x)); (c) at the
left terminal, on the first wire (the current is I1+(x)); (d) at the left terminal, on the second wire (the current
is I2+(x)).

Using for example a full-wave numerical code, the currents along the short auxiliary lines can
be determined. These currents are named In+(z) when the lumped source is placed in the left
terminal on wire number n, and In−(x) when the lumped source is placed in the right terminal on
wire number n, with n = 1, ..., N .

In zone II, In+(x) and In−(x) are written in the form of (6.8):

In+(x) = In1+e
jkx + In2+e

−jkx

In−(x) = In1−e
jkx + In2−e

−jkx
(6.13)

where the coefficients In12,± can be determined by the methods presented in Section 5.6.2, for
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example by the method of least squares. Equation (6.10) applies in particular to these currents:

In1+ = R̂−In2+e
−2jkL1 + K̂−Ins−e

−jkL1

In1− = R̂−In2−e
−2jkL1

(6.14)

Similarly, according to (6.11)
In2+ = R̂+I

n
1+

In2− = R̂+I
n
1− + K̂+I

n
s+

(6.15)

The non-existing source terms were removed in (6.14) and (6.15).

The current vectors can be grouped into matrices:

Îa± :=
[
I1a± I2a± · · · INa±

]
(6.16)

with a = 1, 2 or s. Using these definitions in (6.14) and (6.15) leads to:

Î1+ = R̂−Î2+e−2jkL1 + K̂−Îs−e−jkL1

Î1− = R̂−Î2−e−2jkL1

Î2+ = R̂+Î1+

Î2− = R̂+Î1− + K̂+Îs+

(6.17)

Hence, the matrices of coefficients can be formally written as:

R̂+ = Î2+Î
−1

1+

R̂− = Î1−Î
−1

2−e
2jkL1

K̂+ =
(
Î2− − Î2+Î

−1

1+Î1−
)
Î
−1

s+

K̂− =
(
Î1+ − Î1−Î

−1

2−Î2+
)
Î
−1

s−e
jkL1

(6.18)

6.2.5 Left terminal

The current near the left terminal, in zone I, is given by (6.1):

In+(x) = Ψ̂
0

+(x)I
n
1+

In−(x) = Ψ̂
0

+(x)I
n
1− + Ψ̂

s

+(x)I
n
s+

(6.19)

Similarly to (6.16), let us group the currents into matrices:

Î±(x) :=
[
I1±(x) I2±(x) · · · IN± (x)

]
(6.20)

and introduce this definition into (6.19):

Î+(x) = Ψ̂
0

+(x)Î1+

Î−(x) = Ψ̂
0

+(x)Î1− + Ψ̂
s

+(x)Îs+
(6.21)
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Hence the functions Ψ̂(x) in zone I can be formally written as follows:

Ψ̂
0

+(x) = Î+(x)Î
−1

1+

Ψ̂
s

+(x) =
(
Î−(x)− Î+(x)Î

−1

1+Î1−
)
Î
−1

s+

(6.22)

6.2.6 Right terminal

A similar development is done for the right terminal, starting from (6.4):

In+(x) = Ψ̂
0

−(x− L1)I
n
2+e

−jkL1 + Ψ̂
s

−(x− L1)I
n
s−

In−(x) = Ψ̂
0

−(x− L1)I
n
2−e

−jkL1

(6.23)

grouping the equations into matrices:

Î+(x) = Ψ̂
0

−(x− L1)̂I2+e
−jkL1 + Ψ̂

s

−(x− L1)̂Is−

Î−(x) = Ψ̂
0

−(x− L1)̂I2−e−jkL1

(6.24)

and finally obtaining the expression for the Ψ̂(x) functions in zone III:

Ψ̂
0

−(x) = Î−(x+ L1)̂I
−1

2−e
jkL1

Ψ̂
s

−(x) =
(
Î+(x+ L1)− Î−(x+ L1)̂I

−1

2−Î2+
)
Î
−1

s−
(6.25)

6.3 Extension for the risers

The presented procedure allows to compute the current in the horizontal lines. However, it can be
also interesting to know the current along the vertical risers, especially at the ground level. For this
reason, we here present an extension of the method to compute the current in the vertical lines,
in the case of a single-conductor line. The extension to multiconductor lines with risers having
different heights is not straightforward.

Figure 6.5: Definition of a coordinate system which follows the wire, risers included. Adapted from [120].

The overall procedure presented in Section 6.2 is kept the same. The main idea is to consider the
vertical part as a part of the line (see e.g. [124,176]). As shown in Figure 6.5, the coordinate along
the line goes from 0 (left vertical terminal at the ground level) to L + 2h (right vertical terminal
at the ground level). Mathematically, the expression for the current along this new coordinate is
computed by replacing L by L+ 2h and L1 by L1 + 2h in (6.4), (6.12), (6.18) and (6.25).
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6.4 Low frequency approximation

At low frequencies, expressions given for the zone II are supposed to be valid along the whole
line. Applying the boundary conditions and according to this assumption, the expressions for the
coefficients read:

R̂± =
(
ẐC + Ẑ1

2

)−1 (
ẐC − Ẑ1

2

)
K̂± =

(
ẐC + Ẑ1

2

)−1
Ẑ1

2

(6.26)

6.5 Radiation resistance model

The radiation resistance model defined in Section 5.9 can easily be adapted to a lumped excitation.
As the field excitation is removed, two modifications to the classical theory remain:

• The length of the line is considered to be L+ 2h instead of L (see Figure 6.5).

• The radiation effect from the line is modelled by an additional terminal impedance equal to
the radiation resistance of a monopole of height h above the ground (see (5.137))

6.6 Validation by simulation

6.6.1 Parameters

A three-wire line above a ground plane is excited with a voltage source placed on the first wire at
the left terminal. The parameters of the line are presented in Table 6.1.

Table 6.1: Line parameters.

Parameter Value

Length of the line 10 m

Horizontal positions of wires -0.2;0.0;0.1 m

Vertical positions of wires 0.4;0.5;0.3 m

Diameters of wires 1 mm

Left terminal diag(50; 50; 50) Ω

Right terminal diag(50; 50; 50) Ω

The simulation parameter used for the NEC simulations is 30 segments per wavelength. The
lbound length was chosen as twice the maximal height, that is 1m. This rule of thumb applies
for intermediate frequency when the wavelength is in the order of the cross-section, but lbound is
expected to be larger at higher frequencies. The length of the auxiliary line was chosen as 5 times
lbound, that is 5 m.

6.6.2 Results

The current in the third wire at the right terminal predicted by the proposed method is very similar
to the prediction of NEC (see Figure 6.6).

In Figure 6.6, the classical TL model provides results that are accurate only well below its upper
frequency limit of validity (around 30 MHz in this case). This poor behaviour is probably due to
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Figure 6.6: Induced current at the right terminal, in the second wire, as a function of the frequency.
Predictions of NEC and asymptotic theory.

the coupling between the vertical risers, which is not considered by the TL theory, but significantly
modifies the reflection coefficients.

As can be seen from Figure 6.7, the current in the second wire predicted by the proposed
method at 500 MHz is very similar to the NEC predictions.

Figure 6.7: Induced current along the line in the second wire, at 500 MHz. Predictions of TL theory, NEC
and asymptotic theory. Top: current along the whole line; bottom: zoom on the left extremity of the line.
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A comparison between the ‘asymptotic’ reflection coefficient and the classical one is presented
in Figure 6.8. The reflection coefficient provided by the asymptotic theory tends to be equal to the

Figure 6.8: Real (Re) and imaginary (Im) part of the reflection coefficient at the left terminal. Comparison
between TL and asymptotic theory.

one provided by the TL theory at low frequencies. At higher frequencies, the propagation along the
risers leads to a phase shift which takes a cosine-like shape for the real part and a sine-like shape
for the imaginary part.

6.7 Experimental validation

6.7.1 Setup

A single wire line above a ground plane with the parameters presented in Table 6.2 was used. The
measurements were done considering four different heights of the wire above the ground, the other
parameters remaining unchanged.

Table 6.2: Line parameters.

Parameter Value

Length of the line 1.8 m

Height above the ground h 10; 20; 30; 40 cm

Diameters of wire 2 mm

Left terminal 50 Ω

Right terminal 50 Ω

A picture of the line is shown in Figure 6.9. The wire and ground plane are made of copper.
Four towers in polycarbonate support the wire, possibly at different heights.
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Figure 6.9: Picture of the line (with h = 40 cm)

As shown in Figure 6.10, a ZVRE Rhode & Schwarz vector network analyser (VNA) was
connected with coaxial cables to the terminals of the line. The measured parameter is the S21

parameter, which corresponds to terminating the line by 50Ω loads. A reference voltage is injected
at the first terminal and the voltage at the second terminal is measured.

Figure 6.10: Scheme of the experimental setup.

The obtained experimental results are compared in the frequency domain with simulations
obtained using NEC, asymptotic theory and classical TL.

6.7.2 Results

Comparison results in the frequency domain are shown in Figures 6.11–6.14. Figure 6.11 shows a
comparison between the measurements, the classical TL model, NEC simulations and the proposed
asymptotic method, with the parameters given in Table 6.2 and h = 10 cm. At low frequencies,
(that is here below around 1 MHz) the line is almost “transparent” and the voltage is completely
transmitted to the second terminal of the line. The voltage imposed by the source is divided by
2 because the terminal loads are the same. At higher frequencies, the mismatch between the 50Ω
source and the 318Ω characteristic impedance of the line reduces the transmitted voltage down to
around 0.15 V and resonances appear.

The transmission line theory is supposed to be valid up to around 150 MHz in this case, and
all models provide results that agree well with the measurements up to this frequency. At higher
frequencies, the additional length due to the vertical risers starts to shift the resonance frequencies,
and the radiation of the line starts to affect the amplitude response of the line considerably. The
phenomena are well predicted both by the asymptotic model and by NEC simulations, and also by
the modified TL model which includes an additional length and a radiation resistance.
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Figure 6.11: Comparison in the frequency domain between the classical TL theory, the TL-based radiation
resistance model, the asymptotic theory, NEC simulations and measurements, in the case h = 10 cm.
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Figure 6.12: Comparison in the frequency domain between the classical TL theory, the TL-based radiation
resistance model, the asymptotic theory, NEC simulations and measurements, in the case h = 20 cm

The same general conclusions can be drawn from Figures 6.12–6.14 as from Figures 6.11, while
considering that the frequency limit is associated with the line height above the ground. However,
the radiation resistance seems to attenuate the signal too much at high frequencies. A more complex
model for this resistance could perhaps produce more accurate results. In any case, the modelling
of the risers pushes the accuracy of the TL theory substantially higher than the classical upper
limit.

Some errors affect the measurements, possibly due to the limited size of the ground, and the
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Figure 6.13: Comparison in the frequency domain between the classical TL theory, the TL-based radiation
resistance model, the asymptotic theory, NEC simulations and measurements, in the case h = 30 cm.
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Figure 6.14: Comparison in the frequency domain between the classical TL theory, the TL-based radiation
resistance model, the asymptotic theory, NEC simulations and measurements, in the case h = 40 cm.

error seams to increase as the height of the line increases.
The prediction of the TL theory is very good in its domain of validity (up to about 150 MHz in

Figure 6.11 and 37 MHz in Figure 6.14), but the resonance frequencies and the amplitude are not
accurate at higher frequencies. The asymptotic theory essentially yields the same results as NEC,
and it corresponds well to the measurements.

A comparison between the ‘asymptotic’ reflection coefficient and the classical one is presented
in Figure 6.15. The precision (stability) of the proposed method is reduced at low frequencies due
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Figure 6.15: Real (Re) and imaginary (Im) part of the reflection coefficient at the left terminal, in the case
h = 10 cm. Comparison between TL and asymptotic theory.

to the electric shortness of the line. However, the reflection coefficient provided by the asymptotic
theory tends to be equal to the one provided by the TL theory at low frequencies. At higher
frequencies, the amplitude of the reflection coefficient tends to decrease as the frequency increases,
due to the radiation of the riser which acts as additional losses in the terminal.

6.8 Concluding remarks

The asymptotic theory was applied to a line excited by lumped sources. In absence of an external
electromagnetic field, the current along the line can be expressed by a two-term equation (as
opposed to the three-term formulation when an exciting field is present). Analytical expressions
were obtained for the coefficient matrices at low frequencies, and a methodology was proposed for
the computation at high frequencies. It was shown that the use of the radiation resistance is an
efficient approach to extend the validity of the classical TL theory, taking into account radiation
effects at the line terminals. The proposed models were validated by full-wave simulations and
measurements.

Future work could include the improvement of the radiation resistance model, because the
proposed model in some way overestimates the value of the resistance at very high frequencies.
One possibility would be to use the approximation of the current in the vertical riser to compute
the radiated power and hence refine the current in a one-iteration process. Another challenge would
be to develop a multi-conductor version of the radiation resistance model. The main difficulties
could be the different length of the vertical risers and the cross-coupling between them: the power
radiated by one riser may couple to another riser.





Chapter 7

Conclusion and perspectives

7.1 Summary

In the first part, we discussed the use of the Electromagnetic Time Reversal (EMTR) method to
locate lightning strikes. After a brief description of EMTR and its application to lightning location,
we demonstrated mathematically that the Time-of-Arrival method can be seen as a special case of
EMTR. We proposed three different models of back-propagation to address the issue of EMTR not
being invariant for lossy media. Two sets of simulations were carried out to evaluate the accuracy
of the proposed methods.

The first set of simulations was performed using numerically generated fields, and the proposed
algorithm was shown to give very accurate results even when the soil is not perfectly conducting.
In particular, it was shown that considering a model in which losses are inverted in the back-
propagation yields theoretically exact results for the source location. We also showed that a lack
of access to the complete recorded waveforms may lead to higher location errors, although the
computed errors were found to be within the range of performance of the present LLSs.

A second set of simulations was performed using the sensor data reported by the Austrian
Lightning Location System. The locations obtained by way of the EMTR method using only the
available sensor data (amplitude, arrival time and time-to-peak), were observed to be within a
few kilometres of the locations estimated by the LLS. Possible reasons for the discrepancy were
discussed.

In the second part, based on the asymptotic theory of Tkachenko et al., we presented a theory
and an efficient solution to the problem of electromagnetic field coupling to a long multiconduc-
tor line with arbitrary terminations. The theory is applicable for a high-frequency plane wave
electromagnetic field excitation, when the transmission line approximation is no longer valid.

Different approaches were suggested to compute the coefficients that feed the analytical expres-
sion for the current induced along the line. Using an iterative method, mathematical expressions
were derived for the particular case of open-circuit lines. For the general case of arbitrary line
terminations, an approach using auxiliary short lines, solved with a numerical code was proposed.
At low frequencies, the proposed three-term formulation can be adapted to lossy lines and ana-
lytical expressions for the coefficients, providing a new and elegant formulation for the classical
transmission line theory.

The proposed method was shown to be very accurate, taking as reference full-wave numerical
solutions obtained using NEC-4. The use of the suggested approach to analyse high-frequency
electromagnetic field coupling to long multiconductor lines is considerably more effective than the
traditional full-wave approach in terms of memory requirements and computational times.

107
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In the framework of the classical transmission line theory, a distributed source model with
radiation resistances was proposed for the vertical risers. The proposed model was shown to be
more accurate than the classical theory, even at frequencies for which the cross-section cannot be
considered electrically short.

The asymptotic theory was also extended to lumped excitation of multiconductor lines. In ab-
sence of an external electromagnetic field, the current along the line can be expressed by a two-term
equation (as opposed to the three-term formulation when an exciting field is present). Analytical
expressions were obtained for the coefficient matrices at low frequencies, and a methodology was
proposed for their computation at high frequencies. It was shown that the use of the radiation
resistance is an efficient approach to extend the validity of the classical TL theory, taking into
account radiation effects at the line terminals. The proposed models were validated by full-wave
simulations and measurements.

7.2 Original contributions

The main original contributions of this thesis are summarised in what follows.

• We showed that EMTR was applicable for the lightning location in the case of non-ideal
propagation media. In particular, back-propagation models were proposed to discuss the
application of EMTR to lossy grounds and were validated by simulations using numerically-
generated fields and experimental data from lightning location systems. Time reversal can
potentially increase the accuracy of current lightning location systems as it uses the complete
waveform of the field to calculate the location of the strike point.

• The asymptotic theory was successfully applied to the problem of field coupling to a multi-
conductor line. We extended the available theory to multiconductor lines and proposed an
algorithm for the computation of the current induced in a line with arbitrary terminations.

• Mathematical expressions for the matrix of scattering and reflection coefficients in the par-
ticular case of an open-circuit terminated line were proposed and validated. We showed that
the expression obtained for the reflection coefficient can be reduced to available results in the
literature in the case of a single-conductor line.

• A method for the computation of the current along the vertical risers in the case of a single-
conductor line was proposed. This method requires only a small adaptation of the general
asymptotic method and provides results that are in good agreement with full-wave methods.

• The asymptotic theory was extended to multiconductor lines excited by lumped sources. An
algorithm for the computation of the current propagating in a line with arbitrary terminations
was proposed.

• An approximate, TL-based analytical model in which the high-frequency radiation effects are
taken into account through lumped radiation resistances was proposed. This approximate
model can be straightforwardly implemented, and was shown to provide better results than
does the classical transmission line theory.

7.3 Perspectives

Should LLS provide more accurate information in the future, the EMTR method which takes
advantage of the whole waveform of the measured fields (including amplitude and time of arrival),
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may be very promising in terms of achievable location accuracy and detection efficiency.
It is also possible that progress in the back-propagation models will lead to improvements in

the accuracy over those obtained by current LLS. In particular, a 3D model, for example using
FDTD (finite difference time domain), could be implemented in order to take the topography
(mountains,...) and inhomogeneity of the soil into account during the back-propagation phase.
In order to run the algorithm in real time, special attention should be paid to the computation
optimisation.

Moreover, in order to test and develop the present proposed algorithms, a more complete
experimental data set would be required. These data would include the exact location of strikes
and complete field waveforms measured at different locations and synchronised by GPS.

The computation of the current along the vertical risers using asymptotic theory in the case of
a multiconductor line remains a challenging task and should be considered in future work. Future
work could also include the development a multiconductor version of the radiation resistance model
developed for a single-wire line. The main challenge would be how to deal with the different lengths
of the vertical risers and the cross-coupling between them: the power radiated by one riser can
couple to another riser.





Appendix A

Comparison between model predictions
and experimental data

This Appendix presents simulation results obtained using the various models described in Chapter
5 compared with experimental data (which were not shown in Section 5.11.6). The used models
are classical transmission line (TL) theory, TL theory with radiation resistances, NEC-4 numerical
simulations, and the asymptotic method. A list of the figures is presented in Table A.1. The
parameters which are not mentioned in this table are given in Table 6.2 .
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Figure A.1: Transfer function current/field. Comparison between measurements, TL theory, and full-wave
simulation (CST).
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Table A.1: Parameters associated to the figures displayed in Appendix A.

Figure # h (cm) φ Z2 (Ω)

A.1 10 −90◦ low impedance

A.2 10 −90◦ 50

A.3 20 −90◦ low impedance

A.4 20 −90◦ 50

A.5 30 −90◦ low impedance

A.6 30 −90◦ 50

A.7 40 −90◦ low impedance

A.8 40 −90◦ 50

A.9 10 −45◦ low impedance

A.10 10 −45◦ 50

A.11 20 −45◦ low impedance

A.12 20 −45◦ 50

A.13 30 −45◦ low impedance

A.14 30 −45◦ 50

A.15 40 −45◦ low impedance

A.16 40 −45◦ 50

A.17 10 0◦ low impedance

A.18 10 0◦ 50

A.19 20 0◦ low impedance

A.20 20 0◦ 50

A.21 30 0◦ low impedance

A.22 30 0◦ 50

A.23 40 0◦ low impedance

A.24 40 0◦ 50
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Figure A.2: Transfer function current/field.
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Figure A.3: Transfer function current/field.
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Figure A.4: Transfer function current/field.
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Figure A.5: Transfer function current/field.
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Figure A.6: Transfer function current/field.
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Figure A.7: Transfer function current/field.
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Figure A.8: Transfer function current/field.
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Figure A.9: Transfer function current/field.
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Figure A.10: Transfer function current/field.
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Figure A.11: Transfer function current/field.
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Figure A.12: Transfer function current/field.
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Figure A.13: Transfer function current/field.
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Figure A.14: Transfer function current/field.
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Figure A.15: Transfer function current/field.
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Figure A.16: Transfer function current/field.
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Figure A.17: Transfer function current/field.
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Figure A.18: Transfer function current/field.
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Figure A.19: Transfer function current/field.
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Figure A.20: Transfer function current/field.
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Figure A.21: Transfer function current/field.
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Figure A.22: Transfer function current/field.
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Figure A.23: Transfer function current/field.
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Figure A.24: Transfer function current/field.
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