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GBS, a tool to study SOL turbulent plasma

I In the tokamak scrape-off layer (SOL) magnetic field lines are open, channeling
heat onto device wall

I The plasma behavior in this region governs the overall confinement properties of
the device
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I Global Bragiskii Solver, GBS:
I Solves fluid equations for the plasma and kinetic

equations for the neutrals atoms
I Reproduces SOL turbulent dynamics
I Treats magnetic equilibria with elongation and

triangularity
I Simulates medium size tokamaks: TCV, RFX,

Alcator C-mod

I So far, tokamak SOL simulations performed in limited geometry
I GBS capabilities are now extended to diverted X-point configurations

Drift-reduced fluid equations for plasma
turbulence

I GBS evolves the drift-reduced Braginskii equations, with ordering k⊥� k‖,
d/dt � ωci [Ricci et al., PPCF 2012]

I Plasma and heat outflowing from the core is mimicked by localised plasma and
heat sources

I Boundary conditions described in [Loizu et al., Phys. Plasmas 2012]
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[φ, f ] = b · (∇φ×∇f ), C(f ) = B/2 (∇× b/B) · ∇f , ρ? = ρs/R

I Normalized units used throughout: L⊥→ ρs, L‖→ R, t → R/cs,
ν = ne2cs/(miσ‖R)

Achievements of GBS
I Characterization of non-linear

turbulent regimes in the SOL

I SOL width scaling as a function
of dimensionless / engineering
plasma parameters

I Origin and nature of intrinsic
toroidal plasma rotation in the
SOL

I Mechanisms regulating the SOL
equilibrium electrostatic
potential
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[Halpern et al., PPCF 2016]

Analytical and numerical development of flexible GBS for diverted scenarios

Challenges behind X-point simulations

I For axisymmetric magnetic fields:

B = F (ψ)∇ϕ +∇ψ ×∇ϕ
where ϕ is the toroidal angle and ψ is
the poloidal magnetic flux.

I At the X-point the magnetic field is only
toroidal

BXpt = Bϕeϕ = F (ψ)∇ϕ

I Therefore, the jacobian is not defined
at the X-point as ∇ψXpt = 0 and
JXpt = (∇ψ · ∇u2 ×∇u3)−1 =∞

I It is not possible to use flux label
coordinates (ψ,u2,u3) at the X-point

[1] Image credit: E. Strumberger 2012

In order to extend GBS capabilities to treat diverted configurations, we moved from a field aligned to a
non-aligned coordinate system.

STANDARD GBS NEW FLEXIBLE GBS
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Numerical Grid Staggered in ϕ∗ Staggered in both θ̂ and ϕ

Discretization Method Finite differences O(2) Finite differences O(4)

I In the non field aligned flexible code, the magnetic field topology information is contained in ψ and its
derivatives which appear in the operators

Verification of the flexible GBS in limited configuration

I Flexible version with its new non-field aligned operators is tested in limited domain with circular flux
surfaces

I The magnetic equilibrium is defined through the poloidal flux ψ̄(r̄ , θ) = ψ̄(r̄ ) = − r̄2

2q
I When using the same grid resolution, the standard field aligned code shows better resolution. By

increasing toroidal resolution similar turbulence structures are recovered.

I The turbulence structures are still field aligned even when using non field aligned operators.

I For radial time averaged profiles, there is good agreement between simulation, even with same grid
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Flux surfaces with X-point

I First X-point equilibrium implemented in GBS
I ψ depends on θ:
ψ̄(r̄ , θ) = k(2t3 − 2t2 − (3/2 + cos θ)t + 1), t = (r̄ − 1)/(rmax − rmin), k = 0.06

I Physical boundary conditions applied at the wall
I The turbulence structures still appear to be field aligned
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Conclusions

I GBS code capabilities succesfully extended to simulate diverted equilibria, applying physical boundary conditions at the wall

I The flexible version removes the constraint of a field aligned numerical grid, allowing also for non-local and diverted
magnetic equilibria

I Even with a fixed (r , θ, ϕ) grid, the turbulence structures still appear to be field aligned

I Higher computational costs and finer toroidal grid are required

Outlook and GBS development plans

I Perform convergence studies and apply the method of manufactured solution to verify the code

I Implement shaping of the wall to allow for wider variety of equilibria

I Investigate spectral methods for the toroidal direction to lower computational cost

I Study the physics introduced by the X-point, possible simulations with neutral atoms [see talk Wersal on Thursday]
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