Built-in Foreground/Background Prior for Weakly-Supervised Semantic Segmentation: Supplementary Material

Fatemehsadat Saleh1,2, Mohammad Sadegh Ali Akbarian1,2, Mathieu Salzmann1,3, Lars Petersson1,2, Stephen Gould1, and Jose M. Alvarez1,2

1The Australian National University (ANU),2Commonwealth Science and Industrial Research Organization (CSIRO),3CVLab, EPFL, Switzerland

1 Foreground/Background Mask Evaluation

Here, we provide a validation and evaluation of our foreground/background masks. To this end, we made use of 10% of randomly chosen training images from the Pascal VOC dataset. We then generated foreground/background masks for these images using our approach, which relies on the activations of the fourth and fifth layers of the segmentation network pre-trained on ImageNet (i.e., before fine-tuning it for semantic segmentation). These masks can then be compared to ground-truth foreground/background masks obtained directly from the pixel level annotations.

We compare our masks with the objectness criterion of [1] and [2], which was employed by [3] and [4, 5] for the purpose of weakly-supervised semantic segmentation. Note that, some approaches such as [6, 2] which have been used for weakly-supervised semantic segmentation [4, 7, 5] require training data with pixel-level/bounding box annotations, and thus are not really comparable to our approach. Note also that a complete evaluation of objectness methods goes beyond the scope of this paper, which focuses on weakly-supervised semantic segmentation.

The objectness methods of [1] and [2] produce a per-pixel foreground probability map. For our comparison to be fair, we further refined these maps using the same dense CRF as in our approach. In Table 1, we provide the results of these experiments in terms of mean Intersection Over Union (mIOU) with respect to the ground-truth masks. Note that our masks are more accurate than those of [1, 2]. In Fig. 1, we show some qualitative results of these three approaches. Note that this further evidences the benefits of our foreground/background masks. In particular, our masks yield a much better object localization accuracy.

2 Evaluation of our CheckMask Procedure

In this section, we evaluate the quality of the masks selected using our CheckMask procedure. Recall that, in our CheckMask procedure, a user selects one
Table 1. Comparison of our foreground/background masks with those obtained using the objectness method of [1] and [2].

<table>
<thead>
<tr>
<th></th>
<th>Mean IoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masks obtained using [1]</td>
<td>52.34%</td>
</tr>
<tr>
<td>Masks obtained using [2]</td>
<td>50.20%</td>
</tr>
<tr>
<td>Our masks</td>
<td>60.08%</td>
</tr>
</tbody>
</table>

Fig. 1. Qualitative comparison of our masks with those of [1] and [2]. Note that our approach yields much better localization accuracy.

Table 2. CheckMask evaluation: Note that the masks selected by a user with our CheckMask procedure have similar accuracy to the best ones among the M candidates.

| M=30 | 66.70 | 34.37 | 48.39 | 64.91 |

In practice, it takes the user roughly 2–3 seconds per image when M = 30, as suggested in the paper. While lower values for M would require less annotation time per image, it might also suffer from the fact that none of the candidate accurately covers the objects of interest. To illustrate this, in Fig. 2, we visualize the best of user-selected masks for different values M for a few images. Our visual inspection suggested that M = 30 provides a good trade-off between speed and accuracy.
Fig. 2. Effect of M on the selected mask quality. While lower values of M will require less annotation time, the candidate masks do not always accurately cover the objects of interest.
References