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Abstract. Two main classes of approaches have been studied to per-
form monocular nonrigid 3D reconstruction: Template-based methods
and Non-rigid Structure from Motion techniques. While the first ones
have been applied to reconstruct poorly-textured surfaces, they assume
the availability of a 3D shape model prior to reconstruction. By contrast,
the second ones do not require such a shape template, but, instead, rely
on points being tracked throughout a video sequence, and are thus ill-
suited to handle poorly-textured surfaces. In this paper, we introduce a
template-free approach to reconstructing a poorly-textured, deformable
surface. To this end, we leverage surface isometry and formulate 3D
reconstruction as the joint problem of non-rigid image registration and
depth estimation. Our experiments demonstrate that our approach yields
much more accurate 3D reconstructions than state-of-the-art techniques.

Keywords: Non-rigid 3D reconstruction, poorly-textured surfaces, template-
free shape estimation

1 Introduction

This paper tackles the problem of estimating the 3D shape of a poorly-textured,
nonrigid surface in all the frames of a monocular video sequence. Reconstructing
the 3D shape of a deformable surface from monocular images is a challenging
task, which has attracted a lot of attention over the years. The resulting algo-
rithms can be roughly classified into two categories: Template-based methods
and Non-rigid Structure from Motion (NRSfM) techniques.

Template-based methods [1-11] exploit the availability of a reference image in
which the 3D shape is known and attempt to estimate the surface deformations
in a new input image. To this end, they typically try to minimize an image-
based cost function, which encodes how well the deformed surface reprojects in
the input image. Since this information alone leaves reconstruction ambiguities,
existing approaches have developed various shape priors. In particular, great
progress has been made in template-based reconstruction by exploiting surface
isometry [1-9], with methods yielding accurate reconstructions in an efficient
manner [6,12,3,13] and, in some rare cases, even tackling the case of poorly-
textured surfaces [1,2]. The main drawback of this approach, however, is its
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Fig. 1. Our approach: Template-free reconstruction of poorly-textured surfaces.

requirement for a 3D reference surface shape. Whether to model garments, me-
chanical structures, or human organs, one can in general not realistically expect
having access to such prior knowledge.

By contrast, NRSfM techniques [14-20] do not require knowing the shape of
the object a priori. Instead, they make use of a video sequence as input, and
estimate the shape of the surface in all the frames of this sequence. To overcome
the ambiguities of the resulting problem, existing methods also make use of
additional priors, the most popular of which is a low-rank shape basis [15, 18].
As in the template-based case, impressive results have recently been achieved by
NRSIM techniques, producing dense reconstructions [21] and working on natural
video sequences [14]. However, to the best of our knowledge, all existing NRSfM
approaches rely on tracking feature points throughout the input video sequence.
As a consequence, they have only been applied to relatively well-textured objects
and are ill-suited to handle the challenging case of poorly-texture surfaces.

In this paper, we aim to achieve the best of both worlds: We introduce a
template-free reconstruction method able to tackle the poorly-textured surface
scenario. To this end, we leverage the progress achieved in template-based re-
construction by exploiting surface isometry and image-based cost functions well-
suited to poorly-textured objects, but perform 3D reconstruction in the NRSfM
setting by not requiring prior information about the shape of the surface. To
the best of our knowledge, our approach constitutes the first attempt at tackling
reconstruction of poorly-textured surfaces without a shape template, thus taking
a significant step towards making deformable surface reconstruction applicable
to realistic scenarios.

Specifically, we model a deformable surface with a triangular mesh, and for-
mulate 3D reconstruction as the problem of estimating an affine transformation
for each mesh facet. This translates to optimizing a cost function combining an
image term and a shape prior. As image term, we make use of the brightness
constancy assumption, but also leverage image edges, which, while few in the
poorly-textured case, provide stronger cues than image intensities. Inspired by
template-based methods, our shape prior encodes surface isometry, to encourage
the length of the edges of the mesh to remain constant as the surface deforms.
Note, however, that, in contrast with template-based methods, we do not know
these lengths a priori, and therefore need to optimize them as well. In addi-
tion to isometry, we further incorporate priors encouraging spatial and temporal
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smoothness of the deformations. To optimize our cost function, we make use of
a fusion moves strategy, which has proven more robust to local minima than
gradient-based methods.

We demonstrate the benefits of our approach on several synthetic and real
sequences. Our experiments evidence, both quantitatively and qualitatively, that
our method yields much more accurate reconstructions than state-of-the-art
NRSfM techniques in the poorly-textured scenario.

2 Related Work

In this section, we briefly review the literature on monocular 3D reconstruction
of deformable surfaces, i.e., template-based methods [1-11] and NRSfM [14-19].
In both cases, we focus the discussion on the methods that are the most relevant
to our work.

Template-based nonrigid reconstruction has a long history in computer vision
that can be traced back to the early physics-based models [22-24] and active
appearance models [25, 26] or morphable models [27-29]. Given a template shape
of the object corresponding to a reference image, the underlying task consists
of deforming the template such that it reprojects at the correct location in the
input image. Recently, great progress has been made in this line of research,
especially by exploiting surface isometry to disambiguate the problem [1-9]. Most
of the resulting methods, however, tackle the case of relatively well-textured
surfaces [3,4,6-9]. Nevertheless, some approaches have proposed to focus on
the poorly-textured scenario [1,2,5]. In particular, [5] exploits training data to
learn local deformation models, which then act as a prior during reconstruction.
By contrast, [1] and [2] avoid having to learn such a prior and rely on surface
isometry. Similarly to our approach, these techniques rely on some more or less
sophisticated variants of the brightness constancy assumptions, and [1, 5] exploit
image edges as additional cues. However, these methods all require a known 3D
template of the surface, which, in many practical situations, is difficult, if not
impossible, to obtain.

Non-rigid Structure from Motion was initially introduced as an extension
of the factorization method of [30] to the nonrigid scenario [15]. Given the 2D
tracks of feature points throughout a video sequence, NRSfM aims at recovering
the 3D locations of these points in each video frame, as well as the camera
rotation and translation. As for template-based reconstruction, great progress
has been achieved in NRSfM, notably by going beyond the traditional shape
basis representation [16, 18]. Recently, impressive results were obtained by [21],
which performs dense reconstruction by replacing the usual feature tracking step
with a nonrigid registration procedure [31]. The notion of isometry has also been
exploited in the context of NRSfM, with the additional difficulty, compared to the
template-based case, that the true local surface distances are unknown and must
therefore also be estimated. In particular, [17] introduced an approach based on
a triangle soup surface representation, where triangles of neighboring feature
points are assumed to move rigidly. In [20], isometry and infinitesimal planarity
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are employed, and reconstruction is achieved by integrating the normals obtained
from the decomposition of local 2D homographies. In [19], isometry is encoded by
encouraging the distance between neighboring feature points to remain constant
over the entire sequence. Similarly to our approach, this method relies on a fusion
moves optimization strategy, which makes it more robust to local minima than a
gradient-based approach. All the above-mentioned NRSfM techniques, however,
have been designed to handle relatively well-textured surfaces.

In this paper, we aim to achieve the best of both worlds: We introduce an
approach that does not require a template of the surface of interest, but can
nonetheless reconstruct poorly-textured surfaces. To the best of our knowledge,
our work represents the first attempt at tackling this challenging template-free
monocular reconstruction of poorly-textured deformable surfaces.

3 Our Approach

Let us now introduce our template-free approach to 3D reconstruction of poorly-
textured, deformable surfaces. Given a monocular sequence of F' frames with
known intrinsic camera parameter matrix K depicting a deforming surface, our
goal is to estimate the 3D shape of the surface in each frame of the video. Here,
we represent the surface as a triangular mesh. We assume to be given a rough
region of interest (ROI) containing the surface in the first frame of the sequence.
Note that a similar assumption is made by most NRSfM methods, where only
feature points belonging to the surface of interest are taken into account. We then
cover this ROI with a regular 2D triangulation, which defines the 2D locations
of the mesh vertices in the first frame. Note that this still makes no assumption
about the initial 3D shape of the surface; if the surface is not flat in the first
frame, the 3D mesh will simply not be regular.!

We formulate 3D reconstruction as the problem of jointly estimating the 2D
displacement u{ of each mesh vertex ¢ in each frame 2 < f < F with respect
to the first frame and the depth dfc of the vertices in all the frames.? This is
expressed as an optimization problem containing an image-based energy and
shape priors. Below, we discuss these different terms in details.

3.1 Image-based Energy

Since we aim at tackling the poorly-textured scenario, we cannot expect to be
able to reliably track feature points across the frames. Instead, we therefore
exploit two sources of image information. The first one is based on the brightness
constancy assumption, and the second one relies on image edges. Both terms will

! We acknowledge that this initialization might not be ideal when the first frame
depicts very complex deformations, since a single mesh facet might then cover a
large portion of the surface. However, as evidenced by our experiments, it remains
effective in practice.

2 While we do not explicitly model the camera motion, it can be accounted for by the
mesh, which our parametrization allows to move freely in 3D.
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require accessing image information at arbitrary points on the mesh, not just at
the mesh vertices. To compute the 2D locations of such points we rely on the
assumption that the mesh facets are sufficiently small such that they remain flat
as the surface deforms and are not strongly affected by the perspective effect.
Equivalently, this means that the barycentric coordinates of a 2D point with
respect to the facet it belongs to remain constant as the mesh deforms. More
formally, let b,, = [b,1,bn.2,b,.3]7 be the barycentric coordinates of a point n
on the mesh, which can be obtained from the first frame of the sequence. The
2D location x; of this point in frame f can be expressed as

X£ = x; + bnvluif(n,l) + bnﬁuzf(n,z) + bn,3u{(n73) ) (1)

where x! is the known location of the point in the first frame, and where the
notation i(n, j) indicates that the actual index of the mesh vertex to take into ac-
count depends on the point n and on which barycentric coordinate is considered.
The two terms in our image-based energy are then defined as follows.

Brightness constancy. Our first image-based term relies on the intuition that
the intensity under a mesh point should remain constant as the mesh deforms.
Given a set of Ny points densely sampled on the mesh surface with known
barycentric coordinates, our brightness constancy term can be written as

F N
B(U) = > N, el )~ T Gl 2)

where U = {u{ } is the set of all unknown displacements, and where the depen-
dency on the ulf s is not explicitly written for ease of notation, but arises via
the x/s, which are computed from Eq. 1. I'(-) and I/(-) denote the first and
™ images respectively, and g(-) is a gradient-based weighting function. This
function is expressed as

9(x) = exp(|[VI'(2)]3) — 1, (3)

where V denotes the image gradient after Gaussian smoothing. This weighting
function encodes the intuition that pixels with small gradient magnitude are less
reliable, and thus makes this term more robust to illumination changes.

Image edges. To further account for the image edges, which, while sparse in
the poorly-textured case provide more reliable information, we follow the idea
employed in [1]. More precisely, we rely on the distance transform D/ of the
edge image obtained from I/ using Canny’s algorithm. D/ encodes the distance
of each point in frame f to the closest edge point. Given N, edge points sampled
on the edges of the first frame, we formulate our edge-based energy as

L N~ LSS i
E.(U) = ﬁ;ﬁe Z;D (x7,) - (4)
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Altogether, our image-based energy can thus be expressed as
EI(U) = Eb(U) + weEe(U) ) (5)

where w, is a weight that sets the relative influence of these two terms. This
weight was set as 6 in all our experiments.

3.2 Shape Priors

Relying on image information only is known to leave many ambiguities in non-
rigid shape reconstruction. Over the years, many priors have been studied in the
literature. Here, we make use of three such priors: Isometry, spatial smoothness
and temporal smoothness. These three terms are discussed below.

Isometry. In the context of template-based reconstruction, isometry has proven
to provide a very reliable prior. This prior encodes the fact that the distance
between two neighboring 3D points should not vary, or vary minimally, as the
surface deforms. Here, we encourage this for every edge in our mesh. Since this
prior is defined in 3D, we need to compute the 3D locations vlf of mesh vertex i

in frame f using our parametrization. To this end, let @/ = [(x! + u/)” 1]T be
the 2D location of vertex ¢ in frame f in homogenous coordinates, where, with a
slight abuse of notation, x} denotes the 2D location of vertex i in the first frame.
The 3D location of vertex i in frame f can then be obtained as

—1=f

o gl KW

. A
K147 (|2

(6)

Given the set of mesh edges £, this lets us write our isometry prior as

F

1 1 2

Bi(UD.L) = 53 30 (I vl =) (7)
f=1 (i,5)€€

where D = {d{ } is the set of all unknown depths, and, since we do not have
a shape template, the true lengths L = {l; ;} are unknown, and thus act as
auxiliary variables to be determined by our algorithm. Note that, since the 2D
locations of the vertices in the first frame are known, the corresponding displace-
ments u} are set to 0. The depth d} of these vertices, however, still needs to be
determined by our approach.

Spatial Smoothness. In addition to isometry, we also rely on the intuition
that the shape of the surface remains relatively smooth as it deforms, and thus
the parameters of neighboring vertices should remain close to each other. In
practice, we make use of both first- and second-order smoothness terms. Since
our initial mesh is defined as a regular grid, we can define these terms along its
vertical and horizontal edges. Let £ be the set of such edges and T the set of
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triplets of aligned vertices. We express spatial smoothness as

i > I — Pl , 1 5 Ip! - 2p] + pl|3
=\l (mt)?> T (m})? ’

(,7)€E&’ (i,4,k)ET
(8)

where p/ = [(u/)T,d/]T denotes the vector of parameters for vertex i in frame
f and ml{ ; 1s the distance between the mesh vertices i and j in the first frame.

Temporal Smoothness. Finally, since we use a video sequence as input, we
model the natural intuition that sudden changes in our parameters are unlikely
to occur between neighboring frames. This can be expressed by the energy

T

where N is the total number of vertices in the mesh.
Altogether, our shape priors can be grouped in an energy of the form

2 \

N
Z e/~ = p!l5, (9)

ES(Ua Da L) = wdEd(Uv Dv L) =+ wsES (U7 D) + tht (Ua D) ) (10)

where wg, ws and w; are weights to set the relative influence of each term. These
weights were set to 1.2, 0.05 and 0.05, respectively, in all our experiments.

3.3 Optimization Method

Based on the different energy terms derived above, we formulate 3D reconstruc-
tion as the solution to the optimization problem

minimize E;(U)+ Es(U,D,L) . (11)

Since this is a non-convex problem, we make use of a fusion moves strategy to
optimize it, which has proven more effective than gradient-based optimization in
practice [32, 33]. Note that, since we do not have any template, our formulation
still suffers from one global scale ambiguity. Indeed, a larger surface observed
further away from the camera will yield exactly the same images. To overcome
this issue, we fix the depth of one vertex (the bottom-left corner of the mesh) to
an arbitrary value (in practice, the focal length). Below, we explain the fusion
moves procedure and our approach to generating good proposals.

Fusion moves. Fusion moves [32,33] is an optimization technique for graphical
models, which can handle continuous variables by iteratively solving a discrete
problem. In the context of deformable surfaces, this approach was employed
by [19] to address the well-textured template-based and template-free scenarios.
Cast to our problem, the fusion moves algorithm works in the following manner:
Given the current solution at iteration ¢, (U, D, L), and a proposal, (U, D, L)?,
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the fusion moves algorithm combines the solution and proposal into a new solu-
tion (U, D, L)' while ensuring that the energy of the new solution is at least
as low as that of both the current solution and the proposal. This is achieved
by translating the optimization problem to a binary problem with one boolean
variable per original variable. In our case, since our energy includes terms that
involve triplets of variables (i.e., the image terms and the isometry term), we
rely on the order reduction method of [34] to convert it into a purely pairwise
energy. We then use QPBO [35] to solve the resulting binary problem at each
iteration. For more details of fusion moves, we refer the reader to [32, 33].

Proposal generation. The quality of the solution produced by fusion moves
crucially depends on having a good strategy to generate new proposals. Here, we
therefore introduce an approach to generating such proposals in our template-
free, poorly-textured reconstruction context. Our strategy relies on the two steps
discussed below.

First, given the current solution (U,D,L)!, we update the image displace-
ments. To this end, we follow a tracking approach that leverages the fact that
the 2D vertex locations in the first frame are known. Specifically, we proceed
frame-by-frame, starting from frame 2, and minimize our energy with respect to
the 2D displacements of each frame in turn. In practice, we employ a Levenberg-
Marquardt algorithm initialized using the current solution U?. The results of this
procedure for frame f are then used in the energy minimized for frame f + 1.

Given the updated image displacements UP, the depths for the proposal are
generated as

D? = argmin E5(D|U?, L") . (12)
D

To solve this problem, we adopt the gradient descent strategy proposed in [36],
and initialize the depths as the upper bound defined in [4]. To account for the
global scale ambiguity mentioned above, we rescale the resulting depths, such
that the vertex chosen to have fixed depth has the correct depth value.

These two steps define the mesh variables, i.e., 2D displacements and depths.
We then need to compute proposals for the length variables. To this end, for each
edge, we alternate between using its median length in the mesh proposals and
its lengths in the first frame. Note that, since the projection in the first frame is
given, the corresponding lengths typically provide a good estimate.

Initialization. Before starting our fusion moves procedure, we rely on the fol-
lowing initialization strategy. We initialize our approach by first tracking the
surface in 2D using a low-resolution mesh. We then obtain the high-resolution
2D vertex locations from the barycentric coordinates of the missing vertices
w.r.t. the low-resolution mesh. Finally, we initialize the depth of all the vertices
to the value of the focal length. In supplementary material, we compare this
initialization with our final results.
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Fig. 2. Reconstruction error for the synthetic data. We plot the mean and max errors of
our approach and of the baselines. The different plots correspond to (a) the cardboard
data, (b) the cardboard data with minimal texture and (c) the cloth data. Note that
our approach outperforms the baselines significantly.

o)

Registration Error [pix

Fig. 3. Registration error for the synthetic data. We compare our 2D results with those
obtained with the registration method of [31]. The different plots correspond to (a) the
cardboard data, (b) the cardboard data with minimal texture and (c) the cloth data.

4 Experiments

To demonstrate the effectiveness of our approach, we evaluate it on six datasets
containing images of poorly-textured surfaces deforming in front of a camera. In
particular, we make use of three synthetic sequences to provide a quantitative
evaluation, and of three real sequences that further evidence that our method
generalizes to diverse real surfaces.

In all our experiments, we compare the results of our approach to the follow-
ing baselines:

e Vicentel2: This method corresponds to the template-free approach of [19],
which leverages isometry in an NRSfM context.

e Gargl3: This method was introduced in [21] and relies on a total variation
regularization within a dense NRSfM framework based on the optical flow
approach of [31].

e Chhatkulil4: This method was introduced in [20] and performs template-
free 3D shape reconstruction by relying on isometry and on an infinitesimal
planarity assumption.
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For the baselines Vicentel2 and Chhatkulil4, we used the publicly available
implementations of the authors. For Gargl3, since the code is not available,
we re-implemented the method ourselves. To validate our implementation, we
verified that we could obtain similar results as those published in [21]. Note that
Vicentel2 and Chhatkulil4 use correspondences obtained from image warps [20,
19]. Since we rely on video as input, we estimated these image warps using
tracked feature points, which proved more reliable than just matching them
without taking temporal information into account. Note that the 2D registration
method employed by Gargl3 already accounts for temporal smoothness.

In the remainder of this section, we first discuss our results on the synthetic
data, and then move on to the real images. The video sequences of our results
are provided as supplementary material.

4.1 Results on Synthetic Data

To perform our quantitative evaluation, we employed the motion capture data
publicly available at [37]. This data contains two different surfaces; a piece of
cardboard and a piece of cloth. It was acquired by sticking reflective markers
on real surfaces in a 9 x 9 grid and deforming the surfaces in front of 6 infrared
cameras. The data is provided as 3D triangular meshes. We therefore textured
these meshes using poorly-textured images, and rendered the resulting surfaces
using a virtual camera. This resulted in images such as those shown in the top
row of Figs. 4, 5 and 6.

In our experiments, we report the 3D reconstruction error, computed as the
mean point-to-point distance between the ground-truth meshes and the recon-
structed ones for each frame in the sequences. To account for the global scale
ambiguity that all the evaluated methods are subject to, we first re-scaled all
the meshes to a fixed global scale. Note that the baselines yield dense 3D recon-
struction. Therefore, we know the 3D locations of the pixels corresponding to the
mesh vertices, and can thus use them to estimate this error. In addition to these
3D errors, we also compare the accuracy of our estimated 2D displacements with
the registration method of [31] used in Gargl3.

Figs. 2 and 3 provide the 3D reconstruction and 2D registration errors for
the cardboard and cloth cases, respectively. Note that our approach yields sig-
nificantly better results than the baselines. As illustrated by Figs 4 , 5 and 6,
where we visualize some reconstructions, this can be attributed to the lack of re-
liable texture information, which, as expected, affects the feature-based methods
(Vicentel2 and Chhatkulil3), but maybe more surprisingly, also has a negative
impact on the optical-flow-based Gargl3 method. By contrast, our method is
much more robust to this phenomenon. This strength of our approach over the
baselines is even further evidenced by the extreme case depicted in Fig 4, where
only a single black square acts as texture on the surface, Note that even in this
extreme case, as shown in Figs. 2 and 4, our reconstructions remain of good
quality. Note that reconstructing a well-textured version of the cardboard data
gives the errors: (1.1423, 5.7545, 0.0216, 0.0591) (2D mean error, 2D max error,
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Fig. 4. Reconstructing a piece of cardboard. We show results obtained with two dif-
ferent textures, including one truly minimally-textured case. In each case, we show the
input image with our reconstruction reprojected on it and a side view of our recon-
struction. The bottom row depicts the ground-truth surfaces. Note that our method
yields accurate reconstruction, even in the minimal texture case.

3D mean error, 3D max error). This shows that texture can further help our
method.

Regarding efficiency, the runtimes (in sec) of the methods on the synthetic
cardboard data (54 frames) are: Our approach: 381.77; Vicente12: 209.73; Gargl3:
851.8 (optical flow) + 1189.9 (reconstruction); Chhatkulil4: 361.494 (image
warping) + 1458.462 (reconstruction). These results should be taken with a
grain of salt: 1) The reconstruction of Gargl3 could be, but was not, paral-
lelized. 2) For Chhatkulil4, reconstruction in each frame was done as in their
paper by using the image warps of all the other frames, and not using the al-
ternative mentioned by the authors consisting of reconstructing a single frame
and using it as template for SfT. Nevertheless, the conclusions would remain the
same: Our method is slightly slower than Vicentel2 and faster than the other
baselines. In supplementary material, we evaluate potential failure cases of our
approach.
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Fig. 5. Reconstructing a piece of cloth. We show the input image with our reconstruc-
tion reprojected on it and a side view of our reconstruction. The bottom row depicts
the ground-truth surfaces. Note that our method yields accurate reconstruction
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Fig. 6. Comparison to the baselines. From left to right: Input image with our
reprojected reconstruction, our reconstruction, ground-truth, Vicentel2, Gargl3,
Chhatkulil4. Note that our reconstructions are clearly more accurate than those of
the baselines.

4.2 Results on Real Images

To show that our approach generalizes to real images and to diverse surfaces,
we further evaluated it on three real sequences. The first two are the cardboard
and cloth sequences used in [5] and publicly available at [37]. The third one
depicts a deforming cap, and thus serves to show that our method applies to
non-developable surfaces, and, importantly, surfaces that are not planar in the
first frame.

The results of our method and the baselines on these three sequences are
presented in Fig. 7, respectively. In all cases, we show the input image, the
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Fig. 7. Reconstructing the cardboard, napkin and cap. we show the input image with
our reconstruction reprojected on it and a side view of our reconstruction. Our method
yields accurate reconstruction

reconstructed surface reprojected on this image, and the reconstructed surface
seen from another viewpoint. These results clearly evidence that our approach
yields much more accurate results than the baselines. In particular, the baselines
all suffer from the lack of texture and the illumination changes, which make the
feature-matching, or 2D registration, step unreliable. By contrast, our approach
that jointly performs 2D registration and 3D reconstruction essentially regular-
izes the matching problem with 3D constraints, and thus yields more accurate
results, in terms of both 3D and 2D. From Fig. 7, note that our approach also
yields accurate reconstructions when the surface is non-developable, which illus-
trates its generality.

5 Conclusion

We have introduced an approach to reconstructing a poorly-textured deformable
surface from a monocular video sequence and without any template of the surface
of interest. Our approach lies at the boundary between template-based recon-
struction and NRSfM, in the sense that it leverages priors and image terms that
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Fig. 8. Comparison to the baselines. From left to right: Input image with our repro-
jected reconstruction, our reconstruction, Vicentel2, Gargl3, Chhatkulil4. Note that
our reconstructions are clearly more accurate than those of the baselines.

have proven effective in the template-based case, but, as NRSfM techniques,
works in the template-free regime. In particular, we have formulated reconstruc-
tion as the problem of jointly optimizing the 2D image displacements of mesh
vertices and the depth of these vertices, and have proposed a fusion moves strat-
egy to optimize the resulting problem. Our experiments have demonstrated the
effectiveness of our approach, and have shown that it yields much higher accuracy
than existing template-free techniques. To the best of knowledge, this constitutes
the first attempt at solving the challenging template-free and poorly-textured
scenario. In the future, we intend to study solutions to address the case where
the first frame depicts large, complex deformations, which our current approach
remains ill-suited to handle. To this end, we will focus on automatically find-
ing the frame with the smallest deformation, either for the entire surface, or
individually for surface patches.
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