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In this document, we first provide mathematical details regarding our opti-
mization of the visible and hidden layers. In particular, we discuss the derivation
of K−1 in Section 1.3 and provide the proximal operators for the hidden layer
in Section 2. We further give the detailed derivation of the proximal operators
for the hidden layer as an example in Section 2.1. A similar derivation can be
used for the other proximal operators. We finally provide some additional details
about our experiments.

1 Details on optimizing the visible layer uv, sv

First, we review the optimization problem corresponding to our alternating pro-
cedure and then discuss the derivation of K−1.

1.1 Optimizing uv with fixed sv

Recall that, when optimizing the visible layer in Section 4.2, we first fix the
semantic variable sv and optimize uv. This results in an objective in the standard
Mumford-Shah form of Eq. (10) in the paper, with

Duv (uv) =
∑
x

‖d · (pTuv − yo)‖2 , (1)

Ruv (Kuv) = ηrv
∑
x∈Ω

min(α1‖Kuv‖2 + euv, λ1) , (2)

where euv = ‖Ksv‖2. Here, ‖Ku‖2 :=
∑
j ‖Kuj‖2 denotes the Euclidean norm,

where uj is the j-th channel in the multi-channel variable u.
The corresponding proximal operators can be written as

proxτ,Duv
(ũv) = (I + 2dτppT )−1(ũv + 2dτpyo) , (3)

proxσ,R?
uv

(q̃u) =

{
2ηrvα1

σ+2ηrvα1
q̃u if |q̃u| ≤

√
(λ1−euv)σ(σ+2ηrvα1)

α1
,

0 else,
(4)
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where I denotes the identity matrix, ũv = (uv)n − τnK−1qn+1
u and q̃u = qnu +

σnK(ūv)n as defined in Eqs. (13) and (12) in the paper, respectively. Note that
A−1 becomes K−1, which equals −div ·TI . In section 1.3, we provide the details
for the derivation of K−1.

1.2 Optimizing sv with fixed uv.

We fix uv and optimize sv. This results in an objective in the standard Mumford-
Shah form of Eq. (10) in the paper, with

Dsv (sv) =
∑
x

ηd‖(sv − so)‖2 + ηc
∑
x

(fT sv −m+ b)2 , (5)

Rsv (Ksv) = ηrv
∑
x∈Ω

min(α1esv + ‖Ksv‖2, λ1) , (6)

where esv = ‖Kuv‖2, and f is a binary vector with 1s in the position correspond-
ing to the foreground classes and 0 everywhere else. The corresponding proximal
operators are then given by

proxτ,Dsv
(s̃v) = ((1 + 2τηd)I + 2τηcff

T )−1(s̃v + 2τηds
o + 2(m− b)ηcτ f) , (7)

proxσ,R?
sv

(q̃s) =

{ 2ηrv
σ+2ηrv

q̃s if |q̃s| ≤
√

(λ1 − esvα1)σ(σ + 2ηrv) ,

0 else ,
(8)

where, again, s̃v = (sv)n−τnK−1qn+1
s and q̃s = qns +σnK(s̄v)n as in in Eqs. (13)

and (12) in the paper, respectively. In the following section, we discuss the de-
tailed derivation of K−1.

1.3 Derivation of K−1

Recall that K = TI · ∇ denotes an image adaptive gradient operator. In partic-
ular,

TI = exp(−β|∇I|γ)nnT + n⊥n⊥T , (9)

where n = ∇I
|∇I| and n⊥ is the normal vector to the image gradient. Minimizing

Eq. (16) in the paper is equivalent to solving the saddle-point problem

min
uv

max
q

Duv (uv)+ < q,Kuv > −R?uv (q), (10)

where uv denotes the primal variable and q the dual variable. To apply the
primal-dual procedure, we need to perform gradient descent for the primal vari-
able and gradient ascent for the dual variable. For the primal gradient, we use
the equivalent form of the inner product < q, Kuv >=< K−1q, uv >. This
enables us to compute the gradient efficiently in a pixel-wise manner.

Here we provide the details for the derivation of K−1. Without loss of gener-
ality, we consider a single channel function u in the following. For multi-channel
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functions, we have Kuv = vec(Kuvk)k∈{1,2,··· ,K}, where uvk denotes the k-th
channel of uv, and vec(·) denotes the vectorization operation.

Note that TI is a symmetric matrix and we can represent it as TI =

[
a c
c b

]
.

As typically done in practice, we compute ∇u by finite difference. This can be
written as

∇u =

[
ux
uy

]
=

[
1 −1 0
0 −1 1

]ui+1,j

ui,j
ui,j+1

 =

[
ui+1,j − ui,j
ui,j+1 − ui,j

]
, (11)

where ux and uy represent the gradient of u w.r.t. x and y respectively, and where
we used (i, j) = (x, y) to denote the pixel coordinate. This lets us compute

TI∇u =

[
a c
c b

] [
1 −1 0
0 −1 1

]ui+1,j

ui,j
ui,j+1

 =

[
a(ui+1,j − ui,j) + c(ui,j+1 − ui,j)
c(ui+1,j − ui,j) + b(ui,j+1 − ui,j)

]
.(12)

Let us now write q = (q1, q2). The terms involving ui,j are then

〈Kui,j , qi,j〉 = 〈
[
a c
c b

] [
1 −1 0
0 −1 1

]ui+1,j

ui,j
ui,j+1

 , qi,j〉
= 〈
[
a(ui+1,j − ui,j) + c(ui,j+1 − ui,j)
c(ui+1,j − ui,j) + b(ui,j+1 − ui,j)

]
,

[
q1i,j
q2i,j

]
〉 , (13)

〈Kui−1,j , qi−1,j〉 =

[
a c
c b

] [
1 −1 0
0 −1 1

] ui,j
ui−1,j
ui−1,j+1


= 〈
[
a(ui,j − ui−1,j) + c(ui−1,j+1 − ui−1,j)
c(ui,j − ui−1,j) + b(ui−1,j+1 − ui−1,j)

]
,

[
q1i−1,j
q2i−1,j

]
〉 ,(14)

〈Kui,j−1, qi,j−1〉 =

[
a c
c b

] [
1 −1 0
0 −1 1

]ui+1,j−1
ui,j−1
ui,j


= 〈
[
a(ui+1,j−1 − ui,j−1) + c(ui,j − ui,j−1)
c(ui+1,j−1 − ui,j−1) + b(ui,j − ui,j−1)

]
,

[
q1i,j−1
q2i,j−1

]
〉 .(15)

Collecting all the terms involving ui,j in the three inner products above yields

〈−(a+ c)q1i,j − (c+ b)q2i,j + aq1i−1,j + cq2i−1,j + cq1i,j−1 + bq2i,j−1, ui,j〉
= 〈−a(q1i,j − q1i−1,j)− c(q1i,j − q1i,j−1)− c(q2i,j − q2i−1,j)− b(q2i,j − q2i,j−1), ui,j〉

= 〈−div
([
aq1i,j + cq2i,j
cq1i,j + bq2i,j

])
, ui,j〉 = 〈−div

([
a c
c b

]
·
[
q1i,j
q2i,j

])
, ui,j〉

= 〈−div(TIqi,j), ui,j〉 , (16)
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where div is defined as

div pi,j := p1i,j − p1i−1,j + p2i,j − p2i,j−1 . (17)

Since < q, Kuv >=< K−1q, uv >, we have K−1 = −div · TI . Recall that K =
TI∇. If TI is the identity matrix, then K = ∇. We therefore have ∇−1 = −div.

2 Details on optimizing the hidden layer uh, sh

Let us now provide the details of optimizing the hidden layer, as discussed in
Section 4.3 of the main paper.

2.1 Optimizing uh with fixed sh

By fixing the semantic variable sh, we can write the objective in Eq. (25) of the
paper in the standard Mumford-Shah form with

Duh(uh) = γuh
∑
x

(1−m)(pTuh − pTuv)2 +m ηs
∑
j

shj (pTuh − ysj )2 , (18)

Ruh(∇uh) = ηrhmmin(α2‖∇uh‖2 + euh, λ2) , (19)

where euh = ‖∇sh‖2.
The corresponding proximal operators can be computed as

proxτ,D
uh

(ũh) = (I + 2τηsppT )−1(ũh + 2τηsp
∑
j

sjy
s
j ) ·m

+ (1−m) · (I + 2τγuhppT )−1(ũh + 2τγuhppTuh) , (20)

proxσ,R?
uh

(q̃u) =

{
2ηrhα2m
σ+2ηrhα2

q̃u if |q̃u| ≤
√

(λ2−euh)σ(σ+2ηrhα2)
α2

,

0 else ,
(21)

where ũh = (uh)n − τn∇−1qn+1
u and q̃u = qnu + σn∇(ūh)n, following Eqs. (13)

and (12) in the paper, respectively. Note that, as derived above, ∇−1 = −div
where div denotes the divergence operator.

Derivation of the proximal operators.
Here, we provide the detailed derivation of proxτ,D

uh
(ũh) and proxσ,R?

uh
(q̃u).

proxτ,D
uh

(ũh) = argmin
uh

(uh − ũh)2

2τ
+Duh

= argmin
uh

(uh − ũh)2

2τ
+ γuh

∑
x

(1−m)(pTuh − pTuv)2 +m ηs
∑
j

shj (pTuh − ysj )2︸ ︷︷ ︸
D̃(uh)

.
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We can obtain proxτ,D
uh

(ũh) as the stationary point of the minimization
problem above by solving

∂D̃(uh)

∂uh
=

uh − ũh

2τ
+ 2γuh(1−m)p(pTuh − pTuv)

+ 2mηsp(pTuh −
∑
j

sjy
s
j )

= 0. (22)

This yields

proxτ,D
uh

(ũh) =
(
I + 2(1−m)τγuhppT + 2mτηsppT

)−1(
ũh

+ 2(1−m)τγuhppTuv + 2mτηs
∑
j

sjy
s
jp
)

By making use of the fact that m ∈ {0, 1}, we finally have

proxτ,D
uh

(ũh) = (I + 2τγuhppT )−1(ũh + 2τγuhppTuh)(1−m)

+ (I + 2τηsppT )−1(ũh + 2τηs
∑
j

sjy
s
ju

h)m. (23)

Let us now turn to the computation of the second proximal operator proxσ,R?
uh

(q̃u).

This operator is defined as

proxτ,R?
uh

(q̃u) = argmin
qu

(qu − q̃u)

2τ
+R?uh(qu). (24)

To derive it, we follow the same idea in [1]. We first derive the proximal operator
proxτ,R

uh
, which can be expressed as

proxτ,R
uh

(q̃u) =

{
1

1+2ηrhτα2
q̃u if |q̃u| ≤

√
(λ2−euh)(1+2ηrhτα2)

α2

q̃u else.
(25)

Based on Moreau’s identity [2], proxσ,R?(q̃u) = q̃u − σprox 1
σ ,Ruh

(q̃u/σ). We
therefore have

proxσ,R?
uh

(q̃u) =

{
2ηrhα2

σ+2ηrhα2
q̃u if |q̃u| ≤

√
(λ2−euh)σ(σ+2ηrhα2)

α2

0 else.
(26)

2.2 Optimizing sh with fixed uh

We then fix the disparity variable uh, which lets us write the objective in Eq. (25)
in the paper in the standard Mumford-Shah form, with

Dsh(sh) = γsh
∑
x

(1−m)(sh − sv)2 +m ηs
∑
j

shj (pTuh − ysj )2 , (27)

Rsh(∇sh) = ηrhm
∑
x∈Ω

min(α2esh + ‖∇sv‖2, λ2) , (28)
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where esh = ‖∇uh‖2. We derive the corresponding proximal operators in a
similar way as described in the previous section. This yields

proxτ,D
sh

(s̃h) = (1−m)
s̃h + 2τγshs

h

1 + 2τγsh
+m · (s̃h + 2τηs(p

Tuh − ysj )2) , (29)

proxσ,R?
sh

(q̃s) =

{ 2ηrhm
σ+2ηrh

q̃s if |q̃s| ≤
√

(λ2 − eshα2)σ(σ + 2ηrh) ,

0 else ,
(30)

where, again, s̃h = (sh)n − τn∇−1qn+1
s and q̃s = qns + σn∇(s̄h)n, following

Eqs. (13) and (12) in the paper, respectively.

3 Additional details about the experiments

In this section, we provide more details about the experiments on the KITTI
and Stixel datasets.

3.1 Model Parameters

We estimated our parameters using the 10 validation images with annotated
ground truth. This resulted in α1 = 1, λ1 = 100, ηd = 0.1, for visible layer and
α2 = 0.01, λ2 = 1 ηs = 0.004, ηc = 1, b = 0.1 ηc = 1, b = 0.1 for hidden
layer. Recall that the plane parameters are initialized to zero in large holes. We
therefore start with a high regularizer weight ηrv = 10000 and reduce its value
iteratively to ηrv = 0.1 by a fixed step size. The same strategy is applied to ηrh.

3.2 KITTI Dataset

To study the sensitivity of our approach to the initialisation of the semantic seg-
mentation, we further use [3] to predict initial semantics. Our method improved
per-pixel and per-class accuracies from 81.24% and 58.07% ([3]) to 82.68% and
58.92%. The Visible and Hidden RMSE are 5.00 and 15.97. We were not able
to obtain a better semantic segmentation results using [3] compared with the
FCN-32s model [4], which is most likely due to limited training data. However,
even with a lower-quality semantics initialization, our approach can still improve
the visible semantic segmentation as well as the visible RMSE results.

3.3 Results on Stixel

The images in this dataset correspond to the frames of video sequences. Although
only every 10th frame of each sequence was sampled to create the dataset, neigh-
boring images still show important similarities. In our experiment, we therefore
chose one in every 4 of such frames to constitute our own test set, which thus
consists of 50 images. Note that the Stixel dataset provides ground-truth dis-
parity with 72.05% image coverage on average. To be able to evaluate our depth
completion results, we artificially created a random mask to preserve at most
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ours [5] [6]

visible-rmse 1.0253 1.1107 1.1319
Table 1. Depth estimation. Quantitative comparison with several baselines for the
visible depth.

road building sky class-avg. pixel-avg

98.89 95.81 80.31 91.67 97.44
Table 2. Estimating hidden semantics. Per-class and overall accuracy of our ap-
proach.

20% of the observations in each image as input to our method. The value of 20%
corresponds to the observation ratio of KITTI. We then provide a quantitative
evaluation for the visible layer using the remaining data. These quantitative re-
sults are shown in Table 1 and qualitative results in Fig. 4, respectively. Due to
the incomplete ground-truth disparity and coarse annotation for the semantics,
we cannot generate high quality ground truth disparity for hidden layer. We thus
only provide the quantitative evaluation for disparity in visible layer. Note that
we outperform the baselines both quantitatively and qualitatively. The latter is
particularly visible on the hidden layer predictions, where our approach is able
to better remove the pedestrians and cars than the baselines.

In Table 2, we show the results of our semantics labeling estimates for the
hidden regions. Here, again, since no baseline is available for this task, we only
report the results of our approach. These results show that our model yields good
accuracy on the more common and larger classes. We observed that the semantic
labeling accuracy in the visible layer did not significantly change compared to our
initialization. In particular, our method achieves 95.09% per-pixel accuracy and
88.38% per-class accuracy on average for the 5 semantic classes of the visible
layer. In Fig. 5, we show the semantics estimated with our approach for the
visible and hidden layer, respectively.
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Fig. 4. Qualitative results on Stixel. For the disparity values, red denotes large
values, i.e., points close to the camera, and blue denotes small disparity values, i.e.,
points far from the camera. From top to bottom: RGB image, ground-truth visible
disparity map, sparse observations with large holes, our completed disparity map, two
baselines for the visible layer, our disparity for the hidden layer, and two baselines for
the hidden layer. Note that our method can remove the foreground objects as well as
accurately fill in the background disparity behind them. Compared to the baselines,
our approach can better complete the disparity for the visible and hidden layers.
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Fig. 5. Qualitative results for semantic segmentation on the Stixel dataset.
From top to bottom: RGB image, ground-truth semantics for the visible layer, and
our estimated semantics for the visible, ground-truth semantics for the hidden layer,
and our estimated semantics for hidden layer, respectively.


