

LTCC and thick-film ceramic magnetic sensors for tokamak nuclear fusion

<u>Thomas Maeder</u>¹, Caroline Jacq¹, Duccio Testa², Matthieu Toussaint², Yannick Fournier¹, Martin Stöck¹², Gaël Farine¹, Adrien Corne¹², Xinyue Jiang¹, Lucas Güniat¹², Benoît Ellenrieder¹², Philipp Windischhofer¹², Christian Schlatter², and Peter Ryser¹

EPFL–LPM / Laboratoire de production microtechnique
 EPFL – SPC / Swiss Plasma Center

Eurosensors 2016 Budapest – Ceramic magnetic sensors 1

Outline

- 1. Introduction
- 2. Coil-type magnetic sensors
- 3. LTCC 1D sensor
- 4. LTCC 3D sensor
- 5. Connection issues
- 6. Conclusion & outlook

Outline

1. Introduction

- Tokamak nuclear fusion
- LTCC & thick-film technology
- 2. Coil-type magnetic sensors
- 3. LTCC 1D sensor
- 4. LTCC + thick-film 3D sensor
- 5. Interconnection and packaging
- 6. Conclusion & outlook

ITER – Int'l thermonuclear exp. reactor

Goal: demonstrate feasibility of fusion energy for peaceful purposes

- Tokamak machine
- Q ≥ 10 more energy from fusion than required for plasma heating
- Burning plasma physics
- Power: $P_{\text{fusion}} \ge 500 \text{ MW}$

Plasma Volume: 840 m³ Nominal Plasma Current: 15 MA Typical Temperature: 20 keV Typical Density: 10²⁰ m⁻³ Pulse Length >1'000 s $R \sim 6.2 \text{ m}; B_{\text{T}} \sim 5.3 \text{ T};$ $I_{\text{p}} \sim 15 \text{ MA}$

1. Introduction – magnetic sensing for tokamaks

Magnetic diagnostics

> 1'000 sensors envisioned for ITER!

- Redundancy -> reliability
- Different technologies
 - Many sensor types
 - In-vessel & ex-vessel
 - Different environments
 - More or less harsh (T, ΔT)
 - High neutron flux
- Magnetic coils:
 - LF, equilibrium, <~1 kHz
 - HF, MHD instabilities, < ~ 300 kHz
 - Testa-D Chavan-R Guterl-J Lister-JB et al., IEEE Transactions on Plasma Science 38 (3), 284-294, 2010.

Magnetic sensors in walls

- Magnetic sensors behind the protection tiles
- Measure magnetic field disruptions (both LF and HF)
- Different sensors for LF & HF domains

Thick-film technology & LTCC

- Thick-film / LTCC circuit : series of layers
- Each layer comes as a paste:
 - Functional material (as powder)
 - Organic vehicle: binder + solvent
 - Conductors, resistors, dielectrics, catalyst
 - Screen-printing with a mask

	Thick-film	LTCC	
Substrate	Alumina	LTCC tape	
Multilayer dielectric	Extra printed ink	LTCC tape	
Firing	Sequential	Together (co-firing)	

Eurosensors 2016 Budapest – Ceramic magnetic sensors 7

Thick-film - process flow

LTCC - process flow

Eurosensors 2016 Budapest – Ceramic magnetic sensors 9

LTCC - principle

- 1. Raw sheets easily cut (laser, punch tool)
- 2. Formation of vias & cavities
- 3. Vias filled for interlayer contacts
- 4. Layers individually printed (multilayer circuits)
- 5. Stacking & lamination of layers to get a 3D structure
- 6. Firing-> sintering, monolithic circuit
- 7. Individualisation and post-firing (assembly by soldering)

LTCC – the material

- a. Tapes
 - Organic binder matrix
 - Glass + ceramic powder
- b. Lamination
 - Joining through organic binder
- c. Firing
 - Debinding critical step!
 - Viscous sintering with glass
 - Crystallisation by glass-ceramic reaction

Bienert-C Roosen-A, Journal of the European Ceramic Society 30 (2), 369-374, 2010.

Jurków-D Golonka-L, "Low-pressure, thermocompressive lamination", J. Eur. Ceram. Soc. 32 (10), 2431–2441, 2012.

All compositions OK @500°C // DuPont / DP951

1. Introduction – LTCC processing

Outline

- 1. Introduction
- 2. Coil-type magnetic sensors
- 3. LTCC 1D sensor
- 4. LTCC + thick-film 3D sensor
- 5. Interconnection and packaging
- 6. Conclusion & outlook

- Classical Mirnov coils
- Monolithic ceramic coils
- Materials & design issues

Mirnov-type coils

- ITER reference design
 - 80×40×40 mm³ bulky!
 - *NA*_{eff} ~670 cm² OK
 - Slotted stainless-steel body
 - Ceramic guides
 - Two layers of W wire
 - Wire exposed
 - W stiff, brittle -> difficult
- Need compact, monolithic solution

Toussaint-M Testa-D Baluc-N Chavan-R Fournier-Y Lister-JB Maeder-T Marmillod-P Sanchez-F Stöck-M, Fusion Engineering and Design 86 (6-8), 1248-1251, 2011.

ITER reference design: 80×40×40 mm³

Alternative designs (W or Cu wire)

LTCC magnetic sensors for tokamaks

- Much smaller sensor than traditional Mirnov coils
 - Volume ~1:20!
- Similar effective area & properties
- Intimate contact between winding and ceramic support
- Winding shielded from external environment (plasmas, ...)

LTCC 1D sensor (left) vs traditional Mirnov coils (right)

- Presumably more robust
- Low profile mounting in wall, behind protection tiles

Magnetic coils for tokamaks

Signal (ideal): $U_{AC} = i \cdot \omega \cdot B_{AC} \cdot NA_{eff}$

- U_{AC} : signal voltage
- ω : angular frequency
- $B_{\rm AC}$: magnetic field
- *NA*_{eff} : effective integral coil area
 - Signal U?
 - Capacitance C ?
 - Inductance L?
 - Resonance:

$$2\pi \cdot f_{\rm res} = \omega_{\rm res} = (L \cdot C)^{-0.5}$$

Multiple turns parallel and perpendicular to the magnetic field

Long cables due to high-energy neutron flux!

$$2\pi \cdot f_{\rm res} = \omega_{\rm res} = (L \cdot C)^{-0.5}$$

Outline

- 1. Introduction
- 2. Coil-type magnetic sensors
- 3. LTCC 1D sensor

- Design & variants
- Results
- Conclusion design rules
- 4. LTCC + thick-film 3D sensor
- 5. Interconnection and packaging
- 6. Conclusion & outlook

1D LTCC HF magnetic sensor design

- Size: 30 x 30 x (0.7...2.4) mm³
- Body material: LTCC glassceramic
 - DuPont / DP 951
- Wire material: silver / Ag
- Stack of layers electrically connected by via holes filled with metallic ink
- Metallic ink printed on each active layer

1st generation 1D sensor & coil design

Testa-D Fournier-Y Maeder-T Toussaint-M Chavan-R Guterl-J Lister-JB Moret-JM Schaller-B Tonetti-G, Fusion Science and Technology 59 (2), 376-396, 2011, <u>http://infoscience.epfl.ch/record/164698</u>

1D LTCC HF magnetic sensor variants

Parameters

- Number of turns/layer:
 - *MM* = 5, 10 and 20
- Number of layers:
 - *NN* = 2, 4, 6, 8 and 10
- Interlayer
 - Thickness: 0.22 mm or 0.44 mm (1 or 2 LTCC tapes)
 - Arrangement: straight or staggered

B **IM** Staggered Basic LTCC Conductor Double dielectric

Testa-D Fournier-Y Maeder-T Toussaint-M Chavan-R Guterl-J Lister-JB Moret-JM Schaller-B Tonetti-G, Fusion Science and Technology 59 (2), 376-396, 2011, <u>http://infoscience.epfl.ch/record/164698</u>

1D LTCC HF magnetic sensor results

Self-resonance frequency

- $f_{\text{res,self}}$ from 1.1 to >15 MHz
- Resistance:
 - $R_{\rm self} = 7...100 \,\Omega$
 - Model easy, only requires total wire length
- Inductance
 - $L_{self} = 5...595 \,\mu H$
 - Very sensitive to design, accurate model needed
- Capacitance
 - C_{self}: 22...58 pF
 - Much smaller than that due to signal cables ~10 pF/m -> 500 pF
 - Accurate model not needed
- Good agreement between circuit models & measurements
- Meeting ITER requirements possible in principle

Measurement vs modelling

1D LTCC HF magnetic sensor results

Some design rules:

Turns per layer *MM* : compromise

- Small contribution of inner turns to NA_{eff}
- Increase of L_{self}
- Surface / resistance ~ perimeter
- But: low-cost, reliable (no additional layers)

3. 1D LTCC HF magnetic sensor

1D LTCC HF magnetic sensor results

Some design rules:

- Layers NN : increase
 - Linear contribution to NA_{eff}
 - But: strong increase of L_{self}
 - $\sim NN^2$ for 0 diel. thickness, in practice smaller
 - More layers required (complexity, yield, cost)

Interlayer:

- Staggered winding not needed (small effect, only on C_{self})
- Increase spacing to especially decrease L_{self}
- More vias, more cost
- Other alternatives for 3D

3. 1D LTCC HF magnetic sensor

Outline

- 1. Introduction
- 2. Coil-type magnetic sensors
- 3. LTCC 1D sensor

- Introduction previous work
- New concept & design
- Conclusion design rules
- 4. LTCC + thick-film 3D sensor
- 5. Interconnection and packaging
- 6. Conclusion & outlook

3D ceramic magnetic sensor

Sensing in X, Y, Z

- Practical, compact sensor
- Crosstalk, fabrication ???

Previous work

- First 3D attempts at PPPL using HTCC technology in 1999
- Idea abandoned due to high cost, poor yield (1'000s of vias)
- Also: difficult to design, high coupling, …
- New ideas needed!

Our first 3D sensor concept

3D ceramic magnetic sensor concept

Modular 3D

sensor concept

Mixed, modular technology

- Z: classical thick-film (alumina) base
- XY: LTCC modules, edge-mounted
- Relatively low-profile
- Separation between XY coils

Production

- Base with ~square Z coil easy
- LTCC "sticks" with low number of turns:
 - Production easy, winding in LTCC plane
 - Simple, low via count good yield
 - Can be pre-tested before mounting good overall yield as well
- Issue: assembly

4. 3D thick-film + LTCC magnetic sensor

3D ceramic magnetic sensor design

Design – Z

• Large area in base, high *NA*_{eff} easy

Design – XY

- Small area low height
- Small 1D LTCC X & Y modules
- Multiply to achieve higher NA_{eff}
- Fully coupled $L_{\text{self}} \sim N^2$
- Fully separate: $L_{self} \sim N$
- Compromise: 10 in series with low N, mounting at some distance to minimise inductive coupling

Testa-D Corne-A Farine-G Jacq-C Maeder-T Toussaint-M, "3D, LTCC-type, high-frequency magnetic sensors for the TCV Tokamak", Fusion Engineering and Design 96-97, 989-992, 2015, <u>http://infoscience.epfl.ch/record/206105</u>

sensor (V2) elements on base

Sensor V2 bottom of base with Z coil

4. 3D thick-film + LTCC magnetic sensor

3D ceramic magnetic sensor – Z coil

Single coil on back of base

- $NA_{\rm eff} = 178 \ {\rm cm}^2$
- $R_{\rm self} = 17 \ \Omega$
- $L_{\text{self}} = 7.4 \,\mu\text{H}$
- $f_{\rm res}$ > 12 MHz
 - Still good with cables due to low L_{self}
 - With $C_{\text{cable}} = 500 \text{ pF}$, ~2.6 MHz

• Favourable, high NA_{eff} with low R_{self} & L_{self}

Testa-D Corne-A Farine-G Jacq-C Maeder-T Toussaint-M, "3D, LTCC-type, high-frequency magnetic sensors for the TCV Tokamak", Fusion Engineering and Design 96-97, 989-992, 2015, <u>http://infoscience.epfl.ch/record/206105</u>

V2 - top of base for mounting XY coils (& last half-turn)

V2 -bottom of base with Z coil

Туре	MM	NN	$N\!A_{ m eff}$ [cm ²]	$m{R}_{ ext{self}} \ [\Omega]$	$L_{ m self}$ [μ H]	
Old	4.5*	13	77	28	60	
New	2.5*	9	38	9	12	

- Turns = $MM \times NN + 0.5$ (in base) = 59 / 23
- Sensor V2

Ratios

- *NA*_{eff} : ~2:1
- *R*_{self} : ~3:1
- *L*_{self} : ~5:1

Numbering up simpler elements to minimise L_{self} & R_{self}

Testa-D Corne-A Farine-G Jacq-C Maeder-T Toussaint-M, "3D, LTCC-type, highfrequency magnetic sensors for the TCV Tokamak", Fusion Engineering and Design 96-97, 989-992, 2015, http://infoscience.epfl.ch/record/206105

(New LTCC coils)	$N\!A_{ m eff}$ [cm²]	$m{R}_{ m self}$ [Ω]	$L_{ m self}$ [μ H]	$f_{ m res}$ [MHz]	
Sensor X	298	127	158	~5.5	
10 x single	376	90	123	>12	
Δ	-78	37	35		
∠, rel	-21%	+41%	+28%		10 x

Whole X sensor vs 10x LTCC module (additivity) ?

- NA_{eff}: mounting differences (angles & distance to base)
- R_{self} : extra wiring in base for routing
- *L*_{self} : mutual coupling between adjacent LTCC modules
- *f*_{res} : wiring capacitances
 - Not so relevant, as $C_{\text{self}} \ll C_{\text{cable}}$: For 500 pF, 0.57 vs 0.64 MHz

3D sensor – XY coil separation

Corne-A, "Capteur de champ magnétique 3D pour fusion nucléaire", Projet de semestre, Section de microtechnique, LPM, EPFL, Lausanne (CH), 2014.

Interaction between two adjacent coils (old type)

- Narrow coil (max. ~6 mm) fast decrease with distance
 - Also valid for new coils same width
- Rough agreement with sensor results
 - $\Delta L/L \sim +28\% \rightarrow \Delta f/f$ should be $-(\Delta L/L)^{0.5} \sim -13\%$

LTCC-3D sensor-V1: electrical data

- Design OK: $L_{SELF,TOT} \propto N_{TURNS} L_{TURN} + L_{MUT}$ instead of $\propto (N_{TURNS})^{2*} L_{TURN}$
- However significant improvements are needed:
 - δB_{POL} (x-axis), δB_{TOR} (y-axis): clearly different electrical characteristics (should be exactly the same) and very large parasitic coupling (NA_{PAR}/NA_{EFF}>10%)
 - Parasitic effective area δB_{RAD} (z-axis) also too large, ~10% (should be <2%)

- On-board wiring: large parasitic loops and mutual inductances between all three measurement axes
- Improvement needed: optimise to avoid / reduce loops

- Optimized design of on-board wiring up to output connection pads
- Reduced parasitic loops and mutual coupling

LTCC 3D sensors: impedance data

3D sensor – conclusions

Working 3D sensor developed

- Innovative modular concept for XY
 - Simple LTCC edge-mounted solenoids
 - Good yield, separation -> low L_{self}
- Sufficient NA_{eff}
 - X/Y/Z : ~300/260/180 cm²
- High resonance frequencies
 - XY : ~5.5 MHz ; Z : > 12 MHz
 - With $C_{\text{cable}} = 500 \text{ pF: XY/Z} \sim 0.6/2.6 \text{ MHz}$
- Mounted in EPFL-SPC TCV
 - Tokamak à Configuration Variable

- 1. Introduction
- 2. Coil-type magnetic sensors
- 3. LTCC 1D sensor
- 4. LTCC + thick-film 3D sensor
- 5. Interconnection and packaging
- 6. Conclusion & outlook

Mounting LTCC sensors onto base

Preparation

 Metallisation of LTCC modules on edges (post-firing Ag conductor)

High-temperature connection to base

- Fritted Ag conductor + additional lowmelting glass to improve bonding
- Also for lid
- Possible alternatives
 - Ag pressure sintering
 - Brazing (risk of Ag leaching)
 - Special soldering (e.g. TLP)

Corne-A, "Capteur de champ magnétique 3D pour fusion nucléaire", Projet de semestre, Section de microtechnique, LPM, EPFL, Lausanne (CH), 2014.

Cabling

- Cables brazed to Ag metallisation
- Cannot braze directly to base
 - Temperature gradients cracking
 - Metallised alumina beams mitigation of thermal gradients

Jacq-C Maeder-T Güniat-L Corne-A Testa-D Ryser-P, Proceedings, IMAPS/ACerS 11th International CICMT Conference, Dresden (DE), 234-238, 2015.

5. Interconnection and packaging

Cabling – brazing cable to alumina

- Issue: cracking of alumina due to local thermal expansion mismatch
- Dense Ag metallisation too stiff to absorb differential strain

Jacq-C Maeder-T Güniat-L Corne-A Testa-D Ryser-P, Proceedings, IMAPS/ACerS 11th International CICMT Conference, Dresden (DE), 234-238, 2015.

CTE ~ 17 ppm/K

CTE ~ 7 ppm/K alumina

Cabling – porous metallisation

 Dense Ag metallisation too stiff to absorb differential strain

Use porous interlayer

- Sandwich of dense/porous/dense silver
- Formulation of 7 inks
- "Rich" binder to allow successive printing of porous layers
- Parameters: porogen size, volume percent, porous layer thickness
- Porogen = graphite powder

Jacq-C Maeder-T Güniat-L Corne-A Testa-D Ryser-P, Proceedings, IMAPS/ACerS 11th International CICMT Conference, Dresden (DE), 234-238, 2015.

Denominatio n	Graphite	Particle size (µm)	Volume percent (%)
KS4_50	KS4	< 4	50
KS5-44_10	KS5-44	5-44	10
KS5-44_25	KS5-44	5-44	25
KS5-44_50	KS5-44	5-44	50
KS5-44_75	KS5-44	5-44	75
KS44_50	KS44	< 44	50
KS75_50	KS75	< 75	50

Cabling – porous metallisation

- Cables brazed to porous metallisation
- No more cracking for porosity ~50%

Cross section (zoom)

Cross section w/o cracks

Porous metallisation (SEM)

Jacq-C Maeder-T Güniat-L Corne-A Testa-D Ryser-P, Proceedings, IMAPS/ACerS 11th International CICMT Conference, Dresden (DE), 234-238, 2015.

5. Interconnection and packaging

Cabling – other solutions

First solution cumbersome:

- Long, fragile alumina beams
- Additional space needed
- Issues with brazing operation
- Workshop cabling, must install whole assembly into tokamak

Cracking of auxiliary ceramic part due to thermal stresses during brazing

Sensor mounted in TCV tokamak

5. Interconnection and packaging

Cabling – other solutions

Three alternatives investigated:

- Simply shortening the alumina beams
- 2. Brazing wires directly on base, with porous dielectric thermal insulator
- Replacing the alumina beams by silver wire (attachment with paste to base)

Jacq-C Maeder-T Toussaint-M Ellenrieder-BR Windischhofer-P Jiang-X Testa-D Ryser-P, Proceedings, 12th IMAPS/ACerS international Conference on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT), Denver (USA), 58-63, 2016.

Cabling – other solutions

Results:

- 1. Short beams: OK
 - ~20 vs 45 mm free length
- 2. Porous dielectric: failure – broken dielectric

Brazing to porous dielectric – failure of dielectric due to very high thermal gradient

- **3.** Silver wire: OK, best
 - Mechanical decoupling
 - Also: screw / crimp attach
 - Bonding with Ag/glass to substrate

Brazing to Ag wire – crimping also possible

- 1. Introduction
- 2. Coil-type magnetic sensors
- 3. LTCC 1D sensor
- 4. LTCC + thick-film 3D sensor
- 5. Interconnection and packaging
- 6. Conclusion & outlook

Conclusions

- Ceramic 1D & 3D magnetic sensors designed and produced successfully using LTCC and thick-film technology
- Small size, low profile for mounting behind tokamak wall
- Design rules for coils derived from results
- 3D sensors installed in TCV tokamak

6. Conclusions & outlook

Outlook

Better packaging technology

- Ag pressure sintering for mounting parts
- Resistance welding / pressure sintering for cables

Brazing to Ag wire – crimping also possible

Field-installable electrical connection

- Sensor handled in tokamak without bulky cabling
- HT / HV connectors
- Crimp / screw contact to e.g wire segments attached to base

Thank you for your kind attention

Packaging & interconnection

- Jacq-C et al., "Solutions for thermally mismatched brazing operations for ceramic tokamak magnetic sensor", Proceedings, 12th IMAPS/ACerS international Conference on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT), Denver (USA), 58-63, 2016.
- Jacq-C et al., "Porous thick-film silver metallisation for thermally mismatched brazing operations in tokamak magnetic sensor", Proceedings, IMAPS/ACerS 11th International CICMT Conference, Dresden (DE), 234-238, 2015.

1D LTCC sensors

- D.Testa et al., Prototyping a high frequency inductive magnetic sensor using the nonconventional, low temperature co-fired ceramics technology for use in ITER, Fus. Sci. Tech. 59 (2011), 376
- G.Chitarin et al., Technology developments for ITER in-Vessel equilibrium magnetic sensors, Fus. Eng. Des. 84 (2009), 593

3D LTCC sensors

 D.Testa et al., 3D, LTCC-type, High-Frequency Magnetic Sensors for the TCV Tokamak, Fus. Eng. Des. 96-97 (2015) 989

Further reading / references

3D HTCC sensors:

 H. Takahashi et al., Magnetic probe construction using thick-film technology, Rev. Sci. Instrum. 72 (2001), 3249

ITER magnetic diagnostic system:

- J.Lister et al., The magnetic diagnostics Set for ITER, Fus. Eng. Des. 84 (2009), 295
- D.Testa et al., The magnetic diagnostic set for ITER, IEEE Transactions on Plasma Science 38 (2010), 284
- D.Testa et al., Functional performance analysis and optimization for the high-frequency magnetic diagnostic system in ITER, Fus. Sci. Tech. 57 (2010), 208; and Fus. Sci. Tech. 57 (2010), 238
- D.Testa et al., Assessment of the ITER High-Frequency Magnetic Diagnostic Set, Fus. Eng. Des. 86 (2011), 1149

Mirnov-type HF magnetic sensors for ITER:

- M.Toussaint et al., Design of the ITER high-frequency magnetic diagnostic coils, Fus. Eng. Des. 86 (2011), 1248
- D.Testa et al., Prototyping conventional wound high frequency magnetic sensors for ITER, Fus. Sci. Tech. 61 (2012), 19