
RANDOMIZED SINGLE-VIEW ALGORITHMS
FOR LOW-RANK MATRIX APPROXIMATION∗

JOEL A. TROPP† , ALP YURTSEVER‡ , MADELEINE UDELL§ , AND VOLKAN CEVHER¶

Abstract. This paper develops a suite of algorithms for constructing low-rank approximations
of an input matrix from a random linear image of the matrix, called a sketch. These methods can
preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can
produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically
stable, and provably correct. Moreover, each method is accompanied by an informative error bound
that allows users to select parameters a priori to achieve a given approximation quality. These claims
are supported by computer experiments.

Key words. Dimension reduction; matrix approximation; numerical linear algebra; randomized
algorithm; single-pass algorithm; single-view algorithm; streaming algorithm; subspace embedding.

AMS subject classifications. Primary, 65F30; Secondary, 68W20.

1. Motivation. This paper develops a framework for computing structured low-
rank approximations of a matrix from a (random) linear image with lower dimension
than the matrix itself. These techniques have applications in large-scale numerical
linear algebra [14, 16, 25] and optimization [6], inter alia.

1.1. Low-Rank Matrix Approximation. We work over the field F = R or
F = C. Suppose that A ∈ Fm×n is an arbitrary matrix. Let r be a target rank
parameter where r � min{m,n}. Our computational goal is to produce a low-rank

reconstruction Â of the matrix A whose error is comparable with a best rank-r
approximation:

(1.1) ‖A− Â‖F ≈ min
rankZ≤r

‖A−Z‖F.

The notation ‖ · ‖F refers to the Frobenius norm. We explicitly allow the rank of

the approximation Â to be somewhat larger than r because it is easier to obtain an
accurate approximation of this form. There has been extensive research on randomized
algorithms for this problem; see the comprehensive treatment in Halko et al. [14].

1.2. Sketching. Here is the twist. Imagine that our interactions with the matrix
A are severely constrained in the following way. We are permitted to select a linear
map L : Fm×n → Fd without reference to the matrix A. Our only mechanism for
collecting data S about A is to apply the linear map L:

(1.2) S := L(A) ∈ Fd.

We refer to S as a sketch of the matrix, and L is called a sketching map. The number
d is called the dimension or size of the sketch.

∗Date: 30 August 2016.
Funding: JAT and MU were supported in part by ONR Award N00014-11-1002 and the Gordon

& Betty Moore Foundation. AY and VC were supported in part by the European Commission under
Grant ERC Future Proof, SNF 200021-146750, and SNF CRSII2-147633.
†California Institute of Technology, Pasadena, CA (jtropp@cms.caltech.edu).
‡École Polytechnique Fédéral de Lausanne, Lausanne, Switzerland (alp.yurtsever@epfl.ch).
§Cornell University, Ithaca, NY (mru8@cornell.edu).
¶École Polytechnique Fédéral de Lausanne, Lausanne, Switzerland (volkan.cevher@epfl.ch).

1

mailto:jtropp@cms.caltech.edu
mailto:alp.yurtsever@epfl.ch
mailto:mru8@cornell.edu
mailto:volkan.cevher@epfl.ch

2 JOEL A. TROPP ET AL.

The dimension d of the sketch is typically much smaller than the total dimension
mn of the matrix A. In this case, the sketching map L has a substantial null space.
Therefore, it is natural to draw the sketching map at random so that we are likely to
extract useful information from any fixed input matrix.

1.3. The Single View Paradigm. Notice that we can compute a sketch of
the form (1.2) by scanning through the entries of the matrix A once in any order.
One may visualize reading the matrix off of a tape without rewinding (for those who
remember what a tape is). As a consequence, the sketching technique (1.2) is an
example of a single-view or single-pass data access model.

There are (at least) two situations where the single-view model arises. First, we
can imagine a setting where A is a very large matrix stored out of core memory [14,
Sec. 5.5]. The cost of data transfer may be significant enough that we can only afford
to read the matrix into core memory once.

Second, we may encounter a setting where the matrix A is presented as an ordered
sum of updates:

A = H1 + H2 + H3 + H4 + · · · .

We must discard each innovation Hi after it is processed. This is called a streaming
model [19, 7, 25]. In this context, the linearity of the sketching map L is essential to
maintain a representation of A through an arbitrary sequence of updates.

1.4. Desiderata. Our aim is to construct a random sketching map L that ac-
quires enough information to solve the low-rank matrix approximation problem (1.1).

We must also design algorithms that compute a reconstruction Â from the sketch S
without direct access to the matrix A itself.

This paper is targeted toward the numerical linear algebra community, and our
goals align with traditional concerns of this research field:

1. Minimal sketch size. We want to design a sketching map L that minimizes
the size d of the sketch S to achieve approximations that satisfy (1.1). We
must also be able to represent the sketching map with d units of storage.

2. Practical algorithms. We seek matrix reconstruction algorithms that are
reliable, numerically stable, and efficient in terms of storage and computation.

3. Preservation of structure. The approximations should maintain struc-
tural properties of the input matrix, such as symmetry or positive-semi-
definiteness.

4. Error bounds. We demand explicit a priori error bounds for the algo-
rithms so we can determine a sketch size d that suffices to achieve a specific
approximation goal.

Our focus on minimizing the sketch size d was motivated by a specific application
in optimization [6]. In other applications, it may be more important to control the
arithmetic cost of applying the sketching map L to a matrix A. Unfortunately, there
is some tension between these goals; see subsection 3.9. Other works, such as [26, 7],
focus on the latter.

Remark 1.1 (The Frobenius Norm). The sketching model (1.2) makes it impos-
sible to achieve relative error bounds with respect to the spectral norm [25, Sec. 6.1].
Therefore, we have chosen to work with the Frobenius norm, in contrast to most
research in numerical linear algebra.

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 3

1.5. Our Approach and Contributions. This paper describes a family of
single-view algorithms for low-rank matrix approximation that achieve the desiderata
above. These methods are provably correct variants of the heuristic approaches de-
scribed by Halko et al. [14, Sec. 5.5]. See subsection 1.6 for a more complete discussion
of related work.

As an example of our results, we summarize the simplest low-rank reconstruction
algorithm and its properties. Fix an input matrix A ∈ Fm×n and a target rank r.
Select sketch size parameters k and `. We acquire a (randomized) sketch of the form

(1.3) Y := AΩ and W := ΨA

where Ω ∈ Fn×k and Ψ ∈ F`×m are independent standard normal matrices; see
Definition 2.1. We can store the random matrices and the sketch using (k+ `)(m+n)
scalars. The arithmetic cost of forming the sketch is Θ((k + `)mn) floating-point
operations (flops) for a general matrix A.

Given the random matrices (Ω,Ψ) and the sketch (Y ,W), we compute an ap-

proximation Â in three steps:

1. Form an orthogonal–triangular factorization Y =: QR where Q ∈ Fm×k.
2. Solve a least-squares problem to obtain X := (ΨQ)†W ∈ Fk×n.

3. Construct the rank-k approximation Â := QX.

The total cost of this computation is Θ(k`(m+ n)) flops.
Now, suppose that we set the sketch size parameters k = 2r + 1 and ` = 4r + 2.

For this choice, Theorem 4.1 yields the error bound

E ‖A− Â‖F ≤ 2 · min
rankZ≤r

‖A−Z‖F.

In other words, we typically obtain an approximation with rank ≈ 2r whose error
lies within twice the optimal rank-r error! Moreover, the total storage cost is about
6r(m + n), which is comparable with the number of degrees of freedom in an m × n
matrix with rank r, so the sketch size cannot be reduced substantially.

The procedure above is the basis for a suite of other algorithms. We can produce
approximations that have a specific structure (such as symmetry or positive semidef-

initeness) by projecting the initial approximation Â onto the family of structured
matrices. A similar idea allows us to deliver approximations whose rank does not
exceed the target rank r. Each of these algorithms is accompanied by an explicit
error bound that controls how the approximation quality depends on the sketch size
parameters k and `. We also include pseudocode and an analysis of computational
costs.

1.6. Overview of Related Work. Randomized algorithms for matrix approx-
imation date back to research [22, 12] in theoretical computer science (TCS) in the
late 1990s. Starting around 2004, this work inspired numerical analysts to develop
practical versions [17] of these algorithms. See the paper [14, Sec. 2] for a compre-
hensive historical discussion. The surveys [16, 25] provide more details about the
development of these ideas within the TCS literature.

Many of the early randomized matrix approximation algorithms, such as [11, 17],
only require a small number of views of the matrix. (That is, the algorithms scan
sequentially through the entries of the matrix a small number of times.) Researchers
only began to focus on minimizing the number of views in the late 2000s. In particular,
the papers [26, 7] both describe how to develop single-view algorithms that have

4 JOEL A. TROPP ET AL.

provable guarantees. The paper [14, Sec. 5.5] also outlines a heuristic procedure for
single-view matrix approximation; this treatment is the basis of our approach.

Most of the research on single-view algorithms has taken place within the TCS
community. Beginning with a paper [23] of Sarlós, researchers identified an abstract
primitive, called a randomized subspace embedding, that can be used to solve a variety
of numerical linear algebra problems. The surveys [16, 25] elaborate on this idea.
In particular, Woodruff [25, Thm. 4.3] has demonstrated that randomized subspace
embeddings can be used to build single-view matrix approximation algorithms. See
subsections 4.7 and 5.4 for more information on Woodruff’s results.

There is a substantial body of research on designing randomized subspace em-
beddings. See subsection 3.9 for an overview.

The sketch (1.3) is an example of a randomized subspace embedding. In contrast
to earlier work, our analysis is not based on the randomized subspace embedding
abstraction. We have developed a new approach that provides sharp error bounds.

There are several key features of this paper. First, we can guarantee that our
sketches are essentially as small as possible (including the numerical constants). Sec-
ond, we demonstrate that our algorithms that are reliable, practical, and numerically
stable. Third, we have introduced a new framework for computing structured approx-
imations. Last, we have provided the first concrete error bounds that can be used to
select algorithm parameters.

2. Background. In this section, we collect notation and conventions, as well as
some background on random matrices.

2.1. Notation and Conventions. We write F for the scalar field, which is
either R or C. The letter I signifies the identity matrix; its dimensions are determined
by context. The star ∗ refers to the (conjugate) transpose operation on vectors and
matrices. The dagger † is the Moore–Penrose pseudoinverse.

The symbol ‖ · ‖F denotes the Frobenius norm, while 〈·, ·〉 is the Frobenius inner
product. We write ‖ · ‖ for the spectral norm.

The expression “M has rank r” and its variants mean that the rank of M does
not exceed r. The symbol JMKr represents an optimal rank-r approximation of M
with respect to Frobenius norm; this approximation need not be unique [15, Sec. 6].

The symbol E denotes expectation with respect to all random variables. For
a given random variable Z, we write EZ to denote expectation with respect to the
randomness in Z only. Nonlinear functions bind before the expectation.

In the description of algorithms in the text, we primarily use standard mathe-
matical notation. In the pseudocode, we also make use of some Matlab R2016a
functions in an effort to make the presentation more succinct.

We use the computer science interpretation of the O(·) and Ω(·) symbols to de-
scribe classes of functions that are bounded above or below up to constants. The class
Θ(·) consists of functions with the specified asymptotic growth.

2.2. Standard Normal Matrices. Let us define an ensemble of random ma-
trices that plays a central role in this work.

Definition 2.1 (Standard Normal Matrix). A matrix G ∈ Rm×n has the real
standard normal distribution if the entries form an independent family of standard
normal random variables (i.e., Gaussian with mean zero and variance one).

A matrix G ∈ Cm×n has the complex standard normal distribution if it has the
form G = G1+iG2 where G1 and G2 are independent, real standard normal matrices.

Standard normal matrices are also known as Gaussian matrices.

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 5

We introduce numbers α and β that reflect the field over which the random matrix
is defined:

(2.1) α := α(F) :=

{
1, F = R
0, F = C

and β := β(F) :=

{
1, F = R
2, F = C

.

This notation allows us to treat the real and complex case simultaneously. The number
β is a standard parameter in random matrix theory.

3. Sketching the Target Matrix. First, we discuss how to collect sufficient
data about a target matrix to compute a low-rank reconstruction. Following [14,
Sec. 5.5], we summarize the matrix by multiplying it on the right and the left by
random test matrices. The dimension and distribution of these random test matrices
together determine the potential accuracy of our reconstruction.

3.1. The Target Matrix. Let A ∈ Fm×n be a matrix that we wish to approxi-
mate. Our algorithms work regardless of the relative dimensions of A, but there may
sometimes be small benefits if we apply them to A∗ instead.

3.2. The Target Rank. Let r be a target rank parameter with 1 ≤ r ≤
min{m,n}. We aim to construct a low-rank approximation of A whose error is close
to the optimal rank-r error. We explicitly allow reconstructions with rank somewhat
larger than r because they may be significantly more accurate.

In the single-view setting, the practitioner must use prior knowledge about the
target matrix A to determine a target rank r that will result in satisfactory error
guarantees. This decision is outside the scope of our work.

3.3. Parameters for the Sketch. Our sketch consists of two parts: a summary
of the range of A and a summary of the co-range. The parameter k controls the size
of the range sketch, and the parameter ` controls the size of the co-range sketch. They
should satisfy the conditions

(3.1) r ≤ k ≤ ` and k ≤ n and ` ≤ m.

In practice, we typically choose k ≈ r and ` ≈ k. See (4.6) and subsection 10.5 below.
The parameters k and ` do not play symmetrical roles. The smaller parameter

k controls the rank of our approximations. Larger values of both k and ` result in
better approximations at the cost of more storage and arithmetic. We quantify these
tradeoffs in the sequel.

3.4. The Test Matrices. To form the sketch of the target matrix, we draw and
fix two (random) test matrices:

(3.2) Ω ∈ Fn×k and Ψ ∈ F`×m.

This paper contains a detailed analysis of the case where the test matrices are sta-
tistically independent and follow the standard normal distribution. Subsection 3.9
describes other potential distributions for the test matrices. Throughout the presen-
tation, we state explicitly when we are making distributional assumptions on the test
matrices.

3.5. The Sketch. The sketch of the target matrix A ∈ Fm×n consists of two
matrices:

(3.3) Y := AΩ ∈ Fm×k and W := ΨA ∈ F`×n.

6 JOEL A. TROPP ET AL.

Algorithm 1 Randomized Single-View Sketch. Implements (3.2) and (3.3).

Require: Input matrix A ∈ Fm×n; sketch size parameters k ≤ `
Ensure: Constructs test matrices Ω ∈ Fn×k and Ψ ∈ F`×m, range sketch Y = AΩ ∈

Fm×k, and co-range sketch W = ΨA ∈ F`×n as private variables

1 private: Ω,Ψ,Y ,W . Internal variables for Sketch object
. Accessible to all Sketch methods

2 function Sketch(A; k, `) . Constructor
3 if F = R then
4 Ω← randn(n, k)
5 Ψ← randn(`,m)

6 if F = C then
7 Ω← randn(n, k) + i randn(n, k)
8 Ψ← randn(`,m) + i randn(`,m)

9 Ω← orth(Ω) . (optional) Improve numerical stability
10 Ψ∗ ← orth(Ψ∗) . (optional) Improve numerical stability
11 Y ← AΩ
12 W ← ΨA

The matrix Y collects information about the action of A, while the matrix W collects
information about the action of A∗. Both parts are necessary.

This type of sketch is not new. The single-view approximation techniques in [14,
Sec. 5.5] and [25, Thm. 4.3] both rely on a sketch of the form (3.3).

3.6. The Sketch as an Abstract Data Type. We present the sketch as an
abstract data type using ideas from object-oriented programming. Sketch is an
object that contains information about a specific matrix A. The test matrices (Ω,Ψ)
and the sketch matrices (Y ,W) are private variables that are only accessible to the
Sketch methods. A user interacts with the Sketch object by initializing it with a
specific matrix and by applying linear updates. The user can also query the Sketch
object to obtain an approximation of the matrix A with specific properties. The
individual algorithms described in this paper are all methods that belong to the
Sketch object.

3.7. Initializing the Sketch and its Costs. See Algorithm 1 for pseudocode
that implements the sketching procedure (3.2) and (3.3) with either standard normal
test matrices (default) or random orthonormal test matrices (optional steps). Note
that the orthogonalization step requires additional arithmetic and communication.

The storage cost for the sketch (Y ,W) is mk+ `n floating-point numbers in the
field F. The storage cost for two standard normal test matrices is nk + `m floating
point numbers in F. Some other types of test matrices (Ω,Ψ) have lower storage
costs, but the sketch (Y ,W) remains the same size.

For standard normal test matrices, the arithmetic cost of forming the sketch (3.3)
is Θ((k + `)mn) flops when A is dense. If A is sparse, the cost is proportional to
the number nnz(A) of nonzero entries: Θ((k + `) nnz(A)) flops. Other types of test
matrices sometimes yield lower arithmetic costs.

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 7

Algorithm 2 Single-View Sketch: Linear Update. Implements (3.6).

Require: Update matrix H ∈ Fm×n; scalars θ, η ∈ F
Ensure: Modifies sketch (Y ,W) to reflect linear update A← θA + ηH

1 function Sketch.LinearUpdate(H; θ, η)
2 Y ← θY + ηHΩ . Linear update to range sketch
3 W ← θW + ηΨH . Linear update to co-range sketch

3.8. Processing Linear Updates. Suppose that the target matrix A is pre-
sented to us as a sequence of additive updates:

(3.4) A = H1 + H2 + H3 + H4 + · · · .

This model includes the case where someone feeds us the matrix one entry at a time,
or one row at a time, or one column at a time.

By exploiting linearity, we can incrementally construct the sketch (3.3) of the
matrix A described by (3.4). We initialize the sketch with the zero matrix:

Y ← 0 and W ← 0.

As each update H ∈ Fm×n arrives, we compute

(3.5) Y ← Y + HΩ and W ←W + ΨH.

The arithmetic cost of each update depends on the cost of the matrix–matrix
multiplications in (3.5). In particular, suppose that the test matrices (Ω,Ψ) are
stored explicitly and and the update is presented as a rank-one matrix H = uv∗

where u ∈ Fm and v ∈ Fn. Then we can update the sketch in O((k + `)(n + m))
flops. Non-Gaussian test matrices may support faster updates in other special cases,
e.g., when H is very sparse.

Our sketching model (3.3) also supports a more general linear update that is
important for some applications [6]. Suppose the target matrix A is modified as

A← θA + ηH where θ, η ∈ F.

Then we update the sketch (3.3) via the rule

(3.6) Y ← θY + ηHΩ and W ← θW + ηΨH.

Note that the arithmetic cost of this update is Ω(km+ `n) because we have to rescale
each entry of the sketch. See Algorithm 2 for pseudocode.

3.9. Choosing the Distribution of the Test Matrices. Our analysis is spe-
cialized to the case where the test matrices Ω and Ψ are standard normal. But the
sketch can be implemented using test matrices drawn from other distributions. The
choice of distribution leads to some tradeoffs in the range of permissible parameters;
the costs of randomness, arithmetic, and communication to generate the test matri-
ces; the storage costs for the test matrices and the sketch; the arithmetic costs for
sketching and updates; the numerical stability of reconstruction algorithms; and the
quality of a priori error bounds.

Let us list some of the contending distributions along with background references.
We have ranked these in decreasing order of reliability.

8 JOEL A. TROPP ET AL.

• Orthonormal. The optional steps in Algorithm 1 generate matrices Ω and
Ψ∗ with orthonormal columns that span uniformly random subspaces of di-
mension k and `. These matrices behave much like Gaussians, but they
exhibit better numerical stability—especially when k and ` are large. For
example, see [10].

• Gaussian. Following [17, 14], this paper focuses on test matrices with the
standard normal distribution. Benefits include excellent practical perfor-
mance and accurate a priori error bounds. Moreover, we can take the sketch
sizes k = Θ(r) and ` = Θ(r), which is the optimal scaling.

• Rademacher. These test matrices have independent Rademacher1 entries.
Their behavior is similar with standard normal test matrices, but there are
minor improvements in the cost of storage and arithmetic, as well as the
amount of randomness required. For example, see [7].

• Subsampled Randomized Fourier Transform. These test matrices take
the form

Ω = D1F1P1 and Ψ = P2F2D2

where D1 ∈ Fn×n and D2 ∈ Fm×m are diagonal matrices with independent
Rademacher entries; F1 ∈ Fn×n and F2 ∈ Fm×m are discrete cosine transform
(F = R) or discrete Fourier transform (F = C) matrices; and P1 ∈ Fn×k

and P2 ∈ F`×m are restrictions onto k and ` coordinates, chosen uniformly
at random. These matrices work well in practice; they require a modest
amount of storage; and they support fast arithmetic. On the other hand, it
is necessary and sufficient that the sketch size parameters satisfy k = Θ((r+
log n) log r) and ` = Θ((k + logm) log k) to guarantee proper performance.
See [1, 26, 2, 14, 24, 4].

• Ultra-Sparse Rademacher. Let s be a sparsity parameter. In each row
of Ω and column of Ψ, we place independent Rademacher random variables
in s uniformly random locations; the remaining entries of the test matrices
are zero. These matrices help control storage, arithmetic, and randomness
costs. On the other hand, they are somewhat less reliable and numerically
stable. At the minimum sparsity s = 1, it is necessary and sufficient that the
sketch size parameters satisfy k = Θ(r2) and ` = Θ(r4). When s = Θ(log r),
it is sufficient that k = O(r log r) and ` = O(r log2 r). For more details,
see [8, 20, 18, 21, 25, 3, 9].

An exhaustive comparison of distributions for the test matrices is outside the scope
of this paper.

4. Low-Rank Approximation from a Single View. Suppose that we have
acquired a sketch (Y ,W) of the target matrix A, as in (3.2) and (3.3). This section
presents the most basic algorithm for computing a low-rank approximation of A from
the data in the sketch.

In section 5, we describe modifications of this algorithm that produce approxima-
tions with fixed rank. In sections 6 and 7, we explain how to refine these procedures
to obtain approximations with additional structure. Throughout, we maintain the
notation of section 3.

1A Rademacher random variable takes the values ±1 with equal probability.

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 9

4.1. The Basic Reconstruction Algorithm. Our goal is to produce a low-
rank approximation of the target matrix A using only the knowledge of the test
matrices (Ω,Ψ) and the sketch (Y ,W).

The first step in the reconstruction is to compute an orthobasis Q for the range
of Y by means of an orthogonal–triangular factorization:

(4.1) Y =: QR where Q ∈ Fm×k.

The matrix Q has orthonormal columns; we discard the triangular matrix R. The
second step uses the co-range sketch W to form the matrix

(4.2) X := (ΨQ)†W ∈ Fk×n.

We can perform this computation accurately because the random matrix ΨQ ∈ F`×k

is very well-conditioned when `� k. We report the rank-k approximation

(4.3) Â := QX ∈ Fm×n where Q ∈ Fm×k and X ∈ Fk×n.

The factors Q and X are defined in (4.1) and (4.2).

4.2. Intuition. To motivate the algorithm, we recall a familiar heuristic [14,
Sec. 1] from randomized linear algebra, which states that

(4.4) A ≈ QQ∗A.

Although we would like to form the rank-k approximation Q(Q∗A), we cannot com-
pute the factor Q∗A without revisiting the target matrix A. Instead, we exploit the
information in the co-range sketch W = ΨA. Notice that

W = Ψ(QQ∗A) + Ψ(A−QQ∗A) ≈ (ΨQ)(Q∗A).

The heuristic (4.4) justifies dropping the second term. Multiplying on the left by the
pseudoinverse (ΨQ)†, we arrive at the relation

X = (ΨQ)†W ≈ Q∗A.

These considerations suggest that

Â = QX ≈ QQ∗A ≈ A.

This explanation is inspired by the discussion in [14, Sec. 5.5]. One of our main
contributions is to give substance to these nebulae.

4.3. Algorithm and Costs. Algorithms 3 and 4 give pseudocode for computing
the approximation (4.3). The first presentation uses Matlab functions to abbreviate
some of the steps, while the second includes more implementation details. Note that
the use of the orth command may result in an approximation with rank q for some
q ≤ k, but the quality of the approximation does not change.

Let us summarize the costs of the reconstruction procedure (4.1)–(4.3), as imple-
mented in Algorithm 4. The algorithm has working storage of O(k(m + n)) floating
point numbers. The arithmetic cost is Θ(k`(m+n)) flops, which is dominated by the
matrix–matrix multiplications. The orthogonalization step and the back-substitution
cost Θ(k2(m+ n)) flops, which is almost as significant.

10 JOEL A. TROPP ET AL.

Algorithm 3 Simplest Single-View Low-Rank Approximation. Implements (4.3).

Ensure: For some q ≤ k, returns factors Q ∈ Fm×q with orthonormal columns and
X ∈ Fq×n that form a rank-q approximation Âout = QX of the sketched matrix

1 function Sketch.SimpleLowRankApprox()
2 Q← orth(Y) . Orthobasis for range of Y
3 X ← (ΨQ)\W . Multiply (ΨQ)† on left side of W
4 return (Q,X)

Algorithm 4 Single-View Low-Rank Approximation. Implements (4.3).

Ensure: Returns factors Q ∈ Fm×k with orthonormal columns and X ∈ Fk×n that
form a rank-k approximation Âout = QX of the sketched matrix

1 function Sketch.LowRankApprox()
2 (Q,∼)← qr(Y , 0) . Orthobasis for range of Y
3 (U ,T)← qr(ΨQ) . Orthogonal–triangular factorization
4 X ← T−1(U∗W) . Apply inverse by back-substitution
5 return (Q,X)

4.4. A Bound for the Frobenius-Norm Error. We have established a very
accurate error bound for the approximation (4.3) that is implemented in Algorithms 3
and 4. This estimate is one of the key contributions of this paper.

Before stating the result, let us introduce a function that we use to simplify many
of our error bounds. Recall that α is given by (2.1), and define

(4.5) f(s, t) :=
s

t− s− α
for integers that satisfy t > s+ α > α.

Observe that the function f(s, ·) is decreasing, with range (0, s].

Theorem 4.1 (Low-Rank Approximation: Frobenius Error). Assume the sketch
size parameters satisfy k > r+α and ` > k+α. Draw random test matrices Ω ∈ Fn×k

and Ψ ∈ F`×m independently from the standard normal distribution. Then the rank-k
approximation Â obtained from formula (4.3) satisfies

E ‖A− Â‖2F ≤ (1 + f(r, k))(1 + f(k, `)) · ‖A− JAKr‖2F.

The function f is defined in (4.5), and α is given by (2.1).

The proof of Theorem 4.1 appears below in subsection 8.3.
The error bound in Theorem 4.1 is precise enough to predict the actual perfor-

mance of the approximation (4.3). As a consequence, we can use the result to make
a priori decisions about the best sketch size parameters (k, `). See section 10.

To appreciate the meaning of Theorem 4.1, it is helpful to consider specific choices
for the sketch size parameters. First, notice that the selection

(4.6) k = 2r + α and ` = 2k + α

yields the error bound (
E ‖A− Â‖2F

)1/2 ≤ 2 · ‖A− JAKr‖F.

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 11

In other words, for k ≈ 2r, we can construct a rank-k approximation of A that
has almost the same quality as the best rank-r approximation. We recommend the
parameter choice (4.6) because it achieves a good tradeoff between the size of the
sketch and the accuracy of the reconstruction.

Next, observe that for fixed s > 0 and ε > 0, we have

f(s, (1 + ε−1)s+ α) = ε.

Therefore, for any choice of s, we can make the function t 7→ f(s, t) arbitrarily small
by increasing t. Roughly speaking, we need t ≈ s/ε to achieve the bound f(s, t) ≈ ε.
In particular, suppose that we set

k = (1 + ε−1)r + α and ` = (1 + ε−1)k + α.

Then we achieve the error bound(
E ‖A− Â‖2F

)1/2 ≤ (1 + ε) · ‖A− JAKr‖F.

Thus, the choices k ≈ r/ε and ` ≈ r/ε2 suffice to obtain a relative error of 1 + ε.

4.5. A Bound for the Spectral-Norm Error. For reference, we include a
bound on the approximation error that the reconstruction (4.3) achieves with respect
to the spectral norm. The form of this bound is essentially correct, but the constants
are not sharp. For brevity, we have only developed this result for the real field.

It is helpful to introduce two more functions to simplify the estimate. Let

(4.7) g(s, t) := 1 +

√
s

t− s− 1
and h(s, t) :=

e
√
t

t− s
for integers t > s+ 1 > 1.

The function g(s, ·) is decreasing with range (1, 1 +
√
s], and the function h(s, ·) is

decreasing with range (0, (e/2)
√
s+ 2].

Theorem 4.2 (Low-Rank Reconstruction: Spectral Error). Assume the sketch
size parameters satisfy k > r+1 and ` > r+1. Draw random test matrices Ω ∈ Rn×k

and Ψ ∈ R`×m independently from the real standard normal distribution. Then the
rank-k approximation Â obtained from the formula (4.3) satisfies

(4.8)
E ‖A− Â‖ ≤ g(r, k) · g(k, `) · ‖A− JAKr‖

+
[
h(r, k) · g(k, `) + g(r, k) · h(k, `)

]
· ‖A− JAKr‖F.

The functions g and h are defined in (4.7).

The proof of Theorem 4.2 appears below in subsection 8.4.
To appreciate the meaning of this result, we consider specific choices for k and `.

In particular, our recommended parameter selection (4.6) delivers the error bound

E ‖A− Â‖ ≤ 4 · ‖A− JAKr‖+
4e
√

2√
r
· ‖A− JAKr‖F

Note that the Frobenius-norm error term is scaled by a factor of r−1/2, so it plays a
less significant role as the target rank r increases. One interpretation is that the part
of the matrix we fail to approximate behaves like noise that is spread evenly across
the singular vectors of the approximation.

12 JOEL A. TROPP ET AL.

It is unpalatable to find a Frobenius-norm term in our bound (4.8) on the spectral-
norm error, but we have to swallow it. Indeed, there are lower bounds [25, Sec. 6.2]
that prevent us from obtaining a constant-factor approximation to the spectral-norm
error unless the size of the sketch is comparable with the matrix dimensions: k =
Ω(min{m,n}).

4.6. High-Probability Error Bounds. The expectation bounds presented in
Theorems 4.1 and 4.2 also describe the typical behavior of the algorithm (4.3) because
of measure concentration effects. It is possible to develop high-probability bounds
using the methods from [14, Sec. 10.3]. We have chosen to omit these results. They
are similar in spirit with [14, Thm. 10.7 and 10.8], but they are more complicated
without providing any additional insight.

4.7. Comparison with Prior Work. We developed the sketch (3.3) and the
approximation procedure (4.3) independently, with inspiration from the discussion
in [14, Sec. 5.5]. We later discovered that the reconstruction (4.3) is algebraically
equivalent to a formula [25, Thm. 4.3, display 1] proposed by Woodruff. In our
notation, his reconstruction takes the form

(4.9) Âwoo1 := Y (ΨY)†W = Y (WΩ)†W .

In floating-point arithmetic, our approximation (4.3), implemented in Algorithms 3
and 4, is superior to (4.9). The analysis in Theorems 4.1 and 4.2 is new. We also give
the first concrete guidance on selecting the parameters k and `.

5. Fixed-Rank Approximation from a Single View. In some situations,
we need to approximate the target matrix by a matrix with fixed rank. Although the
simple reconstruction (4.3) from section 4 produces a rank-k matrix, we may need to
reduce the rank to match the target rank r. In this section, we explain how to obtain
a rank-r approximation by projecting the simple reconstruction onto the set of rank-r
matrices. We argue that this procedure only increases the error by limited amount.

5.1. The Fixed-Rank Reconstruction Algorithm. Suppose that we wish
to compute a rank-r approximation of the target matrix A ∈ Fm×n. First, we form
an initial approximation Â := QX using the procedure (4.3). Then we obtain a

rank-r approximation JÂKr of the target matrix by replacing Â with its best rank-r
approximation in Frobenius norm:

(5.1) JÂKr = JQXKr.

We can complete this operation by working directly with the factors. Indeed,
suppose that X = UΣV ∗ is an SVD of X. Then QX has an SVD of the form

QX = (QU)ΣV ∗.

As such, there is also a best rank-r approximation of QX that satisfies

JQXKr = (QU)JΣKrV ∗ = QJXKr.

Therefore, the desired rank-r approximation (5.1) can also be expressed as

(5.2) JÂKr = QJXKr.

The formula (5.2) is more computationally efficient than (5.1) because the factor

X ∈ Fk×n is much smaller than the approximation Â ∈ Fm×n.

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 13

Algorithm 5 Single-View Fixed-Rank Approximation. Implements (5.2).

Require: Target rank r ≤ k
Ensure: Returns factors Q ∈ Fm×r and V ∈ Fn×r with orthonormal columns and

nonnegative diagonal Σ ∈ Fr×r that form a rank-r approximation Âout = QΣV ∗

of the sketched matrix

1 function Sketch.FixedRankApprox(r)

2 (Q,X)← LowRankApprox() . Get Âin = QX
3 (U ,Σ,V)← svds(X, r) . Form full SVD and truncate
4 Q← QU . Consolidate orthonormal factors
5 return (Q,Σ,V)

5.2. Algorithm and Costs. Algorithm 5 contains pseudocode for computing
the fixed-rank approximation (5.2).

The fixed-rank reconstruction in Algorithm 5 has storage and arithmetic costs
on the same order as the simple low-rank reconstruction (Algorithm 3). Indeed,
to compute the truncated SVD and perform the matrix–matrix multiplication, we
expend only Θ(k2n) additional flops. Thus, the total working storage is Θ(k(m+ n))
numbers and the arithmetic cost is Θ(k`(m+ n)) flops.

5.3. A Bound on the Frobenius-Norm Error. We have established an error
bound for the rank-r approximation (5.2) implemented in Algorithm 5. This estimate
is helpful because it has small and explicit constants, even though it less precise than
the analysis in Theorem 4.1.

Theorem 5.1 (Fixed-Rank Reconstruction: Frobenius-Norm Error). Assume
the sketch size parameters satisfy k > r+α and ` > k+α. Draw random test matrices
Ω ∈ Fn×k and Ψ ∈ F`×m independently from the standard normal distribution. Then
the rank-r approximation JÂKr obtained from the formula (5.2) satisfies

(5.3) E ‖A− JÂKr‖F ≤
√

1 + f(r, k)
(
1 + 2

√
f(k, `)

)
· ‖A− JAKr‖F.

The function f is defined in (4.5), and the number α is given by (2.1).

The proof of Theorem 5.1 appears in section 9.
It is valuable to consider specific choices for the sketch size (k, `). Our recom-

mended selection (4.6) gives the bound

E ‖A− JÂKr‖F ≤ 3
√

2 · ‖A− JAKr‖F.

Moreover, for any tolerance ε > 0, we can set k ≈ r/ε and ` ≈ r/ε3 to drive the
leading constant in (5.3) down to 1 + ε.

We believe that the fixed-rank reconstruction (5.2) behaves better than the error
bound (5.3) predicts. It is likely that ` ≈ r/ε2 suffices to achieve a relative error of
1 + ε, but we were not able to obtain conclusive evidence in support of this point.

5.4. Comparison with Prior Work. The theoretical computer science (TCS)
literature contains a substantial amount of research on single-view fixed-rank ap-
proximation. In particular, Woodruff [25, Thm. 4.3, display 2] has proposed a re-
lated reconstruction method. First, he forms a matrix product and computes its
orthogonal–triangular factorization:

(5.4) B := ΨY and B =: UR where U ∈ F`×k.

14 JOEL A. TROPP ET AL.

Then he constructs the approximation

(5.5) Âwoo2 := Y (ΨY)†UJU∗W Kr.

As it happens, there is only a limited difference between Woodruff’s fixed-rank recon-
struction formula (5.5) and our formula (5.2).

To explain, let us give an algebraically equivalent statement of the formula (5.5)
that is better suited to floating-point arithmetic. First, we form a matrix product
and compute its orthogonal–triangular factorization:

C := ΨQ and C =: UT where U ∈ F`×k.

Algebraically, the matrix U here is equal to the one in (5.4). When ` ≥ k and Ψ
is standard normal, T is almost surely invertible. Woodruff’s fixed-rank reconstruc-
tion (5.5) is algebraically (but not numerically) equivalent to

(5.6) Âwoo2′ := QT−1JU∗W Kr.

For comparison, our reconstruction (5.2) can be written as

(5.7) JÂKr = QJT−1U∗W Kr.

Numerical evidence suggests that our approach is superior, but neither one dominates
for every example and choice of the parameters (r, k, `). See section 10 for details.

We adapted Woodruff’s analysis [25, Thm. 4.3] to study the behavior of the ap-
proximation (5.6) for standard normal test matrices. We were able to prove that the
choices k = O(r/ε) and ` = O(r/ε3+(log n)/ε2) are sufficient for (5.6) to achieve a rel-
ative error of 1+ε. In contrast, Theorem 5.1, our analysis of the reconstruction (5.7),
avoids the logarithmic term in the parameter `.

6. Low-Rank Approximations with Convex Structure. In many instances,
we wish to reconstruct a target matrix that has additional structure, such as symmetry
or positive-semidefiniteness. The reconstruction formula (4.3) from section 4 produces
an approximation that has no special properties aside from a bound on its rank.
Therefore, we may need to refine our approximation to instill additional virtues.

In this section, we consider a class of problems where the target matrix belongs
to a convex set and we seek an approximation that belongs to the same set. To
accomplish this goal, we replace our initial approximation with the closest point in
the convex set. This procedure always helps.

We address two specific examples: (i) the case where the target matrix is conjugate
symmetric and (ii) the case where the target matrix is positive semidefinite. In both
situations, we must design the reconstruction algorithm carefully to avoid forming
full-size matrices.

6.1. Projection onto a Convex Set. Let C be a closed and convex set of
matrices in Fm×n. Define the projector ΠC onto the set C to be the map

ΠC : Fm×n → C where ΠC(M) := argmin
{
‖C −M‖2F : C ∈ C

}
.

The argmin operator returns the matrix C? ∈ C that solves the optimization problem.
The solution C? is uniquely determined because the squared Frobenius norm is strictly
convex and the constraint set C is closed and convex.

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 15

6.2. Improved Approximation by Convex Projection. Suppose that the
target matrix A belongs to the closed, convex set C ⊂ Fm×n. Let Âin ∈ Fm×n be
an initial approximation of A. We can produce a new approximation ΠC(Âin) by
projecting the initial approximation onto the constraint set. This procedure always
improves the approximation quality.

Fact 6.1 (Convex Structure Reduces Error). Let C ∈ Fm×n be a closed convex

set, and suppose that A ∈ C. For any initial approximation Âin ∈ Fm×n,

(6.1) ‖A−ΠC(Âin)‖F ≤ ‖A− Âin‖F.

This result is well known in convex analysis. It follows directly from the first-order
optimality conditions [5, Sec. 4.2.3] for the Frobenius-norm projection of a matrix onto
the set C. We omit the details.

6.3. Low-Rank Approximation with Conjugate Symmetry. When the
target matrix is conjugate symmetric, it is often critical to produce a conjugate sym-
metric approximation. We can do so by combining the simple approximation from
section 4 with the projection step outlined in subsection 6.1.

6.3.1. Conjugate Symmetric Projection. Define the set Hn(F) of conjugate
symmetric matrices with dimension n over the field F:

Hn := Hn(F) := {C ∈ Fn×n : C = C∗}.

The set Hn(F) is convex because it forms a real-linear subspace in Fn×n. In the sequel,
we omit the field F from the notation unless there is a possibility of confusion.

The projection Msym of a matrix M ∈ Fn×n onto the set Hn takes the form

(6.2) Msym := ΠHn(M) =
1

2
(M + M∗).

For example, see [15, Sec. 2].

6.3.2. Computing a Conjugate Symmetric Approximation. Assume that
the target matrix A ∈ Hn is conjugate symmetric. Let Â := QX be an initial rank-k
approximation of A obtained from the reconstruction procedure (4.3). We can form

a better approximation Âsym by projecting Â onto Hn:

(6.3) Âsym := ΠHn(Â) =
1

2
(Â + Â∗) =

1

2
(QX + X∗Q∗).

The second relation follows from (6.2).
In most cases, it is preferable to present the approximation (6.3) in factored form.

To do so, we observe that

1

2
(QX + X∗Q∗) =

1

2

[
Q X∗

] [0 I
I 0

] [
Q X∗

]∗
.

Concatenate Q and X∗, and compute the orthogonal–triangular factorization

(6.4)
[
Q X∗

]
=: U

[
T1 T2

]
where U ∈ Fn×2k and T1 ∈ F2k×k.

Of course, we only need to orthogonalize the k columns of X∗, which permits some
computational efficiencies. Next, introduce the matrix

(6.5) S :=
1

2

[
T1 T2

] [0 I
I 0

] [
T1 T2

]∗
=

1

2
(T1T

∗
2 + T2T

∗
1) ∈ F2k×2k.

16 JOEL A. TROPP ET AL.

Algorithm 6 Single-View Low-Rank Symmetric Approximation. Implements (6.6).

Require: Matrix dimensions m = n
Ensure: For q = 2k, returns factors U ∈ Fn×q with orthonormal columns and S ∈ Hq

that form a rank-q conjugate symmetric approximation Âout = USU∗ of the
sketched matrix

1 function Sketch.LowRankSymApprox()

2 (Q,X)← LowRankApprox() . Get Âin = QX
3 (U ,T)← qr([Q,X∗], 0) . Orthogonal factorization of concatenation
4 T1 ← T (:, 1:k) and T2 ← T (:, (k + 1):(2k)) . Extract submatrices
5 S ← (T1T

∗
2 + T2T

∗
1)/2 . Symmetrize

6 return (U ,S) . Return factors

Combine the last four displays to obtain the rank-(2k) conjugate symmetric approxi-
mation

(6.6) Âsym = USU∗.

From this expression, it is easy to obtain other types of factorizations, such as an
eigenvalue decomposition, by further processing.

6.3.3. Algorithm and Costs. Algorithm 6 contains pseudocode for producing
a conjugate symmetric reconstruction of the form (6.6) from a sketch of the target
matrix. One can make this algorithm slightly more efficient by taking advantage of
the fact that Q has orthogonal columns; we omit the details.

For Algorithm 6, the total working storage is Θ(kn) and the arithmetic cost is
Θ(k`n). These costs are dominated by the call to Sketch.LowRankApprox.

6.3.4. A Bound on the Frobenius-Norm Error. Combining Theorem 4.1
with Fact 6.1, we have the following bound on the error of the symmetric reconstruc-
tion (6.6), implemented in Algorithm 6.

Corollary 6.2 (Low-Rank Symmetric Reconstruction). Assume that the target
matrix A ∈ Hn(F) is conjugate symmetric, and assume that the sketch size parameters
satisfy k > r+α and ` > k+α. Draw random test matrices Ω ∈ Fn×k and Ψ ∈ F`×n

independently from the standard normal distribution. Then the rank-(2k) conjugate

symmetric approximation Âsym produced by (6.3) or (6.6) satisfies

E ‖A− Âsym‖2F ≤ (1 + f(r, k))(1 + f(k, `)) · ‖A− JAKr‖2F.

The function f is defined in (4.5), and the number α is given by (2.1).

6.4. Low-Rank Positive-Semidefinite Approximation. We often encounter
the problem of approximating a positive-semidefinite (psd) matrix. In many situa-
tions, it is important to produce an approximation that maintains positivity. Our
approach combines the simple approximation (4.3) from section 4 with the projection
step from subsection 6.1.

6.4.1. PSD Projection. We introduce the set Hn
+(F) of psd matrices with di-

mension n over the field F:

Hn
+ := Hn

+(F) :=
{
C ∈ Hn : z∗Cz ≥ 0 for each z ∈ Fn

}
.

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 17

Algorithm 7 Single-View Low-Rank PSD Approximation. Implements (6.7).

Require: Matrix dimensions m = n
Ensure: For q = 2k, returns factors U ∈ Fn×q with orthonormal columns and non-

negative, diagonal D ∈ Hq
+ that form a rank-q psd approximation Âout = UDU∗

of the sketched matrix

1 function Sketch.LowRankPSDApprox()

2 (U ,S)← LowRankSymApprox() . Get Âin = USU∗

3 (V ,D)← eig(S) . Form eigendecomposition
4 U ← UV . Consolidate orthonormal factors
5 D ← max(D, 0) . Zero out negative eigenvalues
6 return (U ,D)

The set Hn
+(F) is convex because it is an intersection of halfspaces. In the sequel, we

omit the field F from the notation unless there is a possibility for confusion.
Given a matrix M ∈ Fn×n, we construct its projection onto the set Hn

+ in three
steps. First, form the projection Msym := ΠHn(M) onto the conjugate symmetric
matrices, as in (6.2). Second, compute an eigenvalue decomposition Msym =: V DV ∗.
Third, form D+ by zeroing out the negative entries of D. Then the projection M+

of the matrix M onto Hn
+ takes the form

M+ := ΠHn
+

(M) = V D+V
∗.

For example, see [15, Sec. 3].

6.4.2. Computing a PSD Approximation. Assume that the target matrix
A ∈ Hn

+ is psd. Let Â := QX be an initial approximation of A obtained from the

reconstruction procedure (4.3). We can form a psd approximation Â+ by projecting

Â onto the set Hn
+.

To do so, we repeat the computations (6.4) and (6.5) to obtain the symmetric

approximation Âsym presented in (6.6). Next, form an eigenvalue decomposition of
the matrix S given by (6.5):

S =: V DV ∗.

In view of (6.6), we obtain an eigenvalue decomposition of Âsym:

Âsym = (UV)D(UV)∗.

To obtain the psd approximation Â+, we simply replace D by its nonnegative part
D+ to arrive at the rank-(2k) psd approximation

(6.7) Â+ := ΠHn
+

(Â) = (UV)D+(UV)∗.

This formula delivers an approximate eigenvalue decomposition of the target matrix.

6.4.3. Algorithm, Costs, and Error. Algorithm 7 contains pseudocode for
producing a psd approximation of the form (6.7) from a sketch of the target matrix.
As in Algorithm 6, some additional efficiencies are possible

The costs of Algorithm 7 are similar with the symmetric reconstruction method,
Algorithm 6. The working storage cost is Θ(kn), and the arithmetic cost is Θ(k`n).

Combining Theorem 4.1 and Fact 6.1, we obtain a bound on the reconstruction
error identical with Corollary 6.2. We omit the details.

18 JOEL A. TROPP ET AL.

7. Fixed-Rank Structured Approximations. Last of all, consider the situ-
ation where we need to approximate a structured matrix by a structured matrix with
fixed rank. Although the procedures from section 6 produce low-rank approximations,
we may require the structured approximation to achieve the target rank r.

As in section 5, we take the most direct approach. We replace an initial structured
approximation by the nearest structured matrix with rank r. Projecting a conjugate
symmetric (respectively, psd) matrix onto the set of fixed-rank matrices preserves
conjugate symmetry (the psd property). The set of matrices with a fixed rank is not
convex, however, so the analysis in subsection 6.1 does not apply.

In this section, we present a simple analysis that gives reasonable error bounds
for fixed-rank approximations. We also describe algorithms for conjugate symmetric
and psd fixed-rank approximation.

7.1. A General Error Bound for Fixed-Rank Approximation. If we have
a good initial approximation of the target matrix, we can replace this initial approxi-
mation by a fixed-rank matrix without increasing the error significantly. This bound
is typically somewhat loose.

Proposition 7.1 (Fixed-Rank Approximation Error). Let A ∈ Fm×n be a tar-

get matrix, and let Âin ∈ Fm×n be an approximation. For any rank parameter r,

‖A− JÂinKr‖F ≤ ‖A− JAKr‖F + 2‖A− Âin‖F.

Proof. Calculate that

‖A− JÂinKr‖F ≤ ‖A− Âin‖F + ‖Âin − JÂinKr‖F
≤ ‖A− Âin‖F + ‖Âin − JAKr‖F
≤ 2‖A− Âin‖F + ‖A− JAKr‖F.

The first relation is the triangle inequality. To reach the second line, note that JÂinKr
is a rank-r approximation of Âin with minimal error, while JAKr is an undistinguished
rank-r matrix. Last, apply the triangle inequality again.

7.2. Fixed-Rank Conjugate Symmetric Approximation. Assume that the
target matrix A ∈ Hn is conjugate symmetric and we wish to compute a rank-r
conjugate symmetric approximation. First, form an initial approximation Âsym using
the procedure (6.6) in subsection 6.3.2. Then compute an r-truncated eigenvalue
decomposition of the matrix S defined in (6.5):

S =: V JDKrV ∗ + approximation error.

In view of the representation (6.6),

(7.1) JÂsymKr = (UV)JDKr(UV)∗.

Algorithm 8 contains pseudocode for the fixed-rank approximation (7.1). The total
working storage is Θ(kn), and the arithmetic cost is Θ(k`n). Corollary 6.2 and Propo-
sition 7.1 yield the following error bound.

Corollary 7.2 (Fixed-Rank Symmetric Reconstruction). Assume that the tar-
get matrix A ∈ Hn(F) is conjugate symmetric, and assume that the sketch size pa-
rameters satisfy k > r + α and ` > k + α. Draw random test matrices Ω ∈ Fn×k

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 19

Algorithm 8 Single-View Fixed-Rank Symmetric Approximation. Implements (7.1).

Require: Matrix dimensions m = n; target rank r ≤ k
Ensure: Returns factors U ∈ Fn×r with orthonormal columns and diagonal D ∈ Hr

that form a rank-r conjugate symmetric approximation Âout = UDU∗ of the
sketched matrix

1 function Sketch.FixedRankSymApprox(r)

2 (U ,S)← LowRankSymApprox() . Get Âin = USU∗

3 (V ,D)← eigs(S, r, ’lm’) . Truncate full eigendecomposition
4 U ← UV . Consolidate orthonormal factors
5 return (U ,D)

Algorithm 9 Single-View Fixed-Rank PSD Approximation. Implements (7.2).

Require: Matrix dimensions m = n; target rank r ≤ k
Ensure: Returns factors U ∈ Fn×r with orthonormal columns and nonnegative,

diagonal D ∈ Hr
+ that form a rank-r psd approximation Âout = UDU∗ of the

sketched matrix

1 function Sketch.FixedRankPSDApprox(r)

2 (U ,S)← LowRankSymApprox() . Get Âin = USU∗

3 (V ,D)← eigs(S, r, ’lr’) . Truncate full eigendecomposition
4 U ← UV . Consolidate orthonormal factors
5 D ← max(D, 0) . Zero out negative eigenvalues
6 return (U ,D)

and Ψ ∈ F`×n independently from the standard normal distribution. Then the rank-r
conjugate symmetric approximation JÂsymKr produced by (7.1) satisfies

E ‖A− JÂsymKr‖F ≤
[
1 + 2

√
(1 + f(r, k))(1 + f(k, `))

]
· ‖A− JAKr‖F.

The function f is defined in (4.5), and the number α is given by (2.1).

7.3. Fixed-Rank PSD Approximation. Assume that the target matrix A ∈
Hn

+ is psd, and we wish to compute a rank-r psd approximation JÂ+Kr. First, form an

initial approximation Â+ using the procedure (6.7) in subsection 6.4.2. Then compute
an r-truncated positive eigenvalue decomposition of the matrix S defined in (6.5):

S =: V JD+KrV ∗ + approximation error.

In view of the representation (6.7),

(7.2) JÂ+Kr = (UV)JD+Kr(UV)∗.

Algorithm 9 contains pseudocode for the fixed-rank psd approximation (7.2). The
working storage is Θ(kn), and the arithmetic cost is Θ(k`n). Corollary 6.2 and Propo-
sition 7.1 produce an error bound identical with Corollary 7.2; we omit the details.

8. Analysis of Low-Rank Approximation. In this section, we develop the-
oretical results on the performance of the basic low-rank approximation (4.3) imple-
mented in Algorithms 3 and 4.

20 JOEL A. TROPP ET AL.

8.1. Facts about Random Matrices. Our arguments require classical formu-
lae for the expectations of functions of a standard normal matrix. In the real case,
these results are [14, Prop. A.1 and A.6]. The complex case follows from the same
principles, so we omit the details.

Fact 8.1. Let G ∈ Ft×s be a standard normal matrix. For all matrices B and C
with conforming dimensions,

(8.1) E ‖BGC‖2F = β‖B‖2F‖C‖2F.

Furthermore, if t > s+ α,

(8.2) E ‖G†‖2F =
1

β
· s

t− s− α
=

1

β
· f(s, t).

The function f is introduced in (4.5), and the numbers α and β are given by (2.1).

We also need results [14, Prop. A.2 and A.4] on the expected spectral norm of
some functions of a standard normal matrix. Note that we only present these facts
in the real setting.

Fact 8.2. Let G ∈ Rt×s be a real standard normal matrix. For all matrices B
and C with conforming dimensions,

(8.3) E ‖BGC‖ ≤ ‖B‖F‖C‖+ ‖B‖‖C‖F.

Furthermore, if t > s,

(8.4) E ‖G†‖ ≤ e
√
t

t− s
= h(s, t).

The function h also appears in (4.7).

8.2. Results from Randomized Linear Algebra. Our arguments also de-
pend heavily on the analysis of randomized low-rank approximation developed in [14,
Sec. 10]. We state these results using the familiar notation from sections 3 and 4.

Fact 8.3 (Halko et al. 2011). Fix A ∈ Fm×n. Assume that k > r + α. Draw
the random test matrix Ω ∈ Fk×n from the standard normal distribution. Then the
matrix Q computed by (4.1) satisfies

EΩ ‖A−QQ∗A‖2F ≤ (1 + f(r, k)) · ‖A− JAKr‖2F.

The function f is introduced in (4.5), and the number α is given by (2.1).

This result follows immediately from the proof of [14, Thm. 10.5] using Fact 8.1 to
handle both the real and complex case simultaneously.

We also require a spectral-norm error bound derived in [14, Sec. 10]. Note that
this result is only given for the real case.

Fact 8.4 (Halko et al. 2011). Fix A ∈ Rm×n. Assume that k > r+ 1. Draw the
random test matrix Ω ∈ Rk×n from the real standard normal distribution. Then the
matrix Q computed by (4.1) satisfies

EΩ ‖A−QQ∗A‖ ≤ g(r, k) · ‖A− JAKr‖+ h(r, k) · ‖A− JAKr‖F.

The functions g and h are defined in (4.7).

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 21

8.3. Proof of Theorem 4.1: Frobenius Error Bound. In this section, we
establish the Frobenius-norm error bound for the low-rank approximation (4.3). We
maintain the notation from sections 3 and 4, and we state explicitly when we are
making distributional assumptions on the test matrices.

8.3.1. Decomposition of the Approximation Error. Fact 8.3 formalizes
the intuition that A ≈ Q(Q∗A). The main object of the proof is to demonstrate that
X ≈ Q∗A. The first step in the argument is to break down the approximation error
into these two parts.

Lemma 8.5. The approximation error decomposes as

‖A− Â‖2F = ‖A−QQ∗A‖2F + ‖X −Q∗A‖2F.

Proof. Recall that Â = QX, and calculate that

‖A−QX‖2F = ‖(I−QQ∗)A + Q(Q∗A−X)‖2F
= ‖(I−QQ∗)A‖2F + ‖Q(Q∗A−X)‖2F
= ‖A−QQ∗A‖2F + ‖Q∗A−X‖2F.

The second line follows from the Pythagorean theorem, which is valid because the
ranges of I − QQ∗ and Q are orthogonal. The last identity holds because Q has
orthonormal columns and the Frobenius norm is unitarily invariant.

8.3.2. Approximating the Second Factor. Next, we develop an explicit ex-
pression for the error in the approximation X ≈ Q∗A. It is convenient to construct
a matrix P ∈ Fn×(n−k) with orthonormal columns that satisfies

(8.5) PP ∗ = I−QQ∗.

Introduce the matrices

(8.6) Ψ1 := ΨP ∈ F`×(n−k) and Ψ2 := ΨQ ∈ F`×k.

We are now prepared to state the result.

Lemma 8.6. Assume that the matrix Ψ2 has full column-rank. Then

(8.7) X −Q∗A = Ψ†2Ψ1(P ∗A).

The matrices Ψ1 and Ψ2 are defined in (8.6).

Proof. Recall that W = ΨA, and calculate that

W = ΨA = ΨPP ∗A + ΨQQ∗A = Ψ1(P ∗A) + Ψ2(Q∗A).

The second relation holds because PP ∗+QQ∗ = I. Then we use (8.6) to identify Ψ1

and Ψ2. By hypothesis, the matrix Ψ2 has full column-rank, so we can left-multiply
the last display by Ψ†2 to attain

Ψ†2W = Ψ†2Ψ1(P ∗A) + Q∗A.

Turning back to (4.2), we identify X = Ψ†2W .

22 JOEL A. TROPP ET AL.

8.3.3. The Expected Frobenius-Norm Error in the Second Factor. We
are now prepared to compute the average Frobenius-norm error in approximating
Q∗A by means of the matrix X. In contrast to the previous steps, this part of the
argument relies on distributional assumptions on the test matrix Ψ. Remarkably, for
a Gaussian test matrix, X is even an unbiased estimator of the factor Q∗A.

Lemma 8.7. Assume that Ψ ∈ F`×n is a standard normal matrix that is indepen-
dent from Ω. Then

EΨ[X −Q∗A] = 0.

Furthermore,
EΨ ‖X −Q∗A‖2F = f(k, `) · ‖A−QQ∗A‖2F.

Proof. Observe that P and Q are partial isometries with orthogonal ranges. Ow-
ing to the marginal property of the standard normal distribution, the random matri-
ces Ψ1 and Ψ2 are statistically independent standard normal matrices. In particular,
Ψ2 ∈ F`×k almost surely has full column-rank because the assumption (3.1) requires
that ` ≥ k.

First, take the expectation of the identity (8.7) to see that

EΨ[X −Q∗A] = EΨ2
EΨ1

[Ψ†2Ψ1P
∗A] = 0.

In the first relation, we use the statistical independence of Ψ1 and Ψ2 to write the
expectation as an iterated expectation. Then we observe that Ψ1 is a matrix with
zero mean.

Next, take the expected squared Frobenius norm of (8.7) to see that

EΨ ‖X −Q∗A‖2F = EΨ2
EΨ1
‖Ψ†2Ψ1(P ∗A)‖2F

= β · EΨ2

[
‖Ψ†2‖2F · ‖P ∗A‖2F

]
= f(k, `) · ‖P ∗A‖2F.

The last two identities follow from (8.1) and (8.2) respectively, where we use the fact
that Ψ2 ∈ F`×k. To conclude, note that

‖P ∗A‖2F = ‖PP ∗A‖2F = ‖A−QQ∗A‖2F.

The first relation holds because P is a partial isometry and the Frobenius norm is
unitarily invariant. Last, we apply the definition (8.5) of P .

8.3.4. Proof of Theorem 4.1. We are now prepared to complete the proof of
the Frobenius-norm error bound stated in Theorem 4.1. For this argument, we assume
that the test matrices Ω ∈ Fn×k and Ψ ∈ F`×m are drawn independently from the
standard normal distribution.

According to Lemma 8.5,

‖A− Â‖2F = ‖A−QQ∗A‖2F + ‖X −Q∗A‖2F.

Take the expectation of the last display to reach

E ‖A− Â‖2F = EΩ ‖A−QQ∗A‖2F + EΩ EΨ ‖X −Q∗A‖2F
= (1 + f(k, `)) · EΩ ‖A−QQ∗A‖2F
≤ (1 + f(k, `))(1 + f(r, k)) · ‖A− JAKr‖2F.

In the first line, we use the independence of the two random matrices to write the
expectation as an iterated expectation. To reach the second line, we apply Lemma 8.7
to the second term. Finally, we invoke the randomized linear algebra result, Fact 8.3.

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 23

8.4. Proof of Theorem 4.2: Spectral Error Bound. In this section, we
establish a spectral-norm error bound for the low-rank approximation (4.3). We
continue to use the notation from sections 3 and 4, and we emphasize that we are
now working in the real setting. As similar result holds true in the complex setting,
but facts about complex standard normal matrices were not immediately available.

8.4.1. Decomposition of the Approximation Error. As before, the first
step in the argument is to break down the error as A ≈ Q(Q∗A) and X ≈ Q∗A.

Lemma 8.8. The approximation error decomposes as

‖A− Â‖ ≤ ‖A−QQ∗A‖+ ‖X −Q∗A‖

Proof. Recall that Â = QX, and observe that

‖A−QX‖ ≤ ‖A−QQ∗A‖+ ‖Q(Q∗A−X)‖
= ‖A−QQ∗A‖+ ‖Q∗A−X‖.

The first relation is the triangle inequality, and the second holds because Q has
orthonormal columns and the spectral norm is unitarily invariant.

8.4.2. The Expected Spectral-Norm Error in the Second Factor. Next,
we bound the spectral-norm error in approximating Q∗A by X. This argument relies
on distributional assumptions on the test matrix Ψ.

Lemma 8.9. Assume that Ψ ∈ R`×n is a real standard normal matrix that is
independent from Ω. Then

EΨ ‖X −Q∗A‖ ≤
√
f(k, `) · ‖A−QQ∗A‖+ h(k, `) · ‖A−QQ∗A‖F.

The functions f and h are defined in (4.5) and (4.7).

Proof. The proof is similar with the proof of Lemma 8.7, but we also use Fact 8.2
to bound expectations. The expected spectral norm of the identity (8.7) satisfies

EΨ ‖X −Q∗A‖ = EΨ2
EΨ1
‖Ψ†2Ψ1(P ∗A)‖

= EΨ2

[
‖Ψ†2‖F · ‖P ∗A‖+ ‖Ψ†2‖‖P ∗A‖F

]
≤
√
f(k, `) · ‖P ∗A‖+ h(k, `) · ‖P ∗A‖F.

The second line follows from (8.3), while the last line depends on (8.2) and (8.4).
Finally, use the definition (8.5) of P to rewrite the norms of P ∗A in terms of Q.

8.4.3. Proof of Theorem 4.2. We may now complete the proof of the spectral-
norm error bound stated in Theorem 4.2. Assume that the test matrices Ω ∈ Rn×k

and Ψ ∈ R`×m are drawn independently from the real standard normal distribution.
According to Lemma 8.8,

‖A− Â‖ ≤ ‖A−QQ∗A‖+ ‖X −Q∗A‖.

Take the expectation of the last display to reach

E ‖A− Â‖ ≤ EΩ ‖A−QQ∗A‖+ EΩ EΨ ‖X −Q∗A‖

≤
(
1 +

√
f(k, `)

)
· EΩ ‖A−QQ∗A‖+ h(k, `) · EΩ ‖A−QQ∗A‖F

= g(k, `) · EΩ ‖A−QQ∗A‖+ h(k, `) · EΩ ‖A−QQ∗A‖F.

24 JOEL A. TROPP ET AL.

The second inequality follows from Lemma 8.9, and then we identify the function g
from (4.7). Invoke Facts 8.3 and 8.4, and rearrange to arrive at the bound

E ‖A− Â‖ ≤ g(r, k) · g(k, `) · ‖A− JAKr‖
+
[
h(r, k) · g(k, `) + g(r, k) · h(k, `)

]
· ‖A− JAKr‖F.

This is the stated result.

9. Analysis of Fixed-Rank Approximation. In this section, we develop an
analysis of the fixed-rank approximation scheme (5.2) that is implemented in Algo-
rithm 5. We maintain the notation from sections 3 and 4. We state explicitly when
we are making distributional assumptions on the test matrices.

9.1. Facts from (Randomized) Linear Algebra. First, we require a varia-
tional principle obtained in [13, Thm. 3.5].

Fact 9.1 (Gu [13]). Let M ∈ Fm×n be an arbitrary matrix, and let U ∈ Fm×k

be a matrix with orthonormal columns. For any rank parameter r,

min
rankZ≤r

‖M −UZ‖2F = ‖M −UJU∗MKr‖2F.

Our argument also relies on a new result about randomized matrix approximation.

Proposition 9.2. Assume that k > r + α. Draw the random test matrix Ω ∈
Fk×n from the standard normal distribution. Then the matrix Q computed by (4.1)
satisfies

EΩ ‖A−QQ∗JAKr‖2F ≤ (1 + f(r, k)) · ‖A− JAKr‖2F.

The function f is defined in (4.5), and the number α is given by (2.1).

This result is a subtle variant on Fact 8.3. The proof is based on the same
principles, but a detailed account would require us to repeat a significant part of the
presentation in [14, Sec. 9]. We include only a summary.

Proof Sketch. First, observe that

‖A−QQ∗JAKr‖2F = ‖A− JAKr‖2F + ‖(I−QQ∗)JAKr‖2F.

For example, see [13, Thm. 3.5]. To bound the second term, we write the partitioned
SVD of the matrix A as

A = U

[
Σ1

Σ2

] [
V ∗1
V ∗2

]
where Σ1 ∈ Fr×r and the singular values are arranged in weakly decreasing order.
We also introduce the matrices Ω1 := V ∗1 Ω and Ω2 := V ∗2 Ω. In the proof of [14,
Thm. 9.1], we simply replace the matrix A with the matrix JAKr to obtain the bound

‖(I−QQ∗)JAKr‖2F ≤ ‖Σ2Ω2Ω
†
1‖2F.

[The additional term in [14, Thm. 9.1] derives from the (r+ 1)th and smaller singular
values of A; for the matrix JAKr, it vanishes because the corresponding singular values
are zero.] As in the proof of Lemma 8.7 or in the proof of [14, Thm. 10.5], we have

E ‖Σ2Ω2Ω
†
1‖2F = f(k, `) · ‖Σ2‖2F = f(k, `) · ‖A− JAKr‖2F.

In the last step, we have noticed that ‖Σ2‖2F = ‖A− JAKr‖2F.

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 25

9.2. Proof of Theorem 5.1. Assume that the test matrices Ω ∈ Fn×k and
Ψ ∈ F`×m are drawn independently from the standard normal distribution. Recall
from (5.2) that our rank-r approximation takes the form JÂKr = QJXKr. According
to Lemma 8.6,

(9.1) X = Q∗A + E where E := Ψ†2Ψ1(P ∗A).

We develop a perturbation argument to show that the error term E has a limited
effect on the fixed-rank approximation.

We can make the deterministic calculation

‖A− JÂKr‖F = ‖A−QJQ∗A + EKr‖F
≤ ‖(A + QE)−QJQ∗A + EKr‖F + ‖QE‖F
≤ ‖(A + QE)−Q(Q∗JAKr)‖F + ‖QE‖F
≤ ‖A−QQ∗JAKr‖F + 2‖QE‖F
= ‖A−QQ∗JAKr‖F + 2‖Ψ†2Ψ1(P ∗A)‖F.

In the second line, we applied the triangle inequality. When M = A + QE and
U = Q, the rank-r matrix JQ∗(A + QE)Kr = JQ∗A + EKr is a minimizer of the
variational problem from Fact 9.1. To reach the next line, we replace this minimizer
with the undistinguished rank-r matrix Q∗JAKr. The penultimate line follows from
the triangle inequality. Last, we use unitary invariance to remove Q from the second
term, and we recall the definition (9.1) of E.

Take the expectation of the previous display to arrive at

E ‖A− JÂKr‖F ≤
(
EΩ ‖A−QQ∗JAKr‖2F

)1/2
+ 2

(
EΩ EΨ ‖Ψ†2Ψ1(P ∗A)‖2F

)1/2
≤
√

1 + f(r, k) · ‖A− JAKr‖F + 2
√
f(k, `) ·

(
EΩ ‖A−QQ∗A‖2F

)1/2
≤
[√

1 + f(r, k) + 2
√
f(k, `)(1 + f(r, k))

]
· ‖A− JAKr‖F.

The first relation follows from Jensen’s inequality. We invoke Proposition 9.2 to bound
the first term, and we use Lemma 8.7 to compute the expectation of the second term.
Last, we invoke Fact 8.3. This is the required estimate.

10. Computational Experiments. This section presents the results of some
numerical tests designed to evaluate the empirical performance of our low-rank recon-
struction algorithms. We also offer empirical comparisons with the method proposed
by Woodruff [25, Thm. 4.3].

In these experiments, we consider several classes of synthetic matrices that admit
accurate low-rank approximations, and we also study a specific matrix drawn from
an application in large-scale optimization. The figures map the topography of the
approximation error as a function of the sketch size parameters k and `. Using both
theory and experimental data, we investigate methods for selecting k and ` optimally
when the total sketch size k + ` is fixed. We also verify that the error bound from
Theorem 4.1 is sharp for one class of examples.

10.1. Three Classes of Input Matrices. To begin, let us describe three types
of (complex-valued) input matrices that we use to investigate the empirical perfor-
mance of our low-rank reconstruction algorithms. Figure 10.1 illustrates the singular
spectrum of a matrix from each of the categories.

26 JOEL A. TROPP ET AL.

10.1.1. A Low-Rank Matrix Plus White Noise. Select a dimension param-
eter n and a target rank r. We consider matrices of the form

Alr :=

[
Ir 0
0 0

]
+

√
γrn−2G ∈ Cn×n.

Here, Ir denotes the r × r identity matrix. The parameter γ controls the Frobenius
norm of the noise, and G is a (complex) standard normal matrix.

In our numerical work, we set the matrix dimension n = 104 and the rank param-
eter r = 5. We fix the noise level γ = 10−3. The results are qualitatively similar for
γ in the range 10−2 to 10−8. Note that the experiments for this model are performed
on a fixed matrix drawn from this class.

10.1.2. A Matrix Whose Spectrum Has Polynomial Decay. Select a di-
mension parameter n. We construct matrices of the form

Adecay := diag(1−p, 2−p, 3−p, . . . , n−p) ∈ Cn×n,

where p > 0 is a parameter that controls the polynomial rate of decay.
In our numerical work, the matrix dimension n = 104, and we consider decay

parameters p = 1 and p = 2. We fix the target rank r = 5.

10.1.3. A Matrix from an Application in Optimization. Last, we consider
a complex psd matrix obtained from an application:

Aappl ∈ Hn
+(C) with n = 25, 921.

The first five singular values of Aappl decrease from 1 to around 0.1; there is a signif-
icant gap between the fifth and sixth singular value; the remaining nonzero singular
values decay very rapidly; the matrix has rank 250. See Figure 10.1.

The matrix Aappl arises from an algorithm for solving a large-scale real-world
phase retrieval problem. See our paper [6] for more details about the role of single-
view low-rank approximation in this context. The phase retrieval application requires
us to produce a psd approximation of the matrix Aappl with target rank r = 1. For
completeness, we also explore the behavior of unstructured approximations, as well
as approximations with target rank r = 5.

10.1.4. Remarks. We have chosen to focus on the case where the input matrix
is square (m = n) to reduce the number of moving parts. The sketching methods
developed in this paper use standard normal test matrices, so the sketches and the
algorithms are invariant under changes of coordinates (in exact arithmetic). As a
consequence, we have built our synthetic examples around nonnegative, diagonal ma-
trices. The matrix Aappl from the phase retrieval problem is not diagonal.

10.2. Overview of Experimental Setup. For our numerical assessment, we
work over the complex field F = C. Results for the real field F = R are similar.

Let us summarize the procedure for studying the behavior of a specified recon-
struction method on a given input matrix. Fix the input matrix A and the target
rank r. Then select a pair (k, `) of sketch size parameters where k ≥ r and ` ≥ r.

Each trial has the following form. We draw (complex) standard normal test
matrices (Ω,Ψ) to form the sketch (Y ,W) of the input matrix. We compute an

approximation Âout of the matrix A by means of a specified reconstruction algorithm.
Then we calculate the error relative to the best rank-r approximation:

(10.1) relative error :=
‖A− Âout‖F
‖A− JAKr‖F

− 1.

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 27

j
10

0
10

1
10

2
10

3
10

4

jt
h
si
n
g
u
la
r
v
a
lu
e

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Noisy low-rank

Decaying 1/j
Decaying 1/j2

Real data

Fig. 10.1: For each of four matrices, this plot displays the singular value spectrum.
The solid black curve is the spectrum of the matrix Aappl from a phase retrieval
problem. The noisy low-rank matrix Alr and the matrices Adecay with decaying
spectrum are synthetic.

If Âout is a rank-r approximation of A, the relative error is always nonnegative.
To obtain each data point, we repeat the procedure from the last paragraph 50

times, each time with the same input matrix A and an independent draw of the test
matrices (Ω,Ψ). Then we report the average relative error over the 50 trials.

We include our Matlab implementations in the supplementary materials for
readers who seek more details on the methodology.

10.3. Theory versus Practice. Our first experiment is designed to assess the
accuracy of Theorem 4.1, the theoretical error bound for Algorithm 4, which produces
a rank-k approximation Â of an input matrix A. For reference, the bound reads

(10.2) E ‖A− Â‖2F ≤ (1 + f(r, k))(1 + f(k, `)) · ‖A− JAKr‖2F.

The function f is defined in (4.5).
For this experiment, we draw the input matrix A according to the noisy low-rank

model Alr, as discussed in subsection 10.1.1. We set the target rank r = 5, and we
sweep through a subset of the sketch size parameters k = 1, . . . , 150 and ` = k, . . . , 600.
We chart the quality of the reconstructions obtained from Algorithm 4 and the error
bound (10.2). See Figure 10.2 for the results.

We discover that the theoretical bound (10.2) closely tracks the error in the rank-

k reconstruction Â from Algorithm 4. In other words, for the noisy low-rank model,
the theoretical error bound is empirically sharp! As a consequence, we may use the
right-hand side of (10.2) as a proxy for the error achieved by Algorithm 4.

10.4. Exploring the Parameter Space. Next, we survey how the fixed-rank
reconstruction method, Algorithm 5, behaves for input matrices from each of the three

28 JOEL A. TROPP ET AL.

Fig. 10.2: This plot compares the error from Algorithm 4 (black mesh) with the
theoretical bound (10.2) (orange shaded surface) for the noisy low-rank matrix
model.

classes as we vary the sketch size parameters (k, `). We include comparisons with our
formulation (5.6) of Woodruff’s fixed-rank reconstruction [25, Thm. 4.3].

First, let us consider the noisy low-rank matrix Alr, discussed in subsection 10.1.1.
Figure 10.3a shows that Algorithm 5 and Woodruff’s method (5.6) have very similar
behavior at the target rank r = 5. Observe that Woodruff’s method may behave
substantially better than ours when ` is very close to k. In fact, these parameter
choices are not appropriate for our methods because we can always reduce the value
of k to improve the performance of Algorithm 5.

Second, we look at matrices Adecay with polynomially decaying singular values,
as discussed in subsection 10.1.2. Recall that the target rank r = 5. Figures 10.3b
and 10.3c compare the behavior of the reconstruction algorithms for decay exponents
p = 1 and p = 2. When p = 1, Algorithm 5 and Woodruff’s formula (5.6) perform
similarly. As the decay rate p increases, Algorithm 5 offers increasing benefits over
Woodruff’s technique.

Last, we examine the matrix Aappl derived from the phase retrieval application.
Figures 10.3d and 10.3e display reconstruction errors at target rank r = 1 and r = 5.
In addition to the unstructured fixed-rank approximations, we also study the per-
formance of Algorithm 9, which enforces the psd constraint. The psd reconstruction
is uniformly superior, with the unstructured approximation from Algorithm 5 close
behind. Woodruff’s approach (5.6) is typically worse by orders of magnitude.

10.5. Selecting the Best Sketch Size Parameters. Our primary goal is to
obtain the best possible fixed-rank reconstruction of an input matrix using the smallest
sketch possible. For standard normal test matrices, the storage cost of the sketch is
directly proportional to the sum k + ` of the sketch size parameters. In this section,
we investigate the best way to apportion k and ` when we fix the sketch size k + `

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 29

(a) Algorithm 5 (black mesh) versus Woodruff’s method (red shaded surface) for recon-
structing a noisy low-rank matrix Alr.

(b) Algorithm 5 (black mesh) versus
Woodruff’s method (red surface) for a ma-
trix Adecay with singular values σj = 1/j.

(c) Algorithm 5 (black mesh) versus
Woodruff’s method (red surface) for a ma-
trix Adecay with singular values σj = 1/j2.

(d) Algorithm 9 (blue shaded surface) versus
Algorithm 5 (black mesh) and Woodruff’s
method (red surface) for a matrix Aappl from
a phase retrieval application. (r = 1).

(e) Algorithm 9 (blue surface) versus Al-
gorithm 5 (black mesh) and Woodruff’s
method (red surface) for a matrix Aappl from
a phase retrieval application. (r = 5).

Fig. 10.3: The panels display the empirical performance of Algorithms 5 and 9
as compared to our formulation (5.6) of Woodruff’s fixed-rank reconstruction [25,
Thm. 4.3]. Matrix dimensions are m = n = 104 for synthetic examples and m =
n = 25, 921 for the phase retrieval matrix. The target rank r = 5, unless noted.
The sketch size parameters (k, `) are variables. Relative error is defined in (10.1).

30 JOEL A. TROPP ET AL.

and the target rank r.
First, we develop a theory-driven approach for selecting the sketch size param-

eters. In subsection 10.3, we observed that the theoretical bound (10.2) accurately
models the error in the low-rank reconstruction from Algorithm 4 for one class of
input matrices. Therefore, an appealing way to pick sketch size parameters (k, `) is
to minimize the bound (10.2) with the sum k + ` fixed, subject to the constraints
k > r + α and ` > k + α.

To that end, introduce notation T := k + ` for the total sketch size, and assume
that T > 2r. For F = C, the approach in the last paragraph leads to the “theoretically
optimal” sketch size parameters

(10.3) k? :=

⌊
T ·
√
r(T − r)− r
T − 2r

⌋
and `? := T − k?.

We omit the routine details behind this calculation.
Second, we would like to understand how perfectly tuned variants of the algo-

rithms compare with each other at a given sketch size. To do so, we can use the data
from the experiments in subsection 10.4 to minimize the empirical reconstruction er-
ror for each algorithm over pairs (k, `) with the sum k + ` fixed. The best possible
choice of (k, `) for a given method is referred to as the oracle sketch size. In practice,
we cannot identify the oracle sketch size a priori, although numerical studies may
provide some insight.

Figure 10.4 displays the performance of several reconstruction methods for three
classes of input matrices, as a function of the sum k + `. For each algorithm, we plot
the empirical error attained when the sketch size parameters are chosen according
to (10.3). We also plot the empirical error that the algorithm achieves for the oracle
sketch size parameters.

For all three classes of matrix, the performance of Algorithms 5 and 9 matches
or exceeds the performance of Woodruff’s method (5.6). This is true both for the
theoretically motivated choice and the oracle choice of the sketch size parameters.
When the input matrix has decaying singular values, our methods can achieve recon-
struction errors orders of magnitude better than Woodruff’s. For the matrix Aappl

from the phase retrieval application, the advantages of our method are undeniable.

10.6. Conclusions. This paper develops a collection of low-rank matrix recon-
struction algorithms that only require a single view of the matrix. Our empirical
studies demonstrate that these methods are effective for several types of matrices that
admit low-rank approximations. Our theoretical analysis provides practical guidance
for selecting sketch size parameters to minimize the total storage cost of the sketch.
Moreover, our methods compare favorably with the numerical formulation (5.6) of the
single-view reconstruction method proposed by Woodruff [25, Thm. 4.3].

For a given input matrix, the quality of a single-view low-rank reconstruction
depends on the singular value spectrum. For a low-rank matrix contaminated with
white noise, Woodruff’s approach is slightly better than ours. When the spectrum
of the matrix decays polynomially, our method outperforms Woodruff’s approach,
sometimes dramatically. Our method is markedly superior for a matrix derived from
a phase retrieval application. In addition, our method can achieve very small relative
errors, while experience suggests that Woodruff’s method does not offer this benefit.

In conclusion, the empirical evidence supports the claim that our algorithms pro-
vide a valuable suite of tools for low-rank matrix approximation from a single view.

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 31

k + ℓ

13 26 52 104 208

re
la
ti
v
e
er
ro
r

10
-1

10
0

10
1

Woodruff [25]
Algorithm 5

(a) Noisy low-rank matrix Alr

k + ℓ

13 26 52 104 208

r
e
la
t
iv
e
e
r
r
o
r

10
-2

10
-1

10
0

(b) Matrix Adecay with σj = 1/j

k + ℓ

13 26 52 104 208

r
e
la
t
iv
e
e
r
r
o
r

10
-4

10
-3

10
-2

10
-1

10
0

(c) Matrix Adecay with σj = 1/j2

k + ℓ

2 5 10 20 40 80

r
e
la
t
iv
e
e
r
r
o
r

10
-12

10
-9

10
-6

10
-3

10
0

(d) Phase retrieval matrix Aappl (r = 1)

k + ℓ

13 26 52 104 208

re
la
ti
v
e
er
ro
r

10
-9

10
-6

10
-3

10
0

Woodruff [25]
Algorithm 5
Algorithm 9

(e) Phase retrieval matrix Aappl (r = 5)

Fig. 10.4: The panels display the empirical performance of Algorithms 5 and 9 as
compared to our formulation (5.6) of Woodruff’s fixed-rank reconstruction. Matrix
dimensions are m = n = 104 for synthetic examples and m = n = 25, 921 for the
phase retrieval matrix. The target rank r = 5, unless otherwise stated. The variable
is the sum k+ ` of the sketch size parameters. Solid lines present the error at the
pair (k?, `?) defined in (10.3). Dashed lines reflect the minimum empirical error
attained for any (k, `). Relative error is defined in (10.1).

32 JOEL A. TROPP ET AL.

Acknowledgments. The authors would like to thank Gunnar Martinsson and
Mark Tygert for helpful conversations.

REFERENCES

[1] N. Ailon and B. Chazelle, Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform, in STOC’06: Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, ACM, New York, 2006, pp. 557–563,
doi:10.1145/1132516.1132597, http://dx.doi.org/10.1145/1132516.1132597.

[2] N. Ailon and B. Chazelle, The fast Johnson-Lindenstrauss transform and approximate
nearest neighbors, SIAM J. Comput., 39 (2009), pp. 302–322, doi:10.1137/060673096,
http://dx.doi.org/10.1137/060673096.

[3] J. Bourgain, S. Dirksen, and J. Nelson, Toward a unified theory of sparse dimen-
sionality reduction in Euclidean space, Geom. Funct. Anal., 25 (2015), pp. 1009–1088,
doi:10.1007/s00039-015-0332-9, http://dx.doi.org/10.1007/s00039-015-0332-9.

[4] C. Boutsidis and A. Gittens, Improved matrix algorithms via the subsampled random-
ized Hadamard transform, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1301–1340,
doi:10.1137/120874540, http://dx.doi.org/10.1137/120874540.

[5] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press,
Cambridge, 2004, doi:10.1017/CBO9780511804441, http://dx.doi.org/10.1017/
CBO9780511804441.

[6] V. Cevher, J. A. Tropp, M. Udell, and A. Yurtsever, Sketchy decisions: convex optimiza-
tion with optimal storage, May 2016, arXiv:1608.xxxxx [math.NA]. Manuscript.

[7] K. L. Clarkson and D. P. Woodruff, Numerical linear algebra in the streaming model, in
Proc. 41st ACM Symposium on Theory of Computing (STOC), Bethesda, 2009.

[8] K. L. Clarkson and D. P. Woodruff, Low rank approximation and regression in in-
put sparsity time, in STOC’13—Proceedings of the 2013 ACM Symposium on The-
ory of Computing, ACM, New York, 2013, pp. 81–90, doi:10.1145/2488608.2488620,
http://dx.doi.org/10.1145/2488608.2488620.

[9] M. Cohen, Nearly tight oblivious subspace embeddings by trace inequalities, in Proc. 27th Ann.
ACM-SIAM Symp. Discrete Algorithms (SODA), Arlington, Jan. 2016, pp. 278–287.

[10] J. Demmel, I. Dumitriu, and O. Holtz, Fast linear algebra is stable, Numer.
Math., 108 (2007), pp. 59–91, doi:10.1007/s00211-007-0114-x, http://dx.doi.org/10.1007/
s00211-007-0114-x.

[11] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices. II.
Computing a low-rank approximation to a matrix, SIAM J. Comput., 36 (2006), pp. 158–
183, doi:10.1137/S0097539704442696, http://dx.doi.org/10.1137/S0097539704442696.

[12] A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algorithms for finding low-rank
approximations, J. ACM, 51 (2004), pp. 1025–1041, doi:10.1145/1039488.1039494, http:
//dx.doi.org/10.1145/1039488.1039494.

[13] M. Gu, Subspace iteration randomization and singular value problems, SIAM J. Sci. Com-
put., 37 (2015), pp. A1139–A1173, doi:10.1137/130938700, http://dx.doi.org/10.1137/
130938700.

[14] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288.

[15] N. J. Higham, Matrix nearness problems and applications, in Applications of matrix theory
(Bradford, 1988), Oxford Univ. Press, New York, 1989, pp. 1–27.

[16] M. W. Mahoney, Randomized algorithms for matrices and data, Foundations and Trends R©
in Machine Learning, 3 (2011), pp. 123–224.

[17] P.-G. Martinsson, V. Rokhlin, and M. Tygert, A randomized algorithm for the
decomposition of matrices, Appl. Comput. Harmon. Anal., 30 (2011), pp. 47–68,
doi:10.1016/j.acha.2010.02.003, http://dx.doi.org/10.1016/j.acha.2010.02.003.

[18] X. Meng and M. W. Mahoney, Low-distortion subspace embeddings in input-sparsity
time and applications to robust linear regression, in STOC’13—Proceedings of the
2013 ACM Symposium on Theory of Computing, ACM, New York, 2013, pp. 91–100,
doi:10.1145/2488608.2488621, http://dx.doi.org/10.1145/2488608.2488621.

[19] S. Muthukrishnan, Data streams: algorithms and applications, Found. Trends Theor. Com-
put. Sci., 1 (2005), pp. 117–236.

[20] J. Nelson and H. L. Nguyen, OSNAP: faster numerical linear algebra algorithms via sparser
subspace embeddings, in 2013 IEEE 54th Annual Symposium on Foundations of Com-

http://dx.doi.org/10.1145/1132516.1132597
http://dx.doi.org/10.1145/1132516.1132597
http://dx.doi.org/10.1137/060673096
http://dx.doi.org/10.1137/060673096
http://dx.doi.org/10.1007/s00039-015-0332-9
http://dx.doi.org/10.1007/s00039-015-0332-9
http://dx.doi.org/10.1137/120874540
http://dx.doi.org/10.1137/120874540
http://dx.doi.org/10.1017/CBO9780511804441
http://dx.doi.org/10.1017/CBO9780511804441
http://dx.doi.org/10.1017/CBO9780511804441
http://arxiv.org/abs/1608.xxxxx
http://dx.doi.org/10.1145/2488608.2488620
http://dx.doi.org/10.1145/2488608.2488620
http://dx.doi.org/10.1007/s00211-007-0114-x
http://dx.doi.org/10.1007/s00211-007-0114-x
http://dx.doi.org/10.1007/s00211-007-0114-x
http://dx.doi.org/10.1137/S0097539704442696
http://dx.doi.org/10.1137/S0097539704442696
http://dx.doi.org/10.1145/1039488.1039494
http://dx.doi.org/10.1145/1039488.1039494
http://dx.doi.org/10.1145/1039488.1039494
http://dx.doi.org/10.1137/130938700
http://dx.doi.org/10.1137/130938700
http://dx.doi.org/10.1137/130938700
http://dx.doi.org/10.1016/j.acha.2010.02.003
http://dx.doi.org/10.1016/j.acha.2010.02.003
http://dx.doi.org/10.1145/2488608.2488621
http://dx.doi.org/10.1145/2488608.2488621

SINGLE-VIEW ALGORITHMS FOR MATRIX APPROXIMATION 33

puter Science—FOCS 2013, IEEE Computer Soc., Los Alamitos, CA, 2013, pp. 117–126,
doi:10.1109/FOCS.2013.21, http://dx.doi.org/10.1109/FOCS.2013.21.

[21] J. Nelson and H. L. Nguyen, Lower bounds for oblivious subspace embeddings, in Au-
tomata, languages, and programming. Part I, vol. 8572 of Lecture Notes in Comput.
Sci., Springer, Heidelberg, 2014, pp. 883–894, doi:10.1007/978-3-662-43948-7 73, http:
//dx.doi.org/10.1007/978-3-662-43948-7 73.

[22] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, Latent semantic in-
dexing: a probabilistic analysis, J. Comput. System Sci., 61 (2000), pp. 217–235,
doi:10.1006/jcss.2000.1711, http://dx.doi.org/10.1006/jcss.2000.1711. Special issue on the
Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (Seattle, WA, 1998).

[23] T. Sarlós, Improved approximation algorithms for large matrices via random projections, in
Proc. 47th Ann. IEEE Symposium on Foundations of Computer Science (FOCS), Berkeley,
2006.

[24] J. A. Tropp, Improved analysis of the subsampled randomized Hadamard transform, Adv.
Adapt. Data Anal., 3 (2011), pp. 115–126, doi:10.1142/S1793536911000787, http://dx.doi.
org/10.1142/S1793536911000787.

[25] D. P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends Theor.
Comput. Sci., 10 (2014), pp. iv+157.

[26] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast randomized algorithm for the
approximation of matrices, Appl. Comput. Harmon. Anal., 25 (2008), pp. 335–366.

http://dx.doi.org/10.1109/FOCS.2013.21
http://dx.doi.org/10.1109/FOCS.2013.21
http://dx.doi.org/10.1007/978-3-662-43948-7_73
http://dx.doi.org/10.1007/978-3-662-43948-7_73
http://dx.doi.org/10.1007/978-3-662-43948-7_73
http://dx.doi.org/10.1006/jcss.2000.1711
http://dx.doi.org/10.1006/jcss.2000.1711
http://dx.doi.org/10.1142/S1793536911000787
http://dx.doi.org/10.1142/S1793536911000787
http://dx.doi.org/10.1142/S1793536911000787

	Motivation
	Low-Rank Matrix Approximation
	Sketching
	The Single View Paradigm
	Desiderata
	Our Approach and Contributions
	Overview of Related Work

	Background
	Notation and Conventions
	Standard Normal Matrices

	Sketching the Target Matrix
	The Target Matrix
	The Target Rank
	Parameters for the Sketch
	The Test Matrices
	The Sketch
	The Sketch as an Abstract Data Type
	Initializing the Sketch and its Costs
	Processing Linear Updates
	Choosing the Distribution of the Test Matrices

	Low-Rank Approximation from a Single View
	The Basic Reconstruction Algorithm
	Intuition
	Algorithm and Costs
	A Bound for the Frobenius-Norm Error
	A Bound for the Spectral-Norm Error
	High-Probability Error Bounds
	Comparison with Prior Work

	Fixed-Rank Approximation from a Single View
	The Fixed-Rank Reconstruction Algorithm
	Algorithm and Costs
	A Bound on the Frobenius-Norm Error
	Comparison with Prior Work

	Low-Rank Approximations with Convex Structure
	Projection onto a Convex Set
	Improved Approximation by Convex Projection
	Low-Rank Approximation with Conjugate Symmetry
	Conjugate Symmetric Projection
	Computing a Conjugate Symmetric Approximation
	Algorithm and Costs
	A Bound on the Frobenius-Norm Error

	Low-Rank Positive-Semidefinite Approximation
	PSD Projection
	Computing a PSD Approximation
	Algorithm, Costs, and Error

	Fixed-Rank Structured Approximations
	A General Error Bound for Fixed-Rank Approximation
	Fixed-Rank Conjugate Symmetric Approximation
	Fixed-Rank PSD Approximation

	Analysis of Low-Rank Approximation
	Facts about Random Matrices
	Results from Randomized Linear Algebra
	Proof of thm:err-frob: Frobenius Error Bound
	Decomposition of the Approximation Error
	Approximating the Second Factor
	The Expected Frobenius-Norm Error in the Second Factor
	Proof of thm:err-frob

	Proof of thm:err-spec: Spectral Error Bound
	Decomposition of the Approximation Error
	The Expected Spectral-Norm Error in the Second Factor
	Proof of thm:err-spec

	Analysis of Fixed-Rank Approximation
	Facts from (Randomized) Linear Algebra
	Proof of thm:fixed-rank-recon

	Computational Experiments
	Three Classes of Input Matrices
	A Low-Rank Matrix Plus White Noise
	A Matrix Whose Spectrum Has Polynomial Decay
	A Matrix from an Application in Optimization
	Remarks

	Overview of Experimental Setup
	Theory versus Practice
	Exploring the Parameter Space
	Selecting the Best Sketch Size Parameters
	Conclusions

	References

