
Supplementary Material
Truncated Variance Reduction: A Unified Approach to Bayesian Optimization
and Level-Set Estimation (Ilija Bogunovic, Jonathan Scarlett, Andreas Krause,
and Volkan Cevher, NIPS 2016)

A Variations of the TRUVAR Algorithm

Our algorithm TRUVAR can naturally be adapted to suit various settings, including the following:

• Non-monotonic M
t

: We have defined our sets M
t

to become smaller on every time step. How-
ever, if �

(i)

is chosen aggressively, it may be preferable to replace M
t�1

by D in (5)–(6), in
which case some removed points may be added back in depending on how the posterior mean
changes between steps. We take this approach in the real-world BO example of Section 4 in
which the kernel hyperparameters are learned online, so as to avoid incorrectly ruling out points
early on due to mismatched hyperparameters.

• Avoiding computing the acquisition function everywhere: We found that instead of comput-
ing the acquisition function at every point in D, limiting the selection to points in M

t�1

has
minimal effect on the performance. To reduce the computation even further, one could adopt a
strategy such as that proposed in [22]: Take some relatively small number of points having the
top GP-UCB or EI score, and then choose the point in that restricted subset having the highest
score according to (3). In fact, the numerical results in Figure 3 suggest that this may not only
reduce the computation, but also improve the performance in the very early rounds by making
the algorithm initially behave more like GP-UCB or EI.

• Pure variance reduction: Setting ⌘
(1)

= 0 yields a pure variance reduction algorithm, which
minimizes the total variance within M

t

via a one-step lookahead. While our theory does not
apply in this case, we found this choice to also work well in practice.

• Implicit threshold for level-set estimation: While we have focused on a threshold h for level-
set estimation that is fixed in advance, one can easily incorporate the ideas of [2] to allow for an
implicit threshold which is equal to some constant multiple of the function’s maximum, which is
random and unknown in advance.

• Anticipating changes in M
t

: The acquisition function (3) computes the truncated variance
reduction resulting from a one-step lookahead, but still sums over the previous set M

t�1

. In
order to make it more preferable to choose points that shrink M

t

faster, it may be preferable
to instead sum over M

t�1|x, defined to be the updated set upon adding x. The problem here
is that such an update depend on the next posterior mean, whose update requires sampling f .
One solution is to average over the measurement as in [8]; alternatively, a simpler approach is to
replace the observed value with its mean when doing this one-step lookahead, and then using the
true observed function sample only when x

t

is actually chosen.

• Continuous domains: Our algorithm also extends to compact domains such as [0, 1]

d. The
main challenge is that the summations in (3) become integrals that need to be approximated
numerically. The simplest way of doing this is to approximate the integrals by summations over
a finite number of representer points, e.g., a grid of values that cover the domain sufficiently
densely. The theoretical analysis of this modified algorithm is left for future work.

• Batch setting: As we show in the proof of Theorem 3.1, our algorithm can be interpreted as
performing the first step of a greedy submodular covering problem at each time step. This leads
to a very natural extension to the batch setting, in which multiple points (say, k of them) are
chosen at each time step: Simply perform the first k steps of the greedy covering algorithm
during each batch.

B Further Details of Numerical Experiments

Other algorithms considered: We outline the algorithms that TRUVAR is compared against; full
details can be found in the cited papers. For level-set estimation, we have the following:

10

(a) (b)

Figure 4: (a) Function used in synthetic level-set estimation experiments; (b) The total cost used by
TRUVAR for each of the three noise levels.

• The GCHK algorithm [2] evaluates, at each iteration, the point that is not yet classified with
the largest ambiguity: x

t

= arg max

x2Mt�1

min{u
t

(x) � h, h � `
t

(x)}, where u
t

and `
t

are defined as in (4) with a parameter �
t

replacing �
(i)

. Here, similarly to our algorithm,
M

t�1

is the set of points that have not yet been classified as having a value above or below
the threshold h.

• The straddle (STR) heuristic [7] chooses x
t

= arg max

x2D

1.96�
t�1

(x)� |µ
t�1

(x)� h|,
favoring high-uncertainty points that are expected to have function values closer to h.

• The maximum variance rule (VAR) [2] simply chooses x
t

= arg max

x2D

�
t�1

(x).

For Bayesian optimization, we have the following:

• The expected improvement (EI) algorithm [1] chooses x
t

= arg max

x2D

E
t

[(f(x) �
⇠
t

)1{f(x) > ⇠
t

}], where E
t

[·] denotes averaging with respect to the posterior distribu-
tion at time t, and ⇠

t

is the best observed value so far. Since the posterior is Gaussian, the
expectation can easily be expressed in closed form.

• The Gaussian Process Upper Confidence Bound (GP-UCB) algorithm [3] chooses the
points with the highest upper confidence bounds, x

t

= arg max

x2D

µ
t�1

(x)+�
t

�
t�1

(x),
where �

t

is a parameter controlling the level of exploration performed.
• The Entropy Search (ES) algorithm can be interpreted as approximating the rule x

t

=

arg min

x2D

h(f
x

⇤|t,x), where h(f) =

R

D

f(x) log

1

f(x)

dx denotes the differential entropy,
and f

x

⇤|t,x denotes the density function of the optimal action x⇤ given the observations up
to time t along with the additional observation x. Intuitively, this rule seeks to minimize the
uncertainty of x⇤. Since its exact evaluation is intractable, it is approximated using Monte
Carlo techniques to average with respect to the posterior distribution and the measurements.

• The Minimum Regret Search (MRS) algorithm [11] also resembles ES, but works with the
expected regret instead of the differential entropy. Once again, Monte Carlo techniques are
used to average with respect to the posterior distribution and the measurements.

Efficiently computing the acquisition function: To compute the value of the acquisition func-
tion (3) for different x 2 D, we need to compute �2

t�1|x(M
t�1

) 2 R|Mt�1

|, i.e., the posterior
variance of points in M

t�1

upon observing x along with x
1

, · · · , x
t�1

. Instead of computing it
directly, it is more efficient to recursively compute �2

t�1|x(M
t�1

) = �2

t�1

(M
t�1

)��

t�1|x(M
t�1

).
The difference term, �

t�1|x(M
t�1

), can be computed as [8]:

�

t�1|x(M
t�1

) = diag
�

Cov
t�1

(M
t�1

, x)(�2

+ �2

t�1

(x))

�1Cov
t�1

(M
t�1

, x)

T

�

, (18)
where

�2

t�1

(x) = k(x, x) � k
t�1

(x)

T

�

K
t�1

+ ⌃
t�1

��1

k
t�1

(x) (19)

Cov
t�1

(M
t�1

, x) = k(M
t�1

, x) � k
t�1

(M
t�1

)

T

�

K
t�1

+ ⌃
t�1

��1

k
t�1

(x), (20)

and where k(M
t�1

, x) =

⇥

k(x, x)

⇤

x2|Mt�1

| 2 R|Mt�1

|, and k
t�1

(M
t�1

) =

⇥

k(x, x)

⇤

x2|Mt�1

|,x2{1,...,t�1} 2 R|Mt�1

|⇥(t�1). When the Cholesky decomposition of

K
t�1

+ ⌃
t�1

is known,
�

K
t�1

+ ⌃
t�1

��1

k
t�1

(x) can be computed in time O(t2).

11

Details on LSE experiment with multiple noise levels: Figure 4a plots the randomly-generated
function that was used in this experiment. Figure 4b plots the average cost spent by TRUVAR on
each noise level by the end of the experiment, again averaged over 100 trials. We see that the
cost is roughly equally distributed across the three levels. To be more specific, we observed that
TRUVAR initially chooses high noise levels in order to cheaply explore, and throughout the course
of the experiments, it gradually switches to lower noise levels in order to accurately determine the
function values around the maximum. This is consistent with the behavior of the three version of
GCHK, with �2

= 0.05 performing well in the early stages, but �2

= 10

�6 being preferable in the
later stages.

Extension of TRUVAR for synthetic BO experiment We used the extension of TRUVAR to con-
tinuous domains outlined in Appendix A, approximating the integrals over M

t

by summations that
are restricted to points on a uniformly-spaced 50 ⇥ 50 grid covering [0, 1]

2. We optimized our
acquisition function using DIRECT [23].

C Proof of General Result (Theorem 3.1)

We begin with the following lemma from [3].

Lemma C.1. [3] For each t, define �
t

= 2 log

|D|t2⇡

2

6�

. With probability at least 1 � �, we have for
all x and t that |f(x) � µ

t

(x)| �1/2

t

�
t

(x).

We conclude that in order for µ
t

(·) ± �1/2

(i)

�
t

(·) to provide valid confidence bounds, it suffices to
ensure that �

(i)

� �
t

for all t in epoch i. From (14), we see that this is true provided that the time
taken to reach the end of the i-th epoch is at most 1

c

min

P

i

0i

C
(i

0
)

. Since c
min

is the minimum
pointwise cost, this holds provided that the cost incurred in epoch i is at most C

(i)

. The bulk of the
proof is devoted to showing that this is the case.

We connect TRUVAR with the following budgeted submodular covering problem:2

minimize
S

c(S) subject to g
t

(S) = g
t,max

, (21)

where

g
t

(S) =

X

x2Mt�1

max

⇢

�2

t�1

(x),
⌘2

(i)

�
(i)

�

�
X

x2Mt�1

max

⇢

�2

t�1|S(x),
⌘2

(i)

�
(i)

�

, (22)

and where g
t,max

is the highest possible value of g
t

(S) over arbitrarily large S, i.e., it is the value

obtained once all of the summands in the second summation in (22) have saturated to
⌘

2

(i)

�

(i)
:

g
t,max

=

X

x2Mt�1

✓

max

⇢

�2

t�1

(x),
⌘2

(i)

�
(i)

�

�
⌘2

(i)

�
(i)

◆

(23)

=

X

x2Mt�1

max

⇢

0, �2

t�1

(x) �
⌘2

(i)

�
(i)

�

. (24)

We thus refer to g
t,max

as the excess variance; see Figure 5 for an illustration. Note that each time
instant t corresponds to a different function g

t

(S), and we are considering sets S of an arbitrary size
even though our algorithm only chooses one point at each time instant.

By our assumption on the submodularity of the variance reduction function, and the fact that taking
the minimum with a constant3 preserves submodularity [17], g

t

(S) is also submodular. It is also
easily seen to be monotonically increasing, and normalized in the sense that g

t

(;) = 0.
2Recall that S may contain duplicates, and these are counted multiple times accordingly in the definitions

of both c(S) and gt(S). All of our equations can be cast in terms of standard sets (without duplicates) by
expanding D to D ⇥ {1, · · · , N} for any integer N that is larger than the maximum number of points that are
chosen throughout the course of the algorithm.

3The minimum becomes a maximum after negation.

12

⌘

2

(i)

�

(i)

�2

t�1

(x̄)

x̄

Area g
t,max

Figure 5: Illustration of the excess variance g
t,max

.

Our selection rule (3) at time t can now be interpreted as the first step in a greedy algorithm for
solving the budgeted submodular optimization problem (21); specifically, the greedy rule optimizes
the objective value per unit cost. To obtain performance guarantees, we use Lemma 2 of [24]
specialized to |S| = 1, which reads as follows in our own notation:

g
t

({x
t

}) � c(x
t

)

c(S⇤
t

)

g
t,max

, (25)

where S⇤
t

is an optimal solution to (21), and hence g
t

(S⇤
) = g

t,max

. Here x
t

is the point chosen
greedily by our algorithm.

We now consider the behavior of the excess variance g
t,max

in a single epoch, i.e., the duration of a
single value of i in the algorithm. We claim that for t and t + 1 in the same epoch, we have

g
t+1,max

 g
t,max

� g
t

({x
t

}). (26)

To see this, we note from (22)–(23) that this would hold with equality if we were to have M
t

=

M
t�1

, since by definition we have �2

t

(x) = �2

t�1|{xt}(x). We therefore obtain (26) by recalling that
M

t

is decreasing in t with respect to inclusion, and noting from (24) that any given g
t,max

can only
decrease when M

t�1

is smaller.

Combining (25)–(26) gives

g
t+1,max

✓

1 � c(x
t

)

c(S⇤
t

)

◆

g
t,max

. (27)

We also note that c(S⇤
t+1

) c(S⇤
t

), which follows since �2

t

(·) is decreasing in t and M
t

is shrinking
in t, and therefore at time t + 1 a smaller cost is required to ensure that all terms in the second

summation of (22) have saturated to
⌘

2

(i)

�

(i)
. Hence, and applying (27) recursively, we obtain for t and

t + ` in the same epoch that

g
t+`,max

g
t,max

t+`

Y

t

0
=t+1

✓

1 � c(x
t

0
)

c(S⇤
t

)

◆

(28)

 exp

✓

�
P

t+`

t

0
=t+1

c(x
t

0
)

c(S⇤
t

)

◆

, (29)

where we have applied the inequality 1 � ↵ e�↵. Moreover, the total cost incurred by choosing
these points is precisely

P

t+`

t

0
=t+1

c(x
t

). Thus, letting t
(i)

be the first time index in the i-th epoch, we
find that in order to remove all but a proportion � of the initial excess variance g

t

(i),max

, it suffices
that the cost incurred is at least

c(S⇤
t

(i)
) log

1

�
. (30)

Next, we observe that since the posterior variance is upper bounded by one due to the assumption
k(x, x) = 1, the initial excess variance g

t

(i),max

is upper bounded by g
t

(i),max

 |M
t

(i)�1

|, the size

13

of the set of potential maximizers at the start of the epoch. It follows that if we set

� =

�
2

⌘2

(i)

�
(i)

|M
t

(i)�1

| , (31)

then removing all but a proportion � of g
t

(i),max

also implies removing all but �
2 ⌘

2

(i)

�

(i)
of it. In other

words, if at time t we have incurred a cost in epoch i satisfying (30) with � as in (31), then we must

have g
t,max

 �
2 ⌘

2

(i)

�

(i)
.

Removing all of the excess variance would imply ⌘
(i)

-confidence at all points in M
t

. In the worst

case, the remaining excess variance �
2 ⌘

2

(i)

�

(i)
is concentrated entirely on a single point, in which case

its confidence is upper bounded by
q

1 + �
2

⌘
(i)

, which is further upper bounded by (1 + �)⌘
(i)

due
to the identity

p
1 + ↵2 1 + ↵.

Combining these observations, we conclude that in the i-th epoch, upon incurring a cost of at least

c(S⇤
t

(i)
) log

|M
t

(i)�1

|�
(i)

�
2

⌘2

(i)

, (32)

we are guaranteed to have (1 + �)⌘
(i)

-confidence for all points in M
t

. Having such confidence is
precisely the condition used in the algorithm to move onto the next epoch, and we conclude that the
epoch must end by (or sooner than) the time that (32) holds.

In accordance with the discussion following Lemma C.1, we need to show that when the high-
probability event in that lemma holds true, (32) is upper bounded by the right-hand side of (13) for
all epochs. We do this via an induction argument on the epoch number:

• As a base case, recalling that M
0

= M
(0)

= D, we find that (32) and (13) coincide, with the
addition of c

max

arising since once (32) is exceeded, it may be exceeded by any amount up to
c
max

.

• Fix an epoch number i > 1, and suppose that for all i0 < i, the cost incurred in epoch i0 was
at most C⇤� ⌘

(i0)

�

1/2

(i0)
, M

(i

0�1)

�

log

|M
(i0�1)

|�
(i0)

�

2

⌘

2

(i0)
+ c

max

. By the choice of �
(i

0
)

in (14), we find that

under the event in Lemma C.1, the confidence bounds µ
t

±
p

�
(i

0
)

�
t

must have been valid for
all t in the epochs i0 < i, and hence M

(i�1)

✓ M
t

(i)�1

(cf., (9)–(10)).

From this, we claim that an analogous argument to the base case implies that (32) is upper
bounded by the right-hand side of (13), as required. The only additional argument compared
to the base case is noting that c(S⇤

t

(i)
) defines the minimum cost to uniformly shrink the poste-

rior standard deviation within M
t

(i)�1

down to
⌘

2

(i)

�

(i)
after already having chosen x

1

, . . . , x
t

(i)�1

,

whereas C⇤� ⌘

(i)

�

1/2

(i)

, M
(i�1)

�

is defined analogously for the set M
(i�1)

with no previously-chosen

points. The latter clearly upper bounds the former.

Finally, we check the conditions for ✏-accuracy in Definition 3.1. In the case of BO, summing
(13) over all of the epochs such that 4(1 + �)⌘

(i�1)

> ✏ yields (15); recall from (9) that after any
epoch i such that 4(1 + �)⌘

(i)

 ✏, all points are at most ✏-suboptimal. We also note that all true
maxima must remain in M

t

, due to the fact that we showed �
(i)

yields valid confidence bounds with
high probability, and we only ever discard points that are deemed suboptimal according to those
bounds. For LSE, a similar conclusion follows from (10) by summing over all epochs such that
2(1 + �)⌘

(i�1)

> ✏

2

, which is the same as 4(1 + �)⌘
(i�1)

> ✏. Once again, all points in H
t

and L
t

are correct due to the validity of our confidence bounds.

14

D Simplified Result for the Homoscedastic and Unit-Cost Setting

Since we are focusing on unit costs c(x) = 1, the cost simply corresponds to the number of rounds
T . To highlight this fact, we replace C⇤ in (11) by

T ⇤
(⇠, M) = min

S

n

|S| : max

x2M

�
0|S(x) ⇠

o

, (33)

and similarly replace (34)–(36) by

T
(i)

� T ⇤
✓

⌘
(i)

�1/2

(i)

, M
(i�1)

◆

log

|M
(i�1)

|�
(i)

�
2

⌘2

(i)

+ 1 (34)

�
(i)

� 2 log

|M
(i�1)

|
�

P

i

0i

T
(i

0
)

�

2

⇡2

6�
(35)

T
✏

=

X

i : 4(1+�)⌘

(i�1)

>✏

T
(i)

. (36)

In this section, we prove the following as an application of Theorem 3.1.

Corollary D.1. Fix ✏ > 0 and � 2 (0, 1), define �
T

= 2 log

|D|T 2

⇡

2

6�

, and set ⌘
(1)

= 1 and r =

1

2

.
There exist choices of �

(i)

(not depending on the time horizon T) such that we have ✏-accuracy with
probability at least 1 � � once the following condition holds:

T �
✓

C
1

�
T

�
T

96(1 + �)2

✏2
+ 2

l

log

2

8(1 + �)

✏

m

◆

log

16(1 + �)2|D|�
T

�
2

✏2
, (37)

where C
1

=

1

log(1+�

�2

)

. This condition is of the form T � ⌦

⇤�C

1

�T �T

✏

2

+ 1

�

.

We bound the cardinality of S in (33) by considering a procedure that greedily picks
arg max

x2M

�
t

(x). We claim that after selecting k points according to this procedure to construct
a set S

k

, we have
max

x

�2

0|Sk
(x) C

1

�
k

k
, (38)

where C
1

=

1

log(1+�

�2

)

. This is seen by writing

k max

x2M

�2

0|Sk
(x) = k�2

0|Sk
(x

k

) (39)

k

X

j=1

�2

0|Sj
(x

j

) (40)

 1

log(1 + ��2

)

�
k

, (41)

where we respectively used that x
k

maximizes �
0|Sk

, that �
0|Si

(x
i

) always decreases as more points
are chosen, and the bound on the sum of variances of sampled points from [3, Lemma 5.4].

Identifying k with T ⇤, and max

x2M

�
0|Sk

(x) with ⇠ =

⌘

�

1/2

(for some ⌘ and � to be specified), we
obtain from (41) that

T ⇤
✓

⌘

�1/2

, M

◆

 min

⇢

T ⇤
: T ⇤ � C

1

�
T

⇤�

⌘2

�

. (42)

Consider the value T ⇤� ⌘

(i)

�

1/2

(i)

, M
(i�1)

�

corresponding to the parameters ⌘ = ⌘
(i)

and � = �
(i)

associated with epoch i. Letting T = T
✏

denote the total time horizon, and using (36), we find that
�

(i)

in (35) can be upper bounded by 2 log

|D|T 2

⇡

2

6�

, which is precisely �
T

. By similarly using the
monotonicity of �

t

, we obtain

T ⇤
✓

⌘
(i)

�1/2

(i)

, M
(i�1)

◆

 C
1

�
T

�
T

⌘2

(i)

+ 1, (43)

15

where the addition of one is to account for possible rounding up to the nearest integer.

Using (43), we find that in order for (34) to hold it suffices that

T
(i)

�
✓

C
1

�
T

�
T

⌘2

(i)

+ 1

◆

log

|M
(i�1)

|�
(i)

�
2

⌘2

(i)

+ 1. (44)

Since we are only considering values of i such that 4(1 + �)⌘
(i�1)

> ✏, and since M
(i�1)

✓ D,

we can upper bound the logarithm by log

16(1+�)

2|D|�
(i)

�

2

✏

2

> 1, and hence in order for (44) to hold it
suffices that

T
(i)

�
✓

C
1

�
T

�
T

⌘2

(i)

+ 2

◆

log

16(1 + �)2|D|�
T

�
2

✏2
. (45)

We also note that since ⌘
(i)

= ⌘
(1)

ri�1, the condition 4(1 + �)⌘
(i�1)

> ✏ is equivalent to

4(1 + �)⌘
(1)

ri�2 > ✏ (46)

() ri�2 >
✏

4(1 + �)⌘
(1)

(47)

() i < 2 + log

1/r

4(1 + �)⌘
(1)

✏
(48)

() i
l

log

1/r

4(1 + �)⌘
(1)

✏

m

+ 1 (49)

() i
l

log

1/r

4(1 + �)⌘
(1)

r✏

m

, (50)

where in the last line we used log

1/r

1

r

= 1. Summing (45) over all such i in accordance with (36),
we obtain following sufficient condition on the time horizon for ✏-accuracy:

T �
✓

C
1

�
T

�
T

dlog
1/r

4(1+�)⌘
(1)

✏ e+1

X

i=1

1

⌘2

(i)

+ 2

l

log

1/r

4(1 + �)⌘
(1)

r✏

m

◆

log

16(1 + �)2|D|�
T

�
2

✏2
. (51)

Finally, we weaken this condition by upper bounding the summation as follows:

dlog
1/r

4(1+�)⌘
(1)

✏ e+1

X

i=1

1

⌘2

(i)

=

dlog
1/r

4(1+�)⌘
(1)

✏ e+1

X

i=1

1

⌘2

(1)

r2(i�1)

(52)

=

dlog
1/r

4(1+�)⌘
(1)

✏ e
X

i=0

1

⌘2

(1)

r2i

(53)

 1

r2

(1 � r2

)

16(1 + �)2

✏2
, (54)

where the last line follows from the identity
Pdlog

1/r Ae
i=0

1

r

2i 1

r

2

(1�r

2

)

A2 for log

1/r

A > 0. Sub-
stituting r =

1

2

and ⌘
(1)

= 1 concludes the proof; the former yields 1

r

2

(1�r

2

)

=

16

3

 6.

E Proof of Improved Noise Dependence (Corollary 3.1))

The bound in (41) is based on the inequality [3, Lemma 5.4]

�2

t

�2

 C
1

log

✓

1 +

�2

t

�2

◆

(55)

for �2

t

2 [0, 1] (with C
1

=

�

�2

log(1+�

�2

)

), which can be very loose when �2 is small. Our starting
point to improve the noise dependence is to note that the following holds under the more restrictive

16

condition �2

t

 �2:

�2

t

= �2

�2

t

�2

(56)

 2�2

log

✓

1 +

�2

t

�2

◆

, (57)

where we have used the fact that ↵ 2 log(1 + ↵) for ↵ 2 [0, 1].

The idea now is to use (57) in the epochs that are late enough so that �2

t

 �2, and (41) in the earlier
epochs. Since (1 + �)⌘

(i)

is the confidence level obtained after epoch i, and since �1/2

(i)

�
t

is the

confidence level after time t, we find that in order to ensure �2

t

 �2 it suffices that
(1+�)

2

⌘

2

(i)

�

(i)
 �2.

Moreover, our choice of �
(i)

in (14) is always greater than one when |D| � 2 (which is a trivial
condition), and hence we can weaken this condition to (1 + �)2⌘2

(i)

 �2, and write
X

i

T
(i)

X

i : (1+�)

2

⌘

2

(i�1)

>�

2

T (C

1

)

(i)

+

X

i

T (2�

2

)

(i)

, (58)

where T (C

1

)

(i)

denotes bound on T
(i)

in (45) based on (41), and T (C

1

)

(i)

denotes the analogous bound
based on (57) with 2�2 in place of C

1

. Similarly to (50), the first summation is over a subset of the
range i dlog

1/r

(1+�)⌘

(1)

r�

e, and it follows that the condition (51) may be replaced by

T �
✓

2�2�
T

�
T

dlog
1/r

4(1+�)⌘
(1)

✏ e+1

X

i=1

1

⌘2

(i)

+ 2

l

log

1/r

4(1 + �)⌘
(1)

r✏

m

◆

log

16(1 + �)2|D|�
T

�
2

✏2

+

✓

C
1

�
T

�
T

dlog
1/r

(1+�)⌘
(1)

� e+1

X

i=1

+2

l

log

1/r

(1 + �)⌘
(1)

r�

m

◆

log

16(1 + �)2|D|�
T

�
2

✏2
. (59)

The first summation is handled in the same way as the previous subsection, and the second summa-
tion is upper bounded by writing

dlog
1/r

(1+�)⌘
(1)

� e+1

X

i=1

1

⌘2

(i)

=

dlog
1/r

(1+�)⌘
(1)

� e+1

X

i=1

1

⌘2

(1)

r2(i�1)

(60)

 (1 + �)2

r2

(1 � r2

)

1

�2

, (61)

where (60) follows since ⌘
(i)

= ⌘
(1)

ri�1, and (61) follows in the same way as (54). Once again,
setting r =

1

2

and ⌘
(1)

= 1 concludes the proof, with the third term in (17) coming from the identity

2

⌃

log

2

8(1+�)

✏

⌥

+ 2

⌃

log

2

2(1+�)

�

⌥

 2

⌃

log

2

32(1+�)

2

✏�

⌥

.

F Proof for the Setting of Choosing Noise (Corollary 3.2)

The proof follows the same arguments as those of Appendices D and E, with C⇤ being upper
bounded in K different ways, one for each possible noise level. The choice �

T

= 2 log

|D|T 2

c

2

max

⇡

2

6�c

2

min

arises as a simple upper bound to the right-hand side of (14) resulting from the fact that
P

T

t=1

c(x
t

) c
max

T .

17

	Introduction
	Previous Work
	Contributions

	Problem Setup and Proposed Algorithm
	Theoretical Bounds
	General Result
	Results for Specific Settings

	Experimental Results
	Conclusion
	Variations of the TruVaR Algorithm
	Further Details of Numerical Experiments
	Proof of General Result (Theorem 3.1)
	Simplified Result for the Homoscedastic and Unit-Cost Setting
	Proof of Improved Noise Dependence (Corollary 3.1))
	Proof for the Setting of Choosing Noise (Corollary 3.2)

