000221052 001__ 221052
000221052 005__ 20190604054713.0
000221052 0247_ $$2doi$$a10.1016/j.robot.2016.10.005
000221052 022__ $$a0921-8890
000221052 02470 $$2ISI$$a000396957500003
000221052 037__ $$aARTICLE
000221052 245__ $$aA Brain-Controlled Exoskeleton with Cascaded Event-Related Desynchronization Classifiers
000221052 269__ $$a2017
000221052 260__ $$bElsevier$$c2017$$aAmsterdam
000221052 300__ $$a9
000221052 336__ $$aJournal Articles
000221052 520__ $$aThis paper describes a brain-machine interface for the online control of a powered lower-limb exoskeleton based on electroencephalogram (EEG) signals recorded over the user’s sensorimotor cortical areas. We train a binary decoder that can distinguish two different mental states, which is applied in a cascaded manner to efficiently control the exoskeleton in three different directions: walk front, turn left and turn right. This is realized by first classifying the user’s intention to walk front or change the direction. If the user decides to change the direction, a subsequent classification is performed to decide turn left or right. The user’s mental command is conditionally executed considering the possibility of obstacle collision. All five subjects were able to successfully complete the 3-way navigation task using brain signals while mounted in the exoskeleton. We observed on average 10.2% decrease in overall task completion time compared to the baseline protocol.
000221052 6531_ $$aBCI
000221052 6531_ $$aBMI
000221052 6531_ $$aExoskeleton
000221052 6531_ $$aBrain-computer interface
000221052 6531_ $$aBrain-machine interface
000221052 6531_ $$aEEG
000221052 700__ $$0248172$$g244361$$aLee, Kyuhwa
000221052 700__ $$0(EPFLAUTH)252289$$g252289$$aLiu, Dong
000221052 700__ $$aPerroud, Laetitia
000221052 700__ $$g137762$$aChavarriaga, Ricardo$$0241256
000221052 700__ $$aMillán, José del R.$$g149175$$0240030
000221052 773__ $$j90$$tRobotics and Autonomous Systems$$q15-23
000221052 8564_ $$uhttps://infoscience.epfl.ch/record/221052/files/ras-lee16.pdf$$zPreprint$$s4667037$$yPreprint
000221052 909C0 $$xU12103$$0252018$$pCNBI
000221052 909C0 $$pCNP$$xU12599$$0252517
000221052 909C0 $$xU12367$$0252409$$pNCCR-ROBOTICS
000221052 909CO $$qGLOBAL_SET$$pSTI$$particle$$ooai:infoscience.tind.io:221052
000221052 917Z8 $$x244361
000221052 917Z8 $$x137762
000221052 917Z8 $$x244361
000221052 917Z8 $$x137762
000221052 917Z8 $$x137762
000221052 917Z8 $$x137762
000221052 917Z8 $$x137762
000221052 937__ $$aEPFL-ARTICLE-221052
000221052 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000221052 980__ $$aARTICLE