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Abstract—The secret keys of critical network authorities –
such as time, name, certificate, and software update services
– represent high-value targets for hackers, criminals, and spy
agencies wishing to use these keys secretly to compromise other
hosts. To protect authorities and their clients proactively from
undetected exploits and misuse, we introduce CoSi, a scalable
witness cosigning protocol ensuring that every authoritative
statement is validated and publicly logged by a diverse group
of witnesses before any client will accept it. A statement S
collectively signed by W witnesses assures clients that S has
been seen, and not immediately found erroneous, by those W
observers. Even if S is compromised in a fashion not readily
detectable by the witnesses, CoSi still guarantees S’s exposure
to public scrutiny, forcing secrecy-minded attackers to risk that
the compromise will soon be detected by one of the W witnesses.
Because clients can verify collective signatures efficiently without
communication, CoSi protects clients’ privacy, and offers the
first transparency mechanism effective against persistent man-in-
the-middle attackers who control a victim’s Internet access, the
authority’s secret key, and several witnesses’ secret keys. CoSi
builds on existing cryptographic multisignature methods, scaling
them to support thousands of witnesses via signature aggrega-
tion over efficient communication trees. A working prototype
demonstrates CoSi in the context of timestamping and logging
authorities, enabling groups of over 8,000 distributed witnesses
to cosign authoritative statements in under two seconds.

I. INTRODUCTION

Centralized authorities provide critical services that many
hosts and users rely on, such as time [96] and timestamp
services [2], certificate authorities (CAs) [35], directory au-
thorities [47], [118], software update services [115], digital
notaries [3], and randomness services [?], [109]. Even when
cryptographically authenticated, authorities represent central
points of failure and attractive attack targets for hackers,
criminals, and spy agencies. Attackers obtaining the secret
keys of any of hundreds of CAs [50] can and have misused
CA authority to impersonate web sites and spy on users [8],
[21], [22], [129]. By impersonating a time service an attacker
can trick clients into accepting expired certificates or other
stale credentials [86]. Criminals increasingly use stolen code-
signing keys to make their malware appear trustworthy [66].

Logging and monitoring proposals such as Perspec-
tives [133], CT [76], [78], AKI [68], ARPKI [10], and
PoliCert [125] enable clients to cross-check certificates against
public logs, but this checking requires active communication.
To avoid delaying web page loads this checking is usually done

only retroactively, leaving a time window an attacker could
exploit to serve the client malware or backdoored software,
which can then disable detection. An attacker who controls
the client’s access network – such as a compromised home or
corporate network, or an ISP controlled by authoritarian state
– can block access to uncompromised log servers, permanently
evading detection if the targeted client is not sufficiently
mobile. Finally, checking logs can create privacy concerns for
clients [89], [103], and the log servers themselves become new
central points of failure that must be audited [103].

To address these weaknesses we propose witness cosigning,
a proactive approach to transparency that can either replace or
complement existing approaches. When an authority publishes
a new signing key, to be bundled in a web browser’s set of
root certificates for example, the authority includes with it
the identities and public keys of a preferably large, diverse,
and decentralized group of independent witnesses. Whenever
the authority subsequently signs a new authoritative statement
such as a new timestamp, certificate, or log record, the
authority first sends the proposed statement to its witnesses
and collects cosignatures, which the authority attaches to the
statement together with its own signature. A client receiving
the statement (e.g., as a TLS certificate) verifies that it has
been signed not only by the authority itself but also by an
appropriate subset of the witnesses. The client’s signature
acceptance criteria may be a simple numeric threshold (e.g.,
50% of the witnesses) or a more complex predicate accounting
for trust weights, groupings of witnesses, or even contextual
information such as whether a signed software update is to be
installed automatically or by the user’s explicit request.

Witness cosigning offers clients direct cryptographic evi-
dence – which the client can check efficiently without commu-
nication – that many independent parties have had the oppor-
tunity to validate and publicly log any authoritative statement
before the client accepts it. Without witness cosigning, an
attacker who knows the authority’s secret key can use it in
man-in-the-middle (MITM) attacks against targeted victims,
anywhere in the world and without the knowledge of the
legitimate authority, to feed the victim faked authoritative
statements such as TLS certificates or software updates [113].
To attack a client who demands that statements be cosigned by
at least W witnesses, however, a MITM attacker must either
(a) control both the authority’s secret key and those of W
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witnesses, which becomes implausible if W is sufficiently
large and diverse, or (b) submit the faked statement to one
or more honest witnesses for cosigning, thereby exposing the
faked statement to public scrutiny and risking detection.

We do not expect witnesses to detect all malicious state-
ments immediately: for example, only a CA itself may have the
information needed to verify the true correspondence between
a name and a public key. Witnesses can, however, sanity-check
the correctness and consistency of proposed statements before
cosigning: e.g., that authoritative timestamps are not wildly
different from the witnesses’ view of the present time, that
logging authorities sign records in sequence without revising
history or equivocating [80], or that only one authoritative
binary image exists for a given software version number. Even
if witnesses cannot immediately tell which of two conflicting
TLS certificates or binaries is “good,” they can ensure that
the existence of the conflicting signed statements promptly
becomes public knowledge. Witnesses can proactively check
that statements conform to known policies, such as certificate
issuance policies [125], raising alarms and withholding their
cosignature if not. Finally, witnesses can of course publish
logs of statements they cosigned to increase the likelihood of
rapid attack detection [76].

Even if witnesses perform little or no validation of the
authority’s statements, their proactive presence in statement
signing deters attackers both by increasing the threat to the
attacker of rapid misuse detection, and by reducing the effec-
tive value of an authority’s secret keys to attackers wishing to
operate in secret. Witness cosigning thus serves as a “Ulysses
pact” between the authority and its witnesses [48].

Authorities could implement witness cosigning simply by
collecting and concatenating individual signatures from wit-
nesses, exactly like PGP [28] or Bitcoin [102] can already
attach multiple signatures to a message or transaction. This is
practical with tens or perhaps even a few hundred witnesses,
but incurs substantial signature size and verification costs as
the witness group grows large. To make witness cosigning
scalable we introduce CoSi, a witness cosigning protocol
enabling authoritative statements to be validated and cosigned
by thousands of witnesses in a few seconds, to produce
collective signatures comparable in size to a single individual
signature (e.g., ≈ 100 bytes total) and nearly as quick and
easy for clients to verify.

As a scenario motivating CoSi’s scalability goal, we envi-
sion the DNSSEC [6] root zone might be witnessed by all
willing operators of the now over 1,000 top-level domains
(TLDs). Future TLS certificates might be witnessed by all
other willing CAs, of which there are hundreds [50], and
by other parties such as CT servers [76]. Public ledgers of
national cryptocurrencies [101], [122] might be collectively
witnessed by all willing banks in the country – of which the
US has thousands even after consolidation [128]. Threshold
signatures [12], [93] and consensus protocols [33], [127] can
split trust across a few nodes (typically 3–10), but do not scale,
as we confirm in Section VI. To our knowledge CoSi is the
first multisignature protocol that scales to thousands of signers.

CoSi’s scalability goal presents three key technical chal-
lenges: efficient cosignature collection, availability in the
face of slow or offline witnesses, and efficient cosignature
verification by clients. CoSi makes verification efficient by
adapting well-understood Schnorr multisignatures [105] to
combine many cosignatures into a single compact signature,
typically less than 100 bytes in size, which clients can check
in constant time. To collect and combine thousands of cosigna-
tures efficiently, CoSi adapts tree-based techniques, long used
in multicast [32], [42], [130], and aggregation protocols [30],
[134] to scalable multisignatures. To protect the authority’s
availability even when witnesses go offline, CoSi includes
metadata in its collective signatures to document “missing
witnesses” and enable verifiers to check the signature correctly
against an aggregate of the remaining witnesses’ public keys.

We have built a working CoSi prototype, deployed a small-
scale test configuration on the public Internet, and evaluated it
at larger scales of up to 33,000 cosigning witnesses on the
DeterLab [44] testbed. We find that CoSi can collect and
aggregate cosignatures from 8,000 witnesses, separated by
200ms round-trip network delays to simulate distribution, in
about 2 seconds total per signing round. CoSi’s performance
contrasts favorably with multisignatures produced via classic
verifiable secret sharing (VSS) [55], [124], whose signing
costs explode beyond about 16 participants, as well as with
straightforward collection of individual cosignatures, whose
costs become prohibitive beyond around 256 participants.

In addition, we have integrated CoSi into and evaluated it in
the context of two specific types of “authorities”: a secure time
and timestamping service [2], [63], [120], and the Certificate
Transparency log server [76]. The CoSi timestamping service
illustrates how some authorities can be made even more
scalable by building on CoSi’s communication trees, allowing
witnesses to serve timestamp requests and reduce load on
the main authority, thereby achieving aggregate throughput
of over 120,000 timestamp requests per second in a 4,000-
witness configuration. The CoSi extension to the CT log
server demonstrates the ease and simplicity with which witness
cosigning can be added to existing authority services, in this
case requiring only an 315-line change to the log server to
invoke CoSi when signing each new log entry.

In summary, this paper contributes: (a) a proactive approach
to transparency based on witness cosigning; (b) CoSi, the
first collective signing protocol that demonstrably scales to
thousands of participants; (c) an experimental implementation
of CoSi that demonstrates its practicality and how it can be
integrated into existing authority services.

Section II of this paper explores the background and moti-
vation for witness cosigning. Section III then presents CoSi,
a scalable collective signing protocol. Section IV outlines
variants of the CoSi design offering different tradeoffs. Sec-
tion V describes the details of our prototype implementation
of CoSi and its incorporation into timestamping and certificate
logging applications. Section VI experimentally evaluates this
prototype, and Section VII discusses CoSi’s applicability to



real-world applications and outlines future work. Section VIII
summarizes related work and Section IX concludes.

II. BACKGROUND AND MOTIVATION

This section briefly reviews several types of conventional
authorities, their weaknesses, and how witness cosigning can
help strengthen them. We revisit prototype implementations of
some of these applications later in Section V.

A. Certificate Authorities and Public-Key Infrastructure

Certificate Authorities (CAs) sign certificates attesting that
a public key represents a name such as google.com, to
authenticate SSL/TLS connections [45], [60]. Current web
browsers directly trust dozens of root CAs and indirectly trust
hundreds of intermediate CAs [50], any one of which can
issue fake certificates for any domain if compromised. Due
to this “weakest-link” security, hackers have stolen the “master
keys” of CAs such as DigiNotar [8], [22] and Comodo [21]
and abused certificate-issuance mechanisms [74], [75], [129]
to impersonate popular websites and attack their users.

As a stopgap, some browsers hard-code or pin public keys
for popular sites such as google.com [52] – but browsers
cannot hard-code public keys for the whole Web. Related ap-
proaches offer TOFU (“trust on first use”) security by pinning
the first public key a client sees for a particular site [39],
[88], [121], thereby protecting regular users but not new users.
Browsers can check server certificates against public logs [10],
[68], [76], [78], [112], [125], which independent monitors may
check for invalid certificates. Monitoring can unfortunately
detect misbehavior only retroactively, placing victims in a race
with the attacker. Browsers could check certificates against
such logs and/or via multiple Internet paths [4], [11], [87],
[133], but such checks delay the critical page-loading path,
at least on the first visit to a site. Further, these approaches
assume Web users can connect to independent logging, moni-
toring, or relaying services without interference, an assumption
that fails when the user’s own ISP is compromised. Such
scenarios are unfortunately all too realistic and have already
occurred, motivated by state-level repression [8], [22] or
commercial interests [54], [65].

A CA might arrange for a group of witnesses to cosign
certificates it issues: e.g., other willing CAs and/or independent
organizations. Witness cosigning might not only proactively
protect users and increase the CA’s perceived trustworthiness,
but also decrease the value of the CA’s secret keys to potential
attackers by ensuring that any key misuse is likely to be
detected quickly. In the longer term, CAs might witness cosign
OCSP staples [106], or entire key directory snapshots as in
CONIKS [89], enabling clients to check not only the validity
but also the freshness of certificates and address persistent
weaknesses in certificate revocation [82].

B. Tamper-Evident Logging Authorities

Many storage systems and other services rely on tamper-
evident logging [38], [81]. Logging services are vulnerable to
equivocation, however, where a malicious log server rewrites

history or presents different “views of history” to different
clients. Even if a logging authority itself is well-behaved, an
attacker who obtains the log server’s secret keys can present
false logs to targeted clients, effectively “equivocating in
secret” without the knowledge of the log’s legitimate operator.
For example, an attacker can defeat CT [76] and attack
clients this way by secretly stealing the keys of – or coercing
signatures from – any single CA plus any two CT log servers.

Solutions to equivocation attacks include weakening consis-
tency guarantees as in SUNDR [81], or adding trusted hard-
ware as in TrInc [80]. Equivocation is the fundamental reason
Byzantine agreement in general requires N = 3f + 1 total
nodes to tolerate f arbitrary failures [33]. Witness cosigning
does not change this basic situation, but can make it practical
for both N and f to be large: e.g., with N > 3000 participants
independently checking and cosigning each new log entry,
arbitrarily colluding groups up to 1000 participants cannot
successfully equivocate or rewrite history. As a proof-of-
concept, Section V-B later presents such a witness cosigning
extension for Certificate Transparency log servers.

C. Time and Timestamping Authorities

Time services such as NTP [95], [96] enable hosts to learn
the current time and synchronize their clocks against author-
itative sources such as NIST’s Internet Time Service [83].
Cryptographic authentication was a late addition to NTP [64]
and is still in limited use, leading to many vulnerabilities [86].
For example, an attacker impersonating a legitimate time
service might falsify the current time, to trick a client into
accepting an expired certificate or other stale credentials.

A timestamping authority [2], [63] enables a client to submit
a cryptographic hash or commitment to some document (e.g.,
a design to be patented), and replies with a signed statement
attesting that the document commitment was submitted at a
particular date and time. The client can later prove to a third-
party that the document existed at a historical date by opening
the cryptographic commitment and exhibiting the authority’s
timestamped signature on it. Virtual Notary [120] generalizes
timestamp services by offering users timestamped attestations
of automatically checkable online facts such as web page
contents, stock prices, exchange rates, etc. An attacker who
steals a timestamp service’s secret keys can forge pre-dated
timestamps on any document, however, and a notary’s secret
key similarly enables an attacker to create legitimate-looking
attestations of fake “facts.”

While witness cosigning incurs communication latencies
that likely preclude its use in fine-grained clock synchro-
nization, it can serve a complementary role of increasing
the security of coarse-grained timestamps, i.e., giving clients
greater certainty that a timestamp is not hours, days, or years
off. Section V-A later presents a prototype of such a service,
in which many witnesses efficiently sanity-check batches of
signed timestamps, ensuring that even an attacker who com-
promises the authority’s secret key cannot undetectably back-
date a timestamp beyond a limited time window.



D. Directory Authorities

The Domain Name System (DNS) [98], [99] offers a critical
directory service for locating Internet hosts by name. Like
NTP, DNS initially included no cryptographic security; even
now the deployment of DNSSEC [6] is limited and weaknesses
remain [7]. The fact that DNSSEC is completely dependent
on the security of its Root Zone [9], which is centrally
managed by one organization, is a concern despite measures
taken to secure the Root Zone’s signing keys [71]. If Root
Zone signatures were witnessed and cosigned by all willing
operators of subsidiary top-level domains (TLDs), ensuring
rapid discovery of any misuse of the Root Zone’s keys,
concerns about DNSSEC’s centralization might be alleviated.

As another example, clients of the Tor anonymity sys-
tem [126] rely on a directory authority [127] to obtain a
list of available anonymizing relays. A compromised Tor
directory authority could give clients a list containing only
attacker-controlled relays, however, thereby de-anonymizing
all clients. To mitigate this risk, Tor clients accept a list
only if it is signed by a majority of a small consensus
group, currently nine servers. Because these directory servers
and their private directory-signing keys represent high-value
targets for increasingly powerful state-level adversaries [62],
[67], it is questionable whether a small, relatively centralized
group offers adequate security. If Tor directory snapshots were
witness cosigned by a larger subset of the thousands of regular
Tor relays, the risk of semi-centralized directory servers being
silently compromised might be reduced.

E. Software Download and Update Authorities

App stores, community repositories, and automatic software
update services have become essential in patching security
vulnerabilities promptly. Update services themselves can be
attack vectors, however [13], [31], [104], [113]. Even when
updates are authenticated, code signing certificates are avail-
able on the black market [66], and software vendors have
even leaked their secret keys accidentally [97]. Governments
desiring backdoor access to personal devices [1], [24], as well
as resourceful criminals, might coerce or bribe vendors to sign
and send compromised updates to particular users. These risks
are exacerbated by the fact that automatic update requests can
amount to public announcements that the requesting host is un-
patched, and hence vulnerable [29]. By witness cosigning their
updates and checking cosignatures in auto-update mechanisms,
software vendors might alleviate such risks and ensure the
prompt detection of any improperly signed software update.

F. Public Randomness Authorities

Randomness authorities [?], [109] generate non-secret ran-
dom numbers or coin-flips, which are useful for many pur-
poses such as lotteries, sampling, or choosing elliptic curve
parameters [79]. NIST’s Randomness Beacon [?], for example,
produces a log of signed, timestamped random values from
a hardware source. If compromised, however, a randomness
authority could deliberately choose its “random” values as
to win a lottery, or could look into the future to predict a

1 record 2 record 3 record

Authority

Witness

Cosigners

each statement collectively

signed by both authority

and all or most witnesses

Authoritative statements: e.g. log records

Fig. 1. CoSi protocol architecture.

lottery’s outcome [132]. In the wake of the DUAL-EC-DRBG
debacle [34], the NIST beacon has been skeptically labeled
“the NSANIST Randomness Beacon” [123] and “Project ‘Not
a backdoor’” [110]. While witness cosigning alone would not
eliminate all possibility of bias [20], [79], witnesses could
preclude randomness beacons from revising history – and by
mixing entropy provided by witnesses into the result, witnesses
can ensure that even a compromised beacon cannot predict or
exercise unrestricted control over future “random” outputs.

III. SCALABLE COLLECTIVE SIGNING

This section presents CoSi, the first collective signing pro-
tocol efficiently supporting large-scale groups. We first outline
CoSi’s high-level principles of operation, then detail its design,
covering a number of challenges such as unavailable witnesses,
cothority certificate size, denial-of-service (DoS) risks and
mitigations, and statement validation by witnesses.

A. Architecture and Principles of Operation

Figure 1 illustrates CoSi’s conceptual architecture, consist-
ing of an authority who regularly signs statements of any kind
(e.g., chained log records in the example shown), and a group
of witness cosigners who participate in the signing of each
record. We also refer to the group of witnesses as a witness
cothority: a “collective authority” whose purpose is to witness,
validate, and then cosign the authority’s statements.

The authority serves as the CoSi protocol’s leader, defining
and publishing the witness cothority’s composition, initiating
collective signing rounds, and proposing statements to be
signed such as timestamps, directories, or certificates. We
assume the witnesses to be reliable, independently-run servers
maintained by individuals or organizations who have agreed
to witness the leader’s authoritative statements. Realistic au-
thorities typically serve clients as well: e.g., users requesting
timestamps or certificates. In the basic CoSi architecture these
clients interact only with the authority (leader) so we will
ignore them for now, although Section V-A will illustrate how
some types of authorities can leverage CoSi to distribute client
servicing load across the many witnesses.



We assume that the authority’s group of witnesses is fixed or
changes slowly, and that all participants including cosignature
verifiers know both the authority’s and all witnesses’ public
keys. If the authority is a root CA that signs TLS certificates
to be verified by web browsers, for example, then the CA’s
root certificate shipped with the browser includes a list of the
public keys of the witnesses in addition to the CA’s own public
key. We assume the authority arranges for the witness list to
remain valid for a significant time period – e.g., three years
or more, comparable to root certificate lifetimes – and that
software updates can handle witness list evolution just as for
root certificates. If the size of the authority’s root certificate
and its witness list becomes an issue, it may be compressed
into a cryptographic hash of that roster, at a cost of increased
signature sizes as discussed later in Section III-G. For security
reasons discussed later in Section III-D we require that the
public keys of the authority and all witnesses be self-signed
to prove knowledge of the corresponding secret key.

B. Threat Model

We assume both the authority (leader) and some number
of the authority’s witnesses may be malicious and colluding
in attempts to sign malicious statements secretly that unsus-
pecting victims (verifiers) will accept, without these malicious
statements being detected by honest witnesses. The CoSi
protocol does not assume or specify any particular global
cosignature verification threshold, but from the perspective of a
client who demands at least f +1 cosignatures on a statement,
we assume the attacker controls at most f faulty witnesses.

We assume the authority (leader) is live and highly avail-
able: since it is the participant who wishes to produce wit-
nessed statements, CoSi makes no attempt to protect against
DoS by the leader. However, we assume that a threshold
number of witnesses may go offline at any time or even
engage in DoS attacks; this threshold is a policy parameter
defined by the leader. Witnesses may also maliciously produce
incorrect messages deviating from the protocol, e.g., in attempt
to trick the leader into misbehavior. While for now we assume
simple numeric thresholds, clients can impose more complex
verification predicates if desired (Section IV-A).

We assume the leader and all witnesses are generally able to
communicate with each other, apart from temporary communi-
cation outages. Unlike gossip-based transparency approaches,
however, we do not assume that clients verifying signatures
can communicate with any non-attacker-controlled parties.

C. Responsibilities of Cosigning Witnesses

The authority determines when to initiate a collective sign-
ing round, and broadcasts to all witnesses the statement to
be signed. Witnesses may, and ideally should, publish logs
of the statements they witness and cosign, thus serving a
transparency role similar to log servers in CT [76], [78]. If
the authority’s statements are already supposed to take the
form of a log as in the example in Figure 1, then each witness
might simply make available a public mirror of all or some
recent portion of the authority-generated log.

Witnesses may also, and ideally should, perform any readily
feasible syntactic and semantic correctness checks on the au-
thority’s proposed statements before “signing off” on them. If
the authority’s statements include a wall-clock timestamp, for
example, each witness may verify that the proposed timestamp
is not wildly different from the witness’s view of the current
time (e.g., is not minutes or hours off). If the authority’s
statements form a sequence-numbered, hash-chained log as in
Figure 1, each witness may verify that each of the authority’s
proposed log records contains a monotonically increasing
sequence number and the correct hash for the immediately
preceding log record, preventing a compromised authority
from reversing or rewriting history.1

Witnesses might check deeper application-specific invari-
ants as well, provided these checks are quick and automatic.
If the authority’s statements represent certificates, witnesses
may check them against any known issuance policies for
the relevant domain [125]. If the authority’s statements attest
certificate freshness [106] or represent directories of currently-
valid certificates as in CONIKS [89], witnesses may verify
that these certificates do not appear on cached certificate
revocation lists (CRLs) [82]. If the authority’s statements form
a blockchain [102], then witnesses may check its validity:
e.g., that each transaction is properly formed, properly au-
thorized, and spends only previously-unspent currency [70].
If the authority’s statements represent software binaries [115],
then witnesses might even attempt to reproduce the proposed
binaries from developer-signed sources [16], provided the
authority allows the witnesses the time required (possibly
hours) to perform such builds during signing process.

For simplicity, we initially assume that witnesses never fail
or become disconnected, but relax this unrealistic assumption
later in Section III-F. We also defer until later performance
concerns such as minimizing collective signing latency.

D. Schnorr Signatures and Multisignatures

While CoSi could in principle build on many digital sig-
nature schemes that support efficient public key and signa-
ture aggregation, we focus here on one of the simplest and
most well-understood schemes: Schnorr signatures [117] and
multisignatures [12], [93]. Many alternatives are possible:
e.g., Boneh-Lynn-Shacham (BLS) [19] requires pairing-based
curves, but offers even shorter signatures (a single elliptic
curve point), and a simpler protocol that may be more suitable
in extreme situations as discussed later in Section IV-E.

Schnorr signatures rely on a group G of prime order q in
which the discrete logarithm problem is believed to be hard;
in practice we use standard elliptic curves for G. Given a well-
known generator G of G, each user chooses a random secret
key x < q, and computes her corresponding public key X =

1 Even with these checks a faulty authority could still equivocate to
produce two or more divergent histories cosigned by disjoint subsets of honest
witnesses. Applying standard Byzantine consensus principles [33], however,
the above log consistency checks will preclude equivocation provided at most
f witnesses are faulty out of at least 3f+1 total, and provided verifiers check
that at least 2f + 1 witnesses have cosigned each statement.



Gx. We use multiplicative-group notation for consistency with
the literature on Schnorr signatures, although additive-group
notation may be more natural with elliptic curves.

Schnorr signing is conceptually a prover-verifier or Σ-
protocol [40], which we make non-interactive using the Fiat-
Shamir heuristic [56]. To sign a statement S, the prover picks
a random secret v < q, computes a commit, V = Gv , and
sends V to the verifier. The verifier responds with a random
challenge c < q, which in non-interactive operation is simply a
cryptographic hash c = H(V ‖ S). The prover finally produces
a response, r = v−cx, where x is the prover’s secret key. The
challenge-response pair (c, r) is the Schnorr signature, which
anyone may verify using the signer’s public key X = Gx, by
recomputing V ′ = GrXc and checking that c ?

= H(V ′ ‖ S).
With Schnorr multisignatures [105], there are N signers

with individual secret keys x1, . . . , xN and corresponding
public keys X1 = Gx1 , . . . , XN = GxN . We compute an
aggregate public key X from the individual public keys as
X =

∏
i Xi = G

∑
i
xi . The N signers collectively sign a

statement S as follows. Each signer i picks a random secret
vi < q, and computes a commit Vi = Gvi . One participant
(e.g., a leader) collects all N commits, aggregates them into
a collective commit V =

∏
i Vi, and uses a hash function to

compute a collective challenge c = H(V ‖ S). The leader
distributes c to the N signers, each of whom computes and
returns its response share ri = vi − cxi. Finally, the leader
aggregates the response shares into r =

∑
i ri, to form the

collective signature (c, r). Anyone can verify this constant-size
signature against the statement S and the aggregate public key
X via the normal Schnorr signature verification algorithm.

When forming an aggregate public key X from a roster
of individual public keys X1, . . . , XN , all participants must
validate each individual public key Xi by requiring its owner
i to prove knowledge of the corresponding secret key xi, e.g.,
with a zero-knowledge proof or a self-signed certificate. Other-
wise, a dishonest node i can perform a related-key attack [94]
against a victim node j by choosing Xi = GxiX−1j , and
thereafter contribute to collective signatures apparently signed
by j without j’s actual participation.

While multisignatures are well-understood and formally
analyzed, to our knowledge they have so far been used or
considered practical only in small groups (e.g., N ≈ 10).
The next sections describe how we can make multisignatures
scale to thousands of participants, and address the availability
challenges that naturally arise in such contexts.

E. Tree-based Collective Signing

To make multisignatures scale to many participants, CoSi
distributes the communication and computation costs of mul-
tisignatures across a spanning tree analogous to those long
utilized in multicast protocols [32], [42], [130]. The leader
organizes the N witnesses into a spanning tree of depth
O(logN) rooted at the leader, distributing both communica-
tion and computation to incur at most logarithmic costs per
node. The spanning tree serves only to optimize performance:
the leader may reconfigure it at any time without affecting

security, e.g., to account for unavailable witnesses as detailed
later in Section III-F.

For simplicity, the tree may be a regular B-ary tree formed
deterministically from the well-known list of N witnesses,
thereby requiring no communication of the tree structure.
To minimize signing latency, the leader might alternatively
collect information on round-trip latencies between witnesses,
construct a shortest-path spanning tree, and specify this tree
explicitly when announcing a collective signing round.

A single round of the CoSi protocol consists of four
phases, illustrated in Figure 2, representing two communica-
tion “round-trips” through the leader-defined spanning tree:
1) Announcement: The leader multicasts an announcement

of the start of this round down through the spanning tree,
optionally including the statement S to be signed.

2) Commitment: Each node i picks a random secret vi and
computes its individual commit Vi = Gvi . In a bottom-up
process, each node i waits for an aggregate commit V̂j from
each immediate child j, if any. Node i then computes its
own aggregate commit V̂i = Vi

∏
j∈Ci

V̂j , where Ci is the
set of i’s immediate children. Finally, i passes V̂i up to its
parent, unless i is the leader (node 0).

3) Challenge: The leader computes a collective challenge c =
H(V̂0 ‖ S), then multicasts c down through the tree, along
with the statement S to be signed if it was not already
announced in phase 1.

4) Response: In a final bottom-up phase, each node i waits
to receive a partial aggregate response r̂j from each of
its immediate children j ∈ Ci. Node i now computes its
individual response ri = vi − cxi, and its partial aggregate
response r̂i = ri +

∑
j∈Cj

r̂j . Node i finally passes r̂i up
to its parent, unless i is the root.
The round announcement in phase 1 may, but need not

necessarily, include the statement S to be signed. Including S
in the announcement enables witnesses to start validating the
statement earlier and in parallel with communication over the
tree. This approach is likely preferable when witnesses may
need significant time to validate the statement S, such as when
reproducing software builds as an extreme example [16]. On
the other hand, proposing S later in phase 3 enables the leader
to “late-bind” its statement, perhaps incorporating information
gathered from witnesses in phase 2, as our timestamp service
does (Section V-A). Further, keeping phases 1–2 independent
of the statement to be signed in principle allows these phases
to be performed offline ahead of time, though we have not
implemented or evaluated this offline variation.

During phase 4, each node i’s partial aggregate response
r̂i, together with the collective challenge c, forms a valid
Schnorr multisignature on statement S, verifiable against i’s
partial aggregate commit V̂i and corresponding partial ag-
gregate public key X̂i. Anyone may compute X̂i simply
by multiplying the well-known public keys of i and all of
its descendants in the spanning tree. Thus, each node can
immediately check its descendants’ responses for correctness,
and immediately expose any participant producing an incorrect
response. While nothing prevents a malicious node i from
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S V̂0 c = H(V̂0 ‖ S) r̂0

Phase 1: Announcement
(send message-to-witness, optional)

Phase 2: Commitment
(collect aggregate commit)

Phase 3: Challenge
(send collective challenge)

Phase 4: Response
(collect aggregate response)

Leader

Witnesses

V3 = G v3 ,
V̂3 = V3

V4 = G v4 ,
V̂4 = V4

V1 = G v1 ,
V̂1 = V1V3V4

V0 = G v0 ,
V̂0 = V0 ...V6

r3 = v3−x3c ,
r̂3 = r3

r4 = v4−x4c ,
r̂4 = r4

r1 = v1 − x1c ,
r̂1 = r1+ r3+ r4

r0 = v0 − x0c ,
r̂0 = r0+· · ·+r6

Fig. 2. The CoSi protocol uses four communication phases for scalable construction of a Schnorr multisignature (c, r̂0) over a spanning tree.

computing V̂i dishonestly in phase 2, i then will be unable
to produce a correct response in phase 4 unless it knows the
discrete logarithm vi such that V̂i = Gvi

∏
j∈Ci

V̂j .
The final collective signature is (c, r̂0), which any third-

party may then verify as a standard Schnorr signature by
recomputing V̂ ′0 = Gr̂0X̂c

0 and checking that c ?
= H(V̂ ′0 ‖ S).

The scheme’s correctness stems from the fact that V̂0 =

G
∑

i
vi , r̂0 =

∑
i vi − c

∑
i xi, and X̂0 = G

∑
i
xi . The

scheme’s unforgeability stems from the fact that the hash
function makes c unpredictable with respect to V̂0, and the col-
lective cannot produce the corresponding response r̂0 without
the (collective) knowledge of the secret key xi of every node
i whose public key is aggregated into X̂0. These properties
are direct implications of the structure of Schnorr signatures,
which have been formally analyzed in prior work [12], [93],
though we are not aware of prior systems that used these
properties in practice to build scalable signing trees.

F. Accounting for Unavailable Witnesses
Authorities are unlikely to deploy witness cosigning if

their own availability may be degraded, or even deliberately
DoS-attacked, by the unreliability of one or more witnesses.
We expect authorities to accept only witnesses operated by
reputable and competent organizations who can normally be
expected to keep their witness servers highly available, so we
expect the operational common case to be for all witnesses to
be present, and only rarely for one or a few to be missing.

Unlike secret-sharing protocols [55], [124], CoSi allows the
leader to proceed with any number of witnesses missing, and
merely documents these missing witnesses as exceptions as
part of the resulting collective signature. Signature verifiers
learn both how many and which witnesses were missing when
an authoritative statement was signed, and can independently
determine their acceptance thresholds via arbitrary predicates
(Section IV-A). The leader might set its own threshold as well:
e.g., if many or most witnesses are unreachable, this may
indicate the leader itself is disconnected from much of the
Internet, making it useless and perhaps counterproductive to
sign further statements until connectivity is restored.

We start with a simple approach to handling witness failures,
then subsequently explore variations and optimizations. In any
of the phases of the tree-based signing protocol described
above, if any participant i finds that one of its children j is

unreachable, i simply returns an error indicating the missing
witness, which propagates back up the tree to the leader.
The leader then reconfigures the tree to omit the missing
witness, announces the new tree, and restarts the signing
round from phase 1 over the new tree. The leader includes
in the resulting signature not only the challenge and aggregate
response (c, r̂0) but also an indication of which witnesses were
missing. Verifiers then check the resulting signature against a
modified aggregate public key X̂ computed by multiplying
only the public keys of witnesses that were actually present
in the signing tree (and hence contributed to the aggregate
commit in phase 2 and the aggregate response in phase 4).

An intermediate witness in the leader’s spanning tree could
maliciously pretend that one of its children is unavailable, or
a pair of witnesses might simply be unable to communicate
due to Internet routing failures. To address this risk, when a
witness is reported “missing” the leader can first try contacting
it directly and/or request that other witnesses attempt to contact
it. If successful, the leader can then reconnect the orphaned
witness at a different location in the new tree.

G. Representing Exceptions in Signatures

To minimize the size of collective signatures, CoSi permits
exceptions to be represented in three different ways: as a list
of witnesses absent, a list of witnesses present, or a bitmap
with one bit per witness. After completing a signing round,
the leader simply chooses whichever representation yields the
smallest signature. Listing witnesses absent yields the most
compact signature (less than 100 bytes using the Ed25519
curve [14]) in the hopefully common case when nearly all
witnesses cosign. Listing witnesses present is optimal at the
opposite extreme, while the bitmap approach is most efficient
in the region between those extremes. Worst-case signature
size is therefore about 2K + W/8 bytes, where K is the size
of a private key (e.g., 32 bytes for Ed25519) and W is the total
number of witnesses, plus a few encoding metadata bytes.

A more sophisticated alternative we explored is to repre-
sent the witness roll call as a Bloom filter [15], which can
sometimes increase compactness at the risk of introducing
false positives. The leader might tolerate this false positive
risk by removing the contributions of falsely-marked witnesses
from the aggregate signature, or salt the Bloom filter’s hash
functions and “mine” to find a Bloom filter yielding no false



positives. We simulated several such approaches, but did not
find the results to be worth the additional complexity.

H. Proactive, Retroactive, and Adaptive Validation

As discussed earlier in Section III-C, the primary responsi-
bility of witnesses is merely to ensure proactively that signed
authoritative statements are public – but witnesses can and
ideally should also check the syntactic and semantic validity
of statements when possible. Some such validation checks
may be feasible in principle but require additional network
communication or take unpredictable amounts of time.

As one example, a witness to the signing of a stapled OCSP
certificate status [106] or a CONIKS public key directory [89]
might wish to verify that the certificates in these statements are
indeed fresh, and are not listed in publicly available Certificate
Revocation Lists (CRLs) [82]. If the witness were to initiate
the fetching and downloading of CRLs on the “critical path”
of witnessing and cosigning, however, then the witness might
seriously delay the signing process, or cause the leader to
timeout and consider the witness to have failed (Section III-F).
To avoid such delays, instead of fetching CRLs on the critical
cosigning path, certificate witnesses might periodically down-
load and maintain cached copies of relevant CRLs, and merely
check proposed OCSP staples or key directories against their
most recently cached CRLs.

Validation may sometimes be quick but other times may
require significant amounts of time and/or computational re-
sources. A witness to a software update authority for an open
source package, for example (Section II-E), might wish to
verify the platform-specific binaries to be signed against a
reproducible build [107] of a corresponding source release
in a public repository. In this case, the witness may have to
perform an entire build of a large software tree before signing.
This delay may be acceptable in the special case of software
updates, which tend to be released on slow, latency-tolerant
timescales anyway, but such delays may not be acceptable in
many other witnessing scenarios.

As one way of handling long or unpredictable validation
delays, the leader might specify a maximum validation time.
Each witness launches its validation process in parallel but
monitors it dynamically to see whether it actually completes
in the required time. If not, the witness might just “cosign any-
way,” giving the leader the benefit of the doubt, but continue
the checking process and raise an alarm in the hopefully rare
event that validation eventually fails. This approach of course
weakens CoSi’s transparency model to be only “proactive
sometimes” and “retroactive sometimes.” To create a public
record of this distinction, leaders might obtain two collective
signatures in parallel from all witnesses: the first merely
attesting that the witness has seen the statement, and the
second attesting that the witness has validated it. Witnesses
then provide the former cosignature but withhold the latter if
they cannot complete their validation in the time available.

I. Limitations, Tradeoffs, and Future Work

The most important limitation of witness cosigning is that
it requires active communication – and perhaps global com-
munication if the witness group is highly distributed – on
the signing path. This is a basic cost of CoSi’s proactive
approach to transparency: by eliminating the need for the
clients receiving an authoritative statement to communicate
at verification time as gossip-based transparency approaches
do [76], [78], we incur the cost of communicating before the
authority’s statement is made available to clients.

Because of the communication cost incurred at signing time,
CoSi is more suitable for authoritative signing activities that
can be done only periodically or in periodic batches, and less
suited to signing activities that must be done individually in
high volumes or at low latencies. Fortunately, many authorita-
tive signing activities are already or can easily be performed
periodically in batches. For example, Section V-A presents a
timestamp authority that handles heavy client request loads
by signing batches of timestamps, and logging services such
as CT’s [76], as well as blockchains used in cryptocurren-
cies [70], [102], routinely aggregate many client-requested
transactions into large latency-insensitive batches.

A second limitation of CoSi’s approach is that an authority’s
witness group cannot be completely “open” for anyone to join,
without making the system vulnerable to Sybil attacks [49]
in which an adversary creates and joins a threshold number
of colluding, fake witnesses. One advantage of retroactive
gossip-based checking [103] is that “anyone can gossip” –
i.e., no entry barrier at all need be imposed on the group
of gossiping participants. Thus, CoSi may best be viewed as
complementary to rather than a replacement for retroactive
gossip-based consistency checking: CoSi provides proactive
security grounded in a potentially large and diverse but at least
somewhat selective witness group, whereas gossip provides
only retroactive protection dependent on active communication
but among a completely open group of participants.

IV. DESIGN VARIATIONS AND TRADEOFFS

While we expect the basic CoSi design described above to
be usable and suitable in many contexts, as the evaluation in
Section VI suggests, many improvements and design variations
are possible embodying different strengths and weaknesses.
We now briefly sketch some of this design space, focusing on
signature verification predicates, reducing the size of the cer-
tificates needed to verify collective signatures, and tolerating
unreliability in the network and/or witnesses.

A. Collective Signature Verification Predicates

Because CoSi signatures explicitly document which wit-
nesses did and did not participate in signing, signature ver-
ification need not be based on a simple threshold, but can in
principle be an arbitrary predicate on subsets of witnesses. For
example, if the authority has reason to trust some witnesses
more than others, then signature verification may be weighted
so that some witnesses count more than others toward the
threshold. To save signature space, the authority can treat itself



as a special “witness,” aggregating its own signature with all
the others, but imposing the rule that its own participation is
mandatory for the collective signature to be accepted.

Witnesses might be divided into multiple groups with hierar-
chical expressions defining their relationships. For example, a
global body of witnesses might be divided into geopolitical
regions (e.g., Five Eyes, Europe, etc.), each with different
witness group sizes and thresholds, such that a threshold
number of regions must in turn meet their respective internal
thresholds. Such a structure could protect the authority and
its users from compromise or denial-of-service even if some
regions contain many more witnesses than others and all
witnesses in any sub-threshold set of regions collude.

Finally, collective signature verification might use different
predicates depending on verification context. Consider a device
manufacturer desiring protection from possible government
coercion to produce secretly backdoored operating system
updates [48], [57]. The manufacturer may be averse to the
risk, however slight, that a sufficient number of its witnesses
might become unavailable or collude to prevent the manu-
facturer from signing legitimate updates. The manufacturer
could design its devices to mitigate this risk by demanding a
high cosigning threshold (e.g., half) when verifying updates
downloaded automatically or installed while the device is
locked, but allowing updates with few or no cosignatures if the
user manually initiates the update with the device unlocked.

This way, in the hopefully unlikely event the manufacturer
becomes unable to meet the normal cosigning threshold due to
massive witness failure or misbehavior, the manufacturer can
instruct users to install the next update manually, and revise
its witness group as part of that update. More importantly, the
knowledge that the manufacturer has this fallback available
should deter any deliberate misbehavior by witnesses, e.g.,
extortion attempts, which would present only a minor incon-
venience to the manufacturer’s users while likely yielding a
public scandal and lawsuits against the misbehaving witnesses.

B. Reducing Authority Certificate Size with Key Trees

The basic CoSi design keeps collective signatures compact,
but requires that the authority’s well-known certificate – which
verifiers need to check collective signatures – include not
just the authority’s own public key but also a complete list
of the authority’s witnesses and their public keys. This large
certificate size is acceptable if it is distributed as part of a much
larger package anyway, e.g., embedded in a web browser’s
built-in root certificate store. Large certificates might be a
problem in other contexts, however: e.g., if they must be
embedded in intermediate certificates, DNSSEC [6] resource
records, or other objects that are frequently transmitted.

In an alternate design yielding different tradeoffs, the au-
thority’s certificate includes only the authority’s own public
key, the product of all witnesses’ public keys X̂ =

∏
i Xi, and

a hash representing the root of a key tree: a Merkle tree [91]
whose leaf nodes contain the individual witnesses’ public
keys. The key tree hash in the authority’s certificate represents

a universally-verifiable commitment to all witnesses’ public
keys, without the certificate actually containing them all.

During subsequent signing rounds, the CoSi leader includes
in each signature a list of the public keys of all missing or
present witnesses, whichever is shorter, along with Merkle
inclusion proofs for each proving their presence in the author-
ity’s key tree. To check a signature containing a list of present
witnesses, the verifier simply multiplies the listed public keys
(after verifying their inclusion proofs). To check a signature
containing a list of missing witnesses, the verifier multiplies
the aggregate X̂ of all witnesses’ public keys with the inverses
of the missing witnesses’ public keys: X̂ ′ = X̂

∏
j∈L X−1j .

In the hopefully common case in which all witnesses are
present during signing, the signature is at minimum size,
containing only (c, r̂0) and an empty list of missing witnesses.
As more witnesses go missing, however, the size of the
signature including witness public keys and inclusion proofs
may grow to O(N) size, or potentially even O(N logN) if
each missing witness’s inclusion proof is stored separately
without sharing the storage of internal key tree nodes.

C. Gracefully Tolerating Network Unreliability

While we expect authorities adopting CoSi to choose re-
liable witness servers run by reputable organizations, neither
the authority nor its witnesses can control the Internet connec-
tions between them. CoSi allows the authority to rebuild its
communication trees at any time to route around link failures,
but if network churn is too frequent or severe, a tree might
become unusable before it can be used even once.

One attractive solution to this problem is to adopt the
binomial swap forest technique of San Fermı́n [30], which is
readily applicable to CoSi. We first assign all witnesses b-bit
binary labels. We then implement each of CoSi’s aggregation
rounds – i.e., its Commit and Response phases – with a
single run of San Fermı́n’s dynamic aggregation protocol.
To aggregate commits or responses, each node communicates
with b other nodes in succession, building up its own aggregate
while simultaneously helping other nodes build theirs, such
that every participant ends up obtaining a complete aggregate.

At each swap step i from 0 to b − 1, each witness j
communicates with another witness k whose label differs at
bit i but is identical in all more-significant bits. At step 0, each
even-numbered node swaps with its immediate odd-numbered
neighbor. During subsequent steps, however, each witness has
a choice of witnesses to swap with: e.g., in step 1 a node
labeled xx00 may swap with either xx10 or xx11. In these
swaps each witness combines the other witness’s aggregate
value from prior steps into its own aggregate, enabling both
communication partners to double the “coverage” of their
respective aggregates in each step, until every witness has
a complete aggregate. The authority may then pick up this
complete aggregate – i.e., the collective commit or response
in the case of CoSi – from any witness server.

Because each witness can dynamically choose its com-
munication partners in steps i > 0, witnesses can adapt
immediately to intermittent link failures without restarting the



overall aggregation process, provided the witnesses themselves
do not fail. Tolerating high churn in the witnesses as well as
the network requires other techniques explored below.

D. Avoiding Signing Restarts on Witness Unreachability

A second-order availability risk in the basic CoSi design
is that multiple witnesses might become unavailable during
a single signing round – perhaps even intentionally as part
of a DoS attack by malicious witnesses – thereby forcing the
leader to restart the signing round multiple times in succession
without making progress. To address this risk we may prefer
if the leader could always complete each signing round, and
never have to restart, regardless of the witnesses’ behavior.

If during CoSi’s Commit phase some witness i finds one
of its immediate children j ∈ Ci unresponsive, i can adjust
its aggregate commit V̂i to include only its own individual
commit Vi and the aggregate commits of its children who
are reachable, and pass the adjusted V̂i to i’s parent along
with a list of unreachable witness(es). The signing round can
thus immediately take the missing witnesses into account and
continue without restarting. If a missing witness j is an interior
node in the spanning tree, then its parent i (or the leader) can
attempt to “bridge the gap” by contacting j’s children directly
to collect their portions of the aggregate commitment (and
their corresponding portions of the aggregate response later in
phase 4). Thus, the loss of an interior node in the spanning
tree need not entail the loss of its descendants’ cosignatures.

A more subtle challenge occurs when some witness j
participates in the Commit phase but goes offline before
the subsequent Response phase. In this case, the missing
witness’s individual Schnorr commit Vj has been included
in the aggregate commit V̂0 and used to form the collective
challenge c = H(V̂0 ‖ S) with which all witnesses must
compute their collective responses. Thus, it is now too late
to change c, but without witness j the remaining witnesses
will be unable to produce an aggregate response r̂0 matching
the aggregate commit V̂0 that included j’s commit. Further,
breaking the dependency of c on V̂0 – allowing the latter to
change in the Response phase without recomputing c – would
make the collective signature trivially forgeable.

We can resolve this dilemma by making the collective
challenge c depend not on just a single aggregate commit
V̂0 of individual commits V̂i but on all possible aggregate
commits V̂W representing any subset of the witnesses W that
participated in the Commit phase. During the Commit phase,
these witnesses no longer merely aggregate their individual
Schnorr commits, but also include them in a Merkle tree
summarizing all individual commits. Each interior witness i
obtains from each of its children j ∈ Ci both j’s aggregate
commit V̂j and the hash Hj representing a partial Merkle tree
summarizing all the individual commits of j’s descendants.
Then i computes its aggregate as before, V̂i = Vi

∏
j∈Ci

V̂j ,
but also produces a larger Merkle commit tree whose hash
Hi contains both Vi as a direct leaf and all of i’s childrens’
Merkle commit trees Hj∈Ci as subtrees. The leader in this way
obtains a root hash H0 summarizing all witnesses’ individual

commitments, and computes the collective challenge to depend
on the root of this commit tree, c = H(V̂0 ‖ H0 ‖ S).

Now, in the hopefully common case that all witnesses
present in the Commit phase remain online through the Re-
sponse phase, the witnesses produce an aggregate response
r̂0 as before, which matches the complete aggregate commit
V̂0 appearing directly in the challenge. If witnesses disappear
after the Commit phase, however, the leader includes in its
signature the individual commits of the missing witnesses,
together with Merkle inclusion proofs demonstrating that those
individual commits were fixed before the collective challenge
c was computed. The verifier then multiplies the aggregate
commit V̂0 with the inverses of the individual commits of the
missing witnesses, to produce an adjusted aggregate commit
V̂ ′0 and corresponding aggregate response r̂′0.

E. Extreme Witness Churn and Asynchronous Networks

Schnorr signatures are well-established and compatible with
current best practices for standard digital signatures, but
their Σ-protocol nature (commit, challenge, response) has
the drawback of requiring two communication round-trips
through a distributed structure – whether a simple tree or a
binomial swap forest – to aggregate a collective signature.
This requirement could be limiting in highly unstable or
asynchronous situations where any distributed structure built in
the first round-trip might become unusable before the second.

BLS signatures [19] may offer an appealing alternative
cryptographic foundation for CoSi, requiring pairing-based
elliptic curves but avoiding the need for two communication
round-trips. In short, a BLS public key is Gx as usual, but
a BLS signature is simply H(M)x, where H(M) is a hash
function mapping the message M to a pseudorandom point on
the appropriate curve. Signature verification uses the pairing
operation to check that the same private key x was used
in the public key and the signature. BLS extends readily to
multisignatures, since an aggregate signature H(M)x1+...+xn

is simply the product of individual signatures
∏n

i=1 H(M)xi

and is verifiable against an aggregate public key Gx1+...+xn

computed in the same fashion as
∏n

i=1 G
xi .

Using BLS instead of Schnorr signatures, an authority can
produce a collective signature in a single round-trip through
a tree or binomial swap forest (Section IV-C), eliminating the
risk of a witness participating in the commit phase but dis-
appearing before the response phase (Section IV-D). Further,
BLS signatures may make CoSi usable in protocols designed
for asynchronous networks [25], [26], [108] by allowing
participants to aggregate signatures incrementally and make
use of them as soon as an appropriate threshold is reached:
e.g., typically f + 1 or 2f + 1 in asynchronous Byzantine
consensus protocols tolerating up to f faulty participants.

One key challenge in fully asynchronous aggregation, where
participants must dynamically adapt to arbitrary delay patterns,
is that nodes must be able to combine potentially overlapping
aggregates without imposing regular structures as used in San
Fermı́n. For example, nodes A and B may communicate to
form aggregate AB, nodes B and C then form aggregate BC,



and finally nodes A and C must combine aggregates AB with
BC. Aggregating BLS signatures as usual here will yield a
collective signature H(M)xA+2xB+xC in which B’s signature
is effectively aggregated twice. There is no readily apparent
way to avoid such duplication, apart from just keeping the
individual signatures separate and giving up the efficiency
benefits of incremental aggregation.

Such duplication may be tracked and compensated for,
however, by maintaining with each aggregate a vector of
coefficients indicating the number of “copies” of each node’s
signature (possibly 0) represented in a given aggregate. Thus,
the aggregate AB2C from the above example would be repre-
sented by the curve point H(M)xA+2xB+xC and the coefficient
vector v = [1, 2, 1]. The number of participants represented in
a given aggregate is simply the number of nonzero elements
in the coefficient vector. Signature verification uses the coef-
ficient vector to compute the corresponding aggregate public
key against which to verify the signature, as

∏n
i=1 (Gxi)vi .

This approach has the downside of requiring O(N) commu-
nication cost per aggregation step due to the need to transmit
the vector, and O(N) computation cost to compute the correct
aggregate public key in signature verification. Partly mitigating
these costs, however, the vector’s elements are small (e.g.,
one or two bytes) compared to full elliptic curve points
representing individual signatures, and group exponentiation
(scalar multiplication of curve points) with small non-secret
values can be made relatively inexpensive computationally.

V. PROTOTYPE IMPLEMENTATION

We have built and evaluated a working prototype witness
cosigning cothority, implementing the basic CoSi protocol
described in Section III. The prototype also demonstrates
CoSi’s integration into two different authority applications: a
timestamp service, and a backward-compatible witness cosign-
ing extension to the Certificate Transparency log server.

The CoSi prototype is written in Go [61]; its primary imple-
mentation consists of 7600 lines of server code as measured by
CLOC [41]. The server also depends on a custom 21,000-line
Go library of advanced crypto primitives such as pluggable
elliptic curves, zero-knowledge proofs, and verifiable secret
sharing; our CoSi prototype relies heavily on this library but
does not use all its facilities. Both the CoSi prototype and the
crypto library are open source and available on GitHub:

https://github.com/dedis/cothority

The cothority prototype currently implements tree-based
collective signing as described above in Section III including
the signing exception protocol for handling witness failures.

We evaluated the cothority implementation with Schnorr
signatures implemented on the Ed25519 curve [14], although
the implementation also works and has been tested with other
curves such as the NIST P-256 curve [5].

A. Witness Cosigned Time and Timestamp Service

As one application of witness cosigning, we built a digital
timestamping service [2], [63], [120], which also doubles as

a coarse-grained secure time service. The primary timestamp
server, serving as the CoSi leader, initiates a new signing round
periodically – currently once every 10 seconds – to timestamp
a batch of documents or nonces submitted by clients. While
the timestamp server could initiate a fresh witness cosigning
round to service each client timestamping request, this mode of
operation would be unlikely to scale to serve large timestamp
request transaction rates, due to the global communication
CoSi imposes on each signing round (see Section III-I).

1) Timestamp Request Processing: A client wishing to
timestamp a document opens a connection to the timestamp
server and submits a hash of the document to stamp. Many
clients can have outstanding timestamp requests at once, and
a single client can concurrently submit timestamp requests for
multiple documents at once; the timestamp server enqueues
these requests but does not answer them until the next signing
round has completed. At the beginning of each signing round,
the timestamp server collects all of the hashes submitted since
the previous round into a Merkle tree [91], and prepares a
timestamp record to sign consisting of the current time and
the root of this round’s timestamp tree. The timestamp server
does not actually log these timestamp records, but the records
are hash-chained together in case witnesses wish to do so. The
timestamp server uses CoSi to distribute the new timestamp
record to all available witnesses and produce a collective
signature on the timestamp record.

Finally, the timestamp server replies to the outstanding
client requests, giving each client a copy of the timestamp
record and a standalone inclusion proof relating the client’s
submitted hash to the Merkle tree root contained in the time-
stamp record. To verify that a document was indeed included,
the verifier of a document timestamp uses the document’s hash,
the timestamp server’s certificate (including the public keys of
all witnesses), the timestamp record, and the Merkle inclusion
proof, to verify that the document was indeed timestamped in
that round and that a threshold number of witnesses validated
the timestamp record.

The timestamp server never records or transmits the full
Merkle tree itself, and forgets the Merkle tree after the round
concludes. The server transmits only individual inclusion
proofs to satisfy client requests. Thus, the timestamp server
leaves to clients the responsibility of remembering timestamp
records and cryptographic evidence that a particular document
was timestamped. The primary security property is bound into
the timestamp record’s collective signature, which attests that
the witnesses verified that the record was formed and signed
at approximately the time indicated in the timestamp record.

2) Coarse-grained Time Checking: Since the timeserver
does not care whether a value submitted for timestamping is
actually a hash of documents or merely a random number,
clients can submit a random nonce to timestamp a “challenge”
and obtain a witness cosigned attestation of the current time.
Timestamping a challenge in this way ensures that attackers
cannot replay valid but old signed timestamp records to trick
clients into thinking the time is in the past: the client can verify
directly that the timestamp record is fresh, and can trust the

https://github.com/dedis/cothority


timestamp it contains on the assumption that a threshold of
the timestamp server’s witnesses are honest.

Such a coarse-grained time-check may be useful as a sanity-
check for the client’s NTP sources [95], [96], enabling the
client to protect itself against both compromised NTP servers
and other time-related vulnerabilities [86]. Due to the coordi-
nation required for collective signing, CoSi’s coarse-grained
time checking will not substitute for fine-grained NTP-based
clock synchronization. CoSi’s coarse-grained sanity checking
is instead complementary to NTP, increasing security and
ensuring that clients cannot be tricked into believing that the
time is far removed from reality in either direction.

3) Scalable Timestamping: To illustrate how applications
can further leverage CoSi’s architecture in application-specific
ways, we enhanced the timestamp server prototype to enable
the witnesses, in addition to the leader, to serve timestamp
requests submitted by clients. Thus, all witnesses effectively
become timestamp servers and can distribute the task of
handling heavy client timestamp loads. In this use of CoSi, the
leader defers formation of the timestamp record to be signed
until the beginning of the Challenge phase (Section III-E).

During the Commitment phase, each witness collects all
timestamp requests clients submitted since the last round into
a local Merkle timestamp tree, including the timestamp tree
roots generated by child witnesses, then passes the aggregated
Merkle timestamp tree up to the witness’s parent. The leader
thus forms a global timestamp tree that transitively includes
all witnesses’ local timestamp trees.

During the Challenge phase, the leader passes down to each
witness an inclusion proof relating the root timestamp record
to the root of the witness’s local timestamp tree. Once the CoSi
signing round concludes, forming the collective signature, each
witness can compose its inclusion proof with the inclusion
proof for each client request within its local timestamp tree,
to give each client a complete inclusion proof relating that
client’s submitted hash with the signed timestamp record.

B. Witness Cosigned Certificate Logging Service

As a second application and test-case building on an exist-
ing service, we incorporated CoSi as a backward-compatible
extension to Google’s existing Certificate Transparency log
server [76], [78]. CT’s log server periodically constructs a
Merkle tree of records for recently timestamped and logged
certificates, and creates a Signed Tree Head (STH) represent-
ing the root of each epoch’s tree of timestamp records. With
our extension, the log server attaches a collective witness
signature to each STH alongside the log server’s existing
individual signature. Since the collective signature is carried
in an extension field, legacy CT clients can simply ignore it,
while new CT clients that are aware the log server supports
witness cosigning can verify the witness signature extension.

CT normally relies on a gossip protocol [103] to enable
other auditor servers to check retroactively that a log server
is behaving correctly, and not revising or forking its history
for example. Our extension effectively makes this auditing
function proactive, enabling the log server’s witnesses to check

the log server’s behavior before each record is signed and
withhold their cosignature on the STH if not.

The protection this extension offers CT clients in practice
depends of course on client behavior. Current CT clients
typically check only individually-signed log server timestamp
records attached to logged certificates, and thus would not di-
rectly benefit from collective signatures on STHs. A log server
could in principle witness cosign each timestamp record, but
the communication cost could become prohibitive for log
servers that timestamp a high volume of certificates.

However, independent of our witness cosigning extension,
CT is currently being enhanced so that clients can obtain from
web servers not only the appropriate timestamp record but
the STH representing the epoch in which it was logged, and
an inclusion proof demonstrating that the timestamp record
was included in the STH for the relevant epoch. Thus, CT
clients supporting both this STH inclusion proof extension and
our STH cosigning extension can obtain proactive protection
from secret attacks by powerful adversaries who might have
compromised both a CA’s key and a few log servers’ keys, and
who might be able to block the client’s active communication
with uncompromised log servers.

VI. EVALUATION

The primary questions we wish to evaluate are whether
CoSi’s witness cothority architecture is practical and scalable
to large numbers, e.g., thousands of witnesses, in realistic sce-
narios. Important secondary questions are what the important
costs are, such as signing latencies and computation costs.

While this paper’s primary focus is on the basic CoSi proto-
col and not on particular applications or types of cothorities,
we also evaluated the CoSi prototype in the context of the
timestamping and log server applications discussed above.

A. Experimental Setup

We evaluated the prototype on DeterLab [44], using up
to 32 physical machines configured in a star-shaped virtual
topology. To simulate larger numbers of CoSi participants than
available testbed machines, we run up to 1,058 CoSi witness
processes on each machine to perform experiments with up
to 33,825 witnesses total, corresponding to a fully populated
tree of depth 3 and a branching factor of 32. A corresponding
set of CoSi client processes on each machine generate load by
issuing regular timestamp requests to the server processes.

To mimic a conservatively slow, realistic wide-area envi-
ronment in which the witness cothority’s servers might be
distributed around the world, the virtual network topology
imposes a round-trip latency of 200 milliseconds between any
two witnesses. The witnesses aggregate timestamp statements
from their clients and request every second the batch of state-
ments to be signed collectively as part of a single aggregate
Merkle tree per round. These testbed-imposed delays are likely
pessimistic; global deployments could probably achieve lower
latencies using approximate shortest-path spanning trees.



2 8 32 128 512 2048 8192 32768
Number of witnesses

0.50

1.00

2.00

4.00

8.00

S
ig
n
in
g
 r
o
u
n
d
 l
a
te
n
cy

 i
n
 s
e
co

n
d
s

oversubscription

JVSS
Naive
NTree
CoSi

Fig. 3. Collective signing latency versus number of participating witnesses.

B. Scalability to Large Witness Cothorities

Our first experiment evaluates the scalability of the CoSi
protocol while performing simple collective signing rounds
across up to 33,825 witnesses. We compare CoSi’s perfor-
mance against three different baselines. The first baseline is
“Naive” scheme in which the leader simply collects N stan-
dard individual signatures via direct communication with N
witnesses. Second, an “NTree” scheme still uses N individual
signatures, but the N witnesses are arranged in a communica-
tion tree and each node verifies all signatures produced within
its subtree. Finally, a “JVSS” scheme implements Schnorr
signing using joint verifiable secret sharing [55], [124].

Figure 3 shows the results of this scalability experiment.
The lines represent averages measured over ten experimental
runs, while the shaded areas behind the lines represent the
minimum and maximum observed latencies over all ten runs.
CoSi’s signing latency increases with the number of hosts
as we would expect, scaling gracefully with total number of
witnesses up to around 8,192 witnesses, where the perfor-
mance impacts of testbed oversubscription begin to dominate
as explored later in Section VI-F. Per-round collective signing
latencies average slightly over 2 seconds with 8,192 cosigning
witnesses. The maximum latency we observed in that situation
was under 3 seconds over many runs. Given that many
authority protocols are or can be made fairly latency-tolerant,
often operating periodically at timescales of minutes or hours,
these results suggest that witness cosigning should be practical
to enhance the security of many such authorities.

The Naive scheme is naturally simpler and as a result
faster for small witness groups, but becomes impractical
beyond around 256 witnesses due to the costs of computing,
transmitting, and verifying N individual signatures.

The even poorer performance of the NTree scheme can be
traced back to the increasing computational load each node
must handle the further up it resides in the communication
tree. As with the Naive scheme, NTree becomes impractical
beyond around 256 witnesses.
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Fig. 4. Per-node, per-round computation cost versus number of participating
witnesses.

The JVSS approach proves to be the least scalable variant,
becoming impractical beyond about 32 witnesses. This poor
scalability results from the fact that JVSS requires each of
the N witnesses to serve in a “dealer” role, each producing
an N -share secret polynomial whose shares are encrypted and
sent to the other N nodes. Every node must then combine
the N public polynomials and the N encrypted shares it
receives to form shares of a joint master polynomial. In
threshold Schnorr signing using JVSS, this O(N2) dealing
cost is incurred both during initial key-pair setup and during
each signing round, because it is required to produce a fresh
shared Schnorr commit V̂0 each round whose private value
is not known to any individual or sub-threshold group of
participants. Using a pairing-based signature scheme such as
BLS [19] in place of Schnorr could eliminate the need to deal
a fresh commit per signing round and thus reduce the per-
round cost of JVSS signing, but the O(N2) joint dealing cost
would still be required at key generation time.

C. Computation Costs

The next experiment focuses on the protocol’s per-node
computation costs for signing and signature verification.
The CoSi leader periodically initiates new collective signing
rounds, and we measure the total CPU time per round imposed
on the most heavily-loaded participant. Since all CoSi partici-
pants check the (partial) signatures submitted by their children
in the process of producing the full aggregate signature, this
computation cost includes the cost of signature checking.

Figure 4 shows how measured System and User time on
the most heavily-loaded signing node (typically the root)
varies depending on the number of cosigning witnesses. The
figure also shows the computation costs of comparable Naive
and NTree cosigning approaches using individual signatures,
as well as using joint verifiable secret sharing (JVSS). As
expected, the computational cost of the CoSi protocol stays
relatively flat regardless of scale, whereas the computation
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costs of the competing schemes begin to explode with groups
beyond a few tens of witnesses.

The measured computation time is often greater than the
wall-clock signing latency because computation is done in
parallel and the graph represents the sum of the CPU time
spent by all threads running on a given witness server.

D. Network Traffic

The next experiment measures the total network traffic
produced by CoSi in comparison with the Naive, NTree, and
JVSS baselines. Figure 5 shows these results. Due to CoSi’s
aggregation mechanism, network traffic at the root node rises
much more slowly than in the the baseline schemes, which
all lack the benefit of aggregation, as the number of witnesses
grows. JVSS puts a particularly high burden on the network
due to its O(N2) communication complexity.

E. Effects of Spanning Tree Configuration

Our next experiment explores the tradeoffs in organizing
the spanning tree with which CoSi aggregates signatures:
in particular the tradeoffs between wide, shallow trees and
narrower, deeper trees. This experiment is parameterized by
the tree’s branching factor, or maximum number of children
per interior node, where 2 represents a binary tree.

Figure 6 shows the relationship between per-round signing
latency and branching factor in spanning trees containing
2,048, 4,096, and 8,192 witnesses total, respectively. Low
branching factors increase tree depth, increasing root to leaf
round-trip latency by about 200 milliseconds per unit of depth
added. On the other hand, low branching factors also decrease
both the CPU time spent per node and the communication
costs each node incurs coordinating with its children.

Empirically, we find that the higher the branching factor
the lower the signing latency. For example, in the case of
2,048 witnesses and a branching factor of 16, we get a tree
depth of 3 and a collective signing latency of below 2 seconds.
For trees of depth 3 or less we find that computation time
dominates, while for depths 5 or more network latencies begin
to dominate. The current CoSi prototype makes no attempt to
optimize its computations, however; further optimization of
the computations might make small depths more attractive.

F. Effects of Testbed Oversubscription

Since we did not have thousands of dedicated physical hosts
on which to evaluate CoSi, we had to “oversubscribe” the
testbed by running multiple CoSi witness processes on each
physical testbed machine. The spanning trees are laid out such
that no two adjacent nodes in the tree run on the same physical
host, ensuring that the 200ms round-trip delays imposed by
DeterLab apply to all pairs of communicating witnesses in
the tree. However, oversubscription can introduce experimen-
tation artifacts resulting from compute load on each physical
machine and different CoSi witness processes’ contention for
other system resources; we would like to measure the potential
severity of these effects.

Figure 7 shows the signing round latencies we measured for
experiments using a given number of witnesses on the x-axis,
but with these witness processes spread across 8, 16, or 32
physical machines to compare different levels of oversubscrip-
tion. Unsurprisingly, the latencies become noticeably worse at
higher levels of oversubscription (fewer physical machines),
and this effect naturally increases as total number of witnesses
and hence total load per machine increases. Nevertheless,
even with these oversubscription effects the measured latencies
remain “in the same ballpark” for groups up to 4,096 witnesses
(512× oversubscription on 8 machines). The performance
decrease observable in Figure 3 for more than 8,192 CoSi-
witnesses can be also attributed to oversubscription and thus
to the increased computational load the 32 physical machines
have to handle. Thus, since experimental oversubscription
works against CoSi’s performance and scalability, we can treat
these experimental results as conservative bounds on signing
time per round; a deployed witness cothority using dedicated
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(or at least less-overloaded) witness servers may well perform
significantly better than in our experiments.

G. Timestamping Application Scalability

As discussed in Section V-A, our timestamping applica-
tion uses CoSi periodically to sign timestamp records that
can aggregate many clients’ timestamp requests each round.
In addition, further leveraging CoSi’s scalable structure, the
timestamp service allows not only the leader but also the
witness servers to handle timestamp requests from clients, each
server forming a local Merkle tree of timestamps per round
and then aggregating these local trees into one global tree
during the Commit phase of the CoSi protocol.

To evaluate the scalability of this timestamping service, as
opposed to the “bare” performance of CoSi signing, we ran an
experiment in which for each CoSi server a separate process on
the same physical machine acted as a client sending timestamp
requests at a constant rate. We tested the system under a variety
of client load rates, from one request every 5 seconds to one
request every 13ms – the last case amounting to 80 requests
per second on each timestamp server. Client loads within
this range did not significantly affect the collective signing
latencies we observed, however, so we omit these graphs.

At large-scale experiments with 4,096 timestamp/witness
servers spread across 16 physical testbed machines (256
servers per machine), each physical machine effectively han-
dled an aggregate client load of about 20,000 timestamp
requests per second, or 320,000 timestamp requests per second
across the 4096-server collective. Further, the current CoSi
implementation and timestamp server code is largely unopti-
mized and completely unparallelized within each server: with
more powerful, unshared machines, we expect that each server
could readily handle much larger timestamping service loads.

H. Difficulty of Retrofitting Existing Authorities

Finally, to provide an informal sense for the software im-
plementation costs of retrofitting existing authority systems to

support witness cosigning, we relate our experience adapting
the CT log server. In this case, the log server is written in a
different language (C++), and we did not attempt to combine
the log server and CoSi implementation in a single program.
Instead, when our modified CT log server is configured to
attach collective signatures to its Signed Tree Heads (STHs),
the log server first prepares the STH internally, then uses
inter-process communication to request that a separate process
implementing the CoSi leader initiate a signing round. The CT
log server’s STH signing process then waits for the CoSi round
to complete, and incorporates the CoSi-generated collective
signature into an extension field in the STH. The verification
is done in a separate program that requests the STH from
the log server and verifies the signature against the aggregate
public key of the CoSi-tree.

With this two-process approach to integrating CoSi, the
necessary changes to the CT log server amounted to only
about 315 lines as counted by CLOC [41], or 385 “raw”
source code lines. Further, this integration took less than one
person-week of effort. While a production deployment would
of course involve significantly more effort than merely writing
the code, nevertheless our experience suggests that it may be
quite practical to strengthen existing authorities by retrofitting
them to add witness cosigning support.

VII. DISCUSSION AND FUTURE WORK

This paper’s primary technical focus has been on the basic
CoSi protocol for collective witnessing and signing; we make
no pretense to have addressed all the important issues rele-
vant to applying CoSi in any particular cothority application
context. However, we briefly revisit some of the motivating
applications introduced in Section II in light of the above
implementation and evaluation results.

a) Logging and Timestamping Authorities: While the
current CoSi prototype is basic, it nevertheless already imple-
ments the essential functionality of classic tamper-evident log-
ging and timestamping authorities [2], [63], [120]. As neither
the leader nor any signer can produce a collective signature
without the participation of a quorum of the potentially large
collective, such a timestamp cothority can offer much stronger
protection against the equivocation, history-rewriting, or log-
entry back-dating attacks that a centralized timestamp service
can mount if compromised. When integrated into a direc-
tory [89] or software update service [115], this timestamping
architecture can offer strong proofs of freshness, by enabling
clients to submit random challenges and verify that their
challenges are included in the service’s next signed update.

b) Certificate Authorities: Adding proactive transparency
and protecting clients against stolen CA-related keys (in-
cluding CT log server keys) may be the most compelling
and immediately urgent use-case for CoSi. While adding
witness cosigning to CT’s log server as we explored above
represents one fairly simple and potentially worthwhile step,
more substantial modifications to the current CA system may
be needed to address other major issues such as certificate
freshness and revocation [82].



We envision that in a witness cothority architecture in which
not just one CA but many of them inspect and collectively sign
certificates, stolen CA keys such as those of DigiNotar [8],
[22] and Comodo [21] would not by themselves be usable to
sign certificates that a web browser would accept. Not just CAs
but browser vendors and security companies could incorporate
monitoring servers into the certificate cothority as signers, to
watch for and perhaps proactively impose a temporary “veto”
on the signing of unauthorized certificates, such as certificates
proposed by a CA that is not recorded as having contractual
authority over a given domain. Giving other CAs serving as
witnesses even temporary veto power over a CA’s certificate
issuance processes creates DoS concerns, but such concerns
might be alleviated provided administrative communication
channels between CAs and witnesses are effective.

Deploying a more general certificate cothority would of
course require addressing many additional issues beyond the
basic collective signing mechanism covered here, not just
technical but also organizational and political. One important
technical challenge is backward compatibility and incremental
deployment. We anticipate that current root CAs might grad-
ually transition their root signing keys into witness cothority
keys, with their current sets of delegated CAs (and any other
cooperating root CAs) serving as witnesses. Each root CA
could transition independently at its own pace, driven by
pressure from users and browser vendors to increase security.
Web browsers would need to be upgraded gradually to support
aggregation-compatible signature schemes such as Schnorr in
addition to the currently common RSA, DSA, and ECDSA
schemes. During their transition period root CAs could retain
traditional root CA certificates for use in older web browsers
while embedding root cothority certificates instead into suit-
ably upgraded browsers. However, we leave to future work a
detailed exploration and analysis of the “right” way to integrate
witness cosigning into the CA system.

c) Public Randomness Authorities: While not our present
focus, the current CoSi prototype also effectively implements
a simple collective public randomness service that could
improve the trustworthiness of public randomness authori-
ties [?], [109]. Notice that in phase 2 of the signing protocol
(Section III-E) each server i commits to a fresh random secret
vi, contributing to a collective random secret

∑
i vi that no

participant will know unless all signers are compromised or
the discrete-log hardness assumption fails. The final response
produced in phase 4 depends unpredictably and 1-to-1 on this
random secret and the collective challenge c. Thus, we can use
the final aggregate response r̂0 as a per-round public random
value that was collectively committed in phase 2 but will be
unpredictable and uncontrollable by any participant unless all
signers are colluding.

While these random outputs will be unpredictable and un-
controllable, our current prototype cannot guarantee that they
are fully unbiased, due to its reliance on the signing exception
mechanism for availability. In particular, if a malicious leader
colludes with f other signers, then the leader can control
whether these colluders appear online or offline to produce up

to 2f different possible final aggregate responses with different
exception-sets, and choose the one whose response is “most
advantageous” to the leader, just before completing phase 4
of the protocol. Alternative approaches to handling witness
failures, through the judicious use of verifiable secret sharing
(VSS) techniques for example [55], [124], might be able to
address this bias issue, by ensuring that every node’s secret
is unconditionally incorporated in the final response, unless a
catastrophic failure makes some server’s secret unrecoverable
even via secret-sharing.

With these changes, a future version of CoSi might be
able to offer bias-resistant randomness in a conventional
but scalable threshold-security model, contrasting with more
exotic approaches recently proposed using new cryptographic
primitives and hardness assumptions [79] or the Bitcoin
blockchain [20] for example. We again leave exploration of
this opportunity to future work.

d) Other Types of Authorities: Integrating witness
cosigning into blockchain systems such as Bitcoin [102]
present interesting opportunities to improve blockchain se-
curity and performance [70]. The tree-based scaling tech-
niques explored here may also be applicable to decentral-
izing other cryptographic primitives such as public-key en-
cryption/decryption. A large-scale cothority might collectively
decrypt ElGamal [51] ciphertexts at particular future dates
or on other checkable conditions, to implement time-lock
vaults [100], [111], key escrows [43], or fair-exchange pro-
tocols [58].

VIII. RELATED WORK

The theoretical foundations for CoSi and witness cothorities
already exist in the form of threshold signatures [17], [119],
aggregate signatures [18], [84], [85], and multisignatures [12],
[93]. Threshold signatures allow some subset of authorized
signers to produce a signature, however, often making it
impossible for the verifier to find out which signers were
actually involved. In aggregate signatures, a generalization of
multisignatures, signers produce a short signature by com-
bining their signatures on individual statements through an
often serial process. On the other hand, multisignatures closely
fit the requirements of CoSi for security, efficiency and the
simplicity of generation across many signers. However, to our
knowledge these primitives have been deployed only in small
groups (e.g., ≈ 10 nodes) in practice, and we are aware of no
prior work experimentally evaluating the practical scalability
of threshold crypto or multisignature schemes.

Merkle signatures [23], [90], [92] employ Merkle trees for a
different purpose, enabling a single signer to produce multiple
one-time signatures verifiable under the same public key.

Online timestamping services [2], [63] and notaries [120]
enable clients to prove the existence of some data (e.g., con-
tracts, research results, copyrightable work) before a certain
point in time by including it in a timestamped log entry.
Typically, a trusted third party acts as a timestamping author-
ity [46], [59], [114] and has a unilateral power to include,
exclude or change the log of timestamped data.



Many distributed systems rely on tamper-evident log-
ging [38], [81]. Logging services are vulnerable to equiv-
ocation, however, where a malicious server rewrites history
or presents different “views of history” to different clients.
Solutions include weakening consistency guarantees as in
SUNDR [81], adding trusted hardware as in TrInc [80] or
relying on a trusted party [116]. Certificate Transparency or
CT [76], [78] and NIST’s Randomness Beacon [?] are ex-
amples of application-specific logging services that exemplify
issues related to a trusted-party design paradigm.

Directory services such as Namecoin [131], and Key-
base [37] use blockchains such as Bitcoin [102] as a decentral-
ized timestamping authority [69]. With this approach, history
rewriting or equivocation attacks become difficult once a
transaction is deeply embedded in the blockchain – but clients
unfortunately have no efficient decentralized way to verify that
a timestamp transaction is in the blockchain, other than by
downloading and tracking the blockchain themselves or by
trusting the say-so of centralized “full nodes.” Blockchains
with collectively signed transactions [70] might address this
verification weakness in the blockchain approach.

There are many proposals to address PKI weaknesses [36].
Browsers such as Chrome and Firefox hard-code or pin public
keys for particular sites such as google.com [52], [72] or
particular CAs for each site – but browsers cannot ship with
hard-coded certificates or CAs for each domain for the whole
Web. Alternatively, browsers pin the first certificate a client
sees [121] protecting a site’s regular users but not new users.
TACK [88], another approach to pinning, offers site owners
the ability to authorize TLS keys for their domain using a
long-term TACK key they control. Since the client’s browser
must witness a pin on two different occasions, TACK protects
users from opportunistic attackers but it does not prevent an
attacker with a long-term access to the victim’s network from
tricking him to accept incorrect pins.

More recent mitigations for CA weaknesses rely on log-
ging and monitoring certificates as proposed in systems like
AKI [68], ARPKI [10], PoliCert [125], and CT [76], [78]. Now
deployed in the Chrome browser, CT requires CAs to insert
newly-signed certificates into public logs, which independent
auditors and monitors check for consistency and invalid certifi-
cates. Even with CT, an attacker can unfortunately still create
a fake EV certificate that the Chrome browser will accept
by stealing the secret keys of, or secretly coercing signatures
from, only three servers: any single CA and any two CT log
servers [77]. If the attacker also blocks the targeted device
from gossiping with public CT servers after accepting this fake
certificate, the attacker can hide this attack indefinitely [57].
CT’s reliance on clients being able to gossip with monitors
and auditors also raises latency and privacy concerns.

COCA [135] distributes the operation of a CA across
multiple servers, and Secure Distributed DNS [27] similarly
distributes a DNSSEC [6] name service. These systems repre-
sent precedents for CoSi’s collective witnessing approach, but
distribute trust across only a small group: at most four servers
in COCA’s experiments and seven in Secure Distributed DNS.

Some of these trust-splitting protocols have used threshold
signatures as a primitive [25], [26], [108], as CoSi does.

The NIST Randomness Beacon [?] logs random values it
produces by signing them using its own secret key and chain-
ing them with previously produced values. While a dishonest
beacon cannot selectively change individual entries, it could
rewrite history from a chosen point and present different views
of the history to different clients. Additionally, there is no
guarantee of freshness of the published randomness. While
the quality of the output is likely not affected if the beacon
precomputes the randomness, the beacon gets to see these
values beforehand, leaving it vulnerable to insider attacks.

TUF [115] and Diplomat [73] address software download
and update vulnerabilities [13], [31], [104], in a framework
that supports threshold signing by creating and checking mul-
tiple independent signatures. Application Transparency [53]
adapts CT to software downloads and updates. CoSi com-
plements both TUF and Application Transparency by greatly
increasing the number of independent servers an attacker must
compromise in order to keep the compromise secret.

IX. CONCLUSION

This paper has demonstrated how using theoretically estab-
lished and well-understood cryptographic techniques, we can
add efficient, scalable witness cosigning to new or existing
authority services. Witness cosigning offers proactive rather
than merely retroactive transparency, by ensuring that an
attacker who compromises the authority’s secret keys cannot
individually sign a statement clients will accept without also
submitting that statement to many witnesses for cosigning,
creating a high probability of immediate detection. By making
authority keys relatively useless “in secret,” witness cosigning
also reduces the value of an authority’s keys to attackers
wishing to operate in secret, disincentivizing attacks against
the authority’s keys in the first place. The encouraging scala-
bility and performance results we have observed with our CoSi
prototype lead us to believe that large-scale witness cothorities
are practical. If this is the case, we feel that there may be
little remaining technical reason to settle for the centralized,
weakest-link security offered by current designs for today’s
common types of critical authorities. We can and should
demand stronger, more decentralized security and transparency
from the Internet’s critical authorities.
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