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Introduction 
This project is the continuation of Kaitlin Howell’s work in 2014 [1]. In that project all the components 

of an RFID based on a SAW device have been dimensioned and the process flow of the device has been 

established. 

The key element of a SAW device is the piezoelectric material. The project aim is to increase our 

comprehension of the Lithium Niobate behavior. This material is anisotropic, thus, all the properties 

of the material are dependent of the orientation. Regarding to that, the crystal cut chosen for our 

device has strong consequences on its efficiency. 

Passive RFID based on a SAW device 
Radio-frequency identification (RFID) exploits electromagnetic fields to transfer data, for the purposes 

of automatically identifying and tracking tags attached to objects. Basically an RFID is a device which 

detects a radio-frequency signal and re-emits a secondary signal with a specific identification encoded. 

 SAW devices 
Surface acoustic wave (SAW) devices have been studied since the 60s, starting with the conception of 

interdigital transducers on piezoelectric materials. SAW devices have been fabricated for a lot of 

applications including resonators, oscillators, bandpass filters and delay lines. 

A simple SAW device is illustrated in figure 1: it is composed of two interdigital transducers that are 

fabricated by photolithography on a piezoelectric substrate. By applying a variable voltage on the 

input, the piezo-material generate mechanical deformation which propagate through the device. The 

opposite phenomena occurs in the output transducer and a voltage drop is created across the resistor. 

 

Figure 1: example of a SAW device 

This type of IDT’s (interdigital transducers) are designed for surface acoustic waves (depending on the 

excited mode). As shown on figure 2, in this configuration the intensity of the acoustic wave decays 

exponentially with the depth in the substrate, this is important and will be explained in the following 

paragraphs. 

 

Figure 2: surface acoustic wave in the substrate 
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 RFID principle 
The principle of a RFID based on a SAW device is very close to the previous one. The output transducer 

is replaced by reflectors and an antenna is designed and linked to the input. In this configuration, an 

appropriate external RF signal can be detected by the antenna and gives rise to a surface acoustic 

wave. A reflected wave is produced by the reflectors, and since the whole process is reversible, a 

secondary signal is re-emitted by the antenna. 

 

Figure 3: principle of RFID based on a SAW device 

It is worth pointing out that: 

1. The acoustic speed is much lower than the electro-magnetic wave (around 100 000 times 

lower). Because of that, a device of a few millimeter length can induce a delay of a few 

microseconds between the primary and the re-emitted signal. That makes possible the 

distinction of the two of them (figure 4).  

2. The positioning of the reflectors generates a specific re-emitted signal depending on their 

spacing. For example, if we imagine a four bits code, the device of the figure 3 can be identified 

by the binary code 1101 (figure 4). 

 

Figure 4: theoretical response of the RFID of the figure 3 to a RF pulse.  
Graph of the measured signals by a sensor close to the device and the RF signal 

 Final aim 
In a SAW device, all the energy of the acoustic wave is concentrated on the surface. The final device 

can be polished to a very thin layer (around 20 microns) so the RFID becomes flexible, that makes its 

integration with an object easier. 

Since the device is small and passive, its efficiency need to be optimized, otherwise the secondary 

signal will be too low to be detected. The critical point is the capability of the material to convert an 

electric field to a mechanical deformation. This is called coupling factor of the piezoelectric material. 

The higher is the coupling factor the better is the efficiency of the conversion. 
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Lithium Niobate 
Lithium Niobate (LiNbO3) is a compound of niobium, lithium, and oxygen as shown in figure 5. Its single 

crystals are an important material for optical waveguides, piezoelectric sensors, optical modulators 

and various other applications. Crystals of lithium Niobate were first obtained in 1949 grown from a 

melt solution, at present, single-crystals Lithium Niobate are mainly grown in air by the Czochralski 

technique. The Lithium Niobate crystal is hexagonal and has three planes of symmetry. It is widely used 

in SAW device because of its very high coupling factor. 

 

Figure 5: hexagonal unit cell of Lithium Niobate (LiNbO3) 

 Crystal basis 
A hexagonal lattice is defined by four Miller-Bravais indices (a1, a2, a3 and c). However to make the 

transformations easier it is needed to define an orthonormal basis in this system (figure 6).  The X-axis 

is defined along a1, the Z-axis along c and the Y-axis is defined with respect to the right hand rule [2]. 

 

 

Electromechanical coupling factor 
The electromechanical coupling factor, K indicates the effectiveness with which a piezoelectric 

material converts electrical energy into mechanical energy. The first subscript to K denotes the 

direction along which the electric field is applied; the second denotes the direction along which the 

mechanical energy is applied, or developed [3]. The following equation show K2 as function of the 

electrical and mechanical properties of the material. 

Kxy
2 = 

𝑒𝑥𝑦
2

𝐶𝑦𝑦𝑘𝑥𝑥
  Equation 1 

e is the piezoelectric constant in [C/m2], C is the elastic-stiffness constant in [Pa] and k the dielectric 

constant in [F/m]. 

Figure 6: Miller-Bravais indices and the orthonormal basis 
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A basis is defined so that the XY plane is on the surface of the device and the acoustic wave propagates 

along the X-axis. The Z-axis is perpendicular to the surface (figure 3). 

In order to optimize the efficiency, the coupling factor is calculated in a very specific direction. In our 

device the electric field and the SAW propagation are oriented in the X-direction, but the stress in the 

material is a shear stress in the XZ plane. Thus with respect to equation 1 we can define the correct 

subscripts to the coupling factor. 

 

Figure 7: sectional view of the device around the IDTs 

Matrices of interest 
As explained in the previous section, three parameters are needed: the dielectric constant in the 

direction of the applied electric field, the compliance in the direction of the induced stress and the 

piezoelectric constant which links the two of them. These parameters come from the stress charge 

form of the piezoelectric constitutive equations: 

𝑇 = 𝐶 ∙ 𝑆 + 𝑒𝑇 ∙ 𝐸 
𝐷 = 𝑒 ∙ 𝑆 + 𝑘 ∙ 𝐸 

S is the strain, T the stress in [Pa], D the electric displacement in [C/m2] and E the electric field in [V/m]. 

The 3 properties of interest are tensors and depend on the material: 

The elastic-stiffness matrix: 

 

The piezoelectric matrix: 

 

The dielectric matrix: 
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Table 1: Elastic coefficients (GPa), piezoelectric coefficients (C/m2), and dielectric coefficients (pF/m) 

C11 C12 C13 C14 C33 C44 e15 e22 e31 e33 k11 k33 

199.5 55.27 67.67 8.7 235.2 59.48 3.65 2.39 0.31 1.72 398.9 232.2 

All the values were obtained from the work of H. Ledbetter, N. Nobutomo and H. Ogi [4] wich compare 

their measurement with values from other papers. 

In order to select the correct coefficient, it is important to understand how the subscripts of the tensors 

are organized. In Voigt notation the subscripts for a rank 4 tensor1 are defined as: 

 With, XX=1, YY=2, ZZ=3, ZY=YZ=4, XZ=ZX=5 and XY=YX=6. 

For example that means that the coefficient C24 links the stress in the direction YY to the deformation 

in the plane ZY (a square in the ZY plane is turned to a rhomboid). Thus C55 links the shear stress in the 

plane XZ to the deformation of the plane XZ. 

For a rank 3 tensor2 the first subscript does not change from a rank 4 tensor, but the second one goes 

from 1 to 3 with, X=1, Y=2 and Z=3,. 

For a rank 2 tensor3, both subscripts go from 1 to 3. 

From that, we can define which coefficient is important for this application: 

- The electric field is applied in the X direction thus k11 is needed. 

- The stress is induced in the XZ plane thus C55 is needed. 

- With respect to equation 1, the piezo-coefficient e15 makes the link. 

With all that we can calculate the effectiveness of the conversion in our device which is 𝑲𝟏𝟓
𝟐 . 

Supplier’s crystal cuts 
Lithium Niobate can be purchased in different cuts. Since it is anisotropic, it is important to choose the 

best cut (with the higher coupling factor) for our application. For that we need to apply a 

transformation on all the tensors in order to calculate K15 for each cut.  

In the previous sections we defined the crystal basis and the device basis. To be able to do the tensor 

transformation, Euler’s angles are needed. Euler’s angles are a set of three angles (ϕ, θ, Ѱ) (figure 8) 

that describes the rotation from the device basis to the crystal basis. 

ϕ is a rotation around the Z-axis. 

θ is a rotation around the X’-axis. X’ is the new X-axis after the rotation ϕ. 

Ѱ is a rotation around the Z’’-axis. Z’’ is the new Z-axis after both rotations (ϕ, θ). 

                                                           
1 6x6 matrix in Voigt notation. 
2 6x3 matrix in Voigt notation. 
3 3x3 matrix in Voigt notation. 
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Lithium Niobate suppliers does not use Euler’s angles to define the orientation of their products. 

Designation like “X-cut LiNbO3” or “YX 128° LiNbO3” are widely used. Basically a crystal can be rotated 

3 times before the cut [2, p. 1387] but this is never used by the suppliers, only single rotated ones are 

described in this section. 

 

Figure 8: Euler's angles 

All the single rotated cuts can be separated in 2 sections: 

1. One axis designation 

 These three specific cuts are straightforward; X-cut, Y-cut and Z-cut. The axis in the designation is 

perpendicular to the surface. That means that the Z-cut makes the crystal basis and the device basis 

collinear. 

2. Two axis designation 

In this case the first axis is the plane4 of the cut rotated5 around the second axis by the specified angle. 

If we take as example XZ 30° Lithium Niobate: the plane defined by the X axis (YZ plane) is rotated by 

30° around the Z-axis (figure 9). 

 

Figure 9: XZ 30° Cut. 

                                                           
4 Each axis define the plane perpendicular to it. X-axis for the YZ plane, Y-axis for XZ plane and Z axis for the YX 
plane. 
5 Counter clockwise. 
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Knowing all that we can translate supplier’s designation to Euler’s angle for single rotated cuts: 

Table 2: transformation of the suppliers cut to Euler's angles 

Euler's angles (°) X-cut Y-cut Z-cut XY α° XZ α° YX α° YZ α° ZX α° ZY α° 

ϕ 0 0 0 0 0 0 0 0 0 

θ 90 90 0 90+α 90 α-90 90 -α α 

Ѱ 90 0 0 90 90-α 0 -α 0 90 
 

      
 

Transformation of tensor constants 
Four different cuts have been compared in this project; X-cut, Y-cut, Z-cut and YX 128° LiNbO3. A 

MATLAB code6 has been implemented to calculate all the new tensor constant after rotation. More 

details on the software are in the appendix 3 [5]. 

A dedicated function7 calculates the Euler’s angles from the suppliers’ cut as shown in the table 2. The 

coefficient of interest (C55, e15 and k11 in our case) are specified as characters in the variable “data”. It 

is possible to add as much coefficient as needed. All the graphics and the data will be automatically 

saved in different files (lines 126 to 177). 

The code is split in two parts: in the first one, all the tensors are defined (lines 16 to 46) [4], then, using 

Euler’s angles the tensors are modified to match a given orientation (lines 49 to 80). 

In order to define which SAW propagation direction offers the higher coupling factor in a specific cut, 

the second part of the code rotates the sample around the axe perpendicular to the new surface of 

the sample (lines 90 to 124). The sample is rotated by 180° (this parameters can be modified at the 

line 12) and the tensors are calculated every degree (the step can be modified in line 13). 

 Results 
All the values for the different coefficients are saved in three different Excel files (one for each cut), 

they’re plotted together and K15
2 (equation 1) is calculated directly in a new Excel document. 

 

Figure 10: compliance VS propagation direction 

                                                           
6 Appendix 1 
7 Appendix 2 

50

55

60

65

70

75

80

0 20 40 60 80 100 120 140 160 180

C
5

5
(G

p
a)

Angle (°)

Compliance

X-cut

Y-cut

Z-cut

YX128° cut



  

BEN KHELIL S. 10 

 

 

Figure 11:piezoelectric constant VS propagation direction 

 

Figure 12: dielectric constant VS propagation direction 

 

Figure 13: coupling factor VS propagation direction 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 20 40 60 80 100 120 140 160 180

e
1

5
(C

/m
2
)

Angle (°)

Piezoelectric-constant

X-cut

Y-cut

Z-cut

YX128° cut

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160 180

k 1
1

 (-
)

Angle (°)

Dielectric-constant

X-cut

Y-cut

Z-cut

YX128° cut

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160 180

K
1

5
2

(%
)

Angle (°)

Coupling-Factor

X-cut

Y-cut

Z-cut

YX128° cut



  

BEN KHELIL S. 11 

 

Fabrication 
The device is elaborated by photolithography and metallic deposition on the surface of a Lithium 

Niobate chip. At the beginning of this project the process flow (Appendix 4), which describes the steps 

of fabrication in the clean room was already established. A test mask (figure 14) for the 

photolithography had been elaborated in order to run some preliminary measures. The mask has 

several devices disposed in different orientations in order to measure the response as function of the 

propagation direction. The distance between the reflectors (upper pattern in the first zoom-in on the 

figure 14) and the IDTs is different in some devices on the mask that makes possible the 

characterization of the delay line. Moreover bonding pads are connected to the interdigital 

transducers (IDTs are shown in the second zoom-in on the figure 14) to facilitate the measures. 

 

Figure 14: test masks with bonding pads and several orientations 

Optimization of the photolithography 
The parameters used in the previous project (Kaitlin Howell’s work) needed to be updated since the 

material in the clean room has been modified, especially for the photolithography parameters. The 

first step of the fabrication consists in gluing the chip of lithium Niobate (14x15 mm2) on a wafer of 

100 millimeters. This operation is needed because all the systems in the cleanroom are designed to 

use wafers of 100 or 150 millimeters. The next step is the photolithography which is described in details 

in the appendix 5. 

The resist used for the photolithography is a reversal resist (details in appendix 6). This type of resist 

need to be baked after exposure. The time and the temperature of this reversal baking can influence 

the quality of the pattern after development. To optimize the process all parameters related to the 

bake or the exposure can be modified. In order to minimize the number of tests (Lithium Niobate chips 

are expensive) the reversal baking has been fixed at 110° for 90 seconds and the exposure time has 

been tested at 4 different times. All the exposures were done on the same chip, this procedure was 

realized on a manual mask aligner (figure 15) with a cover on the mask.  
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Figure 15: cover on the mask for the exposure test 

The figure 16 describe how the exposures have been done on the Lithium Niobate chip. Three quarter 

of the mask are covered with a black sheet of paper. First of all the mask is aligned in the bottom left 

corner of the chip and exposed for 3 seconds at 10 mW/cm2. The second exposure of 5 seconds is done 

after moving to the bottom right corner (the mask is moved by 7 mm to the right). The third exposure 

lasts 8 seconds after moving up by 7 mm, and the last one is an exposure of 11 seconds at the top left 

of the chip (the mask is moved by 7 mm to the left). If this procedure is properly done, there is no area 

double exposed on the resist. 

 

Figure 16: procedure of exposures for the multiple tests on the same chip.  
In black the sheet of paper covering the mask and in red the design of the mask. 

Results 
After development with the 

parameters of the runcard 

(Appendix 5) and cleaning, the 

chip has been measured under 

the microscope.  

The interdigital transducer did 

not appear properly for the first 

2 exposures (3 and 5 seconds). 

However the pattern for the 8 

and 11 seconds exposure looks 

good under the microscope as 

shown in the figure 17. 

 

 
Figure 17: Image of the four exposures test under the microscope 
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As shown on the figure 18, the dimension of the interdigital transducer (2 µm) which is the smallest 

dimension on the mask is almost reached with an exposure time of 11 seconds. 

 

Figure 18: measurement of the IDTs dimensions after photolithography 
 for 8 and 11 seconds exposures 

Conclusion 

MATLAB calculation 
After the correction of the typo in the paper of A. H. Fahmy and E. L. Alder [5] (Appendix 3) all the 

calculated values seem correct. The compliance, the piezoelectric and the dielectric matrix can be 

calculated for any orientation of Lithium Niobate. This MATLAB code can be used to predict LiNbO3 

properties as function of the crystal cut. Specific coefficient can be extracted, plotted and saved in an 

Excel file. However properties like the coupling factor are not calculated in the MATLAB code but 

afterward in the Excel file.  

The values seem correct with respect to the crystal symettry and the order of the magnitude. Moreover 

the YX 128° LiNbO3 is the most widely used in the field of SAW devices, therefore the results makes 

sense since the coupling factor is up to 85% for this cut. 

Nevertheless, all these results have to be validated by another way. Measurements on Lithium Niobate 

in several directions (every 10 degrees on 180 degrees for example) or/and a simulation on COMSOL 

should confirm what was obtained during this project. 

Fabrication 
The fabrication of the device did not go as far as scheduled because of unexpected problems. Only the 

first two steps of fabrication have been done. The gluing of the chip on the wafer and the 

photolithography worked well with the final parameters: reversal baking 90 second at 110° and 

exposure of 11 seconds at 10 mW/cm2.  

These parameters were tried one single time, a repeatability test should be ran to assure the quality 

of the next samples. Since the lithium Niobate is glued on the silicon and the reversal baking is done 

on a hot plate, it is possible that the reversal baking will not work every time because of thermal 

exchange problems. In this case, a reversal baking in an oven could improve the thermal exchange, but 

the baking time will be longer. In the end, all the final steps of the fabrication still need to be tested 

and optimized.  
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Appendix 

Appendix 1: MATLAB main code “transform_2steps” 
close all 

clear all 

clc 

  

%choose the crystal cut 

PLAN='y'; 

AXE='x'; 

ANGLE=128; 

data = ['C11';'e31';'k33']; 

components = cellstr(data); 

  

FA=180;            %final angle 

step=1;            %steps between angles 

  

%independant coeff. 

eps0=8.854; 

C11=199.5; 

C12=55.27; 

C13=67.67; 

C14=8.7; 

C33=235.2; 

C44=59.48; %Gpa 

e15=3.65; 

e22=2.39; 

e31=0.31; 

e33=1.72;%C/m^2 

k11=398.9/eps0; 

k33=232/eps0; %[-] 

  

C66=(C11-C12)/2; 

  

C=[C11 C12 C13 C14 0 0; 

   C12 C11 C13 -C14 0 0; 

   C13 C13 C33 0 0 0; 

   C14 -C14 0 C44 0 0; 

   0 0 0 0 C44 C14; 

   0 0 0 0 C14 C66];%elastic-stiffness matrix 

  

e=[0 0 0 0 e15 -e22; 

   -e22 e22 0 e15 0 0; 

   e31 e31 e33 0 0 0];%piezoelectric matrix 

  

k=[k11 0 0; 

   0 k11 0; 

   0 0 k33];%dielectric matrix 

  

% first rotations for the cut 

  

angles=cuts2euler(PLAN,AXE,ANGLE); 

  

%euler's angles 

phi=angles(1);    %rot Oz 

tetha=angles(2);  %rot Ox' 

psi=angles(3);    %rot Oz'' 

  

a1=cosd(psi)*cosd(phi)-cosd(tetha)*sind(phi)*sind(psi); %cos(x,x') 

a2=-sind(psi)*cosd(phi)-cosd(tetha)*sind(phi)*cosd(psi);%cos(x,y') 

a3=sind(tetha)*sind(phi);                               %cos(x,z') 

b1=cosd(psi)*sind(phi)+cosd(tetha)*cosd(phi)*sind(psi); %cos(y,x') 

b2=-sind(psi)*sind(phi)+cosd(tetha)*cosd(phi)*cosd(psi);%cos(y,y') 

b3=-sind(tetha)*cosd(phi);                              %cos(y,z') 

c1=sind(psi)*sind(tetha);                               %cos(z,x') 

c2=cosd(psi)*sind(tetha);                               %cos(z,y') CORRECTED! 

c3=cosd(tetha);                                         %cos(z,z')  

  

 

 

V=[a1 b1 c1; 

   a2 b2 c2; 

   a3 b3 c3]; 
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Q=[a1^2 b1^2 c1^2 2*b1*c1 2*c1*a1 2*a1*b1; 

   a2^2 b2^2 c2^2 2*b2*c2 2*c2*a2 2*a2*b2; 

   a3^2 b3^2 c3^2 2*b3*c3 2*c3*a3 2*a3*b3; 

   a2*a3 b2*b3 c2*c3 b2*c3+b3*c2 c2*a3+c3*a2 a2*b3+a3*b2; 

   a3*a1 b3*b1 c3*c1 b1*c3+b3*c1 c1*a3+c3*a1 a1*b3+a3*b1; 

   a1*a2 b1*b2 c1*c2 b1*c2+b2*c1 c1*a2+c2*a1 a1*b2+a2*b1]; 

  

Cfc=Q*C*Q'; 

efc=V*e*Q'; 

kfc=V*k*V'; 

  

  

% second rotation after the cut (to decide of the direction of propagation) 

  

  

t=0; 

phi=0; 

tetha=0; 

psi=0; 

  

for i=step:step:FA %automatic 

     

t=t+1; 

     

%euler's angles 

phi=i;    %rot around the axe perpendicular to the surface 

  

  

a1=cosd(psi)*cosd(phi)-cosd(tetha)*sind(phi)*sind(psi); %cos(x,x') 

a2=-sind(psi)*cosd(phi)-cosd(tetha)*sind(phi)*cosd(psi);%cos(x,y') 

a3=sind(tetha)*sind(phi);                               %cos(x,z') 

b1=cosd(psi)*sind(phi)+cosd(tetha)*cosd(phi)*sind(psi); %cos(y,x') 

b2=-sind(psi)*sind(phi)+cosd(tetha)*cosd(phi)*cosd(psi);%cos(y,y') 

b3=-sind(tetha)*cosd(phi);                              %cos(y,z') 

c1=sind(psi)*sind(tetha);                               %cos(z,x') 

c2=cosd(phi)*sind(tetha);                               %cos(z,y') 

c3=cosd(tetha);                                         %cos(z,z') 

  

V=[a1 b1 c1; 

   a2 b2 c2; 

   a3 b3 c3]; 

  

Q=[a1^2 b1^2 c1^2 2*b1*c1 2*c1*a1 2*a1*b1; 

   a2^2 b2^2 c2^2 2*b2*c2 2*c2*a2 2*a2*b2; 

   a3^2 b3^2 c3^2 2*b3*c3 2*c3*a3 2*a3*b3; 

   a2*a3 b2*b3 c2*c3 b2*c3+b3*c2 c2*a3+c3*a2 a2*b3+a3*b2; 

   a3*a1 b3*b1 c3*c1 b1*c3+b3*c1 c1*a3+c3*a1 a1*b3+a3*b1; 

   a1*a2 b1*b2 c1*c2 b1*c2+b2*c1 c1*a2+c2*a1 a1*b2+a2*b1]; 

  

Cf(:,:,t)=Q*Cfc*Q'; 

ef(:,:,t)=V*efc*Q'; 

kf(:,:,t)=V*kfc*V'; 

ang(t)=i; 

  

end 

  

  

  

FCOMP=size(components); 

  

for h=1:1:FCOMP(1) 

    t=0; 

    component=components{h}; 

     

        for j=step:step:FA %loop to extract the values of the choosed component 

            t=t+1; 

    

            matrix1=component(1); 

            matrixf=[matrix1,'f'];matrix=eval(matrixf); 

            index1=component(2); 

            index2=component(3); 

            Yaxelabel=sprintf('%s%s%s',matrix1,index1,index2); 

            index1=str2num(index1); 

            index2=str2num(index2); 

     

            comp(t)=matrix(index1,index2,t);  
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        end 

  

        switch matrix1 %selection of the units for Y axis 

            case 'C' 

            units='Gpa'; 

            case 'e' 

            units='C/m^2'; 

            case 'k' 

            units='-'; 

        end 

  

%plot the figure 

figure(h) 

plot(ang,comp,'LineWidth',2) 

title( sprintf('%s%s %s° Lithium 

Niobate',PLAN,AXE,num2str(ANGLE)),'FontSize',15,'FontWeight','bold' ); 

xlabel('Orientation (°)','FontSize',15,'FontWeight','bold') 

ylabel(sprintf('%s (%s)',Yaxelabel,units),'FontSize',15,'FontWeight','bold','Color','r'); 

%save automatically the fig 

saveas(h,sprintf('%s%s%s_%s.jpg',PLAN,AXE,num2str(ANGLE),Yaxelabel)); 

  

%create the excel file 

lim=num2str((FA/step)+1); 

range=h+1; 

col = char(range+'A'-1); 

column=sprintf('%s2:%s%s',col,col,lim); 

tit=sprintf('%s%s_%s.xlsx',PLAN,AXE,num2str(ANGLE)); 

xlswrite(tit, comp', column); 

  

end 

  

rangefA=sprintf('A:A%s',lim); %write the angles in excel 

xlswrite(tit, ang', 'A2:A181'); 
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Appendix 2: MATLAB function “cut2euler” 
function Euler_angles = cuts2euler(plan,axe,angle) 

  

%this fonction transform the suppliers standards to euler's angles 

% for example: YX 128° lithium niobate 

%               plan='y', axe='x',angle=128 

%               euler's angles are [0,38,0] 

%for simple cut (X cut) 

%               plan='x',axe'x',angle=0 

  

% the variables plan and axe are single lowercase character(x,y or z)!!!!! 

% angle is a number 

%  

% Example:          cuts2euler('y','x',128) 

%  

%                   ans = 

%  

%                         0    38     0 

  

  

phi=0; 

tetha=0; 

psi=0; 

  

    switch plan 

    case 'x' 

            switch axe 

            case 'x' 

            phi=0;tetha=90;psi=90;           

            case 'y' 

            phi=0;tetha=90+angle;psi=90;     

            case 'z' 

            phi=0;tetha=90;psi=90-angle;     

            end     

    case 'y' 

            switch axe 

            case 'x' 

            phi=0;tetha=angle-90;psi=0;      

            case 'y' 

            phi=0;tetha=90;psi=0;            

            case 'z'   

            phi=0;tetha=90;psi=-angle;       

            end 

    case 'z' 

            switch axe 

            case 'x' 

            phi=0;tetha=-angle;psi=0;        

            case 'y' 

            phi=0;tetha=angle;psi=90;        

            case 'z' 

            phi=0;tetha=0;psi=0;             

            end 

    end 

  

Euler_angles=[phi,tetha,psi]; 

  

end 
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Appendix 3: Transformation of tensor constants 

 

  

A mistake has been found in the paper 

used for the tensor transformation: 

cos φ sin θ should be cos Ѱ sin θ 
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Appendix 4: Process Flow 
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Appendix 5: Details on the process flow (runcard) 

 

  

 

Project : SAW, Operator : Kaitlin Howell 

Created : 30.04.2014  Last revision : 24.12.2015 

Substrates : silicon <100>, 100mm, 525um, single side & LN chip, 1.4*1.5 cm2 

        

Step 
N° 

Description Equipement Program / Parameters Target Actual Remarks 

0 WAFER PREPARATION 

0,1 Stock out         Si wafers, chips, mask 

0,2 Check           

1 GLUING 

1,1 Prepare Equipment Z6-Suess RC8 THP Program 19     
select program, check 

parameters 

1,2 Secure Wafer Z6-Suess RC8 THP Program 19     Start program, load wafer 

1,3 
Apply Quick 
Stick/Chip 

Z6-Suess RC8 THP Program 19     
Stop program, apply QS and 

chip 

1,4 Finish Program Z6-Suess RC8 THP Program 19     Remove wafer, clean 

2 O2 PLASMA SURFACE CLEANING 

2,1 Prepare Equipment Z2/Tepla Gigabatch Recipe descum, 30s       

2,2 Secure Wafer Z2/Tepla Gigabatch Recipe descum, 30s     Be careful with quartz carrier! 

2,3 Program Run Z2/Tepla Gigabatch Recipe descum, 30s       

2,4 Finish Program Z2/Tepla Gigabatch Recipe descum, 30s       

3 PHOTOLITHOGRAPHY - Mask 1 

3,1 AZ nLOF 2000 coating Z6/ EVG150 nLOF_No_dehydrated_1_4 1,4     

3,2 PR expose Z6/Suess MA&BA6 First mask, HC, 10.0 mW/cm2     exposure time, ~11s 

3,3 Developement Z6/EVG150 DEV_no_dehydrated_1_4       

3,5 Inspection Z6/uScope Resolution and alignment     check w/ profilometer too 

3,6 Relaxation None Wait 1 hr before further fab       

4 O2 PLASMA SURFACE CLEANING 

4,1 Prepare Equipment Z2/Tepla Gigabatch Recipe descum, 30s       

4,2 Secure Wafer Z2/Tepla Gigabatch Recipe descum, 30s     Be careful with quartz carrier! 

4,3 Program Run Z2/Tepla Gigabatch Recipe descum, 30s       

4,4 Finish Program Z2/Tepla Gigabatch Recipe descum, 30s     Be careful, hot surface! 

4 METAL EVAPORATION 

4,1 Cr Deposition Z4/ LAB600H HRN, 0.100 kA Cr 10 nm   Double check manual is off! 

4,2 Au Deposition Z4/ LAB600H HRN, 0.500 kA Au 50 nm     

5 LIFT-OFF 

5,1 Prepare Equipment Z14/Wet Bench Glass tall containers       

5,3 LIFT-OFF Z14/Wet Bench SVC-14, 1 night     For inspection 

5,4 Sink Rinse Z14/Wet Bench DI Rinse Sink       

5,5 Ultrasound Z14/Wet Bench 25 minutes, 22C, power 1     Room T 

5,6 Drying Z14/Wet Bench N2 gun       

5,7 Optical Inspection Z14/ uScope         
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Appendix 6: Types of resists 
In general positive resists have a better resolution and edge quality relative to negative resists. 

However, negative resists normally have negative undercuts (after development) that make the lift-off 

easier compared to a positive undercut. By using an image reversal process, it is possible to take 

advantage of both attributes: the resolution of a positive resist and the undercuts of a negative one. 

 


