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Abstract

Haptic exploration has received a great deal of attention of late thanks to the variety of commercially available tactile
sensors. While the majority of previous works consider control of a single contact point at a time, we tackle simultaneous
control of multiple contact points on several links. In addition, we use information from the existing tactile signals to
increase the number of points in contact. We demonstrate the usefulness of this form of control to speed up exploration,
scanning and to compliantly grasp unknown objects. Our controller requires to know only the parts of the robot on which
it is desirable to make contact and does not need a model of the environment besides the robot itself. We validate the
algorithm in a set of experiments using a robotic hand covered with tactile sensors and arm. In a grasping application,
the active adaptation of the fingers to the shape of the object ensures that the hand encloses the object with multiple
contact points. We show that this improves the robustness of the grasp compared to simple enclosing strategies. When
combined with an exploration strategy, our multi-contact approach offers an efficient use of tactile sensors on the whole
surface of robotic fingers, and enables the robot to perform a rapid exploration of complex, non convex shapes while
maintaining low contact forces. It is robust to variation in the approach angle and to changes in the geometry and
orientation of the object.
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1. Introduction

With robots moving into human-inhabited environment,
haptic exploration becomes of primary importance to be
able to interact with everyday objects. Other means of
identification such as computer vision are limited by oc-
clusion, illumination conditions and only provide partial
information about texture and other surface properties.

In robotics, collisions are ordinarily avoided and in the
cases when contact is allowed, it is usually limited to a
single contact point at the end-effector. However, recent
progresses in tactile sensing offer a range of research di-
rections in robotics for allowing robots to be in contact
at multiple points on the body. Moreover, thanks to ad-
vances in the design of dexterous humanoid hands that can
manipulate complex shape, we can now consider manipu-
lation that exploits the entire shape of the fingers. Such
manipulation requires precise control of multiple contact
points along the fingers.

Most research on haptic exploration has focused on a
single contact [1, 2] on the end-effector or sequences of
multi contact grasps [3], much less work has been done on
continuous multi contact exploration. In order to map a
surface or search for an object on it, it is more efficient
to keep all fingers in contact while moving than to touch
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sequentially several points. Increasing the number of con-
tact points also improves the overall time for the search
or the reconstruction. Keeping contact during exploration
becomes particularly crucial when the mapping must be
precise and when the object being scanned is moving. This
allows to keep a precise estimation of the relative position
between the robot and the object.

We propose an algorithm to maximize the number of
points in contact when the hand is scanning or grasping
an object. To this end, we project the forces/torques re-
quired for the exploration in the nullspace of the contact
forces. Additionally, we control the forces at each contact
point to prevent an uneven distribution of contact force.
We show that this improves the robot’s ability to make
contact with unknown surfaces by using tactile sensors.
This is crucial for tactile exploration and is very useful for
grasping under uncertainty as tactile signals can guide the
fingers to actively comply with the sensed shape.

2. Related work

2.1. Tactile exploration

Tactile exploration can be classified into two main cat-
egories: local and global exploration. Local exploration
gathers local information about an object’s surface, for in-
stance by estimating the curvature at a given point on the
surface, and matching that curvature profile to a database
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(a) Surface exploration
in simulation.

(b) Compliant grasping and attractors.

Figure 1: Two of our experiments: a robotic arm and hand system
explores a shape in simulation and grasps compliantly an object on
a real platform.

of objects for identification [4]. Another type of local ex-
ploration consists in identifying surface properties, such as
roughness, fineness and traction, and using these proper-
ties to classify materials [5].

However, we are more interested in the global explo-
ration category, as it implies a more complex motion of the
probe. Most of the research focuses on moving a sensorized
end-effector on the surface of an object. For instance, a
robotic finger equipped with a tactile sensor is moved on
the surface of an object to detect fine surface features [1],
or a tactile array on top of a robot arm moves around
the surface of an object to reconstruct a 2-D pressure pro-
file [2]. Another example of haptic exploration adapts the
stiffness of the exploration controller depending on the re-
sistance to the motion [6], following inspiration from neu-
roscience studies. In [7], the authors tackle the task of ex-
ploring a discontinuous surface with a rolling end-effector
and force-torque information with a compliant controller.
This involves adjusting the controller to the orientation
of the surface normal to maintain a desired normal force.
In [8], both shape and friction coefficient are modeled un-
der a probabilistic framework during the exploration of an
object’s surface with both a tactile probe and an RGB-D
camera.

While exploration with a single end-effector simplifies
the control, it has limitations: when the probe is small,
the exploration process is very slow, especially if the sur-
face to be covered is large. However, if the probe is large, it
cannot comply with arbitrary shapes (especially for con-
vex objects) or cannot reach some areas. Another area
of research focuses on using robotic hands and fingers or
grippers, and tactile or force sensors to model the ob-
ject’s shape. One approach is to grasp objects sequentially,
at different locations, and reconstruct a ”bag-of-features”
representation [9]; this allows to keep a sense of continuity
and represent the object globally from local features with-
out the need for precise localization during the exploration.
A systematic approach is also used for reconstructing 3-D
point cloud models of objects with a 3-fingered hand and
tactile sensors [3]; however, this is a very slow method be-
cause of the systematic probing (the fingers are opened and
closed a hundred times for an object smaller than 9cm),

and is restricted to small objects that can fit between the
robot’s fingertips.

Finally, we are particularly interested in continuous ex-
ploration with several fingers, as it is better suited to re-
construct the shape of an object thanks to the flexibil-
ity of the multiple degrees of freedom available. The first
works focused on the reconstruction of parametric models
of objects: already in 1990, Allen, inspired by exploratory
procedures from Lederman and Klatzky [10], explored ob-
jects modeled by superquadrics with a contour following
method that used the model’s parameters to compute a
trajectory [11].

In our previous work [12], we tackled tactile exploration
of human-like faces for classification, using fingertip tac-
tile sensors and statistical encoding of the face models for
robustness to proprioceptive noise. We also developed an
algorithm for bi-manual haptic exploration of objects [13],
using multiple phalanxes per finger, covered with tactile
sensors, for the 3-d reconstruction of the objects’ shapes.
However, these approaches were limited in the range of
object’s shapes that could be explored.

A recent work by Bierbaum et al. [14] introduces the use
of potential fields to drive the exploration of a five-fingered
hand in simulation. While this allows autonomous recon-
struction of several simple objects, the hand is controlled
in velocity and thus the interaction forces are not taken
into account. Besides, the exploration only uses the fin-
gertips. There is no contact with the other finger links, as
only fingertips are subject to the potential field.

One of the most advanced works tackling tactile inter-
action is probably the one from Jain et al. [15] in which
multiple contacts occur on the arm of a robot, not for
exploration explicitly but to help the robot reach trough
cluttered space. They use model predictive control with
a linear model of the contacts that assumes linear stiff-
ness and optimizes for reaching a desired position with
the end-effector, with constraints on contact forces. How-
ever, the objective of the controller is to reach a point
with the end effector. It ignores the posture of the rest of
the arm: there is no focus on the tactile exploration itself.
Our exploratory approach is also different as it requires to
command the robot in torque and thus is better suited at
controlling contact forces.

2.2. Prioritized controllers

Haptic exploration fits well within the prioritized con-
troller scheme, as some tasks – managing contact forces,
avoiding joint limits – can be interpreted as constraints
and be given a very high priority, while other tasks are
less important. This framework is commonly used for hu-
manoid control, including constraints on contact forces,
but not for haptic exploration. Khatib’s operational space
framework [16] allows to express the dynamics of the
robot in task coordinates, and the prioritized simultane-
ous control of several tasks through cascaded null space
projections [17]. More recently, this framework was used
to control several contacts on different links of a robot
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arm [18], but there have not been results showing cases
where the robot makes additional unpredicted contacts or
looses some of its contacts. In [19], commands are auto-
matically scaled down if they violate hard bounds at the
joint level (position, velocity or acceleration constraints).
This allows to have explicit hard constraints, which was
usually not possible in that framework. Another approach
towards prioritizing tasks is to formulate the inversion of
the Jacobian as a quadratic problem. For instance, the
Stack of Tasks approach (SoT) [20] provides an interface
to add and remove tasks automatically with a pre-specified
hierarchy. Recently, hierarchical control schemes based on
a sequence of quadratic programs (QP) can also handle
inequality constraints for kinematic control [21] and dy-
namic control [22]. Efforts have also been made to solve
these problems fast enough for real-time control of hu-
manoid robots with many degrees of freedom [23].

In this work, we follow the null-space approach to pri-
oritizing tasks and introduce a controller based on a mod-
ified null-space projection matrix that allows to take into
account inequality constraints. While this is not as effi-
cient as the latest QP-based methods, this is an alternative
approach simpler to implement since it only relies on ma-
trix inversion and does not require an otherwise complex
solver.

2.3. Grasping under uncertainty with multiple DOFs
hands and tactile sensors

Besides stability conditions, complying with the shape
of an unknown object during grasping shares similarities
with the exploration of unknown objects. In both cases,
external sensory information is necessary to actively com-
ply if there are uncertainties in the position or the shape
of the object, or in the robotic system itself. Most of the
work in grasping consists in planning grasps for known or
partially known objects [24, 25, 26]. However, reliably con-
trolling robotic fingers to realize generated grasps on a real
platform with position and shape uncertainties remains a
problem. Indeed, it is difficult to realize the planned grasps
with a real robot hand, and this makes the quality evalua-
tion less relevant in practice, as the realized grasps are less
optimal than the planned ones [27]. While soft systems
approach this problem using passive mechanical compli-
ance to adapt to position or shape uncertainties, active
compliance is the only way to control rigid robotic hands
with multiple degrees of freedom. Using additional sen-
sory information, one can improve grasping success rates
by detecting position errors. For instance in [28], torque
sensors in the fingers are used to detect the first contact
and compliantly pause the finger in contact before it tips
over the object to be grasped. In [29], the authors ex-
ploit tactile sensors on the fingertips to control the finger
contact force under shape uncertainty. Platt’s nullspace
grasping control [30] uses local object geometry measure-
ments to guide grasps and converge to unit frictional equi-
librium. This involves following the negative gradient of
two functions: force and moment residuals which are zero

at this equilibirum. Because the force residual controller
displacements are tangential to the surface, and the mo-
ment residual controller displacements are projected on
the null space of the gradient of the unit frictionless force
residual, the resulting motion corresponds to the fingertips
sliding on the surface of the object. However, the ensured
improvement of the chosen grasp metric is based on sev-
eral assumptions: convex objects, 2nd order continuity of
the surface and only two contact points. Finally, in these
works, only the fingertips are taken into account and no
attempt is made at controlling grasps with contacts on all
links of the hand.

When the whole hand (not limited to the fingertips) is
used to grasp an object, realizing planned grasps becomes
even more difficult as multiple contacts should be made
between the fingers and the grasped object. Grasping syn-
ergies is an efficient concept to simplify control of high-dofs
hands inspired by human grasping. Whether the synergy is
integrated in the mechanical design of sub-actuated hands
[31] or simulated in software [32], it decreases the dimen-
sionality of the control problem. However, synergy-based
grasping strategies can also lead to unsuccessful grasps and
they do not seek to maximize the contact surface. For this
reason, our algorithm can provide active compliance at all
the desired contacts points on the fingers.

3. Controller structure

In order to explore its environment or grasp an object,
the robot needs to create contacts. However, some contact
points can be desired while others might just occur during
the exploration and not be desirable. Here, we explain how
we differentiate between these two types of contact and
how both of them are taken into account by our controller.
First, we introduce the operational space coordinates using
the contact points.

Operational space coordinates using contact normals. At
each timestep, for each contact point i ∈ {1, .., Nc} de-
tected by tactile sensors, we define its position pic ∈ R3,
normal direction nic ∈ R3, parent joint lic ∈ {1, . . . , N},
and Jacobian J ic ∈ R1×N . The set C contains the joints
attached directly above a link that currently hosts a con-
tact point and the set nc the normals of contact:

C = {lic}
Nc
i=1, nc = {nic}

Nc
i=1 (1)

with Nc the number of contact points and N the total
number of DOFs of the robot. The operational space con-

tact Jacobian J ic is computed as J ic = ni
T
J i, where J i is

the contact Jacobian expressed in the robot base frame.
The Jacobian for the operational space coordinates is

given by the concatenation of all these contact Jacobians:

Jc =


J1
c

J2
c
...

JNc
c

 (2)
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Table 1: Notation table
Variable Description

C Current contact points
D Desired contact points (not time dependent)

C \D Current undesired contacts
D ∩ C Current desired contacts
D \ C Desired contacts not yet in contact

pic (pid) Position of (desired) contact point i
nic (nid) Normal direction of (desired)contact point i
lic (lid) Parent link of (desired) contact point i
Jic (Jid) Jacobian of (desired) contact point i
Nc (Nd) Number of (desired) contact points

Jc Operational space Jacobian
N Total robot DOFs
q Vector of joint angles
Mq Joint-space inertia matrix
b Coriolis and centrifugal torques
g Gravity torques
f Contact forces
τ Commanded robot torques
ẍ Operational space acceleration of contact points
τ0 Lower priority torques
Nτ0 Null-space projection matrix, dependent on τ0
JC∩D Jacobian of desired contact points
JC\D Jacobian of undesired contact points
Jτ0 Modified operational space Jacobian
Kd Stiffness matrix of impedance controller
Dd Damping matrix of impedance controller

pjr Reference position of desired contact point j
pj Current position of desired contact point j
vj Desired velocity of desired contact point j

Set of areas that can be in contact. During the task ex-
ecution, the more contact points between the robot and
its environment, the more information is retrieved at the
same time. For instance, it would be inefficient to try
to localize an object on a table using only one fingertip.
However, increasing the number of contacts also decreases
the manipulability of the robot as each contact introduces
a dynamic constraint, as detailed in section 3. A mech-
anism for deciding whether a contact is desired or not is
thus required.

In addition to the contacts points defined in the previous
section, we define the desired contacts points i ∈ {1, .., Nd}
with position pid ∈ R3, parent joint lid ∈ {1, . . . , N}, and
Jacobian J id ∈ R1×N . The set D contains the joints which
directly control a link that hosts a desired contact point.

D = {lid}
Nd
i=1 (3)

with Nd the number of desired contact points.
The mechanism of choosing the desired contact points

depends on many criteria, including the robot platform,
the task and possible prior on the shape to explore or
grasp1. The combinations of the sets C and D and what
they represent are detailed at the beginning of Table 1.

Control of the robot in contact. The dynamics of the robot
are of the form:

Mq(q)q̈ + b(q, q̇) + g(q) + JTc (q)f = τ (4)

1In this work, we assigned a desired contact point on each link of
the robot’s hand, hence 3 per finger.

where q,Mq(q), b(q, q̇), g(q), f and τ are respectively the
vector of joint angles, the joint-space inertia matrix, the
Coriolis and centrifugal torques, the gravity torques, the
contact forces and the vector of joint torques2. The torques
τ applied to the robot are chosen in the form of a priori-
tized controller:

τ = τ1 +Nτ0(q)τ0 (5)

where τ1 are the torques for the highest-priority task, e.g.
the contact force control, Nτ0 a modified null space projec-
tion matrix that depends on τ0, the vector of lower priority
torques.

The null space projection matrix N(q) is usually chosen
so that any torques projected on it do not affect the oper-
ational space acceleration ẍ. The manipulator dynamics
in the operational space are given by pre-multiplying (4)
with J(q)Mq(q)

−1. For better readability, we do not spec-
ify the dependency on the joint angles vector q and its
derivatives from now on:

ẍ− J̇ q̇ + JM−1q (b+ g) = JM−1q (τ − JTc f) (6)

The terms J̇ q̇ and JM−1q (b + g) can be compensated
for, therefore ẍ is not affected by projected lower-priority
torques whenever:

JM−1q N = 0 (7)

We want to avoid creating accelerations or forces for ex-
isting desired contacts. This is in order to avoid disturb-
ing the control of the contact force. However, the robot
might also host contacts on links which do not accept con-
tacts, i.e. i ∈ C \ D. In that case, strictly positive oper-
ational space accelerations – towards the surface – should
be avoided, but negative accelerations can be accepted
as they will break the undesired contact. The strategy
adopted here is to take into account the null-space torques
τ0 in the computation of a modified null space projec-
tion matrix. We separate the Jacobian space operational
matrix Jc in two sub-matrices JC∩D ∈ RN×NC∩D and
JC\D ∈ RN×(Nc−NC∩D) containing the concatenated de-
sired contact Jacobians and undesired contact Jacobians,
with NC∩D the number of existing desired contacts. The
new conditions are expressed with a modified null space
projection matrix Nτ0 that respects the following con-
straints:

JC∩DM
−1
q Nτ0 = 0 (8)

and ∀τ0 ∈ RN , JC\DM
−1
q Nτ0τ0 ≤ 0 (9)

This can be ensured by constructing a modified oper-
ational space Jacobian matrix Jτ0 that contains only the
Jacobians of the desired contacts, plus the Jacobians of the
undesired contacts which would create undesired contact
forces because of the torques τ0.

2We do not model joint friction, this is an approximation, espe-
cially for the joints in the hand. See the discussions about neglecting
friction in the results section of the experiments.
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Algorithm 1: Modified Jacobian for null space com-
putation
Data: The Jacobians JC∩D and JC\D
Result: The modified Jacobian Jτ0
Jτ0 =

[
JC∩D

]
;

1 for i← 1 to (Nc −NC∩D) do

if Ji
C\DM

−1
q τ0 > 0 then

Jτ0 =

[
Jτ0
Ji
C\D

]
// Concatenate jacobians

2 return Jτ0 ;

Finally, we compute the modified null space projection
matrix Nτ0 from the modified Jacobian Jτ0 , obtained with
Alg. 1:

Nτ0 = I − JTτ0 J̄
T
τ0 (10)

with J̄τ0 = M−1q JTτ0(Jτ0M
−1
q JTτ0)−1 (11)

The equation (5) for controlling the robot is finally de-
tailed as:

τ = τc +Nτ0(τd + τr + τe) (12)

The torques τc, τd, τr, and τe are described in the follow-
ing sections, they respectively represent torques for the
contact forces, for increasing the number of contacts, for
tracking a rest position (for some of the joints), and for
driving the exploration of the robot in the corresponding
experiment.

This is easily extended to multiple levels of task prior-
ities. The procedure is described in Alg. 2. This is im-
portant for instance to add joint limits and joint centering
tasks.

Algorithm 2: Multi-priority algorithm
Data: For each task task, its priority level i, torques τtask and

Jacobian Jtask. For the contact tasks, this jacobian is
computed according to Alg. 1

Result: Torques τ
1 τprev = 0
2 for priority i← 1 to pmax do
3 Ji = [], τi = 0
4 for task ∈ tasksi do

5 Ji =

[
Ji

Jtask

]
τi += τtask

6 Ni = I − JTi J̄Ti
7 τ = τi +Niτprev

8 return τ ;

4. Increase contact area

In order to gather information about its environment by
means of touch, or to grasp an object, the robot must at
first make contact. Then, once in contact, increase as much
as possible the area in contact. To this end, we proceed to
switching across two modes of control: one mode controls

links not yet in contact, and the other mode controls the
contact force at the joints already in contact. We start
by explaining how we determine which mode of control to
use.

All joints in the fingers that affect control of the force
at the contact points and the desired contact points are
controlled in torque according to Eq. 14-15. The other
joints in the fingers are controlled by a PD controller.

At each time step, the control mode for each joint de-
pends on its position relative to the contact points and
desired contact points. The set of joints with existing de-
sired contact points is given by C ∩D – both part of the
current existing contacts and desired contacts –, the set
of joints with desired contact points is given by D \ C –
desired contact but not a contact yet –. The set K con-
tains all joints that are not on the same kinematic chain
as either a contact point or a desired contact point, and
all joints when the robot is not in contact:

K = {i | ∀j ∈ Si, j 6∈ C ∪D ‖ C = ∅}Ni=1 (13)

with N ∈ R the total number of DOFs, and Si the set of
joints belonging to the kinematic chain starting from the
base of the robot, passing through the joint j until one of
the fingertips.
The set K hence contains all joints not used for control
of force at contact or desired contact point. These joints
track a predefined rest position with a PD controller. In
the case that the robot is not in contact, a higher-level
controller is in charge of bringing the robot into contact,
as explained in the experiments section.

Control of existing contact points. For each existing con-
tact point that is located on a link i which accepts contact
points, e.g. for i ∈ C ∩D, we apply a small normal force
to maintain the contact:

τc =
∑

i∈C∩D
J ic
T
fn (14)

where fn ∈ R is the desired normal force applied at the
contact point3.

Control of desired contact points. The desired contact
points are used to increase the number of contact areas.
For each desired contact point that is not on a link where
there is already a contact point, a corresponding Cartesian
reference position is computed and tracked with a Carte-
sian impedance controller. The position of each desired
contact point is predefined for each link of the robot4.

3In our experiments, we chose fn = 0.5N . This value must be
above the sensitivity of the tactile sensors to be able to sense con-
tacts. If there is friction in the joints, a higher value is useful because
friction can lead to a non-zero acceleration at a contact point despite
the nullspace projection, and potentially loose contact.

4In this work, the position is defined as the geometrical center of
the links.
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The desired contact points are controlled by impedance
control, thus the total torque for the desired contacts:

τd =
∑

j∈D\C

Jjd
T

(Kdx
j
e +Ddẋ

j
e), (15)

with xje = pjr − pj (16)

with isotropic stiffness and damping matrices Kd =
kd ·I3×3 and Dd = dd ·I3×35, pjr, p

j ∈ R3 the reference and
current Cartesian positions of the desired contact point j.
The reference Cartesian position is computed by integrat-
ing the desired velocity vj :

pjr = pjinit +

∫ t

tjinit

vj dt (17)

The desired velocity vj should be chosen according to
the task and can take into account prior about the explored
surface. The details are given for each of our applications
in the experiments section. The initial Cartesian position
pjinit and initial time tjinit are reset to the current values pj

and t when the desired contact j is created. This happens
either when an existing contact is lost and turns into a
desired contact or when the set of desired contact changes.

5. Experiments

The algorithm we propose here is meant to be used with
robots that have the ability to sense contacts at multiple
joints. Unfortunately, to date, there is no commercially
available technology to cover a robot entirely with a sen-
sitive skin. In our experiments, we hence first conduct
simulations, emulating a perfect sense of touch on all sides
of the fingers. We then perform smaller scale - proof of
concept - implementations using a real robotic hand cov-
ered with patches of tactile sensors. The first setup is a
simulation of a robotic arm with a robotic hand attached
at the end: there are 7 DOFs for the arm and 4*4 DOFs
for 4 fingers. Second, a similar configuration with a real
robot equipped with tactile sensors. The simulation al-
lows to control the whole robot and hand in contact with
an unknown environment, without the risk of contacts not
being detected (e.g. if they occur on an unsensorized part
of the robot) and cause damage6. The experiments were
conducted in order to prove the effectiveness of the control
strategy and the ability to interact with unknown objects
and surfaces.

The experiments consisted of an exploration part, con-
ducted in simulation, and an active compliance for grasp-
ing part, both in simulation and on a robot.

5We choose kd = 5N.m−1, dd = 1N.s.m−1

6We do not currently have tactile sensors covering the robot’s
arm. However, we are designing a method to reconstruct the point
of contact from the torque sensing at joint level.
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Figure 2: Exploration: illustration of the computation of the velocity
vector vj for the desired contact points.

5.1. Exploration

The first applications consist of the exploration of
unknown surfaces, using our algorithm to actively comply
with the unknown shape of the surfaces. The first
experiment consists in the full autonomous exploration
of a random shape, and the second experiment in the
exploration of the inside surface of cups, using all edges
of the fingers. A third experiment tests our algorithm
with two different hand models on two new objects. All
three of these experiments are carried out in simulation.
We aim to demonstrate that maximizing the number of
contacts during exploration helps at reconstructing the
surfaces and thus gaining information about it, while
keeping all contact forces low.

For the exploration, the desired velocity vj introduced
in Eq. (17) of the desired contact point pjr is defined by
the average of the closest point’s normal and the direction
towards the closest point (see Fig 2).

vj = λ · ni
∗

+ (pi
∗
c − pj)

‖ni∗ + (pi
∗
c − pj)‖

, i∗ = arg min
i∈{1,...,Nc}

{pj − pic}

(18)

where ni
∗

is the normal of the closest contact point pi
∗
c ,

and λ a predefined scalar velocity.

We use a simulated 7 degrees of freedom (DOF) Kuka
Light Weight Robot arm with a 16 DOF AllegroHand
robotic hand. We aim at showing that the robot can au-
tonomously reconstruct a random shape. Because these
experiments are carried out in simulation, there is no er-
ror in the reconstruction as each datapoint lies perfectly
on the explored surface. The coverage of the surface re-
construction however depends on the chosen exploration
strategy, which is in our case very simple. It also directly
depends on the number of contacts during the exploration,
hence the goal to maximize it. The simulation is run at
1000 Hz in Gazebo with ODE and the simulated robot is
directly controlled in torque. The computation of the mod-
ified null-space projection matrix also runs at about 500-
1000Hz (depending on the number of contacts) in a differ-
ent thread on a PC with a Core i7 processor at 3.6Ghz.
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Figure 3: Exp 1 Exploration of the shape (50 seconds). On each image, the thin white frame indicates the currently tracked reference frame.

Figure 4: Exp 1: 3-D reconstruction of the shape during the exploration.

Since one of the desired constraints is to avoid high con-
tact forces, we record the average and the maximum in-
teraction forces during the experiment (at each timestep,
among all contact points). We also record the number of
contact points during the exploration.

5.1.1. Exp 1: Exploration of a surface

A complex shape composed of several spheres of dif-
ferent diameters is explored. The composition of spheres
with variable radiuses creates a non-convex shape, hence
the orientation of the hand is critical since the shape needs
to be approached from different angles. The reference po-
sitions are distributed sequentially around the shape. The
goal of the experiment is to autonomously explore and re-
construct the surface of an unknown arbitrary shape, with
only a few given key reference positions around the shape
to drive the direction of exploration. In order to follow
the surface to be explored, the reference position and ori-
entation of the controller need to be defined. They are
determined using information from the tactile contacts. A
controller is implemented to direct the hand towards the
desired exploration locations. This controller is detailed
in the appendix section Appendix A. The exploration is
performed 10 times.

Results. The shape is properly reconstructed from the tac-
tile sensing information, progressively as can be seen in
Fig 3 after on average 45 seconds of exploration7. The
hand successfully changes orientation autonomously to ex-
plore the different faces of the explored shape. In a few
runs of the experiment, one of the fingers bends and the
contact occurs on the back of the finger, see Fig 6. While
this does not lead to an increase in the contact force, it
creates a hand configuration that is less optimal for explo-
ration as less contacts can be made. This issue is further
discussed in the discussion section.

7Video of the experiments:
http://lasa.epfl.ch/videos/downloads/sommer_he.mp4
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Figure 5: Exp 1: Number of contact points, maximum and average
contact force during the exploration. The green dotted line repre-
sents the desired contact force of 0.5N.

During the exploration, the maximum simultaneous con-
tact force is on average of 1.00 ± 0.57N , with a max-
imum of 4.59N , while the average contact force is of
0.56 ± 0.12N . The distribution of these forces and the
number of contact points can be seen as a boxplot rep-
resentation in Fig 5. These forces should be compared
with the desired force at each contact point, controlled in
open-loop through the Jacobian transpose method, and set
to be 0.5N. Indeed, the null-space projection prevents the
commanded torques from influencing the contact forces by
construction. However, the forces due to the dynamics of
the robot are not compensated and can therefore influ-
ence the contact torques. Because the robot moves slowly
in this experiment, as a robot should while it is in contact,
the forces due to the dynamics of the robot are low and the
contact forces do not vary far from the reference contact
force of 0.5N.

The number of contacts points during the experiment
oscillate between 1 and 11, including when the hand starts
making contact with the object at the beginning. The
thumb is not used in the experiment because its kinematic
configuration does not allow it to comply properly with
the shape. The average of 6 simultaneous contacts means
that each finger has on average two links in contact.

5.1.2. Exp 2: Exploration of the inside of a cup

This experiment consists in exploring the inside of a cup
with a robotic hand. This requires to establish contacts

7
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Figure 6: Exp 1: In some runs of the experiment, one of the fingers
makes contact with its back side. While this is not a problem in
terms of contact forces, it leads to a hand configuration that is less
optimal for the exploration of certain surfaces.

on all sides of the fingers and comply with very curvy and
non-convex shapes.

The arm controls the position and orientation of the
hand. The hand is introduced vertically inside the cup at
its center until all fingers are in contact, then it is slowly
rotated around the axis of symmetry of the cup for a given
angle. The hand is then moved up out of the cup. Before
any contact occurs, the fingers are kept in a resting po-
sition with all joints slightly bent. The objective is to be
able to gather information about the explored object with-
out creating too high contact forces. We hence record at
each timestep the number of simultaneous contacts and
the current average and highest contact force (of all the
current contacts). While the arm is controlled in position,
we compared our algorithm, which tries to maximize the
contacts, on the hand, against a simple compliant con-
troller with two different sets of gains for the finger joints
(see Table 2). The reference position of the joints can be
seen in the first image of Fig 8, which also displays the
progression of the experiment. It is also the rest position
used by the active exploration algorithm. We explored 4
different models of cups presented in Fig 7.

Results. Table 3 sums up the results for each control
method, with the average and standard deviation of the
two previous values. Fig 9 gives the distribution of the
number of contacts and the maximum contact force by
cup and by control method.

Our method provides more contact points during the ex-
ploration of the cups than the other two methods (5.4±1.5
vs 2.6±1.3 and 2.4±1.1). Since the contact forces are set to
be at 0.5N with our algorithm, the average measured force
is of 0.53± 0.09N . It also keeps a lower maximum contact
force, 0.77±0.26N , slightly higher than the 0.5N reference
(go back to section 5.1.1 for a discussion about the max-
imum contact forces). As expected, the controller with a
higher compliance has lower contact forces (0.61±0.0.67N)
than the one with a lower compliance (1.15± 1.32N), but
both are higher than with our method. Besides, the num-
ber of contacts is similar for both of the compliance con-
trollers, which makes the one with high compliance more
interesting. However, this might not hold on a real robot
as friction in the joints might prevent the use of low gains.

Table 2: Exp 2: Parameters of the tested controllers

Active
adaptation

Low compliance High compliance

P gain - 0.05 0.005
D gain - 0.01 0.01

(e) Cup1 (f) Cup2 (g) Cup3 (h) Cup4

Figure 7: Exp 2: Models of the explored cups above, and recon-
structed versions in rviz after exploration below.

Contact point

Desired contact point and direction of motion

Figure 8: Exp 2: Progression of the exploration of cup 4 with the
active compliance algorithm in gazebo (top), with reconstruction of
the shape with a tactile point cloud in rviz (bottom). Green dots
are the actual contact points, red dots are desired contact points and
the blue arrows their desired direction of motion vj .
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Figure 9: Exp 2: Number of contacts and maximum contact force
for each control method and cup.
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Table 3: Exp 2: Results

Active
adaptation

Low com-
pliance

High
compli-
ance

Nb. contacts 5.39± 1.46 2.62± 1.25 2.41± 1.14
Max force (N) 0.77± 0.26 1.67± 1.71 0.86± 0.84
Average force (N) 0.53± 0.09 1.15± 1.32 0.61± 0.67

Figure 10: Exp 3: Objects explored: the IRobot Create and a
mailbox.

5.1.3. Exp 3: Exploration with other hand configurations

In addition to the exploration of the shape based on
spheres in Exp 1 and cups in Exp 2, we also tested our
algorithm with two different hand models. The first con-
figuration, called here Hand 1, is the same hand as used in
the previous experiments, with released joint limits in or-
der to allow the phalanxes to bend both forward and back-
ward. This allows the fingers to take new configurations
during the exploration. This can be especially interesting
to explore non-convex objects. The second configuration,
Hand 2, is also based on the same hand, with an addi-
tional finger. This gives a total of 4 fingers and thumb,
similar to a human hand. For this experiment, we tested
our algorithm and other hand models on two new objects,
an IRobot Create robot and a mailbox, see Fig 10. The
vacuuming robot contains a concave shape created by the
empty dust holder, while the mailbox is made of many
sharp edges, which makes it more difficult to keep all con-
tacts.

Results. Predictably, there are in average a few more con-
tacts made with Hand 2 than with Hand 1, since it has one
additional finger (Fig 13). The difference between Hand
1 and Hand 2 in terms of number of contacts is smaller
on the first object as the released joint limits of Hand 1
give it an advantage for complying to the complex shape
of the vacuuming robot. The maximum and average con-
tact forces are in the same range and match the results
obtained with the original AllegroHand model in the pre-
vious experiments. The point cloud representation of the
objects after exploration can be found in Fig 11.

5.2. Exp 4: Compliant grasping

Another application of our active compliance algorithm
is to grasp objects by enclosure, maximizing the contacts
between the object and the hand and fingers. We com-
pared our method, called here active adaptation, with two
simple grasping heuristics for enclosing, which can corre-
spond to very simple synergy-based grasps.

Figure 11: Exp 3: Reconstructed point cloud of the objects in rviz.
For readability of the 3D representation, the color of the points cor-
responds to their coordinate on the axis indicated by the blue arrow.

Figure 12: Exp 3: Snapshots of the exploration of the vacuuming
robot with Hand 1. The released joint limits allow the fingers to
comply to the concave shape in the middle of the robot.
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Figure 13: Exp 3: Number of contact points, maximum and average
contact force during the exploration of the IRobot Create and Mail-
box models. The green dotted line represents the desired contact
force of 0.5N.

The first method (Enclose1 ) consists in closing the
joints of the fingers one by one from the base to the tip,
until a contact is reached. The second method (Enclose2 )
is similar, but all joints close simultaneously until there is
a contact above the joint on the same finger. It is thus
faster, but there is a risk that less contacts are made if a
link at the end of the finger touches first.

The chosen grasp preshape is inspired by the grasp op-
position of the thumb vs. the other fingers from [33], which
defines a grasp intention by a sum of patches (finger links)
oppositions, with for each opposition set, a dominant patch
per side. The chosen grasp intention is that of a power
grasp for a cylinder of about 3cm of diameter, which is a
description that roughly matches all of our tested objects.
This provides us with a grasp preshape. It also provides
our algorithm with a list of desired contact points (all the
patches) and an opposition direction to help define our
desired contact points velocities vj . We only use one op-
position direction, therefore we have two dominant patches
(one per side of the opposition) and use the virtual line be-
tween them to define the direction of the desired velocity8

8The norm of the desired velocity is set to 5cm/s.
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Grasp directionality Dominant patches

vj Other patches

Figure 14: Grasping: illustration of the grasp preshape position
and the computation of the velocity vector vj (aligned with the grasp
directionality) for the desired contact points using grasp opposition.

for each desired contact point (see Fig 14).

We tested the three methods systematically both on a
simulated and a real robot. The first part of the exper-
iment (Exp 4a) consists in enclosing objects at a pre-
defined grasp position. The object is then sequentially
released and grasped again in four other configurations
shifted by 2cm in two different directions, and shifted by
17◦ in two different orientations. These shifts correspond
to potential position and orientation uncertainties that the
robot might have to deal with in a real application.

In the second part of the experiment (Exp 4b), the
robot first grasps the objects at the initial position, and we
apply sequentially the position and orientation perturba-
tions while the object is grasped. This is important to test
how the algorithm adapts to external perturbations. This
creates five possible enclosure configurations for Exp 4a,
and 4 possible perturbations for Exp 4b. Similarly to the
previous experiments, we record the number of contacts
made between the object and the hand (when the grasp
is finished), and the contact force. However on the real
robot, our tactile sensors do not provide values convert-
ible into contact forces since their output depends on the
type of material and the area in contact. They do not
depend directly on the contact force. We however provide
the average and maximum values for the signal given by
the tactile sensors. This signal corresponds to the sum of
all taxels readings for each patch.

In addition to the number of contacts made with the ob-
ject, we also compute two grasping metrics based on the
Grasp Wrench Space (GWS) [34]: the largest-minimum re-
sisted wrench (or largest ball, or ε quality metric), and the
volume of the GWS. These metrics describe what exter-
nal wrenches can be applied to the object without loosing
stability. Thus, the higher, the better. While the ε met-
ric considers only the weakest direction, the volume of the
GWS provides information about the global robustness of
the grasp. Since we expect our method to make more con-
tacts around the grasped object, we also expect a better
performance on the grasp metrics.

(a) Cylinder (b) Object 1 (c) Drill

Figure 15: Exp 4: Models of the grasped objects in simulation

5.2.1. Simulation

Setup. The perturbations on the objects are applied in
the simulation by changing their position in the simula-
tion environment. To avoid discontinuities, the position
of the object is defined by attaching a virtual spring and
damper to it (i.e. cartesian impedance with high stiff-
ness). Its position and orientation are changed by moving
the reference pose.

The selected objects are presented in Fig 15: we start
with a simple cylinder, then an artificial more complex
shape – very non-convex – composed by cylinders and
spheres, and a drill. The grasping of Object 1 can be seen
in Fig 16.

Results. Fig 18 details the number of contact points for
each control method and object. These results are summed
up in Table 4 with additional data about the contact forces
and grasp metrics. Our algorithm allows to create a high
number of contacts with the object compared to the other
two controllers. On average, about 9 contacts are made
(i.e. a little more than 2 per finger out of 3 possible con-
tacts for the 3 separate links), while only 5 to 6 for the
other methods (a little more than 1 contact on each fin-
ger).

If we go more into details in the transition from Exp 4a
to Exp 4b, our algorithm keeps about the same number
of contacts (8.73 vs. 8.67), whereas Enclose1 (6.00 vs.
5.75) and especially Enclose2 (5.67 vs. 4.92) loose a lot
of contact points. This is expected as Exp 4b is about
adapting to perturbations after the grasp, which the other
algorithms cannot do properly. The results are similar for
the volume of GWS: our algorithm outperforms the other
approaches, by providing a larger volume in both sets of
experiments, and the difference increases in Exp 4b. The
ε metric also follows the same trend.

The contact forces are pretty similar for each algorithm
in Exp 4a (< 1N), whereas for Exp 4b, the other methods
based on position control do not adapt to the perturba-
tions and hence create high contact forces.

5.2.2. On the robot

Setup. We equipped the 7 DOFs Kuka LWR Robot with
a 16-DOFs AllegroHand, controlled at 300 Hz using open-
loop torques, and partially covered with Tekscan tac-
tile sensors on the inside surface of the phalanxes, see
Fig 17(d). The AllegroHand has 4 fingers with 4 DOFs
each. The sensors come in patches of 4 by 3-15 taxels
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Contact point

Desired contact point and direction of motion

Figure 16: Exp 4a: Progression of the enclosure of Object 1 with
the active compliance algorithm in gazebo (top) and rviz (bottom).

(a) Bottle (b) Shoe (c) Square
bottle

(d) AllegroHand and sen-
sors

Figure 17: (abc) Exp 4: Models of the grasped objects by the real
robot. (d) The AllegroHand with fingers covered with Tekscan tactile
sensors. Each patch is a matrix of 4*3 or 4*4 taxels (4*15 for the
base of the index finger)

which are designed to fit the human hand, but we adapted
their configuration for this particular hand. The density of
taxels allows to determine the position of contact in addi-
tion to an estimate of the pressure. Knowing the geometry
of the fingers, we are also able to determine the normal of
the contact. For each link, when the summed response is
above a noise threshold, we define one contact point as the
weighted average of all taxels readings on that link.

On the real robot, the perturbations are applied by giv-
ing the inverse perturbation command to the robot (the
arm moves instead of the object). The chosen objects are
presented in Fig 17(abc): we start with a cylindrical bot-
tle, we also grasp a soft shoe, which is easily deformable,
and a plastic bottle with a square section.

Results. The number of contact points is detailed in Fig 19
and summed up in Table 5 with the other measures and
quality metrics. The number of contacts is again higher
with our algorithms. On average, about 7 to 8 contacts are
made, while only 4 to 6 for the other methods (a little more
than 1 contact on each finger). The results for Enclose2
are still slightly worse than for Enclose1, as predicted.

On the real robot, our algorithm performs this time bet-
ter during the perturbations (Exp 4b, 7.8 contacts) than
the simple grasping (Exp 4a, 7.4 contacts). This can be
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(a) Exp 4a - Enclosing, Simulation
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(b) Exp 4b - Perturbation, Simulation

Figure 18: Exp 4a-b, Simulation: number of contacts for each
position/orientation configuration

Table 4: Exp 4 simulation: Results

Exp 4a: Enclose Active adaptation Enclose1 Enclose2

Nb. contacts 8.73± 1.12 6.00± 1.21 5.67± 0.87
Max force (N) 0.92± 0.32 0.93± 0.58 0.72± 0.31
Average force (N) 0.55± 0.06 0.62± 0.56 0.52± 0.27
GWS volume 1.35± 0.45 0.95± 0.40 0.82± 0.52
GWS ε metric 0.13± 0.02 0.12± 0.03 0.13± 0.05

Exp 4b: Perturb. Active adaptation Enclose1 Enclose2

Nb. contacts 8.67± 1.03 5.75± 0.83 4.92± 0.86
Max force (N) 0.93± 0.31 2.13± 1.30 1.65± 0.86
Average force (N) 0.54± 0.07 1.16± 0.67 1.21± 0.58
GWS volume 1.31± 0.35 0.64± 0.40 0.51± 0.33
GWS ε metric 0.13± 0.03 0.10± 0.04 0.10± 0.02

explained by the effect of the perturbations helping the
fingers slide on the surface of the object and thus creat-
ing more contacts. In simulation, this behavior relying on
friction may not have been properly simulated. For En-
close2, the number of contacts actually increases with the
perturbations (5.1 vs. 4.3 contacts). This is due to the
fact that deformable objects can naturally comply with a
non compliant controller and create more contacts, at the
expense of high contact forces. Indeed, the set of objects
is here more compliant than in simulation, especially the
shoe. These results are also reflected in the grasp met-
rics, with the active adaption creating more robust grasps
than the other methods. The tactile signal values are sim-
ilar in range for all algorithms, with higher values during
the perturbations – going from about 12 during enclosing
to 20 (no unit). Similarly as in the simulation, it is ex-
pected that the values increase during the perturbations,
and it seems that the tactile readings increase for the ac-
tive adaptation algorithm too, probably due to friction in
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(a) Exp 4a, real robot
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(b) Exp 4b, real robot

Figure 19: Exp 4a-b, real robot: number of contacts for each
position/orientation configuration (Exp 4a: enclosing and Exp 4b:
perturbation)

Table 5: Exp 4 real robot: Results

Exp 4a: Enclose Active adaptation Enclose1 Enclose2

Nb. contacts 7.40± 0.88 5.47± 0.96 4.27± 0.93
Maximum signal 12.8± 6.6 13.0± 6.3 11.4± 7.4
Average signal 6.2± 3.6 7.2± 3.1 7.0± 3.3
GWS volume 1.4± 0.6 0.6± 0.5 0.4± 0.5
GWS ε metric 0.13± 0.05 0.10± 0.05 0.05± 0.05

Exp 4b: Perturb. Active adaptation Enclose1 Enclose2

Nb. contacts 7.83± 1.07 5.25± 1.01 5.09± 1.11
Maximum signal 19.9± 7.7 20.8± 14.7 18.3± 12.0
Average signal 9.3± 3.8 9.6± 5.9 9.0± 5.6
GWS volume 1.2± 0.5 0.7± 0.4 0.7± 0.6
GWS ε metric 0.14± 0.05 0.09± 0.05 0.08± 0.06

the joints and with the object. However, these values from
the tactile sensors cannot be precisely translated into con-
tact forces: it is not possible to decouple the intensity of
the signal, the area in contact and the material in contact.

6. Discussion

In this paper, we presented a method to actively com-
ply with unknown surfaces with a multi-fingered robot
equipped with tactile sensors. This method has applica-
tions both in haptic exploration and in grasping. To our
knowledge, this is the first demonstration of active com-
pliance between a complex system such as a robotic arm
and hand, and unknown surfaces, by keeping and creat-
ing desired new contacts using tactile information. Our
method allows to create and maintain contacts at desired
positions on the robot while having unilateral constraints

on undesired contacts, in the prioritized tasks framework.
While the high priority tasks take care of the interaction
forces and contact constraints, the lower priority tasks al-
low to increase the contact area and to drive the explo-
ration motion. Contacts occurring on parts of the robot
that are not desired do not disturb the exploration nor
create undesired forces thanks to the modified nullspace
control. We demonstrated the possibility to actively ex-
plore around arbitrary shapes with a simulated robot arm
and hand. This is useful in the context of search, partic-
ularly for occluded areas, by only providing approximate
positions for the robot to explore. The robot can then
manage to move around the surface creating and loosing
contacts while keeping low contact forces.

In the current implementation of the exploration strat-
egy, there are situations when the robot can get stuck in
local minima. We did not tackle here the high-level plan-
ning as it is not purpose of this work. Simple approaches
based on information gain, coupled with detection of local
minima would probably be enough to further automatize
the exploration process.

The algorithm does not currently handle several desired
contact points on one link. This could be useful for large
areas on one link (for instance the palm of the hand) that
could host several contact points simultaneously. Cur-
rently, if there is already an existing desired contact point
on a link, it is not possible to deliberately increase the
number of contacts points on that link. This would involve
classifying whether each existing contact corresponds to a
particular desired contact point.

One particularity of the high-DOFs platforms such as
robotic hands is that they can take many different con-
figurations during the exploration, some of which are not
optimal to maximize the area in contact. For instance, si-
multaneous contact on the back of one finger and the front
of another finger while exploring a flat area. However, this
is an advantage for the exploration of certain shapes, for
instance the inside of a cup in which some fingers make
contact with one side while other stick to the other side.
It also allows to hold two objects at the same time between
the fingers, see Fig 209.

We also demonstrated the ability of this algorithm to
comply to arbitrary shapes with an application to grasp-
ing. While a lot of the grasp planning research does not
consider in detail the actual control strategy, uncertainties
make precise grasp planning less relevant on the execu-
tion side. Our controller resulted in more contact points
and provided more stable grasps than other uninformed
enclosing algorithms. It could be a possible solution to
implement planned grasps on actual robotic platforms.

9For holding two objects, the closest point of contact used to
compute the velocity of a desired point is valid only if its normal
is opposite to the direction from the desired point to this point:
ni · (pic − pj) < 0 as a condition to Eq (18).
Video of the experiments: http://lasa.epfl.ch/videos/

downloads/sommer_he.mp4
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Figure 20: Additional illustration of use of the algorithm. The fingers
hold two objects between them.

Appendix A. Details of the control for Exp 1

Median of normal of contact and attached frame. The me-
dian normal of contact nm ∈ R3 corresponds to the aver-
age of the two most distant normals of contact between
the robot and the surface. It is used both for determining
the desired orientation of the hand during the exploration
and the allowed plan of motion to reach the final Cartesian
target (detailed in the next paragraphs).

nm =

{
ni+nj

2 if ni + nj 6= 0

ni else.
(A.1)

where (i, j) = argmax(i,j)∈nc
{acos(ni, nj)} are the indices

of the two contacts which have the most different normals.
This is useful, because taking only the average of all the

contact normals would give little weight to outliers, which
are very important as they represent crucial information
about the surface’s profile.

Orientation reference of the impedance controller. We cre-
ate a rotational frame Rnm,rx , using the above normal di-
rection of contact nm and the orthogonal projection of the
hand’s proximo-distal direction (palm towards fingers) rx
on nm:

r′x = rx − (rx · nm)nm (A.2)

Rnm,r′x
=
[
nm, r′x, nm × r′x

]
(A.3)

This ensures that the palm of the hand stays perpendic-
ular to the contact normal.

Position reference of the impedance controller. The ref-
erence position pr ∈ R3 of the impedance controller is
computed from the desired final position of the motion
pf ∈ R3, given by a higher-level controller, the current po-
sition p ∈ R3, and the computed median normal of contact
nm. The error pe between the current and final position
is projected on a plane normal to nm in order to create a
motion tangential to the surface:

pe = pf − p (A.4)

p′e = p′e − (p′e · nm) · nm (A.5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shape to 

explore 

Hand 

 
𝒏𝒎 

𝒓𝒙 

𝒓𝒙
′  

Desired hand orientation 

(a) One contact

 

 

 

 

 

 

Shape to 

explore 

Hand 

 

𝒏𝒎 

𝒓𝒙 

𝒓𝒙
′  

Desired hand orientation 

(b) Two contacts

Figure A.21: Schematic of the computation of the reference hand
orientation for the impedance controller. In the case of one contact,
the normal of the contact is chosen as a reference for the desired
hand orientation. For two or more contacts, the average of the two
most distant normals is chosen.

The reference position is then proportional with gain
G ∈ R+ to the projected error, and saturated if that dis-
tance is bigger than a scalar threshold d ∈ R+.

pr =

{
p+

p′e
‖p′e‖
·G if ‖ p′e ‖> d

p+ p′e · Gd else.
(A.6)

Impedance control. Because the robot operates in contact
with its environment, a compliant controller provides a
safe way to interact with the areas in contact.

Given the reference and actual positions pr, p ∈ R3 and
orientations Rr, R ∈ R3×3 of the end effector (here defined
at the base of the middle-finger), we define the Cartesian
error term as:

xe =

[
pe
Ψ

]
, Ψ = angleaxis(RTRr) (A.7)

where angleaxis(R∗) represents the angle-axis representa-
tion corresponding to a rotation matrix R.

The torques for the Cartesian impedance control task
are computed by multiplication of the transposed Jacobian
Je(q) with the Cartesian feedback control forces:

τe = JTe (Kxe +Dẋe) (A.8)

The stiffness and damping matrices K,D ∈ R6×6 are sym-
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metric positive definite:

K =

[
Kp 0
0 Kr

]
, D =

[
Dp 0
0 Dr

]
(A.9)

where Kp,Kr ∈ R3×3 and Dp, Dr ∈ R3×3 are sub-matrices
respectively relating forces to positional errors, torques to
rotational errors, forces to positional velocity and torques
to rotational velocities.

Definition of the stiffness and damping matrices. During
the exploration, the purpose of the impedance control is
to drive the motion of the robotic hand, not to ensure
contact with the surface. For this reason, the stiffness
matrices are defined in the rotational frame R attached to
the end-effector, as:

K ′p =

0 0 0
0 kp 0
0 0 kp

 , K ′r =

0 0 0
0 kr 0
0 0 kr

 (A.10)

where the first axis corresponds to the dorso-palmar direc-
tion, and the second axis to the proximo-distal direction.
In the robot’s frame, we use the rotated stiffness matri-
ces Kp = RK ′pR

T and Kr = RK ′rR
T . The rotational

stiffness value is zero in the dorso-palmar direction as the
orientation of the hand along that axis is not crucial for
the exploration and this releases a degree of freedom and
allows more dexterous motions.

Both positional and rotational damping matrices are
isotropic10:

Dr = dr · I3×3, Dp = dp · I3×3 with dr, dp ∈ R.
(A.11)

Reference position. Thanks to our algorithm, the refer-
ence positions described as pf in Appendix A do not need
to lie on the surface since the controller navigates to the
closest point on the surface. Therefore, they can be ran-
domly distributed around the estimated position of the
area to explore. We define a list of these reference po-
sitions spread around the object to explore. When the
end-effector reaches within a threshold of the orthogonal
projection of the current reference position on the surface’s
estimated tangential plane, the next reference position in
the list is tracked. This way, the end-effector goes se-
quentially through all the positions in the list. There are
more informed ways to choose the reference positions, for
instance using entropy and information gain about the sur-
face being reconstructed, but the target of this experiment
is to demonstrate the possibility to be in contact with an
unknown surface and to navigate smoothly around it, not
the search process itself.

10We used kp = 300N.m−1, dp = 300N.s.m−1, kr = 10N.rad−1,
dr = 3N.s.rad−1
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