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An Inner-Product Calculus for Periodic Functions
and Curves
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Abstract—Our motivation is the design of efficient algorithms
to process closed curves represented by basis functions or
wavelets. To that end, we introduce an inner-product calculus
to evaluate correlations and L2 distances between such curves.
In particular, we present formulas for the direct and exact
evaluation of correlation matrices in the case of closed (i.e.,
periodic) parametric curves and periodic signals. We give simpli-
fications for practical cases that involve B-splines. To illustrate
this approach, we also propose a least-squares approximation
scheme that is able to resample curves while minimizing aliasing
artifacts. Another application is the exact calculation of the
enclosed area.

Index Terms—basis functions, splines, compact support, cor-
relation, area, inner product.

I. INTRODUCTION

I t is common in signal processing to represent continuous-
domain signals using basis functions. This approach is

prevalent in classical (Shannon-) sampling theory [1], [2], [3],
approximation theory [4], [5], and wavelet theory [6], [7], [8],
[9]. It is also at the heart of (generalized) interpolation [10]. It
is characterized by a signal f being represented by a weighted
sum of integer-shifted basis functions as

f(t) =
∑
k∈Z

c[k]ϕ(
t

T
− k), (1)

where T is the sampling step and {c[k]}k∈Z a sequence of
weights that depend on, but are not necessarily equal to, the
samples of f . Here, ϕ is a (real-valued) generator, such as
the sinc function or a B-spline [11]. For practical reasons, ϕ
is often chosen to be of compact support. In classical signal
processing, f is required to be square-integrable in Lebesgue’s
sense, which implies that f lives in the Hilbert space L2(R).
The basis {ϕ( ·T − k)}k∈Z generated by the integer shifts of
the generator is L2-stable if it defines a Riesz basis: there must
exist two positive constants 0 < A,B < ∞ such that, for all
c ∈ `2,

A‖c‖2`2 ≤
1

T

∥∥∥∥∑
k∈Z

c[k]ϕ(
·
T
− k)

∥∥∥∥2
L2

≤ B‖c‖2`2 .

The second fundamental requirement when using the type of
expansion given by (1) is that a rescaled version of the model
ought to be able to approximate any function as closely as
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desired as the sampling step T tends to zero. This is equivalent
to the partition-of-unity condition [11]∑

k∈Z
ϕ(

t

T
− k) = 1, ∀t ∈ R. (2)

A. Periodic Signals and Closed Parametric Curves

For periodic signals, computations can usually be simplified
by focusing on a single period [12], [13], [14]. Without loss
of generality, the period can always be normalized to one and
hence, we only consider t ∈ [0, 1]. The representation of f
by (1) implies that, if the signal is one-periodic, the sequence c
is of period M such as T = 1

M , where M is a positive integer.
In this case, (1) is expressed in terms of the normalized and
M -periodized basis functions ϕper as

f(t) =
M−1∑
k=0

+∞∑
n=−∞

c[k +Mn]ϕ(Mt−Mn− k)

=

M−1∑
k=0

c[k]

+∞∑
n=−∞

ϕ(Mt−Mn− k)︸ ︷︷ ︸
ϕper(Mt−k)

, (3)

where t ∈ [0, 1]. Equation (3) can also be used to represent
one-periodic (i.e., closed) parametric curves in 2D as

r(t) =

(
fx(t)
fy(t)

)
=
M−1∑
k=0

c[k]ϕper(Mt− k), (4)

where the {c[k] = (cx[k], cy[k])}k∈Z are now called the
control points of the curve. An important consideration for
selecting the basis functions in (4) is that the parametric
form of the model must be preserved through rigid-body
transformations. This is guaranteed if the model (4) is affine
invariant, which means that

T r(t) + b =
M−1∑
k=0

(T c[k] + b)ϕper(Mt− k), (5)

where T is a (2× 2) matrix and b is a two-dimensional
vector. The constraint (5) is equivalent to the partition-of-unity
condition (2) in [15].
Parametric curves that are represented by compactly supported
basis functions are often used to construct active-contour
models [16], [17] and to segment bioimages [18], [19], [20].
More generally, the control-point-based nature of (4) makes
this model particularly convenient in applications where user
interaction is required [21], [22]. The reason is that the simple
adjustment of one control point is enough to adjust the curve
locally.
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Definition: To each curve ri is assigned the couple (ϕi,Mi),
where ϕi is the basis function and Mi is the associated number
of control points. We express the corresponding Mi-periodized
basis function by ϕi,per(t) =

∑
n∈Z ϕi(t − nMi). We define

the vector ϕi, of size Mi, that contains the basis {ϕi,per(Mi ·
−k)}k∈Z, as

ϕi(t) =

 ϕi,per(Mit)
...

ϕi,per(Mit−Mi + 1)

 .

The condensed notation

ri(t) = CT
i ϕi(t) (6)

is equivalent to (4). There, Ci is the (Mi × 2) matrix defined
as

Ci =

 cxi [0] cyi [0]
...

...
cxi [Mi − 1] cyi [Mi − 1]

 . (7)

In the case of 1D signals, the matrix Ci collapses to a vector.

B. Inner Products
The exact computation of inner products is a frequent opera-
tion in signal and image processing such as for the evaluation
of L2 distances, orthogonal projections or similarity measure-
ments. Thus, our interest here is in the efficient calculation of
the L2-distance between two curves that may be parameterized
with a different number of control points [23], [24]. We
express the L2-inner product between the two closed curves
r1, r2 ∈ L2([0, 1]) as

〈r1, r2〉L2([0,1]) =

ˆ 1

0

rT1 (t)r2(t)dt

= tr

(
CT

1

(ˆ 1

0

ϕ1(t)⊗ϕ2(t)dt︸ ︷︷ ︸
A12

)
C2

)
,

(8)

where A12 is the correlation matrix of size (M1×M2) spec-
ified as

[
A12

]
k,l

= 〈
[
ϕ1

]
k
,
[
ϕ2

]
l
〉L2([0,1]) and ⊗ denotes the

tensor product. To evaluate (8), the entries of the correlation
matrix require the evaluation of some integrals. We present in
Section II a calculus that facilitates these computations in the
continuous domain.

II. INNER-PRODUCT CALCULUS

A. General Calculation
We start by providing a general formula for precomputing the
matrix A12 and then discuss a number of situations that can
be resolved analytically.

Proposition 1: Let ϕ1 and ϕ2 be two compactly supported
generators with supp{ϕ1} = [a1, b1], supp{ϕ2} = [a2, b2],
M1 ≥ supp{ϕ1}, and M2 ≥ supp{ϕ2}. The entries of the
(M1×M2) cross-correlation matrix A12 =

´ 1
0
ϕ1(t)⊗ϕ2(t)dt

are given by[
A12

]
k,l

=
1

M1

m2∑
m=m1

a12(−τk,l,m),

where
a12(t) =

ˆ
R
ϕ1(u)ϕ2(

M2

M1
(u− t))du

= (ϕ1 ∗ ϕ2(−M2

M1
·))(t),

τk,l,m = M1(m + k
M1
− l

M2
), m1 = dmin(p1, p2))e, m2 =

bmax(1 + p1, 1 + p2)c, p1 = ( 1
M2

(a2 + l)− 1
M1

(a1 + k)), and
p2 = ( 1

M2
(a2 + l) − 1

M1
(b1 + k)). There, b·c and d·e denote

the floor and the ceil function, respectively.

The proof of Proposition 1 is given in Appendix A. In the case
where the generators are even or odd functions with respect
to the same axis, Proposition 1 is simplified as specified by
Corollary 1.

Corollary 1: Let ϕ1 and ϕ2 be two even or odd functions
with respect to the same axis of symmetry.

a) The correlation between the one-periodic functions
[
ϕ1

]
k

and
[
ϕ2

]
l

is[
A12

]
k,l

=
1

M1

(
a12(−τk,l)

+ a12(M1 − τk,l) + a12(−M1 − τk,l)
)
,

where τk,l = M1( k
M1
− l

M2
).

b) If ϕ1 and ϕ2 have the same parity, then the correlation
is expressed as[

A12

]
k,l

=
1

M1

(
a12(|τk,l|) + a12(|τk,l| −M1)

)
,

with τk,l = M1( k
M1
− l

M2
).

Observe that, if M1 = M2, further simplifications of Proposi-
tion 1 are obtained. For instance, the case when ϕ1 = ϕ2 or
ϕ2 = ϕ̇1 = dϕ1

dt implies that a12 = ȧ11. Also note that, due to
the periodicity of the generators and to M1 = M2, the matrix
A12 is circulant and thus entirely specified by its M1 entries
{
[
A12

]
0,l
}l∈[0...M1−1] [25]. This matrix is diagonalizable and

hence, an explicit expression for its inverse is easy to obtain.

B. Specific Cases of a12 in Practice

B-splines are basis functions that are widely used in signal
processing and have interesting mathematical properties that
can be exploited to simplify the proposed inner-product calcu-
lus. In this section, we illustrate how the expression of a12 is
simplified for specific cases that frequently appear in practice
and that involve B-splines.

B-Splines Revisited: (Exponential) B-splines are popular
not only in sampling and approximation theory but also to
represent parametric curves and surfaces. They are compactly
supported and have optimal approximation and reproduction
properties [26]. An exponential B-spline of order n is fully
characterized by its unordered list of (complex-valued) poles
α = (α1, α2, . . . , αn). It is supported in [0, n] and its
causal form is characterized in the frequency domain as
β̂α(ω) =

∏n
p=1

1−eαp−jω

jω−αp . If all the poles are equal to zero
(i.e., α = 0n), we obtain the classical polynomial B-splines of
degree (n−1). A function ϕ ∝ βα that satisfies the partition-
of-unity condition can only be constructed if the exponential
B-spline βα contains at least one vanishing pole (i.e., if 0 is
an element of α).
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The notation α1∪α2 describes the union of two lists of poles
α1 and α2. The notation α\{αp} describes a list from which
the element αp has been excluded.

1) Correlation Between Polynomial B-Splines: The func-
tion a12 for the case of polynomial B-splines of different
orders is determined according to Proposition 2.

Proposition 2: Let ϕ1 = β0n and ϕ2 = β0m . Then,

a12(t) =

(
M2

M1

)m−1 n∑
l=0

m∑
k=0

(
n

l

)(
m

k

)
(−1)l+k+m

× ςn+m−1(t+
kM1

M2
− l),

where ςn is the polynomial simple element of degree n defined
as ςn(t) = tnsgn(t)

2(n!) for n ∈ N.
The proof is given in Appendix B.

2) Correlation Between Exponential B-Splines: In the case
where ϕ1 = βα1

and ϕ2 = βα2
are two exponential B-splines

of order n1 and n2, respectively, and M1 = M2, we obtain

a12(t) =

( n2∏
n=1

eα
∗
2,n

)
βα1∪(−α∗

2)
(t+ n2), (9)

where α∗ is the complex conjugate of α [26]. Equation (9)
corresponds to the cross-correlation of two exponential B-
splines which yields an exponential B-spline of augmented
order. Proposition 3 provides a simplified expression of (9) in
the case where ϕ1 = βα and ϕ2 = ϕ̇1.

Proposition 3: Let ϕ1 = βα be an exponential B-spline of
order n that contains at least one vanishing pole (we suppose
αn = 0), and ϕ2 = β̇α. Then,

a12(t) = −
( n−1∏
l=1

eα
∗
l

)
∆βα∪(−(α∗\{0}))(t+ n− 1),

where ∆f(t) = (f(t)− f(t− 1)) denotes the finite difference
of f .
The proof is given in Appendix C. Note that, the same kind
of formula also applies for fractional B-splines [27].

III. APPLICATIONS

A. Resampling of a Spline Curve

The general scheme to reduce the size of a polygonal or
spline curve r1 is to decrease its number M1 of control
points [28]. The standard method is to simply resample the
curve [11]. However, this does not take into account details
localized between two samples, which alters the accuracy
of the approximation while eventually introducing aliasing
artifacts [29]. We propose a new method which consists in
computing the L2 approximation r2 of the curve r1, with
M1 > M2. This is equivalent to compute arg min

C2

‖r1−r2‖2L2
.

It is not difficult to show that the general solution, in the
context of our framework, is given by

C2 = A−122 A21C1, (10)
where C1 and C2 are the coefficient matrices of size (M1×2)
and (M2 × 2), respectively. The entries of the matrices A21

and A22, of size (M2 ×M1) and (M2 ×M2), respectively,
can be evaluated using Proposition 1 and Proposition 2.

Fig. 1. Resampling of the outline (black curve) of the map of Switzerland.
Solid blue curve and dashed red curve: resampled versions obtained by the L2

approximation and sampling methods, respectively, with M2 = 40 samples.
Green curve: reduced version of the map obtain with the L2 approximation.

Fig. 2. Comparison of the approximation error for the L2 approximation
method (blue diamonds) and the sampling method (red squares).

To experimentally compare resampling and approximation, we
propose to reduce the outline r1 of the map of Switzerland
defined by M1 = 930 control points interpolated with the
linear spline ϕ1 = β(0,0) (Figure 1, black curve). We resample
r1 with both the sampling and the L2 approximation methods
for different values of M2 < M1 control points and in the basis
of the quadratic spline ϕ2 = β(0,0,0). We illustrate the case
M2 = 40 in Figure 1. We observe that the resampled curves
act as smoothed versions of r1 with less details and increased
regularity. We compute their approximation error for each
value of M2 . In Figure 2, it is seen that the best approximation
of the reduced version of the map, without aliasing artifacts,
is obtained with our proposed method (Figure 1, green curve).

B. Area Enclosed by a Parametric Curve
In this section we consider a non-intersecting curve r1 and
its derivative ṙ1 = M1C

T
1 ϕ̇1. The factor M1 is due to the

normalization in (4). The computation of the area enclosed by
a parametric curve usually involves the evaluation of a surface
integral. We propose instead to use Green’s theorem [15] to
express this surface integral as a contour integral, which results
in a signed area expressed as

I =

˛
r1

fy1dfx1
= 〈fy1 , ḟx1

〉L2([0,1]) = M1c
T
y1A12cx1

, (11)

where ϕ2 = ϕ̇1, M2 = M1, and cx1
and cy1 are the first and

second column of the matrix (7), respectively. The sign of I
depends on the direction in which the curve is traversed.
In the case of centered (exponential) B-splines, (11) is easily
computed. For ϕ1 = βα, we evaluate the entries of the matrix
A12 using Corollary 1.a) and Proposition 3. We obtain[

A12

]
k,l

=
1

M1

1∑
n=−1

∆cβα∪(α\{0})(k − l + nM1),
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Fig. 3. Blue dots: centered linear B-spline; red dashes: centered quadratic B-
spline; green line: ∆cβ(0,0,0); pink circles: ∆cβ(0,0,0)(k) for k = −1, 0, 1.

where ∆cf(t) = (f(t + 1
2 ) − f(t − 1

2 )) denotes the centered
finite difference of f . As the matrix is circulant, we only
compute these values for k = 0 and l ∈ [0 . . .M1 − 1].
For instance, if the parametric curve (6) is constructed with
the centered linear B-spline ϕ1 = β(0,0) (Figure 3, dotted
blue curve), we have ∆cβα∪(α\{0}) = ∆cβ(0,0,0) (Figure 3,
green curve), where β(0,0,0) is the centered quadratic B-spline
(Figure 3, dashed red curve). Then, each row of the correlation
matrix is expressed as a periodic shift of the centered finite
difference

[
1
2 0 − 1

2

]
.

IV. CONCLUSION

The computation of inner products between periodized ba-
sis functions requires the evaluation of a correlation matrix
A12. This matrix frequently appears in periodic settings in
classical L2-based signal processing as well as in image
processing when dealing with closed parametric curves. We
have presented exact formulas to evaluate its entries and gave
simplified expressions for particular cases. As the correlation
matrix itself does not depend on the weights (or control points)
that specify the signal (or parametric curve), its values can be
precomputed and stored in look up tables for a fast evaluation
of L2 distances. We also proposed an L2 approximation
method to resample a curve, which consists in describing the
curve in a different basis using less control points. These new
points are found by a least-squares minimization: the general
solution requires the evaluation of two correlation matrices that
can be precomputed using our proposed formulas. We com-
pared our approach to the classical uniform resampling method
and showed that the best approximation was obtained with our
method. We also illustrated the use of the proposed formulas
to evaluate the area enclosed by a parametric curve. Our inner-
product calculus allows for a fast and exact evaluation of
correlation integrals, which frequently appear in practice and
are often only approximately computed up to date.

APPENDIX

A. Proof of Proposition 1ˆ 1

0

ϕ1,per(M1t− k)ϕ2,per(M2t− l)dt

=

ˆ 1− l
M2

− l
M2

ϕ1,per(M1(t′ +
l

M2
)− k)ϕ2,per(M2t

′)dt′

=

ˆ 1+
a2
M2

a2
M2

ϕ1,per(M1(t+
l

M2
)− k)ϕ2(M2t)dt

=

ˆ 1+
a2
M2

a2
M2

+∞∑
m=−∞

ϕ1(M1t−M1(m+
k

M1
− l

M2
)︸ ︷︷ ︸

τk,l,m

)ϕ2(M2t)dt.

(12)

We set m1 = dmin(p1, p2)e, m2 = 1 + bmax(p1, p2)c, p1 =
( 1
M2

(a2+l)− 1
M1

(a1+k)) and p2 = ( 1
M2

(a2+l)− 1
M1

(b1+k)).
Now, (12) is simplified as

m2∑
m=m1

ˆ 1+
a2
M2

a2
M2

ϕ1(M1t− τk,l,m)ϕ2(M2t)dt

=
1

M1

m2∑
m=m1

ˆ
R
ϕ1(t− τk,l,m)ϕ2(

M2

M1
t)dt

=
1

M1

m2∑
m=m1

ˆ
R
ϕ1(t)ϕ2(

M2

M1
(t+ τk,l,m))dt

=
1

M1

m2∑
m=m1

a12(−τk,l,m),

where a12(t) = (ϕ1 ∗ ϕ2(−M2

M1
·))(t) and we have used the

fact that ϕ2(±M2

2 −M2n) = 0 if |n| ≥ supp{ϕ2}+M2

2M2
and that

ϕ1(±M1

2 −M1p) = 0 if |p| ≥ supp{ϕ1}+M1

2M1
. �

B. Proof of Proposition 2

We define by ∆n
b the nth-order causal finite-difference opera-

tor with b 6= 0, defined as ∆n
b f(t) =

∑n
k=0

(
n
k

)
(−1)kf(t− k

b ).
The Fourier transform F of the causal polynomial B-spline
β0n is given by

F{β0n(t)}(ω) = β̂0n(ω) =

(
1− e−jω

jω

)n
= ∆̂n

1 (ω)F{ςn−1(t)}(ω),

where F{ςn(t)}(ω) = 1
(jω)n+1 . Let ϕ1 = β0n and ϕ2 = β0m .

We compute

a12(t) = (β0n ∗ β0m(−M2

M1
·)(t)

= F−1
{
β̂0n(ω)

M1

M2
β̂0m(−M1

M2
ω)
}

(t)

= F−1
{(

1− e−jω

jω

)n
M1

M2

(
1− ej

M1
M2

ω

−jM1

M2
ω

)m}
(t)

= F−1
{

(−1)m
(
M2

M1

)m−1
(1− e−jω)n(1− ej

M1
M2

ω)m

(jω)n+m

}
(t)

= (−1)m
(
M2

M1

)m−1
F−1

{
∆̂n

1 (ω)∆̂m

−M2
M1

(ω)ς̂n+m−1(ω)

}
(t)

=

(
M2

M1

)m−1 n∑
l=0

m∑
k=0

(
n

l

)(
m

k

)
(−1)l+k+m

× ςn+m−1(t+
kM1

M2
− l).�

C. Proof of Proposition 3

The derivative of an exponential B-spline that contains a
vanishing pole is given by β̇α∪{0} = ∆βα. Let ϕ1 = βα
and ϕ2 = ϕ̇1. Using (9), we compute

a12(t) = (βα ∗ β̇α(−·))(t)
= −(βα ∗∆βα\{0}(−·))(t)

= −
( n−1∏
l=1

eα
∗
l

)
∆βα∪(−(α∗\{0}))(t+ n− 1).�



1070-9908 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LSP.2016.2555139, IEEE Signal
Processing Letters

5

REFERENCES

[1] P. Dragotti, M. Vetterli, and T. Blu, “Sampling moments and reconstruct-
ing signals of finite rate of innovation: Shannon meets Strang-Fix,” IEEE
Transactions on Signal Processing, vol. 55, no. 5, pp. 1741–1757, May
2007.

[2] I. Selesnick, “Interpolating multiwavelet bases and the sampling the-
orem,” IEEE Transactions on Signal Processing, vol. 47, no. 6, pp.
1615–1621, June 1999.

[3] J. Berent, P. Dragotti, and T. Blu, “Sampling piecewise sinusoidal signals
with finite rate of innovation methods,” IEEE Transactions on Signal
Processing, vol. 58, no. 2, pp. 613–625, February 2010.

[4] M. Vetterli, “Wavelets, approximation, and compression,” IEEE Signal
Processing Magazine, vol. 18, no. 5, pp. 59–73, September 2001.

[5] N. Leonardi and D. Van De Ville, “Tight wavelet frames on multislice
graphs,” IEEE Transactions on Signal Processing, vol. 61, no. 13, pp.
3357–3367, July 2013.

[6] S. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 11, no. 7, pp. 674–693, July 1989.

[7] A. N. Akansu, W. A. Serdijn, and I. W. Selesnick, “Emerging applica-
tions of wavelets: A review,” Physical Communication, vol. 3, no. 1, pp.
1–18, March 2010.

[8] I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex
wavelet transform,” IEEE Signal Processing Magazine, vol. 22, no. 6,
pp. 123–151, November 2005.

[9] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 1992.

[10] A. Aldroubi and H. Feichtinger, “Exact iterative reconstruction algorithm
for multivariate irregularly sampled functions in spline-like spaces: The
lp-theory,” Proceedings of the American Mathematical Society, vol. 126,
no. 9, pp. pp. 2677–2686, september 1998.

[11] M. Unser, “Sampling—50 Years after Shannon,” Proceedings of the
IEEE, vol. 88, no. 4, pp. 569–587, April 2000.

[12] F. M. Candocia and J. C. Prncipe, “Comments on ”Sinc interpolation
of discrete periodic signals”,” IEEE Transactions on Signal Processing,
vol. 46, no. 7, pp. 2044–2047, July 1998.

[13] Y. Lee, J. Cheatham, and J. Wiesner, “Application of correlation analysis
to the detection of periodic signals in noise,” Proceedings of the I.R.E.,
vol. 38, pp. 1165 – 1171, October 1950.

[14] S. Qian and D. Chen, “Joint time-frequency analysis,” IEEE Signal
Processing Magazine, vol. 16, pp. 52–67, March 1999.

[15] M. Jacob, T. Blu, and M. Unser, “An exact method for computing the
area moments of wavelet and spline curves,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 633–642,
June 2001.

[16] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” International Journal of Computer Vision, vol. 1, no. 4, pp.
321–331, January 1987.

[17] X. Bresson, S. Esedoglu, P. Vandergheynst, J.-P. Thiran, and S. Osher,
“Fast global minimization of the active contour/snake model,” Journal
of Mathematical Imaging and Vision, vol. 28, no. 2, pp. 151–167, 2007.

[18] J. K. Mogali, A. K. Pediredla, and C. S. Seelamantula, “Template-based
active contours,” CoRR, vol. abs/1312.0760, 2013. [Online]. Available:
http://arxiv.org/abs/1312.0760

[19] R. Delgado-Gonzalo, V. Uhlmann, D. Schmitter, and M. Unser, “Snakes
on a plane,” IEEE Signal Processing Magazine, vol. 32, no. 1, pp. 41–48,
January 2015.

[20] D. Schmitter, R. Delgado-Gonzalo, G. Krueger, and M. Unser, “Atlas-
free brain segmentation in 3D proton-density-like MRI images,” in Pro-
ceedings of the Eleventh IEEE International Symposium on Biomedical
Imaging: From Nano to Macro (ISBI’14), Beijing, People’s Republic of
China, April 29-May 2, 2014, pp. 629–632.

[21] D. Schmitter, R. Delgado-Gonzalo, and M. Unser, “Trigonometric in-
terpolation kernel to construct deformable shapes for user-interactive
applications,” IEEE Signal Processing Letters, vol. 22, no. 11, pp. 2097–
2101, November 2015.

[22] ——, “A family of smooth and interpolatory basis functions for para-
metric curve and surface representation,” Applied Mathematics and
Computation, vol. 272, no. 1, pp. 53–63, January 2016.

[23] L. Rebollo-Neira and D. Lowe, “Optimized orthogonal matching pursuit
approach,” IEEE Signal Processing Letters, vol. 9, pp. 137–140, April
2002.

[24] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 1999.
[25] P. Davis, Circulant Matrices, ser. Pure and Applied Mathematics. Wiley,

1979.

[26] M. Unser and T. Blu, “Cardinal exponential splines: Part I—Theory and
filtering algorithms,” IEEE Transactions on Signal Processing, vol. 53,
no. 4, pp. 1425–1438, April 2005.

[27] ——, “Fractional splines and wavelets,” SIAM Review, vol. 42, no. 1,
pp. 43–67, March 2000.

[28] J. A. Parker, R. V. Kenyon, and D. E. Troxel, “Comparison of interpo-
lating methods for image resampling,” IEEE Transactions on Medical
Imaging, vol. 2, no. 1, pp. 31–39, March 1983.

[29] M. Jacob, T. Blu, and M. Unser, “Sampling of periodic signals: A
quantitative error analysis,” IEEE Transactions on Signal Processing,
vol. 50, no. 5, pp. 1153–1159, May 2002.


