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Abstract
We are interested in emphasis for text to speech synthesis. In
speech to speech translation, emphasising the correct words is
important to convey the underlying meaning of a message. In
this paper, we propose to use a generalised command-response
(CR) model of intonation to generate emphasis in synthetic
speech. We first analyse the differences in the model parameters
between emphasised words in an acted emphasis scenario and
their neutral counterpart. We investigate word level intonation
modelling using simple random forest as a basis framework, to
predict the parameters of the model in the specific case of em-
phasised word. Based on the linguistic context of the words we
want to emphasise, we attempt at recovering emphasis pattern
in the intonation in originally neutral synthetic speech by gen-
erating word-level model parameters with similar context. The
method is presented and initial results are given, on synthetic
speech.
Index Terms: Intonation, emphasis, generalised command-
response model, random forest, text-to-speech synthesis

1. Introduction
Although it has been investigated for decades, the interest for
speech-to-speech translation (S2ST) is still growing. The state
of the art systems are built around three main components: auto-
matic speech recognition (ASR), automatic machine translation
(MT), and text to speech (TTS) synthesis, with the output of
each subsystem simply pipelined into the next one. To improve
human-human interaction in the cross lingual context, the sys-
tem should be able to transfer the non verbal intentions of par-
ticipants, which implies translating and synthesisng more than
just the recognised text.

In a spoken sentence, the speaker tends to emphasise some
words, in order to draw the attention of the listener to these
words. Emphasising different words can also change the under-
lying meaning of the sentence. Tsiartas et al. [1] conducted a
large-scale human evaluation on the perception of S2ST quality
and showed that the perceived quality of S2ST was correlated
with cross-lingual prosodic emphatic transfer. In other words,
emphasising the correct words in the output language in TTS
based on the emphasised words in the input language helps in
the S2ST task.

Although there has been some work on the personalisation
of TTS for S2ST systems in the last decade, with some projects
such as EMIME1 [2], there is still relatively little work on the
improvement of TTS systems in the context of S2ST. Parlikar
et al. [3] worked on improving TTS where the input of the sys-
tem is the output of the translation module. They proposed to
insert pauses, to replace untranslated words with fillers and to

1http://www.emime.org/

use alternate translation to minimise the cost of their unit se-
lection system to make the speech more intelligible. Another
aspect of S2ST that deserves some improvement is the transfer
of speakers’ intentions. Anumanchipalli et al. [4] recently pro-
posed to translate the emphasis in S2ST. More recently, Do et
al. [5] proposed to model word-level emphasis and use condi-
tional random fields to translate emphasis to a target language.
Pause prediction for improving emphasis in S2ST was also in-
vestigated by Do and colleagues [6].

More generally, emphasis has received some attention in
the TTS context. For instance, Yu et al. [7] proposed to model
word-level emphasis in the context of HMM-based emphasis,
using different decision tree clustering techniques. Another
approach, proposed by Hirose et al. [8], consisted of post-
processing the F0 contour with the command-response model
of Fujisaki [9].

In our recent work, we investigated the transfer of some lo-
cal intonation components to mimic emphasis on a target word
in a neutral sentence [10]. After analysing differences between
neutral and emphasised scenarios, we identified the manifesta-
tion of emphasis to be correlated with a higher number of local
components in the intonation contour for the same word in the
same context. We showed that transferring the most prominent
local components (both positive and negative) to the F0 con-
tour of a neutral word elicits the perception of emphasis in an
originally neutral sentence.

In this paper, we investigate the use of clustering methods to
predict the local intonation components of emphasised words.
Using emphasised word F0 decomposition in context, we at-
tempt to predict the model parameters for an emphasised word
in some specific context. These components can then be used
as word-level intonation. This work is an initial investigation of
intonation modelling for emphasised words. On the synthesis
aspect, this could be used with some complementary method,
like duration alteration, or intensity modification. In the more
general framework of translating emphasis in S2ST, some em-
phasis detection system (e.g. the recent work of Cernak and
colleagues [11, 12]) can be used to provide the machine trans-
lation additional information, which can further be transmitted
to the TTS system. For this study, we restrict ourselves to the
intra-lingual case, but due to the language independence of the
intonation model used, it seems reasonable to assume that this
method can work for any given language.

We first present the intonation model which is used for
this work and confirm the intuition that it suits emphasis trans-
fer with mutual information analyses. Later, we describe our
framework to predict word-level intonation in the case of em-
phasised word in a sentence. Some initial results are finally
presented with perspectives on how to exploit the model.



2. Generalised Command-Response model
2.1. Related work

The literature provides a lot of work in intonation modelling.
There are various categories of models, with different applica-
tions. The state of the art F0 generation for speech synthesis
simply follows the way other acoustic features are generated,
using hidden Markov models (HMMs) [13], or more recently
deep neural networks (DNNs) [14]. In these frameworks, the
intonation is predicted frame by frame and relies on the linguis-
tic context given in the input of the system.

Some of the best known external models are reviewed in our
previous work [15, 16]. Fujisaki and colleagues have worked
for several decades on a model which tries to model the under-
lying process of human intonation production [9, 17, 18]. One
of its applications is style adaptation: by modifying the com-
mands of the model in the F0 produced by the TTS models, the
authors control the prosody of the synthetic speech [8]. In a
similar fashion, the CR model was used for intonation contour
reshaping to add focus in the synthetic speech [19]. The CR
model was also implemented as an intonation generation model
using specific topology hidden Markov models [20, 21].

Anumanchipalli et al. [4] exploited the tilt model [22] to
train a conversion function between vectors from input and out-
put languages from a parallel corpus.

2.2. Generalised command-response approach

The CR model is attractive due to its physiological basis,
which makes it theoretically language independent. While Fu-
jisaki [18] relates two types of components to two muscle ac-
tions, Strik [23] advocates that more muscles play a role in the
control of the vocal fold tension, and that the subglottal pressure
is also responsible for F0 variations.

We proposed the generalised command-response (GCR)
model as an alternative command-response model characterised
by an automatic parameter extraction procedure [15]. The de-
composition of the contour is based on the matching pursuit
algorithm with a dictionary of higher-order system impulse re-
sponses of the form ofGk,θ(t) (1), that happen to have the same
functional form as a gamma distribution:

Gk,θ(t) =
1

θkΓ(k)
tk−1e−t/θ for t ≥ 0 (1)

where k is the order of the model (the shape), and θ the scale, Γ
is the gamma function.

The model has two types of components, global (for long
term variations) and local. We further improved the perceptual
relevance of the elements that are extracted from the F0 contour
by using a weighted correlation as a cost function based on en-
ergy and probability of voicing (w(i) = e(i) ∗ p(i) where e(i)
and p(i) are respectively the energy and probability of voic-
ing of frame i). Using this perceptually relevant measure then
allows to extract components which are not only strongly cor-
related with the F0 based on raw magnitude.

Additionally, we use a different global component shape,
similar to (1) with higher values for θ. For more details, see [15,
16].

The model parameters given by the decomposition are then
for each local and global component – that we call atom – a
position, amplitude and θ. The system order, k in (1), is fixed as
we assume the same order for the different impulse responses.
The complete contour is then reconstructed as:

F0 = Gphrase,k,θ(t− tphrase) +

N∑
n=1

AnGkn,θn(t− tn) (2)

where tphrase is the position of the phrase component, k and
θ its order and scale, N the number of atoms, tn is the position
of the local component n, An its amplitude, and kn and θn its
order and scale.

2.3. Relevance of GCR features

To assess the relevance of the parameters extracted from our
model, we examined the mutual information shared between the
parameters and some linguistic features. By looking at mutual
information, we expect to find some clues on how atom param-
eters relate with linguistic features. We measured the mutual in-
formation between atom parameters (amplitude, position and θ)
and classical contextual features, and looked at the differences
between neutral and emphatic data. Our hypothesis is that when
a word is emphasised, the model will extract different types of
atoms, then we should observe a higher mutual information be-
tween emphasis and atom parameters. If we denote the labels
as L and the model features as Fi, the mutual information was
calculated the following way:

I(L,Fi) =
∑
l

∑
f∈Fi

p(l, f) log2

(
p(l, f)

p(l)p(f)

)
(3)

with p(l, f) the joint probability of L and Fi, and p(l) and p(f)
their respective marginal probabilities. These probabilities are
the maximum likelihood estimate based on occurrences in the
data. The model parameters were quantised as follows: between
0 and 10 for position (relative position in the syllable) yielding
11 possible values, and between 0 and 9 for amplitude yielding
11 possible values. θ’s range was 0.01 - 0.05 with 0.005 steps,
yielding 9 possible values. The labels l are binary (accented or
not, stressed or not, emphasised or not). The results presented
are normalised by the entropy of the labels:

H(L) = −
∑
l

p(l) log2(p(l)) (4)

Table 1 shows normalised mutual information in the case
of a single English female speaker, for about 300 neutral read
sentences.

The results indicate that mutual information between am-
plitude and accent and between relative position in the syllable
and accent are the highest for single feature and single context.
As can be expected, the syllable which are both accented and
stressed have higher mutual information with atom parameters.
We also notice that using all atom parameters (amplitude, posi-
tion and θ) does not bring more information than using position
and amplitude only.

Given these initial observations, we looked at the mutual in-
formation between amplitude, position and number of atoms per
syllable, and accent, stress and emphasis. In that case, the data
consisted of about 300 sentences from multiple English speak-
ers, in two scenarios: neutral sentence and sentence with one
emphasised word or group of words. To compare both cases,
the same “target words” were used: the word emphasised in the
emphasised case was selected as target word, and in the neutral
case it was also tagged as emphasised, to see its effect on the
parameters. The results are presented in table 2.



Table 1: Normalised mutual information between atoms and linguistic features, for Nancy .

Context/Feats Amp θ Amp, θ Pos Pos, Amp Pos, θ Pos, Amp, θ
Accent 11.1 8.7 13 11.1 23.3 22.6 23.3
Stress 8.2 6.8 9.5 8.1 22.3 21.8 22.2

Acc. & Stress 13.4 11 16 13.9 27.1 26.6 27.3
Acc. or Stress 7.9 6.2 9.1 7.7 23.8 23.2 23.7

Table 2: Normalised mutual information between atoms and
linguistic features [neutral / emphasised].

Context/Feats. Amp. Pos. Natoms in syllable
Accent 12.4 / 13.0 14.1 / 14.9 8.4 / 8.8
Stress 10.3 / 10.4 11.4 / 11.5 7.3 / 7.8

Emphasis 20.8 / 17.4 24.0 / 20.6 11.9 / 18.9
Acc. & Stress 15.6 / 16.0 18.0 / 18.8 10.3 / 10.8

Emph. & Stress 40.5 / 29.8 48.3 / 35.2 26.6 / 44.4
Emph. & Acc. 53.8 / 47.5 60.4 / 55.8 38.2 / 56.1

Table 3: Normalised mutual information between atoms and
linguistic features [neutral / emphasised] – same number of
atoms.

Context/Feats. Amp. Pos. θ
Accent 12.5 / 13 14.3 / 14.8 9.9 / 10.6
Stress 10.2 / 10.3 11.3 / 11.8 8.5 / 8.9

Emphasis 24.6 / 25.2 28.5 / 29.8 21.7 / 23.7
Acc. & Stress 15.7 / 16.4 18.3 / 18.9 12.1 / 12.9

Emph. & Stress 48 / 51.9 57.8 / 60 41.7 / 46.9
Emph. & Acc. 65.6 / 69.9 74.9 / 78.1 60 / 62.8

In this table, we can see that the most discriminant fea-
ture to distinguish emphasised and neutral data is the number
of atoms in the syllable. This contradicts our hypothesis that
the atoms in an emphasised word are different than the ones in
a neutral word. One possible explanation for this finding is that
the F0 curve presents more variations in the region of empha-
sised word, resulting in a need for more atoms to fit the curve.
To verify further the difference between the “principal” atoms
in each word, we looked at the same measures as in table 2, but
with a constraint on the number of atoms: we selected only the
first n atoms – ranked by amplitude – in the emphasised word,
where n is the number of atoms in the same target word in the
neutral case. In the cases where the neutral version had more
atoms, its number was restricted in the same way, to always
have the same number of atoms. Table 3 gives the results for
mutual information with the same number of atoms.

We can see that when the number of atoms is the same for
the neutral and emphasised case, mutual information between
both amplitude and position and accent, stress and emphasis
is higher in the emphasised case. This is particularly true for
emphasis. Then, in addition to the fact that emphasis manifests
itself with more atoms, emphasis seems to be expressed through
different patterns for the components: different positions, am-
plitudes and θ. It validates our intuition, that when a word is
emphasised, the components resulting from the decomposition
are distinguishable from the neutral case.

However, it is not obvious how intonation is affected by the
presence of emphasis on a particular word. This means that,
if we use the GCR approach to model the F0, simply modify-
ing the amplitude or θ of the atoms, i.e transforming them into

bigger atoms, is unlikely to produce emphasis. Previous experi-
ments showed that when increasing the amplitude of the atoms,
differences were noticeable, but the words for which atom am-
plitudes were altered were not perceived as emphasised. For
this reason, the next section presents a way of predicting atoms
in an emphasised scenario.

3. Modelling word level intonation in
emphasised scenario

3.1. Application of GCR model to emphasis transfer

The GCR model lends itself to emphasis transfer. Using an em-
phasis detection module combined with ASR-based automatic
time alignment, it is possible to identify which word is empha-
sised in a sentence and its boundaries (we do not tackle this
problem in this work; it can be solved using different methods,
e.g. [11, 12]).

In our previous work [10], given parallel data including
neutral and emphasised speech, by retrieving the parameters
of our model for both cases, we showed that adding the most
prominent atoms from an emphatic word in a neutral sentence
consistently increased the perception of emphasis on the tar-
get word. Subjective tests confirmed that listeners were able to
identify artificially emphasised words in most cases.

3.2. Random forest based word level intonation

In this paper, based on the observation made on mutual informa-
tion when using a constrained number of components to model
word level intonation, we investigate the possibility of pre-
dicting model parameters in the context of emphasised words.
While regression trees offer a simple but powerful way of clus-
tering data based on linguistic features, random forest present
the advantage of a better generalisation over the data. Using
random subset of the data for training multiple trees allows to
create independent trees, which then are all used to give the out-
put values. Then, we hypothesise that random forests (RF) can
predict the model parameters for word level emphasis. Given
that the parameters of the model correlate more with empha-
sised speech than neutral speech, we investigate whether we
can learn these parameters in an emphasised case. Initial ex-
periments showed that random forest were better suited to this
task, compared to decision trees.

To predict the word level parameters of the GCR model, we
propose to use a subset of the contextual features generally used
for HMM-based speech synthesis [13]:

• Number of syllables in the word

• gPOS (guess part of speech) of the word

• Stress position(s) in the word [0-3]

• Accent position(s) in the word [0-2]

• Word position in phrase

• TOBI endtone of the phrase



• Phrase position in utterance

• Number of phrases in utterance

• Number of words in utterance

• Number of syllables in utterance

Based on some preliminary observations to characterise the
system, we observed that most variations were captured using 5
or less atoms per word; this leads to a heuristic but reasonable
upper limit on the number used in the experiments. It results
in an output vector of dimension 15. In the cases where the
number of atoms was lower than 5, the vector was filled with
zeros to meet the desired size.

The general idea behind the modelling of word level into-
nation for emphasis recreation is to learn which atoms should
be present in the word when it is emphasised. Then, during
the synthesis of F0, a modification of intonation based on the
predicted model parameters should elicit emphasis in the word.
This modification consists of three steps: first, GCR model pa-
rameters are extracted from the synthetic F0, then the atoms in
the target word are removed, finally, the atoms predicted by the
RF are added to the curve.

4. Experiments
4.1. Data

4.1.1. Speech material

For our experiments, we used subsets of two databases: the Wall
Street Journal database [24] and the SIWIS database [25]2.

To train our random forest regressors, we used a subset of
the si84 dataset from WSJ database. The 2453 sentences used
were selected by comparing the output of several pitch extrac-
tors, to avoid using sentences for which the pitch would result
in a poor decomposition. SSP [26], the TEMPO pitch extrac-
tor [27] and the Kaldi pitch tracker [28] were used to extract the
pitch. Then, we kept only the files for which correlation was
higher than 0.99 and root mean square distance (RMSE) lower
than 50Hz between each pair of pitch tracker outputs.

The SIWIS database contains a set of sentences for which
the speakers were asked to emphasise one predefined word. In
our experiments, we used between 20 and 25 such sentences,
coming from 14 speakers – speakers from subset A and C, plus
speaker B 29 – resulting in 328 sentences.

4.1.2. Feature preparation

To implement our experiments, we first needed to extract the
features – GCR model parameters – from the speech. We ex-
tracted atoms with two stopping criteria: a limit of 10 atoms per
second at most, and a threshold of 0.99 on the weighted corre-
lation between F0 and modelled F0 between the start and end
of phonation.

To scale the features to word level, we used forced aligned
labels for all the data. Using the word boundaries, atoms were
selected based on the position of their maximum, tmax = t0 +
(k − 1)θ, where t0 is the position of the impulse for the atom.
5 atoms were then selected based on their weighted correlation
with the original F0 (highest correlation first). Finally, these
5 atoms were sorted according to their position in the word,
so that the final feature vector would have the shape Fword =
(p1, a1, θ1, p2, a2, θ2, .., p5, a5, θ5). That way, if there less than
5 atoms in the word, all the zeros at the end of the vector.

2Available at http://bit.ly/siwisData

Some of the contextual labels were normalized: the position
of the phrase in utterance, of the word in the phrase were nor-
malized by the length of the utterance and length of the phrase
respectively. The accent and stress positions were normalized
by the length of the word (number of syllables). Three stressed
syllable positions in the word were kept at the maximum, and
when the number of stresses was lower, the values were filled
with zeros. Two stressed syllable were kept at the maximum
(after trying with 3, it was found that the third accent position
was not informative).

4.2. Experiment design

To be able to generate model parameters from linguistic context
for emphasised words, we built two systems: one using neutral
data along the emphasised data for training, and one using ex-
clusively emphasised word samples. An HMM-based baseline
was also built for comparing the performance of our approach:

• RF1 For the case where we use only emphasised data, de-
noted RF1 hereafter, we first build a random forest regressor
using the 303 sentences containing emphasis from the SIWIS
speakers, excluding speaker B 29, with 15 estimators. As
there are sentences with multiple emphasised words, it con-
sists of 431 words. To try to capture speaker specific atom
parameter distribution, we added 3 other estimators, using 20
words from speaker B 29, leaving out 5 words for testing.
This was repeated to generate the 27 emphasised words that
existed in the original emphasised data for this speaker, in a
ten-fold cross-validation fashion.

• RF2 The other model, denoted RF2, was first trained on the
WSJ data, which amounts to approximately 60000 words, in-
cluding silences and pauses. The silences and pauses, which
in most of the cases do not contain atoms, may sometimes
have atoms which will span on the next word. For the train-
ing, we used 25 estimators. 3 new estimators were added to
the RF and trained on the 303 sentences used to train the first
model set. Finally, 2 estimators were added and trained using
target speaker sentences, in the same fashion as in the RF1
case.

• Baseline Our method is compared to an HMM-based TTS
system baseline. The HMM models were trained on WSJ
si84 data, and adapted to speaker B 29 using 100 neutral sen-
tences, using CSMAPLR [29]. Then, we adapted the models
again using 20 emphasised sentences for adaptation and 5 for
testing, in a ten-fold cross-validation fashion, to generate the
25 test sentences. State alignment was provided in the synthe-
sis stage, to ease the comparison of parameters. Atoms were
extracted from the synthetic version of the sentences, using
the same phrase component as in the original case. This way,
we could evaluate the F0 contour at the word level, by look-
ing only at the local components in the target word.

4.3. Evaluation

Figure 1 shows an example of reconstruction of the curve. The
plot shows the original F0, its phrase component, the F0 gener-
ated by the baseline system, and the modified contour obtained
when changing local atoms for the ones generated by the ran-
dom forest regressor (in that case, the basis F0 is from the base-
line system). The coloured zone shows the boundaries of the
emphasised word. The darkest continuous curve is the original
F0, extracted from natural speech. The dashed curve is the F0

generated by the HMM-based system. The light continuous line
is the reconstructed F0 after replacing the local component of



Table 4: Average RMSE and correlation at the word level, and
utterance level (log F0).

HMM RF1 RF2
RMSE word (log F0) 0.14 0.12 0.11
RMSE utt (log F0) 0.25 0.22 0.21

RMSE utt (F0 with V/UV) 40Hz 37Hz 37Hz
Corr word (log F0) 0.01 0.12 0.12
Corr utt (log F0) 0.25 0.31 0.31

Corr utt (F0 with V/UV) 0.96 0.92 0.92

the baseline system in the boundaries of the emphasised word
by local components predicted by the RF1 system.

In this case, we can first observe that the light curve (RF1)
is a smoothed version of the dashed curve (HMM), which is
the effect of GCR decomposition, and reconstruction from atom
parameters. Inside the target word, we can see that the RF curve
is deviating from the HMM curve, to come closer to the original
speech. Here we can see that this improvement is due to both the
addition of atoms generated by the RF models and the deletion
of the atoms extracted in the word for the HMM F0 curve.

Objective measures To validate the capacity of the model
to generate atoms that result in an emphasised word F0 contour,
we evaluated the performance of the prediction using standard
measures: the RMSE and correlation between the reconstructed
curve and the original curve. The systems were compared both
at word level and at utterance level.

4.4. Results and discussion

Table 4 gives the average RMSE and correlation of the three
systems at the word level for the emphasised word in each case,
and at the utterance level. We look at three values for both
RMSE and correlation: word level logF0 reconstruction, full
sentence logF0 reconstruction, and full sentenceF0 reconstruc-
tion, taking into account only the voiced frames according to
the voiced / unvoiced decision of the TEMPO pitch extractor
normally used with STRAIGHT . At the word level, the curves
were reconstructed by simply taking the relative position of the
atom in the word, and we used a fixed length for the word,
making comparisons straightforward. At the utterance level,
the curve was reconstructed using the phrase component of the
baseline F0, and the atoms which were generated from the RF
in both settings (RF1 and RF2). For the baseline, the synthetic
F0 was used directly.

HMM stands for the HMM-based baseline system, RF1 is
the random forest regressor using only emphasised words, and
RF2 is the random forest regressor when using neutral data in
the training of the model.

At the word level, the result are showing quite a low corre-
lation, especially for the baseline system. In that case, we can
expect that the way parameters were extracted has an impact on
the local decomposition. Because the phrase component was
imposed to be the same as in the original logF0 contour, the
algorithm may extract atoms in a different way to compensate
the fact that this phrase component is not fitting optimally the
synthetic logF0, e.g. in some cases where the contour is ac-
tually lower than the phrase component, negative atoms would
be extracted, which may lead to negative correlation for some
word level contours. There is no significant difference between
the two other systems for this measure. The RMSE at the word
level is showing similar trend, with similar results for the base-
line and the RF models. The RF models show slightly lower

RMSE, but with no significant difference.

When looking at the whole sentence, the baseline shows
worse correlation when using the logF0, but higher correla-
tion when calculating it only on voiced frames. On the other
hand, the RMSE is slightly lower in the RF cases compared
to the HMM. As explained in the discussion on figure 1, the
fact that we use a parametric version of the synthetic curve
along with the atoms generated by the RF models results in
a smoother version, which may allow to reduce some error,
hence the lower RMSE. At the same time, it can explain that
correlation is a bit higher in the HMM case, because the model
may smooth some patterns which should actually be modelled.
One thing that should be underlined is that the HMM models
have been adapted using emphasised data, and that the syn-
thetic speech sounds generally more pronounced than before
emphasis-specific adaptation. However, in the case where we
did not use time aligned labels, the duration prediction output
extremely slow speech, compared to the neutral model.

The fact that no – or little – difference was observed be-
tween the systems RF1 and RF2 is interesting as it suggests that
using neutral data along with the emphasised data is not help-
ing to build more efficient random forest. We would expect that
using more data would help to train more robust trees, but this
finding suggests, as was hinted by the observations on mutual
information analysis in section 2.3, that the atoms which are
present in an emphasised word, and their combination, are dif-
ferent from the ones that can be found in a neutral word.

5. Conclusion

In the context of emphasis recreation in TTS, we proposed
an approach to recover intonation pattern of emphasis. This
method, based on a generalised command-response intonation
model and random forest to predict its parameters, showed sim-
ilar results to the state of the art HMM-based joint modelling
of intonation with other acoustic parameters, while using only
small contextual factors and small amount of data. While this
method is not aimed at predicting pitch for a whole utterance, it
shows that it is possible to learn some patterns of intonation in
the emphasised case, using a parameterisation peculiar to this
intonation model. One interesting finding was that the atoms
and their combinations seem to be different in the case of an
emphasised word compared to a neutral case. This was demon-
strated by analyses of mutual information between emphasised
and neutral speech, and by experiments using two possible ways
to train the random forest, one with a lot of neutral data along
with emphasised data, the other with only emphasised data.
Whilst our conclusions are reasonable based on objective mea-
sures, they remain to be verified using subjective listening tests.

As the GCR model is theoretically language independent,
it should be possible to explore the modelling of emphasis-
specific intonation in multiple language. Having multiple sys-
tems would then lead to the possibility to alter the output of
synthesisers in the context of S2ST. This is one of our lines of
future work.
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Figure 1: Example of reconstructed F0 contour for the sentence “The Commission has debated the action plan for the next FIVE years.”
The continuous darker blue curve is the original F0, the dashed and darkest one is the baseline synthetic F0, and the lightest continuous
one is the proposed one.
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