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Abstract
Many data-intensive applications require real-time analytics over streaming data. In a growing

number of domains – sensor network monitoring, social web applications, clickstream analy-

sis, high-frequency algorithmic trading, and fraud detections to name a few – applications

continuously monitor stream events to promptly react to certain data conditions. These

applications demand responsive analytics even when faced with high volume and velocity of

incoming changes, large numbers of users, and complex processing requirements. Developing

suitable online analytics engine that meets these requirements is challenging.

In this thesis, we study techniques for efficient online processing of complex analytical queries,

ranging from standard database queries to complex machine learning and digital signal pro-

cessing workflows. First, we focus on the problem of efficient incremental computation for

database queries. We have developed a system, called DBTOASTER, that compiles declarative

queries into high-performance stream processing engines that keep query results (views) fresh

at very high update rates. At the heart of our system is a recursive query compilation algorithm

that materializes a set of supporting higher-order delta views to achieve a substantially lower

view maintenance cost. We study the trade-offs between single-tuple and batch incremental

processing in local execution, and we present a novel approach for compiling view mainte-

nance code into data-parallel programs optimized for distributed execution. DBTOASTER

supports millions of complete view refreshes per second for a broad range of queries and

outperforms commercial database and stream engines by orders of magnitude.

We also study the incremental computation for queries written as iterative linear algebra,

which can capture many machine learning and scientific calculations. We have developed a

framework, called LINVIEW, for capturing deltas of linear algebra programs and understanding

their computational cost. Linear algebra operations tend to cause an avalanche effect where

even very local changes to the input matrices spread out and infect all of the intermediate

results and the final view, causing incremental view maintenance to lose its performance

benefit over re-evaluation. We develop techniques based on matrix factorizations to contain

such epidemics of change and make incremental view maintenance of linear algebra prac-

tical and usually substantially cheaper than re-evaluation. We show, both analytically and

experimentally, the usefulness of these techniques when applied to standard analytics tasks.

Our last research question concerns the integration of general-purpose query processors

and domain-specific operations to enable deep data exploration in both online and offline

analysis. We advocate a deep integration of signal processing operations and general-purpose
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query processors. We demonstrate that in-situ processing of tempo-relational and signal

data through a unified query language empowers users to express end-to-end workflows

more succinctly inside one system while at the same time offering orders of magnitude better

performance than existing popular data management systems.

Keywords: incremental view maintenance (IVM), materialized views, databases, stream pro-

cessing, batch processing, higher-order IVM, distributed IVM, DBToaster, incremental linear

algebra, compilation, signal processing
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Résumé
De nombreuses applications faisant un usage intensif de données nécessitent des analyses

en temps réel sur ces lues en continu (streaming). Dans un nombre croissant de domaines –

surveillance de réseaux de capteurs, applications web sociales, analyse de flux de clics, trading

algorithmique à haute fréquence et détection de fraudes, pour n’en citer que quelques-uns

– les applications surveillent en permanence les événements présents dans les flux afin de

réagir rapidement à certaines conditions. Ces applications exigent des analyses réagissant

promptement, même lorsqu’elles sont confrontées à un volume et à une fréquence élevés

de changements entrants, à un grand nombre d’utilisateurs, ainsi qu’à des exigences de

traitement complexes. Développer un moteur d’analyse en ligne approprié qui répond à ces

exigences est difficile.

Dans cette thèse, nous étudions des techniques efficaces de traitement en ligne de requêtes

analytiques complexes, allant de requêtes de base de données standard à des systèmes com-

plexe d’apprentissage automatique et de traitement des signaux numériques. Tout d’abord,

nous nous concentrons sur le problème du calcul incrémental efficace des requêtes de base

de données. Nous avons développé un système, appelé DBTOASTER, qui compile les requêtes

déclaratives et produit des moteurs de traitement de flux haute performance qui maintiennent

les résultats des requêtes (vues) à des taux de mise à jour très élevés. Au cœur de notre système,

un algorithme de compilation de requêtes récursif matérialise un ensemble support de deltas

d’ordre supérieur pour atteindre un coût de maintenance des vues considérablement réduit.

Nous étudions les compromis entre le traitement incrémental tuple-par-tuple et par lots dans

le contexte d’une exécution locale, et nous présentons une nouvelle approche pour la compila-

tion de code de maintenance de vues vers des programmes aux données parallèles optimisés

pour une exécution parallèle distribuée. DBTOASTER permet des millions de rafraîchissements

complets de vues par seconde pour une large gamme de requêtes, et surpasse les moteurs de

base de données et de flux commerciaux par plusieurs ordres de magnitude.

Nous étudions également le calcul incrémental pour les requêtes en algèbre linéaire itérative,

qui peut représenter beaucoup de calculs scientifiques et d’apprentissage automatique. Nous

avons élaboré un cadre, appelé LINVIEW, pour capturer les deltas des programmes d’algèbre

linéaire et la compréhension de leur coût de calcul. Les opérations d’algèbre linéaire ont ten-

dance à provoquer un effet d’avalanche où même des changements très locaux aux matrices

d’entrée infectent tous les résultats intermédiaires et la vue finale, rendant le maintien incré-

mental des vues moins performant que la réévaluation. Nous développons des techniques
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basées sur la factorisation de matrice pour contenir de telles épidémies de changement et

rendre le maintien incrémental des vues de type algèbre linéaire pratique et généralement

nettement moins cher que la réévaluation. Nous montrons, à la fois analytiquement et expéri-

mentalement, l’utilité de ces techniques lorsqu’elles sont appliquées à des tâches d’analyse

standard.

Notre dernière question de recherche concerne l’intégration des processeurs de requête

à usage général et des opérations spécifiques à un domaine pour permettre l’exploration

de données en profondeur à la fois d’analyse en ligne et hors ligne. Nous préconisons une

intégration profonde des opérations de traitement de signaux et processeurs de requête à

usage général. Nous démontrons que in situ le traitement des données tempo-relationnelles

et de signaux à travers un langage de requête unifiée permet aux utilisateurs d’exprimer des

flux de travail de bout en bout plus succinctement à l’intérieur d’un système, tout en offrant en

même temps des ordres de grandeur de meilleures performances que la gestion des données

populaires des systèmes existants.

Mots clés : vue incrémentale maintenance (IVM), vues, bases de données, traitement des flux,

traitement par lots, IVM supérieur, IVM distribué, DBToaster, algèbre linéaire incrémentiel,

compilation, traitement du signal matérialisé.
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1 Introduction

In this thesis, we study techniques for building systems for efficient online processing of

complex analytical queries, ranging from standard database queries to complex machine

learning and digital signal processing workflows.

Sophisticated data analysis plays an essential role in today’s business world. Many companies

collect and analyze large volumes of data to better understand their business processes,

improve customer service, and, ultimately, generate more profit. For many decades, business

intelligence has been relying on after-the-fact exploration in traditional data warehouses.

With the pace of business constantly accelerating, companies have started now focusing on

providing more responsive analytics involving complex forms of mining and learning from

data in order to stay competitive in a global marketplace.

Developing suitable responsive analytics engine is challenging. Computational problems in

many domains often have to process astonishing volumes of generated data. For instance,

Facebook manages a data warehouse storing around 300PB of data and having an incoming

daily rate of 600TB [11]; the Large Hadron Collider at CERN generates around 30PB of raw

event data per year used by physicists in scientific simulations [3]. Data-intensive processing

of any kind over these big working sets demands massively scalable solutions. Recently, many

frameworks for scalable data processing have emerged: most notably MapReduce [62] and

Spark [152, 151] for general-purpose data-parallel processing, along with specialized systems

for large-scale processing of structured data [33, 143, 121], array processing [139, 58, 41, 35,

157], high-performance computing [65, 7], and machine learning and data mining [82, 154, 68,

100, 2, 110]. All these solutions primarily focus on efficiently processing large volumes of data.

Modern applications have to deal with not just big but also rapidly changing datasets. In a

growing number of domains – Internet of Things, clickstream analysis, algorithmic trading,

network monitoring, and fraud detection to name a few – applications compute real-time

analytics over streams of continuously arriving data. Online and responsive analytics allow

data miners, analysts, and statisticians to react promptly to certain, potentially complex,

conditions in the data; or to gain preliminary insights from approximate or incomplete results
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at very early stages of the computation. Existing tools for large-scale data analysis often lack

support for dynamic datasets. High data velocity and complex processing requirements often

force application developers to build ad hoc solutions to pull off maximum performance.

More than ever, data analysis requires efficient, expressive, and scalable solutions to cope with

the ever-increasing volume and velocity of generated data.

1.1 Requirements for Online Processing Systems

We identify three essential requirements for online processing systems to serve these modern

applications: low-latency processing, support for long-running queries with complex logic,

and scalable behavior. We describe them in more detail next.

Low-latency Incremental Processing Most datasets evolve through changes that are small

compared to the overall dataset size. For example, the Internet activity of a single user, like

her clickstream logs or online shopping history, represents only a tiny portion of the collected

data. Providing up-to-date analytical results by recomputing from scratch on every (moderate)

change is almost always inefficient.

These observations motivate incremental data analysis. Incremental processing combines the

previously computed result with incoming changes to express the difference in the final result.

Intuitively, small input changes often cause small output changes, which motivates us to use

computationally cheaper methods for updating the results instead of re-evaluating everything

from scratch. In most real-time applications, incremental computation is critical for online

systems to sustain high update rates and achieve low latency.

Support for Complex Continuous Queries1 Online processing systems use continuous (long-

running) queries to analyze dynamic datasets. Two desirable properties of such query lan-

guages are 1) expressiveness – users want to ask queries that can capture complex conditions in

streaming data, and 2) declarativity – users want to specify queries using high-level operators

rather than low-level programming models.

Traditional online processors provide relational operators (e.g., selection, projection, join,

etc.) and SQL-like query syntax for expressing grouped aggregations over streaming data.

In the quest for better insights, modern applications increasingly demand more powerful

analytics, like SQL queries with nested aggregates or sophisticated algorithms from domains

like machine learning, data mining, scientific computing, and digital signal processing. Data

processing systems supporting both relational and domain-specific operations can greatly

empower users to perform complex data analysis. However, the challenge remains how to

execute such workflows efficiently over evolving datasets.

Scalable Processing Emerging data-intensive applications demand scalable online systems

for querying and managing large datasets. The motivation for using these systems may vary

1We will, throughout this thesis, use stream processing and continuous queries interchangeably. We will not
aim to ensure bounded state size by window semantics, unless otherwise stated.
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Figure 1.1 – Performance comparison of a commercial database system (DBX), a stream
processing engine (SPY), and DBToaster on maintaining the results of a set of TPC-H queries
for a stream of single-tuple updates to the base relations. Higher numbers are better.

depending on the application domain. In applications managing large stateful working sets,

like real-time data warehouses, distributed execution aims to speed up query evaluation

and accommodate growing memory requirements. Scalable behavior is also necessary for

applications handling huge numbers of concurrent users; for instance, increasingly many IoT

applications need to run the same query logic over a large collection of signals from sensor

devices, and scaling out their processing is essential.

In this thesis, our primary focus is on achieving these critical requirements when building

systems for efficient online analysis of relational, tempo-relational, and array data. Sometimes

our solutions also provide other desirable features, like fault-tolerance in distributed execution,

but studying them in more detail is out of the scope of this work.

1.2 Limitations of Existing Systems

Existing data processing systems often fail to simultaneously address the above requirements.

Traditional relational databases offer rich query support but focus on high throughput rather

than low latency. Many commercial implementations support incremental view maintenance

– a technique for efficiently refreshing the contents of materialized views upon changes in base

relations [75, 51, 95]. These systems, however, support only restricted classes of SQL queries,

namely only flat queries but not queries with nested aggregates [9, 4]. Conventional data

stream processing systems [112, 13, 32, 18] also exploit incremental computation to reduce the

work over overlapping windows of input data. Their usefulness is yet limited by their window

semantics, inability to handle long-lived data, and lack of support for complex queries. Both

traditional databases and stream processing engines have limited scalability.
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Example 1.2.1 Relational databases and stream processing engines support incremental pro-

cessing but often fail to meet the performance requirements of modern real-time applications.

To demonstrate that claim, we evaluate commercial implementations of a database system

and a stream processing engine using an application that continuously monitors streaming

data. The application computes online analytics using a set long-running queries derived from

the TPC-H benchmark – a standard benchmark for evaluating databases – and ranging from

flat queries with multi-way joins to complex queries with nested aggregates. We synthesize a

stream of insertions and deletions to the base relations that ensures a roughly fixed working

set size of 30,000 tuples. Our goal is to maintain the result (materialized view) after each

insertion or deletion.

Figure 1.1 shows the measured performance of these commercial systems expressed as view

refreshes per second. Notice that the y-axis has a logarithmic scale and higher values corre-

spond to better performance. We observe that these two systems can process up to 100 tuples

per second while maintaining views constantly fresh after every update. These numbers are

far away from the requirements of real-time applications that often need to sustain much

higher stream rates, like hundreds of thousands of updates per second, and keep views fresh

at microsecond latencies. There are several reasons for such poor performance of the bench-

marked systems: both cannot incrementally maintain SQL queries with nested aggregates

and default to expensive re-evaluation in such cases; the stream engine is designed to work

with window semantics and is inefficient in handling long-lived data; finally, when processing

small-sized updates, the database system incurs significant overheads from components not

related directly to view maintenance (e.g., input parsing, logging, concurrency control, etc.). 2

Scalable stream processing platforms offer low-level programming models that put the burden

of expressing complex query plans on the application developer [28, 102, 117]. Others provide

declarative continuous queries but with no efficient support for the incremental computation

of complex analytics, like queries with nested aggregates [114, 45, 29, 153]. Scalable batch

processing systems built around MapReduce and Spark aim for high throughput rather than

low latency [121, 143, 33]. Their design favors infrequent bulk updates during which these

systems are typically unresponsive.

More complex forms of data processing often take the form of linear transformations of

vectors and matrices. Popular statistical environments, like MATLAB and R, offer high-level

abstractions that simplify programming but lack the support for scalable full-dataset analytics.

Simulating multidimensional array computations on top of traditional relational databases

often results in poor performance [139]. Specialized systems for array processing [139, 41, 35,

108] provide scalable offline analysis of multidimensional array data but lack the support for

incremental computation.

The database community has recognized the need for a tighter integration of data manage-

ment systems and domain-specific algorithms. Numerical computing environments like

MATLAB and R are unsuitable for general-purpose processing involving relational opera-
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tions such as joins, filtering, or group-by aggregation. To enrich processing workflows with

specialized routines, increasingly many data management systems integrate with statistical

frameworks [39, 139, 58, 41, 152, 151, 147, 13]. However, the existing integration mechanisms

are suboptimal performance-wise as they treat both sides as independent systems with fun-

damentally different data models and expensive intercommunication. Such loose system

coupling is particularly unsuitable for real-time and incremental processing.

1.3 Contributions

In this thesis, we study the foundations, algorithms, and architectures of data management

tools designed for large datasets that evolve rapidly through high-rate update streams. We

develop techniques for low-latency incremental processing of complex queries within the

context of three different systems. We present the main contributions of our work next.

1.3.1 Incremental View Maintenance for Database Queries

The core of this thesis studies the problem of efficient incremental computation of database

queries. Our research builds upon a novel incremental processing technique, called the viewlet

transform [93, 94, 95]. This technique materializes the query result and a supporting set of

higher-order delta views to achieve a substantially lower view maintenance cost and eliminate

certain expensive query operations, such as joins.

In this thesis, we present the lessons learned in an effort to make the viewlet transform

practical and to understand its strengths and drawbacks. There are cases (inequality joins and

certain nesting patterns) when a naïve viewlet transform is too aggressive, and certain parts of

queries are better re-evaluated than incrementally maintained. We develop heuristic rules for

trading off between materialization and lazy evaluation for the best performance.

We have built the DBTOASTER compilation framework, which implements the viewlet trans-

form and transforms declarative database queries into high-performance stream processing

engines that keep query results (views) fresh at very high update rates. Figure 1.1 shows

that DBTOASTER can achieve up to 5 orders of magnitude higher view refresh rates than the

state-of-the-art relational database and stream processing engines. We provide a thorough

experimental evaluation of our system for a wide range of analytical SQL queries later on.

Support for complex queries DBTOASTER aims to combine the advantages of database

systems (rich queries over recent and historical data, without restrictive window semantics)

and stream processing engines (low latency and high view refresh rates). To achieve this goal,

we develop techniques for efficient incremental computation of database queries, including

those with nested aggregates for which no commercial implementation of incremental view

maintenance exists.
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Program specialization We argue that efficient view maintenance requires specialization

of incremental programs. Data management systems incur significant overheads due to

their complexity and the use of generic data structures and algorithms [95, 92, 116], which

makes them inappropriate for low-latency processing of frequent updates, as demonstrated

in Figure 1.1. We observe that nowadays most applications have static query workloads

with template-derived queries. Knowing the workload in advance allows us to tailor query

processing based on the application requirements and avoid unnecessary features of database

systems. In this work, we present techniques for specializing incremental programs into low-

level native or interpreted code and generating custom data structures to facilitate efficient

maintenance operations.

Single-tuple vs. batch processing We study the trade-offs between tuple-at-a-time and batch

incremental view maintenance in local settings. The former can yield simpler maintenance

code, for instance, we can eliminate loops around input changes knowing they are of constant

size. The latter can have positive or negative impacts on cache locality. We identify the

cases when batch processing can significantly reduce view maintenance costs. But, we also

demonstrate in our experiments that maintenance programs specialized for single-tuple

processing can outperform generic batch implementations in surprisingly many cases, in

almost one-half of the benchmarked queries. These results refute the widespread belief that

batching always wins over tuple-at-a-time processing [122].

Distributed execution To cope with the ever-increasing volume and velocity of data, we

develop techniques for distributed incremental view maintenance of database queries. This

problem is significantly harder than that of distributed query optimization [98, 129, 20, 47]

because we aim to parallelize view maintenance programs consisting of multiple update state-

ment rather than individual queries. We build a framework for transforming local programs

into data-parallel processing tasks running over a large-scale cluster. The framework consists

of a set of simplification and heuristics rules for minimizing network communication and

synchronization during distributed execution. Our distributed view maintenance implemen-

tation for standard database queries can deliver few-second latencies of processing tens of

million of tuples using hundreds of workers.

1.3.2 Incremental Linear Algebra

In this thesis, we also study the incremental view maintenance problem for queries written

as iterative linear algebra programs. Such queries can express complex data analyses, like

machine learning algorithms or scientific calculations. The main challenge in incremental

linear algebra is how to represent and propagate delta expressions that capture the differ-

ence between the new and old result. Linear algebra operations tend to cause an avalanche

effect where even very local changes to the input matrices spread out and infect all of the

intermediate results and the final view. Expressing such deltas naïvely and propagating them

to subsequent statements quickly becomes more expensive than recomputing the entire

program from scratch using the new input.
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We develop techniques based on matrix factorizations to contain such epidemics of change.

Our approach represent delta expressions in a factored form, as products of low-rank matrices,

and utilizes a set of transformation rules to reshape linear algebra programs into their cheaper

functional equivalents that are optimized for dynamic datasets. The factored form admits

efficient incremental computation of linear algebra programs that involve expensive matrix

operations, like full matrix-matrix multiplication and matrix inversion. We demonstrate

both analytically and experimentally the efficiency of incremental computation on various

fundamental data analysis methods, such as Ordinary Least Squares, batch gradient descent,

PageRank, and matrix powers.

We have built LINVIEW, a compiler for incremental data analysis that exploits these novel

techniques to generate efficient maintenance triggers. The compiler is easily extensible to

couple with any underlying system that supports matrix manipulation primitives. We evaluate

the performance of LINVIEW’s generated code in both local and distributed settings. We show

that incremental evaluation can orders of magnitude better performance than traditional

re-evaluation.

1.3.3 Enabling Signal Processing over Data Streams

Our last research question concerns the integration of general-purpose query processors and

domain-specific operations to enable deep data exploration in both online and offline analysis.

As our motivating example, we consider Internet of Things applications that analyze sensor

data coming from large networks of devices using queries that combine relational and signal

processing operations. Reconciling these two seemingly disparate worlds of relational and

signal (array) data, especially in the context of real-time analysis, is a challenging task.

In this thesis, we advocate a deep integration of domain-specific tools and general-purpose

query processors. To demonstrate our approach, we have extended Trill [45] – a commercial

stream processing engine based on the tempo-relational model – with signal processing func-

tionality. We provide a unified query language that allows end-users to seamlessly interleave

relational and signal operations when writing queries for online and offline analysis. In-situ

processing of tempo-relational and signal data opens up the opportunity for incremental

computation of entire workflows and avoids the performance overheads of existing loosely-

coupled solutions. For domain experts, we provide frameworks exposing array abstractions

for quick and easy integration of user-defined operators, like existing highly-optimized im-

plementations, with the query language. Our deeply-integrated system can achieve orders of

magnitude better performance than existing loosely-coupled data management systems on

signal processing tasks in IoT scenarios.
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1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 introduces the concept of incremental view

maintenance for database queries. Chapter 3 presents higher-order incremental processing.

Chapter 4 and 5 describe the implementation of incremental view maintenance for database

queries in local and distributed environments. Chapter 6 studies incremental computation of

linear algebra programs. Chapter 7 studies the integration of signal processing and stream

processing engines. Chapter 8 discusses related work, and Chapter 9 concludes this thesis.

This work includes material from several publications in which the author of this thesis is

the lead author or a co-author. Chapter 2 presents material, namely the data model, the

query language, and the idea of recursive incremental view maintenance, that was initially

developed in previous work [93, 94, 25, 90] and later refined in the follow-up publications

co-written by the author of this thesis [24, 95]. The author played a major role in designing and

implementing the materialization heuristics, optimizations, and efficient evaluation strategies

from Chapter 3, and in conducting experiments and discussing results from Chapter 4. These

chapters combine material from our publications [95, 119]. The author also led the research

and development of distributed incremental view maintenance [119] in Chapter 5, incremental

linear algebra [120] in Chapter 6, and signal processing over stream data in Chapter 7.
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2 Incremental View Maintenance

In this chapter, we introduce the concept of incremental view maintenance in databases.

We present a state-of-the-art incremental view maintenance technique, called the viewlet

transform, which we first describe informally through an example and then formalize using

the previously defined query language. The content of this chapter includes material from our

publications [95, 119], which refine the data model, the query language, and the initial idea of

the viewlet transform from previous work [93, 94].

2.1 Concept: Incremental Computation in Databases

Database systems can pre-compute results of frequently asked queries to speed up their

execution. Such stored representations, known as materialized views, require maintenance to

keep their contents up to date for changes in base tables. Refreshing materialized views using

recomputation is expensive for frequent and small-sized updates. In such cases, applying only

incremental changes (deltas) to materialized views is usually more efficient than recomputing

views from large base tables.

Due to their impact on performance, materialized views have become an import research

topic in many domains (see the survey by Chirkova and Yang [51]), like traditional query

processing [75, 49, 74, 38, 104, 131], stream processing [70, 78, 85, 21, 115], data mining [141,

81], and data warehousing [91, 48, 22, 149, 128, 79]. Materialized views are supported by most

commercial database systems and tightly integrated into query optimization.

2.1.1 Classical Incremental View Maintenance

Incremental view maintenance (IVM) uses delta queries to capture the difference in the mate-

rialized contents caused by changes in base relations. Let 〈Q, M(D)〉 denotes a materialized

view, where Q is the view definition query and M(D) is the materialized contents for a given

database D. When the database changes from D to (D+∆D), where ∆D represents insertions,

9



Chapter 2. Incremental View Maintenance

deletions, and updates to base tables, classical incremental view maintenance evaluates a

delta query ∆Q to refresh M(D).

M(D+∆D) = M(D)+∆Q(D,∆D)

The delta ∆Q often has a simpler structure than Q (e.g., has fewer joins) and involves smaller

delta updates instead of large base tables. So, computing ∆Q and refreshing M(D) becomes

cheaper than re-evaluating Q from scratch. Incremental view maintenance derives one

delta query for each referenced base table. The derivation process relies on a set of change

propagation rules defined for each operator of the view definition language. The derived delta

query takes its role in the associated view maintenance trigger.

Example 2.1.1 Let query Q counts the tuples of a natural join of R(A,B), S(B ,C ), and T (C ,D)

grouped by column B (i.e., for each distinct B value). Intuitively, we write the delta query for

updates to R as:

∆RQ := Sum[B](∆R(A,B) ./ S(B ,C ) ./ T (C ,D))

Let MR , MS , and MT denote the materialized base tables R, S, and T , then the maintenance

trigger for updates to R looks as follows.

Listing 2.1 Incremental view maintenance of Q for updates to R

1 ON UPDATE R BY ∆R:
2 MR(A,B) += ∆R(A,B)
3 ∆Q(B) := Sum[B](∆R(A,B) ./ MS(B,C) ./ MT(C,D))
4 MQ(B) += ∆Q(B)

Here, += , := , and ./ denote bag union, assignment, and natural join. The maintenance

trigger applies ∆R to R and recomputes ∆RQ to refresh MQ . Under the standard assumption

that |∆R|¿ |R|, incremental maintenance is cheaper than re-evaluation. 2

Incremental view maintenance is often cheaper than naïve re-evaluation but is not free.

Computing deltas can be expensive, like in Example 2.1.1, where ∆RQ is a non-trivial join of

one (small) input update and two (potentially large) base tables.

2.1.2 Idea: Recursive Incremental View Maintenance – The Viewlet Transform

Delta queries can be expensive despite their simpler form. For instance, a delta of an n-way

join still references (n −1) base tables. Instead of computing such a delta query from scratch,

we could re-apply the idea of incremental processing to speed up the delta evaluation: store

previously computed delta results, just as any other query result, and compute the delta

of a delta query (second-order delta) to maintain the materialized delta result. That way,

the second-order delta query maintains the first-order delta view, which in turn maintains

the top-level view. Assuming that with each derivation deltas become simpler, we could

recursively apply the same procedure until we get deltas with no references to base tables.
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2.1. Concept: Incremental Computation in Databases

The described technique for constructing higher-order deltas is closer in spirit to discrete

wavelet and numerical differentiation methods, and we use a superficial analogy to the Haar

wavelet transform as the motivation for calling the base technique a viewlet transform. Here,

we present just the intuition behind this technique and provide a more formal description

later in this chapter.

The viewlet transform materializes the top-level view along with a set of auxiliary views that

support each other’s incremental maintenance. The materialization procedure starts from

the top-level view and derives its delta queries for updates to base relations. For each delta

query, the procedure materializes its update-independent parts such that the delta evaluation

requires as little work as possible. In other words, it transforms ∆Q(D,∆D) into an equivalent

query ∆Q ′ that evaluates over a set of materialized views M1, . . . , Mk and update ∆D:

∆Q(D,∆D) =∆Q ′(M1(D), M2(D), ..., Mk (D),∆D)

But note that M1, . . . , Mk also require maintenance, which again relies on simpler materialized

views. At first, it may appear counterintuitive that storing more data can reduce maintenance

costs. However, the recursive incremental maintenance scheme makes the work required to

keep all views fresh extremely simple. For flat queries, each individual aggregate value can be

incrementally maintained using a constant amount of work [93, 94], which is impossible to

achieve with classical incremental maintenance or re-evaluation.

Example 2.1.2 Let us apply recursive incremental view maintenance on the query of Exam-

ple 2.1.1 and updates to R. Considering ∆RQ, we materialize its update-independent part

S(B ,C ) ./ T (C ,D) as an auxiliary view MST (B). We projected away C and D as they are ir-

relevant for the computation of ∆RQ. Repeating the same procedure for updates to T , we

materialize R(A,B) ./ S(B ,C ) as MRS(B ,C ) to facilitate computing of ∆T Q. For updates to S,

we materialize R(A,B) ./ T (C ,D) separately as MR (B) and MT (C )1.

Next, we derive second-order deltas for MST and MRS . Repeating the same delta derivation for

updates to all three base relations, we materialize one additional view MS(B ,C ) representing

the base relation S. Further derivation produces delta expressions with no base relations.

Overall, recursive view maintenance materializes queries at three different levels: the top-level

query MQ , two auxiliary views MRS and MST , and the base tables MR , MS , and MT . The

maintenance trigger for updates to R looks as follows.

Listing 2.2 Recursive incremental view maintenance of Q for updates to R

1 ON UPDATE R BY ∆R:
2 MQ(B) += Sum[B](∆R(A,B) ./ MST(B))
3 MRS(B,C) += Sum[B](∆R(A,B) ./ MS(B,C))
4 MR(B) += Sum[B](∆R(A,B))

We similarly build triggers for updates to S and T . 2

1An efficient implementation of the viewlet transform avoids materializing query results with disconnected join
graphs for performance reasons. Chapter 3 describes such optimizations in more details.

11



Chapter 2. Incremental View Maintenance

The viewlet transform can produce triggers with lower complexity than classical maintenance

triggers. In the previous example, each statement performs at most one join between the delta

relation and one materialized view, which is clearly less expensive than the classical approach.

In general, if classical IVM is a good idea, then repeating it recursively is an even better idea.

The same efficiency improvement argument in favor of IVM of the base query also holds for

IVM of the delta query. Considering that joins are expensive and this approach simplifies or

eliminates them, the viewlet transform has the potential for excellent query performance.

2.2 Data and Query Model

In this section, we introduce formalisms used for studying the problem of incremental view

maintenance for relational queries. We present the internal data model, generalized multiset

relations (GMRs), which enables a uniform treatment of different forms of updates (insertions

and deletions) during incremental view maintenance. We define the query language, AGgregate

CAlculus (AGCA), which consists of a few operators capable of expressing most of SQL and is

amenable to powerful optimizations due to its simplicity.

Our data model generalizes multiset relations to collections of tuples where each tuple is

annotated with a rational multiplicity (i.e., fromQ). As such multiplicities can be positive or

negative, we can treat databases and updates as well as insertions and deletions uniformly –

for instance, a deletion is a relation with negative multiplicities, and applying an update to a

database means unioning/adding it to the database. In our model, such rational multiplicities

can also keep (potentially non-integer) aggregate values of group-by queries, in contrast to SQL

which stores these values in an additional column (thus, changing the query result schema).

Maintaining aggregates in the multiplicities allows for simpler and cleaner bookkeeping in

delta processing – for instance, growing an aggregate means changing the multiplicity of

a tuple rather than deleting the tuple and inserting a tuple with the new aggregate value.

Furthermore, we can associate multiple “multiplicities” (Qk ) to a tuple to maintain multiple

aggregates inside a single GMR.

Our query language (AGCA) consists of just four operations – addition, its inverse, multi-

plication, and sum-aggregation – constructed over GMRs and infinite interpreted relations

(which capture conditions, such as a < b and x = 5). AGCA is based on the ring-theoretic

framework [93, 94] which defines the query language as a polynomial ring over GMRs with an

addition operation that at once generalizes multiset union (as known from SQL) and updating,

and a multiplication operation that generalizes the natural join operation. This syntactic

simplicity of AGCA enables rich optimizations, as described in Chapter 3.

The query language implements sideways information passing and enforces range restric-

tion (variable bindings) as known in the context of relational calculus. Supporting such

bindings eliminates the need for an explicit selection operation, which AGCA encodes as a

multiplication of a query with a condition (interpreted relation) just like in relational calculus.

Multiplication is defined in such a way that query results are guaranteed to be always finite.
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2.2. Data and Query Model

2.2.1 Data Model

We model a relation tuple~t as a tuple of values with an associated schema, formally defined

as a function from a vocabulary of column names dom(~t) to data values. We write ~t as

〈A : v | A ∈ dom(~t)〉, where v is a value from the domain of column A. The set of all tuples is

denoted by T, and 〈〉 signifies the empty tuple.

We model a generalized multiset relation (GMR) as a collection of relation tuples, each anno-

tated with a tuple of rational multiplicities. We define a GMR R :T→Qk as a function from

relation tuples to tuples of rational numbers such that R(~t ) 6= 〈0〉k for at most a finite number of

tuples~t . A GMR encodes one relation with k aggregate columns (e.g., count, sum, etc.) where

the rational multiplicities represent aggregate values. We write sch(R) to denote a common

schema of GMR R, which subsumes the tuple schemas. Below, we also use classical singleton

relations (without multiplicities) and the natural join operator ./. We write {~t } to construct

a singleton relation from tuple~t with the schema sch({~t }) = dom(~t). For tuples~s,~t that are

consistent ({~s}./ {~t } 6= ;), we can write~s~t for the consistent concatenation ({~s~t } = {~s}./ {~t }).

Example 2.2.1 Let R be a GMR ofQ3
Rel

R A B

1 2 7→ 〈c1, s1, a1〉
3 5 7→ 〈c2, s2, a1〉
4 2 7→ 〈c3, s3, a1〉

defined over column name vocabulary {A,B}, where ci , si , and a1 denote rational multiplicities

(e.g., count, sum, and average aggregates). We only show entries with nonzero multiplicity. 2

We denote the set of all GMRs with k-arity multiplicities by Qk
Rel. Without loss of generality,

next we consider the query language over Q2
Rel with the two fields storing the bag (count)

multiplicity of a tuple (for bookkeeping purposes) and the aggregate value being computed.

Our query language may be generalized fromQ2
Rel toQk

Rel for any k > 2 by cloning its behavior

with respect to the “value” field. This generalization is omitted to avoid notation clutter.

2.2.2 Query Language

We now formally define AGCA over Q2
Rel. The language uses algebraic formulas to express

queries (views) over generalized multiset relations. Valid queries result in relations with finite

support, and because the tuples in a relation are unique, we can interpret query results as

maps (dictionaries) with tuples being the keys and multiplicities being the values.

Syntax

AGCA expressions are built from constants, variables, relational atoms,conditions, and variable

assignments ( := ), using operations bag union +, natural join ∗, and aggregate sum Sum~A. The

abstract syntax is:
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Chapter 2. Incremental View Maintenance

q ::- q ∗q | q +q | −q | c | x | R(~t ) | Sum~A(q) | x θ 0 | x :=q

Here x denotes variables (which we also call columns),~t tuples of variables, ~A tuples of group-

by variables, R relation names, c constants fromQ, and θ denotes comparison operators (=,

6=, >, ≥, <, and ≤). We also use x θ y as syntactic sugar for (x − y)θ0.

Note that x :=q is a special condition essentially equivalent to x = q , with one catch. In

relational calculus, both variables x and y are safe in φ∧ x = y if at least one of them is safe

in φ (the other variable can be assigned the value of the safe variable from φ). To make this

information flow explicit, we create a syntactic distinction between the case where only one of

the variables is safe from the left ( := ) and the case where both are safe (=).

Informal Semantics

We first present a fragment of the language sufficient for expressing flat queries with aggregates.

• Relation R(A1, A2, ...) represents the contents of a base table. It defines a mapping from

every unique tuple of the relation to its multiplicity inQ2. The SQL equivalent is SELECT
A1, A2, ..., COUNT(*) FROM R GROUP BY A1, A2, ..., where both multiplicity

fields store the count aggregate.

• Bag union q1 +q2 merges tuples of q1 and q2, summing vector-wise their multiplicities.

• Natural join q1 ∗q2 matches tuples of q1 with tuples of q2 on their common columns,

multiplying vector-wise their multiplicities.

• Sum~A(q) serves as multiplicity-preserving projection. The result of Sum~A(q) is the tuples

of the projection of q on ~A, and each tuple’s multiplicity is the sum of the multiplicities

of the tuples that were projected down to it. An aggregation Sum~AR almost works like

the SQL query SELECT ~A, SUM(1) FROM R GROUP BY ~A. The only difference is that

SQL puts the aggregate values into a new column, while Sum~AR puts them into the

multiplicity of the group-by tuples. We can express more general aggregate summations

using clever arithmetics on multiplicities, as shown below.

• Constant c can be interpreted as a singleton relation mapping the empty tuple to the

multiplicity of 〈1,c〉. Note that the empty tuple joins with any other tuple.

• Value term f (x, y, . . .), which generalizes variable x, is an interpreted relation defining

a mapping from tuple 〈x, y, . . .〉 to its multiplicity 〈1, f (x, y, . . .)〉. Constant c is a special

case of a value term. Value terms are valid only if all variables are bound at evaluation

time. For example, expression A has a free (unsafe) variable, thus it is invalid, while

expression R(A,B)∗ A has finite support. The latter expression corresponds to the SQL

query SELECT A, B, SUM(A) FROM R GROUP BY A, B.

• Variable assignment (x :=v) lifts the aggregate multiplicities of value term v to tuple

values. It defines a GMR with one column x and tuple values mirroring the aggregate
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multiplicity field of v and having the multiplicity of 〈1,1〉. Multiple variable assignments

can be joined together to construct an arbitrary wide tuple.

• Comparison (x θ0) is an interpreted relation where each tuple has a multiplicity of

either 〈0,0〉 or 〈1,1〉 depending on the truthfulness of the boolean predicate. Joining an

expression with a comparison filters out tuples not satisfying the predicate by setting

their multiplicity to 〈0,0〉; the multiplicities of the matching tuples remain unchanged.

The query language enforces a range restriction policy to ensure that all expressions

define finite relations, as in relational calculus. That is, we may write R ∗ (A < B) for

SELECT A, B FROM R WHERE A < B, without explicitly using a selection operation.

However, (A < B) by itself is not a valid query because an unbounded number of tuples

satisfy the condition.

To support queries with nested aggregates, the query language generalizes the assignment

operator to take on arbitrary expressions instead of just values. Then, variable assignment

(x :=q) defines a finite-size relation containing tuples of expression q with non-zero count

multiplicities extended by column x holding the aggregate multiplicities. Each output tuple

has the multiplicity of 〈1,1〉. Expression q may be correlated with the outside as usual in SQL.

Variable assignment (x :=q) is a powerful and subtle operation which requires GMRs of type

Q2
Rel to maintain, separately, aggregates and true multiplicities.

With the above intuition in mind, the reader should be able to validate that the formal se-

mantics shown in Figure 2.1 matches the given description. Note that in these semantics, the

generalized union, join, and projection operations are denoted by +, ∗, and Sum~A.

Semantics

We define the formal semantics of AGCA using an evaluation function [[·]] that, for a query

Q, a database D, and a context — a tuple~b of “bound variables” — evaluates to an element

[[Q]](D,~b) ofQ2
Rel, as presented in Figure 2.1. Note that in several recursive cases arithmetic on

the multiplicity/value tuples is performed vector-wise.

AGCA admits sideways information passing meaning that query expressions are evaluated

relative to a given context ~b, an association of variables and their values, provided from the

outside. The query language, specifically the multiplication operation, dictates how such

bindings are to be passed to the right during query evaluation.

The definition of [[R(~x)]] allows column renaming. The evaluation of variables x (e.g., [[x]])

fails if they are unbound at evaluation time. We consider a query in which this may happen

illegal and exclude such queries from AGCA. Observe that R−S = R+(−S) does not refer to the

difference operation of relational algebra, but to the additive inverse for GMRs: for instance,

;−R =−R in AGCA (; can be written in AGCA as the constant 0), while the syntactically same

expression in relational algebra results in ;. It is more appropriate to think of a GMR −R as a

deletion, where deleting “too much” results in a database with negative tuples.
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Base Cases

Constant Value [[c]]( · , · ) := ~t 7→
{ 〈1,c〉 ..~t = 〈〉

〈0,0〉 .. otherwise

Variable Value [[x]]( · ,~b) := ~t 7→


fail .. x 6∈ dom(~b)
〈1,~b(x)〉 .. otherwise, if~t = 〈〉
〈0,0〉 .. otherwise

Relation [[R(~x)]](D,~b) := ~t 7→


〈m,m〉 .. m = RD(〈Ai :~t (xi ) | Ai ∈ sch(R)〉),
{~b}./ {~t } 6= ;, |dom(~t )| = |sch(R)|

〈0,0〉 .. otherwise

Comparison [[x θ0]](D,~b) := ~t 7→


fail .. x 6∈ dom(~b)
〈1,1〉 ..~b(x)θ0, ~t = 〈〉
〈0,0〉 .. otherwise

Recursive Cases

Bag Union [[Q1 +Q2]](D,~b) := ~t 7→ [[Q1]](D,~b)(~t )+Q2
[[Q2]](D,~b)(~t )

Additive Inverse [[−Q]](D,~b) := ~t 7→ [[Q]](D,~b)(~t )∗Q2 〈−1,−1〉

Natural Join [[Q1 ∗ Q2]](D,~b) := ~t 7→
Q2∑

{~t }={~r }./{~s}
{~b}./{~r }6=;

[[Q1]](D,~b)(~r )∗Q2
[[Q2]](D,~b~r )(~s)

Sum with Group-by [[Sum~A Q]](D,~b) := ~t 7→


Q2∑

{~t }./{~s}={~s}

[[Q]](D,~b)(~s) .. dom(~t ) = ~A,

{~b}./ {~t } 6= ;
〈0,0〉 .. otherwise

Variable Assignment [[x :=Q]](D,~b) := ~t 7→


〈1,1〉 ..~t2 = 〈xi : t (xi ) | xi 6= x〉,∃m. m 6= 0,
〈m,~t (x)〉 = [[Q]](D,~b)(~t2)

〈0,0〉 .. otherwise

Figure 2.1 – The formal evaluation semantics of AGCA ([[·]]). The operators +Q2
,∗Q2

and
∑Q2

are vector-wise instances of +,∗ and
∑

respectively.

Example 2.2.2 Let R be a GMR ofQ2
Rel

RD A B

1 2 7→ 〈m1, q1〉
3 5 7→ 〈m2, q2〉
4 2 7→ 〈m3, q3〉

where mi , qi denote rational multiplicities. Then,

[[R(x, y)]](D,〈x : 3〉) x y

3 5 7→ 〈m2, q2〉
The query renames the columns (A,B) to (x, y) and selects on x since it is a bound variable.
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The AGCA version of the query σA<B (R) evaluates to

[[R(x, y)∗ (x < y)]](D,〈〉) x y

1 2 7→ 〈m1, q1〉
3 5 7→ 〈m1, q2〉

For instance,

[[R(x, y)∗ (x < y)]](D,〈〉)(〈x : 1, y : 2〉)

=
Q2∑

{〈x:1,y :2〉}={~r }./{~s}

[[R(x, y)]](D,〈〉)(~r )∗ [[x < y]](D,~r )(~s)

= [[R(x, y)]](D,〈〉)(〈x : 1, y : 2〉)∗Q2
[[x < y]](D,〈x : 1, y : 2〉)(〈〉) = 〈m1, q1〉 2

In the Sum operator definition from Figure 2.1, for the given tuple~t , we look for all possible

tuples~s that satisfy {~t }./ {~s} = {~s}, that is, all possible extensions of tuple~t . There are infinitely

many such extensions. When evaluating Q, only those~s tuples that are present in the database

D will return non-zero multiplicities and all others will evaluate to 0. So, the result of the Sum

operator is again an infinite GMR with finite support.

Example 2.2.3 The sum-aggregate query Sum[y](R(x, y)∗2∗ x) generalizes the SQL query

SELECT B,SUM(2*A) FROM R GROUP BY B to GMRs. On the GMR of Example 2.2.2, it yields:

[[Sum[y](R(x, y)∗2∗x)]](D,〈〉) y

2 7→ 〈m1 +m3,2q1 +8q3〉
5 7→ 〈m2,6q2〉

For instance,

[[Sum[y](R(x, y)∗2∗x)]](D,〈〉)(〈y : 2〉)

=
Q2∑

~r ,~s,~t

[[R(x, y)]](D,〈〉)(~r ) ∗Q2
[[2]](D,~r )(~s) ∗Q2

[[x]](D,~r~s)(~t )

= 〈m1 ∗1, q1 ∗2〉∗Q2
[[x]](D,〈x : 1, y : 2〉)(〈〉) +Q2 〈m3 ∗1, q3 ∗2〉∗Q2

[[x]](D,〈x : 4, y : 2〉)(〈〉)
= 〈m1 +m3,2∗q1 +8∗q3〉

The count multiplicity is built-in for each operator to distinguish when the count multiplicity

of a tuple is 0 and when the sum aggregate evaluates to 0. 2

Using the assignment operator, variables can also take on values of non-grouping aggregates

or those that evaluate to a single value for a given set of bindings. That way we can express

queries with nested aggregates, which may be correlated with the outside as usual in SQL.

Example 2.2.4 Let relation R and S have columns (A,B) and (C ,D). The SQL query

SELECT * FROM R
WHERE B < (SELECT SUM(D) FROM S WHERE A > C)

is equal to Sum[A,B]
(
R(A,B)∗ (z :=Qn)∗ (B < z)

)
with Qn = Sum[ ] (S(C ,D)∗ (A >C )∗D). 2
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AGCA has no explicit syntax for universal quantification or aggregates other than Sum, but

these features can be expressed using (nested) sum-aggregate queries. Special handling of

these features in delta processing and query optimization could yield performance better than

what we report in our experiments. However, granting these definable features specialized

treatment is beyond the scope of this thesis. As a consequence, our implementation provides

native support for only the fragment presented above, and the experiments use only tech-

niques described in the thesis. This language specification covers all of the core features of

SQL with the exception of null values and outer joins.

2.2.3 Delta Queries

Delta queries express changes in query results for updates to the database. AGCA has the

nice property of being closed under taking deltas. For any query expression Q, there is an

expression∆Q of the same language that captures the change in the result of Q as the database

D is updated by ∆D, written as

∆Q(D,∆D) :=Q(D+∆D)−Q(D).

We define one delta derivation rule for each operator of the query language. Due to the strong

compositionality of the language, we can syntactically turn any AGCA expression into its delta

by repeatedly applying these rules until we obtain an AGCA expression over GMRs and delta

GMRs (updates). We write u to denote an update, and ∆uQ for the delta of expression Q with

respect to that update. Thus for a GMR R, ∆uR is the change to R made in update u.

∆u(Q1 +Q2) := (∆uQ1)+ (∆uQ2)

∆u(Q1 ∗ Q2) := ((∆uQ1)∗Q2)+ (Q1 ∗ (∆uQ2))

+ ((∆uQ1)∗ (∆uQ2))

∆u −Q := −∆uQ

∆uc := 0

∆u x := 0

∆u(x θ0) := 0

∆u(x :=Q) := (x := (Q +∆uQ))− (x :=Q)

∆u(Sum~AQ) := Sum~A(∆uQ)

The correctness of the rules follows from the fact that the GMRs with + and ∗ form a ring (for

example, the delta rule for ∗ is a direct consequence of distributivity) and that Sum~A can be

thought of as the repeated application of the + operation [94].

The special case of single-tuple updates is interesting since it allows us to simplify delta queries

further and to generate particularly efficient view refresh code. We write ±R(~t ) to denote the

insertion/deletion of a tuple~t into/from relation R of the database.
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∆±R(~t )

(
R(x1, . . . , x|sch(R)|)

)
:=±

|sch(R)|∏
i=1

(xi := ti )

∆±R(~t )

(
S(x1, . . . , x|sch(S)|)

)
:= 0 (R 6= S)

Example 2.2.5 Consider the AGCA query computing a sum aggregate:

Q = Sum[ ]
(
R(A,B)∗S(C ,D)∗ (B =C )∗ A∗D

)
We abbreviate the Sum subexpression as α. Let us study the insertion/deletion of a single

tuple 〈A : x,B : y〉 to/from R. From the delta rule for R, ∆±R(x,y)R(A,B) =±(A :=x)∗ (B := y),

and from the delta rule for ∗:

∆±R(x,y)α=±(A :=x)∗ (B := y)∗S(C ,D)∗ (B =C )∗ A∗D

=±S(C ,D)∗ (y =C )∗x ∗D

The delta of the main query is ∆±R(x,y)Q = Sum[ ](∆±R(x,y)α). 2

Example 2.2.6 Consider the overall query with a nested aggregate from Example 2.2.4. The

delta for insertion/deletion of a tuple 〈C : x,D : y〉 to/from relation S is:

∆±S(x,y)Q = Sum[A,B]
(
R(A,B)∗∆±S(x,y)(z :=Qn)∗ (B < z)

)
Following the delta rule for := ,

∆±S(x,y)(z :=Qn) = (
z := (Qn ±∆±S(x,y)Qn)

)− (z :=Qn)

where ∆±S(x,y)Qn = Sum[ ]
(
(C :=x)∗ (D := y)∗ (A >C )∗D

) = (A > x)∗ y , which is a way of

writing “if (A > x) then y else 0”. 2

2.2.4 Binding Patterns

AGCA query expressions have input and output variables and incorporate binding patterns

representing information flow. Input variables are parameters whose values cannot be com-

puted from the database and must be provided from the outside to evaluate the query. Output

variables represent columns of the query result schema.

The most interesting case of input variables occurs in a correlated nested subquery, viewed in

isolation. In such a subquery, a correlation variable from the outside is such an input variable.

The subquery can only be computed if a value for the input variable is given.

Example 2.2.7 In Example 2.2.4, all columns of R’s schema are output variables. In the

subexpression Qn , A is an input variable and there are no output variables since the aggregate

is non-grouping. Taking a delta adds input variables, parameterizing the query with the

update. In Example 2.2.5, the delta query uses input variables x and y to pass the update. In

Example 2.2.6, the delta query ∆±S(x,y)Qn = (A > x)∗ y has input variables A, x, and y . 2
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2.3 The Viewlet Transform

We now describe the viewlet transform. In this section, we focus only on flat queries and

exclude variable assignments x := q where q contains a sum-aggregate from the query lan-

guage. We eliminate this restriction in the next chapter. This query language fragment has

the following nice property. ∆Q is structurally strictly simpler than Q when query complexity

is measured using the degree of query Q, denoted by deg(Q). For union-free queries, deg(Q)

is the number of relations joined together. For queries with unions, deg(Q) is the maximum

degree of the union-free subqueries obtained after pushing unions above joins based on the

distributivity of addition over multiplication. Queries are strongly analogous to polynomials,

and the degree of queries is defined precisely as it is defined for polynomials (where the

relation atoms of the query correspond to the variables of the polynomial).

Theorem 2.3.1 ([94]) If deg(Q) > 0 then deg(∆Q) = deg(Q)−1.

The viewlet transform uses the simple fact that a delta query is a query too. Thus it can

be incrementally maintained using the delta query of the delta query, which again can be

materialized and incrementally maintained, and so on, recursively. By the above theorem, this

recursive query transformation terminates at the deg(Q)-th recursion level, when the obtained

delta is a “constant” (degree 0) independent of the database and dependent only on updates.

In the following, we write ∆l Q[u1, . . . ,ul ] (l ≥ 0) to denote a view representing the query

∆ul · · ·∆u1Q parameterized by updates u1, . . . ,ul . In general, this is a higher-order delta query,

but the case l = 0 is simply the query Q. We consider an update to be a database of GMRs that

potentially holds inserts and deletes for any base relation of the database being updated.

Definition 2.3.2 Given a query Q, the viewlet transform turns Q into the following update

trigger, which maintains the view of Q plus a set of auxiliary views parametrized by updates

u1, u2, and so on. When maintaining these auxiliary views, update u binds one of these

parameters at runtime while for the others we need to loop over all different valuations of

u1, . . .uk that we have seen so far.

Listing 2.3 The pseudocode of the viewlet transform

on update u do :

for k = 0 to deg(Q)−1 do

foreach u1, . . . ,uk ∈ {domain of RHS expr given u } do

∆kQ[u1, . . . ,uk ] +=

{
∆u∆uk · · ·∆u1Q . . . if k = deg(Q)−1

∆k+1Q[u1, . . . ,uk ,u] . . . otherwise
2

The viewlet transform owes its name to a superficial analogy with the Haar wavelet transform,

which also materializes a hierarchy of differences.

The above example shows that each trigger statement loops over the domains of the vari-

ables u1, . . . ,uk at runtime. When these domains are large, such iterations might become
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prohibitively expensive. One way to make the viewlet transform practical is to restrict the

updates to be constant-size batches. Without true loss of generality, we focus on single-tuple

updates as they offer particular optimization potential. But, they also require multiple triggers

to handle different update events, namely insertions and deletions for multiple relations.

We create insert and delete trigger functions in which the argument is a tuple (i.e., a list of

tuple variables) rather than a GMR. Using primitive-typed variables avoids looping in trigger

statements and enables more powerful query rewrites and simplifications, as shown in the

following example. We discuss these optimizations in detail in the next chapter.

Example 2.3.3 Consider the second-degree query Q from Example 2.2.5 with single-tuple

updates. We write ±R(x, y) to denote the insertion/deletion of a tuple 〈x, y〉 into/from relation

R. Let sgnR , sgnS ∈ {+,−}. Then, one of the second-order deltas is

(∆sgnR R(x,y)∆sgnS S(z,u)Q)[x, y, z,u] = sgnR sgnS (y = z)∗x ∗u

A trigger for events ±R(x, y) can be obtained as follows. Variables x and y are arguments of

the trigger and are bound at runtime, but variables z and u need to be looped over. On the

other hand, the right-hand side of the trigger is only non-zero in case that y = z. So we can

substitute z by y everywhere and eliminate z. Using this simplification, the viewlet transform

produces the following trigger for +R(x, y):

Listing 2.4 Trigger for single-tuple updates to R

Q += (∆+R(x,y)Q)[x, y] ;

foreach u do ∆+S(y,u)Q[y,u] += x ∗u ;

foreach u do ∆−S(y,u)Q[y,u] −= x ∗u ;

The construction of the remaining triggers happens analogously. The trigger contains an

update rule for the (in this case, scalar) view Q for the overall query result. The rule uses

the auxiliary view ∆±R(x,y)Q, which is maintained in the update triggers for S. The trigger

also contains update rules for the auxiliary views ∆±S(y,u)Q that are used to update Q in the

update triggers for S. The reason why we omitted deltas ∆±R(... )∆±R(... )Q and ∆±S(... )∆±S(... )Q is

because these are guaranteed to be 0 as the query has no self-join. An additional optimization,

presented in the next chapter, can eliminate the loops on u using the distributivity and

associativity of the + and ∗ operations. 2

We observe that the structure of the work that needs to be done is extremely regular and

(conceptually) simple. Moreover, there are no classical coarse-grained query operators left, so

it makes no sense to give this workload to a classical query optimizer. There are for-loops over

many variables, which have the potential to be very expensive. But the work is also perfectly

data-parallel, and there are no data dependencies comparable to those present in joins. All

this provides justification for making heavy use of compilation.

21



Chapter 2. Incremental View Maintenance

2.4 Summary

In this chapter, we explain the basic idea of incremental view maintenance in databases. We

introduce the data model and the query language that we will use in the following sections,

and we define a set of rules for computing delta queries. Then, we present a recursive query

compilation algorithm, called the viewlet transform, which materializes a set of higher-order

delta views with the goal of lowering view maintenance cost.

We refer to the viewlet transform as presented in this chapter as the naïve viewlet transform.

Next, we present improvements and optimizations that make the viewlet transform practical.
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3 Higher-Order Incremental View Main-
tenance

This chapter presents a practical implementation of the viewlet transform called Higher-Order

Incremental View Maintenance. Like the viewlet transform, Higher-Order IVM transforms a

query Q into a trigger program — a set of triggers that maintain the materialized view (as a

map or dictionary) MQ on query Q, and a set of supplemental materialized views. As before,

each trigger consists of update statements, each of the form foreach~x do MQ [~x] +=Q ′[~x].

The naïve viewlet transform may produce delta queries that are very expensive or simply

impossible to maintain. An example of the former is a delta query including a Cartesian

product (i.e., a product of two subqueries Q1 ∗Q2 with no output variables in common). As

we will soon see, such queries arise quite frequently in the viewlet transform and have high

maintenance costs. Delta queries that are impossible to maintain include (1) deltas that

contain input variables and therefore lack finite support, and (2) deltas of queries with nested

subqueries, to which Theorem 2.3.1 does not apply.

The key insight behind Higher-Order IVM is that full materialization of entire delta queries is

unnecessary. When generating update statements for a materialized view Q, we materialize

the delta terms ∆uQ as one or more subqueries of each delta query. These subexpressions

are then combined together to compute ∆uQ when executing the corresponding update

statements. Materializing the delta query piecewise increases the execution cost of evaluating

trigger statements. However, by carefully selecting an appropriate set of subqueries, the

increased evaluation overhead is offset by a substantial reduction in view maintenance costs.

We now formally define Higher-Order IVM (HO-IVM). Recall that the viewlet transform pro-

duces a sequence of statements, each of the form: Q[~x] += ∆uQ[~x]. Unlike the viewlet trans-

form which materializes ∆uQ as a single view, HO-IVM materializes a set of subqueries ~M∆uQ

and rewrites the statement into an equivalent statement Q[~x] += ∆uQ ′[~x], evaluated over

these materialized views. Then, instead of recurring on ∆uQ as in the viewlet transform,

HO-IVM recurs individually on each Mi ∈ ~M∆uQ . We refer to the rewritten query and the set of

materialized subqueries as a materialization decision for ∆uQ, denoted by 〈∆uQ ′, ~M∆uQ〉.
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Example 3.0.1 Consider the following query:

Q[ ] = Sum[ ](R(A,B)∗S(B ,C )∗T (C ,D))

The insertion trigger for +S(b,c) includes the statement Q[ ] += Sum[ ](R(A,b)∗T (c,D)). The

naïve viewlet transform materializes the entire expression Sum[b,c](R(A,b)∗T (c,D)), whereas

HO-IVM expresses Q in terms of two sub-expressions, M1[b] := Sum[b](R(A,b)) and M2[c] :=
Sum[c](T (c,D)), which are maintained separately. The insertion trigger then includes the

statement Q[ ] += Sum[ ](M1[b]∗M2[c]). 2

Algorithm 3.1 summarizes HO-IVM and Sections 3.1–3.2 discuss heuristics for obtaining a

materialization decision (which define the materialize() procedure).

Algorithm 3.1 HO-IVM(Q, MQ ) – Higher-Order IVM

Require: A query Q to be maintained as MQ

Ensure: A list of update statements Tu for each update event u

for all Relation Name R used in Q do

for all u ∈ {+R,−R} do

let~x = the input/output variables of ∆uQ

let 〈Q ′, {Mi :=Qi }〉 = materialize(∆uQ)

update Tu = Tu :: (foreach~x do MQ [~x] +=Q ′[~x])

for all i do HO−IVM(Qi , Mi )

end for

end for

Note that we can partially materialize not only delta queries but also user-provided (top-level)

queries. Although this strategy introduces a computational overhead on every view access,

it can substantially reduce view maintenance costs in certain cases. For instance, we can

benefit from piecewise materialization when computing averages as we need to maintain two

separate, simpler aggregates: the count and the sum. Reconstructing the average value from

these partial aggregates is a constant time operation which can be done on-the-fly with every

view access. This generalized form of Higher-Order IVM is made explicit in Algorithm 3.2.

Algorithm 3.2 Generalized Higher-Order IVM(Q)

Require: A query Q to be maintained

Ensure: A query Q ′, equivalent to Q

Ensure: A list of update statements Tu for each update event u

let 〈Q ′, {Mi :=Qi }〉 = materialize(Q)

for all i do HO−IVM(Qi , Mi )
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3.1. Heuristic Optimization

Query Decomposition

M(Sum~A~B(Q1 ∗Q2)) ⇒ M(Sum~A(Q1))∗M(Sum~B(Q2)) (1)

~A and ~B are any disjoint sets of variables.

Factorization and Polynomial Expansion

M(Sum~A(QL ∗ (Q1 +Q2 + . . .)∗QR )) ⇔
M(Sum~A(QL ∗Q1 ∗QR ))+M(Sum~A(QL ∗Q2 ∗QR ))+ . . . (2)

Input Variables

M(Sum~A(Q ∗ f (~B~C ))) ⇒ Sum~A(M(Sum~A~B Q)∗ f (~B~C )) (3)

Q is the maximal subquery that contains no input variables.
f is a subquery that contains no relation terms
~A is any set of variables and ~B is the set of output variables of Q referenced by f
~C is the set of input variables referenced by f

Nested Aggregates and Decorrelation

M(Sum~A(QO ∗ (x :=QN )∗ f (x,~B))) ⇒ Sum~A(M(Sum~A~B(QO))∗ (x :=M(QN ))∗ f (x,~B)) (4)

QO is the maximal subquery for which x is not an input variable.
QN is a subquery containing at least one relation term.
f is a subquery containing no relation terms.
~A is any set of variables and ~B is the set of output variables of QO referenced by f or QN

Figure 3.1 – Rewrite rules for partial materialization. Bidirectional arrows indicate rules applied
heuristically from left to right during materialization but also in reverse to some expressions.
Note that for any query Q with output variables ~A, the property Q = Sum~A(Q) holds.

3.1 Heuristic Optimization

In this section, we present a set of heuristic rewrite rules for partial materialization of a

given query. We repeatedly apply these rules starting from the naïve materialization decision

〈(MQ,1), {MQ,1 := Q}〉 and until reaching a fixed point. For clarity, we present these rules in

terms of a materialization operator M. For example, one possible materialization decision for

Q :=Q1 ∗Q2 is M(Q1)∗M(Q2) ≡ 〈(MQ,1 ∗MQ,2), {MQ,i :=Qi }〉.

Figure 3.1 presents all but the trivial rewrite rules for partial materialization. We discuss the

full array of heuristic optimizations in depth below. Figure 3.2 shows how these rules apply to

the experimental workload discussed in Section 4.4.

3.1.1 Duplicate View Elimination

The viewlet transform produces many duplicate views, mainly because the delta operation

typically commutes with itself. For instance, ∆R∆SQ =∆S∆RQ for any Q without nested aggre-

gates over R or S. Structural equivalence on the view definition queries is typically sufficient

to identify this type of view duplication. View deduplication, as the simplest optimization,

substantially reduces the number of views created.

25



Chapter 3. Higher-Order Incremental View Maintenance

Query Features Rules

#Tables Join Predicate GroupBy Nesting Decomp PolyExp InputVar S/C Nested R/I

T
P

C
-H

Q1 1 < 3 - - 3 S I
Q2 5 = ∧,= - 1 3 3 S I
Q3 3 = ∧,< 3 - 3 3 - -
Q4 1 ∧,< 3 1 - 3 S I
Q5 6 = ∧,< 3 - 3 3 - -
Q6 1 ∧,< - - - - - -
Q7 6 = ∧,∨,< 3 1 3 3 - -
Q8 7 = ∧,=,< 3 1 3 3 S R
Q9 6 = ∧,= 3 1 3 3 - -
Q10 4 = ∧,=,< 3 - 3 3 - -
Q11 2 = - 3 - 3 3 S I
Q12 2 = ∧,=,< 3 - - 3 - -
Q13 2 = 6= 3 1 - 3 S I
Q14 2 = ∧,< - - - 3 S R
Q15 2 = ∧,< 3 2 - 3 S I
Q16 2 = ∨,=, 6= 3 1 3 3 S R
Q17 2 = < - 1 3 3 S I
Q18 3 = < 3 2 3 - S R,I
Q19 2 = ∨,=,< - - - 3 - -
Q20 2 = ∧,=,< - 2 - 3 S I
Q21 4 = ∧,=,< 3 1 3 3 S I
Q22 1 =,< 3 1 - 3 S R,I

F
in

an
ce

AXF 2 = ∨,< 3 - - 3 S -
BSP 2 = ∧,< 3 - - 3 - -
BSV 2 = - - - - 3 - -
MST 2 x ∧,< 3 1 - 3 S R,I
PSP 2 x ∧,< - 1 - 3 S R,I
VWAP 1 < - 1 - 3 C R

Figure 3.2 – Workload features and rewrite rules applied to each query. Features notation:
Number of join tables, Join type (=: equi, x: cross), Predicate type (∧: conjunction, ∨: disjunc-
tion, =: equality, 6=: inequality, <: range inequality), GroupBy clause, Nesting depth. Rules
notation: Query decomposition, Factorization and polynomial expansion, Input variables
with a subquery (S) or a view cache (C) (see §3.6.3), Nested aggregates and decorrelation with
re-evaluation of the nested query (R) or incremental evaluation (I).

3.1.2 Query Decomposition

Queries with disconnected join graphs are particularly expensive to materialize. If the join

graph of Q includes multiple disconnected components Q1, Q2, . . . (i.e., Q is the Cartesian

product Q1 ×Q2 × . . .), it is better to materialize each component independently as M(Q1)∗
M(Q2)∗ . . . instead of a single view M(Q). The cost of selecting from (iterating over) M(Q)

is similar to the cost of selecting from M(Q1)∗M(Q2)∗ . . ., as both require an iteration over

|Q1|×|Q2|× . . . elements. Furthermore, maintaining each individual Qi is less computationally

expensive: the decomposed materialization stores (and maintains) only |Q1|+ |Q2|+ . . . values,

while the combined materialization handles |Q1|∗ |Q2|∗ . . . values.
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The query decomposition rewrite rule presented in Figure 3.1.1 exploits the generalized

distributive law [27] to break up such queries with Sum aggregates into smaller components

for materialization. These cases often arise in the viewlet transform. For instance, taking

a delta of a query with respect to a single-tuple update replaces a relation in the query by

a singleton constant tuple, effectively eliminating one hyperedge from the join graph and

creating new disconnected components that can be further decomposed. Consequently, this

optimization plays a major role in the efficiency of our implementation (see Example 3.0.1),

and for ensuring that the number of maps created for any acyclic query is polynomial.

3.1.3 Polynomial Expansion and Factorization

The described query decomposition operates exclusively over conjunctive queries (i.e., AGCA

expressions without addition). To support decomposition across unions, we observe that

addition and aggregate summations commute, Sum~A(Q1 +Q2) = Sum~A(Q1)+Sum~A(Q2), and

that the generalized distributive law [27] applies, Q1 ∗ (Q2 +Q3) = (Q1 ∗Q2)+ (Q1 ∗Q3). Conse-

quently, any query can be expanded into a sum of multiplicative clauses, where each clause is

a conjunctive query (analogous to a query in disjunctive normal form).

Our heuristic-based materialization strategy fully expands queries into normal form, the

process we refer to as polynomial expansion, in order to materialize each multiplicative clause

independently and enable an effective use of query decomposition. Figure 3.1.2 shows the

rewrite rule for polynomial expansion.

Note that this rule is bidirectional. If a common term (QL and QR in the rewrite rule) appears

in several multiplicative clauses, the term can be factored out of the sum of these multiplicative

clauses for an equivalent, smaller, and cheaper query expression. It is often possible (and

beneficial) to factorize the rewritten query Q ′ after obtaining a final materialization decision

〈Q ′, {. . .}〉, when the expression is no longer required to be in normal form.

3.1.4 Input Variables

The delta operation introduces input variables, which in turn makes it possible to create delta

queries without finite support. For example, consider the query:

Q[A,B ,C ] = R(A,B)∗S(C )∗ (B <C )∗ A

The delta query ∆+R(x,y)Q[x, y,C ] = S(C )∗ (y <C )∗x has two input variables (x, y), making it

impossible to fully materialize it.

A trivial solution to this problem is to simply avoid materializing terms that contain input

variables, which is precisely the aim of the rewrite rule in Figure 3.1.3. The rule exploits the

generalized distributive law [27] to pull terms containing input variables out of the material-

ization operator. As with query decomposition, this rewrite rule assumes the multiplication

operation at the root of the query expression tree.
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In addition to extracting input variables from the materialized query, this rewrite rule also

pushes summation into the materialized expression1. This is analogous to a common opti-

mization in query processing where aggregation and projection operators are pushed down as

far as possible into the evaluation pipeline.

In addition to the trivial solution, several other strategies for dealing with input variables

are possible. For queries where the input variables appear in comparison predicates (e.g.,

S(C )∗ (y <C )), data structure-based solutions like range indices are possible but beyond the

scope of this work. A third strategy based on caching is discussed below.

3.1.5 Deltas of Nested Aggregates

AGCA encodes nested subqueries using the assignment operator ( :=). Recall that the delta

rule for this operator is:

∆u(x :=Q) := (x :=Q +∆uQ)− (x :=Q)

The delta query references the original query (twice), and is clearly not simpler than the

original query (as per Theorem 2.3.1). On such expressions, the (naïve) viewlet transform fails

to terminate. Of course, queries with assignment are not always catastrophic. If ∆uQ = 0, then

(x :=Q +∆uQ)− (x :=Q) = (x :=Q)− (x :=Q) = 0

For assignments where the query Q being assigned to x corresponds to a simple arithmetic

expression, the delta is always empty. However, if Q contains a relation term R(~A) (i.e., Q

represents a nested subquery), then the deltas ∆±R must be handled as a special case.

The rewrite rule from Figure 3.1.4 uses the generalized distributive law [27] to identify nested

subqueries that need to be materialized. Piecewise materialization enforced by the rule is key

for Higher-order IVM to terminate when compiling queries with nested aggregates. As with

rules 3.1.1 and 3.1.3, this rule relies on polynomial expansion to simplify the expression into a

sum of multiplicative clauses, and like rule 3.1.3, it aggressively pushes aggregates down into

the newly created expressions.

Although this rule is necessary to guarantee compiler termination, it can introduce unnec-

essary overheads into the evaluation of delta queries. When naïvely used, this rule might

separately materialize a nested subquery that does not reference the delta relation. A re-

finement of this optimization analyzes a given delta query before applying the rewrite rule:

Considering the expression from Figure 3.1.4 and update u to relation R , it is only necessary to

apply the rewrite rule to QN when QN includes a reference to R. If it does not, then ∆uQN = 0,

and the rewrite is not needed to ensure the termination of Higher-Order IVM.

1We might omit the sum aggregation in some cases because an expression Q with output variables ~A is
equivalent to the expression Sum~A(Q).
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Example 3.1.1 Recall the delta query ∆±S(x,y)Q from Example 2.2.6.

∆±S(x,y)Q = Sum[A,B](R(A,B)∗ (z := (Qn ± (A > x)∗ y))∗ (B < z)−
R(A,B)∗ (z :=Qn)∗ (B < z))

where Qn = Sum[ ] (S(C ,D)∗ (A >C )∗D). The materialization decision for this delta query

materializes two subqueries, MQ,1 := R(A,B) and MQ,2 := Sum[C](S(C ,D)∗D). On every update

of relation S, the delta evaluation effectively evaluates the outer query twice: once using the

new value Qn ±∆Qn and once using the old value of Qn . Conversely, the delta for updates to

R, ∆±RQ always has a lower degree than Q, and is materialized as a single map (the nested-

aggregates rewrite rule is ignored). 2

This example reveals one additional possibility for optimizing nested aggregates. The delta for

insertions into S is actually more expensive than re-evaluating the entire update (The outer

query is evaluated twice in the delta, but just once in the original). Thus, in some situations

we might want produce an update statement that replaces the map being maintained, instead

of updating it. As a general rule, the incremental approach pays off when the inner query is

correlated on an equality, and the delta’s arguments bind at least one of these variables; then

the delta query only aggregates over a subset of the tuples in the outer query. For instance, if

the nested query from Example 2.2.6 were to have (A =C ) instead of (A >C ), then only a subset

of the aggregated tuples would have been affected by the delta, suggesting the incremental

approach is a better choice. Based on this analysis, the heuristic optimizer decides whether to

re-evaluate or incrementally maintain any given delta query.

Note that although Q is being recomputed, we can still accelerate the computation by ma-

terializing Q piecewise. Although the expression being materialized is not a delta, we still

compute a materialization decision (as in Generalized Higher-Order IVM).

Because we are already materializing the expression Q, care must be taken to avoid creating

a self-referential loop in this materialization decision. The default materialization decision

M(Q) is meaningless, as Q defines the view being maintained. We avoid this by first applying

the nested-query rewrite heuristic as aggressively as possible to eliminate all nested subqueries

in the expressions being materialized. Because recomputation is only appropriate for queries

with nested subqueries (otherwise it is better to perform IVM), the resulting expression is

guaranteed to be simpler than Q.

3.2 Simplifying Delta Expressions

Although the delta operation reduces the expression degree, it introduces input variables and

tends to make the expression itself longer and more complicated. For products and some

conditions, it creates additional additive terms.
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Example 3.2.1 Consider the following expression:

Q[A,B ] = R(A)∗R(A)∗S(B)

Applying the delta rules leaves us with the expression:

∆+R(x)Q[A,B ] = (
(A :=x)∗R(A)+R(A)∗ (A :=x)+ (A :=x)∗ (A :=x)

)∗S(B)+
R(A)∗R(A)∗0+ (

(A :=x)∗R(A)+R(A)∗ (A :=x)+ (A :=x)∗ (A :=x)
)∗0

This expression is complex but can be simplified to ∆+R(x)Q[x,B ] = (2∗R(x)+1)∗S(B). 2

This added complexity increases both compilation and evaluation costs. As part of Higher-

Order IVM, we regularly apply several simplifying transformations to AGCA expressions, some

of which correspond to common relational algebra transformations. Like with the heuristic

rules, these simplifications are applied repeatedly, up to a fixed point.

3.2.1 Unification

Delta derivation with single-tuple updates creates many variable assignments with constant

trigger arguments. We use unification to propagate these range restrictions and simplify AGCA

expressions. The procedure consists of two steps. First, we transform equality predicates

into equivalent assignment expressions, and then we propagate assignments through the

expression, eliminating them if appropriate.

In the first stage, we identify equality comparisons that can be rewritten into an assignment-

compatible form where a single variable appears on the left-hand side of the term. Each such

equality comparison is commuted left through product terms and out of Sum operators until

either (1) the left-hand variable falls out of scope, or (2) commuting it further would cause a

variable appearing on the right-hand side to fall out of scope. If condition 1 is satisfied, we

convert the equality into an assignment.

An equality comparison may have multiple assignment-compatible forms. At most one of

these forms can possibly satisfy condition 1 as a second variable falling out of scope would vi-

olate condition 2. When multiple forms are available, we continue commuting until condition

1 is satisfied for precisely one form or until condition 2 is violated for all forms.

Once all equality comparisons have been converted into assignments, we propagate assign-

ments throughout the expression. This is analogous to beta reduction in lambda calculus,

although there are semantic restrictions on AGCA expressions that can prevent us from fully

reducing the assignment. There are three such limitations: (1) AGCA forbids range restrictions

to be incorporated directly into relation terms, (2) AGCA disallows computationally intensive

(i.e. nested aggregate) expressions to be incorporated directly into comparison operations,

and (3) If the assignment creates a range restriction on the domain of the query output, the

assignment must remain in the expression.
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The assignment is propagated as aggressively as possible. If none of the above limitations are

violated and the variable is not in the schema of the query, then the variable is no longer used

and the assignment can be safely removed.

3.2.2 Partial Evaluation and Algebraic Identities

Delta derivation frequently produces expressions containing sums of terms that differ only by

a constant multiplier. We apply the polynomial factorization heuristic presented in Section 3.1

(ignoring the materialization operator) to group and and sum up the constant multipliers.

During this optimization stage, AGCA expressions are partially evaluated by merging constant

values that appear in a sum or product together, and by applying the standard algebraic

identities Q +0 =Q, Q ∗1 =Q, and Q ∗0 = 0. This last identity is especially useful during delta

computation, as the delta operation produces many zeroes and expressions of the form Q −Q.

3.2.3 Extracting Range Restrictions

Variable assignments that create a range restriction on the output of a query can sometimes

be pulled out of the query. The primary application of this technique is for update trigger

statements, where a range restriction on the statement’s loop variables can be applied directly

to the map being updated.

The range restriction procedure is as follows. After the query has been fully simplified, we

identify all assignments where the right-hand value is a single trigger variable that can be

commuted up to the left-most position of a product term at the root of the query. We extract

these assignments from the query to create a mapping from loop variables to trigger variables,

which is applied to both the query and the variables of the map being updated.

For instance, consider the delta query from Example 3.2.1. Its simplified version contains

terms of the form: (A :=x)∗R(A)∗S(B). Here, we can extract the assignment and eliminate

the loop over variable A in the update statement; the optimized statement is foreach B do

Q[x,B ] += ∆RQ[x,B ]. Note that one of the variables appearing on the left-hand side of the

update statement has been bound to a corresponding trigger variable (x).

A similar technique is crucial for efficiently maintaining nested aggregate deltas, as seen in the

following example.

Example 3.2.2 Consider the query Q[A,B ] = (B :=R(A)). Let R contains 2 tuples as follows,

then Q[A,B ] is:

[[R(A)]](D,〈〉) A

1 7→ 〈1,1〉
2 7→ 〈3,3〉

[[Q]](D,〈〉) A B

1 1 7→ 〈1,1〉
2 3 7→ 〈1,1〉

The delta of Q for the update +R(a) is: ∆+R(a)Q[A,B ] = (B :=R(A)+ (A :=a))− (B :=R(A)).
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The GMR for the delta with respect to the insertion of 〈A : 1〉 into R includes two tuples with

nonzero multiplicities:
[[∆+R(1)Q]](D,〈〉) A B

1 1 7→ 〈−1,−1〉
1 2 7→ 〈1,1〉

But, while evaluating the delta, two intermediate GMRs are instantiated with |R| tuples each: A B

1 2 7→ 〈1,1〉
2 3 7→ 〈1,1〉

 −

 A B

1 1 7→ 〈1,1〉
2 3 7→ 〈1,1〉


Tuples in these GMRs corresponding to tuples with zero multiplicities in ∆+R(1)R(A) (i.e.

〈A : 2,B : 3〉) cancel out. A simpler, equivalent query would be:

∆+R(x)Q[A,B ] = (A :=x)∗ ((B :=R(A)+1)− (B :=R(A))) 2

Recall the delta rule for nested queries: ∆u(x :=Q) = (x :=Q +∆uQ)− (x :=Q). After comput-

ing the nested delta ∆uQ = (∆uQ)r r ∗ (∆uQ)e, we extract all range restrictions (∆uQ)r r and

prepend them to the delta of the full expression. The revised delta rule is:

∆u(x :=Q) = (∆uQ)r r ∗ ((x :=Q + (∆uQ)e )− (x :=Q))

.Section 3.4 generalizes the range restriction procedure for both single-tuple and batch updates.

3.3 Examples: Putting It All Together

In this section, we provide several examples of Higher-Order IVM. Our goal is to illustrate how

the heuristic optimizations interact to produce an efficient view maintenance program and

highlight some interesting behaviors.

The examples are rather involved. To promote clarity, we explicitly give output variables with

maps. We write Q[ ~xout ] to denote a map Q with output variables ~xout , which form the schema

of the query result.

3.3.1 Simplified TPC-H Query 18

We explain the compilation process on a query with an equality-correlated nested aggregate:

SELECT C.CK , SUM(LI.QTY) FROM C, O, LI
WHERE C.CK = O.CK AND O.OK = LI.OK AND

100 < (SELECT SUM(LI1.QTY) FROM LI AS LI1
WHERE LI.OK = LI1.OK)

GROUP BY C.CK

The query is a simplified version of Q18 from our test workload (see Appendix A.1). For

simplicity, we use the condensed schema C (C K ), O(C K ,OK ), and LI (OK ,QT Y ). Figure 3.3
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Listing 3.3 Single-tuple triggers for the simplified TPC-H Q18

1 Top -level and 5 auxiliary materialized views :
2 Q[CK] := Sum[CK](C(CK)*O(CK ,OK)*LI(OK ,QTY)*QTY *(x:=Qn )*(100 <x))
3 Q C[CK] := Sum[CK](O(CK ,OK) * LI(OK ,QTY) * QTY * (x:=Qn ) * (100 <x))
4 Q O1[CK] := Sum[CK](C(CK))
5 Q O2[OK] := Sum[OK](LI(OK ,QTY) * QTY)
6 Q LI[CK ,OK] := Sum[CK,OK](C(CK) * O(CK ,OK))
7 Q LI,C[CK ,OK] := Sum[CK,OK](O(CK ,OK))
8
9 on insert into C values (ck):

10 Q[ck] += Q C[ck]
11 foreach OK do Q LI[ck ,OK] += Q LI,C[ck ,OK]
12 Q O1[ck] += 1
13
14 on insert into O values (ck ,ok):
15 Q[ck] += Q O1[ck] * Q O2[ok] * (x := Q O2[ok]) * (100 < x)
16 Q LI[ck ,ok] += Q O1[ck]
17 Q LI,C[ck ,ok] += 1
18 Q C[ck] += Q O2[ok] * (x := Q O2[ok]) * (100 < x)
19
20 on insert into LI values (ok ,qty):
21 foreach CK do
22 Q[CK] += Q LI[CK ,ok] * (((Q O2[ok] + qty) * (x := Q O2[ok] + qty))
23 - (Q O2[ok] * (x := Q O2[ok ]))) * (100 < x)
24 foreach CK do
25 Q C[CK] += Q LI,C[CK ,ok] * (((Q O2[ok] + qty) * (x := Q O2[ok] + qty))
26 - (Q O2[ok] * (x := Q O2[ok ]))) * (100 < x)
27 Q O2[ok] += qty

Figure 3.3 – The insert trigger program for the simplified TPC-H Q18.

shows the generated trigger program. The AGCA expression Q for the query is:

Sum[C K ]
(
C (C K )∗O(C K ,OK )∗LI (OK ,QT Y )∗QT Y ∗ (x :=Qn)∗ (100 < x)

)
where Qn = Sum[ ]

(
LI (OK1,QT Y1)∗ (OK =OK1)∗QT Y1

)
. First, we simplify the subquery Qn .

Unification eliminates the equality predicate to yield an expression with no input variables:

Q ′
n = Sum[OK ]

(
LI (OK ,QT Y1)∗QT Y1

)
. Next, we show the derivation of deltas for insertions

into Orders O, Lineitem LI , and Customer C . The deletion deltas for all relations are duals of

the insertion deltas, so we omit them entirely.

Insertions into Orders

The first-order delta ∆+O(ck,ok)Q for the insertion of a single tuple 〈C K : ck,OK : ok〉 is:

Sum[C K ]
(
C (C K )∗LI (OK ,QT Y )∗ (OK :=ok)∗ (C K :=ck)∗QT Y ∗ (x :=Q ′

n)∗ (100 < x)
)
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The delta expression gets simplified after propagating the assignments: every occurrence of

OK and C K is replaced with ok and ck, respectively; these assignments are also safe to remove.

The delta expression is Sum[ck](C (ck)∗LI (ok,QT Y )∗QT Y ∗ (x :=Q ′
n)∗ (100 < x)) with OK

replaced by ok inside Q ′
n .

Query decomposition splits the delta into three parts: C (ck) has no common columns with

the rest of the expression and is materialized as a separate map. The remaining expression can

also be divided into two subexpressions that share only the trigger variable ok. Then, since the

selection predicate is being applied to a singleton, we can safely materialize only the aggregate

in the assignment. Applying these optimizations yields the following materialization decision:

M
(
Sum[ck](C (ck))

)∗M(
Sum[ok](LI (ok,QT Y )∗QT Y )

)∗Sum[ ]
(
(x :=M(Q ′

n))∗ (100 < x)
)

The trigger statement uses the following views (Figure 3.3, line 15, note that QO2 is used twice):

QO1[C K ] := Sum[C K ]
(
C (C K )

)
and QO2[OK ] := Sum[OK ]

(
LI (OK ,QT Y )∗QT Y

)
. The delta for

QO1[C K ] and insertions into C is ∆+C (ck)QO1 := {〈C K : ck〉 7→ 〈1,1〉}, which corresponds to

trigger statement 12. QO2[OK ] is maintained similarly with trigger statement 27.

Insertions into Lineitem

With the nested subquery correlated on an equality, Higher-Order IVM chooses to compute

the first-order delta of Q for the insertion of a single tuple 〈OK : ok,QT Y : qt y〉. The revised

rule for nested subqueries yields:

∆+LI (ok,qt y)(x :=Q ′
n) := (OK :=ok)∗ (

(x :=Q ′
n +qt y)− (x :=Q ′

n)
)

Following the delta rule for products

∆+LI (ok,qt y)Q := Sum[C K ]
(
C (C K )∗O(C K ,OK )∗∆QLI ∗QT Y ∗ (100 < x)

)
where

∆QLI := (OK :=ok)∗ (
(QT Y :=qt y)∗ (x :=Q ′

n) +
LI (OK ,QT Y )∗(

(x :=Q ′
n+qt y)−(x :=Q ′

n)
)+(QT Y :=qt y)∗(

(x :=Q ′
n+qt y)−(x :=Q ′

n)
))

.
Polynomial expansion, partial evaluation, and unification result in:

∆+LI (ok,qt y)Q := Sum[C K ]
(
C (C K )∗O(C K ,ok)∗ (LI (ok,QT Y )∗QT Y ∗ (x :=Q ′

n +qt y)−
LI (ok,QT Y )∗QT Y ∗ (x :=Q ′

n)+qt y ∗ (x :=Q ′
n +qt y))∗ (100 < x)

)

Decomposition and polynomial expansion let us extract the terms Sum[C K ,ok](C∗O) and

Sum[ok](LI (ok,QT Y )∗QT Y ) as separate maps. The rewrite rules for nested aggregates and

input variables materialize Q ′
n . The final materialization is:
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M
(
Sum[C K ,ok](C (C K )∗O(C K ,ok))

)∗ (
M(Q2)∗ (x :=M(Q ′

n)+qt y)−
M(Q2)∗ (x :=M(Q ′

n))+qt y ∗ (x :=M(Q ′
n)+qt y)

)∗ (100 < x)

where Q2 = Sum[ok]
(
LI (ok,QT Y )∗QT Y

)
.

Apart from the outermost materialization (of C ./O), the remaining five materialized maps

are identical to QO2, which is already being maintained. Thus, only one additional view,

QLI [C K ,OK ] := Sum[C K ,OK ](C (C K )∗O(C K ,OK )), has to be maintained. Rewriting the mate-

rialization decision produces trigger statements 21-23. QLI is maintained analogously as in

Example 2.2.5, resulting in trigger statements 11, 12, 16, and 17.

Note that statements 21-23, which update Q, include a loop. However, even though our

implementation is not explicitly aware of TPC-H’s foreign key dependencies, in this example,

only one customer (C K ) will be updated.

Insertions into Customer

The first-order delta ∆+C (ck)Q for the insertion of a single tuple 〈C K : ck〉 is

Sum[C K ]
(
(C K :=ck)∗LI (OK ,QT Y )∗OK (C K ,OK )∗QT Y ∗ (x :=Q ′

n)∗ (100 < x)
)

After applying unification, we materialize the entire delta expression as QC . We leave the

derivation of the remaining trigger statements as an exercise for the reader.

3.3.2 The Pricespread Query (PSP)

Next, we look at the query PSP from our test workload, which has two nested aggregates:

SELECT SUM(A.P - B.P) FROM A, B
WHERE B.V > (SELECT SUM(B’.P * 0.0001) FROM B AS B’) AND

A.V > (SELECT SUM(A’.P * 0.0001) FROM A AS A’)

Again, for simplicity, we use the condensed schema B(P,V ) and A(P,V ). The AGCA expression

Q for the query is:

Sum[ ]
(
B(BP,BV )∗ A(AP, AV )∗ (AP −BP )∗

(v1:=Sum[ ](B(BP ′,BV ′)∗BV ′∗0.0001))∗ (BV > v1)∗
(v2:=Sum[ ](A(AP ′, AV ′)∗ AV ′∗0.0001))∗ (AV > v2)

)
Figure 3.4 shows the trigger program. Since the aggregates have no correlated variables, they

can be decorrelated. Subsequently, there is no benefit to using deltas to update the final query

result and our compilation heuristics decide on full recomputation for updates to both A and

B . Hence, rather than describing the full compilation process for this example, we focus on

the process of materializing the full query.
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Listing 3.4 Single-tuple triggers for the PriceSpread query

1 Top - level and 6 auxiliary materialized views (3 are omitted ):
2 Q[ ] := (B(BP ,BV) * A(AP ,AV) * (AP - BP) *
3 (v1 := Sum[ ](B(BP ’,BV ’) * BV ’ * 0.0001) ) * (BV > v1) *
4 (v2 := Sum[ ](A(AP ’,AV ’) * AV ’ * 0.0001) ) * (AV > v2)
5 Q B1[BV] := Sum [BV](B(BP ,BV) * BP)
6 Q B2[ ] := Sum [ ](B(BP ,BV) * BV)
7 Q B3[BV] := Sum [BV](B(BP ,BV))
8
9 on insert into B values (bv ,bp):

10 Q B1[bv] += bp
11 Q B2[ ] += bv
12 Q B3[bv] += 1
13 Q[ ] := (Sum [ ]((v1 := Q B2[ ] * 0.0001) * Q B3[BV ’] * (BV ’ > v1)) *
14 Sum [ ]((v2 := Q A2[ ] * 0.0001) * Q A1[AV ’] * (AV ’ > v2))) -
15 (Sum [ ]((v1 := Q B2[ ] * 0.0001) * Q B1[BV ’] * (BV ’ > v1)) *
16 Sum [ ]((v2 := Q A2[ ] * 0.0001) * Q A3[AV ’] * (AV ’ > v2)))

Figure 3.4 – The trigger program for PSP insertions into B . The deletion trigger for B and the
triggers for A are symmetric.

The join graph of this expression is intriguing. It consists of two mostly disconnected, sym-

metric components, one for B(BP,BV ) and one for A(AP, AV ). In fact, the only edge between

these two is the term (AP −BP ). Our materialization strategy exploits both this, and the fact

that integer addition and bag union are identical in AGCA.

Starting with the default materialization strategy M(Q), we perform polynomial expansion

(Rule 2). Because AGCA does not separate integer addition from bag union, this distributes

the rest of the expression over the term (AP −BP ).

M
(

Sum[ ]
(
B(BP,BV )∗ A(AP, AV )∗ AP ∗ (v1:=Sum[ ](B(BP ′,BV ′)∗BV ′∗0.0001))∗

(v2:=Sum[ ](A(AP ′, AV ′)∗ AV ′∗0.0001))∗ (BV > v1)∗ (AV > v2)
) )−

M
(

Sum[ ]
(
B(BP,BV )∗ A(AP, AV )∗BP ∗ (v1:=Sum[ ](B(AP ′,BV ′)∗BV ′∗0.0001))∗

(v2:=Sum[ ](A(AP ′, AV ′)∗ AV ′∗0.0001))∗ (BV > v1)∗ (AV > v2)
) )

We can now decorrelate the nested aggregates (Rule 4). This expression contains two identical

aggregates, each computing the total volume of B or A. We we call these QB2 and Q A2. As only

one relation appears in each aggregate, maintenance requires only a single statement each,

shown in the trigger program for B as statement 11.

Sum[ ]
(
M

(
Sum[BV,AV](B(BP,BV )∗ A(AP, AV )∗ AP )

) ∗
(v1:=QB2[ ]∗0.0001)∗ (BV > v1)∗ (v2:=Q A2[ ]∗0.0001)∗ (AV > v2)

) −
Sum[ ]

(
M

(
Sum[BV,AV](B(BP,BV )∗ A(AP, AV )∗BP )

) ∗
(v1:=QB2[ ]∗0.0001)∗ (BV > v1)∗ (v2:=Q A2[ ]∗0.0001)∗ (AV > v2)

)
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After polynomial expansion the expression computes two joins instead of one. The hyper-

graphs of the simpler joins, however, contain disconnected components. We can apply

decomposition (Rule 1) to each.

Sum[ ]
(
M

(
Sum[BV](B(BP,BV ))

)∗M(
Sum[AV](A(AP, AV )∗ AP )

)∗
(v1:=QB2[ ]∗0.0001)∗ (BV > v1)∗ (v2:=Q A2[ ]∗0.0001)∗ (AV > v2)

)−
Sum[ ]

(
M

(
Sum[BV](B(BP,BV )∗BP )

)∗M(
Sum[AV](A(AP, AV ))

)∗
(v1:=QB2[ ]∗0.0001)∗ (BV > v1)∗ (v2:=Q A2[ ]∗0.0001)∗ (AV > v2)

)
Now, no further rules are applicable. We materialize four additional maps: for each volume we

maintain both the count and sum of prices of both relations. In the trigger program, maps

QB3 and Q A3 maintain the counts using statement 12 and its dual in A; maps QB1 and Q A1

maintain the price sums using statements 10 and its dual in A.

Because the total volume of each relation changes with every insertion, we must recompute

the price and count totals for the relation that changes. Specialized data structures such as

range trees could further reduce the cost of doing so by allowing us to efficiently maintain

expressions of the form M
(
Sum[BV]

(
B(BP,BV )∗ (BV > v1)

))
. Nevertheless, by exploiting the

connection between addition and bag union, we evaluate this expression using only scans (in

contrast to first computing a Cartesian product as a traditional database system would).

3.4 Efficient Delta Evaluation for Batch Updates

So far, we have focused mostly on single-tuple updates, but the viewlet transform and many of

the presented optimizations also support batches of updates. In batch delta processing, replac-

ing large base relations by much smaller deltas reduces evaluation cost, favoring incremental

maintenance over recomputation.

In this section, we focus on the efficient evaluation of delta queries for batches of updates

to base relations. In particular, we consider queries with nested aggregates and existential

quantification for which the delta rule for variable assignment prescribes recomputing both

the old and new results to evaluate the delta – that clearly costs more than recomputing the

whole query expression once. In general, these classes of queries might have no benefit from

incremental maintenance. But, in many cases, we can specialize this delta rule to achieve

efficient maintenance, as we demonstrated for single-tuple updates in Section 3.2.3. Here, we

generalize this approach to both single-tuple and batch updates.

3.4.1 Model of Computation

We describe our model of computation to understand the advantages of alternative evaluation

strategies. We represent an expression as a tree of operators, which are always evaluated from

left to right, in a bottom-up fashion. Information about bound variables flows from left to
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right through the product operation. For instance, in expression R(A)∗S(A), the term R(A)

binds the A variable which is then used to lookup the multiplicity value inside S(A). The

evaluation cost for such an expression is O(|R|), where |R| is the number of tuples with a

non-zero multiplicity in R.

Our model considers in-memory hash join as a reference join implementation. In this model,

the ordering of terms has an impact on query evaluation performance. For example, when

S(A) is smaller than R(A), commuting the two terms like S(A)∗R(A) results in fewer memory

lookups in R. Note that commuting terms is not always possible – for instance, in expression

R(A)∗ A, the two terms do not commute, unless A is already bound.

3.4.2 Domain extraction

We present a technique, called domain extraction, for efficient delta computation of queries

with nested aggregates and existential quantification. We explain the idea on the problem of

duplicate elimination in bag algebra. We formalize the technique afterwards.

For clarity of the presentation, we introduce Exist(Q) as syntactic sugar for Sum[sch(Q)]((X :=Q)∗
(X 6= 0)), where sch(Q) denotes the schema of Q. Exist(Q) changes every non-zero multiplicity

inside Q to 1. The delta rule for Exist is ∆R (Exist(Q)) = Exist(Q +∆RQ)−Exist(Q).

First, we introduce the notion of domain expressions. A domain expression binds a set

of variables with the sole purpose of speeding up the downstream query evaluation. All

domain expression tuples have the multiplicity of one. For instance, we can write R(A,B)

as Exist(R(A,B))∗R(A,B) without changing the original query semantics. Note that now

Exist(R(A,B)) defines the iteration domain during query evaluation rather than R(A,B).

Example 3.4.1 Consider an SQL query over R(A,B)

SELECT DISTINCT A FROM R WHERE B > 3

or equivalently Q := Exist(Sum[A](R(A,B)∗ (B > 3))). Let Qn denotes the nested sum, then

∆Qn := Sum[A](∆R(A,B)∗ (B > 3)) and ∆Q := Exist(Qn +∆Qn)−Exist(Qn). Note that ∆Q re-

computes Q twice, once to insert new tuples and then to delete the old ones, which clearly

defeats the purpose of incremental computation. Also, (Qn +∆Qn) might leave unchanged

many tuples in Qn , so deleting those tuples and inserting them again is wasted work.

Our goal is to transform ∆Q into an expression that changes only relevant tuples in the delta

result. We want to iterate over only those tuples in Qn whose A values appear in ∆R(A,B);

other tuples are irrelevant for computing ∆Q. To achieve that goal, we capture the domain of

A values in ∆R using Exist(∆R(A,B))2. To express only distinct values of A in ∆R, we write:

Qdom := Exist(Sum[A](Exist(∆R(A,B)))).

2∆R can contain both insertions and deletions.
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Algorithm 3.5 Domain Extraction

1 def extractDom(e: Expr): Expr = e match {
2 case Plus(A, B) =>
3 interDoms(extractDom(A), extractDom(B))
4 case Prod(A, B) =>
5 unionDoms(extractDom(A), extractDom(B))
6 case Sum(gb , A) =>
7 val domA = extractDom(A)
8 val domGb = inter(sch(domA), gb)
9 if (domGb == gb) domA

10 else if (domGb == Nil) 1
11 else Exist(Sum(domGb , domA))
12 case Assign(v, A) if A.hasRelations =>
13 extractDom(A)
14 case Rel(_) =>
15 if (e.hasLowCardinality) Exist(e) else 1
16 case _ => e
17 }

Figure 3.5 – The domain extraction algorithm. interDoms extracts common domains,
unionDoms merges domains, inter is set intersection, and sch(A) is the schema of A.

The outer Exist keeps the multiplicity of 1. We prepend Qdom to ∆Q to restrict the iteration

domain.
∆Q ′ := Qdom ∗ (Exist(Qn +∆Qn)−Exist(Qn))

Note that we can make Qdom more strict by including (B > 3). 2

Figure 3.5 shows the algorithm for domain extraction. The algorithm recursively pushes

extracted domains up through the expression tree to bound variables in even larger parts of

the expression. At leaf nodes, it identifies relations with low cardinalities that can restrict the

iteration domain. We can either use cardinality estimates for each relation or rely on heuristics.

We also include terms that can further restrict the domain size, like comparisons, values, and

variable assignments over values.

For Sum aggregates, we recursively compute the domain of the subexpression and then, if

necessary, reduce its schema to match that of the Sum aggregate. For instance, in Exam-

ple 3.4.1, we project Exist(∆R(A,B))∗ (B > 3) on column A. If the domain schema is reduced,

we enclose the expression with Exist to preserve the domain semantics; if the schema is empty,

the extracted domain bounds no column and has little effect. When dealing with union, we

intersect two subexpressions to find the maximum common domain to be propagated further

up in the tree; for the product operation, we union subexpressions into one common domain.

The domain extraction procedure allows us to revise the delta rule for variable assignments as:

∆(var :=Q) :=Qdom ∗ ((var :=Q +∆Q)− (var :=Q))

where Qdom := extractDom(∆Q).
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3.4.3 Single-tuple vs. Batch Updates

Incremental programs for single-tuple updates are simpler and easier to optimize than batched

incremental programs. The parameters of single-tuple triggers match the tuple’s schema to

avoid boxing and unboxing of the primitive data types in the input. We can inline these

parameters into delta expressions and eliminate one-element loops. In local environments,

we can process one batch of updates via repeated calls to single-tuple triggers. Aside from the

invocation overhead, we identify three reasons why such an approach can be suboptimal.

Preprocessing batches Preprocessing a batch of updates can merge or eliminate changes to

the same input tuples. Static analysis of the query can identify subexpressions that involve

solely batch updates (e.g., domain expressions). Then, we can precompute a batch aggregate

by keeping only relevant batch columns of the tuples that match query’s static conditions.

Batch pre-aggregation can produce much fewer tuples, which can significantly decrease the

cost of trigger evaluation; smaller batches also reduce communication costs in distributed

environments. Batch pre-aggregation can have a limited effect when there is no filtering

condition and there is a functional dependency between the aggregated columns and the

primary key of the delta relation; then, we can eliminate only updates targeting the same key.

Skipping intermediate views states When a maintenance trigger evaluates the whole query

from scratch, batching can help us to avoid recomputation of intermediate query results. For

instance, considering the query of Example 3.5.1 and updates to S, processing one batch of

updates refreshes the inner query result once and triggers one recomputation of the outer

query. In contrast, the tuple-at-a-time approach evaluates the outer query on every update.

Cache locality Processing one update batch, in a tight loop, can improve cache locality and

branch prediction for reasonably-sized batches; too large batches can have negative impacts

on locality.

In the experimental evaluation in Chapter 4, we evaluate these trade-offs between single-tuple

and batch maintenance for different update sizes.

3.5 Re-evaluation vs. Incremental Computation

In certain cases, re-evaluation from scratch is preferable to incremental computation. For

some queries involving comparisons on nested aggregate values, computing the delta query

can be more expensive than recomputing the original query. This is typically the case if there

is no equality correlation between the nested subquery and the outer query. The first decision

the optimizer makes is whether to use the delta query to update the materialized view (i.e.,

Q[~X ] += ∆uQ[~Y ]) or to recompute the materialized view from scratch (i.e., Q[~X ] :=Q[~Y ]).

Example 3.5.1 Consider a query over R(A,B) and S(B ,C ).

SELECT COUNT (*) FROM R
WHERE R.A < (SELECT COUNT (*) FROM S) AND R.B = 10
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The nested query computes an aggregate value and has no correlation with the outer query.

The domain extraction procedure cannot restrict the domain of the delta query for updates

to S, so re-evaluation is a better option. We can still accelerate the computation by materi-

alizing the query piecewise, for instance, by precomputing and maintaining the expression

Sum[A](R(A,B)∗ (B = 10)). Note that we can incrementally maintain the top-level query for

updates to R by materializing the nested query result as a single variable. 2

Nested queries are often correlated with the outside query. When the correlation involves

equality predicates, extracting the domain of the inner query might restrict some of the

correlated variables. This range restriction can reduce the maintenance cost. In general,

the decision on whether to incrementally maintain or recompute the query result requires

a case-by-case cost analysis. Our default heuristic rule decides to incrementally maintain a

query whenever the extracted nested domain binds at least one equality-correlated variable.

If one decides to recompute the expression Q, the materialization strategy must avoid creating

a self-referential loop. The default materialization decision M(Q) is meaningless as Q defines

the view being maintained. In other words, this strategy has no materialized subviews than

can be used to recompute Q. We avoid this problem by first applying the nested-query rewrite

heuristic (Rule 4) as aggressively as possible. Because recomputation is only appropriate for

queries with nested subqueries, the resulting expression is guaranteed to be simpler.

3.6 Cost-Based Optimization

Manual inspection of most materialization plans generated for our test workload suggests

that a purely heuristic materialization optimizer is typically sufficient to achieve near-optimal

results. However, there are some cases where a more thorough cost-based analysis is required.

This is especially the case where the optimal strategy depends on data-specific parameters

such as the distribution of data values.

Concretely, our cost-based optimization strategy explores a search space of materialization

strategies for each statement Q[~X ] += ∆uQ[~Y ], defined along 3 dimensions: (1) Depth of Incre-

mental Computation, (2) The Materialization Decision, and (3) Specialized Data Structures.

Using the simple cost model described below and starting with the materialization decision

generated by the heuristic strategy, a simple greedy gradient descent algorithm suffices to

efficiently explore the (exponential) search space of possibilities and provide a near-optimal so-

lution. More potent search space exploration techniques (e.g., MCMC methods like Metropolis-

Hastings or Simulated Annealing) are also possible but beyond the scope of this work. Also

note that queries in our scenarios are expected to be long-lived, so, it is often reasonable to

perform an exhaustive exploration of the full search space for such queries.
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3.6.1 Depth of Incremental Computation

For flat (non-nested) queries, Higher-Order IVM has lower parallel complexity than non-

incremental evaluation [94, 93], which often translates in faster execution on sequential

machines. But, in certain cases, the materialized views generated via the full recursive com-

pilation can incur substantial maintenance costs, leading to Higher-Order IVM to lose its

performance advantage over classical IVM. For instance, in a query enumerating all triangles

in a graph, the full recursive approach stores and maintains all 2-length paths (in addition to

the base edge relation). The number of such paths can be much larger than the number of

triangles in the graph (O(N 2) vs. O(N 1.5) in the worst case), suggesting that classical IVM is

a better option here. Motivated by recent developments in the theory of worst-case optimal

joins [144, 118], our heuristic rule for cyclic queries is to materialize only cyclic sub-queries

and then use these sub-views to maintain the top-level query.

For queries with nested aggregates, re-evaluation might be preferable to incremental compu-

tation, as discussed in Section 3.5. When domain extraction in a delta query is possible (i.e.,

there is an equality-based correlation between the inner and outer query), we have to choose

between re-evaluation (depth-0 compilation) and incremental computation (depth-1 classical

IVM or Higher-Order IVM). The decision on the evaluation strategy is guided by the estimated

size of the extracted domain (small domain: incremental, large domain: re-evaluation).

3.6.2 The Materialization Decision

We define the the search space for materialization decisions locally, using two rewrite rules.

The polynomial factorization/expansion rule (Figure 3.1.2) can be applied in either direction.

In addition to factorizing or expanding polynomial terms in queries, this rule also allows the

materialization operator to be pushed into or pulled out of addition and summation terms.

The second rewrite rule is a generalization of the query decomposition rule (Figure 3.1.1)

as follows. First, we make the rule bi-directional, so it can push or pull the materialization

operator into or out of product terms. Second, we relax the restriction on the intersection of

variable sets ~A and ~B so that the rule can be applied to any product of terms. Note that this

generalized decomposition rule also subsumes the input variable rewriting rule (Figure 3.1.3).

3.6.3 Specialized Data Structures

Thus far, we have considered only straightforward view materialization where views are stored

in map-like data structures. But for some queries, advanced data storage primitives can

provide opportunities to materialize more complex expressions — particularly those involving

input variables. As many of these opportunities are data-dependent, we can rely on user input

to direct selection of an appropriate data structure, or we can use a cost-based tuning advisor

to automate the selection process with minimal user involvement.
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One example of a specialized data structure is view cache, which materializes AGCA expres-

sions with input variables. A view cache stores multiple full copies of the materialized view,

each for a different valuation of the input variable(s) that appear in the cache’s defining ex-

pression. When a lookup is performed on the cache, these input variables must be bound to

specific values. If the cache contains a materialized view for that particular valuation, the ma-

terialized view is returned as a normal map. Otherwise, the cache’s defining query is evaluated

as normal, and the result is stored in the cache. Unlike a traditional cache, the contents of

a view cache is never invalidated. Instead, whenever the underlying data is changed, each

materialized view stored in the view cache is updated as normal.

View caches are only beneficial when the domain of an input variable is small. Otherwise,

they can incur significant maintenance and memory overheads, and the heuristic optimizer

should refrain from creating them.

3.6.4 Cost Model

We now discuss the cost model for making materialization decisions. The model relies on stan-

dard cardinality estimation techniques [61, 146] for a first-pass approximation of execution

costs and estimates of the relative update event and query result request frequencies.

Like the viewlet transform itself, the cost model is recursive: The cost of a materialization deci-

sion is dependent on the cost of maintaining each materialized view under it. Consequently,

for a materialization decision 〈Q ′, ~MQ〉, we make a distinction between the execution cost of

Q ′, and the maintenance cost of each materialized view MQ .

Update Rates

The trigger program generated by a viewlet transform is event-based. When evaluating the

cost of a viewlet transform, we must consider the relative rates at which these events occur.

Concretely, we consider: (1) The rate ρ±R at which each relation update event ±R occurs, and

(2) The rate ρQ at which the materialized query results are requested. Note that we are only

concerned with the relative rates at which these events will occur. Any unit of rate may be

selected arbitrarily for these values, as long as it is used consistently.

For some application domains, these two rates may be interrelated. For example, if the original

query encodes a constraint being enforced over the underlying data, then the constraint will

need to be validated on every update, and ρQ = ∑
±R ρ±R . Conversely, if the view is being

maintained to reduce lookup latencies, then ρQ is defined by the application. In the absence

of user-provided statistics, we assume a uniform distribution of update rates (i.e., ρ±R = 1),

and a query request on every update (i.e., ρQ =∑
±R ρ±R ).
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Evaluation Cost

Through benchmarking of our experimental workload, we have found that the dominant cost

of query evaluation comes from materializing results, both intermediate and final. Conse-

quently, we express the evaluation cost in units of number of tuples materialized.

Although our implementation materializes intermediate results only for the Sum[ ] operator,

the cost estimation strategy we will describe can be easily generalized to more complex query

evaluation strategies. The cost of materializing a Sum[ ] is proportional to the cardinality of the

query being aggregated. Similarly, the cost of materializing the result of an update query is

proportional to the cardinality of its output.

We use standard estimation techniques [61, 146] to estimate the cardinality |Q| of query Q.

The full execution cost of the query Q is its cardinality, plus the cost of materializing each

intermediate result.

costexec(Q) = |Q|+ ∑
Sum[ ](Qi )∈Q

|Qi |

Example 3.6.1 Consider the query computing a single aggregate over a join between R and T .

Q := S(A)∗Sum[A](R(A,B)∗T (B ,C ))

The cost of materializing the intermediate result for this aggregate is |R(A,B)∗T (B ,C )|. The

cost of materializing the final |Q|, and so: costexec(Q) = |Q|+ |R(A,B)∗T (B ,C )|. 2

We target application domains where the size of the base relations is relatively stable over

the course of execution (e.g., as in our financial workload) or application domains where

delta query evaluation cost is independent of the size of the base relations (as in many TPC-H

queries). In either case, we can obtain a steady-state relation size (which is appropriate for the

first case, and ignored by the latter) for cardinality estimation.

Maintenance Cost

We are now ready to discuss the cost of maintaining materialized views. Unlike query execu-

tion, maintenance is an ongoing process. Consequently, maintenance costs are expressed in

terms of costs and the rates at which costs are incurred.

Maintaining a view defined by query Q requires repeatedly evaluating the view’s delta queries

when the corresponding update events occur, and the delta query ∆±RQ will be evaluated at a

rate of ρ±R . Naïvely, the total maintenance cost of this view could be expressed in terms of the

rate-weighted cost of each delta query.∑
±R

ρ±R ·costexec(∆±RQ)

However, this expression does not account for the cost of maintaining views created to support

evaluation of ∆±RQ. Consequently, we take a holistic approach to cost estimation.
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For a query Q, we consider each trigger ±R generated by the viewlet transform of Q. The total

execution cost for the trigger is the sum of execution costs of each statement M±R,i+=Q±R,i .

The total maintenance cost of Q is the rate-weighted cost of each trigger.

∑
±R

(
ρ±R ·∑

i
costexec(Q±R,i )

)

Finally, we consider the rate at which query Q is requested. If the value of Q is requested at

rate ρQ , then the full cost of maintaining Q using materialization decision 〈Q ′, ~M〉 is

(ρQ ·costexec(Q))+∑
±R

(
ρ±R ·∑

i
costexec(Q±R,i )

)

3.7 Summary

The naïve viewlet transform described in Chapter 2 is too aggressive in some cases, like with

inequality joins and certain nesting patterns, for which parts of queries are better re-evaluated

than incrementally maintained. We develop heuristic rules for trading off between materi-

alization and lazy evaluation for the best performance. We present the domain extraction

procedure for maintaining queries with equality-correlated nested aggregates, which no other

commercial database currently supports. We also discuss the trade-offs between re-evaluation

and incremental computation, and we identify the cases when batching can significantly re-

duce maintenance costs compared to single-tuple execution. Finally, we present a cost-based

model for deciding on materialization decisions.

45





4 The DBToaster System

The DBTOASTER system1 implements Higher-Order Incremental View Maintenance.

DBTOASTER is a compiler for database queries. It transforms long-lived (continuous) queries

into high-performance stream processing engines that keep query results (views) fresh at very

high update rates. The compiler relies on Higher-Order IVM and code generation to produce

efficient update triggers for maintaining materialized views in main memory.

DBTOASTER targets applications that require real-time, low-latency processing over chang-

ing datasets. It combines the advantages of data stream processing engines and relational

database systems. Like stream processors, it supports continuous queries and keeps their

results always fresh but without restrictive window semantics; like relational databases, it

provides rich support for analytical queries using the SQL language but offers much lower

view refresh latencies. DBTOASTER enables developers to build real-time engines directly

from their declarative specifications, which can significantly improve their productivity and

eliminate the need for building ad hoc solutions for performance reasons.

4.1 System Overview and Application Usage

The DBTOASTER compiler consists of two parts. The frontend converts SQL queries into AGCA

expressions and applies Higher-Order IVM to produce an intermediate trigger representation

describing how to maintain the query results. The backend optimizes these triggers and

transforms them into source code. Currently, DBTOASTER can generate imperative (C++)

and functional (Scala) code for local execution and data-parallel code (Spark) for distributed

execution. The compiler also comes with a runtime library that provides data loading and

instrumentation of generated query engines.

The DBTOASTER compiler produces query processors that are aggressively specialized to a

specific query workload, rather than ad-hoc queries. Created engines are stand-alone and

1DBTOASTER is available for download at www.dbtoaster.org.
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require no other system (e.g., a database system) to run. End-users interact with a DBTOASTER-

generated query processor in one of three ways:

1. Standalone binaries, where users may run the binary on a file or specify a listening

socket through which data can be sent to the engine. The engine can output a stream of

view query results to a file or a network connection.

2. Shared libraries, where application developers may link against our library and directly

access to snapshots of the in-memory data structures representing our views while

they are concurrently maintained. We are exploring asynchronous notification meth-

ods to support push-based application logic, including callback functions and futures

registered with our views.

3. Source code, where application developers may adapt and extend our query processing

engine as desired, for example to use custom data structures to implement views.

DBTOASTER produces extensible query engines capable of custom stream pre-processing

and workload generation, as well as on-demand querying of views. Our object-oriented

design enables users to inherit our engine in their applications, where they may override a

pre-processing method invoked on each arriving event. This allows users to perform basic

data extraction, transformation, cleaning, and logging functionality prior to delta processing.

DBTOASTER can generate query engines for running in both local and distributed settings.

Generated local code implements a single-core, single-threaded query executor. Our imple-

mentation strategy has focused on novel view maintenance techniques rather than the full

range of state-of-the-art query execution mechanisms. Thus, our results represent a lower

limit on performance and scalability, both of which one could substantially improve with mul-

tithreaded and vectorized execution that utilizes more flexible view data structures as inspired

by database cracking [83]. Chapter 5 presents DBTOASTER’s distributed main-memory engine

that exploits aggregate CPU and memory resources available in large-scale clusters to achieve

low-latency incremental view maintenance.

4.2 Implementing View Maintenance

In this section, we describe how DBTOASTER compiles AGCA queries into specialized code

and data structures. While we could directly interpret trigger programs, for efficient execution,

we translate them into lower-level code. Our approach brings programming language opti-

mizations to query processing, enabling holistic query optimization and generation of high-

performance engines. For comparison, traditional database systems offer general-purpose

query processing engines capable of handling arbitrary query workloads. Nowadays, however,

databases process mostly parametrized queries, for which the use of generic storage structures

and template-based operators is suboptimal [116, 92].
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4.2.1 From Queries to Native Code

DBTOASTER compiles intermediate trigger programs into source code optimized for the

execution in local mode (C++ and Scala) or distributed mode (Scala for Spark). The compiler

uses in-memory hash join as a reference join implementation and assumes a computation

model in which the information about bound variables always flows from left to right during

query evaluation. This notion of information flow eases compilation of the AGCA language

construct. In generated code, we replace all high-level operators, like natural joins, unions,

etc., with concrete operations over the underlying data structures.

When compiling a relational term, we distinguish several cases: (1) if all its variables are

free, we transform it into a foreach loop that iterates over the whole collection; (2) if all its

variables are bound, we replace it with a get (lookup) operation; (3) otherwise, we form a

slice operation that iterates over only the elements matching the current values of the bound

variables. Note that cases (2) and (3) may benefit from specialized index structures.

We use continuation passing style [31] to facilitate code generation and avoid intermedi-

ate materializations, such as redundant computations of bag unions and aggregates. The

compilation process relies on an extensible compiler library [136, 130] to build an abstract

representation of the program and perform both traditional compiler optimizations, like com-

mon subexpression elimination, dead code elimination, aggressive inlining, loop unrolling

and fusion, and also domain-specific optimizations, like data-structure specialization and

automatic indexing. DBTOASTER’s code generators emit source code directly from such an

optimized representation.

DBTOASTER optimizes incremental programs for single-tuple processing. It specializes the

parameters of single-tuple triggers to the concrete primitive types of the updated relation.

Then, the native compiler can treat such parameters as constants and move them out of loops

and closures when possible. Our compiler eliminates loops around one-element batches and

uses primitive type variables rather than maps to store intermediate materializations.

4.2.2 Data Structure Specialization

The design of the data structure for storing materialized views depends on whether the

view contents can change over time and the types of operations that need to be supported.

Materialized views defined over static base relations are immutable collections of records

stored in fixed-size arrays with fast lookup and scan operations. In typical streaming scenarios,

however, updates to mutable base relations can be fast-moving and unpredictable, indicating

that any array-based solution for storing tuples of dynamic materialized views might be

expensive either in terms of the memory usage or maintenance overhead.

We materialize the contents of dynamic materialized views inside record pools, shown in

Figure 4.1. One record pool stores records of the same format inside main memory and

dynamically adapts its size to match the current working set. The pool keeps track of available
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Figure 4.1 – Multi-indexed data structure used for materialization. Each bucket (shaded cells)
has a linked list of collisions. Legend: (D)ata, (H)ash, (N)ext, (K)ey, (V)alue, and (I)ndex.

free slots to facilitate future memory allocations and ease memory management.We specialize

the format of pool records at compile time. Each record contains key fields corresponding to

the schema of the materialized expression and value fields storing tuple multiplicities. The

key fields uniquely identify each record.

Automatic Index Support

We can associate multiple index structures with one record pool, as shown in Figure 4.1. Each

index structure provides a fast path to the records that match a given condition. We use unique

hash indexes to provide fast lookups and non-unique hash indexes for slice operations2.

Both indexes maintain an overflow linked list for each bucket. To shorten scanning in one

bucket, non-unique hash indexes cluster records that share the same key. Pool records keep

back-references to their indexes to avoid hash re-computation and additional lookups during

update and delete operations.

Our compiler analyzes the following access patterns: 1) scan over the entire collection (foreach),

2) lookup for a given unique key (get, update, delete), and 3) index scan for a given non-

unique key (slice). We build a unique hash index for get operations, that is, when all lookup

keys are bound at evaluation time. The same rule applies to update, insert, and delete
operations. For slice operations, we create a non-unique index over the variables bound at

evaluation time. When the access pattern analysis detects only foreach operations, we omit

index creation.

DBTOASTER creates all relevant index structures. From our experience, most data structures

produced during recursive compilation have only few indexes. For instance, the materialized

2Studying other index types, like B++ trees (for range operations) or binary heaps (for min/max), we leave for
future work.
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views produced compiling the TPC-H queries usually have zero or one secondary indexes,

with rare exceptions of up to three non-unique indexes. Our empirical results indicate that the

benefit of creating these indexes greatly outperforms their maintenance overheads.

Column-oriented layout

Record pools keep tuples in a row-oriented format. Materialized views store aggregated results

in which all unused attributes are projected away during query compilation. Thus, during

query evaluation, each access to one record likely references all its fields.

The row-oriented layout is, however, unsuitable for efficient data serialization and deserializa-

tion, which are important considerations in distributed query evaluation. To speed up these

operations, the compiler creates array-based data structures for storing serializable data in

columnar mode. It also generates specialized transformers for switching between row- and

column-oriented formats.

We also use columnar data structures for storing input batches. Batched delta processing often

starts by filtering out tuples that do not match query’s static conditions. As these conditions

are often simple (e.g., A > 2), using a columnar representation can improve cache locality.

After filtering, we typically aggregate input batches to remove unused columns and store the

result in a record pool.

4.3 Experiment Setup and Methodology

We evaluate the performance of DBTOASTER for single-tuple and batch updates in local

settings. We analyze the throughput and cache locality of C++ view maintenance programs

generated using the DBTOASTER Release 2.2, rev. 3387, released on November 27th, 2015 [5].

We compare our compilation algorithm with a commercial DBMS with incremental view

maintenance capabilities (DBX) and a stream processing system (SPY). Since these systems

are not optimized for our workload, we also provide a shared-infrastructure comparison

by emulating their functionalities — query re-evaluation and IVM — within DBTOASTER-

generated binaries. For batch experiments, we also compare DBTOASTER’s recursive approach

with re-evaluation and incremental computation in a PostgreSQL 9.4.5 database.

Experimental setup We run single-node experiments on an Intel Xeon E5-2630L @ 2.40GHz

server with 2×6 cores, each with 2 hardware threads, 15MB of cache, 256GB of DDR3 RAM, and

Ubuntu 14.04.2 LTS. We compile generated C++ programs using GCC 4.8.4. We estimate the

memory consumption of our programs from the statistics returned by the mallinfo function.

We run experiments with a one-hour timeout on query execution, not counting loading of

streams into memory and forming input batches of a given size.
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4.3.1 Query and Data Workload

Our workload covers algorithmic order book trading (financial) and online business deci-

sion support scenarios TPC-H and TPC-DS [17, 16]. Figure 3.2 lists the query and evaluation

properties of our workload.3 Due to limitations of DBTOASTER, we made several changes to

the TPC-H queries: (1) We ignored ORDER BY clauses and, to make the results comparable,

also dropped the LIMIT clause; (2) We rewrote MIN, MAX aggregates using equivalent nested

subqueries; (3) We replaced Q13’s LEFT OUTER join with a natural join; (4) Finally, for conve-

nience we rewrote HAVING clauses into subqueries and inlined INTERVAL expressions into

constants. In experiments with batch processing, we also use a subset of TPC-DS queries

from [97] (excluding four queries with the OVER clause, which we currently do not support).

The financial queries VWAP, MST, AXF, BSP, PSP, and BSV were run on a 2.63 million tuple trace

of an order book update stream, representing one day of stock market activity for MSFT. The

stream consists of updates to a Bids and Asks table with the schema (timestamp, order_id,
broker_id, price, volume). We run the TPC-H and TPC-DS benchmark queries over data

streams synthesized from TPC-H and TPC-DS databases by interleaving insertions to the base

relations in a round-robin fashion. The default stream size is 10GB, unless stated otherwise.

4.3.2 DBToaster Setup

The DBTOASTER compiler produces incremental view maintenance code for both C++ and

Scala. The compilers for these languages produce binaries with distinct (and surprising)

performance characteristics [95]. In this thesis, our evaluation includes only C++ results.

DBTOASTER emulates the behavior of a traditional view maintenance system by terminating

recursive delta materialization early. The remaining compiler stages (functional optimization

and target-language generation) operate as usual. Our evaluation includes: (1) The HO-IVM

algorithm as presented in this thesis (DBTOASTER), (2) A full re-evaluation of the query on

every change (REEVAL), and (3) The HO-IVM algorithm used without recursion (first-order

deltas are materialized) to emulate traditional IVM (IVM).

For each compilation method, we measured the memory consumption of the C++ programs.

To this end, we produced instrumented binaries for each experiment and processed the same

fraction of the stream as without profiling.

4.3.3 DBMS Setup

We compare DBTOASTER against a commercial DBMS. Due to licensing restrictions, we refer

to it using the anonymized name DBX. In order to measure the rate at which DBX is able to

refresh the query results as consistently as possible with other systems, we preload all updates

to be performed on all base tables into a single table called Agenda. The Agenda table’s schema

3The detailed queries can be found in Appendix A.1.
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is the union of all of the input table schemas, and includes columns identifying the type of

update (insert or delete), the table being updated, and the update’s sequence number. Each

trial iterates over the updates in Agenda in order, inserting or deleting one tuple and then

refreshing the query results, either by re-evaluating the query (DBX-REEVAL), or by using the

system’s built-in capability to incrementally maintain materialized views (DBX-IVM). In order

to minimize the overheads of the system, we disable log collection as much as possible.

For re-evaluation, we completely re-evaluate the query after each update and store its results in

a separate table that gets truncated before each re-evaluation. Because generating materialized

views that can be incrementally maintained is non-trivial, has many restrictions, and requires

extra update logs, for IVM we use the provided tuning advisor in order to derive the proper

view setup for each of the queries.

In many cases, the tuning advisor suggested views that were not precisely identical to the input

queries. We encountered situations in which the advisor added group-by columns or relaxed

WHERE clauses by dropping conditions or replacing disjunctions with single expressions,

covering a superset of the original condition. We speculate that these transformations were

meant to allow the generated view to support answering a larger class of queries. For complex

queries that could not be maintained as a single view, the advisor generated nested subviews

to be incrementally maintained and a top-level view to be re-evaluated on every commit.

4.3.4 SPY Setup

As a second comparison point, we use a commercial stream processor. We refer to the stream

processor using the anonymized name SPY, again due to licensing restrictions. One major

semantic difference between traditional stream processing engines and DBTOASTER is that

stream processing engines are optimized to operate on windows of input streams, while

DBTOASTER is designed to handle the whole history of a stream. We benchmark SPY by

reading the same Agenda table used for DBX directly into a stream to minimize event dispatch

overheads.

We implemented the queries using the dialect of SQL supported by SPY. Since the queries in

our benchmark cannot be efficiently expressed using window semantics, we used auxiliary

in-memory tables for all relations. Our implementation of the queries assigns a monotonically

increasing number to each event and dispatches it to a stream corresponding to the affected

relation. This stream updates the in-memory relation by inserting or removing the affected

tuple. Then, the query result is re-evaluated and recorded together with the event number

and a timestamp. Full recomputation is necessary as SPY does not support IVM.

Although we attempted to maintain the original query semantics, the SQL dialect employed by

SPY imposes some limitations. A severe limitation is that in-memory tables may not be joined

together; each in-memory table may only be joined with a stream, requiring manual selection

of a join order. Our heuristic for this order was to minimize the size of intermediate streams.
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Figure 4.2 – DBTOASTER performance overview. Note the log scale on the y-axis.

4.4 Experiments with Single-tuple Updates

Our results show view refresh rates for single-tuple updates coming from the stream traces

described in Section 4.3. These results show that:

• DBTOASTER consistently outperforms the two commercial systems we tested against by

multiple orders of magnitude (Figures 4.2 and 4.3).

• DBTOASTER’s Higher-Order IVM outperforms traditional IVM in all but three cases, and

the speedup in roughly one-half of the workload varies from 2x to 7x and in several

cases goes above 1,000x.

• DBTOASTER exhibits consistent performance over time while its memory requirements

are often lower than with traditional IVM (Figures 4.4 and A.2).

• These results scale to longer streams with a fixed working set size (Figure 4.5).

In all figures, we use the following notation:

• DBTOASTER is the full HO-IVM algorithm.

• REEVAL and IVM are DBTOASTER repeatedly re-evaluating queries and emulating non-

recursive IVM, respectively. IVM PROJECT improves IVM such that it retains in materi-

alized views only the columns used in a given query.
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Query DBX-REEVAL DBX-IVM SPY REEVAL IVM DBTOASTER
T

P
C

- H
Q1 17.7 1.6 29.5 13.4 25.4 681,073.3
Q2 10.7 1.2 1.0 67.5 150,579.1 702,076.3
Q3 18.2 0.7 22.6 95.0 576,024.9 1,740,859.8
Q4 32.3 2.1 252.0 50.3 604,201.5 2,005,422.6
Q5 9.7 0.3 19.1 39.3 319,409.4 10,321.8
Q6 44.2 0.4 362.0 79.8 4,085,311.8 4,400,610.8
Q7 3.8 1.4 14.1 28.1 307,225.1 68,422.9
Q8 34.8 2.5 23.9 112.3 74.5 211,766.7
Q9 6.8 1.8 23.7 4.4 194,584.2 64,244.4
Q10 4.6 0.5 38.2 51.9 519,102.4 1,627,325.3
Q11 3.7 2.8 12.3 3.3 3.3 14,374.5
Q12 24.7 1.6 74.5 34.1 682,959.6 2,305,073.5
Q13 9.6 2.9 10.9 2.5 109,936.3 605,765.6
Q14 39.6 1.6 464.9 29.3 29.0 2,868,841.9
Q15 2.5 1.9 6.1 1.4 1.4 62.7
Q16 2.9 1.9 8.8 34.0 30,571.1 209,342.9
Q17 11.8 2.1 19.6 25.6 173,673.4 773,782.3
Q18 1.2 1.2 11.2 36.5 442,689.5 951,188.7
Q19 23.8 1.4 0.6 65.3 463,468.1 1,655,056.2
Q20 7.2 1.2 33.6 622.0 6,124.0 74,372.9
Q21 8.7 1.3 14.7 20.6 297,190.3 568,108.7
Q22 36.1 1.6 58.2 18.2 31.0 135,914.4

F
in

an
ce

AXF 5.6 1.3 6.9 14.4 52,344.3 160,656.6
BSP 6.0 1.6 5.2 24.1 54,920.8 108,354.0
BSV 5.2 1.6 10.6 33.9 201,341.4 7,997,516.0
MST 4.4 1.3 3.7 7.0 7.0 10.3
PSP 5.9 2.0 5.4 2,741.2 2,743.1 85,086.6
VWAP 7.9 2.1 4.8 18.1 18.4 1,934.8

Figure 4.3 – Comparison between DBTOASTER and two commercial query engines (in view
refreshes per second). Both the DBMS (DBX) and stream system (SPY) columns show the cost
of full refresh on each update. Higher numbers are better.

• DBX-REEVAL and DBX-IVM are a commercial database system performing view main-

tenance by re-evaluation and non-recursive IVM, respectively.

• SPY is a commercial stream processing engine.

We benchmark DBTOASTER’s C++ incremental programs. For comparison with Scala programs

as well as the results of a naïve viewlet transform, which aggressively materializes entire delta

queries and has few optimizations, we refer the reader to our paper [95].

4.4.1 Higher-Order IVM Performance

We now compare the performance of DBTOASTER with a commercial DBMS (DBX) and a

stream processor (SPY).

Comparison with Commercial Systems

Figure 4.3 shows the performance of DBTOASTER’s Higher-Order IVM alongside all comparison

systems. We summarize our findings next.
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Figure 4.4 – (a) Join-free query. (b) 5-way join with an equality/inequality correlated nested aggregate in the
EXISTS clause. (c) 3-way join. (d) 6-way join. (e) 6-way join. (f) 8-way join. (g) 6-way star join. (h) 4-way join. (i)
2-way join with an aggregate subquery in the FROM clause and an uncorrelated nested aggregate. (j) 2-way join
with an equality-correlated nested aggregate. (k) 2-way join with three disjunctive clauses. (l) 4-way join with an
equality- and an inequality-correlated subqueries.
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When recomputing the query results after each update (DBX-REEVAL), DBX experienced

view refresh rates between 0.08 and 972.22 refreshes per second, with average and median

values of 37.03 and 6. When using DBX’s support for IVM, however, view refresh rates dropped

to between 0.14 and 2.94, with average and median values of 1.42 and 1.38. This drop in

performance when using IVM is counter-intuitive and prompted us to trace the execution of

our program. DBX’s tracing utility revealed that most of the execution time was spent parsing

several parametrized system queries used in the bookkeeping. As the amount of useful work to

be performed after a single update is quite small, the time spent parsing those system queries

ends up dominating the overall running time. Maintaining catalog information across many

tables for high rate updates also substantially impacts latencies and throughput.

The performance gap between SPY and DBTOASTER is a result of the lack of support for

IVM in SPY and synchronization used to prevent the asynchronous system from producing

inconsistent results. Due to the nature of the test queries, we are unable to make use of SPY’s

window semantics and are forced to use in-memory tables instead. Even though we use

indexes on the in-memory tables wherever it makes sense, SPY seems to be unable to take full

advantage of them in queries with complex predicates, contributing to poor performance, as

exemplified in Q19.

Join-free Queries

The simplest queries in our workload, Q1 (Figure 4.4a) and Q6 (Figure A.3b), aggregate TPC-H’s

Lineitem relation. As these queries involve only one relation, the first-order delta depends

solely on the inserted values.

The materialized view of Q6 stores a single aggregate value and has a constant update cost.

Thus, the view refresh rates of the DBTOASTER and IVM methods are almost identical. The

REEVAL compilation exhibits low refresh rates as it performs a complete scan over Lineitem

upon every update. Unlike the other methods for which the memory overhead is negligible,

REEVAL requires a linear size of memory to store all input tuples.

Q1 evaluates multiple group-by aggregates over Lineitem. DBTOASTER treats these aggregates

as separate AGCA expressions and maintains each individually. Because the result set contains

a fixed number of tuples (based on the limited domain of the group-by columns), DBTOASTER

uses only a fixed amount of memory to store the additional maps.

DBTOASTER inlines the computation of algebraic aggregates. For instance, DBTOASTER

computes averages from separate sum and count aggregates: Because the current incarnation

of AGCA supports only one “multiplicity" per tuple, average is expressed as the product of the

sum and inverse count. HO-IVM requires two recursive steps to separate out the (linear) count

from the (non-linear) inverse count. This accounts for IVM’s poor performance on Q1, as it

must fully recompute the inverse count on every change. As future work, we plan to extend

AGCA to generalize GMRs to have multiple “multiplicities". This will allow DBTOASTER to

store multiple aggregate values per tuple, and improve the efficiency of this class of queries.
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Equijoins

Q12 (Figure A.3c), Q14 (Figure A.3e), and Q19 (Figure 4.4k) contain two-way joins without

nested aggregates. The first level deltas correspond nearly to the base relations. For Q12

and Q19, DBTOASTER materializes only the relevant columns of the base relations for the

tuples matching query predicates. This strategy yields lower maintenance costs and memory

requirements than both IVM and IVM PROJECT. As in Q1, Q14 has to maintain an inverse

count, resulting in poor performance for IVM. The domain extraction procedure (Section 3.4.2)

in the deltas of nested aggregates of these three queries allow us to avoid a full scan of each

materialized nested aggregate whenever it changes.

Query decomposition also plays an important role in efficiency of DBTOASTER for queries

containing linear joins of 3 or more relations. Decomposition avoids materialization of cross

products, improving performance and reducing memory consumption. For instance, the delta

of Q10 (a 4-way equijoin) with respect to the Orders relation creates a cross product between

Customer and Lineitem (which are only connected through Orders in the original query).

Due to the foreign key constraints in the TPC-H schema (which DBTOASTER is not aware of)

most loops in Q3’s trigger program have only one iteration, and the cost of updating either

the Orders or Lineitem relation is constant. For queries with multi-way joins and selection

predicates – Q3 (Figure 4.4c), Q5 (Figure 4.4d), and Q10 (Figure 4.4h)) – DBTOASTER further

outperforms IVM and IVM with projection by pushing predicates into the materialized views

and dropping unused columns.

DBTOASTER considers the contents of Nation and Region relations as static, which it loads into

memory before processing the streams. It avoids materialization of deltas needed to support

updates to these relations, effectively reducing the join width of certain queries (Q5 and Q10)

and eliminating several potentially high maintenance maps.

Nested Aggregates

Q17 (Figure 4.4j) is a multi-way join query with nested aggregates that are correlated on an

equality with the outer query. In this case, both DBTOASTER and IVM benefit from decorrelat-

ing the nested subquery and range-restricting the domain of the generated delta expressions

for updates to the Lineitem relation (on which all nested subqueries are based).

VWAP (Figure 4.3) has a nested aggregate correlated on an inequality. The small domain of the

correlation variable (price) makes this an ideal candidate for view caching [95].

PSP (Figure 4.3) includes two uncorrelated nested aggregates. It benefits from top-level query

re-evaluation on each update. As in Section 3.3.2, polynomial expansion and graph decom-

position are essential to avoid computation of a cross product between the base relations.

DBTOASTER evaluates the query using six auxiliary materialized views with constant time

updates: Two views maintain single aggregate values, while the others are linear in the number
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of distinct values of the column being compared to the nested aggregate (volume). The finite

domain of these values results in a nearly constant refresh rate and memory consumption.

MST (Figure 4.3) is fundamentally similar to PSP, but rather than comparing its uncorrelated

aggregates against columns from the base relations, they are each compared against another

nested aggregate correlated on an inequality. This is a worst case scenario for DBTOASTER,

as it cannot incrementally process this query in better than O(n2) time without specialized

indexes (e.g., aggregate range trees).

Inequijoins

AXF (Figure 4.3) and BSP (Figure 4.3) are 2-way joins with inequality join-predicates. The

performance graph of AXF shows the inefficiency of view caching in this case. The view caching

approach treats both the join variable (price) and one of the aggregate variables (volume) as

input variables; together, these input variables have an extremely large domain. In BSP, the join

variable (timestamp) also has an unbounded domain. In both cases, DBTOASTER outperforms

view caching by precluding materialized views with input variables. DBTOASTER also achieves

a small speed boost compared to IVM by not materializing the entire base relation.

Queries with EXIST or IN Clauses

Q2 (Figure 4.4b), Q4 (Figure A.3a), Q16 (Figure A.3g), and Q21 (Figure 4.4l) contain clauses that

check for the existence of the nested subquery results. DBTOASTER transforms each subquery

into a count aggregate, assigns this value to a fresh variable, and adds an additional constraint

over that variable according to the semantics of the clause (e.g., x = 0 for the NOT EXIST clause).

As all the subqueries of the above queries are correlated on an equality, DBTOASTER decides to

incrementally maintain the top-level views for updates to the subquery relations. For queries

that are also correlated on an inequality (Q2 and Q21), DBTOASTER avoids materializing maps

with input variables due to the large domain of the correlation variables (supplycost and

suppkey, respectively). Q21 has constant time updates to Lineitem and Orders, and a linear

time update in the number of orders for one supplier. But since the number of suppliers

in the stream is fairly small, the refresh rate remains roughly constant once the memory

consumption stabilizes.

Subqueries in FROM Clauses

DBTOASTER maintains separate materialized views for subqueries that appear in the FROM

clause (Q7, Q8, and Q9). For Q9 (Figure 4.4g), DBTOASTER materializes large intermediate

views whose sizes grow with time, which yields lower refresh rates than both IVM techniques.

For Q7 (Figure 4.4e), DBTOASTER’s memory requirements are significant but remain constant

after processing roughly one-half of the stream at which point DBTOASTER outperforms IVM

with projection. The complexity of Q8 (Figure 4.4f) causes poor performance with both IVM

techniques, which manage to process only a tiny fraction of the stream. DBTOASTER achieves

better performance at the cost of increased memory consumption.
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Complex Queries

The remaining TPC-H queries Q11, Q13, Q15, Q18, Q20, and Q22 combine the above charac-

teristics. Our experiments show that the update costs for these queries coincide with their

structural complexity.

Q11 (Figure 4.4i), has a group-by aggregate in its FROM clause and an uncorrelated nested

aggregate that appears in an inequality at the top level. DBTOASTER exploits the fact that

both subqueries share the same structure to reduce the number of generated maps. The

costs of updating Supplier and Partsupp are linear in the number of distinct partkey values.

Since the update stream contains only insertions to the base relations, the amount of memory

used to store additional views grows continuously and, consequently, the view refresh rate

continuously drops.

Q15 (Figure 4.4i) is a variation of the original TPC-H query where a nested subquery and an

EXIST clause replace the max aggregate. Since both subqueries are identical, duplicate view

elimination reduces the number of auxiliary views. However, the update cost for this query

grows quadratically with the number of distinct suppkey values in Lineitem, as shown on

the graph. DBTOASTER manages to compute only 1% of the input stream. To improve the

performance of MIN, MAX, and theta-joins in general, we plan to extend DBTOASTER with

specialized tree-based data structures.

4.4.2 Stream Scalability

This section analyzes the scaling behavior of DBTOASTER for a subset of the TPC-H queries

over a larger stream of updates. Our focus is on measuring view refresh rates in terms of the

stream length and query complexity, rather than the working set size.

The workload for this experiment was synthesized from databases created by DBGEN at scaling

factors 0.1, 0.5, 1, 5, and 10 (100MB, 500MB, 1GB, 5GB, and 10GB, respectively). An update

stream was built by randomly interleaving tuples from the base relations, while preserving the

reference integrity. After inserting 30,000 Orders tuples and around 120,000 Lineitem tuples,

we randomly inject deletions into these two relations in order to keep their sizes roughly

constant. Tuples in other TPC-H relations are never deleted. All updates preserve the foreign

key constraints that exist between the TPC-H tables.

The length of the update stream increases with larger scaling factors. However, the size of the

working set depends on the query structure. Materialized views that reference Customer, Part,

Supplier, or Partsupp might grow with larger scaling factors, while views defined solely over

Orders or Lineitem have a bounded working set size.

Figure 4.5 presents the results of our scaling experiments. For most queries performance stays

roughly constant as the stream length grows. Q2 and Q16 select over insert-only relations (Part,

Supplier, and Partsupp); thus, the memory overhead of DBTOASTER grows with the scaling
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Figure 4.5 – Performance scaling on a subset of TPC-H queries.

factors. The view refresh rates drop as the maintenance cost for these queries is linear in the

size of in-memory data structures. Q9 and Q21 demonstrate an increase of the view refresh

rates for larger stream lengths. The reason for this behavior is as follows. In our workload, the

working set sizes of Orders and Lineitem are constant, regardless of the scaling factor. With

larger scaling factors the base relations get larger; thus, we have to place more deletions to

maintain the size invariant (As an extreme case, imagine that the working set size of Orders

is 1; then we have to double the number of Orders tuples in the stream as every insertion is

followed by a deletion). Placing more deletions increases the fraction of Orders and Lineitem

tuples in the stream. This in turn affects the view refresh rates of these queries, as both have

constant costs with respect to updates to the Lineitem relation.

4.4.3 Memory requirements

Higher-order incremental view maintenance materializes auxiliary views to speed up the work

required to keep all views fresh. The sizes of these auxiliary views created to maintain a given

query, in general, depend on the query structure. Our query workloads, TPC-H and TPC-DS,

are based on the star schema with one large fact table and several dimension tables. In such

cases, auxiliary materialized views cannot have more tuples than the fact table due to integrity

constraints. In practice, the sizes of materialized views are much smaller than the sizes of the

fact tables because: (1) their view definition queries often involve static predicate, and (2) the

views discard columns unused in a given query and aggregate over the remaining columns.

In our experiments, both incremental view maintenance strategies store only base relations

for the purpose of computing delta queries. Traditional IVM materializes entire base relations,

while IVM PROJECT stores only the columns used in a given query (but ignores query pred-

icates). From the memory graphs in Figure 4.4 and A.2, we observe that the total memory

consumption in DBTOASTER is almost always smaller than in IVM and, in many cases, IVM

PROJECT. The latter is a consequence of pushing query predicates into materialized views.
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4.5 Experiments with Batch Updates

We evaluate the performance of recursive incremental view maintenance for batch updates of

different sizes in local settings. We analyze the throughput and cache locality of DBTOASTER

C++ incremental programs. Our experimental results show that:

• In local mode, view maintenance code specialized for tuple-at-a-time processing can

outperform or be on par with batched programs for almost half of our queries.

• Preprocessing input batches can boost the performance of incremental computation by

multiple orders of magnitude.

• Large batches can have negative impacts on cache locality. In local mode, the throughput

of most of our queries peaks for batches with 1,000 – 10,000 tuples.

Our local experiments compare tuple-at-a-time and batched incremental programs. The

former have triggers with tuple fields as function parameters, which can be inlined into delta

computation; the latter consist of triggers accepting one arbitrary-sized columnar batch. In

both cases, we generate single-threaded C++ code.

Batched incremental programs have extra loops inside triggers for processing input batches.

To avoid redundant iterations over the whole batch, we materialize input tuples that match

query’s static conditions, retaining only the attributes (columns) used in incremental evalu-

ation. These pre-aggregated batches are smaller in size due to having fewer attributes and,

potentially, fewer matching tuples, which can significantly affect view maintenance costs. In

contrast, single-tuple triggers avoid materialization of input batches.

4.5.1 Batch Size vs. Throughput

Figure 4.6 shows the normalized throughput of batched incremental processing of the TPC-H

queries for different batch sizes using the tuple-at-a-time performance as the baseline. For

ease of presentation, we use two graphs with different y-axis scales.

For almost half of our queries, batched incremental processing performs worse or just marginally

better than specialized tuple-at-a-time processing. This result comes at no surprise once we

start analyzing the pre-aggregated batches of these queries for updates to their largest (and

usually most expensive) relation. For instance, Q5, Q9, and Q18 aggregate Lineitem deltas by

orderkey and, possibly, some other fields; Q16 aggregates Partsupp deltas by the primary key

(partkey, suppkey). In these cases, batch pre-aggregation retains (almost) the same number

of input tuples, bringing no performance improvements; on the contrary, it introduces extra

materialization and looping overheads. For two-way join queries, Q4, Q12, and Q13, the

simplicity of their view maintenance code makes these overheads particularly pronounced.

Batch pre-aggregation keeps only input tuples that match query predicates. This step can

accelerate the rest of view maintenance code by a factor that depends on the selectivity of
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Figure 4.6 – Normalized throughput of TPC-H and TPC-DS queries for different batch sizes
with single-tuple execution as the baseline.

predicates. For instance, preprocessing in Q3, Q7, Q8, Q10, and Q14 filters out tuples of

Lineitem and Orders batches and yields improvements from 19% in Q7 to 306% in Q8.

Batch pre-aggregation can project input tuples onto a set of attributes with small active

domains. For instance, Q1 projects a Lineitem batch onto columns containing only few

possible values, which enables cheap maintenance of the final 8 aggregates. So, the single-

tuple implementation performs more maintenance work per input tuple. For Q2 and Q19,

batch filtering and projection can give up to 1.3x and 5.1x better performance. This benefit can

increase for queries with more complex trigger functions. For instance, Q22 filters and projects

an Orders batch on custkey, while Q20 filters and projects Partsupp and Lineitem batches

on suppkey. In both cases, the projected columns have much smaller domains, bringing

significant improvements, 2,243x in Q20 and 4,319x in Q22.

Incremental programs for single-tuples updates are easier to optimize than their batched

counterparts due to having simpler input and fewer loops in trigger bodies. This virtue emerges

in Q17 and Q21. For these queries, our compiler fails to factorize common subexpressions

as efficiently as during the single-tuple compilation, which causes same expressions to be

evaluated twice.

For Q11 and Q15, incremental view maintenance is more expensive than re-evaluation due

to inequality-based nested aggregates. Increasing batch sizes results in fewer re-evaluations,

which increases the overall throughput at the expense of higher latencies.
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Figure 4.7 – Throughput comparison for TPC-H Q17 of re-evaluation and incremental main-
tenance in PostgreSQL and recursive incremental maintenance in generated C++ code for
different batch sizes. SINGLE denotes specialized single-tuple processing in C++.

Bulk processing amortizes the overhead of invoking trigger functions. For instance, maintain-

ing a single aggregate over Lineitem in Q6 with batches of 10,000 tuples can bring up to 2x

better performance than the single-tuple execution. However, these results hold only when

function inlining is disabled. Since the single-tuple trigger body of Q6 consists of just one

conditional statement, the C++ compiler usually decides to inline this computation, causing

single-tuple execution to always outperform batched execution.

Figure 4.6c shows the normalized throughput of batched incremental processing of a subset

of the TPC-DS queries for different batch sizes using the tuple-at-a-time performance as the

baseline. These results show that single-tuple processing of TPC-DS queries often outperforms

batched processing due to simpler maintenance code. Preprocessing input batches to filter

out irrelevant tuples and remove unused columns can bring up to 5x better performance for

four TPC-DS queries from our workload.

Comparison with PostgreSQL

Figure 4.7 compares the throughput of recursive incremental processing in C++ and re-

evaluation and classical incremental view maintenance in PostgreSQL for TPC-H Q17. We

implement incremental processing in PostgreSQL using the domain extraction procedure

described in Section 3.4. The results show that the generated code outperforms PostgreSQL

re-evaluation from 233x to 14,181x and classical incremental view maintenance from 120x to

10,659x, for different batch sizes.

Appendix A.4 contains the performance numbers for the TPC-H and TPC-DS queries from our

workload. These numbers demonstrate that our view maintenance and code specialization

techniques outperform, in all but four cases, the database system by orders of magnitude,

even when processing large update batches.

64



4.6. Summary

Batch size Single 1 10 100 1000 10000 100000

Instructions 19,633 145,670 33,407 17,199 15,750 15,425 15,868

I1 misses 2.0 6.8 3.5 2.0 1.8 1.8 1.4

LLC references 485 683 533 424 402 578 668

LLC misses 369 562 416 302 258 302 316

Table 4.1 – Cache locality of TPC-H Q3. All numbers are in millions.

4.5.2 Cache Locality

In this experiment, we measure the cache locality of generated programs for single-tuple and

batched incremental processing on a 10GB input stream. We use perf 3.13.11 to monitor CPU

performance counters during the view maintenance of TPC-H Q3. We start profiling after

loading the streams and forming input batches. Table 4.1 presents the obtained results.

The numbers of retired instructions of the single-tuple and batched programs roughly cor-

respond to the normalized throughput numbers from Figure 4.6. The batch processing with

size 1 executes almost 10x more instructions than with size 1,000, which translates into a 4.3x

slowdown in running time. The generated programs exhibit low numbers of L1 instruction

cache misses compared to the total number of instructions. These results are indicators of

good code locality of our view maintenance code.

The second block shows the number of caches references and misses that reached the last level

cache. Extremely large and small batch sizes have negative effects on cache locality. Relatively

high numbers of cache misses are expected given that in this streaming scenario most input

data passes through the query engine clearing out the cache and without being referenced

again. Batch processing with size 1,000 exhibits the lowest number of cache references and

cache misses, which corresponds to the result from Figure 4.6.

4.6 Summary

The DBTOASTER system implements Higher-Order IVM using modern code and data structure

generation techniques. DBTOASTER outperforms commercial data management systems on a

workload consisting of financial and decision support queries by multiple orders of magnitude.

We also study the effect of batch size on the latency of processing in local settings: we show

that pre-processing input batches can boost the performance of incremental computation

but also demonstrate that tuple-at-a-time processing can outperform batch processing using

code specialization techniques (in roughly one-half of the benchmarked queries).
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5 Distributed Incremental View Mainte-
nance

Emerging data-intensive applications demand scalable processing to speed up query evalua-

tion and accommodate growing memory and storage requirements. In this section, we extend

DBTOASTER with techniques that transform maintenance triggers generated for local execu-

tion into data-parallel programs optimized for running on large-scale processing platforms

with synchronous execution, like Spark [152, 151] or Hadoop [1]. Our approach is general

and applies to any input program formed using our query language, not just recursive view

maintenance programs.

Distributed Execution Model We assume a synchronous execution model where one driver

node orchestrates job execution among workers, like in Spark or Hadoop. Processing one batch

of updates may require several computation stages, where each stage runs view maintenance

code in parallel. All workers are stateful, preserve data between stages, and participate in every

processing stage.

Our approach naturally leverages the fault tolerance mechanisms of the underlying execu-

tion platform, in our case, the Spark computing framework. Using data checkpointing, we

can periodically save intermediate state to reliable storage (HDFS) to shorten recovery time.

Checkpointing may have detrimental effects on the latency of processing, so the user needs to

carefully tune the frequency of checkpointing based on application requirements.

Types of Materialized Views We classify materialized views depending on the location of

their contents. Local views are stored and maintained entirely on the driver node. They are

suitable for materializing top-level aggregates with small output domains. Distributed views

have their contents spread over all workers to balance CPU and memory pressure. Each

distributed view has an associated partitioning function that maps a tuple to a non-empty set

of nodes storing its replicas.

67



Chapter 5. Distributed Incremental View Maintenance
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Figure 5.1 – Compilation of AGCA incremental programs

5.1 Compilation Overview

Figure 5.1 shows the process of transforming a local incremental program into a functionally

equivalent, distributed program. The input consists of statements expressed using our query

language. To distribute their execution, the compiler relies on partitioning information about

each materialized view. Deciding on the optimal view partitioning scheme happens outside

of the compilation process; we assume that such partitioning information is available (e.g.,

provided by the user).

The compilation process consists of three phases. First, we annotate a given input program

with partitioning information and, if necessary, introduce operators for exchanging data

among distributed nodes in order to preserve the correctness of query evaluation. Next, we

optimize the annotated program using a set of simplification rules and heuristics that aim to

minimize the number of jobs necessary for processing one update batch. Finally, we generate

executable code for a specific processing platform. Only the code generation phase depends

on the target platform.

5.2 Well-formed Distributed Programs

The semantics of the query operators, presented in Section 2.2.2, cannot be directly translated

to distributed environments. For instance, unioning one local and one distributed view has

no clear meaning. Even among views of the same type, naïvely executing query operators at

each distributed node might yield wrong results. For instance, a natural join between two

distributed views produces a correct result only if the views are identically partitioned over

the join (common) keys; otherwise, one or both operands need to be repartitioned.

We extend our query language with new location-aware primitives that allow us to construct

well-formed query expressions. Such expressions preserve the correctness of distributed query

evaluation for the given partitioning strategy.

Location Tags To reason about the semantics and correctness of query evaluation, we anno-

tate query expressions with location tags: (1) Local tag denotes the result is located on the

driver node; (2) Dist(P) tag marks the result is distributed among all workers according to

partitioning function P ; and 3) Random tag denotes the result is randomly distributed among

all workers.
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5.2. Well-formed Distributed Programs

A relation (materialized view) can take on a Local, Dist, or Random tag. Constants, values,

comparisons, and variable assignments involving values are interpreted (virtual) relations

whose contents is deterministic and never materialized. The location of such terms is irrele-

vant from the perspective of query evaluation, and they can freely participate in both local and

distributed expressions; in distributed settings, one can view these terms as fully replicated.

Location Transformers To support distributed execution, we extend the language with new

operators for manipulating location tags and exchanging data over the network.

• RepartP2
(Q {Dist(P1),Random}) =QDist(P2)

Partition the distributed result of Q using function P2.

• ScatterP (QLocal) =QDist(P)

Partition the local result of Q using function P .

• Gather(Q {Dist(P),Random}) =QLocal

Aggregate the distributed result of Q on the driver node.

The location transformers are the only mechanism for exchanging data in our distributed

programs. Repart and Gather operate over distributed expressions, while Scatter supports

only local expressions.

Distributed Query Operators We extend the semantics of our AGCA operators with location

tags as follows.

• Relation R(A1, A2, ...)T stores the contents at location T .

• Bag union αT +βT merges tuples either locally or in parallel on every node, and the

result retains tag T . Requires the same location tag for both operands.

• Natural join αT ∗βT has the usual semantics when T = Local. For distributed evalua-

tion, both operands need to be partitioned on the join keys; the result is distributed and

consists of locally evaluated joins on every node. Joins on Random are disallowed.

• Sum[A1,A2,...]QT , when T = Dist(P), computes partial aggregates on every node. The

result has tag T only if Q is key partitioned on one of the group-by columns; otherwise,

we annotate with a Random tag. In other cases, the result retains tag T .

All other language constructs – constants, values, comparisons, and variable assignments –

are location independent and their semantics remain unchanged.

Next, we present an algorithm for transforming a local program into a well-formed distributed

program based on the given partitioning information. The algorithm annotates and possibly

extends the expression trees of the statements to preserve the semantics of each operator. For

each statement, we start by assigning location tags to all relational terms in the expression

tree. Then, in a bottom-up fashion, we annotate each node of the tree with a location tag. We
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introduce location transformers where necessary to preserve the semantics and correctness of

each query operator, as discussed above. Upon reaching the root node, we ensure that the RHS

query expression evaluates at the same location where the target LHS view is materialized, and,

if necessary, introduce a Gather or Scatter transformer. To obtain a well-formed distributed

program, we apply this procedure to every input statement.

Example 5.2.1 Let us construct a well-formed statement for

M(A) += Sum[A](M1(A,B)∗M2(A,B))

when M(A) and M1(A,B) are partitioned by A, while M2(A,B) is partitioned by B . We associate

location tags to the materialized views. We use M(A)[A] to denote that M(A) is partitioned on

column A. Since the join operands have incompatible location tags, we introduce Repart
around one of the operands (e.g., left):

Repart[B ](M1(A,B)[A])[B ] ∗M2(A,B)[B ]

The join result remains partitioned on B . The Sum expression computes partial aggregates

grouped by column A. Such an expression cannot have location tag [B ] since B is not in the

output schema; so, we assign a Random tag to the expression. Now, we have reached the root

of the expression tree. We need to ensure that the RHS expression has the same location tag as

the target view. So, adding a Repart transformer produces a well-formed statement:

M(A)[A] += Repart[A](Sum[A]( Repart[B ](M1(A,B)[A])[B ] ∗M2(A,B)[B ])Random)[A]

2

The algorithm for constructing well-formed expressions has no associated cost metrics and

might produce suboptimal solutions. In the above example, executing the final statement

requires two communication rounds (Reparts) between the driver and workers. Such com-

munication overhead is unnecessary – if we repartition the other join operand, we produce an

equivalent, less expensive well-formed statement with only one communication round:

M(A)[A] += Sum[A](M1(A,B)[A] ∗Repart[A](M2(A,B)[B ])[A])[A]

To optimize well-formed programs we rely on a set of simplification and heuristic rules.

5.3 Optimizing Distributed Programs

In this section, we describe how to optimize well-formed programs in order to minimize

communication and processing costs. We divide this task into two stages. The first stage

relies on a simple cost-based model to simplify each individual statement. The second stage

exploits commonalities among statements to avoid redundant communication and minimize

the number of jobs needed to execute the given program.
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5.3. Optimizing Distributed Programs

RepartP (α∗β) ⇔ RepartP (α)∗RepartP (β)

RepartP (α+β) ⇔ RepartP (α)+RepartP (β)

RepartP (Sum[A1,A2,...](Q)) ⇔ Sum[A1,A2,...](RepartP (Q))

RepartP (var :=Q) ⇔ (var := RepartP (Q))

Figure 5.2 – Bidirectional optimization rules for location transformers. The same rules hold
for Repart, Scatter, and Gather.

5.3.1 Intra-Statement Optimization

Intra-statement optimization aims to minimize the amount of network traffic required to

execute one well-formed statement. Our cost model takes the number of communication

rounds as the basic metric for cost comparison. Each location transformer (Repart, Scatter,

and Gather) shuffles data over the network, so statements containing fewer of them require

less communication. Our cost model also relies on few heuristics to resolve ties between

statements with the same cost. We reshuffle expressions that involve batch updates rather

than whole materialized views as the formers are usually smaller in size; we favor expressions

with fewer Gather transformers to distribute computation as much as possible.

The optimizer uses a trial and error approach to recursively optimize a given statement. It

tries to push each location transformer down the expression tree, following the rules from

Figure 5.2. Note that these rules might produce more expensive expressions, in which case

the algorithm backtracks. During each optimization step, the compiler tries to simplify the

current expression using the rules from Figure 5.3. Each simplification rules always produces

an equivalent expression with fewer location transformers.

In Example 5.2.1, the optimizer pushes the outer Repart[A] through Sum and ∗, and then

simplifies Repart[A] ◦Repart[B ] to Repart[A]. The optimized statement requires only one

communication round.

5.3.2 Inter-Statement Optimization

Location transformers represent natural pipeline breakers in query evaluation since they need

to materialize and shuffle their contents before continuing processing. In this section, we show

how to analyze inter-statement dependencies to minimize the number of pipeline breakers

and their communication overhead.

Single Transformer Form To facilitate inter-statement analysis, we first convert a given pro-

gram into single transformer form where each statement has at most one location transformer.

The transformer, if present, always references one materialized view. In other words, we nor-

malize the input program by: (1) materializing the contents being transformed (if not already
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RepartP (QDist(P)) ⇒ QDist(P)

Gather(QLocal) ⇒ QLocal

RepartP1
◦ RepartP2

⇒ RepartP1

RepartP1
◦ ScatterP2 ⇒ ScatterP1

Gather ◦ RepartP ⇒ Gather

Gather ◦ ScatterP ⇒ Gather

ScatterP ◦ Gather ⇒ RepartP

Figure 5.3 – Simplification rules for location transformers. ◦ denotes operator composition.

materialized), (2) extracting the location transformers targeting the materialized contents into

separate statements, and (3) updating the affected statements with new references. To achieve

that, we recursively bottom-up traverse the expression tree of every statement.

Single transformer form sets clear boundaries around the contents that needs to be com-

municated, which eases the implementation of further optimizations. We apply common

subexpression elimination and dead code elimination to detect expressions shared among

statements and to eliminate redundant network transfers. In contrast to the classical compiler

optimizations, our routines are aware of the location where each expression is executed.

Statement Execution Mode The location tag associated with each statement determines

where and how that statement is going to be executed. Statements targeting local materialized

views are, as expected, executed at the driver node in local mode. Statements involving

distributed views run in distributed mode, where the driver initiates the computation.

All location transformations run in local mode since the driver governs their execution. But,

materializing the contents to be reshuffled can happen in both local and distributed mode.

For instance, preparing contents for Scatter takes place on the driver node, while for Repart
and Gather happens on every worker node.

Statement Blocks Distributed statements are more expensive to execute than local state-

ments. To run a distributed statement, the driver needs to serialize the task closure, ship it to

all the workers, and wait for the completion of each one of them. For short-running tasks, and

recursive view maintenance is often such, non-processing overheads can easily dominate in

the execution time.

To amortize the cost of executing distributed statements, we pack them together into pro-

cessing units called statement blocks. A statement block consists of a sequence of distributed

statements that can be executed at once on every node without comprising the program

correctness. Apart from distributed blocks, we also introduce blocks of local statements whose

purpose is to determine which network operations can be batched together (the driver initiates

Repart, Scatter, and Gather in local mode).

Data-flow dependencies among statements prevent arbitrary re-orderings of statements and

blocks. Figure 5.4 shows methods for checking the commutativity of statements and blocks.
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5.4. Code Generation

Listing 5.1 The block fusion algorithm

1 def commute(s1: Stmt , s2: Stmt): bool =
2 !s2.rhsMaps.contains(s1.lhsMap) &&
3 !s1.rhsMaps.contains(s2.lhsMap)
4
5 def commute(b1: Block , b2: Block): bool =
6 b1.stmts.forall(lhs =>
7 b2.stmts.forall(rhs => commute(lhs , rhs)))
8
9 def mergeIntoHead(hd: Block , tl: List[Block ]) =

10 tl.foldLeft (hd ,Nil) { case ((b1 ,rhs),b2) =>
11 if (b1.mode == b2.mode &&
12 rhs.forall(b => commute(b,b2)))
13 (Block(b1.mode , b1.stmts++b2.stmts), rhs)
14 else (b1, rhs :+ b2) }
15
16 def blockFusion(blocks: List[Block ]) = blocks match {
17 case Nil => Nil
18 case hd::tl =>
19 val (hd2 ,tl2) = mergeIntoHead(hd,tl)
20 if (hd == hd2) hd:: blockFusion(tl)
21 else blockFusion(hd2::tl2) }

Figure 5.4 – The block fusion algorithm

Block Fusion Algorithm We prefer program execution plans with as few statement blocks

as possible. Here, we describe an algorithm that reorders and merges together consecutive

blocks to minimize their number. Figure 5.4 presents the algorithm.

First, we promote each statement into a separate block that keeps statement’s execution mode

(local or distributed). Then, the algorithm tries to fuse together the first block with the others

that share the same execution mode and commute with all intermediate blocks. On success,

the algorithm merges the new block sequence recursively; otherwise, it handles the remaining

blocks recursively.

Figure 5.5 visualizes the effects of block fusion on the incremental program of TPC-H Q3.

Before running the algorithm, the annotated input program contained 10 local and 12 dis-

tributed statement blocks. After reordering and merging these blocks, the algorithm outputs

only 2 local and 2 distributed compound blocks.

5.4 Code Generation

Statement blocks considerably simplify code generation. Isolating distributed blocks enables

workers to safely run code generated for single-node execution on their local data partitions.

Pure local statements without transformers also correspond to unmodified single-node code.

Distributed code generation, thus, relies to a great extent on single-node code generation.
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!!LOCAL!QUERY3LINEITEM1_DELTA!!:=!!!{!DELTA_LINEITEM!}!

!!LOCAL!scatter1!!:=!!SCATTER<(orders_orderkey,long)>!{!scatterToPartition1!}!

!!DISTRIBUTED!QUERY3!!+=!!!{!scatterToIndex1,!QUERY3LINEITEM1!}!

!!DISTRIBUTED!QUERY3ORDERS1_P_2!!+=!!!{!scatterToIndex1!}!

!!DISTRIBUTED!QUERY3CUSTOMER1!!+=!!!{!scatterToIndex1,!QUERY3LINEITEM1CUSTOMER1!}!

!!LOCAL!QUERY3ORDERS1_DELTA!!:=!!!{!DELTA_ORDERS!}!

!!LOCAL!scatter4!!:=!!SCATTER<(customer_custkey,long)>!{!scatterToPartition4!}!

!!DISTRIBUTED!repartition1!!:=!!!{!scatterToIndex4,!QUERY3ORDERS1_P_1!}!

!!LOCAL!repartition2!!:=!!REPARTITION<(orders_orderkey,long)>!{!repartitionToPartition1!}!

!!DISTRIBUTED!QUERY3!!+=!!!{!repartitionToIndex1,!QUERY3ORDERS1_P_2!}!

!!DISTRIBUTED!repartition3!!:=!!!{!scatterToIndex4,!QUERY3ORDERS1_P_1!}!

!!LOCAL!repartition4!!:=!!REPARTITION<(orders_orderkey,long)>!{!repartitionToPartition2!}!

!!DISTRIBUTED!QUERY3LINEITEM1!!+=!!!{!repartitionToIndex2!}!

!!LOCAL!scatter6!!:=!!SCATTER<(orders_orderkey,long)>!{!scatterToPartition6!}!

!!DISTRIBUTED!QUERY3LINEITEM1CUSTOMER1!!+=!!!{!scatterToIndex6!}!

!!DISTRIBUTED!QUERY3CUSTOMER1!!+=!!!{!scatterToIndex6,!QUERY3ORDERS1_P_2!}!

!!LOCAL!QUERY3CUSTOMER1_DELTA!!:=!!!{!DELTA_CUSTOMER!}!

!!LOCAL!scatter8!!:=!!SCATTER<>!{!scatterToPartition8!}!

!!DISTRIBUTED!QUERY3!!+=!!!{!scatterToIndex8,!QUERY3CUSTOMER1!}!

!!DISTRIBUTED!QUERY3LINEITEM1!!+=!!!{!scatterToIndex8,!QUERY3LINEITEM1CUSTOMER1!}!

!!LOCAL!scatter10!!:=!!SCATTER<(customer_custkey,long)>!{!scatterToPartition10!}!

!!DISTRIBUTED!QUERY3ORDERS1_P_1!!+=!!!{!scatterToIndex10!}!
22"

!!LOCAL!QUERY3LINEITEM1_DELTA!!:=!!!{!DELTA_LINEITEM!}!

!!LOCAL!scatter1!!:=!!SCATTER<(orders_orderkey,long)>!{!scatterToPartition1!}!

!!LOCAL!QUERY3ORDERS1_DELTA!!:=!!!{!DELTA_ORDERS!}!

!!LOCAL!scatter4!!:=!!SCATTER<(customer_custkey,long)>!{!scatterToPartition4!}!

!!LOCAL!scatter6!!:=!!SCATTER<(orders_orderkey,long)>!{!scatterToPartition6!}!

!!LOCAL!QUERY3CUSTOMER1_DELTA!!:=!!!{!DELTA_CUSTOMER!}!

!!LOCAL!scatter8!!:=!!SCATTER<>!{!scatterToPartition8!}!

!!LOCAL!scatter10!!:=!!SCATTER<(customer_custkey,long)>!{!scatterToPartition10!}!

!!DISTRIBUTED!QUERY3!!+=!!!{!scatterToIndex1,!QUERY3LINEITEM1!}!

!!DISTRIBUTED!QUERY3ORDERS1_P_2!!+=!!!{!scatterToIndex1!}!

!!DISTRIBUTED!QUERY3CUSTOMER1!!+=!!!{!scatterToIndex1,!QUERY3LINEITEM1CUSTOMER1!}!

!!DISTRIBUTED!repartition1!!:=!!!{!scatterToIndex4,!QUERY3ORDERS1_P_1!}!

!!DISTRIBUTED!repartition3!!:=!!!{!scatterToIndex4,!QUERY3ORDERS1_P_1!}!

!!DISTRIBUTED!QUERY3LINEITEM1CUSTOMER1!!+=!!!{!scatterToIndex6!}!

!!DISTRIBUTED!QUERY3CUSTOMER1!!+=!!!{!scatterToIndex6,!QUERY3ORDERS1_P_2!}!

!!DISTRIBUTED!QUERY3!!+=!!!{!scatterToIndex8,!QUERY3CUSTOMER1!}!

!!DISTRIBUTED!QUERY3LINEITEM1!!+=!!!{!scatterToIndex8,!QUERY3LINEITEM1CUSTOMER1!}!

!!DISTRIBUTED!QUERY3ORDERS1_P_1!!+=!!!{!scatterToIndex10!}!

!!LOCAL!repartition2!!:=!!REPARTITION<(orders_orderkey,long)>!{!repartitionToPartition1!}!

!!LOCAL!repartition4!!:=!!REPARTITION<(orders_orderkey,long)>!{!repartitionToPartition2!}!

!!DISTRIBUTED!QUERY3!!+=!!!{!repartitionToIndex1,!QUERY3ORDERS1_P_2!}!

!!DISTRIBUTED!QUERY3LINEITEM1!!+=!!!{!repartitionToIndex2!}!

Figure 5.5 – The block fusion effect in TPC-H Q3: before and after. Green blocks are local,
blue blocks are distributed. The initial program has 22 blocks (10+12), while the optimized
program has 4 blocks (2+2).

Code generated for location transformers uses platform-specific communication primitives

for exchanging data (e.g., in Spark, we use the shuffling operation, which is implicit in many

RDD transformations). To minimize network overhead, we encapsulate transformers of the

same type into one compound request per block. For instance, we coalesce multiple Scatter
transformers and their materialized data into just one Scatter request that uses a container

data structure.

5.5 Experimental Evaluation

We evaluate the performance of DBTOASTER’s incremental view maintenance in distributed

settings. Our experimental results show that our approach can scale to hundreds of workers

for queries of various complexities, while processing input batches with few second latencies.

We use Spark [152, 151] to parallelize the execution of incremental view maintenance code.

Spark offers a synchronous model of computation in which the driver governs job execution

and coordination with workers.

We execute a subset of the TPC-H queries with different complexities on a 500GB stream

of tuples. We chunk the input stream into batches of a given size, and, for each batch, we

run one or more Spark jobs to refresh the materialized view. To avoid scalability bottlenecks

caused by the driver handling all input data, we simulate a system in which every worker

receives, independently of the driver and other workers, a fraction of the input stream. In our

experiments, we ensure that each worker gets a roughly equal random partition of every batch.

Each worker preloads its batch partitions before starting the experiment.

Materialized views are either stored locally on the driver or distributed among workers. The

decision on how to partition materialized views in order to minimize their maintenance costs

is a challenging problem, which might benefit from previous work on database partitioning [59,
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Jobs 1 1 1 1 2 1 3 2 3 1 2

Stages 1 3 3 2 5 1 6 6 7 3 4

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Jobs 1 2 1 1 3 1 1 1 1 2 2

Stages 2 4 2 3 5 2 3 2 3 4 3

Table 5.1 – View maintenance complexity of TPC-H queries in Spark.

124]. We leave this question for future work. In this work, we rely on a simple heuristics rule:

we partition materialized views on the primary key of a base table appearing in the view

schema (e.g., orderkey); if there are multiple such primary keys of base tables (e.g., orderkey,

custkey), we partition on the one with the highest cardinality (orderkey); otherwise, if there

are no primary keys in the view schema, we assume the final aggregate has a small domain

and can be stored on the driver.

Query Complexity in Spark Generated Spark code runs a sequence of jobs to perform incre-

mental view maintenance. Each job consists of multiple stages (e.g., map-reduce phases),

and each stage corresponds to one block of distributed statements. In Table 5.1, we show

the complexity of the TPC-H queries in Spark expressed as the number of jobs and stages

necessary to process one batch of updates to base relations, assuming the partitioning strategy

described above. The structure of each query determines the number of jobs and stages.

5.5.1 Weak Scalability

We evaluate the scalability of DBTOASTER when each worker receives batch partitions of size

100,000. Figure 5.6 shows the measured latency and throughput for some TPC-H queries.

Q6 computes a single aggregate over the Lineitem relation. Given the initial random distribu-

tion of batches and small query output size, we create one stage during which each worker

computes a partial aggregate of its batch partition, and then, we sum these values up to update

the final result at the driver. The purpose of running Q6 is to measure Spark synchronization

overheads as a function of the number of workers. The query requires minimal network

communication as each worker sends one 64-bit value per batch. Also each worker spends

negligible time aggregating 100,000 tuples (6 ms on average), thus the results from Figure 5.6a

are close to pure synchronization overheads of Spark. The median latency of processing a

batch of size (100,000×#workers) increases from 65 ms for 50 workers to 386 ms for 1,000

workers, while the throughput rises up to 267 million tuples per sec for 600 workers. Both

metrics suffer from synchronization costs, which increase with more workers.

Q17 computes a two-way join with an equality-correlated nested aggregate. Incremental

computation of Q17 relies on the domain extraction procedure described in Section 3.4.2.
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Figure 5.6 – Weak scalability of the incremental view maintenance of TPC-H queries. Each
worker processes batches of size 100,000.

We partition both base relations on partkey and store the result at the driver. The execution

graphs consists of two stages. The first stage pre-aggregates batch partitions and shuffles the

result on partkey. The second stage refreshes the base relations and aggregates partial results

at the driver to update the final result.

Figure 5.6b shows the performance of incremental maintenance of Q17. The throughput rises

up to 600 nodes, while the median latency increases from 1.3s for 50 workers to 4s for 800

workers. Q17 achieves higher latency than Q6 due to several reasons: (1) workers perform more

expensive view maintenance (526 ms on average), (2) the shuffling phase requires serialization

and deserialization of data, writing to local disks, and reading from remote locations, and

(3) more processing stages incur more synchronization overheads. Pre-aggregation of input

batches reduces the amount of shuffled data from 7.6 MB to 1.8 MB per worker. This amount

remains constant regardless of the number of workers.

Figure 5.6c shows that the average throughput of Q3 increases up to 400 workers. Compared

with Q17, the median latency of Q3 is lower at smaller scales and almost identical when using

more workers. Q3 uses one additional stage to replicate pre-aggregated CUSTOMER deltas and

join them with materialized views partitioned over orderkey. The amount of shuffled data per

worker grows with the batch size, from 439 KB for 50 workers to 2.4 MB for 1,000 workers. The

trigger processing time per worker (excluding all other overheads) changes on average from
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120 ms for 50 workers to 305 ms for 1,000 workers, with less than 10% deviation among workers

in both cases. So, at larger scales, the increased shuffling cost dominates the processing time.

Q7 is one of the most complex queries in our workload from the perspective of incremental

view maintenance. The driver stores the top-level result and runs three jobs to process one

batch of updates. The median latency grows more rapidly compared to other queries, from

1.5s on 50 workers to 16.9s on 800 workers. The average running time of the update triggers

per worker also increases but more steadily, from 0.6s to 3.7s, while the amount of shuffled

data per worker grows from 2.1 MB to 8.4 MB. This increased network communication induces

higher latencies and brings down the average throughput beyond 400 workers.

In all these cases, using more workers increases the variability of latency. From our experience

with using Spark, stragglers can often prolong stage computation time by a factor of 1.5−3x

despite almost perfect load balancing. We also observe that the straggler effect is more pro-

nounced with queries shuffling relatively large amounts of data, such as Q3 and Q7. Examining

logs and reported runtime metrics gives no reasonable explanation for such behavior.

5.5.2 Strong Scalability

We measure the scalability of our incremental technique for constant batch sizes and varying

numbers of workers. Figure 5.7 shows the measured throughput for a subset of the TPC-H

queries. We use batches with 50, 100, 200, and 400 million tuples to ensure enough paralleliz-

able work inside update triggers. Figure A.1 in Appendix A.2 shows results for more TPC-H

queries. We compare our approach against re-evaluation using Spark SQL for batches with

400 million tuples. Note that Spark SQL can handle only flat queries.

Figure 5.7a shows that the median latency of Q6 decreases with more workers until the cost

of synchronization becomes comparable with the cost of batch processing. Processing 100

million tuples using 100 workers takes on average 14 ms per worker, leaving no opportunities

for further parallelization. For the four batch sizes, the lowest median latencies are 98 ms,

130 ms, 153 ms, and 211 ms. Re-evaluating Q6 on each update using Spark SQL achieves the

median latency of 32.8 seconds per batch on 100 nodes.

The incremental view maintenance of Q17 scales almost linearly, as shown in Figure 5.7b.

The median latency of processing one batch of 400 million tuples declines by 10.7x (from

68.5s to 6.4s) when using 16x more resources (from 50 to 800 workers). Here, the amount

of shuffled data per worker decreases from 77.4 MB to 4.2 MB, while the trigger processing

time per worker drops from 27.3s to 2.3s. We observe similar effects when processing smaller

batches. When using 800 workers, the median latency of processing different batch sizes varies

from 3.6s to 6.4s.

Figure 5.7c shows that the median latency of processing Q3 decreases with more nodes, from

30s with 25 workers to 4.2s with 400 workers for input batches with 400 million tuples. Adding

more workers decreases the amount of work performed inside each trigger and the amount of

77



Chapter 5. Distributed Incremental View Maintenance

0.06

0.25

1

4

16

64

256

16 32 64 128 256 512

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M SparkSQL	400M

(a) Q6

1

2

4

8

16

32

64

128

32 64 128 256 512 1024

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M

(b) Q17

1
2
4
8
16
32
64
128
256

16 32 64 128 256 512

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M SparkSQL	400M

(c) Q3

1
2
4
8
16
32
64
128
256
512

16 32 64 128 256 512

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M SparkSQL	400M

(d) Q7

Figure 5.7 – Strong scalability of the incremental view maintenance of TPC-H queries for
different batch sizes (in million of tuples). Appendix A.2 has results for more TPC-H queries.

shuffled data per worker while at the same time increases synchronization overheads. Using

larger batches creates more parallelizable work and enables scalable execution across more

nodes, as shown in Figure 5.7c. Re-evaluating Q3 using Spark SQL performs slower than our

incremental program for the corresponding batch size, from 8.5x using 25 workers to 20.9x

using 400 workers.

Q7 requires the most expensive maintenance work among the four TPC-H queries. The

median latency of processing 100 million tuples drops from 44.8s with 25 workers to 10.4s with

200 workers. Beyond 200 workers, even though the size of shuffled data per worker decreases,

managing large data creates stragglers that prolong execution time. Compared with Spark SQL

re-evaluation, our approaches achieves 3.3x lower median latency with 200 workers.

Using fewer workers increases the variability of latency in almost all our queries due to larger

amounts of shuffled data per worker. This observation confirms our previous conclusion that

shuffling large data among many workers creates stragglers.

5.5.3 Optimization Effects

Figure 5.8 shows the effects of our optimizations from Section 5.3 on the distributed incre-

mental view maintenance of TPC-H Q3 for input batches with 200 million tuples. We consider
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Figure 5.8 – Optimization effects on the distributed incremental view maintenance of TPC-H
Q3 for batches with 200 million tuples.

the naive implementation with all optimizations turned off; then, we include simplification

rules for location transforms to minimize their number, followed by enabling the block fusion

algorithm. Finally, we apply CSE and DCE optimizations to eliminate trigger statements doing

redundant network communication during program execution.

Our results show that applying simplification rules can reduce the median latency of incremen-

tal processing of Q3 by 35% when using 400 workers. Grouping together trigger statements

using the block fusion algorithm reduces the number of stages necessary to process one input

batch, which enables scalable execution. Eliminating redundant network communication

statements further decreases the latency by 11% for 400 workers. The final optimized pro-

gram relies on the Spark framework to pipeline processing stages, which brings up to 22%

performance improvements.

5.6 Summary

We describe a novel approach for compiling incremental view maintenance code into data-

parallel programs optimized for running in distributed environments. We present a set of

optimizations, heuristic rules, and algorithms for building distributed view maintenance

programs while trying to minimize network communication overheads. We show that our

approach can scale to hundreds of workers for queries of various complexities while processing

input batches with few second latencies.
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6 Incremental View Maintenance of
Linear Algebra Queries

Many analytics tasks and machine learning problems are naturally described using matrix

algebra. In this chapter, we focus on the incremental computation of complex analytical

queries written as iterative linear algebra programs. A program consists of a sequence of

statements performing operations on vectors and matrices. For each matrix (vector) that

dynamically changes over time, our goal is to define a trigger program describing how an

incremental update affects the result of each statement (materialized view). A delta expression

of one statement captures the difference between the new and old result. This chapter shows

how to efficiently propagate delta expressions through program statements while avoiding

re-evaluation of computationally expensive operations, like matrix multiplication or inversion.

6.1 Challenges and Contributions

Example 6.1.1 To demonstrate the challenges arising in incremental linear algebra, let us

consider a program that computes the fourth power of a given matrix A. The program consists

of two consecutive statements:

Listing 6.1 Linear algebra program for computing A4

1 B := A A;
2 C := B B;

Our goal is to maintain the result C on every update of A by ∆A. We compare the time

complexity of two computation strategies: re-evaluation and incremental maintenance. The

re-evaluation strategy first applies ∆A to A and then performs two O(n3)1 matrix multiplica-

tions to update C .

The incremental approach exploits the associativity and distributivity of matrix multiplication

to compute a delta expression for each statement of the program. The trigger program for

1This example assumes the traditional cubic-time bound for matrix multiplication. Section 6.2 generalizes this
cost for asymptotically more efficient methods.
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xx =+

A A + ΔAΔA ΔA ΔB

xx =+

B B + ΔBΔB ΔB ΔC

Figure 6.1 – A graphical representation of the evaluation of∆B and∆C for a single entry change
in A. Gray entries have nonzero values.

updates to A is:

Listing 6.2 Incremental linear algebra program for maintaining A4

1 ON UPDATE A BY ∆A:
2 ∆B := (∆A)A + A(∆A) + (∆)A)(∆A);
3 ∆C := (∆B)B + B(∆B) + (∆)B)(∆B);
4 A += ∆A; B += ∆B; C += ∆C;

Let us assume that ∆A represent a change of one cell in A. Figure 6.1 shows the effect of

that change on ∆B and ∆C 2. The shaded regions represent entries with nonzero values. The

incremental approach capitalizes on the sparsity of∆A and∆B to compute∆B and∆C inO(n)

and O(n2) operations, respectively. Together with the cost of updating B and C , incremental

evaluation of the program requires O(n2) operations, clearly cheaper than re-execution. 2

The main challenge in incremental linear algebra is how to represent and propagate delta

expressions. Even a small change in a matrix (e.g., a change of one entry) might have an

avalanche effect that updates every entry of the result matrix. In Example 6.1.1, a single

entry change in A causes changes of one row and column in B , which in turn pollute the

entire matrix C . If we were to propagate ∆C to a subsequent expression – for example, the

expression D = C C that computes A8 – then evaluating ∆D would require two full O(n3)

matrix multiplications, which is obviously more expensive than recomputing D using the new

value of C .

To confine the effect of such changes and allow efficient evaluation, we represent delta expres-

sions in a factored form, as products of low-rank matrices. For instance, we could represent

∆B as a vector outer product for single entry updates in A. Due to the associativity and dis-

tributivity of matrix multiplication, the factored form allows us to choose the evaluation order

that completely avoids expensive matrix multiplications.

2For brevity, we factor the last two monomials in ∆B and ∆C .
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To the best of our knowledge, this is the first work done towards efficient incremental compu-

tation for large scale linear algebra data analysis programs. In brief, our contribution can be

summarized as follows:

1. We present a framework for incremental maintenance of linear algebra programs that: (a)

represents delta expressions in compact factored forms that confine the avalanche effect of

input changes, as seen in Example 6.1.1, and thus cost; (b) utilizes a set of transformation rules

that metamorphose linear algebra programs into their cheap functional equivalents that are

optimized for dynamic datasets.

2. We demonstrate analytically and experimentally the efficiency of incremental processing

on various fundamental data analysis methods including ordinary least squares, batch gradient

descent, PageRank, and matrix powers.

3. We have built LINVIEW, a compiler for incremental data analysis that exploits these

novel techniques to generate efficient update triggers optimized for dynamic datasets. The

compiler is easily extensible to couple with any underlying system that supports matrix

manipulation primitives. We evaluate the performance of LINVIEW’s generated code over

two different platforms: (a) Octave programs running on a single machine, and (b) parallel

Spark programs running over a large cluster of Amazon EC2 nodes. Our results show that

incremental evaluation provides an order of magnitude performance benefit over traditional

re-evaluation.

This chapter is organized as follows. Section 6.2 establishes the terminology and computa-

tional models used in this chapter, Section 6.3 describes how to compute, represent, and

propagate delta expressions, Section 6.4 analyzes the efficiency of incremental maintenance

on common data analytics, Section 6.5 gives the system overview, Section 6.6 experimentally

validates our analysis, and Section 6.7 concludes this chapter.

6.2 Linear Algebra Programs

Linear algebra programs express computations using vectors and matrices as high-level

abstractions. The language used to form such programs consists of the standard matrix

manipulation primitives: matrix addition, subtraction, multiplication (including scalar, matrix-

vector, and matrix-matrix multiplication), transpose, and inverse. A program expresses a

computation as a sequence of statements, each consisting of an expression and a variable

(matrix) storing its result. The program evaluates these expressions on a given dataset of input

matrices and produces the result in one or more output matrices. The remaining matrices

are auxiliary program matrices, which can be manipulated (materialized or removed) for

performance reasons. For instance, the program of Example 6.1.1 consists of two statements

evaluating the expressions over an input matrix A and an auxiliary matrix B . The output

matrix C stores the computation result.
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6.2.1 Computational complexity

In this thesis, we refer to the cost of square matrix multiplication as O(nγ), where 2 ≤ γ≤ 3. In

practice, the complexity of matrix multiplication, for example, BLAS implementations [148],

is bounded by cubic O(n3) time. Better algorithms with an exponent of 2.37+ ε are known

(Coppersmith-Winograd and its successors); however, these algorithms are only relevant

for astronomically large matrices. Our incremental techniques remain relevant as long as

matrix multiplication stays asymptotically worse than quadratic time (a bound that has been

conjectured to be achievable [53], but still seems far off). Note that the asymptotic lower

bound for matrix multiplication isΩ(n2) operations because it needs to process at least 2n2

entries.

6.2.2 Iterative Programs

Many computational problems are iterative in nature. Iterative programs start from an ap-

proximate answer, and each iteration step improves the accuracy of the solution until the

estimated error drops below a specified threshold. Iterative methods are often the only choice

for problems for which direct solutions are either unknown (e.g., nonlinear equations) or

prohibitively expensive to compute (e.g., due to large problem dimensions).

In this work, we study (iterative) linear algebra programs from the viewpoint of incremental

view maintenance (IVM). The execution of an iterative program generates a sequence of

results, one for each iteration step. When the underlying data changes, IVM updates these

results rather than re-evaluating them from scratch. We do so by propagating the delta

expression of one iteration to subsequent iterations. With our incremental techniques, such

delta expressions are cheaper to evaluate than the original expressions.

We consider iterative programs that execute a fixed number of iteration steps. The reason for

this decision is that programs using convergence thresholds might yield a varying number of

iteration steps after each update. Having different numbers of outcomes per update would

require incremental maintenance to deal with outdated or missing old results; we leave this

topic for future work. By fixing the number of iterations, we provide a fair comparison of the

incremental and re-evaluation strategies 3.

6.2.3 Iterative Models

An iterative computation is governed by an iterative function that describes the computation

at each step in terms of the results of previous iterations (materialized views) and a set of input

matrices. Multiple iterative functions, or iterative models, might express the same computation

but by using different numbers of iteration steps. For instance, the computation of the k th

power of a matrix can be done in k iterations or in log2 k iterations using the exponentiation

by squaring method. Each iterative model of computation comes with its own complexity.

3If the solution does not converge after a given number of iterations, we can always re-evaluate additional steps.
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Our analysis of iterative programs considers three alternative models that require different

numbers of iteration steps to compute the final result. These models allow us to explore

trade-offs between computation time and memory consumption for both re-evaluation and

incremental maintenance.

Linear Model

The linear iterative model evaluates the result of the current iteration based on the result of

the previous iteration and a set of input matrices I . It takes k iteration steps to compute Tk .

Ti =
{

f (I ) for i = 1

g (Ti−1, I ) for i = 2,3, . . .

For example, the linear iterative model for computing the k-th power of a given matrix A is

T1 = A and Ti = Ti−1 A, for 2 ≤ i ≤ k.

Exponential Model

In the exponential model, the result of the i th iteration depends on the result of the (i /2)th

iteration. The model makes progressively larger steps between computed iterations, forming

the sequence T1, T2, T4, . . . . It takes O(logk) iteration steps to compute Tk .

Ti =
{

f (I ) for i = 1

g (Ti /2, I ) for i = 2,4,8 . . .

For example, the exponential iterative model for computing Ak when k is a power of two is

T1 = A and Ti = Ti /2 Ti /2 for i = 2,4,8, . . . ,k.

Skip Model

Depending on the dimensions of input matrices, incremental evaluation using the above

models might be suboptimal costwise. The skip-s model represents a sweet spot between

these two models. For a given skip size s, it relies on the exponential model to compute Ts

(generating the sequence T2, T4, . . . , Ts) and then generalizes the linear model to compute

every s th iteration (generating the sequence T2s , T3s , . . . ).

Ti =


f (I ) for i = 1

g (Ti /2, I ) for i = 2,4,8, . . . s

h(Ti−s ,Ts , I ) for i = 2s,3s, . . .

For example, the skip iterative model for computing Ak when s = 8 and k is divisible by s is

T1 = A, then Ti = Ti /2 Ti /2 for i = 2,4,8, and Ti = Ti−8 T8 for i = 16,24,32, . . . ,k.
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The skip model reconciles the two extremes: it corresponds to the linear model for s = 1 and

to the exponential model for s = k. In Section 6.4, we evaluate the time and space complexity

of these models for a set of iterative programs.

6.3 Incremental Processing

In this section, we develop techniques for converting linear algebra programs into functionally

equivalent incremental programs suited for execution on dynamic datasets. An incremental

program consists of a set of triggers, one trigger for each input matrix that might change over

time. Each trigger has a list of update statements that maintain the result for updates to the

associated input matrix. The total execution cost of an incremental program is the sum of

execution costs of its triggers. Incremental programs incur lower computational complexity

by converting the expensive operations of non-incremental programs to work with smaller

datasets. Incremental programs combine precomputed results with low-rank updates to avoid

costly operations, like matrix-matrix multiplications or matrix inversions.

Definition 6.3.1 A matrix M of dimensions (n ×n) is said to have rank-k if the maximum

number of linearly independent rows or columns in the matrix is k. M is called a low-rank

matrix if k ¿ n.

6.3.1 Delta Derivation

The basic step in building incremental programs is the derivation of delta expressions ∆A(E),

which capture how the result of an expression E changes as an input matrix A is updated by

∆A. We consider the update ∆A, called a delta matrix, to be constant and independent of

any other matrix. If we represent E as a function of A, then ∆A(E) = E(A +∆A)−E(A). For

presentation clarity, we omit the subscript in ∆A(E) when A is obvious from the context.

Most standard operations of linear algebra are amenable to incremental processing. Using the

distributive and associative properties of common matrix operations, we derive the following

set of delta rules for updates to A:

∆A(E1 E1) := (∆AE1)E1 +E1 (∆AE1)+ (∆AE1) (∆AE1)

∆A(E1 ±E1) := (∆AE1)± (∆AE1)

∆A(λE) := λ (∆AE)

∆A(E T) := (∆AE)T

∆A(E−1) := (E +∆AE)−1 −E−1

∆A(A) := ∆A

∆A(B) := 0 (A 6= B)

where λ is a scalar. Note that ∆A(∆A) = 0.
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We observe that the delta rule for matrix inversion references the original expression (twice),

which implies that it is more expensive to compute the delta expression than the original

expression. This claim is true for arbitrary updates to A (e.g., random updates of all entries, all

done at once). Later on, we discuss a special form of updates that admits efficient incremental

maintenance of matrix inversions. Note that if A does not appear in E , the delta expression for

matrix inversion is zero.

Example 6.3.2 This example shows the derivation process. Consider the Ordinary Least

Squares method for estimating the unknown parameters in a linear regression model. We

want to find a statistical estimate of the parameter β∗ best satisfying Y = X β. The solution,

written as a linear algebra program, is β∗ = (X T X )−1 X T Y . Here, we focus on how to derive the

delta expression for β∗ under updates to X . We defer an in-depth cost analysis of the method

to Section 6.4. Let Z = X T X and W = Z−1, then

∆Z = ∆(X T X )

= (∆(X T)) X +X T (∆(X ))+ (∆(X T)) (∆(X ))

= (∆X )T X +X T (∆X )+ (∆X )T (∆X )

and ∆W = (Z +∆Z )−1 −Z−1. Finally, ∆β∗ = (∆W ) X T Y +W (∆X )T Y + (∆W ) (∆X )T Y . 2

For random matrix updates, incrementally computing a matrix inverse is prohibitively expen-

sive. The Sherman-Morrison formula [127] provides a numerically cheap way of maintaining

the inverse of an invertible matrix for rank-1 updates. Given a rank-1 update u vT, where u

and v are column vectors, if E and E +u vT are nonsingular, then

∆(E−1) =−E−1 u vT E−1

1+ vT E−1 u

Note that ∆(E−1) is also a rank-1 matrix. For instance, ∆(E−1) = p qT, where p = λE−1u and

q = (E−1)T v are column vectors, and λ is a scalar (observe that the denominator is a scalar

too). Thus, incrementally computing E−1 for rank-1 updates to E requires O(n2) operations; it

avoids any matrix-matrix multiplication and inversion operations.

Example 6.3.3 We apply the Sherman-Morrison formula to Example 6.3.2. We start by con-

sidering rank-1 updates to X . Let ∆X = u vT, then

∆Z = v uT X +X T u vT + v uT u vT

= v (uT X )+ (X T u + v uT u) vT

The parentheses denote the subexpressions that evaluate to vectors. We observe that each

of the monomials is a vector outer product. Thus, we can write ∆Z = ∆Z1 +∆Z2, where

∆Z1 = p1 qT
1 and ∆Z2 = p2 qT

2 . Now we can apply the formula on each outer product in turn.
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∆Z1 (W ) =− W p1 qT
1 W

1+qT
1 W p1

∆Z2 (W ) =− (W +∆Z1 (W )) p2 qT
2 (W +∆Z1 (W ))

1+qT
2 (W +∆Z1 (W )) p2

Finally, ∆Z (W ) = ∆Z1 (W )+∆Z2 (W ). Computing ∆Z (W ) requires O(n2) operations, as dis-

cussed above. For comparison, the evaluation cost of ∆W in Example 6.3.2 is O(nγ). 2

In the above OLS examples, ∆W is a matrix with potentially all nonzero entries. If we store

these entries in a single delta matrix, we still need to perform O(nγ)-cost matrix multiplica-

tions in order to compute ∆β∗. Next, we propose an alternative way of representing delta

expressions that allows us to stay in the realm of O(n2) computations.

6.3.2 Delta Representation

In this section, we discuss how to represent delta expressions in a form that is amenable

to incremental processing. This form also dictates the structure of admissible updates to

input matrices. Incremental processing brings no benefit if the whole input matrix changes

arbitrarily at once.

Let us consider updates of the smallest granularity – single entry changes of an input matrix.

The delta matrix capturing such an update contains exactly one nonzero entry being updated.

The following example shows that even a minor change, when propagated naïvely, can cause

incremental processing to be more expensive than recomputation.

Example 6.3.4 Consider the program of Example 6.1.1 for computing the fourth power of a

given matrix A. Following the delta rules we write ∆B = (∆A) A + (A +∆A)(∆A). Figure 6.1

shows the effect of a single-entry change in A on ∆B . The change has escalated to a change

of one row and one column in B . When we propagate this change to the next statement, ∆C

becomes a fully-perturbed delta matrix where all entries might have nonzero values.

Now, suppose we want to evaluate A8, so we extend the program with the statement D :=C C .

To evaluate ∆D, which is expressed similarly as ∆B , we need to perform two matrix-matrix

multiplications and two matrix additions. Clearly, in this case, it is more efficient to recompute

D using the new C than to incrementally maintain it with ∆D . 2

The above example shows that linear algebra programs are, in general, sensitive to input

changes. Even a single entry change in the input can cause an avalanche effect of perturbations,

quickly escalating to its extreme after executing merely two statements. This observation

suggests O(n2) is the lower bound of this computation.

We propose a novel approach to deal with escalating updates. So far, we have used a single

matrix to store the result of a delta expression. We observe that such representation is highly

redundant as delta matrices typically have low ranks. Although a delta matrix might contain
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all nonzero entries, the number of linearly independent rows or columns is relatively small

compared to the matrix size. In Example 6.3.4, ∆B has a rank of at most two.

We maintain a delta matrix in a factored form, represented as a product of two low-rank

matrices. The factored form enables more efficient evaluation of subsequent delta expressions.

Due to the associativity and distributivity of matrix multiplication, we can base the evaluation

strategy for delta expressions solely on matrix-vector products, and thus avoid expensive

matrix-matrix multiplications.

To achieve this goal, we also represent updates of input matrices in the factored form. In

this thesis, we consider rank-k changes of input matrices as they can capture many practical

update patterns. For instance, the simplest rank-1 updates can express perturbations of one

complete row or column in a matrix, or even changes of the whole matrix when the same

vector is added to every row or column.

In Example 6.3.4, consider a rank-1 update ∆A = uAvT
A, where uA and vA are column vectors,

then ∆B = uA (vT
A A)+ (A uA) vT

A + (uA vT
A uA) vT

A is a sum of three outer products. The paren-

theses denote the factored subexpressions (vectors). The evaluation order enforced by these

parentheses yields only matrix-vector and vector-vector multiplications. Thus, the evaluation

of ∆B requires only O(n2) operations.

Instead of representing delta expressions as sums of outer products, we maintain them in a

more compact vectorized form for performance and presentation reasons. A sum of k outer

products is equivalent to a single product of two matrices of sizes (n ×k) and (k ×n), which

are obtained by stacking the corresponding vectors together. For instance,

u1 vT
1 +u2 vT

2 +u3 vT
3 =

[
u1 u2 u3

] vT
1

vT
2

vT
3

= P QT

where P and Q are (n ×3) block matrices.

To summarize, we maintain a delta expression as a product of two low-rank matrices with

dimensions (n ×k) and (k ×n), where k ¿ n. This representation allows efficient evaluation

of subsequent delta expressions without involving expensive O(nγ) operations; instead, we

perform only O(kn2) operations. A similar analysis naturally follows for rank-k updates with

linearly increasing evaluation costs; the benefit of incremental processing diminishes as k

approaches the dominant matrix dimension.

Considering low-rank updates of matrices also opens opportunities to benefit from previous

work on incrementalizing complex linear algebra operations. We have already discussed the

Sherman-Morrison method of incrementally computing the inverse of a matrix for rank-1

updates. Other work [63, 134] investigates rank-1 updates in different matrix factorizations,

like SVD and Cholesky decomposition. We can further use these new primitives to enrich our

language, and, consequently, support more sophisticated programs.
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6.3.3 Delta Propagation

When constructing incremental programs we propagate delta expressions from one statement

to another. For delta expressions with multiple monomials, factored representations include

increasingly more outer products. That raises the cost of evaluating these expressions. In

Example 6.3.4, ∆B consists of three outer products compacted as

∆B =
[

uA (A uA) (uA (vT
A uA))

] vT
A A

vT
A

vT
A

=UB V T
B

Here, UB and VB are (n ×3) block matrices. Akin to ∆B , ∆C is also a sum of three products

expressed using B , UB, and VB, and compacted as a product of two (n ×9) block matrices.

Finally, we use C and the factored form of ∆C to express ∆D as a product of two (n ×27) block

matrices.

Observe that UB and VB have linearly dependent columns, which suggests that we could have

an even more compact representation of these matrices. A less redundant form, which reduces

the size of UB and VB, guarantees less work in evaluating subsequent delta expressions. To

alleviate the redundancy in representation, we reduce the number of monomials in a delta

expression by extracting common factors among them. This syntactic approach does not

guarantee the most compact representation of a delta expression, which is determined by

the rank of the delta matrix. However, computing the exact rank of the delta matrix requires

inspection of the matrix values, which we deem too expensive. The factored form of ∆B of

Example 6.3.4 is

∆B =
[

uA (A uA +uA (vT
A uA))

] [
vT

A A

vT
A

]
=UB V T

B

Here, UB and VB are (n×2) matrices. ∆C is a product of two (n×4) matrices and∆D multiplies

two (n ×8) matrices.

6.3.4 Putting It All Together

So far, we have discussed how to derive, represent, and propagate delta expressions. In this

section, we put these techniques together into an algorithm that compiles a given program to

its incremental version.

Algorithm 6.3 shows the procedure that transforms a program P into a set of trigger functions

T , each of them handling updates to one input matrix. For updates arriving as vector outer

products, the matching trigger incrementally maintains the computation result by evaluating

a sequence of assignment statements (:=) and update statements (+=).

The algorithm takes as input two parameters: (1) a program P expressed as a list of assignment

statements, where each statement is defined as a tuple 〈Ai ,Ei 〉 of an expression Ei and a matrix

Ai storing the result, and (2) a set of input matrices I ; it outputs a set of trigger functions T .
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Algorithm 6.3 Compile program P into a set of triggers T

1 Input: Program P consisting of statements Ai := Ei and a set of input matrices I
2 Output: Triggers T maintaining the output on changes of each input matrix

3 function COMPILE(P , I)

4 T ←;
5 for each X ∈ I do

6 D← list(〈X ,u, v〉)
7 for each 〈Ai ,Ei 〉 ∈P do

8 〈Pi ,Qi 〉← COMPUTEDELTA(Ei ,D)

9 D←D.append(〈Ai ,Pi ,Qi 〉)
10 end for

11 T ← T ∪ BUILDTRIGGER(X ,D)

12 end for

13 return T
14 end function

The COMPUTEDELTA function follows the rules from Section 6.3.1 to derive the delta for a

given expression Ei and an update to X . The function returns two expressions that together

form the delta, ∆Ai = Pi QT
i . As discussed in Section 6.3.2, Pi and Qi are block matrices in

which each block has its defining expression.

The algorithm maintains a list of the generated delta expressions in D. Each entry in D
corresponds to one update statement of the trigger program. The entries respect the order of

statements in the original program.

Note that COMPUTEDELTA takes D as input. The list of matrices affected by a change in X – ini-

tially containing only X – expands throughout the execution of the algorithm. One expression

might reference more than one such matrix, so we have to deal with multiple matrix updates

to derive the correct delta expression. The delta rules presented in Section 6.3.1 consider

only single matrix updates, but we can easily extend them to handle multiple matrix updates.

Suppose D = {A,B , . . .} is a set of the affected matrices that also appear in an expression E .

Then, ∆D(E) :=∆A(E)+∆(D\{A})(E +∆A(E)). The delta rule considers each matrix update in

turn. The order of applying the matrix updates is irrelevant.

Example 6.3.5 Consider the expression E = A B and the updates ∆A and ∆B . Then,

∆{A,B}(E) =∆A(E)+∆B (E +∆A(E))

=(∆A)B +∆B (A B + (∆A)B)

=(∆A)B + A (∆B)+ (∆A) (∆B) 2

The BUILDTRIGGER function converts the derived deltas D for updates to X into a trigger

program. The function first generates the assignment statements that evaluate Pi and Qi for

each delta expression, and then the update statements for each of the affected matrices.
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Example 6.3.6 Consider the program that computes the fourth power of a given matrix A,

discussed in Example 6.1.1 and Example 6.3.4. Algorithm 6.3 compiles the program and

produces the following trigger for updates to A.

Listing 6.4 Incremental linear algebra program for computing A4 using factored deltas

1 ON UPDATE A BY (u A,v A):
2 U B := [ u A (Au A + u A (v A

Tu A)) ];
3 V B := [ (A Tv A) v A ];
4 U C := [ U B (BU B + U B (V B

TU B)) ];
5 V C := [ (B TV B) V B ];
6 A += u Av A

T; B += U BV B
T; C += U CV C

T;

Here, uA and vA are column vectors, UB , VB , UC , and VC are block matrices. Each delta,

including the input change, is a product of two low-rank matrices. 2

6.4 Incremental Analytics

In this section, we analyze a set of programs that have wide application across many domains

from the perspective of incremental maintenance. We study the time and space complexity of

both re-evaluation and incremental evaluation over dynamic datasets. We show analytically

that, in most of these examples, incremental maintenance exhibits better asymptotic behavior

than re-evaluation in terms of execution time. In other cases, a combination of the two

strategies offers the lowest time complexity. Note that our incremental techniques are general

and apply to a broader range of linear algebra programs than those presented here.

6.4.1 Ordinary Least Squares

Ordinary Least Squares (OLS) is a classical method for fitting a curve to data. The method

finds a statistical estimate of the parameter β∗ best satisfying Y = X β. Here, X = (m ×n) is a

set of predictors, and Y = (m ×p) is a set of responses that we wish to model via a function of

X with parameters β. The best statistical estimate is β∗ = (X T X )−1 X T Y . Data practitioners

often build regression models from incomplete or inaccurate data to gain preliminary insights

about the data or to test their hypotheses. As new data points arrive or measurements become

more accurate, incremental maintenance avoids expensive reconstruction of the whole model,

saving time and frustration.

First, consider the cost of incrementally computing the matrix inverse for changes in X . Let

Z = X T X , W = Z−1, and ∆X = u vT. As derived in Example 6.3.2,

∆Z =
[

v (X T u + v uT u)
] [

uT X

vT

]
=

[
p1 p2

] [
qT

1

qT
2

]

The cost of computing p2 and q1 is O(mn). The vectors p1, q1, p2, and q2 have size (n ×1).
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As shown in Example 6.3.3, we could represent the delta expressions of W as a sum of two outer

products, ∆Z1 (W ) = r1 sT
1 and ∆Z2 (W ) = r2 sT

2 ; for instance, s1 =W T q1 and r1 is the remaining

subexpression in ∆Z1 (W ). The computation of r1, q1, r2, and q2 involves only matrix-vector

O(n2) operations. Then, the overall cost of incremental maintenance of W is O(n2 +mn). For

comparison, re-evaluation of W takes O(nγ+mn2) operations.

Finally, we compute ∆β∗ for updates ∆X = u vT and ∆W = R ST, where R =
[

r1 r2

]
and

S =
[

s1 s2

]
are (n × 2) block matrices and ∆β∗ = R ST X T Y +W v uT Y +R ST v uT Y . The

optimum evaluation order for this expression depends on the size of X and Y . In general, the

cost of incremental maintenance ofβ∗ isO(n2+mp+np+mn). For comparison, re-evaluation

of β∗ takes O(mnp +n2 min(m, p)) operations.

Overall, considering both phases, the incremental maintenance of β∗ for updates to X has

lower computation complexity than re-evaluation. This holds even when Y is of small dimen-

sion (e.g., vector); the matrix inversion cost still dominates in the re-evaluation method. The

space complexity of both strategies is O(n2).

6.4.2 Matrix Powers

Our next analysis includes the computation of Ak of a square matrix A for some fixed k >
0. Matrix powers play an important role in many different domains including computing

the stochastic matrix of a Markov chain after k steps, solving systems of linear differential

equations using matrix exponentials, answering graph reachability queries where k represents

the maximum path length, and computing PageRank using the power method.

Matrix powers also provide the basis for the incremental analysis of programs having more

general forms of iterative computation. In such programs we often decide to evaluate several

iteration steps at once for performance reasons, and matrix powers allow us to express these

compound transformations between iterations, as shown later on.

Iterative Models

Table 6.1 expresses the matrix power computation using the iterative models presented in

Section 6.2. In all cases, A is an input matrix that changes over time, and Pk contains the

final result Ak . The linear model computes the result of every iteration, while the exponential

model makes progressively larger leaps between consecutive iterations evaluating only log2 k

results. The skip model precomputes As in Ps using the exponential model and then reuses Ps

to compute every s th subsequent iteration.

Expressing the matrix power computation as an iterative process eases the complexity analysis

of both re-evaluation and incremental maintenance, which we show next.
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Model Matrix Powers Sums of Matrix Powers General form: Ti+1 = A Ti +B

Linear Pi =
{

A

A Pi−1
Si =

{
I

A Si−1 + I
Ti =

{
A T0 +B

A Ti−1 +B

for i = 1

for i = 2,3, . . . ,k

Exponential Pi =
{

A

Pi /2 Pi /2
Si =

{
I

Pi /2 Si /2 +Si /2
Ti =

{
A T0 +B

Pi /2 Ti /2 +Si /2 B

for i = 1

for i = 2,4,8, . . . ,k

Skip-s Pi =


A

Pi /2 Pi /2

Ps Pi−s

Si =


I

Pi /2 Si /2 +Si /2

Ps Si−s +Ss

Ti =


A T0 +B

Pi /2 Ti /2 +Si /2 B

Ps Ti−s +Ss B

for i = 1

for i = 2,4,8, . . . , s

for i = 2s,3s, . . . ,k

Table 6.1 – The computation of matrix powers, sums of matrix powers, and the general iterative
computation expressed as recurrence relations. For simplicity of the presentation, we assume
that log2 k, log2 s, and k

s are integers.

Cost Analysis

We analyze the time and space complexity of re-evaluation and incremental maintenance of

Pk for rank-1 updates to A, denoted by ∆A = u vT. We assume that A is a dense square matrix

of size (n ×n).

Re-evaluation Table 6.2 shows the time complexity of re-evaluating Pk in different iterative

models. The re-evaluation strategy first updates A by ∆A and then recomputes Pk using the

new value of A. All three models perform one O(nγ) matrix-matrix multiplication per iteration.

The total execution cost thus depends on the number of iteration steps: The exponential

method clearly requires the fewest iterations log2 k, followed by (log2 s + k
s ) and k iterations of

the skip and linear models.

Table 6.2 also shows the space complexity of re-evaluation in the three iterative models. The

memory consumption of these models is independent of the number of iterations. At each

iteration step these models use at most two previously computed values, but not the full

history of Pi values.

Incremental Maintenance This strategy captures the change in the result of every iteration

as a product of two low-rank matrices ∆Pi =Ui V T
i . The size of Ui and Vi and, in general, the

rank of ∆Pi grow linearly with every iteration step. We consider the case when k ¿ n in which

we can profit from the low-rank delta representation. This is a realistic assumption as many

practical computations consider large matrices and relatively few iterations; for example,

80.7% of the pages in a PageRank computation converge in less than 15 iterations [87].

Table 6.2 shows the time complexity of incremental maintenance of Pk in the three iterative

models. Incremental maintenance exhibits better asymptotic behavior than re-evaluation in

all three models, with the exponential model clearly dominating the others.
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Model (Sums of ) Matrix Powers General form: Ti+1 = A Ti +B

Re-eval Incremental Re-eval Incremental Hybrid

T
im

e

Linear nγk n2k2 pn2k (n2 +pn)k2 pn2k

Exp nγ logk n2k (nγ+pn2) logk (n2 +pn)k pn2 logk +n2k

Skip-s nγ(log s + k
s ) n2 k2

s nγ log s +pn2(log s + k
s ) (n2 +np) k2

s pn2(log s + k
s )+n2s

Sp
ac

e Linear n2 n2k n2 +np n2 +knp n2 +knp

Exp n2 n2 logk n2 +np (n2 +np) logk (n2 +np) logk

Skip-s n2 n2(log s + k
s ) n2 +np (n2 +np) log s +np k

s (n2 +np) log s +np k
s

Table 6.2 – The time and space complexity (expressed in big-O notation) of the different
evaluation techniques for the various computational models under rank-1 updates to matrix
A where 2 ≤ γ≤ 3, as described in Section 6.2.

The performance improvement comes at the cost of increased memory consumption, as

incremental maintenance requires storing the result of every iteration step. Table 6.2 also

shows the space complexity of incremental maintenance for the three iterative models.

Sums of Matrix Powers

A form of matrix powers that frequently occurs in iterative computations is a sum of matrix

powers. The goal is to compute Sk = I +A+ . . . Ak−2+Ak−1, for a given matrix A and fixed k > 0.

Here, I is the identity matrix.

In Table 6.1, we express this computation using the iterative models discussed earlier. In the

exponential and skip models, the computation of Sk relies on the results of matrix power

computation, denoted by Pi and evaluated using the exponential model discussed earlier.

For all three models, the time and space complexity of computing sums of matrix powers

is the same in terms of big-O notation as that of computing matrix powers. The intuition

behind this result is that the complexity of each iteration step has remained unchanged. Each

iteration step performs one matrix addition more, but the execution cost is still dominated by

the matrix multiplication.

6.4.3 General Form: Ti+1 = A Ti +B

The two examples of matrix power computation provide the basis for the discussion about a

more general form of iterative computation: Ti+1 = A Ti +B , where A and B are input matrices.

In contrast to the previous analysis of matrix powers, this iterative computation involves

also non-square matrices, T = (n ×p), A = (n ×n), and B = (n ×p), making the choice of the

optimum evaluation strategy dependent on the values of n, p, k, and s.

95



Chapter 6. Incremental View Maintenance of Linear Algebra Queries

Many iterative algorithms share this form of computation including gradient descent, PageR-

ank, iterative methods for solving systems of linear equations, and the power iteration method

for eigenvalue computation. Here, we analyze the complexity of the general form of iterative

computation, and the same conclusions hold in all these cases.

Iterative Models

The iterative models of the form Ti+1 = A Ti +B , which are presented in Table 6.1, rely on the

computations of matrix powers and sums of matrix powers. To understand the relationship

between these computations, consider the iterative process Ti+1 = A Ti +B that has been

“unrolled” for k iteration steps. The direct formula for computing Ti+k from Ti is Ti+k =
Ak Ti + (Ak−1 + . . .+ A+ I )B .

We observe that Ak and
∑k−1

i=0 Ai correspond to Pk and Sk in the earlier examples, for which

we have already shown efficient (incremental) evaluation strategies. Thus, to compute Ti , we

maintain two auxiliary views Pi and Si evaluating matrix powers and sums of matrix powers

using the exponential model discussed before.

Cost Analysis

We analyze the time and space complexity of re-evaluation and incremental maintenance of

Tk for rank-1 updates to A, denoted by∆A = u vT. We assume that A is an (n×n) dense matrix

and that Ti and B are (n ×p) matrices. We can apply a similar analysis for changes in B .

We also analyze a combination of the two strategies, called hybrid evaluation, which avoids the

factorization of delta expressions but instead represents them as single matrices. We consider

this strategy because the size (n ×p) of the delta matrix ∆Ti might be insufficient to justify the

use of the factored form. For instance, consider an extreme case when Ti is a column vector

(p = 1), then ∆Ti has rank 1, and further decomposition into a product of two matrices would

just increase the evaluation cost. In such cases, hybrid evaluation expresses ∆Ti as a single

matrix and propagates it to the subsequent iterations.

Table 6.2 presents the time complexity of re-evaluation, incremental and hybrid evaluation of

the Ti+1 = A Ti +B computation expressed in different iterative models for rank-1 updates to

A. The same complexity results hold for the special form of iterative computation where B = 0.

We discuss the results for each evaluation strategy next.

Table 6.2 also shows the space complexity of the three iterative models when executed using

different evaluation strategies. The re-evaluation strategy maintains the result of Ti , and if

needed Pi and Si , only for the current iteration; it also stores the input matrices A and B .

In contrast, the incremental and hybrid evaluation strategies materialize the result of every

iteration, thus the memory consumption depends on the number of performed iterations.
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Re-evaluation The choice of the iterative model with the best asymptotic behavior depends

on the value of parameters n, p, k, and s. The time complexities from Table 6.2 shows that the

linear model incurs the lowest time complexity when p ¿ n, otherwise the exponential model

dominates the others in terms of the running time. We analyze the cost of each iterative model

next. Note that the re-evaluation strategy first updates A by ∆A and then recomputes Ti , and

if needed Pi and Si , using the new value of A.

• Linear model The computation performs k iterations, where each one incurs the cost

of O(pn2), and thus the total cost is O(pn2k).

• Exponential model Maintaining Pi and Si takes O(nγ) operations as discussed before,

while recomputing Ti requires O(pn2) operations. Overall, the re-evaluation cost is

O((nγ+pn2)log k).

• Skip model The skip model combines the above models, which reflects on the cost

analysis. Maintaining Ps and Ss takes O(nγ log s) operations as shown earlier, while

recomputing Ti costs O(pn2) per iteration. The total number of (log2 s + k
s ) iterations

yields the total cost of O(nγ log s +pn2(log s + k
s )).

Incremental Maintenance Table 6.2 shows that incremental evaluation of Tk using the ex-

ponential model incurs the lowest time complexity among the three iterative models. It also

outperforms complete re-evaluation when p > n, but the performance benefit diminishes

as p becomes smaller than n. For the extreme case when p = 1, complete re-evaluation and

incremental maintenance have the same asymptotic behavior, but in practice re-evaluation

performs fewer operations as it avoids the overhead of computing and propagating the fac-

tored deltas. We show next how to combine the best of both worlds to lower the execution

time when p ¿ n.

Hybrid evaluation Hybrid evaluation departs from incremental maintenance in that it repre-

sents the change in the result of every iteration as a single matrix instead of an outer product

of two vectors. The benefit of hybrid evaluation arises when the rank of ∆Ti = (n ×p) is not

large enough to justify the use of the factored form; that is, when the dimension p or n is

comparable with k.

Table 6.2 shows the time complexity of hybrid evaluation of the Ti+1 = A Ti +B computation

expressed in different iterative models for rank-1 updates to A. For the extreme case when

p = 1, the skip model performs O(log s + k
s + s) matrix-vector multiplications. In comparison,

re-evaluation and incremental maintenance perform O(k) such operations. So, the skip model

of hybrid evaluation bears the promise of better performance for the given values of k and s.

6.5 System Overview

We have built the LINVIEW system that implements incremental maintenance of analytical

queries written as (iterative) linear algebra programs. It is a compilation framework that
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Parser Incremental
Maintenance Optimizer Code

Generator

Linear Algebra Programs 
(MATLAB, R)

AST Triggers 
Optimized
Triggers

Incremental Programs 
(Spark, Octave)

Figure 6.2 – The LINVIEW system overview

transforms a given program, based on the techniques discussed above, into efficient update

triggers optimized for the execution on different runtime engines. Figure 6.2 gives an overview

of the system.

Workflow The LINVIEW framework consists of several compilation stages: the system trans-

forms the code written in APL-style languages (e.g., R, MATLAB, Octave) into an abstract

syntax tree (AST), performs incremental compilation, optimizes produced update triggers,

and generates efficient code for execution on single-node (e.g., MATLAB) or parallel processing

platforms (e.g., Spark, Mahout, Hadoop). The generated code consists of trigger functions for

changes in each input matrix used in the original program.

The optimizer analyzes intra- and inter-statement dependencies in the input program and per-

forms transformations, like common subexpression elimination and copy propagation [113],

to reduce the overall maintenance cost. In this process, the optimizer might define a num-

ber of auxiliary materialized views that are maintained during runtime to support efficient

processing of the trigger functions.

Extensibility The LINVIEW framework is also extensible: one may add new frontends to

transform different input languages into AST or new backends that generate code for various

execution environments. At the moment, LINVIEW supports generation of Octave programs

that are optimized for execution in multiprocessor environments, as well as Spark code for

execution on large-scale cluster platforms. The experimental section evaluates both backends.

Distributed Execution The competitive advantage of incremental computation over re-

evaluation – reduced computation time – is even more pronounced in distributed environ-

ments. Generated incremental programs are amenable to distributed execution as they are

composed of the standard matrix operations, for which many specialized tools offer scalable

implementations, like ScaLAPACK, Intel MKL, and Mahout. In addition, by transforming ex-

pensive matrix operations to work with smaller datasets and representing changes in factored

form, our incremental techniques also minimize the communication overhead as less data

has to be shipped over the network.

Data Partitioning LINVIEW analyzes data flow dependencies and data access patterns in

a generated incremental program to decide on a partitioning scheme that minimizes data

movement. A frequently occurring expression in trigger programs is a multiplication of a large
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matrix and a small delta matrix, typically performed in both directions (e.g., A∆A and ∆A A in

Example 6.1.1). To keep such computations strictly local, LINVIEW partitions large matrices

both horizontally and vertically, that is, each node contains one block of rows and one block of

columns of a given matrix. Although such a hybrid partitioning strategy doubles the memory

consumption, it allows the system to avoid expensive reshuffling of large matrices, requiring

only small delta vectors or low-rank matrices to be communicated.

6.6 Experiments

This section demonstrates the potential of LINVIEW over traditional re-evaluation techniques

by comparing the average view refresh time for common data mining programs under a con-

tinuous stream of updates. We have built an APL-style frontend where users can provide their

programs and annotate dynamic matrices. The LINVIEW backend consists of two code genera-

tors capable of producing Octave and Spark executable code, optimized for the execution in

multiprocessor and distributed environments.

For both Spark and Octave backends, our results show that:

1. Incremental view maintenance outperforms traditional re-evaluation in almost all cases,

validating the complexity results of Section 6.4;

2. The performance gap between re-evaluation and incremental computation increases

with higher dimensions;

3. The hybrid evaluation strategy from Section 6.4.3, which combines re-evaluation and

incremental computation, exhibits best performance when the input matrices are not

large enough to justify the factored delta representation.

Experimental Setup To evaluate LINVIEW’s performance using Octave, we run experiments

on a 2.66GHz Intel Xeon with 2×6 cores, each with 2 hardware threads, 64GB of DDR3 RAM,

and Mac OS X Lion 10.7.5. We execute the generated code using GNU Octave v3.6.4, an APL-

style numerical computation framework, which relies on the ATLAS library for performing

multi-threaded BLAS operations.

For large-scale experiments, we use an Amazon EC2 cluster with 26 compute-optimized

instances (c3.8xlarge). Each instance has 32 virtual CPUs, each of them is a hardware hyper-

thread from a 2.8GHz Intel Xeon E5-2680v2 processor, 60GB of RAM, and 2×320GB SSD. The

instances are placed inside a non-blocking 10 Gigabit Ethernet network.

We run our experiments on top of the Spark engine – an in-memory parallel processing

framework for large-scale data analysis. We configure Spark to launch 4 workers on one EC2

instance – 100 workers in total, each with 8 virtual CPUs and 13.6GB of RAM – and one master

node on a separate EC2 instance. The generated Spark code relies on Jblas for performing

matrix operations in Java. The Jblas library is essentially a wrapper around the BLAS and
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LAPACK routines. For the purpose of our experiments, we compiled Jblas with AMD Core

Math Library v5.3.1 (ACML) – AMD’s BLAS implementation optimized for high performance.

Jblas uses the ACML native library only for O(nγ) operations, like matrix multiplication.

We implement matrix multiplication on top of Spark using the simple parallel algorithm [73],

and we partition input matrices in a 10×10 grid. For the scalability test we use square grids

of smaller sizes. For incremental evaluation, which involves multiplication with low-rank

matrices, we use the data partitioning scheme explained in Section 6.5; we split the data

horizontally among all available nodes, then broadcast the smaller relation to perform local

computations, and finally, concatenate the result at the master node. The Spark framework

carries out the data shuffling among nodes.

Workload Our experiments consider dense random matrices up to (100K× 100K) in size,

containing up to 10 billion entries. All matrices have double precision and are preconditioned

appropriately for numerical stability. For incremental evaluation, we also precompute the

initial values of all auxiliary views and preload these values before the actual computation.

We generate a continuous random stream of rank-1 updates where each update affects one

row of an input matrix. On every such change, we re-evaluate or incrementally maintain the

final result. The reported values show the average view refresh time over 3 runs; the standard

deviation was less than 5% in each experiment.

Notation Throughout the evaluation discussion we use the following notation: (a) The pre-

fixes REEVAL, INCR, and HYBRID denote traditional re-evaluation, incremental processing, and

hybrid computation, respectively; (b) The suffixes LIN, EXP, and SKIP-S represent the linear,

exponential, and skip-s models, respectively. These evaluation models are described in detail

in Section 6.4 and Table 6.2.

6.6.1 Ordinary Least Squares

We conduct a set of experiments to evaluate the statistical estimator β∗ using OLS as defined

in Section 6.4.1. Exceptionally in this example, we present only the Octave results as the

current Spark backend lacks the support for re-evaluation of matrix inversion. The predictors

matrix X has dimension (n ×n) and the responses matrix Y is of dimension (n ×p). Given

a continuous stream of updates on X , Figure 6.3 compares the average execution time of

re-evaluation REEVAL and incremental maintenance INCR of β∗ with different sizes of n. We

set p = 1 because this setting represents the lowest cost for REEVAL, as the cost is dominated

by the matrix inversion re-evaluation O(nγ). The graph illustrates the superiority of INCR over

REEVAL in computing the OLS estimates. Notice the asymptotically different behavior of these

two graphs – the performance gap between REEVAL and INCR increases with matrix size, from

3.56x for n = 4,000 to 11.45x for n = 20,000 – which is consistent with the complexity results

from Section 6.4.1.
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Figure 6.3 – Octave: Ordinary Least Squares
(X T X )−1 X T y , where X = (n ×n), y = (n ×1)
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Figure 6.4 – Spark: Strong scalability of the
A16 computation for A = (30,000×30,000)

6.6.2 Matrix Powers

We analyze the performance of the matrix powers Ak evaluation, where A has dimension

(n ×n), by varying different parameters of the computational model. First, we evaluate the

performance of the evaluation strategies presented in Section 6.4.2, for a fixed dimension size

and number of iterations k = 16. Figures 6.5a and 6.5b illustrate the average view refresh time

of Octave generated programs for n = 10,000 and Spark generated programs for n = 30,000.

In both implementations, the results demonstrate the virtue of INCR over REEVAL and the

efficiency of INCREXP over INCRLIN and INCRSKIP-S.

Next, we explore various scalability aspects of the matrix powers computation. Figure 6.5c

reports on the Octave performance over larger dimension sizes n, given a fixed number of

iteration steps k = 16; Figure 6.5d illustrates the Spark performance for even larger matrices.

In both cases, INCREXP outperforms REEVALEXP with similar asymptotic behavior. As in the

OLS example, the performance gap increases with higher dimensionality.

Figure 6.5d shows the Spark re-evaluation results for matrices up to size n = 50,000. Beyond

this limit, the running time of re-evaluation exceeds one hour due to an increased communica-

tion cost and garbage collection time. The re-evaluation strategy has a more dynamic model of

memory usage due to frequent allocation and deallocation of large memory chunks as the data

gets shuffled among nodes. In contrast, incremental evaluation avoids expensive communica-

tion by sending over the network only relatively small matrices. Up until n = 90,000, we see a

linear increase in the INCREXP running time. However, as discussed in Section 6.4, we expect

the O(n2) complexity for incremental evaluation. The explanation lies in that the generated

Spark code distributes the matrix-vector computation among many nodes and, inside each

node, over multiple available cores, effectively achieving linear scalability. For n = 100,000,

incremental evaluation hits the resource limit in this cluster configuration, causing garbage

collection to increase the average view refresh time.

Memory Requirements Table 6.3 presents the memory requirements and Spark single-

update execution times of REEVALEXP and INCREXP for the A16 computation and various

matrix dimensions. The last row represents the ratio between the speedup achieved using
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(a) Octave: A16 where A = (10,000×10,000)
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(b) Spark: A16 where A = (30,000×30,000)
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(c) Octave: A16 where A = (n ×n)
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(d) Spark: A16 where A = (n ×n)
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(e) Octave: Ak where A = (10,000×10,000)
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(f) Spark: Ak where A = (30,000×30,000)

Figure 6.5 – Computing matrix powers (Ak ) using Octave and Spark

incremental evaluation and the memory overhead imposed by maintaining the results of

intermediate iterations. We conclude that the benefit of investing more memory resources

increases with higher dimensionality of the computation.

Next, in Figures 6.5e and 6.5f, we vary the number of iteration steps k given a fixed dimen-

sion, n = 10,000 for Octave and n = 30,000 for Spark. The Octave performance gap between

INCREXP and REEVALEXP increases with more iterations up to k = 256 when the size of the

delta vectors (10,000×256) becomes comparable with the matrix size. The Spark implementa-

tion broadcasts these delta vectors to each worker, so the achieved speedups decrease with

larger iteration numbers due to the increased communication costs. However, as argued in

Section 6.4.2, many iterative algorithms in practice require only a few iterations to converge,

and for those the communication costs stay low.
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Matrix Size 20K 30K 40K 50K

Memory REEVALEXP 8.9 20.1 35.8 55.9

(GB) INCREXP 29.8 67.1 119.2 186.3

Time REEVALEXP 95.0 203.4 667.3 1328.7

(sec) INCREXP 9.6 14.1 21.0 24.9

Speedup vs. Memory Cost 2.99 4.31 9.55 16.00

Table 6.3 – The memory requirements and Spark view refresh times of REEVALEXP and INCREXP

for A16 and different matrix sizes. The last row is the ratio between the speedup and memory
overhead incurred by maintaining auxiliary views.
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(a) Octave: A0 + A1 + . . .+ A15 where A = (n ×n)
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(b) Spark: A0 + A1 + . . .+ A15 where A = (n ×n)

Figure 6.6 – Computing a sum of matrix powers (A0 + A1 + . . .+ A15) using Octave and Spark

Finally, we evaluate the strong scalability of the matrix powers computation for different num-

bers of Spark nodes. We evaluate various square grid configurations for re-evaluation of A16,

where n = 30,0004. Figure 6.4 shows that our Spark implementation of matrix multiplication

scales with more nodes. Note that incremental evaluation is less susceptible to the number of

nodes than re-evaluation; the average time per view refresh varies from 10 to 26 seconds.

6.6.3 Sums of Powers

We analyze the computation of sums of matrix powers, as described in Section 6.4.2. Since it

shares the same complexity as the matrix powers computation, we present only the perfor-

mance of the exponential models. Figure 6.6 compares INCREXP and REEVALEXP on various

dimension sizes n using Octave and Spark, for a given fixed number of iterations k = 16.

Similarly to the matrix powers results from Figures 6.5c and 6.5d, INCREXP outperforms tradi-

tional REEVALEXP, and the achieved speedup increases with n. Beyond n = 40,000, the Spark

re-evaluation exceeds the one-hour time limit.

4To achieve perfect load balance with different grid configurations, we choose the matrix size to be the closest
number to 30,000 that is divisible by the total number of workers.
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Figure 6.7 – Spark: General model
Ti+1 = A Ti for k = 16 iterations,

A = (n ×n), T = (n ×p), n = 30,000
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Figure 6.8 – Spark: Linear regression
Ti+1 = A Ti +B for k = 16 iterations,

A = (n ×n), T,B = (n ×1,000), n = 30,000

6.6.4 General Form

We evaluate the general iterative model of computation Ti+1 = A Ti +B , where Tn×p , An×n ,

and Bn×p , using the following settings:

Case B = 0 The iterative computation degenerates to Ti+1 = A Ti , which represents matrix

powers when p = n, and thus we explore an alternative setting of 1 ≤ p < n. For small values of

p, the LIN model has the lowest complexity as it avoids expensiveO(nγ) matrix multiplications.

Figure 6.7 shows the results of different evaluation strategies, given a fixed dimension n =
30,000 and iteration steps k = 16. For p = 1, HYBRIDLIN outperforms REEVALLIN by 16% and

INCRLIN by 53%. However, the evaluation cost of both HYBRIDLIN and REEVALLIN increases

linearly with p. INCRLIN exhibits the best performance among them when p is large enough

to justify the factored delta representation.

Case B 6= 0 We study an analytical query evaluating linear regression using the gradient

descent algorithm of the form Θi+1 =Θi − X T (XΘi −Y ). We adapt this form to the general

iterative model by substituting A = I − X T X and B = X T Y , where I represents the identity

matrix. Figure 6.8 shows the performance of different iterative models for both re-evaluation

and incremental computation, given fixed sizes n = 30,000 and p = 1,000 and a fixed number

of iterations k = 16. Note the logarithmic scale on the y axis. The LIN model exhibits the best

re-evaluation performance; the SKIP-4 model has the lowest view refresh time for incremental

evaluation. Overall, incremental computation outperforms traditional re-evaluation by a

factor of 36.7x.

6.6.5 Batch updates

We analyze the performance of incremental matrix powers computation for batch updates. We

simulate a use case in which certain regions of the input matrix are changed more frequently

than the others, and the frequency of row updates is described using a Zipf distribution.

Table 6.4 shows the performance of incremental evaluation for a batch of 1,000 updates and

different Zipf factors. As the row update frequency becomes more uniform, that is, more rows
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Zipf factor 5.0 4.0 3.0 2.0 1.0 0.0

Octave (10K) 6.3 6.8 7.5 10.9 68.4 236.5

Spark (30K) 28.1 41.5 67.3 186.1 508.9 1678.8

Table 6.4 – The average Octave and Spark view refresh times in seconds for INCREXP of A16

and a batch of 1,000 updates. The row update frequency is drawn from a Zipf distribution.

are affected by a given batch, INCREXP loses its advantage over REEVALEXP because the delta

matrices become larger and more expensive to compute and distribute. To put these results

in the context, a single update of a n = 10,000 matrix in Octave takes 99.1 and 6.3 seconds

on average for REEVALEXP and INCREXP; For one update of a n = 30,000 matrix using Spark,

REEVALEXP and INCREXP take 203.4 and 14.1 seconds on average. The Spark implementation

incurs huge communication overheads, which significantly prolong the running time.

6.7 Summary

In this chapter, we studied the incremental view maintenance problem for complex analytical

queries expressed as linear algebra programs. We have developed a framework, called LINVIEW,

for capturing deltas of linear algebra programs and understanding their computational cost.

Linear algebra operations tend to cause an avalanche effect where even very local changes

to the input matrices spread out and infect all of the intermediate results and the final view,

causing incremental view maintenance to lose its performance benefit over re-evaluation.

We have developed techniques based on matrix factorizations to contain such epidemics of

change. As a consequence, our techniques make incremental view maintenance of linear

algebra practical and usually substantially cheaper than re-evaluation. We showed, both

analytically and experimentally, the usefulness of these techniques when applied to standard

analytics tasks. Our evaluation demonstrated the efficiency of LINVIEW in generating parallel

incremental programs that outperform re-evaluation techniques by orders of magnitude.
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7 Enabling Digital Signal Processing
over Data Streams

An increasing proportion of today’s data comes from networks of sensors and devices, com-

monly known as the Internet of Things (IoT). IoT workflows and applications typically run the

same logic over a large collection of sensor devices using queries that combine relational and

signal processing operations. Data analysts use relational operators, for example, to group

signal by different sources or join signals with historical and reference data. They also use

domain-specific algorithms such as Fast Fourier Transform (FFT) to do spectral analysis, inter-

polation to handle missing values, or digital filters to recover noisy signals. Reconciling these

two seemingly disparate worlds, especially in the context of real-time analysis, is challenging.

The database community has recognized the need for a tighter integration of data management

systems and domain-specific algorithms. Numerical computing environments like MATLAB

and R provide efficient domain-specific algorithms but remain unsuitable for general-purpose

processing involving relational operations such as joins, filtering, or group-by aggregation.

To enable the use of specialized routines in complex data processing, increasingly many

data management systems integrate with numerical frameworks, R in particular: MonetDB

and SQL Server support queries that can invoke R code, which brings all the power of R

packages inside a database; SciDB [139, 58, 41], Spark [152, 151], and Pivotal (Greenplum) [147]

provide R packages that allow the user to interact with these systems directly from R. All these

integrations benefit from re-using unmodified MATLAB/R scripts.

However, the existing integration mechanisms between database systems and numerical

frameworks are suboptimal performance-wise as they treat both sides as independent sys-

tems. Such loose system coupling comes with significant processing overheads. For instance,

executing R programs requires exporting data from the database, converting into R format,

running R scripts, converting back into a relational format, and importing into the database.

Sending data back and forth between the systems might dominate the execution time, for

example when running (sub)linear R operators; it also increases the latency of processing,

which makes this approach particularly unsuitable for real-time processing.
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In this chapter, we advocate a deep integration of digital signal processing (DSP) operations

with a general-purpose query processor. Our approach aims to bring signal processing closer

to data, not the other way around and eliminate the need for expensive communication with

external numerical tools. Integrating DSP operations into a query engine empowers users to

express end-to-end workflows more succinctly, inside one system and using one language.

7.1 Challenges and Contributions

This tight integration poses several requirements and challenges:

1. Query and data model reconciliation. General-purpose query engines and numerical

tools use different query and data models. The former support relational and streaming

queries over typically relational or tempo-relational data; the latter support domain-

specific, mostly offline, computations on arrays. The key challenge is how to seamlessly

unify these disparate models instead of layering them on top of each other, and yet pro-

vide experts from both relational and signal processing worlds with familiar abstractions.

2. Performance. High performance is always a critical requirement for analytics. The deep

integration approach brings more expressiveness to the query language but also carries

a risk of throwing the baby out with the bathwater, that is, completely giving up on

performance. Previous results suggested that simulating array computations on top

of a relational database can yield orders of magnitude worse performance, which has

motivated the development of array-based database systems [139, 58, 41]. In order to

be welcomed by data scientists and DSP experts, a deeply integrated system should

preserve the performance of existing relational operators while being competitive with

MATLAB and R on pure domain-specific tasks. For workflows mixing relational and DSP

processing, a tightly-coupled system should capitalize the potential of having much bet-

ter performance than the existing loosely-coupled alternatives. For achieving this goal,

the key challenge is how to efficiently integrate DSP operators inside a query processor.

3. Extensibility. A query processor with DSP support should allow domain experts and

practitioners to implement custom operators in a way that feels natural to them – by

writing algorithms against arrays without worrying about the format of the underlying

data. Exposing arrays to operator writers enables easy integration of existing highly

optimized DSP algorithms, for instance, implementations exploiting SIMD operations

on modern processors. The system should seamlessly integrate new operators with the

existing query language.

4. Online and incremental computation. Stream processors loosely coupled with MATLAB

or R cannot incrementalize signal processing tasks that operate over hopping (over-

lapping) windows of data. The stateless nature of the DSP routines in MATLAB and

R leaves no choice for stream engines but to redundantly compute over overlapping

subsets of the data. On the other hand, the deep integration approach opens up the
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opportunity for incremental DSP computation through the use of stateful operators.

The user writing these operators should decide on which state to maintain and how to

perform the incremental computation using the deltas provided by the system.

We extend TRILL [45], a query processing engine based on a tempo-relational model, with

the support for digital signal processing. The deeply integrated system, named TRILLDSP,

fulfills the above requirements: (1) it provides a unified query language for processing tempo-

relational and signal data; (2) its performance is comparable to numerical tools like MATLAB

and R and is orders of magnitude better than existing loosely-coupled data management

systems; (3) it provides mechanisms for defining custom DSP operators and their integration

with the query language; (4) it supports incremental computation in both offline and online

analysis. The following example compares TRILLDSP against other commonly used systems.

7.1.1 Example: Spectral Analysis of Signals

An IoT application receives a stream of temperature readings from different sensors in time

order. Each reading has the same format <SensorId,Time,Value>. The application runs the

same query logic on every signal coming from a different source. The query consists of several

processing stages, discussed next from the viewpoint of three different systems: R, SPARKR,

and TRILLDSP. Table 7.1 shows their relevant code excerpts.

• Stage 1: Grouping The DSP routines in R cannot process multiple time-intertwined

signals at once. Thus, the initial phase in R and SPARKR has to disentangle readings

by their source (SensorId), while preserving the time order inside each group. The

grouping operations in R (lines 1-2) and SPARKR (lines 1-10) are CPU and memory

intensive tasks that involve copying the entire input. SPARKR consolidates the input

data in parallel but requires local sorting of each group to restore the time order (line 9).

TRILLDSP natively supports grouped processing through its data model and group-

aware operators that internally maintain the state of each group. Grouping in TRILLDSP

(line 2) is an in-place Map operation that associates a group identifier to each event in

order to enable grouped processing in the downstream operators. Avoiding data copying

brings orders of magnitude better performance than R and SPARKR, especially when

handling large numbers of groups.

The workflow continues with processing each group either sequentially (R) or in parallel

(SPARKR and TRILLDSP).

• Stage 2: Interpolation The values within one group might appear at irregular time

intervals due to network delays or never appear due to message losses. To leverage

DSP algorithms that mostly operate with equally-spaced sequences, the next processing

stage transforms each group into a uniformly-sampled signal with the given sampling

period and offset using linear interpolation. TRILLDSP hides from the user the burden

of explicitly managing timestamps, in contrast to R (line 6) and SPARKR (line 13).
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Listing 7.1 TRILLDSP

1 var q = stream.Map(s => s.Select(e => e.Value), e => e.SensorId)
2 .Reduce(s => s.Sample (100, 0, p => p.FirstOrder ())
3 .Window (512, 256, true ,
4 w => w.FFT().Select(a => f(a)).InverseFFT (),
5 a => a.Sum()));

Listing 7.2 R

1 groups <- lapply(split(x,x[,1]), function(y) matrix(y,ncol =3)) # grp by id
2 z <- vector(‘‘list ’’, length(groups))
3 for (x in groups) {
4 t <- x[, 2]; v <- x[, 3] # times and values
5 qt <- seq(t[1], t[length(t)], by = 100) # probes
6 y <- interp1(t, v, qt , method = ’linear ’)
7 frames <- window(y, 512, 256) # create frames
8 Y <- mvfft(frames)
9 Y2 <- f(Y)

10 y2 <- mvfft(Y2, inverse = TRUE)
11 z[[i]] <- unwindow(y2, 512, 256) # merge frames
12 }

Listing 7.3 SPARKR

1 grouped <- groupByKey(flatMap(rdd , function(x) { # group by id
2 groups <- lapply(split(x,x[,1]), function(y) matrix(y,ncol =3))
3 lapply(groups , function(y) list(y[1, 1], y[, 2:3])) # key -value pairs
4 }, cores)
5 sorted <- lapply(grouped , function(x) { # merge partitions
6 merged <- matrix(rbind(x[[2]]) , ncol = 2)
7 merged[order(merged[, 1]) ,] # sort by time
8 })
9 result <- lapply(sorted , function(x) {

10 t <- x[, 1]; v <- x[, 2] # times and values
11 qt <- seq(t[1], t[length(t)], by = 100) # probes
12 y <- interp1(t, v, qt , method = ’linear ’)
13 frames <- window(y, 512, 256) # create frames
14 Y <- mvfft(frames)
15 Y2 <- f(Y)
16 y2 <- mvfft(Y2, inverse = TRUE)
17 unwindow(y2, 512, 256) # merge frames
18 })

Figure 7.1 – Spectrum analysis in TRILLDSP, R, and SPARKR

Sampling and interpolation in TRILLDSP is a group-aware operator with full online

support (line 3). The operator’s ability to simultaneously process intertwined signals can

result in up to 192x better performance than R and SPARKR, as seen in our experiments.

The remaining steps describe the fundamental technique in DSP [137]: (1) decompose the

signal into simple components, (2) process each of the components in some useful way, and

(3) recombine the processed components into the final signal.

• Stage 3: Windowing Most digital signal processing algorithms operate over windows of

data defined by two parameters: the window size and the hop size. Using R (or SPARKR)

misses the opportunity for incremental computation over hopping (overlapping) win-

dows. Furthermore, invoking R routines for every window accumulates their startup

costs. In the offline analysis, DSP experts often choose to copy windows out of the

array and stack them into a matrix for batch processing. The window() function from

110



7.1. Challenges and Contributions

Table 7.1 forms such a matrix (details omitted for clarity) using twice as much memory

for the given arguments.

The Window operator in TRILLDSP allows users to express a hopping window computa-

tion as a series of transformations of fixed-size arrays. One such pipeline transforms all

input windows, thus amortizing the startup overhead, while supporting incremental

computation. Based on the given window specification, the operator manages the data

on behalf of users using circular buffers to avoid any redundancy in the input.

• Stage 4: Spectral Analysis The processing pipeline starts with the Fast Fourier Transform

(FFT) that computes the frequency representation of 512-sample windows at each

hopping point. A user-defined function f modifies the computed spectrum (e.g., retains

top-k spectrum values with the highest magnitudes, zeros out others) before invoking

the inverse FFT. The output stream has complex 512-size arrays at each hopping point.

• Stage 5: Unwindowing To restore the signal form, the final phase projects the output

arrays back to the time axis and sums up the overlapping values. The unwindow()
procedure from Table 7.1 carries out this task (7 lines omitted for clarity). In TRILLDSP,

the framework performs this task using the provided aggregate function (line 6).

TRILLDSP has much lower code complexity than R and SPARKR, as evidenced in Table 7.1. The

declarative query model of TRILLDSP allows expressing complex workflows using high-level

operators; in contrast, R and SPARKR force users to write operations at a much lower level.

All three compared systems support offline analysis, but only TRILLDSP offers real-time

capabilities. Also, note that the SPARKR program has hidden performance penalties as the

consequence of loose coupling – each RDD function exports its input into R and imports the

output back into Spark. Because of that and the other fundamental inefficiencies of loosely-

coupled systems described above, SPARKR and SCIDB-R perform orders of magnitude worse

than TRILLDSP in our experiments.

7.1.2 Contributions

To summarize, we make the following contributions:

1. Following the need for a deep integration of DSP operations and a general-purpose

query processor, we provide a unified query and data model for relational and signal

data. The model allows the end-user to seamlessly interleave tempo-relational and

signal operations when writing relational and streaming queries, without ever explicitly

dealing with array data.

2. For DSP experts, we provide frameworks for defining new user-defined window opera-

tions and their integration with the query language. The framework internally exposes

array abstractions to ease the implementation for DSP experts and enables incremental

computation with hopping windows.
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Signal operations Type Ref

Relational operators (select, where, join, ALJ) N+U Trill

Arithmetic operations (+, -, *) N+U Trill

Basic signal operation (scale, shift) N+U Trill

Functional signal operations N §7.3.2

Sampling, upsampling, downsampling N+U §7.4.1

Interpolation U §7.4.2

Uniform signal aggregates (sum, power, energy) U Trill

Framework for user-defined digital filters (FIR & IIR filters, correlation, convolution) U §7.4.5

Framework for user-defined window operators (FFT, windowing functions, auto-
correlation, cross-correlation, element-wise product)

U §7.4.6

Table 7.1 – (N)on-uniform and (U)niform signal operations in TRILLDSP with references to
the used operators or frameworks.

3. The unified query model supports both online and offline analysis. Users can build

queries from offline data and then put them unmodified in production.

4. The performance of our system called TRILLDSP justifies the need for a deep integration

DSP and query processing. On purely DSP tasks, TRILLDSP is comparable with best-of-

breed for signal processing like MATLAB, Octave, and R. For queries mixing relational

and signal processing, TRILLDSP shows up to 192x better performance than loosely-

coupled systems like SPARKR [152, 151] and SCIDB-R [139, 58, 41].

Table 7.1 summarizes the supported signal operations in our system with the references to

the operators or operator frameworks used in their implementations. Note that our system is

extensible, so users can write custom operations using the provided frameworks.

This chapter is organized as follows. We provide a short overview of TRILL in Section 7.2. We

introduce signal processing over data streams in Section 7.3 and then discuss processing of

uniformly-sampled signals in Section 7.4. We present our experimental results in Section 7.5

and conclude in Section 7.6.

7.2 Background: The TRILL Library

TRILL [45] is a high-performance incremental analytics engine that uses the tempo-relational

model and supports processing of streaming and relational queries. TRILL is written as a

high-level language library (C#) that supports rich data-types and user libraries, and integrates

well with existing distribution fabrics and applications.

7.2.1 Data Model

Trill represents stream data using the tempo-relational data model. Logically, we view a data

stream consisting of events as a temporal database [86] that is presented incrementally [34, 80,
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107]. Each stream event is associated with a data window (or an interval of application time)

that denotes its period of validity. Such stream events form snapshots of valid data versions

across time. The user query is executed against these snapshots in an incremental manner.

Trill represents a stream of data with payload type T as an instance of class Streamable<T>.

In our introductory example, we can capture event contents using a C# payload type:

struct SensorReading {
long SensorId; long Time; double Value;

}

The stream of sensor readings from our example is of type Streamable<SensorReading>.

StreamEvent is a TRILL structure that represents an event with payload type T. The structure

provides static methods for creating stream events, including point events with a data window

of one time unit. In our example, users may ingest sensor readings as point events at time t as:

StreamEvent.CreatePoint(t, new SensorReading { .. })

Physically, a dataset consists of a sequence of columnar batches. A columnar batch holds one

array for each column in the event. For example, two arrays hold the start-time and end-time

values for all events in the batch. TRILL associates a grouping key with each event in order to

enable efficient grouped operations. TRILL precomputes and stores the grouping keys and

key hash values as two additional arrays in a batch; it also includes an absentee bitvector to

identify inactive rows in the batch.

TRILL creates columnar batches during query compilation. For example, the generated batch

for SensorReading looks like:

class ColumnarBatchForSensorReading <TK> {
long[] SyncTime; long[] OtherTime; // data window
TK[] Key; int[] Hash;
long[] BitVector;
long[] SensorId; long[] Time; // payload
double [] Value; //

}

TRILL shares these arrays with reference counting; for example, SyncTime and Time may point

to the same physical array. It also pools arrays using a global memory manager to alleviate the

cost of memory allocation and garbage collection.

7.2.2 Query Language

TRILL’s query language is modeled after LINQ [14], with temporal interpretation of the stan-

dard relational operations and new operations for temporal manipulation. These operations

are exposed using the class Streamable<T>. Each TRILL operator is a function from stream to

stream, which allows for elegant functional composition of queries. Each method represents

a physical operator (e.g., Where for filtering) and returns a new Streamable instance, which
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allows users to chain an entire query plan. For example, assuming s0 is our data source of

type Streamable<SensorReading>, we can discard invalid readings greater than 100 using

the Where operator:

var s1 = s0.Where(e => e.Value > 100)

The expression in parentheses is called a lambda expression [6]; it is an anonymous function,

in this case from SensorReading to boolean specifying the condition for keeping each stream

event in the output stream s1.

An operator in TRILL accepts and produces a sequence of columnar batches. TRILL’s compiler

dynamically generate operators and inlines lambdas (such as the Where predicate) in tight

per-batch loops to operate directly over columns for high performance. TRILL provides a rich

set of built-in relational operators (e.g., selection, join, anti-join) as well as new temporal

operators for defining windows and sessions.

Grouped computation TRILL extends the well-known Map and Reduce operations with

temporal support to enable parallel query execution on each sub-stream corresponding to a

distinct grouping key. Consider a shortened version of the query from Section 7.1.1:

var s2 =
s1.Map(s => s.Select(e => e.Value), e => e.SensorId)

.Reduce(s => s.Sample (10, 0),
(k, p) => new Result { SensorId = k, Temp = p })

The first argument to Map specifies a sub-query (here, the stateless Select operation) to be

performed in parallel on the input stream, while the second argument specifies the grouping

key (SensorId) to be used for shuffling the result streams. The first argument to Reduce
specifies the query to be executed per each group key (Sample), and the second argument

allows us to combine the grouping key and the per-group payload into a single result.

Temporal join The temporal join operator in TRILL allows one to correlate (or join) two

streams based on time overlap, with an (optional) equality predicate on payloads. Suppose

we wish to augment the filtered SensorReading stream s1 with additional information from

another reference stream ref1 that contains per-sensor location data. We would express such

a query in TRILL as:

var s3 = s1.Join(ref1 ,
l => l.SensorId , r => r.SensorId , (l,r) =>
new Result { r.SensorLocation , l.Time , l.Value });

The second and third parameters to Join represent the equi-join predicate on the left and

right inputs (SensorId), while the final parameter is a lambda expression that specifies how

matching input tuples are combined to construct the result payload. The output stream s3 is

of type Streamable<Result>.

TRILL’s query language is extensible in several ways. First, users can express user-defined

aggregation logic by providing lambdas for accumulating and de-accumulating events to and
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from state. Such logic is executed over columnar batches using a snapshot operator that

maintains per-group state and inlines these lambdas in a tight loop [45]. Second, advanced

users can write new operators that accept and produce a sequence of (grouped) columnar

batches. Note that every TRILL operator understands grouping; for instance, the Count
operator outputs a batched stream of per-key counts. Finally, every operator is transferable

between real-time and offline by construction.

7.3 Signal Processing in TRILL

We consider signals as a special kind of streams in which stream events have no overlapping

lifetimes. Representing signals in TRILL, thus, requires no changes of the underlying tempo-

relational data model. The query model, however, needs to integrate new signal operators and

enable their interleaving with the existing tempo-relational operators using one unified query

language.

7.3.1 From Streams to Signals

Converting streams into signals needs to ensure that at most one stream event is active at any

point in time. This property naturally emerges after applying an aggregate function over the

input stream. For instance,

var s0 = stream.Average(e => e.Value)

creates a signal by averaging the overlapping stream events on the Value field. When the

stream already has the signal form – for example, a sensor generates point events with lifetimes

[T,T +1) and increasing timestamps T – users can explicitly invoke stream.ToSignal() to

get a signal. If the assertion turns out to be false later on, the system will throw a runtime error.

TRILLDSP considers streams having the signal form as instances of SignalStreamable<T>,

which extends the base class Streamable<T> with signal operators. The system leverages the

strong type-safety of C# to prevent invocation of signal operations over non-signal streams at

compile time.

7.3.2 Signal Payload

Most often signals are discrete-time sequences of real or complex values called samples. Real-

valued signals may originate from sensors measuring physical phenomena; complex-valued

signals often emerge after processing signals in the frequency domain. Signals can also take

more convoluted forms. For instance, in IoT applications, signals are often sequences of

structures carrying multiple sensor measurements; in audio processing, signals comprise

different audio channels; or in video processing, signals are sequences of movie frames.

Handling these cases using existing signal processing tools requires a careful arrangement of

these convoluted values into the matrix form before invoking operations on them.
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1 interface TArithmetic <T> where T : TArithmetic <T> {
2 T Zero(); T Plus(T b);
3 bool Equals(T b); T Minus(T b);
4 T Scale(double scalar); T Times(T b);
5 }

Figure 7.2 – Interface for defining custom signal payloads

(a) Constant payloads (b) Functional payloads

Figure 7.3 – Signal payload types

TRILLDSP can process signals with arbitrary payloads, including real- and complex-valued

signals, as long as the payload type T implements the interface TArithmetic<T>, shown in

Figure 7.2. The interface consists of methods necessary for enabling signal processing on

payloads of type T: a method defining a neutral element of T, an equivalence method, and

four basic arithmetic operations over T (addition, subtraction, multiplication, and scalar

multiplication). Using this interface, users can customize signal payloads for processing in

different application domains.

Functional Signal Payloads

The tempo-relational data model defines stream events as having constant payloads over a

time interval, as shown in Figure 7.3a. This model can naturally describe discrete-time signals

and step-like continuous signals. In practice, users also want to work with more general

continuous signals whose values can be expressed as a function of time, like in Figure 7.3b 1.

For example, in amplitude modulation, users multiply an input signal with a continuous

carrier signal, which is usually a sine wave of a given frequency and amplitude.

To support (pseudo-)continuous signals with the tempo-relational data model, one can materi-

alize point events at every timestamp from the function domain. Obviously, such an approach

brings huge processing and memory overheads. To capture continuous signals efficiently,

TRILLDSP introduces functional signal payloads that carry a lambda function describing how

to compute signal values at any point in time. Functional payloads can delay materialization

of signal events until the user explicitly asks for it. TRILLDSP supports two types of functional

payloads, which we present next.

1Strictly speaking, continuous-time signals have a discrete nature due to the finite time resolution in TRILL.
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Heterogeneous Functional Payloads

TRILLDSP allows users to assign a lambda function Func<long,T> to each stream event. The

lambda function expresses the payload value as a function of time. TRILLDSP represents such

functional payloads as instances of TFuncPayload<T>. For example, the user can create the

first event from Figure 7.3b as:

var evt1 = StreamEvent.CreateInterval (40, 80,
new TFuncPayload <double >(t => Sin(2 * Pi * t / 40)))

In order to enable processing of signals with functional payloads, TFuncPayload<T> im-

plements TArithmetic<TFuncPayload<T>>. For example, adding two functional payloads

creates a functional payload with a lambda function expressing the addition.

TFuncPayload <T> Plus(TFuncPayload <T> b) {
return new TFuncPayload <T>(t => f(t) + b.f(t));

}

Processing signals with functional payloads is no different than processing any other payload

type. For instance, adding two functional signals corresponds to a temporal join in which

the matching events yield a summed functional payload as described above. Note that in

processing signals with functional payloads, we always maintain the functional representation

of values so as to avoid materialization and reduce processing and memory costs.

Users can explicitly materialize functional payloads at discrete time points to obtain a uniformly-

sampled signal with the desired sampling period and offset. For example, one can sample a

signal fs0 containing functional payloads to materialize events at every 10 time units as:

var fs1 = fs0.Sample (10); // Materialization

Using TFuncPayload<T> enables heterogeneity in assigning lambda functions to payloads,

that is, each event can take a different function, like in Figure 7.3b. This function heterogeneity

comes at the cost of more expensive memory management during query evaluation. New

stream events need to instantiate lambda objects. Given that these lambdas have different

structures, they cannot be efficiently shared among events or re-used through memory pooling.

Instead, lambda objects are always allocated on the heap and released through garbage

collection, which increases memory management overheads.

Homogeneous Functional Payloads

To process functional payloads more efficiently, TRILLDSP allows users to associate one

lambda function to the entire signal rather than to each individual event. In that way, all

stream events can share the same lambda function, hence “homogenous” in the name, and

their payloads can represent the function arguments. For example, users can create stream

events with payloads being the arguments of a sine function:

var event = StreamEvent.CreateInterval (0, 100,
new SinArgs { Freq = 50.0, Phase = 0.0 });
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Each signal maintains a property that stores its lambda function. Users can associate a sine

function to the signal s1 as follows:

var s2 = s1.setProperty ().setFunction(
(t,e) => Sin(2 * Pi * t / e.Freq + e.Phase))

The default signal function is the identity function (t,e) => e.

Supporting homogeneous functional payloads requires a change of the signature of the signal

type from SignalStreamable<T> to SignalStreamable<TIn,TOut>, where TIn is the pay-

load type (e.g., SinArgs) and TOut is the result type (e.g., double). The lambda function is of

type Func<long,TIn,TOut>.

Binary signal operations over homogeneous functional payloads use temporal joins to pair

matching payloads from both sides as 2-tuple structures. For example, multiplying the signal

s2with a complex-valued constant signal yields payloads of Tuple<SinArgs,Complex>. Such

payloads are arguments of the stream-level lambda function that multiplies these two signals.

Homogeneous functional payloads enable more efficient signal processing than heteroge-

neous functional payloads. During query compilation, we can flatten out homogeneous

payloads into a sequence of parameters and create their columnar batch representation. In

the previous example, the generated batch for the tuple structure looks like:

struct ColumnarTuple {
double [] Freq; double [] Phase; Complex [] V;

}

These columnar arrays are memory-pooled and shared with reference counting during process-

ing, which alleviates the cost of memory allocation and garbage collection. For performance

reasons, TRILLDSP uses homogeneous functional payloads as the default payload type.

7.3.3 Signal Operators

The class SignalStreamable<TIn,TOut> encapsulates operators that preserve the signal

form of a stream. It redefines such unary operators inherited from the base stream class,

like Where and Select, to return a signal object. Since Select can change the input payload

type TIn, users can also provide a new stream-level function for computing payload values

or default to the identity function. The signal class also provides operators that build upon

the existing stream operators. For example, Scale multiplies signal values with a scalar using

the Select operator; Shift delays or advances a signal by changing the time intervals of its

events using the alter-lifetime operator [45].

Users can perform basic arithmetic operations on signals, like addition, subtraction, or mul-

tiplication, as these operations are guaranteed to produce at most one event at any point in

time. In fact, any signal operation that uses a temporal join to match events outputs a signal.

Users just need to set the stream-level function to decide on how to combine matching events
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into payload values. But not every binary stream operation can be lifted to the signal domain.

For example, a union of two signals can produce a stream with overlapping events, so this

operator needs to remain in the Streamable domain.

The signal type SignalStreamable also provides methods for obtaining uniformly-sampled

signals, like the Sample() method that we used to materialize functional payloads. In the next

section, we cover the operations over uniformly-sampled signals.

7.4 Uniformly-sampled Signals

Numerical frameworks like MATLAB and R support mostly DSP algorithms on signals con-

sisting of equally-spaced samples. These tools consider such uniform signals as real- or

complex-valued arrays in which the array index act as a measure of time.

TRILLDSP regards uniform signals as streams consisting of point events at regular timestamps.

Uniform signals have two defining properties: (1) sampling period defines the time difference

between two consecutive samples, and 2) sampling offset defines the initial time shift of

samples. These two properties can help us correlate application times of samples with their

positions in the array form.

TRILLDSP represents uniform signals as instances of UniformSignalStreamable<T>, which

extends the signal class SignalStreamable<_,T> with uniform-signal operators. Uniform

signals can have only point events at timestamps determined by their sampling period and

offset. Regular (non-uniform) signals have no such constraints.

7.4.1 Sampling

We obtain a uniform signal by sampling a non-uniform signal. The Sample operator uses

a given sampling period T and an offset O to generate point events at timestamps kT +O,

where k is integer, at which the source signal has an active stream event. The Sample operator

invokes the stream-level lambda function to compute the payload value of each materialized

event. Since uniformly-sampled signals are discrete-time signals, they have no stream-level

lambda function associated to them.

The Sample operator supports grouped signal computation. In grouped signals, each stream

event carries a group identifier; the example from Table 7.1 groups stream events by SensorId.

The Sample operator internally keeps track of active events for each group seen so far. Since

TRILL ingests stream events in a non-decreasing sync (interval start) timestamp order, each

event can move the global stream time forward. In such cases, the operator needs to produce

samples for each group up to the current time, update the internal state of each group to

remove any inactive events, and update the current group to include the current event. If the

current state detects overlapping events, the operator throws a runtime error implying that

user’s assertion about the signal form of the input stream is false.
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Figure 7.4 – Sampling with interpolation of a non-uniform signal

7.4.2 Interpolation

Non-uniform signals consist of overlapping-free stream events of arbitrary forms. As shown in

Figure 7.4, a non-uniform signal can have events with different lifetimes, events appearing

at irregular time instants (e.g., due to network delays), or missing events (e.g., due to bad

communication). The Sample operator discussed so far considers only events that are active

at predefined sampling beats (e.g., 30, 60, 90, etc.) and ignores in-between and missing events.

TRILLDSP supports sampling with interpolation of missing values. The Sample operator has

an optional parameter – interpolation policy – that specifies the rules for computing missing

events. An interpolation policy has two defining properties:

1. Interpolation function defines how to compute missing samples based on a fixed-size

history of reference samples. TRILLDSP provides a set of common interpolation func-

tions: constant, last-valued, step (zero-order), linear (first-order), and second-degree

polynomial (second-order), and also supports user-defined interpolation functions.

2. Interpolation window defines the maximum time distance among the reference samples

used for interpolation. For instance, in linear interpolation, if two consecutive reference

samples are more than one interpolation window apart, we consider them as two

different signal sequences and disable interpolation in that interval, like in Figure 7.4.

The user can obtain the uniform signal from Figure 7.4 as follows:

var s1 = s0.Sample (30, 0, p => p.FirstOrder (60));

Each uniformly-sampled signal maintains a property that stores an interpolation policy. This

policy is used during signal re-sampling, which happens, for instance, in binary operations on

uniform signals with different sampling periods.

Interpolation implementation

The Sample operator implements interpolation on grouped signals. For each group, the

operator maintains a finite number of observed samples, which serve as reference points for a
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given interpolation function. Each stream event with an interval [a,b) generates a sequence

of reference points: a start point at [a, a +1), an end point at [b −1,b), and all intermediate

points at sampling beats from the interval (a,b).

A per-group interpolator state maintains most recent reference points using a fixed-size

circular buffer. The buffer consists of at least two samples, which define the currently active

interpolation window; higher-order interpolators may buffer more samples. Each interpolator

state also encapsulates the interpolation function that corresponds to the chosen interpolation

policy. The Sample operator interacts with each interpolator state independently of the

interpolation function using the following methods:

• AdvanceTime(long t) invalidates points in the buffer that fall outside the interpola-

tion window ending at time t.

• AddPoint(long t, T v) overwrites the oldest valid entry in the interpolation buffer

with a given reference point.

• CanInterpolate(long t) returns true when the interpolation buffer is full and t is

between the last two reference points.

• Interpolate(long t) calls the interpolation function to compute the value at time t.

As the global time moves forward with each stream event, the Sample operator updates the

state of each group to include new and invalidate too distant reference points. When the

interpolation buffer of one group is full, it interpolates events at the sampling beats between

the last two reference points. Note that the operator interpolates events back in the past. To

preserve the time order of output events, the Sample operator delays emitting output events

by at most the size of the interpolation window.

7.4.3 Uniform-signal Operators

Resampling operations change the sampling rate of uniformly-sampled signals. Upsample(n)
increases the sampling rate (i.e., decreases the sampling period) of a signal by an integer factor.

The interpolation function computes the values of new intermediate samples. Downsample(n)
decreases the sampling rate (i.e., increases the sampling period) of a signal by keeping every

n-th sample and dropping the others. Resample() changes the sampling period, offset, and

interpolation function of a signal. For instance, we can resample the uniform signal from

Figure 7.4 to halve the sampling period, change the interpolation policy, and double the

interpolation window size.

var s2 = s1.Resample (30, 0, ps => ps.ZeroOrder (120))

Binary arithmetic operations involving uniform signals rely on temporal joins for matching

samples. For instance, summing two uniformly-sampled signals, written as left.Plus(right),

when they share the same sampling period and offset is implemented as:

left.Join(right , (l, r) => l + r)
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Figure 7.5 – Signal window

When these conditions are unmet, binary operators preprocess one of the operands before

joining them together: if the sampling periods are the same but offsets are different, we shift

one signal by the offset difference; if the sampling periods are different, we resample the signal

with a larger sampling period to match the period and offset of the other signal; finally, when

one operand is a non-uniform signal, we sample that signal with the sampling period and

offset of the other uniform operand in order to produce a uniform result.

Uniform-signal aggregates combine existing stream operators. For instance, summing samples

of a uniform signal s using a hopping window of size W and hop size H samples, written as

s.Sum(W,H), is implemented as:

s.HoppingWindow(W * s.Period , H * s.Period , s.Offset)
.Aggregate(w => w.Sum(e => e))
.AlterEventDuration (1)

where the HoppingWindow macro creates hopping windows by changing event lifetimes,

the Sum aggregate adds values together, and the AlterEventDuration operator restores the

uniform-signal form by emitting point events. Note that uniform-signal operators use sample-

based windows. Uniform-signal aggregates can easily integrate any user-defined aggregate

created using the extensible operator framework of TRILL [45].

7.4.4 Signal Windows

TRILLDSP represents uniformly-sampled signals as data streams built using a tempo-relational

model. Numerical tools providing DSP algorithms like MATLAB and R consider uniformly-

sampled signals as real- or complex-valued arrays, in which the array index is best thought

of as a measure of dimensionless time. To bridge the gap between these two models, we

introduce an abstraction that allows DSP users to implement custom operators for offline

and online processing in a way that feels natural to them – by writing algorithms against

arrays without worrying about the temporal aspect of the underlying data model. Exposing

arrays to operator writers enables easy and quick integration of existing highly optimized DSP

algorithms, like those exploiting SIMD operations on modern processors.

We introduce a class called TWindow<T> that transforms samples of type T from the tempo-

relational data model into the array data model. In processing uniform signals using windows

of data, a signal window maintains an array of active samples of one uniform signal. The signal

window uses the sampling period and offset of the associated signal to compute the index

position of a new sample. The signal window also keeps track of the latest timestamp in the
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array to detect any missing value when adding a new sample; these missing values are either

replaced with zeros or marked as invalid. Each signal window is implemented as a fixed-size

circular array to efficiently support offline and online processing with overlapping windows.

Signal windows support incremental computation over hopping windows. Each signal win-

dow can maintain a fixed-size history of recently expired samples, as shown in Figure 7.5.

The history size is often the window hop size. The TWindow<T> class provides methods for

accessing the whole array (Array), the old delta (Old), and the new delta (New). Users can use

these deltas to incrementally update operator states on every hop event.

Signal windows notify registered observers when their arrays are full. A signal window can fire

up two types of events: 1) OnInit event denotes the array is filled up for the first time; the old

delta is invalid, and the new delta is the whole array; 2) OnHop event denotes a window hop;

Figure 7.5 shows both valid deltas.

TRILLDSP provides different implementations of signal windows based on their specification.

A window specification comprises three parameters: the window size (how many samples each

window lasts), the hop size (by how many samples each window moves forward relative to the

previous one), and the boolean indicator on how to handle missing samples, if true replace

them with zeros; otherwise, mark them as invalid. Note that signal windows containing

invalid samples cannot fire up any event. The decision on how to treat missing values is

operator-dependent. For instance, users might want to use complete arrays when using FFT

but zero-padded signals when using digital filters.

7.4.5 Digital Filters

Digital filters are a cornerstone of digital signal processing. Due to their extraordinary ef-

ficiency, digital filters are widely used in practice; for example, filters can separate a signal

from noise or restore bad audio recordings [137]. Digital filters are often described in terms

of an equation that relates the output signal to the input signal. For example, linear digital

filters produce outputs by combining a fixed-size window of inputs and a fixed-size window of

previously computed outputs.

y[n] =
N∑

i=0
a[i ]∗x[n − i ]+

M∑
i=1

b[i ]∗ y[n − i ]

Here, x[i ] and y[i ] are sequences of values denoting the input and output signals, a[i ] are

called feed-forward coefficients, and b[i ] are called feed-backward coefficients. The feed-

forward window is of size N +1, while the feed-backward window is of size M .

TRILLDSP provides a framework for defining custom digital filter. The framework uses

TWindow<T> instances to represent feed-forward and feed-backward windows. Figure 7.6

shows an interface the user needs to implement in order to create a custom filter. The user
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1 SetMissingDataToZero () => bool
2 GetFeedForwardSize () => int
3 GetFeedBackwardSize () => int
4 Compute (TWindow <T>, TWindow <T>) => T

Figure 7.6 – Interface for defining custom digital filters

needs to specify the sizes of the feed-forward and feed-backward windows, decide on how to

interpret missing values, and express the filtering functionality as a lambda function with a

feed-forward and a feed-backward signal windows as parameters.

The digital filter framework supports grouped signal processing. A per-group state maintains

two instances of TWindow<T>. The framework invokes the Compute() method upon receiv-

ing OnInit or OnHop events from the feed-forward window and updates the feed-backward

window with the result; upon the OnInit event, it also resets the feed-backward window.

Note that the framework releases users from the burden of explicitly managing windows in

processing grouped signals and allows them to focus on the actual implementation.

An example of a digital filter is a finite impulse response filter, which uses only the feed-forward

loop. For a given filter weights a[i ], each output is a weighted sum of the most recent inputs.

Users can implement such filters as follows:

SetMissingDataToZero: () => true
GetFeedForwardSize: () => a.Length
GetFeedBackwardSize: () => 0
Compute: (fw, bw) => DotProduct(a, fw.Array)

Signal windows expose array abstractions to users, which enables them to use highly-optimized

black-box implementations of DSP algorithms. In this example, users can implement the

DotProduct method using SIMD instructions of modern processors.

TRILLDSP uses the digital filter framework to implement several signal operators, like signal

correlation, signal convolution, and finite and infinite impulse response filters to name a few.

7.4.6 User-defined Window Operators

DSP domain experts and practitioners exercise one fundamental workflow when analyzing

uniform signals. The workflow consists of three steps [137]: (1) the first step splits the signal

into smaller, possibly overlapping components, (2) the second step transforms each com-

ponent using a sequence of operations, and (3) the third step recombines the processed

components into the final signal.

TRILLDSP supports such workflows using the Window operator, which we present next using a

shortened version of the query from Section 7.1.1 as our running example. We assume s2 is a

real-valued uniform signals.
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1 GetOutputWindowSize () => int
2 Update (TWindow <U>, TWindow <V>) => ()
3 Recompute (TWindow <U>, TWindow <V>) => ()

Figure 7.7 – Interface for defining custom window pipeline operators

var s3 = s2.Window (512, 256, true ,
w => w.FFT().Select(a => f(a)).InverseFFT (),
a => a.Sum()));

The first workflow step is about windowing the data. The Window operator transforms samples

from streams into arrays using signal window instances of type TWindow<T>. To support

grouped signal processing, the operator internally maintains one such instance for each group

seen so far. Users can specify sample-based window attributes using the Window operator. As

before, the window specification includes the window size, the hop size, and the policy on

how to handle missing values (true: zero, false: NaN).

The second workflow step executes a sequence of transformations over fixed-size arrays. The

Window operator expresses these computations as a pipeline of operators. Each pipeline

operator transforms an input window of type TWindow<U> into an output window of type

TWindow<V>. In our example, the FFT operator transforms a 512-sample window of type

TWindow<double> into a 512-sample window of type TWindow<Complex> representing the

frequency spectrum of the input windowed signal. In general, input and output windows can

have different sizes; for instance, the AutoCorrelation pipeline operator takes windows of

size N and outputs windows of size 2N +1. The Window operator creates exactly one pipeline

per signal group, which amortizes the startup overheads of pipeline operators; for instance,

FFT and InverseFFT initialize their spectrum coefficients only once.

Each pipeline operator in TRILLDSP implements the interface presented in Figure 7.7. The

first interface method defines the output window size of a pipeline operator. The Window
operator uses this size to pre-allocate one output window for the pipeline operator. The other

two methods define lambda functions for incremental computation and re-evaluation. Both

methods change the output window in-place to avoid memory allocations. Note that operator

writers can use black-box implementations for these operations. Also, it is their responsibility

to enable incremental computation by denoting the delta parts of the output, if possible. Many

signal operations, however, completely perturb their outputs making re-evaluation the only

option for the downstream pipeline operators. In our example, only FFT can incrementally

update its output; the remaining operators have to recompute their results from scratch.

InverseFFT produces results in the output window of type TWindow<Complex>.

The final workflow step combines computed output windows into the final signal. In TRILLDSP,

this step requires projecting output values from arrays back on the stream time axis as stream

events. The Window operator projects N output values, which are generated at hop time t,

backwards in time such that consecutive stream events are the sampling period apart from
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each other and the last event has timestamp t. If the final output size is greater than the hop

size, then the projected stream events overlap. To preserve the signal form of final stream,

the Window operator allows users to provide an aggregate function (e.g., Sum) for merging

overlapping output samples. When there are no overlapping events, we can safely lay out

stream events on the stream time axis and yet preserve the signal form of the stream.

The last parameter of the Window operator is optional. If the aggregate function is omitted, the

operator skips the “unwindowing” operation. Then, the output signal consists of output arrays

as stream events defined at hop time points. In our example, if we omit the aggregate function,

the output signal will be of type UniformSignalStreamable<Complex[]>. Similarly, when

the final pipeline operator produces an output of type T that is different than TWindow<_>,

then the output signal is of type UniformSignalStreamable<T>.

7.5 Performance Evaluation

In this section, we evaluate how TRILLDSP’s deep integration of signal processing into a

streaming query processor compares against state-of-the-art numerical frameworks special-

ized for signal processing and data analytics engines offering a loose integration with such

frameworks. Our experiments aim to answer two main questions:

1. What is the price of integrating signal processing operations into a relational query

processing system?

2. What is the benefit of having unified data and query models?

Our first set of experiments shows that a general-purpose query engine with tightly integrated

signal processing operations can bring competitive or even better performance than popular

numerical frameworks in pure signal processing tasks. These results come at no surprise

as TRILLDSP has relatively low system overhead and exposes array abstractions to operator

writers that enable quick and easy adoption of highly-optimized black-box implementations

of DSP operations.

Our second set of experiments focuses on a particularly important class of IoT applications

that run the same query logic over a large collection of sensor devices. Here, TRILLDSP

shows its full potential when processing large numbers of groups using queries that combine

relational and signal operations. TRILLDSP’s in-situ execution model achieves from 3x to

192x better performance on grouped signal processing than modern relational and array data

management systems with loose R integration.

Benchmarked systems We compare TRILLDSP against numerical frameworks that are widely

used in practice by DSP experts and practitioners for offline signal analysis.

• MATLAB R2015b – a numerical computing environment offering a plethora of signal

processing operations;
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• Octave 4.0 – an open-source alternative to MATLAB;

• Revolution (Microsoft) R Open 3.2.3 (R for short) – an enhanced, open-sourced distribu-

tion of R used for statistical data analysis.

For workloads combining relational and signal processing, we compare TRILLDSP against the

following loosely-coupled systems:

• Spark with R integration 1.5.2 (SPARKR) – an R package providing access to Spark from R;

• SciDB with R integration 14.12 (SCIDB-R) – a loosely-coupled integration.

The official integration of SciDB and R provides an R package for accessing the SciDB backend

from R, same as Spark. However, this loosely-coupled approach suffers from huge overheads

when serializing large datasets. For instance, just sending our dataset with 100 million events

between SciDB and R without processing them takes more time than any total running time

among the other compared system. We conclude that the official SCIDB-R integration is

designed primarily for exchanging small aggregate results between these two systems. In order

to make the SCIDB-R integration feasible on our datasets, we use a SciDB plugin [15] that

enables running R programs within SciDB queries. In contrast to the official integration, here

we write our queries as SciDB (not R) programs and run them from the SciDB (not R) shell.

Experimental Setup We run our experiments on a single node using D14 Microsoft Azure

instances consisting of 2 Intel Xeon CPU E5-2673 v3 @ 2.40GHz and 112GB of RAM. We use

one instance with Ubuntu 12.04.5 LTS for running Octave, R, SPARKR, and SCIDB-R queries,

and another instance with Windows Server 2012 R2 Datacenter for running TRILLDSP and

MATLAB queries.

Query Workload Our query workload includes five queries in total, which we evaluate using

six different systems. Two queries represent pure DSP tasks commonly used in practice, while

the remaining three queries combine relational and signal operations on grouped signals

using Map-Reduce operators.

Data Workload Our datasets consist of 100 million randomly generated stream events.

For the pure signal processing tasks, these events represent real-valued uniform signals

with equally-spaced samples and the schema <Time,Value>. For the grouped computa-

tion queries, stream events also include the grouping key (SensorId) and have the schema

<SensorId,Time,Value>. TRILLDSP never explicitly operates on the Time column as these

values are implicitly encoded in the data windows of events.

7.5.1 Traditional DSP Tasks

We compare TRILLDSP with three numerical frameworks on signal processing tasks commonly

used by DSP practitioners.

127



Chapter 7. Enabling Digital Signal Processing over Data Streams

0

4

8

12

16

20

128 256 512 1024 2048

Ru
nn

in
g	
Ti
m
e	
(s
ec
s)

Window	Size

TrillDSP MATLAB	offline Octave	offline
R	offline MATLAB	online Octave	online
R	online

Figure 7.8 – FFT with tumbling window

FFT over tumbling windows

Our first query computes the Fast Fourier Transform (FFT) over tumbling windows of different

sizes. In TRILLDSP, we write this query as:

var query1 = s0.Window(windowSize , hopSize , true ,
w => w.FFT(), a => a.Sum())

The input s0 is a uniform signal; the output is a stream of complex values representing the

frequency spectrum of each window.

For MATLAB, Octave, and R, we consider two different versions of programs: (1) the offline

versions require the whole stream in order to repack signal values into a matrix form and

then invoke a two-dimensional FFT only once; the reshaping technique is common among

practitioners but obviously applicable only for offline analysis; (2) the online versions mimic a

streaming environment in which FFT is called for each window.

Figure 7.8 presents the running times of these four systems when processing a dataset con-

taining 100 million events. TRILLDSP manages to stay competitive with R offline, while

outperforming R online and Octave online by 1.5-4x (except with the window size of 2048

when Octave evidently chooses a different FFT implementation). TRILLDSP is up to 3x slower

than MATLAB in both online and offline mode and 15x slower than Octave offline.

FIR filtering Our next query uses a finite impulse response (FIR) filter to process a given

uniform signal. The filter convolutes the signal with random filter coefficients. In TRILLDSP,

this operation uses the digital filter framework presented in Section 7.4.5.

var query2 = s.FilterFIR(coeffs)

Figure 7.9 shows the filtering performance of our systems. Note the log scale on the y-axis.

TRILLDSP consistently outperforms R and the performance gap increases with larger filter

vectors, from 4x for 64-sized filters to 16x for 2048-sized filters. TRILLDSP stays competitive

with Octave and is up to 1.8x slower than MATLAB.
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Figure 7.9 – Digital filtering

The goal of these experiments with standard DSP tasks is to demonstrate that TRILLDSP is com-

petitive with or even better than the state-of-the-art tools used by practitioners. TRILLDSP’s

signal operations are efficient but probably not as well optimized as in the other systems,

which exploit decades of research and algorithmic development in their implementations.

Since TRILLDSP exposes arrays in its operator frameworks, users can easily integrate more

sophisticated implementations, for instance, to exploit SIMD execution in FFT. But more

importantly, TRILLDSP offers true online support and a tight integration with relational

operators, which none of these systems does.

7.5.2 Grouped Signal Processing

Our next experiments involve grouped computation in which different sub-queries are exe-

cuted for each group identified by the grouping key (SensorId). We consider three different

sub-queries of growing complexity that combine signal processing and relational operations,

and two new systems, SPARKR and SCIDB-R, capable of processing groups in parallel. We vary

the number of groups while keeping the input signal size fixed.

Grouped Signal Correlation Our next query attempts to correlate a given vector of values

of size 32, denoted as a, with a uniform signal of each group identified by SensorId. The

correlation operation is a sliding window (i.e., the hop size is 1) computation that evaluates a

dot product between the window and vector a at every sample point. In TRILLDSP, we express

the query as:
var query3 =

s0.Map(s => s.Select(e => e.Temp), e => e.SensorId)
.Reduce(s => s.Correlation(a),

(k, p) => new Result { SensorId = k, Temp = p })

The Map operation selects the value column and tags each stream event with its group identifier

(SensorId), while the Reduce operation executes the sub-query on each group. TRILLDSP

supports parallel execution of sub-queries using the specified level of parallelism. For these

experiments, we evaluate TRILLDSP’s performance using 1 and 16 cores.
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Figure 7.10 – Grouped signal correlation

The other systems implement the grouping operation differently. MATLAB and Octave par-

tition the input signal using the accumarray method and then sequentially process each

group in a for loop. Due to performance reasons, we partition the input signal in R using

two methods, accumarray for groups of size 10 and split for larger groups. SPARKR uses

groupByKey to partition an input RDD followed by a local sort of each partition, as shown in

the example from Table 7.1. SCIDB-R uses the redimension operator to change the layout of

array chunks based on the grouping key, also followed by a local sort of each group.

Figure 7.10 shows the query performance of these systems with different numbers of groups.

TRILLDSP consistently outperforms all other systems by up to 20x. MATLAB, Octave, and

R have expensive grouping operations that dominate over potentially efficient correlation

operations, causing 2.2x, 1.4x, and 14x worse performance than TRILLDSP. SPARKR and

SCIDB-R are slower than TRILLDSP by 3-20x, despite grouping and executing sub-queries

in parallel. Note that both systems significantly degrade their performance when processing

large numbers of groups.

Grouped signal interpolation and filtering Consider two uniformly-sampled signals s1 and

s2 consisting of real-valued samples from [0,1] and having different sampling periods, 20 and

5. For each group, we want to upsample the first signal to match the sampling period of the

second and report events at which both group signals have simultaneously extreme values

(close to 0 or 1). TRILLDSP expresses the grouping of s1 as before (same for s2):

var u1 = s1.Map(s => s.Select(e => e.Temp), e => e.SensorId)

We write the query using a two-parameter Reduce operator as:

var query4 = u1.Reduce(u2, (l, r) =>
l.Sample(5, 0, p => p.FirstOrder (20))

.Plus(r).Where(e => e < 0.0001 || e > 1.9999) ,
(k, p) => new Result { SensorId = k, Temp = p })

Figure 7.11 shows the query running times of different systems normalized by the running

time of TrillDSP with 16 cores over varying numbers of groups. Note the log scale of the y-axis.
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Figure 7.11 – Grouped signal interpolation and filtering

TRILLDSP supports stateful interpolation of grouped signals, which results in at least 10x

better performance than the other systems and the performance gap increases with more

groups. SPARKR and SCIDB-R crash when processing 1,000,000 groups, while Octave is

three orders of magnitude slower than TRILLDSP. Note that TRILLDSP achieves around a 8x

speedup using 16 cores during grouped processing.
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Figure 7.12 – Grouped overlap-and-add method

Grouped overlap-and-add Our final query implements one of the most important DSP

techniques, the overlap-and-add method, on a uniformly-sampled grouped signal. The

method follows the same steps described in Section 7.4.6. We modify the query from that

section to use the identity function in the Select operator in order to measure the workflow

performance independently of the user-defined function.

var query5 =
s0.Map(s => s.Select(e => e.Temp), e => e.SensorId)

.Reduce(s => s.Window(windowSize , hopSize , true ,
w => w.FFT().Select(w => w).InverseFFT (), a => a.Sum()),

(k, p) => new Result { SensorId = k, Temp = p })
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Figure 7.12 shows the overlap-and-add method performance in the benchmarked systems

normalized by the performance of TRILLDSP with 16 cores over 256-sample hopping windows

with different hop sizes. Note the log scale of the y-axis. The number of groups in the stream

is 100. As with other grouped queries, TRILLDSP outperforms all other systems by up to two

orders of magnitude. The reason this time lies in the use of circular arrays that effectively

handle overlapping windows of data, especially when using small hop sizes.

7.6 Summary

In this chapter, we advocate for a deep integration of domain-specific tools and general-

purpose query processors to support complex data analysis. Our approach unifies the seem-

ingly disparate worlds of tempo-relational and array data and enables seamless interleaving of

relational and signal operators within one query language, and yet provide experts from both

relational and signal processing worlds with their familiar abstractions. Our system, called

TRILLDSP, natively supports grouped signal processing in both online and offline mode, and

provides extensible frameworks for domain experts to integrate new black-box operations.

TRILLDSP’s performance is comparable with or better than the state-of-the-art numerical

tools, like MATLAB and R. Our approach shows its full potential when processing large num-

bers of groups using queries that combine relational and signal operations. In these common

IoT scenarios, TRILLDSP achieves from 3x to 192x better performance of grouped signal

processing than modern data management systems with loose R integration.
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8 Related Work

In this chapter, we provide a discussion of work related to the general themes in this thesis.

8.1 A Brief Survey of IVM Techniques

Database view management is a well-studied area with over three decades of supporting

literature. Chirkova and Yang provide a survey of the topic [51]. We focus on the aspects of

view materialization most pertinent to the DBToaster project. Our work innovates on the

high-order aspect of incremental view maintenance, which is orthogonal to all previous work.

Traditional incremental view maintenance [76, 77, 75, 49, 51] is typically used for processing

batch updates in data warehouse systems [22, 149, 128], where the focus is on achieving high

throughput rather than low latency. Commercial database systems support incremental view

maintenance but only for restricted classes of queries [9, 4].

Incremental View Maintenance Algorithms and Formal Semantics Maintaining query an-

swers has been considered under both the set [38, 43] and bag [49, 74] relational algebra.

Generally, given a query on N relations Q(R1, . . . ,RN ), traditional IVM uses a first-order delta

query ∆R1Q = Q(R1 ∪∆R1,R2, . . .RN )−Q(R1, . . . ,RN ) for each input relation Ri in turn. The

creation of delta queries has been studied for query languages with aggregation [123] and bag

semantics [74], but we know of no work to formally examine delta queries of nested and corre-

lated subqueries. View maintenance in nested relational algebra (NRA) [89, 96] has not been

adopted in any commercial DBMS. Finally, incremental maintenance of temporal views [150]

and views with outer joins and nulls [104] targets flat SPJAG queries without generalizing to

subqueries, the full compositionality of SQL, or the range of standard aggregates.

Materialization and Query Optimization Strategies Selecting queries to materialize and

reuse during processing has spanned fine-grained approaches from subqueries [131] and

partial materialization [99, 132], to coarse-grained methods as part of multiquery optimization

and common subexpressions [79, 159]. Picking views from a workload of queries typically uses

the AND-OR graph representation from multiquery optimization [79, 131], or adopts signature
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and subsumption methods for common subexpressions [159]. Previous work on selecting sets

of subqueries of view definitions for materialization [131] is related to higher-order IVM as the

delta of a simple query is frequently a subquery. Naturally, for such queries, both approaches

select the same (optimal) materialization strategy. However, our delta operation also captures

nonlinearities in the deltas of more complex queries (e.g., self-joins) and produces different

materialization strategies. We also use query rewriting strategies that deal with correlated

subqueries, inspired by work on query decorrelation [135]. Our experiments include results

for a DBMS that uses a similar nested subquery materialization strategy. Additionally, our

work builds on higher-order IVM, extending it into a complete query compilation system.

Physical DB designers [23, 160] often use the query optimizer as a subcomponent to manage

the search space of equivalent views, reusing its rewriting and pruning mechanisms. For

partial materialization methods, ViewCache [132] and DynaMat [99] use materialized view

fragments, the former materializing join results by storing pointers back to input tuples, the

latter subject to a caching policy based on refresh time and cache space overhead constraints.

Evaluation Strategies For efficient maintenance with first-order delta queries, previous work

studies eager and lazy evaluation to balance query and update workloads [54, 158], asyn-

chronous view maintenance [133], and the interaction of different view freshness models [55].

In addition, evaluating maintenance queries has been studied extensively in Datalog with

semi-naive evaluation (which also uses first-order deltas) and DRed (delete-rederive) [77].

Finally, previous work on view maintenance in stream processing [70] reinforces our position

of using IVM as a general-purpose change propagation mechanism for collections, on top of

which window and pattern constructs can be defined.

8.2 Update Processing Mechanisms

Triggers and Active Databases Triggers, active databases, and event-condition-action (ECA)

mechanisms [26] provide general purpose reactive behavior in a DBMS. The literature con-

siders recursive and cascading trigger firings, and restrictions to ensure limited propagation.

Trigger-based approaches require developers to manually convert queries to delta form, a

painful and error-prone process especially in the higher-order setting. Without manual incre-

mentalization, triggers suffer from poor performance and cannot be optimized by a DBMS

when written in C or Java.

Data Stream Processing Data stream processing [18, 112] and streaming algorithms combine

two aspects of handling updates: (1) shared, incremental processing (e.g., sliding windows)

and (2) sublinear algorithms (with polylogarithmic space bounds). The latter are approximate

processing techniques that are difficult to compose and have had limited adoption in commer-

cial DBMS. Advanced processing techniques in the streaming community also focus mostly

on approximate techniques when processing cannot keep up with stream rates (e.g., load

shedding, prioritization [142]), on shared processing (e.g., on-the-fly aggregation [101]), or

specialized algorithms and data structures [56]. Our approach to streaming is about generaliz-
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ing incremental processing to (non-windowed) SQL semantics (including nested subqueries

and aggregates). Of course, windows can be expressed in this semantics if desired. Similar

principles are also discussed elsewhere [70].

Automatic Differentiation and Incrementalization Beyond databases, the programming

language community has studied incremental computation [50] and automatic incremental-

ization [105]. It has developed languages and compilation techniques for translating high-level

programs into executables that respond to dynamic changes. Self-adjusting computation

targets incremental computation by exploiting dynamic dependency graphs and change prop-

agation algorithms [19, 50]. These approaches: (a) serve for general purpose programs as

opposed to our domain specific techniques, (b) require serious programmer involvement

by annotating modifiable portions of the program, and (c) fail to efficiently capture deltas,

as presented in this work. Automatic incrementalization is by no means a solved challenge,

especially when considering general recursion and unbounded iteration. Automatic differenti-

ation considers deltas of functions applied over scalars rather than sets or collections, and

lately in higher-order fashion [125]. Bridging these two areas of research would be fruitful for

supporting UDFs and general computation on scalars and collections in DBToaster.

8.3 Scalable Processing

Scalable Stream Processing Scalable stream processing platforms, such as MillWheel [28],

Heron [102], and S4 [117], expose low-level primitives to the user for expressing complex

query plans. S-Store [44] provides triggers for expressing data-driven processing with ACID

guarantees in streaming scenarios. Naiad [114], Trill [45], and Dataflow [29] support declarative

continuous queries but with no efficient support for the incremental computation of complex

analytics, like queries with nested aggregates. Spark Streaming [153] allows running simple

SQL queries but only for windowed data. In contrast to these systems, our approach: (1) favors

declaritivity as the user only needs to specify input SQL queries without execution plans; (2)

can incrementally maintain queries with equality-correlated nested aggregates; (3) generates

code tailored to the given workload; our compilation framework can target any scalable system

with a synchronous execution model. Percolator [126] handles incremental updates to large

datasets but targets latencies on the order of minutes. Scalable batch processing systems like

Pig, Hive, and Spark SQL [33] aim for high throughput rather than low latency. Their design

favors infrequent bulk updates during which these systems are typically unresponsive.

Distributed Query Processing Our approach uses well-known techniques from distributed

query processing [98, 67, 129], like the basic shuffling primitives and batch pre-processing

for minimizing network communication. In contrast to classical distributed query optimiza-

tion [20, 98, 47], optimizing higher-order incremental programs is more complex as one has to

keep track of data-flow dependencies among program statements maintaining auxiliary views.

These dependencies prevent arbitrary statement re-orderings inside trigger functions.
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Chapter 8. Related Work

8.4 IVM in Linear Algebra

This thesis studies incremental computation of linear algebra programs, for which the chal-

lenges and optimization techniques differ widely from the previous work on incremental view

maintenance of database (SQL) queries.

Iterative Computation Designing frameworks and computation models for iterative and

incremental computation has received much attention lately. Differential dataflow [109]

represents a new model of incremental computation for iterative algorithms, which relies

on differences (deltas) being smaller and computationally cheaper than the inputs. This

assumption does not hold for linear algebra programs because of the avalanche effect of input

changes. Many systems optimize the MapReduce framework for iterative applications using

techniques that cache and index loop-invariant data on local disks and persist materialized

views between iterations [42, 66, 155]. More general systems support iterative computation

and the DAG execution model,like Dryad [84] and Spark [152, 151]; Mahout [2], MLbase [100]

and others [60, 145, 111] provide scalable machine learning and data mining tools. All these

systems are orthogonal to our work. This thesis is concerned with the efficient re-evaluation

of programs under incremental changes. Our framework, however, can be easily coupled with

any of these underlying systems.

Scientific Databases There are also database systems specialized in array processing. Ras-

DaMan [35], AML [108], and SciDB [139, 58, 41] provide support for expressing and optimizing

queries over multidimensional arrays. ASAP [138] supports scientific computing primitives on

a storage manager optimized for storing multidimensional arrays. RIOT [156] also provides

an efficient out-of-core framework for scientific computing. However, none of these systems

support incremental view maintenance for their workloads.

High Performance Computing The advent of numerical and scientific computing has fueled

the demand for efficient matrix manipulation libraries. BLAS [64] provides low-level routines

representing common linear algebra primitives to higher-level libraries, such as LINPACK,

LAPACK, and ScaLAPACK for parallel processing. Hardware vendors such as Intel and AMD

and code generators such as ATLAS [148] provide highly optimized BLAS implementations. In

contrast, we focus on incremental maintenance of programs through efficient transformations

and materialized views. The LINVIEW compiler translates expensive BLAS routines to cheaper

ones and thus further facilitates adoption of the optimized implementations.

PageRank There is a huge body of literature that is focused on PageRank, including the

Markov chain model, solution methods, sensitivity and conditioning, and the updating prob-

lem. Surveys can be found in [103, 37]. The updating problem studies the effect of perturba-

tions on the Markov chain and PageRank models, including sensitivity analysis, approximation,

and exact evaluation methods. In principle, these methods are particularly tailored for these

specific models. In contrast, this work presents a novel model and framework for efficient

incremental evaluation of general linear algebra programs through domain specific compiler

translations and efficient code generation.
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8.5. Signal Processing in Stream Engines

Incremental Statistical Frameworks Bayesian inference [36] uses Bayes’ rule to update the

probability estimate for a hypothesis as additional evidence is acquired. These frameworks

support a variety of applications such as pattern recognition and classification. Our work

focuses on incrementalizing applications that can be expressed as linear algebra programs

and generating efficient incremental programs for different runtime environments.

8.5 Signal Processing in Stream Engines

Signal Processing Numerical frameworks like MATLAB [10], R, and LabVIEW [8] provide

a plethora of highly-optimized algorithms for signal processing but remain unsuitable for

general-purpose stream and relational processing. Spark [152, 151] and SciDB [139, 58, 41]

provide R packages that allow users to write R code that uses these systems as backend storages

with scalable processing capabilities. MonetDB [39] and SQL Server [12] support queries that

can invoke R routines. In contrast to all these systems, TRILLDSP uses one query language

and one data model, performs in-situ processing of relational and signal data, and provides

true online support. Plato [88] integrates signal processing models in a DBMS to deal with

inaccurate or incomplete data but provides no support for general signal processing in both

offline and streaming environments.

Stream Processing with DSP Functionality Conventional stream processing engines [32,

46, 18, 69] have no support for signal processing. StreamBase [13] enables integration with

MATLAB and R but like other loosely-couple systems uses two different query languages and

data models, requiring back and forth data exchanging. Gigascope [57] and Tribeca [140]

are streaming database systems for networking applications that support relational queries

but cannot express signal processing operations. StreamInsight [30] allows domain-specific

extensions but provides no high-level signal processing abstractions (e.g., arrays) to the user.

The XStream system [72], like our work, recognizes the fundamental need for implementing

stream processing operations against an array abstraction (signal segments in XStream). This

particular system, and its associated language, WaveScript [72, 71], exclusively target signal

processing workloads and together provide a much lower level programming experience. For

instance, arrays and their contents are visible and can be manipulated directly by the query

writer outside the context of a user-defined operator.

Sensor networks TinyDB [106] and COUGAR [40] are sensor database systems supporting

(tempo-)relational processing. Other specialized systems can handle sensor data, too [52].

But, none of these systems has native support for high-performance signal processing.
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9 Conclusion

This research is motivated by the need for a class of systems optimized for keeping complex

query analytics highly available and fresh under high update rates. In this thesis, we explore

different application domains seeking solutions for the three key requirements of such systems:

incremental processing, support for complex continuous queries, and scalable processing.

The DBTOASTER system has demonstrated the real power of combining novel query op-

timization and programming language techniques in building high-performance systems.

Throughout the last several years, DBTOASTER has grown from a system that implements a

naïve viewlet transform and interprets trigger statements to a system that supports distributed

execution and exploits the state-of-the-art compiler libraries for aggressive code specialization.

Compared to our first paper benchmarking the whole system [24], the performance numbers

have gone up by additional 3−4 orders of magnitude. DBTOASTER has attracted strong interest

from both industry and academia, which makes the effort spent in building it well justified.

The second topic of the thesis, incremental linear algebra, teaches us how valuable theoretical

results can be in the systems design. Our first LINVIEW prototype was based on a complex

algorithm for propagating delta expressions and maintaining their sparsity. The algorithm suf-

fered from poor performance and was hard to parallelize. Discovering the matrix factorization

idea has helped us to understand the research problem in a profound way, paving the way for

a simpler, faster, and scalable implementation of the entire system.

The last part of the thesis demonstrates that one can extend general-purpose query processors

with domain-specific functionality and get the best of both worlds: a more powerful, declara-

tive query language and high performance of both standard and specialized operations. This

result opens up the question whether the “one-size-doesn’t-fit-all” paradigm from database

systems [138] also holds for stream processing systems, in particular, because of their ability to

transform data on-the-fly to meet different processing requirements. Answering this question

is an interesting direction for future work.
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A Appendix

A.1 Workload Queries

We list our TPC-H queries (with changes described in Section 4.3) and financial queries.

A.1.1 TPC-H Queries

Q
1 SELECT returnflag, linestatus,

SUM(quantity) AS sum_qty,
SUM(extendedprice) AS sum_base_price,
SUM(extendedprice * (1-discount)) AS sum_disc_price,
SUM(extendedprice * (1-discount)*(1+tax)) AS sum_charge,
AVG(quantity) AS avg_qty,
AVG(extendedprice) AS avg_price,
AVG(discount) AS avg_disc,
COUNT(*) AS count_order

FROM Lineitem
WHERE shipdate <= DATE(’1997-09-01’)
GROUP BY returnflag, linestatus;

Q
2 SELECT s.acctbal, s.name, n.name, p.partkey, p.mfgr,

s.address, s.phone, s.comment
FROM Part p, Supplier s, Partsupp ps,

Nation n, Region r
WHERE p.partkey = ps.partkey
AND s.suppkey = ps.suppkey
AND p.size = 15
AND (p.type LIKE ’%BRASS’)
AND s.nationkey = n.nationkey
AND n.regionkey = r.regionkey
AND r.name = ’EUROPE’
AND (NOT EXISTS

(SELECT 1
FROM Partsupp ps2, Supplier s2,

Nation n2, Region r2
WHERE p.partkey = ps2.partkey
AND s2.suppkey = ps2.suppkey
AND s2.nationkey = n2.nationkey
AND n2.regionkey = r2.regionkey
AND r2.name = ’EUROPE’
AND ps2.supplycost < ps.supplycost));

Q
3 SELECT o.orderkey,

o.orderdate,
o.shippriority,
SUM(extendedprice * (1 - discount)) AS query3

FROM Customer c, Orders o, Lineitem l
WHERE c.mktsegment = ’BUILDING’
AND o.custkey = c.custkey
AND l.orderkey = o.orderkey
AND o.orderdate < DATE(’1995-03-15’)
AND l.shipdate > DATE(’1995-03-15’)
GROUP BY o.orderkey, o.orderdate, o.shippriority;

Q
4 SELECT o.orderpriority, COUNT(*) AS order_count

FROM Orders o
WHERE o.orderdate >= DATE(’1993-07-01’)
AND o.orderdate < DATE(’1993-10-01’)
AND (EXISTS (

SELECT * FROM Lineitem l
WHERE l.orderkey = o.orderkey
AND l.commitdate < l.receiptdate

))
GROUP BY o.orderpriority;

Q
5 SELECT n.name,

SUM(l.extendedprice * (1 - l.discount)) AS revenue
FROM Customer c, Orders o, Lineitem l, Supplier s,

Nation n, Region r
WHERE c.custkey = o.custkey
AND l.orderkey = o.orderkey
AND l.suppkey = s.suppkey
AND c.nationkey = s.nationkey
AND s.nationkey = n.nationkey
AND n.regionkey = r.regionkey
AND r.name = ’ASIA’
AND o.orderdate >= DATE(’1994-01-01’)
AND o.orderdate < DATE(’1995-01-01’)
GROUP BY n.name;
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Q

6 SELECT SUM(l.extendedprice*l.discount) AS revenue
FROM Lineitem l
WHERE l.shipdate >= DATE(’1994-01-01’)
AND l.shipdate < DATE(’1995-01-01’)
AND (l.discount BETWEEN (0.06 - 0.01) AND (0.06 + 0.01))
AND l.quantity < 24;

Q
7 SELECT supp_nation, cust_nation, l_year,

SUM(volume) AS revenue
FROM (

SELECT n1.name AS supp_nation,
n2.name AS cust_nation,
EXTRACT(year from l.shipdate) AS l_year,
l.extendedprice * (1 - l.discount) AS volume

FROM Supplier s, Lineitem l, Orders o, Customer c,
Nation n1, Nation n2

WHERE s.suppkey = l.suppkey
AND o.orderkey = l.orderkey
AND c.custkey = o.custkey
AND s.nationkey = n1.nationkey
AND c.nationkey = n2.nationkey
AND ((n1.name = ’FRANCE’ AND n2.name = ’GERMANY’)

OR
(n1.name = ’GERMANY’ AND n2.name = ’FRANCE’))

AND (l.shipdate BETWEEN DATE(’1995-01-01’)
AND DATE(’1996-12-31’) )

) AS shipping
GROUP BY supp_nation, cust_nation, l_year;

Q
8 SELECT total.o_year,

(SUM(CASE total.name WHEN ’BRAZIL’
THEN total.volume
ELSE 0 END) /

LISTMAX(1, SUM(total.volume)) ) AS mkt_share
FROM (

SELECT n2.name,
EXTRACT(year from o.orderdate) AS o_year,
l.extendedprice * (1-l.discount) AS volume

FROM Part p, Supplier s, Lineitem l, Orders o,
Customer c, Nation n1, Nation n2, Region r

WHERE p.partkey = l.partkey
AND s.suppkey = l.suppkey
AND l.orderkey = o.orderkey
AND o.custkey = c.custkey
AND c.nationkey = n1.nationkey
AND n1.regionkey = r.regionkey
AND r.name = ’AMERICA’
AND s.nationkey = n2.nationkey
AND (o.orderdate BETWEEN DATE(’1995-01-01’)

AND DATE(’1996-12-31’))
AND p.type = ’ECONOMY ANODIZED STEEL’

) total
GROUP BY total.o_year;

Q
9 SELECT nation, o_year, SUM(amount) AS sum_profit

FROM (
SELECT n.name AS nation,

EXTRACT(year from o.orderdate) AS o_year,
((l.extendedprice * (1 - l.discount)) -
(ps.supplycost * l.quantity)) AS amount

FROM Part p, Supplier s, Lineitem l, Partsupp ps,
Orders o, Nation n

WHERE s.suppkey = l.suppkey
AND ps.suppkey = l.suppkey
AND ps.partkey = l.partkey
AND p.partkey = l.partkey
AND o.orderkey = l.orderkey
AND s.nationkey = n.nationkey
AND (p.name LIKE ’%green%’)
) AS profit

GROUP BY nation, o_year;

Q
10 SELECT c.custkey, c.name,

c.acctbal,
n.name,
c.address,
c.phone,
c.comment,
SUM(l.extendedprice * (1 - l.discount)) AS revenue

FROM Customer c, Orders o, Lineitem l, Nation n
WHERE c.custkey = o.custkey
AND l.orderkey = o.orderkey
AND o.orderdate >= DATE(’1993-10-01’)
AND o.orderdate < DATE(’1994-01-01’)
AND l.returnflag = ’R’
AND c.nationkey = n.nationkey
GROUP BY c.custkey, c.name, c.acctbal, c.phone,

n.name, c.address, c.comment;

Q
11 SELECT p.partkey, SUM(p.value) AS QUERY11

FROM
(

SELECT ps.partkey,
SUM(ps.supplycost * ps.availqty) AS value

FROM Partsupp ps, Supplier s, Nation n
WHERE ps.suppkey = s.suppkey
AND s.nationkey = n.nationkey
AND n.name = ’GERMANY’
GROUP BY ps.partkey

) p
WHERE p.value > (

SELECT SUM(ps.supplycost * ps.availqty) * 0.001
FROM Partsupp ps, Supplier s, Nation n
WHERE ps.suppkey = s.suppkey
AND s.nationkey = n.nationkey
AND n.name = ’GERMANY’

)
GROUP BY p.partkey;

Q
12 SELECT l.shipmode,

SUM(CASE WHEN o.orderpriority IN (’1-URGENT’,
’2-HIGH’)

THEN 1 ELSE 0 END) AS high_line_count,
SUM(CASE WHEN o.orderpriority NOT IN (’1-URGENT’,

’2-HIGH’)
THEN 1 ELSE 0 END) AS low_line_count

FROM Orders o, Lineitem l
WHERE o.orderkey = l.orderkey
AND (l.shipmode IN (’MAIL’, ’SHIP’))
AND l.commitdate < l.receiptdate
AND l.shipdate < l.commitdate
AND l.receiptdate >= DATE(’1994-01-01’)
AND l.receiptdate < DATE(’1995-01-01’)
GROUP BY l.shipmode;

Q
13 SELECT c_count, COUNT(*) AS custdist

FROM (
SELECT c.custkey AS c_custkey,

COUNT(o.orderkey) AS c_count
FROM Customer c, Orders o
WHERE c.custkey = o.custkey
AND (o.comment NOT LIKE ’%special%requests%’)
GROUP BY c.custkey

) c_orders
GROUP BY c_count;

Q
14 SELECT (100.00 *

SUM(CASE WHEN (p.type LIKE ’PROMO%’)
THEN l.extendedprice * (1 - l.discount)
ELSE 0 END) /

LISTMAX(1,
SUM(l.extendedprice * (1 - l.discount)))

) AS promo_revenue
FROM Lineitem l, Part p
WHERE l.partkey = p.partkey
AND l.shipdate >= DATE(’1995-09-01’)
AND l.shipdate < DATE(’1995-10-01’);
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A.1. Workload Queries

Q
15 SELECT s.suppkey, s.name, s.address, s.phone,

r1.total_revenue as total_revenue
FROM Supplier s,

(SELECT l.suppkey AS supplier_no,
SUM(l.extendedprice * (1 - l.discount))
AS total_revenue

FROM Lineitem l
WHERE l.shipdate >= DATE(’1996-01-01’)

AND l.shipdate < DATE(’1996-04-01’)
GROUP BY l.suppkey) r1

WHERE s.suppkey = r1.supplier_no
AND (NOT EXISTS

(SELECT 1
FROM (SELECT l.suppkey,

SUM(l.extendedprice *
(1 - l.discount))

AS total_revenue
FROM Lineitem l
WHERE l.shipdate >= DATE(’1996-01-01’)
AND l.shipdate < DATE(’1996-04-01’)
GROUP BY l.suppkey) AS r2

WHERE r2.total_revenue > r1.total_revenue) );

Q
16 SELECT p.brand, p.type, p.size,

COUNT(DISTINCT ps.suppkey) AS supplier_cnt
FROM Partsupp ps, Part p
WHERE p.partkey = ps.partkey
AND p.brand <> ’Brand#45’
AND (p.type NOT LIKE ’MEDIUM POLISHED%’)
AND (p.size IN (49, 14, 23, 45, 19, 3, 36, 9))
AND (ps.suppkey NOT IN (

SELECT s.suppkey FROM Supplier s
WHERE s.comment LIKE ’%Customer%Complaints%’))

GROUP BY p.brand, p.type, p.size;

Q
17 SELECT SUM(l.extendedprice) / 7.0 AS avg_yearly

FROM Lineitem l, Part p
WHERE p.partkey = l.partkey
AND p.brand = ’Brand#23’
AND p.container = ’MED BOX’
AND l.quantity < (

SELECT 0.2 * AVG(l2.quantity) FROM Lineitem l2
WHERE l2.partkey = p.partkey);

Q
18 SELECT c.name, c.custkey, o.orderkey, o.orderdate,

o.totalprice, SUM(l.quantity) AS query18
FROM Customer c, Orders o, Lineitem l
WHERE o.orderkey IN

( SELECT l3.orderkey FROM (
SELECT l2.orderkey, SUM(l2.quantity) AS QTY
FROM Lineitem l2 GROUP BY l2.orderkey ) l3

WHERE QTY > 100)
AND c.custkey = o.custkey
AND o.orderkey = l.orderkey
GROUP BY c.name, c.custkey, o.orderkey, o.orderdate,

o.totalprice;

Q
20 SELECT s.name, s.address

FROM Supplier s, Nation n
WHERE s.suppkey IN

( SELECT ps.suppkey
FROM Partsupp ps
WHERE ps.partkey IN

( SELECT p.partkey
FROM Part p
WHERE p.name like ’forest%’ )

AND ps.availqty >
( SELECT 0.5 * SUM(l.quantity)

FROM Lineitem l
WHERE l.partkey = ps.partkey
AND l.suppkey = ps.suppkey
AND l.shipdate >= DATE(’1994-01-01’)
AND l.shipdate < DATE(’1995-01-01’) ))

AND s.nationkey = n.nationkey
AND n.name = ’CANADA’;

Q
19 SELECT SUM(l.extendedprice * (1 - l.discount) ) AS revenue

FROM Lineitem l, Part p
WHERE

(
p.partkey = l.partkey
AND p.brand = ’Brand#12’
AND ( p.container IN ( ’SM CASE’, ’SM BOX’,

’SM PACK’, ’SM PKG’) )
AND l.quantity >= 1 AND l.quantity <= 1 + 10
AND ( p.size BETWEEN 1 AND 5 )
AND (l.shipmode IN (’AIR’, ’AIR REG’) )
AND l.shipinstruct = ’DELIVER IN PERSON’

)
OR
(

p.partkey = l.partkey
AND p.brand = ’Brand#23’
AND ( p.container IN (’MED BAG’, ’MED BOX’,

’MED PKG’, ’MED PACK’) )
AND l.quantity >= 10 AND l.quantity <= 10 + 10
AND ( p.size BETWEEN 1 AND 10 )
AND ( l.shipmode IN (’AIR’, ’AIR REG’) )
AND l.shipinstruct = ’DELIVER IN PERSON’

)
OR
(

p.partkey = l.partkey
AND p.brand = ’Brand#34’
AND ( p.container IN ( ’LG CASE’, ’LG BOX’,

’LG PACK’, ’LG PKG’) )
AND l.quantity >= 20 AND l.quantity <= 20 + 10
AND ( p.size BETWEEN 1 AND 15 )
AND ( l.shipmode IN (’AIR’, ’AIR REG’) )
AND l.shipinstruct = ’DELIVER IN PERSON’

);

Q
21 SELECT s.name, COUNT(*) AS numwait

FROM Supplier s, Lineitem l1, Orders o, Nation n
WHERE s.suppkey = l1.suppkey
AND o.orderkey = l1.orderkey
AND o.orderstatus = ’F’
AND l1.receiptdate > l1.commitdate
AND (EXISTS (SELECT * FROM Lineitem l2

WHERE l2.orderkey = l1.orderkey
AND l2.suppkey <> l1.suppkey))

AND (NOT EXISTS
(SELECT * FROM Lineitem l3
WHERE l3.orderkey = l1.orderkey
AND l3.suppkey <> l1.suppkey
AND l3.receiptdate > l3.commitdate))

AND s.nationkey = n.nationkey
AND n.name = ’SAUDI ARABIA’
GROUP BY s.name;

Q
22 SELECT cntrycode,

COUNT(*) AS numcust,
SUM(custsale.acctbal) AS totalacctbal

FROM (
SELECT SUBSTRING(c.phone, 0, 2) AS cntrycode,

c.acctbal
FROM Customer c
WHERE (SUBSTRING(c.phone, 0, 2) IN

(’13’, ’31’, ’23’, ’29’, ’30’, ’18’, ’17’))
AND c.acctbal > (

SELECT AVG(c2.acctbal)
FROM Customer c2
WHERE c2.acctbal > 0.00
AND (SUBSTRING(c2.phone, 0, 2) IN

(’13’, ’31’, ’23’, ’29’,
’30’, ’18’, ’17’)))

AND (NOT EXISTS (SELECT * FROM Orders o
WHERE o.custkey = c.custkey))

) custsale
GROUP BY cntrycode;
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A.1.2 Financial workload

A
X

F SELECT b.broker_id, SUM(a.volume-b.volume)
FROM Bids b, Asks a
WHERE b.broker_id = a.broker_id
AND (a.price-b.price > 1000 OR b.price-a.price > 1000)
GROUP BY b.broker_id;

B
SP

SELECT x.broker_id, SUM(x.volume*x.price - y.volume*y.price)
FROM Bids x, Bids y
WHERE x.broker_id=y.broker_id AND x.t>y.t
GROUP BY x.broker_id;

B
SV

SELECT x.broker_id, SUM(x.volume*x.price*y.volume*y.price*0.5)
FROM Bids x, Bids y
WHERE x.broker_id = y.broker_id
GROUP BY x.broker_id;

M
S T SELECT b.broker_id, SUM(a.price*a.volume - b.price*b.volume)

FROM Bids b, Asks a
WHERE 0.25*(SELECT SUM(a1.volume) FROM Asks a1) >

(SELECT SUM(a2.volume) FROM Asks a2 WHERE a2.price>a.price)
AND 0.25*(SELECT SUM(b1.volume) FROM Bids b1) >

(SELECT SUM(b2.volume) FROM Bids b2 WHERE b2.price>b.price)
GROUP BY b.broker_id;

P
SP SELECT SUM(a.price - b.price)

FROM Bids b, Asks a
WHERE b.volume>0.0001*(SELECT SUM(b1.volume) FROM Bids b1)
AND a.volume>0.0001*(SELECT SUM(a1.volume) FROM Asks a1);

V
W

A
P SELECT SUM(b1.price * b1.volume)

FROM Bids b1
WHERE 0.25 * (SELECT SUM(b3.volume) FROM Bids b3) >

(SELECT SUM(b2.volume) FROM Bids b2
WHERE b2.price>b1.price);

A.2 Distributed Experiments with Batch Updates (cont.)

Figure A.1 presents more scalability results of the distributed incremental view maintenance

of the TPC-H queries.
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Figure A.1 – Strong scalability of the incremental view maintenance of TPC-H queries for
different batch sizes (in million of tuples).
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A.3 Local Experiments with Single-tuple Updates (cont.)
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Figure A.2 – (a) Join-free query with an equality/inequality correlated nested aggregate in the EXISTS clause.
(b) Join-free query. (c) 2-way join. (d) 2-way join with an aggregate query in the FROM clause. (e) 2-way join. (f)
2-way join with an aggregate query in the FROM clause and an inequality-correlated nested aggregate in the EXIST
clause. (g) 2-way join with a nested inequality correlated query. (h) 3-way join with an equality correlated nested
query and an uncorrelated aggregate in the FROM clause. (i) 2-way join with 3 equality-correlated nested queries.
(j) Join-free query with an uncorrelated nested aggregate and a correlated nested aggregate in the EXISTS clause.
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Appendix A. Appendix

A.4 Comparison DBToaster vs. PostgreSQL

Re-evaluation (PostgreSQL) IVM (PostgreSQL) Recursive IVM (DBToaster, C++)

Batch size 1 10 100 1000 10000 100000 1 10 100 1000 10000 100000 Single 1 10 100 1000 10000 100000

TPC-H 1 10 32 103 187 1003 2889 57 332 2478 9686 12250 12194 1267132 307715 1186926 2812549 4179921 4163385 4372480

TPC-H 2 11 146 427 493 5685 13420 28 125 193 4726 1995 12044 756611 456559 911141 1005175 971154 986810 691260

TPC-H 3 34 111 301 522 2120 5722 17 78 222 61 9100 5676 3736860 1251162 3004637 4401315 5323732 5182684 4580003

TPC-H 4 23 122 400 400 3713 7333 55 93 5857 10223 12550 12971 10076062 1603637 4652895 9012747 10687864 10790913 9752380

TPC-H 5 30 88 253 460 2304 5424 11 174 9 11 153 8665 584261 387568 625805 690475 658595 618632 509490

TPC-H 6 27 88 282 319 2500 6528 58 579 4065 11091 12742 12556 138216710 17017320 44270149 78310773 98176845 116931875 101327791

TPC-H 7 34 117 311 317 2985 7083 7 30 2 16 6908 5944 650650 397643 689015 753051 775288 770259 646018

TPC-H 8 35 114 338 335 2629 5886 28 8 21 19 222 5571 91221 73786 219613 279041 273387 277808 221020

TPC-H 9 30 151 335 513 1952 5999 14 25 22 21 197 1545 104370 78460 90949 109515 102940 86251 76296

TPC-H 10 32 88 322 207 2282 5701 33 165 372 123 7836 12306 2889537 1391237 3605282 5771226 6354245 7050705 5964290

TPC-H 11 22 61 191 366 1930 8734 23 71 220 367 2062 9414 768 776 1923 13500 109603 407547 591716

TPC-H 12 33 109 356 646 3279 4823 49 1050 6248 10837 630 5306 8675929 1678780 3905117 7131341 8236605 7706686 7469474

TPC-H 13 21 74 170 489 345 2578 33 94 283 267 2108 7334 779515 444588 685871 758725 701083 679684 474765

TPC-H 14 26 74 230 313 2322 6556 35 40 56 148 11686 11611 33041606 2769955 13146565 27984674 43468480 51827803 53436252

TPC-H 15 18 74 203 154 1613 4674 N/A 34 38 86 923 3944 17 17 27 52 109 285 964

TPC-H 16 19 58 203 330 1161 2822 18 35 302 1317 5304 10095 123936 115749 131902 121464 108208 75015 58721

TPC-H 17 27 57 88 194 481 666 36 111 564 948 589 1288 379303 210671 256882 208937 279930 155138 131964

TPC-H 18 20 66 207 223 1190 2114 20 18 17 77 676 5881 1133647 572132 1040612 1278945 1272541 1274853 971313

TPC-H 19 31 72 234 329 2218 6139 42 422 502 144 291 11944 1946309 2461229 5829592 8753856 9988084 9737049 8776165

TPC-H 20 6 9 15 18 36 56 11 7 5 21 25 43 977 950 1504 129092 874469 2191422 1871407

TPC-H 21 32 110 347 417 794 7333 31 54 24 10 10583 6797 836800 282532 449838 508128 501657 478923 407540

TPC-H 22 14 45 141 247 1551 5462 12 36 97 298 1252 741 189 183 336 5918 54459 434245 815903

TPC-DS 3 35 92 328 2045 3136 6694 164 1785 4457 5444 6866 8416 12309621 2072493 5945894 8116538 8718851 7740490 6442932

TPC-DS 7 1 14 109 219 1635 5000 98 1104 4262 4438 6721 6694 858649 361726 1024456 1227564 1076421 963048 392581

TPC-DS 19 1 106 132 264 2480 5056 0 78 232 82 7231 6139 30 29 29 29 29 25 7

TPC-DS 27 107 837 3706 5760 7307 8037 76 867 4326 6331 6846 8212 588394 196141 560333 669487 529235 497035 202849

TPC-DS 34 0 4 42 208 1821 4730 1 4 41 173 7510 6350 2803540 1019381 4742812 9219979 10612493 11445739 10689928

TPC-DS 42 9 79 405 196 4322 5594 153 1234 4607 5124 6766 7694 21127917 2589874 7953492 10242024 11325623 9460881 8530989

TPC-DS 43 0 4 42 201 1643 4411 91 710 3232 4702 7246 6972 3103901 589052 3488082 9893883 12851893 14494762 14605017

TPC-DS 46 0 4 43 204 2050 5040 0 1 14 56 6599 6611 185 149 149 149 149 147 90

TPC-DS 52 8 79 406 191 4289 6583 136 869 4266 5066 6808 8121 21005081 2456902 8102885 10552388 11401574 10311449 9074722

TPC-DS 55 31 97 294 875 2444 5444 52 1128 4639 5726 6528 6825 34822881 2343359 7680837 10282103 10993911 10028796 8951066

TPC-DS 68 0 4 42 202 2226 5238 0 1 14 57 6628 6361 182 149 149 149 149 147 88

TPC-DS 73 107 810 3866 5892 7308 8111 139 896 4352 6396 6919 8184 2104283 1028758 4739743 8906107 10620186 10460940 9176666

TPC-DS 79 0 4 39 197 1819 4066 1 4 41 170 5036 6111 838490 427822 1903781 3289301 3869664 3254954 2834858

Table A.1 – Throughput comparison of re-evaluation and incremental maintenance in Post-
greSQL and recursive incremental maintenance in generated C++ code for different batch
sizes (in tuples per second).
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