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Abstract
Stream temperature is one of the key variables affecting the habitat suitability of numerous

aquatic species. Over the past decades, research efforts on this topic have concentrated on

low-land rivers of North-America, whereas mountainous environments have received much

less attention—above all in Europe. The present thesis introduces two new models for stream

temperature prediction in Alpine watersheds. Both are tested over selected catchments in

Switzerland, a mountainous country which presents the advantage of possessing a dense

network of automatic stream temperature measurement stations.

The first model is specifically designed to provide stream temperature estimates in ungauged

catchments, so as to compensate for the scarcity of temperature measurement sites in moun-

tainous environments. As opposed to standard statistical models, which are common to many

disciplines, the present one aims at incorporating some of the physics controlling stream

temperature in its own structure. Its formulation is derived from an analytical solution to

the equation describing the energy balance of an entire stream network. Some terms of this

solution cannot be readily determined based on data available at the regional scale; they are

approximated using standard statistical techniques. The resulting model is statistical in nature,

but includes elements of thermodynamic principles. Its accuracy is shown to be similar to

the one of a standard statistical model, with a root mean square error of 1.3◦C at the monthly

time scale. In virtue of its physical basis, the model can be used to investigate into more detail

the factors controlling stream temperature at the regional scale, as shown through a simple

example.

The second model is intended to provide deterministic stream temperature predictions, to

be used for example in climate change studies. It builds upon an existing physically-based

model, which has been entirely written anew in order to clarify its structure and ease future

developments. Conceived as an add-on to the spatially distributed snow model Alpine3D, it

simulates the flows of both water and energy within the catchment based on a semi-distributed

approach. Some components of the model can be represented using various alternatives; for

example, three different techniques are available to simulate the temperature of subsurface

runoff. This flexibility allows the model to be tuned to the specific needs of each user, but

also permits a more thorough assessment of the simulation uncertainty by comparing the

predictions of the various alternatives. Evaluation of the model in a high alpine watershed

indicates that hourly mean discharge is reproduced with a Nash-Sutcliffe efficiency (NSE) of

0.82, and hourly mean stream temperature with a NSE of 0.78.

Both models are shown to contribute to a better understanding of stream temperature dynam-
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Abstract

ics in Alpine environments. In particular, it is found that the temperature of subsurface runoff

has a marked impact on stream temperature—a fact which has usually been neglected or un-

derestimated in previous studies. Future work involves further research on the structure of the

statistical model, as well as the application of the deterministic model within the framework

of climate change studies.

Key words: stream temperature, alpine hydrology, deterministic modeling, statistical model-

ing, prediction in ungauged basins (PUB)
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Résumé
La température des cours d’eaux influe sur de nombreux aspects de l’écosystème rivulaire,

et notamment sur la distribution géographique de multiples espèces aquatiques. Jusqu’à ce

jour, les travaux de recherche dans ce domaine ont principalement été menés sur des rivières

de plaine nord-américaines. En comparaison, les cours d’eau d’altitude ont été bien moins

étudiés—et ce d’autant moins en Europe. La présente thèse introduit deux nouveaux modèles

visant à prédire la température dans des cours d’eau alpins. Ces modèles sont évalués sur

des rivières de Suisse, un pays qui présente l’avantage—outre son caractère montagneux—de

posséder un vaste réseau de mesure de température des cours d’eau.

Le premier modèle permet l’estimation de la température dans des bassins-versants non

jaugés, dans le but de palier au faible nombre de sites de mesure en milieu montagneux. Il

fournit des prédictions de la température moyenne mensuelle sur la base d’une approche

statistique originale. Contrairement aux modèles statistiques standards, tels que la régres-

sion multilinéaire ou les réseaux de neurones, le présent modèle incorpore des éléments

de la thermodynamique des cours d’eau au sein même de sa structure. Il se base pour cela

sur une solution analytique de l’équation régissant la conservation de l’énergie d’un réseau

hydrographique. Certains termes de cette solution ne peuvent être calculés à partir des don-

nées disponibles à l’échelle régionale ; ils sont approximés à l’aide de techniques statistiques

standards. Il en résulte un modèle dont la nature est statistique, mais qui se base sur des

principes physiques. Son évaluation sur une sélection de bassins-versants suisses indique que

la racine de l’erreur quadratique moyenne de ses prédictions s’élève à 1.3◦C, ce qui se trouve

être du même ordre de grandeur que les modèles statistiques standards. Le fait que le présent

modèle incorpore des éléments de thermodynamique peut être mis à profit pour explorer

les principaux facteurs influant sur la température des cours d’eau à l’échelle régionale. La

démonstration en est faite au travers d’un exemple simple.

Le second modèle vise à fournir des prédictions déterministes de la température des cours

d’eau à l’échelle de temps horaire. Il a été conçu à des fins de prévision à long terme pour

des études de changement climatique en milieu alpin. Il se base sur un modèle déterministe

préexistant qui a été entièrement réécrit afin de clarifier sa structure et de faciliter son dé-

veloppement futur par de tierces personnes. Conçu comme une extension du modèle de

neige Alpine3D, il simule le transport d’eau et d’énergie dans le bassin-versant à l’aide d’une

approche semi-distribuée à base physique. Certains composants du modèle peuvent être si-

mulés de multiples manières, comme par exemple le calcul de la température de l’écoulement

de sous-surface qui pénètre dans la rivière. Cette flexibilité permet d’adapter le modèle aux
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Résumé

besoins particuliers de chaque utilisateur, mais aussi d’estimer les erreurs de prédiction du

modèle en comparant les résultats obtenus à partir des diverses méthodes mises à disposition.

En guise d’exemple d’application, le modèle est testé sur un bassin-versant de haute altitude

en Suisse orientale. La comparaison avec les données mesurées indique qu’il parvient à re-

produire le débit et la température horaires du cours d’eau avec des indices de Nash-Sutcliffe

respectifs de 0,82 et 0,78.

Au-delà de la conception des deux modèles, c’est une contribution à la recherche sur la

température des cours d’eau en milieu montagneux qui a été visée. L’application des deux

modèles a notamment permis d’observer que la température de l’écoulement de sous-surface

a un impact significatif sur la température des cours d’eau, un fait qui a généralement été

négligé ou sous-estimé par les études antérieures. La poursuite des travaux engagés dans

cet ouvrage devra se concentrer sur une étude plus approfondie de l’approche adoptée pour

développer le modèle statistique, ainsi que sur une utilisation du modèle déterministe dans le

cadre d’études de changement climatique.

Mots-clefs : température des cours d’eau, hydrologie alpine, modèle déterministe, modèle

statistique, prédiction dans des bassins-versants non-jaugés
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1 Introduction

Stream temperature is often referred to as one of the key variables for stream ecosystems. Its

predominant role on many aspects of riverine biology has been known for long and continues

to be the subject of intense scientific research. Among the current studies, some focus on

the impacts of climate or land use change on various aquatic species, while others—like

the present thesis—concentrate more on the better understanding and modeling of stream

temperature dynamics.

From an ecological perspective, stream temperature determines the habitat suitability of many

aquatic species. The most emblematic among them are the salmonids—regrouping trouts,

salmons and chars—as they support a substantial economic sector in some regions of the

world such as Canada, Scotland or some states of the US (e.g. Nelitz et al., 2007; Loinaz et al.,

2014). Being ectothermic, salmonids are particularly sensitive to the temperature of their

environment, which controls various aspects of their physiology and behavior. For example,

the dates of spawning and fry emergence have been observed to strongly depend on stream

temperature (e.g. Armstrong et al., 2003; Elliott and Elliott, 2010). The latter is also known

to become lethal above a certain threshold; for instance, the eggs of arctic char (Salvelinus

alpinus; see Fig. 1.1a) do usually not survive if temperature exceeds 8◦C (Elliott and Elliott,

2010). In addition, stream temperature plays an important role in the feeding, growth rate

and metabolic rate of salmonids. As such, fishes tend to eat more and grow faster within a

preferred temperature range, which varies among the species (Armstrong et al., 2003; Elliott

and Elliott, 2010). Some recent studies have shown that not only the value, but also the

temporal dynamics of stream temperature are relevant for fish (e.g. Wehrly et al., 2007). For

example, the upper lethal temperature limit experienced by the salmonids depends on the

duration of the exposition period: the longer the period, the lower the limit. Fish sensitivity to

warm temperatures is exacerbated by the proliferation of diseases such as the Proliferative

Kidney Disease (PKD) at higher stream temperatures, which tend to drastically reduce the

populations of salmonids (e.g. Hari et al., 2006).

Apart from salmonids, many other aquatic species are directly or indirectly impacted by

stream temperature. As examples drawn from the general public literature, one can cite the

1



Chapter 1. Introduction

(a)

(b) (c)

Figure 1.1: Examples of species whose habitat suitability is impacted by stream temperature:
(a) Arctic char (already grilled and stuffed with onions, mushrooms and carrots—for the recipe,
see http://thierrygrandnord.com; picture credits: T. Chevillard), (b) freshwater pearl mussel
(picture credits: L. Jurek) and (c) Eurasian water shrew (picture credits: T. Whittaker).

freshwater pearl mussel (Margaritifera margaritifera; see Fig. 1.1b), portrayed two years ago in

issue 101 of the French naturalist journal La Hulotte (Déom, 2014), and the Eurasian water

shrew (Neomys fodiens; see Fig. 1.1c), depicted in this year’s special issue of the magazine

edited by the Swiss association Pro Natura for the protection of Nature (Strässle et al., 2016).

The freshwater pearl mussel was commonly found on the gravel bed of many clear water rivers

of the northern hemisphere until the middle of the 19th century, but is now considered as an

endangered species by the International Union for Conservation of Nature (IUCN; Mollusc

Specialist Group, 1996). Over-exploitation for jewelry purposes, water pollution and river

regulation are among the main factors responsible for its drastic decline over the past century

(Déom, 2014). In addition to these factors, stream temperature also impacts the populations

of freshwater pearl mussel through its effect on the mussel reproduction cycle. As a matter

of fact, the mussel larvae, after being ejected from their parent into the water, attach to the
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gills of a salmon or a trout. They grow there for almost one year, before leaving their host

and burying themselves into the river bed. The rising stream temperatures tend to decrease

the populations of salmonids, hereby impacting the mussel populations as well. In a similar

way, the water shrew is indirectly affected by stream temperature through the sensitivity of its

preys to temperature. Indeed, it mainly feeds on insect larvae, crustaceans and even small

fishes (Strässle et al., 2016), whose habitat suitability is known to be strongly dependent on

temperature (see e.g. Hawkins et al., 1997; Mouthon and Daufresne, 2006).

The ecological relevance of stream temperature extends beyond its impact on the above-

cited aquatic species. It also affects water quality by controlling the concentration of various

chemical species, such as dissolved oxygen. The toxicity of some dissolved substances has

also been shown to increase with stream temperature (Langford, 1990). In general, stream

temperature rise is associated with relatively negative consequences from an ecological point

of view. This is all the more worrying in the actual context of climate change, since stream

temperature is observed to follow the air temperature trend in many regions of the globe. This

phenomenon is even expected to worsen in the near future, especially in summer due to the

predicted lower flows.

From an economic perspective, stream temperature is particularly important for the produc-

tion of electricity, since many thermal power plants have been built along rivers in order to

use water as a cooling means. This cooling is less efficient at high water temperatures, hereby

decreasing the amount of generated electricity (Durmayaz and Sogut, 2006). As such, some

studies have pointed out that thermal power plants may produce between 0.5 and 1% less

electricity per degree increase in river temperature, depending on the type of power plant and

cooling technology (e.g. Durmayaz and Sogut, 2006; Linnerud et al., 2011; Hoffmann et al.,

2013). Some power plants might actually see a decrease of up to 60% of their production at

the end of the century as a result of legal regulations (Hoffmann et al., 2013). Indeed, water

pumped by thermal power plants in rivers is usually rejected in the same rivers. In order to

protect downstream ecology, regulations have been put into place which limit water tempera-

ture downstream of the plant after complete mixing between the river water and the rejection

water. Compliance with these regulations might oblige power plants to reduce their produc-

tion or even be temporarily shut down so as to avoid over-heating of downstream water. The

International Atomic Energy Agency (IAEA) reports that more than 400 of these “outages” are

already taking place each year worldwide and are expected to increase in the future as a result

of climate change (IAEA, 2015). By 2060, this might result in power production decreasing by

6.3 to 19% in Europe (van Vliet et al., 2012b).

As opposed to most of the studies conducted to date, the present thesis focuses on stream

temperature in mountainous environments—and more particularly in Switzerland. Mountain

streams are particularly valuable from an ecological point of view, since they host many popu-

lations of macroinvertebrates and provide a suitable spawning habitat for various salmonid

species. Their thermal regime is relatively similar to the one of low-land rivers; in particular,

most of their energy exchanges with the surrounding environment occur at the air–water

3
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Figure 1.2: Locations of the automatic gauging stations measuring stream temperature in
Switzerland. Only the stations operated by the Swiss Federal Institute for the Environment
(FOEN) are shown; some cantons additionally operate their own measurement sub-network.

interface (Webb et al., 2008). Incoming radiation represents their main heat source during

daytime, which explains the typical sinusoidal shape of their temperature curve on daily

and annual time scales (Caissie, 2006). The largest fraction of their heat losses is generally

attributable to emitted long-wave radiation. Heat conduction with the stream bed and the

latent and sensible heat fluxes act as secondary heat sources or sinks depending on the time

of the day/year or geographical environment. Interestingly, some studies have pointed out

that friction with the stream bed might represent a significant source of heat in steep moun-

tainous streams, above all in winter (Webb et al., 2008). High-altitude streams are also strongly

impacted by snow and/or glacier melt in spring and summer, which translates into mitigated

stream temperatures during these periods of the year. In addition, as opposed to low-land

rivers, proximity with the mountains implies a marked effect of topographical shading on solar

radiation. Many processes involved in the energy budget of mountainous streams are still not

fully understood, though. For example, the role of the lateral inflows on stream temperature

has generally received little attention. It is also not clear to which extent the latent and sensible

heat fluxes are enhanced by the strong turbulence typical of alpine streams. Similarly, some

authors have noticed that turbulence had a significant impact on the water albedo due to the

formation of small air bubbles (Richards and Moore, 2011), but more research is needed on

this subject to fully understand the relative importance of this phenomenon.

Following the gradual awareness of the relevance of stream temperature and in order to
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Figure 1.3: Main types of stream temperature models and their respective domains of applica-
tion (adapted from Caissie, 2006).

help answering the above-mentioned open questions, some states have decided to invest

in country-wide automatic measurement networks. As an example, Switzerland has opted

around 2002 to significantly increase the number of its gauging stations measuring stream

temperature, resulting in a network of more than 70 stations (see Fig. 1.2). It should be

mentioned that this network is particularly dense with regards to international standards,

especially for such a mountainous country. However, even in the case of Switzerland, gauging

stations cannot be installed in each and every river, and the measurement network necessarily

suffers from gaps. This represents a major constraint to the public environmental services

regulating water intakes or rejections in streams, since their decisions must often be based on

incomplete information about the actual state of the streams. In addition, the identification of

sensitive streams to be protected from e.g. land use or climate change is often hampered by

the low spatial representativeness of the measurement network.

As an additional challenge, public authorities are confronted with the anticipation and mitiga-

tion of the effects of climate change on stream temperature. Some of these effects have been

already identified, as will be discussed into more detail in Chap. 3. The stream temperature

increase resulting from the rise in air temperature might be exacerbated in summer due to an

increase in the frequency of drought events. In addition, the magnitude of the spring freshet is

expected to decrease in many regions, therefore reducing its mitigating impact on stream tem-

perature during spring. In general, it is nevertheless admitted that our understanding of the

future dynamics of stream temperature is rather incomplete and needs further investigation.

As a means to address the above challenges, some numerical models have been developed over

the last decades with the objective to provide estimates of stream temperature in ungauged

rivers (e.g. Chang and Psaris, 2013; Moore et al., 2013; Segura et al., 2014) or deliver detailed

real-time and long-term forecasts of stream temperature (e.g. Ferrari et al., 2007; Haag and

Luce, 2008; Isaak et al., 2010; van Vliet et al., 2012b). Depending on their structure, these

models can be classified into one of the following two categories (adapted from Caissie, 2006,

see Fig. 1.3):
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Chapter 1. Introduction

The statistical models As their name suggests, these models are based on standard regression

techniques—of which the most popular is certainly (multi)linear regression, although

more intricate machine learning algorithms such as artificial neural networks or random

forests tend to gain in popularity. These models can be sub-divided into two types,

depending on whether they need to be calibrated over each stream separately or not. In

the models requiring a separate calibration for each river, stream temperature is usually

approximated as a function of air temperature alone (see Fig. 1.3). A good example is

the model devised by Mohseni et al. (1998), obtained by regressing a logistic function to

the stream–air temperature measurements in the catchment of interest. Some authors

include discharge as an additional predictor to improve the model accuracy (e.g. Caissie

et al., 2001), but this practice is somewhat less common. In the case of models applicable

over multiple watersheds, physiographic properties of the catchments are often used

as extra predictors in complement to air temperature. For example, Moore et al. (2013)

could successfully express stream temperature as a linear combination of catchment

area, glacier cover fraction, mean catchment area and air temperature on top of a few

other predictors. The choice of physiographic properties used as predictors is typically

very eclectic and depends on the geographic area of interest and the data at hand. As a

result of their rather simple structure, most statistical models require a time step larger

than a day. The vast majority of them actually provide stream temperature estimates

at weekly or monthly time scales. Moreover, their lack of physical basis questions the

validity of their long-term predictions, which in turn prevents their use in climate change

studies. On the other hand, their simplicity often allows them to be used over large

areas, hereby making them particularly useful when it comes to prediction in ungauged

basins. A current research challenge consists in developing such a model to provide

reliable long-term predictions while at the same time keeping the model simple and

applicable over large areas.

The deterministic models Based on the numerical solution to the energy conservation equa-

tion (also known as the heat balance equation), these models compute the different

heat fluxes entering or leaving the stream using more or less physical expressions. Most

of them simulate only a portion of a stream, i.e. a reach with usually no affluent draining

into it (e.g. Sinokrot and Stefan, 1993; Westhoff et al., 2007; Roth et al., 2010). They

expect the user to specify all the external water fluxes and some of the external heat

fluxes—such as the incoming water discharge at the upstream reach inlet—consequently

restricting their use to highly instrumented river reaches. As a response to this limitation,

some deterministic stream temperature models have been recently coupled to hydrolog-

ical models (e.g. Haag and Luce, 2008), hereby offering the possibility to simulate entire

catchments. These models offer new perspectives, since they simulate the interactions

between flow and temperature and therefore allow for the investigation of current open

questions such as the impact of land use on stream temperature. Be they coupled

or not, deterministic models typically require a high amount of input data and large

computational resources, which constraints their use to limited areas. However, their

physical basis gives more credit to their long-term predictions as compared to those
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of the regression models, making them specifically suited for climate change studies.

In addition, they can usually run with time steps of one hour or less, hereby offering

the possibility to simulate small time scales. Current research efforts with this kind of

model concentrate on the assessment of the validity of the long-term simulations, as

well as the coupling with climate or vegetation growth models in order to better assess

the effects of climate and land-use change.

The present work aims, to some extent, at contributing to the research on stream temperature

modeling. More specifically, it focuses on the development of two new models:

(a) A statistical model to be used for stream temperature predictions in ungauged basins.

This model is ultimately intended to help in the spatial identification of thermally

sensitive zones where protection or restoration measures should be put into place in

order to mitigate stream temperature rise.

(b) A coupled hydro-thermal model aimed at providing detailed stream temperature fore-

casts in high-altitude watersheds. This model is expected to help in the detailed predic-

tion of the climate-change impacts on the thermal regime of Alpine streams.

These two models are tested over selected catchments in Switzerland, a country being mostly

covered with mountains and which presents the advantage of having a dense network of stream

temperature sensors (see Fig. 1.2). The choice of Switzerland as a test ground also conforms to

the wish of the Swiss Federal Office for the Environment (FOEN), which is financially involved

in the present thesis.

Chapter 2 is entirely devoted to the description of the statistical model. Rather than using an

existing model, it was decided to create one in an attempt at testing a new idea. Indeed, the vast

majority of the models used for prediction in ungauged basins are currently based on standard

statistical approaches. From the simplest to the most intricate, all of these approaches are

generic in some sense. In other words, most of them are not specific to stream temperature

modeling, but can be used in many other disciplines. As a drawback to this versatility, their

structure cannot integrate any prior knowledge on the dynamics of the modeled system. As

an example, artificial neural networks use a set of hyperbolic tangents to relate the predicted

variable to the list of predictors. Of course, calibration will automatically transfer some of the

system dynamics into the coefficients weighting the respective contributions of the hyperbolic

tangents. However, the relationship between the predictand and the predictors will always be

modeled as a combination of tanh functions, whatever the values of the weighting coefficients

are. In the present work, it was tested whether it is possible to devise a statistical model whose

very internal structure could incorporate some of the known dynamics controlling stream

temperature. It should be noted that the same idea was tested in parallel by Toffolon and

Piccolroaz (2015), with whom I collaborated on the redaction of a scientific article (Piccolroaz

et al., 2016).
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Chapter 3 details the structure and performance of a new coupled hydro-thermal model

which was developed based on the work of Comola et al. (2015). The aim of this model is to

provide detailed stream temperature predictions at the hourly time scale, to be used in studies

assessing the impacts of climate or land use change. My contribution consisted in completely

reformatting the model code and incorporating new functionalities into it. Particular attention

was paid to the quality of the new code, so as to facilitate its readability and ease of extension

by future programmers. The added functionalities were meant to offer alternative ways of

simulating certain parts of the hydrological cycle, such as the temperature of subsurface runoff

or the routing of water in the stream channels. Application of the model over a test catchment

in the Swiss Alps can be found at the end of Chapter 3.

Chapter 4 discusses various aspects common to both models and places the results in the

context of the research questions mentioned above. The last chapter contains a summary of

the present thesis as well as suggestions for potential future work.
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2 Stream temperature prediction in
ungauged basins

This chapter has been published in 2015 as an open-access article in journal Hydrology and

Earth System Sciences (HESS) under the title “Stream temperature prediction in ungauged

basins: review of recent approaches and description of a new physics-derived statistical model.”

The authors are, in order of publication: Aurélien Gallice, Bettina Schaefli, Michael Lehning,

Marc B. Parlange and Hendrik Huwald. The on-line version of the article is freely accessible

at http://www.hydrol-earth-syst-sci.net/19/3727/2015. Regarding the author contributions,

A. Gallice performed the analysis, produced the figures and wrote the manuscript; B. Schaefli

gave much appreciated guidance and impulse to the work; M. B. Parlange commented on the

manuscript; and H. Huwald, M. Lehning and B. Schaefli helped write the manuscript and

co-supervised the work.

2.1 Introduction

Among the parameters affecting the ecological processes in streams, temperature occupies

a predominant role. It influences the concentration of chemicals, such as dissolved oxygen,

and may increase the toxicity of dissolved substances (Langford, 1990). It also affects the life

cycle of many fish species, particularly the salmonids whose rate of spawning, timing of birth

and rate of death are directly influenced by stream temperature (Caissie, 2006; Benyahya et al.,

2007). Water temperature is also a relevant factor for many thermal power plants which rely

on cooling by river water, and whose electricity production decreases when water temperature

exceeds a certain limit (Haag and Luce, 2008).

As a result of the rising concern about climate change and water management impacts on

aquatic life, stream temperature modelling has regained some interest over the past 10–15

years. This fostered the development of many stochastic and deterministic models (e.g.

Mohseni et al., 1998; Segura et al., 2014; Chang and Psaris, 2013; DeWeber and Wagner, 2014;

Meier et al., 2003; Westhoff et al., 2007). The former type relies on a statistical analysis to

empirically relate stream temperature to climatic and physiographic variables, such as air

temperature, discharge, altitude or channel width (see Benyahya et al., 2007, for a complete
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review of this subject). Deterministic models, on the other hand, rely on a physically based

formulation of the stream energy conservation to compute water temperature (Caissie, 2006).

Both model types have usually been applied to a single stream reach or a limited number of

catchments (e.g. Sinokrot and Stefan, 1993; Roth et al., 2010; Caissie et al., 2001; Caldwell et al.,

2013; Grbić et al., 2013). As a response to the lack of stream temperature data, some studies

have recently attempted to develop regionalized models. This effort was certainly encouraged

by the incentive of the International Association of Hydrological Sciences (IAHS), which set

the focus of the last decade on hydrological prediction in ungauged basins (Sivapalan et al.,

2003; Hrachowitz et al., 2013). In the case of stream temperature, the difficulty in meeting the

data requirements of the physically based models led the authors to mostly rely on statistical

approaches to make predictions in ungauged catchments. However, the validity of these

models for studying climate change impacts or water management techniques has not been

assessed yet.

In this paper, more than 30 studies describing regionalized statistical models for stream

temperature estimation were reviewed to put our work in a larger context (see Table 2.1).

The extensive introduction below discusses several aspects of the reviewed literature which

motivated the development of the novel stream temperature model described in the next

section.

2.1.1 Predictions with limited precision

One recurring issue described in the reviewed literature is the difficulty in predicting stream

temperature with a high level of precision. A typical example is the statistical model of Isaak

et al. (2010) for the estimation of mean summer stream temperature (15 July–15 September) in

the Boise River basin, Idaho. Despite considering a significant number of predictor variables

and two different modelling approaches a priori, Isaak et al. (2010) could not reduce the

root-mean-square error (RMSE) of their model below 1.5◦C. Prediction uncertainties of the

same order of magnitude are reported e.g. by Wehrly et al. (2009), Ruesch et al. (2012), Moore

et al. (2013) or Hill et al. (2013).

In general, it seems that the model error originates partly from the lack of appropriate field

data, such as measures of riparian shading, groundwater infiltration or irrigation withdrawals

(Moore et al., 2013). As noted by Hill et al. (2013), “these types of data are not readily available

everywhere and will take time to develop”. In the meantime, they can in some circumstances be

accounted for through indirect measures. For example, Tague et al. (2007) used the geological

aquifer type as a proxy for the presence or absence of groundwater infiltration. Similarly,

Hrachowitz et al. (2010) and Scott et al. (2002) estimated riparian shading based on riparian

forest coverage, computed over buffer areas of various widths and lengths around the streams.

In the absence of such proxies, the model cannot represent some known processes and must

concede some increase in its prediction error (Moore et al., 2013). The size of the areas over

which stream temperature is modelled—and hereby the diversity of encountered climatic
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Table 2.1: List of reviewed publications about statistical stream temperature prediction in
ungauged basins.

Reference
Geographic Model Number of Number of Temporal Model
location typea sites yearsb scale precisionb,c

Arscott et al. (2001) Italy MLR 22 1 Season R2 = 0.37–0.8
Bogan et al. (2003) Eastern USA AE 596 30 Week R2 = 0.80,

σe = 3.1 ◦C
Chang and Psaris (2013) Western USA MLR/GWR 74 n/a Week/year R2 = 0.52–0.62,

σe = 2.0–2.3 ◦C
Daigle et al. (2010) West. Canada Various 16 0.5 Month σe = 0.9–2.8 ◦C
DeWeber and Wagner (2014) Eastern USA ANN 1080 31 Day σe = 1.8–1.9 ◦C
Ducharne (2008) France MLR 88 7 Month R2 = 0.88–0.96,

σe = 1.4–1.9
Gardner and Sullivan (2004) Eastern USA NKM 72 1 Day σe = 1.4 ◦C
Garner et al. (2014) UK CA 88 18 Month n/a
Hawkins et al. (1997) Western USA MLR 45 ≥ 1 Year R2 = 0.45–0.64
Hill et al. (2013) Conterm. USA RF ∼ 1000 1/site Season/year σe = 1.1–2.0 ◦C
Hrachowitz et al. (2010) UK MLR 25 1 Month/year R2 = 0.50–0.84
Imholt et al. (2013) UK MLR 23 2 Month R2 = 0.63–0.87
Isaak et al. (2010) Western USA MLR/NKM 518 14 Month/year R2 = 0.50–0.61,

σe = 2.5–2.8 ◦C
Isaak and Hubert (2001) Western USA PA 26 1/site Season R2 = 0.82
Johnson (1971) New Zealand ULR 6 1 Month n/a
Johnson et al. (2014) UK NLR 36 1.5 Day R2 = 0.67–0.90,

σe = 1.0–2.4 ◦C
Jones et al. (2006) Eastern USA MLR 28 3 Year R2 = 0.57–0.73
Kelleher et al. (2012) Eastern USA MLR 47 2 Day/week n/a
Macedo et al. (2013) Brazil LMM 12 1.5 Day R2 = 0.86
Mayer (2012) Western USA MLR 104 ≥ 2 Week/month R2 = 0.72,

σe = 1.8 ◦C
Miyake and Takeuchi (1951) Japan ULR 20 n/a Month n/a
Moore et al. (2013) West. Canada MLR 418 1/site Year σe = 2.1 ◦C
Nelitz et al. (2007) West. Canada CRT 104 1/site Year n/a
Nelson and Palmer (2007) Western USA MLR 16 3 Season R2 = 0.36–0.88
Ozaki et al. (2003) Japan ULR 5 8 Day n/a
Pratt and Chang (2012) Western USA MLR/GWR 51 1/site Season R2 = 0.48–078
Risley et al. (2003) Western USA ANN 148 0.25 Hour/season σe = 1.6–1.8 ◦C
Rivers-Moore et al. (2012) South Africa MLR 90 1/site Month/year R2 = 0.14–0.50
Ruesch et al. (2012) Western USA NKM 165 15 Year R2 = 0.84,

σe = 1.5 ◦C
Segura et al. (2014) Conterm. USA MLR 171 ≥ 1.5 Week/month R2 = 0.79
Sponseller et al. (2001) Eastern USA MLR 9 1 Year R2 = 0.81–0.93
Scott et al. (2002) Eastern USA MLR 36 1/site Season R2 = 0.82
Stefan and Preud’homme (1993) Eastern USA ULR 11 n/a Day/week σe = 2.1–2.7 ◦C
Tague et al. (2007) Western USA MLR 43 4 Day R2 = 0.49–0.65
Wehrly et al. (2009) Eastern USA Various 1131 1/site Month σe = 2.0–3.0 ◦C
Westenbroek et al. (2010) Eastern USA ANN 254 1/site Day R2 = 0.70,

σe = 1.8 ◦C
Young et al. (2005) New Zealand MLR 23 1 Season R2 = 0.75–0.93

a AE: analytical expression; ANN: artificial neural network; CA: cluster analysis; CRT: classification and regression trees;
GWR: geographically weighted regression; LMM:linear mixed model; MLR: multi-linear regression; NKM: networked kriging
model; NLR: non-linear regression; PA: path analysis; RF: random forest; ULR: univariate linear regression.
b n/a: not available.
c σe : root-mean-square error; R2: coefficient of determination (sometimes referred to as the Nash–Sutcliffe index).
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and geomorphologic conditions—constitutes another factor potentially explaining the model

uncertainties for some studies.

Regarding the impact of the modelling approach, Wehrly et al. (2009) investigated four different

statistical model types and showed that their difference in prediction accuracy was relatively

small. The same conclusion was reached by Daigle et al. (2010), who compared four other

modelling techniques. Isaak et al. (2010) found that networked kriging regression performed

better than multi-linear regression over the calibration data set, but this assertion became

much less evident over the validation set. Similarly, Pratt and Chang (2012) and Chang and

Psaris (2013) concluded that geographically weighted regression is slightly more accurate than

multi-linear regression, but they did not validate their results on an independent data set.

These studies tend to suggest that no significant decrease in the prediction errors should be

awaited from a change in the statistical modelling technique.

Further comparisons between the different models reported in the literature are unfortunately

hindered by the diversity of temperature metrics and error measures used by the authors. As

mentioned in several studies already, we advocate here the systematic use of the different

error measures that are RMSE, bias and coefficient of determination R2 for the evaluation of

the model precision, possibly combined with a benchmark model (Schaefli and Gupta, 2007).

It should be noted that R2 is also referred to as Nash–Sutcliffe efficiency by the hydrological

community (Nash and Sutcliffe, 1970), and is defined as 1 minus the ratio of the model error

variance over the variance of the observed data.

2.1.2 Few models can predict the stream temperature annual cycle

Inspecting Table 2.1, it can be seen that most regionalization efforts have concentrated on

some particular periods of the year. For example, Jones et al. (2006), Isaak et al. (2010) and

Chang and Psaris (2013) focused on the annual maximum of the 7-day moving average of the

daily maximum temperature (MWMT). Similarly, both Pratt and Chang (2012) and Hill et al.

(2013) aimed at estimating mean stream temperature in summer and winter. Very few studies

have actually attempted to derive regional models to compute the complete annual cycle of

stream temperature over several years.

Miyake and Takeuchi (1951) and Stefan and Preud’homme (1993) were probably the first

authors to address this issue; they relied on linear regression against air temperature to si-

multaneously estimate stream temperature at multiple sites. However, their respective works

are restricted to a limited number of rivers (20 and 11, respectively) and could probably not

be applied to larger areas. In an attempt at generalizing these models, Ozaki et al. (2003)

and Kelleher et al. (2012) separately regressed stream temperature against air temperature in

each one of the catchments they considered, and subsequently regionalized the slopes of the

regression lines. However, both studies were only partly successful in completing the region-

alization step, since the modelled regression slopes had large prediction errors. They would

additionally have had to model the intercepts of the regression lines to completely regionalize
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the stream–air temperature relationship. In a similar fashion, Johnson et al. (2014) relied on

the logistic equation introduced by Mohseni et al. (1998) to relate stream temperature to air

temperature in each catchment. Also, they faced difficulties in regressing the equation parame-

ters against geomorphological properties of the catchments. The two most complete works on

the regionalization of the linear stream–air temperature relationship were recently conducted

by Ducharne (2008) and Segura et al. (2014). These two studies attempted to regionalize both

the slopes and intercepts of the regression lines between stream and air temperature. To this

end, Ducharne (2008) grouped the streams according to their Strahler order and fitted a single

line in each group. Segura et al. (2014), on the other end, expressed the slopes and intercepts

as linear combinations of climatic and physiographic variables. The model of Ducharne (2008)

had nominally a higher explanatory power (R2 = 0.88–0.96, depending on the Strahler order)

than Segura et al. (2014)’s model (R2 = 0.79), but was effectively based on about 10 times fewer

rivers.

Instead of using air temperature as an independent variable, Bogan et al. (2003) relied on

equilibrium temperature. This variable corresponds to the stream temperature at which the

net energy flux at the air–water interface vanishes (e.g. Edinger et al., 1968). It was shown by

Bogan et al. (2003) to be a fairly good estimator of stream temperature for almost 600 rivers in

the eastern and central United States, with a prediction error of about 3 ◦C.

As an alternative to the above-mentioned studies, the annual cycle of stream temperature has

been modelled by some authors as a function of time directly, rather than air or equilibrium

temperature. Hrachowitz et al. (2010), Imholt et al. (2013) and Rivers-Moore et al. (2012)

expressed water temperature as a linear combination of climatic and physiographic variables

for each month of the year separately. Their models were derived for a particular year, but

can be transferred to other years by estimating stream temperature at a few measurement

points using Mohseni’s logistic equation and fitting the multi-linear regression model to the

resulting values (Hrachowitz et al., 2010). Based on a similar approach, Macedo et al. (2013)

succeeded in deriving one single regression model to estimate daily mean stream temperature

at 12 different sites in Brazil over 1.5 years. The performance of their model was not tested

using data from subsequent years, though.

Johnson (1971) relied on another different technique to estimate the thermal regime of

six rivers in New Zealand. He first fitted the stream temperature annual cycles with sine

curves. In a second step, he identified the physiographic properties of the catchments which

best correlated with the fit coefficients. The focus of his study being on the investigation of

these physiographic properties, he did not evaluate the prediction error of his model. Al-

though not intended for this purpose, the work of Garner et al. (2014) is based on a somewhat

similar approach and may be used to get a first estimate of the annual cycle of temperature

in UK streams. The authors classified rivers into several groups according to the shape and

magnitude of their respective thermal regimes. Then, they investigated the similarities and

dissimilarities of some geomorphological properties among and between the groups. This

processing could be inverted to infer the thermal regime from the physiographic properties of
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the catchments.

Finally, some studies have evaluated the possibility of modelling the time evolution of stream

temperature using machine learning techniques. For example, DeWeber and Wagner (2014)

trained an artificial neural network to reproduce daily mean temperature values from May to

October over more than 30 years for 1080 streams in the eastern United States. Their approach

could be easily extended so as to model the complete annual cycle of stream temperature

each year.

2.1.3 Space-averaging of the predictor variables

Some of the reviewed publications on regional stream temperature modelling addressed

the question of the spatial scale over which the predictor variables should be averaged. It

is common knowledge that stream temperature is not only affected by local environmental

conditions, but also by the conditions prevailing upstream. However, the exact extent of the

area controlling the stream energy balance at a given point is not clear (Moore et al., 2005a).

Due to this uncertainty, different approaches have been used in the literature to average the

predictor variables. Based on studies of the effect of forest harvesting on stream temperature

(e.g. Moore et al., 2005a), some authors considered riparian buffer zones of various widths

and lengths as averaging areas. This approach was usually applied to average the land cover

characteristics only, particularly forest coverage (e.g. Sponseller et al., 2001; Scott et al., 2002;

Macedo et al., 2013; Segura et al., 2014), but also in some cases to average most of the predictor

variables, including elevation or slope (Hrachowitz et al., 2010; Imholt et al., 2013). Other

authors considered larger portions of the catchments as averaging areas, sometimes extending

far beyond the riparian zone. For example, Wehrly et al. (2009) used the whole area drained

by the stream segment located directly upstream of the temperature measurement point.

Whereas most studies relied on simple spatial averaging, a few of them applied a weighting

scheme to give more emphasis to the conditions prevailing near the gauging point. As such,

Isaak et al. (2010) and Hill et al. (2013) applied a weight w decreasing exponentially with the

distance d to the catchment outlet, w = exp(−d/Lc), where the e-folding distance Lc controls

the spatial extent of the averaging area.

In response to this diversity of methods, we could not find a general consensus in the reviewed

literature concerning the extent of the spatial area which is relevant for stream temperature

prediction. While some studies conclude that this area should have a length of about 1–4 km

(Isaak et al., 2010; Hrachowitz et al., 2010; Chang and Psaris, 2013; Macedo et al., 2013), others

tend to indicate that the catchment scale is the most appropriate one (Sponseller et al., 2001;

Scott et al., 2002). Similarly, values between 30 and 200 m are assumed for the width of the

riparian buffer affecting stream temperature at a given point (e.g. Jones et al., 2006; Scott et al.,

2002; DeWeber and Wagner, 2014).
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2.1.4 State-of-the-art in the European Alps

Of all the regional models reported in Table 2.1, less than a third were developed for stream

temperature prediction outside of North America, and only one—the model developed by

Arscott et al. (2001)—is applied over a European Alpine region. An unpublished attempt

at developing another model for an Alpine country (Switzerland) was conducted by Rubin

et al. (2012). They relied on the regionalization of the stream–air temperature relationship,

but unfortunately did not evaluate the precision of their model. Other studies have sought

to classify the thermal regimes of Alpine rivers (Jakob, 2010; Müller, 2011), sometimes with

minimal success (see Schädler, 2008, for a review of the classification efforts before 2008).

These authors grouped the streams according to the physiographic characteristics of their

associated watershed, such as mean basin altitude, water origin (lake, artificial reservoir, deep

aquifer or shallow subsurface groundwater), channel width or slope. They computed the

characteristics of the typical thermal regime of each group. However, inter-annual variations

of the thermal regime cannot be accounted for by this method.

2.1.5 Investigation of a new modelling approach

All the reviewed models rely on standard statistical techniques to estimate stream temperature.

The range of methods encompasses traditional approaches such as multi-linear regression

(e.g. Arscott et al., 2001; Mayer, 2012; Imholt et al., 2013) or linear mixed modelling (Macedo

et al., 2013), but also more advanced techniques such as geographically weighted regression

(Pratt and Chang, 2012; Chang and Psaris, 2013), networked kriging models (Gardner and

Sullivan, 2004; Isaak et al., 2010; Ruesch et al., 2012) or machine learning techniques (e.g.

Westenbroek et al., 2010; Hill et al., 2013; DeWeber and Wagner, 2014).

All these methods are general, in the sense that they can be used to model almost any possible

relationship between given input and output variable(s). As a consequence of this generality,

the user has to specify the set of predictor variables to be considered by the model. Although

some objective methods can help to perform this selection (e.g. Burnham and Anderson,

2002), the original set of variables on which these methods act must initially be indicated

by the user. In the end, the choice of predictor variables is necessarily affected to some

extent by the training and experience of the authors, hereby introducing some diversity in the

sets of predictor variables. Thus, in the case of stream temperature modelling in ungauged

catchments, some studies consider only physiographic characteristics as predictor variables

(e.g. Scott et al., 2002; Jones et al., 2006; Nelson and Palmer, 2007; Hrachowitz et al., 2010), while

others also include climatic variables (e.g. Isaak et al., 2010; Ruesch et al., 2012; Moore et al.,

2013), stream morphological factors such as channel width or bed gravel size (e.g. Hawkins

et al., 1997; Arscott et al., 2001; Daigle et al., 2010), or even markers of anthropogenic activities

(e.g. Pratt and Chang, 2012; Hill et al., 2013; Macedo et al., 2013). It should be mentioned that

this diversity also largely results from the varying availability and reliability of data among

different geographic areas. This is particularly true for riparian shading, which is never directly
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measured and can only be estimated based on the data at one’s disposal. For example, Isaak

et al. (2010) approximated riparian shading using a sophisticated combination of satellite

orthoimages and ground hemispherical canopy pictures, whereas DeWeber and Wagner (2014)

could only rely on country-wide land-use data.

Although the generality of the standard statistical methods allows them to be applied to many

problems, it prevents them from incorporating prior knowledge about the system dynamics

into their structure. For example, a multi-linear model expresses the predictand as a linear

combination of the predictors regardless of the problem at hand. This fact is also true for

non-parametric methods such as artificial neural networks, which implicitly impose some

(flexible) functional form onto the model. As advocated by Burnham and Anderson (2002),

our idea is therefore to attempt to derive a statistical model whose structure includes known

dynamics of the predictand variable of interest, namely stream temperature in the case at

hand.

Our approach is strongly inspired by the physically based models which have been used

for decades to predict water temperature along stream reaches (e.g. Brown, 1969; Sinokrot

and Stefan, 1993; Westhoff et al., 2007). However, it differs from these models in the sense

that we seek a much simpler expression for stream temperature, expressed as a function

of variables which are readily available at the regional scale. To this end, we analytically

solve a simplified version of the energy-balance equation over an entire stream network (see

Sect. 2.3.1). The resulting expression involves variables whose value cannot be estimated

based on the available spatial data sets. Due to our lack of knowledge regarding the nature of

the relationships between the unknown variables and the available data, we choose to rely on

multi-linear regression to estimate the former as a function of the latter. Although this step

involves the subjective selection of predictor variables and assumes a linear relationship, we

do not think that it entirely questions our incentive to incorporate physical considerations

into the model structure. As a matter of fact, only the unknown variables are replaced in the

analytical formula, letting the global form of the relationship be unaffected. Assuming that the

major non-linearities are already captured by the global structure of the model, the specific

form of the expressions used to approximate the unknown terms may be considered to have

a minor effect. Moreover, our approach attributes a physical meaning to some of the terms

appearing in the formula. These terms can be constrained to remain within physical bounds,

hereby restricting the range of values that the calibration parameters can adopt.

The objectives of the present work are three-fold: (1) describe a new physics-inspired statistical

model for the prediction of stream temperature in ungauged basins, allowing for the computa-

tion of the monthly resolved annual cycle and capturing inter-annual variability; (2) through

proper calibration of the model, determine the length of the upstream area which controls

stream temperature at a given point; and (3) compare the physics-inspired model with a more

standard statistical approach over a set of various Swiss catchments, so as to evaluate the

potential benefits of the incorporation of physical considerations into the model structure.

The data set used to evaluate the performances of the models is presented in Sect. 2.2. The
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Figure 2.1: Locations of the gauging stations selected for the evaluation of the physics-inspired
and standard statistical models. The stations are displayed as red points and their associated
catchments as green or orange areas, depending on whether they are used to calibrate or
validate the model. The four main climatic regions of Switzerland—the Jura mountains,
Plateau, Northern Alps and Southern Alps—are displayed in different colours. The numbering
corresponds to Table 2.2.

models are described in Sect. 2.3. Results are detailed in Sect. 2.4 and discussed in Sect. 2.5,

followed by the conclusion.

2.2 Data description

2.2.1 Selected catchments for model evaluation

In order to test the two stream temperature models, catchments are selected in Switzerland

such that (a) the natural regime of the river is as little affected by anthropogenic activities as

possible, and (b) measurements of discharge and stream temperature are available for more

than 1 year. This results in a set of 29 catchments, whose locations are depicted in Fig. 2.1 and

physiographic properties are summarized in Table 2.2.

About half of the selected catchments are situated on the Swiss Plateau—a large area with

little altitude variations between Lake Geneva in the south-west and Lake Constance in the

north-east. The climate in this region is relatively mild, with precipitation mostly falling as rain
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Table 2.2: Physiographic properties of the 29 selected hydrological catchments in Switzerland.
The three watersheds indicated in bold are not used for the model evaluation.

Basin Name Area Station Mean Glacier Hydrological Temperature Data
number (km2) altitude altitude cover regimea measurement providerb

(m) (m) (%) period

1 Broye at Payerne 392.0 441 710 0 Pluvial inferior 1976–2012 FOEN
2 Sitter at Appenzell 74.2 769 1252 0.1 Transition nival 2006–2012 FOEN
3 Murg at Wängi 78.0 466 650 0 Pluvial inferior 2002–2012 FOEN
4 Gürbe at Belp, Mülimatt 117.0 522 849 0 Transition pluvial 2007–2012 FOEN
5 Massa at Blatten, Naters 195.0 1446 2945 65.9 Glacial 2003–2012 FOEN
6 Sense at 352.0 553 1068 0 Pre-Alpine 2004–2012 FOEN

Thörishaus, Sensematt nivo-pluvial
7 Allenbach at Adelboden 28.8 1297 1856 0 Alpine nival 2002–2012 FOEN
8 Rosegbach at Pontresina 66.5 1766 2716 30.1 Glacial 2004–2012 FOEN
9 Grosstalbach at Isenthal 43.9 767 1820 9.3 Alpine nival 2005–2012 FOEN
10 Goldach at 49.8 399 833 0 Pluvial superior 2005–2012 FOEN

Goldach, Bleiche
11 Dischmabach at 43.3 1668 2372 2.1 Glacio-nival 2004–2012 FOEN

Davos, Kriegsmatte
12 Langeten at 59.9 597 766 0 Pluvial inferior 2002–2012 FOEN

Huttwil, Häberenbad
13 Riale di Roggiasca at 8.1 980 1710 0 Meridional 2003–2012 FOEN

Roveredo nivo-pluvial
14 Riale di Calneggia at 24 890 1996 3.0 Meridional nival 2002–2012 FOEN

Cavergno, Pontit
15 Poschiavino at La Rösa 14.1 1860 2283 0.4 Meridional nival 2004–2012 FOEN
16 Mentue at 105.0 449 679 0 Jurassian pluvial 2003–2012 FOEN

Yvonand, La Mauguettaz
17 Necker at 88.2 606 959 0 Pluvial superior 2007–2012 FOEN

Mogelsberg, Aachsäge
18 Grossbach at 9.1 940 1276 0 Pre-Alpine 2003–2012 FOEN

Gross, Säge nivo-pluvial
19 Rietholzbach at 3.3 682 795 0 Pluvial superior 2002–2012 FOEN

Mosnang, Rietholz
20 Gürbe at 53.7 569 1044 0 Pre-Alpine 2007–2008 FOEN

Burgistein, Pfandersmatt nivo-pluvial
21 Biber at Biberbrugg 31.9 825 1009 0 Pluvial superior 2003–2012 FOEN
22 Sellenbodenbach at 10.5 515 615 0 Pluvial superior 2003–2012 FOEN

Neuenkirch
23 Alp at Einsiedeln 46.4 840 1155 0 Transition pluvial 2003–2012 FOEN
24 Riale di Pincascia at 44.4 536 1708 0 Meridional 2004–2012 FOEN

Lavertezzo nivo-pluvial
25 Rom at Müstair 129.7 1236 2187 0.1 Meridional nival 2003–2012 FOEN
26 Sissle at Eiken 123.0 314 529 0 Jurassian pluvial 2004–2012 Aargau
27 Bünz at Othmarsingen 110.6 390 526 0 Pluvial inferior 2005–2012 Aargau
28 Wyna at Unterkulm 92.1 455 643 0 Pluvial inferior 2005–2012 Aargau
29 Talbach at 14.5 358 559 0 Jurassian pluvial 2009–2012 Aargau

Schinznach-Dorf

a According to the classification by Aschwanden and Weingartner (1985).
b FOEN: Swiss Federal Office for the Environment, Aargau: Department for Construction, Transport and Environment of
Canton Aargau.
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in winter and mean daily maximum air temperature hardly exceeding 30◦C in summer. The

hydrological regimes of the catchments in the plateau depend on the precipitation patterns

and are therefore strongly variable from year to year (Aschwanden and Weingartner, 1985).

Discharge does not vary by more than a factor 2 over the year; it usually reaches its maximum

during winter, when evapotranspiration is the lowest. As catchments gain in altitude, the

discharge control mechanism changes from evapotranspiration to snowmelt: higher-altitude

catchments present a discharge peak during the melt season, in April–May.

Only two catchments are found in the Jura mountains, a relatively low-altitude (< 1700 m)

mountainous range with rigorous winters. This region is characterized by its karstic aquifers

with preferential flow paths, generating fast and complex responses to precipitation events.

Although more marked, the hydrological regimes of the Jura catchments are relatively similar

to those of the watersheds in the plateau. A clear peak in discharge is noticeable in April for

the highest catchments (Aschwanden and Weingartner, 1985).

The Alpine region of Switzerland is typically subdivided into its northern and southern parts,

based on their difference in climate. The Southern Alps are influenced by Mediterranean

weather, implying warmer winters and more precipitation in autumn than in the Northern

Alps. The hydrological regimes of the catchments in the Northern Alps are strongly related

to altitude. The month in which the peak of discharge is observed ranges from May for low-

altitude watersheds to July–August for catchments partially covered by glaciers. Moreover,

the ratio of annual maximum to annual minimum discharge increases with altitude. Similar

hydrological regimes are observed in the Southern Alps, except for a second discharge peak in

autumn due to rainfall (Aschwanden and Weingartner, 1985). As seen in Fig. 2.1, only three

unperturbed catchments could be found in the Northern Alps, while five are located in the

Southern Alps.

All in all, 10 of the 16 hydrological regimes identified by Aschwanden and Weingartner (1985)

in Switzerland are present among the 29 selected catchments (see Table 2.2). The surface area

distribution is quite large, with catchments ranging from 3.31 km2 (Rietholzbach at Mosnang)

to 392 km2 (Broye at Payerne). The mean altitudes of the watersheds also span a wide range

of values. Few catchments are partially covered by a glacier, with only two of them having a

glacier cover fraction over 10 %.

2.2.2 Stream temperature data

The stream temperature data which are used in the present study were provided by the Swiss

Federal Office for the Environment (FOEN). Advantage is taken of the present publication to

describe this new data set, which is freely accessible for research purposes at the following

address: http://www.bafu.admin.ch/wasser/13462/13494/15076/index.html?lang=en. A map

displaying the position of all available hydrological stations which measure stream tempera-

ture can also be found on the website of the FOEN.1

1See http://www.hydrodaten.admin.ch/en/messstationen_temperatur.html
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The FOEN operates an automatic network of stream gauging stations, continuously measuring

water level and discharge at more than 180 locations in Switzerland. Water level is recorded

using an ultrasonic distance sensor and converted into discharge values through a rating

curve adapted each year. The water level values are validated against the measurements of a

second instrument—a pressure probe—and rejected in case the difference between the two

values is greater than 2 cm. A limited number of gauging stations has been equipped with

a thermometer, the earliest starting in 1968. This number has increased greatly since 2002,

with now more than 70 stations automatically probing water temperature every 10 min (Jakob,

2010). The measurement values are automatically uploaded and displayed in real time on the

webpage of the FOEN (same page as for the map displaying the positions of the stations).

Among the watersheds in which temperature is monitored, 25 have been identified in the

present study as being little affected by anthropogenic activities. In order to complete this

data set, the temperature and discharge measurements of four additional gauging stations

were obtained from the Department for Construction, Transport and Environment of Canton

Aargau (see Table 2.2). The period in which water temperature was measured by each station

is also indicated in Table 2.2.

The temperature data are usually not quality-proofed by the FOEN or Canton Aargau. As a

validation procedure, we performed two different tests on the data at the hourly time step, on

top of visual inspection.

a. All temperature measurements lower than 0◦C or greater than 30◦C were removed,

except for the values between −0.5 and 0◦C, which were set to 0◦C, and the values

between 30 and 30.5◦C which were set to 30◦C. Although the limit of 30◦C might be

naturally reached in shallow areas, some temperature series showed clear evidence

that such temperature was recorded as a result of the sensor being out of water. As a

consequence, it was decided to remove all data points above 30◦C, potentially discarding

correct data.

b. The temperature variation between consecutive time steps was checked to remain

within physical bounds. In particular, it was verified that temperature varied by more

than 0.01◦C over 5 h, but less than 3◦C within 1 h. Constant temperature values could

result from a defect in the sensor, but also from the fact that the hourly values had been

replaced with their daily mean in some cases. In order to distinguish between the two,

the present quality control procedure was performed semi-manually.

After quality control, the hourly data were aggregated into monthly mean values.

2.2.3 Meteorological data

The two statistical models described in Sect. 2.3 use monthly mean air temperature and

incoming solar radiation as predictor variables. Data for these variables were obtained from
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the Swiss Meteorological Office (MeteoSwiss), which provides free access to them for research

purposes. For each one of the selected catchments described in Sect. 2.2.1, the air temperature

and incoming solar radiation values measured by all the meteorological stations located at

less than 20 km from the catchment outlet were collected. In case fewer than three stations

could be found within a 20 km radius, data from the three closest meteorological stations

were retained. The value of 20 km was chosen so as to ensure that data interpolations would

remain representative of the climatic conditions at the catchment outlet, while being based

on three stations at least. In fact, 27 of the 29 selected catchments are entirely contained

within the disk of radius 20 km centered on their respective outlet point (not shown). As such,

the collected meteorological data can actually be considered as representative for the entire

catchments, and not just for their outlet point.

We were provided with hourly mean data, which we aggregated into monthly mean values. We

did not perform any quality checks on the data, since MeteoSwiss already follows strict quality

control procedures.2

Among its network of operated meteorological stations, MeteoSwiss selected a subset of

14 stations which are considered to be representative of the climate diversity in Switzerland.3

These stations, referred to as “reference stations” in the following, are used by the standard

statistical model to estimate the monthly mean air temperature over the entire Swiss territory

(see Sect. 2.3.2).

2.2.4 Thermal regime classification

A preliminary study of the selected catchments was performed, with the aim of classifying

the rivers according to their thermal behaviour. This classification was intended to be used

later in order to investigate whether the performance of the models was affected by the river

thermal regime.

As a first attempt, we examined whether the catchments could be classified based on the shape

of their stream temperature curve. To this end, we z scored (i.e. standardized) the monthly

mean stream temperature values in each watershed similarly to Garner et al. (2014). However,

as observed by these authors, we could identify only one single thermal regime (Fig. 2.2a).

Only two catchments among the 29 did not to present the same thermal regime as the others,

namely those labelled as 5 and 14 in Table 2.2.

As an alternative approach, we tested whether the characteristics of the stream–air temper-

ature curve could be used to characterize the thermal regime of the catchments. For this

purpose, monthly mean stream temperature was linearly regressed against monthly mean air

temperature, excluding the points with negative air temperature values (e.g. Kelleher et al.,

2For more information, see http://www.meteosuisse.admin.ch/home/systemes-de-mesure-et-de-prevision/
gestion-des-donnees/preparation-des-donnees.html; webpage only available in German, French or Italian.

3See http://www.meteoswiss.admin.ch/home/climate/past/homogenous-monthly-data.html; description
only available in German, French or Italian.
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Figure 2.2: Classification of the thermal regimes of the selected catchments. Streams im-
pacted by groundwater infiltration are shown in green, the proglacial stream in blue and the
thermally climate-driven streams in orange. (a) Normalized monthly mean stream tempera-
ture curves over 3 consecutive years (2010–2012); all curves are z scored independently each
year. (b) Slopes and intercepts of the regression lines fitted to the stream–air temperature
points of the respective catchments. All points with negative air temperature values have been
discarded prior to fitting. The bars indicate the standard error estimates.

2012). Based on the values of the slope and intercept of this relationship, three groups of catch-

ments could be clearly identified (Fig. 2.2b). The first group contains the watersheds in which

a significant portion of discharge originates from deep aquifer infiltration (watersheds 9 and

14 in Table 2.2, labelled as “groundwater-fed streams” in Fig. 2.2b). This group is characterized

by low slope and high intercept values, as reported by many studies (e.g. Caissie, 2006; Webb

et al., 2008). The second group of watersheds corresponds to the high-altitude basins with

more than 50 % glacier cover. Both the slope and intercept of the stream–air temperature

relationship are small for the members of this group, which is actually composed of only one

catchment (watershed 5 in Table 2.2, denoted as “proglacial” in Fig. 2.2b). The vast majority
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of the watersheds do not fall into any of the two aforementioned groups. These catchments,

denoted as “thermally climate-driven”, are characterized by relatively low intercept and high

slope values; i.e. their stream temperature is strongly correlated with air temperature.

Because of the predominance of the thermally climate-driven streams, only the latter will

be considered for the testing of the physics-inspired and standard regression models. The

inclusion of the groundwater-dominated streams in the test set would require the amount

of groundwater discharging into the stream to be estimated. We tested several methods,

including the derivation of the baseflow index from discharge measurements (e.g. Eckhardt,

2005; van Dijk, 2010) or from the TOPMODEL topographic index (e.g. Ducharne, 2009). How-

ever, none of the investigated techniques succeeded in predicting a larger baseflow index

for the catchments labelled as “groundwater-fed” as compared to the others (not shown).

Similarly, the consideration of the proglacial streams would imply the glacier cover fraction

being included in the models. This addition of one calibration parameter was not considered

justified given that this group contains only one catchment. In total, 26 catchments were used

for the calibration and validation of the models, namely all those listed in Table 2.2 except

watersheds 5, 9 and 14.

2.3 Formulations of the stream temperature models

The new physics-inspired statistical model for stream temperature prediction is derived in

the following subsection. The standard statistical model used for comparison is presented in

Sect. 2.3.2.

2.3.1 Physics-inspired statistical model

As mentioned above, the physics-inspired stream temperature model presented in this paper

is based on the analytical solution to the stream energy-balance equation. This topic has

been investigated extensively in the literature (e.g. Edinger et al., 1968; Theurer et al., 1984;

Gosink, 1986; Polehn and Kinsel, 2000; Toffolon et al., 2010), although used only once for

stream temperature prediction in ungauged basins (Bogan et al., 2003). In order to analytically

solve the energy-balance equation, all studies relied on the linearization of the heat flux φa

at the air–water interface as a function of stream temperature T : φa =−k(T −Te). Some of

them assumed the heat transfer coefficient k to be constant and used prescribed functions

of time, space or both to express the equilibrium temperature Te (e.g. Gosink, 1986; Polehn

and Kinsel, 1997; Daly, 2005). Other studies derived analytical formulations for k and Te

based on the physical expressions of the heat fluxes occurring at the stream–air interface

(e.g. Edinger et al., 1968; Bogan et al., 2003; Caissie et al., 2005; Bustillo et al., 2014). While a

minority of authors considered the temperature distribution to be spatially homogeneous

(Edinger et al., 1968; Caissie et al., 2005; Bustillo et al., 2014), most of them assumed the stream

to be in a steady state or, equivalently, the stream celerity to be constant. In addition, they all

assumed the river width to remain constant along the stream so as to analytically solve the
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Chapter 2. Stream temperature prediction in ungauged basins

energy-balance equation. Very few studies accounted for the heat exchange with the stream

bed or the heat advected by lateral inflow of water (Bogan et al., 2004; Herb and Stefan, 2011).

Bogan et al. (2003) were the only authors to evaluate their analytical expression over ungauged

basins. They tested their model in the central and eastern United States, since this region

has a topography flat enough for a meteorological station located even at more than 100 km

from a given point to be still representative of the climate at that point. Their work is therefore

hardly transferable to Switzerland, where the mountainous landscape prevents the proper

interpolation of variables such as air humidity or wind speed, which are required as input by

the model.

Derivation of the analytical solution to the energy-balance equation

Assuming a well-mixed water column and a negligible longitudinal heat dispersion, the mass

and energy-balance equations along a stream reach read (adapted from Westhoff et al., 2007)

∂A

∂t
+ ∂Q

∂x
= q`, (2.1)

∂(A T )

∂t
+ ∂(Q T )

∂x
= wφa +pφb

ρcp
+q`T`−Q

g

cp

∂z

∂x
, (2.2)

where w (m), p (m), A (m2), Q (m3 s−1) and T (◦C) denote the width, wetted perimeter, cross-

sectional area, discharge and temperature of the stream, respectively; t (s) refers to time, x (m)

to the downstream distance, z (m) to altitude, and g (ms−2) to the gravitational acceleration.

The water mass density ρ (kgm−3) and the specific heat capacity of water cp (J◦C−1 kg−1) are

both assumed constant. The quantities φa (Wm−2) and φb (Wm−2) refer to the energy fluxes

at the stream–air and stream–bed interfaces, respectively. The lateral heat fluxes due to the

inflow of surface, fast subsurface and slow subsurface runoffs into the stream are merged into

a single term, q`T`, where q` (m2 s−1) denotes the sum of these three runoffs per unit stream

length and T` (◦C) stands for their mean temperature. The last term on the right-hand side of

Eq. (2.2) corresponds to friction, which is usually neglected in stream temperature models (e.g.

Sinokrot and Stefan, 1993; Westhoff et al., 2007), but has been shown by Hannah et al. (2004)

and Leach and Moore (2014) to be an important term in the energy balance of small streams

during winter.

The present study builds mainly upon the work of Theurer et al. (1984), which is one of

those considering the less restrictive approximations for the derivation of the solution to

Eqs. (2.1)–(2.2). Our own assumptions are the following.

(i) At the timescale of the month, the stream temperature is assumed to be in a steady state.

(ii) The energy flux at the stream–air interface is expressed as

φa =φr +k (Ta −T ), (2.3)
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2.3. Formulations of the stream temperature models

where φr (Wm−2) denotes the net radiative heat flux, incorporating both the short-wave

and long-wave components. The second term on the right-hand side accounts for

both the latent and sensible heat fluxes (e.g. Polehn and Kinsel, 1997; Toffolon et al.,

2010), where the bulk heat transfer coefficient k (Wm−2 ◦C−1) between water and air is

assumed to be constant, and Ta (◦C) refers to the air temperature.

(iii) The energy flux at the stream–bed interface is neglected; i.e. φb = 0 (e.g. Bogan et al.,

2003; Caissie et al., 2005; Bustillo et al., 2014).

(iv) The lateral inflow of water q` is assumed to be spatially constant (e.g. Biswal and Marani,

2010; Mutzner et al., 2013).

(v) The ratio of stream width to discharge w/Q is assumed to be spatially constant, as

opposed to Theurer et al. (1984) and Polehn and Kinsel (2000), who both assumed a

constant stream width. This approximation also differs from the typical relationship

used in fluvial geomorphology, which expresses stream width as a power-law function

of discharge with exponent ∼ 0.5 (see e.g. Knighton, 1998). It allows for the definition of

a characteristic stream length Lc (m),

Lc =
cpρQ

w k
. (2.4)

(vi) All sources in the network are supposed to have the same discharge, denoted as Qs in

the following. This approximation is discussed in more detail later in this section.

Using the above assumptions, the mass and energy-balance equations simplify to Eqs. (2.5)–

(2.6),

dQ

dx
= q`, (2.5)

dT

dx
= 1

Lc
(γφr +Ta −T )+ q`

Q
(T`−T )− g

cp

dz

dx
, (2.6)

where γ = 1/k. The reader is referred to Appendix A for the complete derivation of the

analytical solution to these equations. Only the final expressions for discharge Qout and

stream temperature Tout at the outlet of a catchment are reported here,

Qout = nsQs +Ltotq`, (2.7)

Tout =ω1Ts +ω2
〈

T`
〉
L +ω3

〈
γφr +Ta −Lc

g

cp

dz

dx

〉
L , (2.8)

with

ω1 = (1−η)δs, (2.9)

ω2 = ηδ`, (2.10)

ω3 = 1−ω1 −ω2. (2.11)
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In the above equations, Ltot and ns correspond to the total length of the river network and the

number of sources in the catchment, respectively. The operator
〈·〉L refers to the distance-

weighted average; it computes the average of its operand over the entire stream network using

a weight equal to exp(−d/Lc), where d denotes the distance to the catchment outlet. This

operator gives much more emphasis to the points located near to the catchment exit. It should

be noted that the spatial extent of the area over which the average is computed is controlled

by the characteristic length Lc: the smaller Lc, the smaller the contributing area. The quantity

Ts appearing in Eq. (2.8) denotes the weighted average of water temperature at the network

sources. The latter are weighted by a factor exp(−ds,i /Lc), where ds,i is the distance along the

stream between the i th source point and the catchment outlet. The weights ω1, ω2 and ω3 are

all in the interval [0,1]. In Eqs. (2.9)–(2.10), the factor η refers to the fraction of discharge at

the catchment outlet originating from lateral inflow of water along the stream network—i.e.

excluding the fraction coming from the sources,

η= q`Ltot

Qout
= 1− nsQs

Qout
. (2.12)

The two factors δs and δ` are defined as

δs = 1

ns

ns∑
i=1

e−ds,i /Lc , (2.13)

δ` =
Lc

Ltot

nr∑
k=1

e−dk /Lc
(
1−e−Lk /Lc

)
, (2.14)

where nr denotes the number of reaches in the stream network, dk the streamwise distance

between the downstream point of stream reach k and the catchment outlet, and Lk the length

of stream reach k. The factor δs corresponds to the average of the weight exp(−d(x)/Lc) over

all the network sources, and the factor δ` refers to the average of the same weight over the

set of all stream reaches in the catchment. It follows that both δs and δ` decrease roughly

exponentially as a function of the network length.

Equation (2.8) expresses stream temperature as a linear function of air temperature, the slope

of the regression line between the two being equal to ω3 = 1−ω1 −ω2. Assuming η to vary

only slightly along the network, it can be seen in Eqs. (2.9) and (2.10) that ω1 and ω2 decrease

roughly exponentially with the stream network length. As a consequence, the present model

predicts ω3 to tend towards 1 as the catchment size increases, a fact which has been observed

at many locations (e.g. Ozaki et al., 2003; Ducharne, 2008; Kelleher et al., 2012; Chang and

Psaris, 2013; Segura et al., 2014).

The present expression for Tout differs from those reported previously in the literature in at

least two aspects (see Sect. 2.1 for a review of the analytical solutions to the energy-balance

equation published to date). First, the terms on the right-hand side of Eq. (2.6) were not

assumed to be spatially homogeneous when integrating them. This explains the presence of

the spatial averaging operator
〈·〉L in Eq. (2.8), which in turn translates the fact that stream
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temperature is not impacted by local conditions only. This operator has already been used

for the computation of predictor variables in regression-based stream temperature models

(Isaak et al., 2010; Hill et al., 2013), but never in association with analytical solutions to the

energy-balance equation. Second, the source and lateral inflow terms have not been neglected.

These two terms are weighted by the factors ω1 and ω2 in Eq. (2.8), respectively, and tend to

decrease exponentially with the stream length (see discussion above). Although negligible

in large catchments, they might be of the same order of magnitude as the heat exchange

term in small watersheds. Only a few studies relying on an analytical expression for stream

temperature modelling have considered the lateral inflow term to date (Bogan et al., 2004;

Herb and Stefan, 2011), and none has retained the source term.

As noted above, the extent of the zone over which
〈·〉L averages its operand is controlled

by the characteristic length Lc. Given that this length is a function of the river discharge-to-

width ratio Q/w (see Eq. (2.4)) and that the stream celerity is assumed here to be constant,

Lc is approximately proportional to the water height. Its value should therefore be expected

to change over the course of the year. Based on a formula similar to Eq. (2.4), Herb and

Stefan (2011) have estimated Lc to vary between 3 and 45 km for discharge values between

0.4 and 5.8 m3 s−1 in the case of the Vermillion River in Minnesota. As most of the catchments

considered in the present study have discharges contained within this range, we should expect

a marked variation in the values of Lc both during the course of the year and across catchments.

However, since the characteristic length will be treated as a calibration parameter here (see

Sect. 2.3.1), only its seasonal variability will be investigated. A single value will be assumed in

each season for all the catchments (see Sect. 2.4), for otherwise Lc would have to be calibrated

independently for each catchment, which would prevent prediction in ungauged basins. We

acknowledge this as a limitation of our model.

Parametrization of the unknown terms

Equation (2.8) contains several unknown quantities. The procedure used to calculate their

respective values is detailed below.

The channel slope dz/dx is computed along the centre line of each stream. A vector represen-

tation of the centre lines was extracted from a land cover map at scale 1 : 25 000.4 This map was

overlaid with a digital elevation model of Switzerland with 2 m horizontal resolution produced

by the Swiss Federal Office of Topography5 in order to extract the altitude of each point. As an

alternative approach, a geomorphological analysis of the stream watersheds could have been

performed so as to automatically extract the stream networks. However, it was observed that

the results of this analysis did not match with the land cover map in some basins (not shown).

The monthly mean air temperature Ta along the streams is computed based on the values mea-

sured by the neighbouring meteorological stations (see Sect. 2.2.3). Within each catchment i ,

4See http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/maps/national/25.html
5See http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/height/swissALTI3D.html
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air temperature Ta,i is assumed to be a linear function of altitude only,

Ta,i (z) = aT,i (z − zi )+bT,i , (2.15)

where zi (m) refers to the altitude of the gauging station. The lapse rate aT,i (◦Cm−1) is

computed each month separately by regressing the air temperature measurements of the

neighbouring meteorological stations against the station altitudes. In case the coefficient of

determination R2 of the regression line is lower than 0.6, aT,i is set equal to 0. The intercept

bT,i (◦C) is computed each month as the inverse-distance-weighted average of the same

air temperature measurements, which are first corrected for the altitude effect by virtually

transferring them to altitude zi using the lapse rate aT,i .

The quantity γφr, which accounts for the effect of the net radiation heat flux at the air–

water interface, cannot be readily computed based on the available data. As a matter of

fact, long-wave radiation and reflected short-wave radiation measurements are performed by

MeteoSwiss at a few locations only. Incoming short-wave radiation φisw (Wm−2), on the other

hand, is a commonly measured variable which can be interpolated along the stream networks.

To this end, it is assumed that the incoming short-wave radiation φisw,i in each catchment i is

a function of altitude only,

φisw,i (z) = aφ,i (z − zi )+bφ,i , (2.16)

where the lapse rate aφ,i (Wm−3) and the intercept bφ,i (Wm−2) are computed similarly to

aT,i and bT,i in Eq. (2.15). An attempt is made to correct the values computed using Eq. (2.16)

in order to account for riparian shading. As discussed in Sect. 2.1.5 above, very few spatial

data sets exist for riparian shading, which in practice often has to be estimated using proxy

variables. In the present case, riparian shading at a given stream point is approximated based

on the stream orientation θ and riparian forest cover ff at that point. Using the land cover map

at scale 1 : 25 000 mentioned above, θ is computed as the cosine of the angle between north and

the stream flow direction; it is a measure of northing, i.e. values close to 1 indicate a catchment

that is oriented towards north and values close to −1 a catchment that is south-oriented. The

riparian forest cover ff is defined here as the fraction of the riparian zone which is covered

with forests according to the land cover map. As the extent of the riparian zone affecting

stream temperature is unclear (Moore et al., 2005a), the forest cover fraction is computed over

riparian buffers with different widths: 25, 50 and 100 m on each side of the centre line of the

streams (total buffer widths are 50, 100 and 200 m, respectively). The map does unfortunately

not allow for the distinction between coniferous and deciduous forests. In addition to θ and ff,

topographical shading fs is also computed in order to correct the incoming solar radiation

values estimated from Eq. (2.16). fs is expressed at each point along the streams as a value

between 0 and 1, 1 indicating complete shading. It is derived from the above-mentioned 2 m

digital elevation map of Switzerland at nine different hours of day time—corresponding to the

fractions 0.1–0.9 of the day-time period—on the 15th day of each month of the year. These

values are then averaged at each grid cell and in each season to obtain the spatial distribution
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of fs. Since shading by topography and by the riparian forest does not only affect incoming

solar radiation, but also incoming long-wave radiation, it was decided not to use the variables

θ, ff and fs to directly modify the values of φisw. Instead, it is the unknown term γφr which is

approximated as a linear combination of φisw, θ, ff and fs:

γφr = aφ,iswφisw +aφ,s fs +aφ,θθ+aφ,f ff +bφ. (2.17)

As discussed in Sect. 2.1.5, the choice of a linear relationship is motivated by our wish to keep

the model simple and by our ignorance of the actual form of the function linking γφr to the

above-mentioned predictor variables. A linear relationship also significantly simplifies the

computation of the distance average of γφr using the operator
〈·〉L . Equation (2.17) requires

the calibration of five unknown coefficients, namely {aφ,x }x=isw,s,θ,f and bφ. In order to limit the

number of model parameters, this expression is not directly used as is, but more parsimonious

formulations are evaluated instead. All possible sub-expressions involving any combination

of either one or two of the predictor variables {φisw,θ, ff, fs} is considered for approximating

γφr. It should be mentioned that the choice to consider expressions with at most two terms

(plus the intercept) is arbitrary and only introduced to avoid equifinality issues (Beven, 2012).

In total, 11 different models are tested for γφr—including the constant expression with only

bφ as calibration parameter.

The two weights ω1 and ω2 cannot be readily estimated from Eqs. (2.9) and (2.10). While the

values of the factors δs and δ` can be easily derived from the vector representation of the

stream network described above, the parameter η requires additional assumptions. It should

be remembered that this parameter corresponds to the fraction of the outlet discharge which

originates from lateral inflow. Assuming a typical power-law relationship between drainage

area and discharge (e.g. Mutzner et al., 2013), η could in principle be approximated as the

ratio between the area Anet drained by the network (excluding the area drained by the sources)

and the total catchment area Atot, raised to some power α: η ∼ (Anet/Atot)α. However, the

computation of Anet would require a geomorphological analysis, which was discarded based

on the discrepancy between the stream network predicted by this analysis and the observed

one (see above). As alternative methods, we consider two different techniques for estimating

η. The simplest approach assumes a constant single value for η, calibrated over all catchments.

The second approach relies on the analytical expression for η presented in Eq. (2.12), in which

the ratio Qs/Qtot is replaced with (As/Atot)α:

η= 1−ns

(
As

Atot

)α
. (2.18)

The calibration parameters of this second method correspond to the area As drained by a

single source and the exponent α.

In order to compute Ts and
〈

T`
〉
L in Eq. (2.8), two different methods for the estimation of

the source and lateral inflow temperatures are considered. In a first approximation, these

two temperatures are assumed to be both constant and equal. The second method considers
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them to be linearly related to air temperature as measured at their respective altitudes. In

other words, it expresses the temperature Ts,i of each source i = 1. . .ns and the lateral inflow

temperature T`(z) at any point with altitude z along the network as

Ts,i = aw Ta(zs,i )+bw , (2.19)

T`(z) = aw Ta(z)+bw , (2.20)

where zs,i (m) denotes the altitude of source i , and aw (◦C◦C−1) and bw (◦C) are two parame-

ters to be calibrated over the set of all catchments. Notice that the same slope aw and intercept

bw are used to derive both Ts,i and T` from air temperature, hereby assuming that the source

and lateral inflows originate from the same hydrological processes. Moreover, since these

two parameters are the same for all catchments, it is implicitly supposed that the ratio of

surface runoff to subsurface runoff is the same in all watersheds. As discussed in Sect. 2.2.4,

this requires catchments to be classified by hydrological regime before aw and bw can be

calibrated separately for each regime. In Eqs. (2.19)–(2.20), the monthly mean air temperature

is computed in each catchment using Eq. (2.15).

The distance average of variables T`, γφr, Ta and dz/dx are computed by discretizing the

operator
〈·〉L over the stream segments,

〈
f
〉
L =

∑
k∈Γ

e−(dk+Lk /2)/Lc Lk fk∑
k∈Γ

e−(dk+Lk /2)/Lc Lk

, (2.21)

where fk denotes the unweighted mean value of variable f along stream segment k; the other

quantities have been defined previously in Sect. 2.3.1. Except for the riparian forest cover

ff, which is derived over buffers of widths 25, 50 and 100 m, the unweighted means of all

other quantities (namely φisw, fs, Ta and dz/dx) along each stream segment are computed

over a 20 m wide buffer centered around the centre line of the segment, as extracted from

the vector representation of the stream network at scale 1 : 25 000 (see above). The value of

20 m is considered to be typical for the width of the streams investigated in the present study;

although only this value has been tested, it is expected to have little impact on the computed

averages. It should be noted that the expressions for
〈

Ta
〉
L and

〈
φisw

〉
L both reduce to linear

functions of the distance-weighted average of altitude along the stream network
〈

z
〉
L as

per Eqs. (2.15) and (2.17). The length Lk of stream reach k and the distance dk between the

downstream end of reach k and the catchment outlet are derived from the vector map of the

stream network.

Replacing the terms in Eq. (2.8) with their above expressions, the stream temperature model

reads

Tout = (1−η)δs
(
aw Ta +bw

)+ηδ`(aw
〈

Ta
〉
L +bw

)
+ (1−δs −ηδs −ηδ`)

〈
Teq

〉
L ,

(2.22)
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Table 2.3: Calibration parameters of the physics-inspired statistical model.

Parameter Defined in Units Calibration range Physical constraints

aw Eqs. (2.19)–(2.20) (◦C◦C−1) Chosen so as to constrain Ts,i and Must be positive
T` to the range 0–25 ◦C

bw (◦C) None
aφ,isw Eq. (2.17) (◦Cm2 W−1) Chosen so as to constrain γφr to Must be positive

the range −20–20 ◦C
aφ,s (◦C) Must be negative
aφ,θ (◦C) Must be negative
aφ,f (◦C) None
bφ (◦C) None
η Eqs. (2.9)–(2.10) (–) 0–1 None
As Eq. (2.18) (m2) Chosen so as to constrain η to Must be positive

the range 0–1
α (–) 0–3 None

where

Teq = aφ,isw
〈
φisw

〉
L +aφ,s

〈
fs

〉
L +aφ,θ

〈
θ
〉
L +aφ,f

〈
ff
〉
L +〈

Ta
〉
L

−Lc
g

cp

〈 dz

dx

〉
L +bφ.

(2.23)

The calibration parameters of the model are listed in Table 2.3. When testing a constant

parametrization for the source and lateral inflow temperatures, aw should be set to 0. Similarly,

at least two of the coefficients {aφ,x }x=isw,s,θ,f are assumed equal to 0, as per the parametrization

of the radiation term discussed above. Thus, between three and eight parameters must be

calibrated, depending on the methods used to approximate the respective unknown variables

in Eq. (2.8). Advantage is taken of the fact that each parameter can be interpreted from a

physical point of view to restrict its associated calibration range (see Table 2.3). For example,

η is imposed to adopt a value between 0 and 1 as per Eq. (2.12), and only positive values are

considered for aφ,isw based on the fact that solar radiation is contributing positively to the net

radiation heat flux. Moreover, six different values are tested for the characteristic length Lc

used in the definition of
〈·〉L : 1, 2, 4, 8, 16 and 32 km (see Sect. 2.4.2). All possible combinations

of the different parametrizations of the model terms are tested for each one of these values of

Lc. The model associated with the lowest value of the modified Akaike information criterion

(AICc) is considered to be the best one among the tested set (e.g. Burnham and Anderson,

2002). As mentioned in Sect. 2.3.1, the model is calibrated in each season separately to account

for the fact that the value of the parameter Lc varies over the year.

2.3.2 Standard regression model

In order to assess its performances, the physics-inspired statistical model described by

Eq. (2.22) is compared with a more classical regression model which we developed based on a

combination of some of the standard statistical approaches reviewed in Sect. 2.1. The regres-
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sion model takes advantage of the fact that most stream temperature curves have a similar

shape (see Sect. 2.2.4). This shape is first estimated by the model based on air temperature,

before being mapped to the respective stream temperature curves of the catchments using a

linear transformation.

The model assumes all streams to have the same z scored (i.e. standardized) temperature

T̂ (–). The latter is related to the monthly mean temperature Ti of each individual catchment i

through (see e.g. Garner et al., 2014)

Ti =σi T̂ +T i , (2.24)

where T i (◦C) and σi (◦C) correspond to the annual mean and standard deviation of monthly

mean stream temperature in catchment i , respectively. These two quantities are estimated

each year independently using multi-linear regression (MLR) models. Although more so-

phisticated techniques could have been used, Wehrly et al. (2009) and Daigle et al. (2010)

showed that MLR performs at least as well as several more complicated statistical methods for

stream temperature prediction. The MLR models were constructed using similar predictor

variables as in the physics-inspired statistical model, namely the annual mean and standard

deviation of both air temperature and incoming short-wave radiation, the riparian forest cover

fraction, stream channel slope, stream orientation, the difference in topographical shading

between summer and winter, the number of sources in the network and the watershed area.

All multi-linear models based on any possible subset of these variables were tested, with a

maximum number of terms per model arbitrarily fixed to six. This limitation was introduced

in order to avoid over-parametrization, but also to ensure that the number of parameters in

the final standard regression model was about the same as in the physics-inspired model,

hereby guaranteeing a more even comparison between the two. Multicollinearity issues were

avoided by discarding MLR models whose variance inflation factor (VIF) exceeded 5. Each

predictor variable was distance-averaged over the stream networks using the operator
〈·〉L ,

as in the case of the physics-inspired statistical model. Different values of Lc were considered

when applying this operator as per Eq. (2.21): 1, 2, 4, 8, 16 and 32 km. The best predicting MLR

models for T i and σi were selected based on AICc.

In Eq. (2.24), the z scored stream temperature is computed each month based on a non-linear

relationship with air temperature,

T̂ =µ+ α−µ
1+exp

(
−κ(

T̂a −β
)) , (2.25)

where µ (◦C), α (◦C), β (◦C) and κ (◦C−1) are coefficients obtained through ordinary least

squares regression, and T̂a (–) denotes the mean z scored air temperature over Switzerland. T̂a

is obtained by averaging the z scored measurements of the 14 MeteoSwiss reference meteoro-
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logical stations (see Sect. 2.2.3),

T̂a = 1

14

14∑
k=1

Ta,k −T a,k

σa,k
. (2.26)

In the above equation, Ta,k (◦C) denotes the monthly mean air temperature measured at

reference station k, and T a,k (◦C) and σa,k (◦C) refer to the annual average and standard

deviation of Ta,k computed each year independently, respectively.

In summary, the standard regression model proceeds as follows to estimate stream temper-

ature in an ungauged basin: (a) it first computes the mean z scored air temperature over

Switzerland according to Eq. (2.26), based on the measurements of 14 meteorological sta-

tions, (b) it then uses T̂a to estimate the z scored stream temperature in any catchment as

per Eq. (2.25), and finally (c) it converts T̂ to the actual stream temperature using Eq. (2.24),

where the scaling coefficients T i and σi are estimated for the catchment of interest using MLR

models. These different steps will be illustrated in more detail in Sect. 2.4.4.

2.4 Model evaluation

In order to rigorously evaluate the performance of the two models described in the previous

section, 5 of the 26 selected catchments were removed from the data set to create an indepen-

dent validation set (watersheds 3, 6, 11, 13 and 27, displayed in orange in Fig. 2.1). Caution

was given to single out basins with different size, mean elevation and geographic location.

Among the four climatic regions of Switzerland, only the Jura could not be represented in

the validation set, given that only 1 station (number 26) among the 26 available was located

in this area. A bootstrap on the validation stations was not possible because of too high

computational requirements. Indeed, Burnham and Anderson (2002) recommend using at

least 10 000 bootstrap samples, which led to a prohibitively high number of model evaluations

in our case.

The measurement time period is also split into a calibration (2007–2012) and validation (all

dates before and including 2006) period. Only the measurements performed by the calibration

stations—whose drainage area is marked in green in Fig. 2.1—during the period 2007–2012 are

used to calibrate the models. Four different validation sets can be formed with the remaining

station months.

1. The data set containing the measurements of the validation stations during the cal-

ibration period. This set can be used to evaluate the ability of the models to make

predictions in ungauged basins.

2. The data set containing the measurements of the calibration stations during the valida-

tion period. This set will be used to evaluate the precision of the models when predicting

stream temperature in past or future years.

33
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3. The data set formed by the measurements of the validation stations during the validation

period. This set serves to evaluate the performance of the models when predicting

stream temperature both in ungauged basins and in ungauged years.

4. The data set corresponding to the union of all three previous validation sets, which may

be used to obtain a synthetic evaluation of the precision of the models.

The complete data set is almost equally subdivided into its calibration and validation parts,

with the former containing 1223 station months and the validation sets 1–4 regrouping 360,

705, 204 and 1269 station months, respectively.

As mentioned in Sect. 2.3.1, the value of the characteristic stream length Lc is expected to

change over the course of the year. In order to ease capturing of this variability, the physics-

inspired statistical model is calibrated over each season separately. As such, the calibration and

validation data sets are each subdivided into four groups, corresponding to winter (January–

March), spring (April–June), summer (July–September) and autumn (October–December),

respectively. Each one of these subgroups contains approximately one-fourth of the station

months originally belonging to the parent group. The standard regression model is calibrated

over all seasons at once, but is evaluated in each season separately so as to investigate a

potential effect of the period of the year on its precision.

Since the physics-inspired model expresses stream temperature as a linear function of air

temperature, it cannot reproduce the asymptotic behaviour of the former as the latter drops

below 0 ◦C. Consequently, data points associated with negative air temperature values are

removed from the data set before calibration (Kelleher et al., 2012). When evaluating the

model over the validation sets, all stream temperatures predicted to be negative are replaced

with 0 ◦C values.

In the following, the best seasonal formulations of the physics-inspired model are presented

first. The precision of this model is then evaluated, and the influence of the stream network

resolution on the model results investigated. Finally, comparison is made with the standard

regression model. All the results presented in this section will be discussed and analysed in

Sect. 2.5.

2.4.1 Model formulations

As mentioned in Sect. 2.3.1, the different possible formulations of the physics-inspired sta-

tistical model are ranked in each season according to their respective AICc value. AICc is

preferred here over the classical definition of the Akaike information criterion (AIC) since it

includes a correction term for finite-sized data sets (Burnham and Anderson, 2002). It should

be mentioned that, following Burnham and Anderson (2002), AICc is computed by calibrating

the models not over the calibration set only, but rather over the entire data set (i.e. both the

calibration set and validation set 4). Only in a second time is each model calibrated over just
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the calibration set, so as to evaluate its performances in terms of RMSE, R2 and bias.

Table 2.4 presents the best model formulations selected in each season, ranked according to

their respective Akaike weights wi . The latter corresponds to the probability of each model

being a better descriptor of the observed data (according to information theory) as compared

to the model with the minimum AICc value (Burnham and Anderson, 2002; Wagenmakers

and Farrell, 2004). Considering models with wi ≤ 0.1 to be statistically insignificant, it can

be observed that only a few formulations were identified in each season as being relevant for

stream temperature prediction. The characteristic stream length Lc is found to be consistent

among these formulations, with a value of 4 km in spring, summer and autumn, and 8 km in

winter, regardless of the formulation.

The model selection reveals the radiation term γφr to be preferentially expressed as a function

of topographical shading fs and riparian forest cover fraction ff, or as a function of fs alone.

Among the tested buffer widths used to compute ff, none of the three values 50, 100 or 200 m

prevails significantly over the others. The order in which they appear in the ranked models

varies depending on the season; for example in winter, forest cover computed over a 100 m

wide buffer is expected to be a better predictor of γφr than forest cover over a 50 m wide

buffer, whereas the opposite is true in spring. Focusing on each season separately, the linear

coefficient associated with any given term is observed to have a fairly constant value among

the different expressions tested for γφr. For example, the coefficient multiplying fs remains

within a narrow range (at most 1 ◦C large) in each season.

This behaviour is even more pronounced in the case of the term associated with the source

and lateral inflow temperatures (Ts and T`). This term is expressed as a linear function of

air temperature, whose slope aw and intercept bw are constant among the various model

formulations in a given season (see Table 2.4). The values of aw are observed to be rather low

independently of the period of the year, which indicates a weak coupling between the stream

source (or lateral inflow) temperature and air temperature. Moreover, aw and bw differ among

the seasons in such a way that Ts and T` are the least coupled to air temperature in winter and

the most in summer.

The model ranking based on AICc also identified a single expression for η in each season. This

parameter is found equal to 1 in summer and autumn, and 0 in winter. Its expression is slightly

more complicated in spring, where the selected formulation is the one based on the source

drainage area (see Sect. 2.3.1).

2.4.2 Model performance

The RMSE, R2 and bias of the best selected model formulation in each season—i.e. the one

with wi = 1—are reported in Table 2.5. Based on the results of the evaluation over validation

set 4, the model precision is observed to be rather satisfactory. Its RMSE and R2 are relatively

constant over the year (about 1.3 ◦C and 0.87, respectively), except in winter where the value of
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Table 2.4: Formulations of the physics-inspired statistical model selected in each season based
on their corresponding AICc value. The Akaike weights are denoted as wi . Only the model
formulations with wi ≥ 0.1 are presented here. The widths of the buffers used to compute the
riparian vegetation cover are indicated as subscripts of the variable ff (the indicated values
correspond to the total buffer widths, i.e. accounting for both sides of the stream centre line).

Season wi Lc Formulation of γφr Formulation of Formulation of η
(km) Ts and T`

Winter

1 8 γφr = aφ,s fs +aφ,f ff,100m +bφ, Ts = aw Ta +bw , η= 0 (constant)
with aφ,s = 18.2 ◦C, aφ,f =−2.9 ◦C and with aw = 0.15 and
bφ =−12.1 ◦C bw = 3.1 ◦C

0.25 γφr =αφ,s fs +bφ,
with aφ,s = 19.4 ◦C and bφ =−14.1 ◦C

0.15 γφr = aφ,s fs +aφ,f ff,50m +bφ,
with aφ,s = 19.3 ◦C, aφ,f =−0.4 ◦C and
bφ =−13.9 ◦C

Spring

1 4 γφr = aφ,s fs +aφ,f ff,50m +bφ, Ts = aw Ta +bw , η= 1−ns(As/Atot)α,
with aφ,s = 12.9 ◦C, aφ,f =−3.7 ◦C and with aw = 0.27 and with As = 0.13 km2 and
bφ =−11.3 ◦C bw = 5.3 ◦C α= 1

0.86 γφr = aφ,s fs +aφ,f ff,200m +bφ,
with aφ,s = 13.1 ◦C, aφ,f =−3.4 ◦C and
bφ =−11.6 ◦C

0.53 γφr = aφ,s fs +bφ,
with aφ,s = 13.1 ◦C and bφ =−12.7 ◦C

0.31 γφr = aφ,s fs +aφ,f ff,100m +bφ,
with aφ,s = 13.4 ◦C, aφ,f =−2.2 ◦C and
bφ =−12.3 ◦C

Summer

1 4 γφr = aφ,s fs +aφ,f ff,100m +bφ, Ts = aw Ta +bw , η= 1 (constant)
with aφ,s = 13.4 ◦C, aφ,f =−0.3 ◦C and with aw = 0.33 and
bφ =−13.0 ◦C bw = 6.6 ◦C

0.15 γφr = aφ,s fs +bφ,
with aφ,s = 13.4 ◦C and bφ =−13.1 ◦C

Autumn

1 4 γφr = aφ,s fs +bφ, Ts = aw Ta +bw , η= 1 (constant)
with aφ,s = 10.4 ◦C and bφ =−5.9 ◦C with aw = 0.25 and

0.54 γφr = aφ,s fs +aφ,f ff,100m +bφ, bw = 5.1 ◦C
with aφ,s = 10.0 ◦C, aφ,f =−2.8 ◦C and
bφ =−4.7 ◦C

0.48 γφr = aφ,s fs +aφ,f ff,200m +bφ,
with aφ,s = 10.1 ◦C, aφ,f =−2.9 ◦C and
bφ =−4.7 ◦C

0.4 γφr = aφ,s fs +aφ,f ff,50m +bφ,
with aφ,s = 10.2 ◦C, aφ,f =−2.2 ◦C and
bφ =−5.1 ◦C
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Table 2.5: Performance of the best (wi = 1) physics-inspired statistical model in each season
in terms of RMSE, R2 and bias, depending on the validation set. Columns 1 to 4 below each
error measure refer to the different validation sets (see beginning of Sect. 2.4).

Season
RMSE (◦C) R2 (–) Bias (◦C)

1 2 3 4 1 2 3 4 1 2 3 4

Winter 1.34 1.34 1.58 1.38 0.68 0.40 0.52 0.55 −0.58 −0.30 −0.84 −0.47
Spring 1.51 1.29 1.57 1.40 0.87 0.90 0.86 0.88 0.24 0.02 0.36 0.14
Summer 1.07 1.47 1.13 1.31 0.91 0.84 0.90 0.87 −0.04 0.01 −0.01 −0.01
Autumn 1.16 1.22 1.47 1.25 0.89 0.87 0.84 0.87 −0.49 0.15 −0.34 −0.11
All year 1.28 1.33 1.45 1.34 0.94 0.94 0.93 0.94 −0.22 −0.03 −0.21 −0.11

the coefficient of determination is much lower (0.55). Similarly, the bias is small in all seasons

(−0.11 to 0.14◦C) apart from winter (−0.47◦C).

Regarding the different validation sets, it can be observed in Table 2.5 that the model performs

better when predicting in ungauged catchments as compared to simulating past or future

years. Indeed, the RMSE values computed using validation set 1 are smaller than those based

on set 2, particularly in winter, autumn and summer. Similarly, the values of R2 are higher

over set 1 than over set 2, despite the fact that the model bias is larger over the former set as

compared to the latter. As expected, the weakest model performances are generally associated

with validation set 3, which contains the measurements performed by the validation stations

during the validation period. The only noticeable exception is in summer, where the model

evaluation over set 3 provides satisfactory results (RMSE = 1.13 ◦C, R2 = 0.90, bias =−0.01 ◦C).

2.4.3 Influence of the stream network resolution

The results reported above are based on the stream network geometries extracted from the

land cover map at scale 1 : 25 000 (see Sect. 2.3.1). These geometries directly affect the values

of the distance-averaged predictor variables, since the operator
〈·〉L averages over the entire

stream network. As a consequence, modifying the network resolution is expected to impact

the model performance.

To test this hypothesis, two additional stream networks with a coarser resolution than the

original one were investigated. These networks were obtained by removing stream segments

with Strahler order 1, and those with Strahler order 1 and 2, respectively. Through this proce-

dure, the mean drainage density of the 26 selected catchments decreased from 2.1 kmkm−2

for the original network to 0.5 kmkm−2 for the coarsest one, passing through 1.0 kmkm−2

for the intermediate-resolution network. The different model formulations were evaluated

over the two additional networks using the same procedure as described in the previous sec-

tion. Although the results are not reported here, it was essentially observed that the network

resolution had little influence on the ranking of the model formulations based on AICc in

each season. Almost all selected models were associated with a characteristic stream length
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Figure 2.3: Prediction error of the physics-inspired statistical model for different resolutions
of the stream network. The boxes extend from the first to the third quartile of the error
distribution. Outliers are displayed as red dots. In each season, the network resolution
decreases from left to right: the left box corresponds to the network with all stream reaches,
whereas the central and right boxes contain only the stream segments whose Strahler order is
greater than or equal to 2 and 3, respectively. The error values 0, −1 and +1 ◦C are displayed as
a solid grey line and two dashed grey lines.

Lc = 4 or 8 km, as in the case of the original stream network. The parametrization of the

net radiation heat flux γφr was also similar to the one reported in Table 2.4. Topographical

shading and riparian forest cover remained the two most statistically significant predictors

for this term, except during winter, where stream orientation appeared as a relevant variable.

The values of the coefficients aw and bw were noted to vary little among the selected model

formulations in a given season. Finally, the parameter η was preferentially expressed as a

constant term. Its value was identified as being 0 in all seasons except summer in the case of

the intermediate-resolution stream network, whereas its parametrization was close to the one

described in Table 2.4 in the case of the coarser network.

As a consequence of the little influence of the network resolution on the model parametriza-

tion, few variations in the model precision were observed between the three stream networks.

As seen in Fig. 2.3, no clear tendency can be identified among the residuals. At most, a small

increase in the model prediction error can be detected for the coarsest network as compared

to the first two, especially in autumn. The largest absolute residuals are also observed to be

generated by this network. On the other hand, the strong bias previously noted in winter

is present in the case of the intermediate resolution network, but less so in the case of the

coarsest resolution one.
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Figure 2.4: Non-linear relationship between the z scored stream temperature T̂ and the
z scored air temperature T̂a averaged over 14 reference meteorological stations. The values of
T̂ are obtained by averaging in each month the z scored stream temperatures measured at the
21 calibration stations. Each point corresponds to a single month of the calibration period
2007–2012. Months from January to July are displayed as green crosses, and those from July to
December as blue dots. The two solid lines correspond to the respective fits of the data points
in the two year halves (see Eqs. 2.27–2.28).

2.4.4 Comparison with the standard regression model

This section describes the characteristics of the calibrated standard regression model first,

before presenting the results of its evaluation in a second step. Figure 2.4 pictures the observed

monthly mean stream temperature, z scored and averaged over the 21 calibration stations, as

a function of T̂a over the period 2007–2012. As can be observed, the relationship between these

two quantities displays a small hysteresis effect, which can be explained by stream cooling

due to snowmelt in spring (Mohseni et al., 1998). The logistic equation introduced by Mohseni

et al. (1998) is fitted to each one of the hysteresis branches separately,

T̂ =−1.87+ 4.88

1+e−0.99·(T̂a−0.66)
(in January–June), (2.27)

T̂ =−1.86+ 3.96

1+e−1.16·(T̂a−0.06)
(in July–December). (2.28)

It should be noted that the parameters corresponding to the lower and upper asymptotic

values of the logistic curve are particularly sensitive to the data points located at both ends of

the hysteresis. To limit inaccuracy errors, the temperatures measured in January and July were

used to fit both branches of the hysteresis, as they usually correspond to the annual extreme

values. Equations (2.27)–(2.28) are those used in the model to determine the z scored stream

temperature T̂ at any location based on T̂a (see Sect. 2.3.2).

The multi-linear regression models which were selected to estimate the annual mean T i and
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Table 2.6: Best multi-linear regression models for the prediction of annual mean T i and
standard deviation σi of the monthly mean stream temperature in a given year. All predictor
variables are averaged over the stream networks using the operator

〈·〉L .

Predictand Predictors∗ (with coefficients) Lc (km)

T i (◦C) ff,25m (−1.86 ◦C), θ (0.60 ◦C), Atot (1.6×10−3◦C km−2), 4
∆ fs (−4.90 ◦C), T a,i (0.75◦C ◦C−1), intercept (3.88 ◦C)

σi (◦C) |dz/dx| (6.03 ◦C), ff,25m (6.70 ◦C), θ (0.93 ◦C), 32
ns (1.6×10−3 ◦C), ∆ fs (−12.8 ◦C), σa,i (0.39◦C ◦C−1),
intercept (0.34 ◦C)

∗ ∆ fs denotes the difference in topographical shading between summer and winter, T a,i and σa,i refer to the
annual mean value and standard deviation of air temperature in the year of interest, respectively, Atot denotes the
watershed area and |dz/dx| the channel slope. The other variables have been defined in the text.

Table 2.7: Performance of the standard regression model in terms of RMSE, R2 and bias
computed over the validation set 4 in each season. The stream network used to evaluate the
model corresponds to the original one derived from the map at scale 1 : 25 000.

Season RMSE (◦C) R2 Bias (◦C)

Winter 1.18 0.67 −0.27
Spring 1.06 0.93 −0.09
Summer 1.18 0.90 0.11
Autumn 1.03 0.91 0.02
All year 1.12 0.96 −0.06

the standard deviation σi of stream temperature in a given year are presented in Table 2.6.

They correspond to the models associated with the lowest AICc values among the tested

formulations (see Sect. 2.3.2). As observed in the table, the characteristic stream length used

by the operator
〈·〉L to average the predictor variables over the stream networks is significantly

different in the two cases: Lc = 4 km for the T i model, whereas Lc = 32 km for the σi one.

Table 2.7 summarizes the prediction errors of the standard stream temperature regression

model when evaluated over validation set 4 using the original stream network. Comparison

with Table 2.5 reveals that its precision is greater than the one of the physics-inspired model.

Its RMSE is about 0.2◦C lower, its R2 about 0.03 to 0.12 larger, and its absolute bias 0.05 to

0.20◦C smaller, depending on the season. However, its performance worsens when using the

two stream networks with coarser resolution: its yearly average RMSE increases to 1.26◦C in

the case of the intermediate resolution network, and even 1.29◦C for the coarsest network,

which is close to the value obtained with the physics-inspired model.
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2.5 Discussion

The formulations of the physics-inspired model selected by AICc ranking are consistent among

the different seasons. In particular, topographical shading systematically appears to be the

strongest predictor of the net radiation heat flux γφr. This observation is not particularly

surprising in a mountainous country like Switzerland, where some valleys are steep enough

for their bottom not to be illuminated by direct sunlight for some period of the year. The

basins referred to as numbers 14 and 24 in Table 2.2 are examples of such watersheds, both

having a mean catchment slope larger than 35◦. Riparian forest cover fraction corresponds

to the second most important predictor for the net radiation heat flux term. It was rather

unexpected to identify this parameter as relevant during autumn and winter, especially since

more than half of the selected catchments are mainly covered with deciduous forests due

to their relatively low mean elevation (< 1000 m). This result has to be balanced with the

fact that a given fraction increase in riparian forest cover is predicted by the model to have

an effect on γφr about 4 to 6 times smaller in magnitude than the same fraction increase in

topographical shading. It should also be remembered that the precision of the model is rather

low in winter, hereby questioning the validity of its parametrization in this season. Certainly

more unexpected is the absence of solar radiation among the predictors of γφr, which will

be explained below. Regarding the parametrization of the discharge fraction due to lateral

water inflow η, the model predicts the water in the stream channel to originate principally

from surface and subsurface runoff during summer and autumn (η= 1). This partly matches

our expectations, since the fraction of discharge originating from the sources is expected to

decrease when moving downstream along a given network. The characteristic catchment size

defining the transition from source-water-dominated to lateral-inflow-dominated discharge

is controlled here by Lc, which is equal to 4 km in summer and autumn. This value is smaller

than the main channel length in more than 90 % of the selected watersheds (not shown),

hereby strengthening our confidence in the parametrization of η during these two seasons. On

the other hand, a value of 1 for η in all catchments may appear as a too simplified approach

(see below). The questioning of the parametrization of η is all the more true in winter, where its

value is predicted to be 0. Only in spring did the model ranking select the more physically based

formulation for η, expressed as a function of the area drained by each source. Concerning the

parametrization of the source and lateral inflow temperatures, it should be mentioned that

the linear expression as a function of air temperature was systematically preferred over the

constant term. This certainly results from the large altitudinal range covered by the selected

catchments, which does not allow for a constant inflow temperature to reflect the diversity of

encountered climatological conditions, and mainly air temperature.

As defined in Eq. (2.22), the physics-inspired model linearly relates air temperature to stream

temperature through the proportionality coefficient ω3. The latter is compared in Fig. 2.5

with its actual observed value, namely the slope of the regression line between the monthly

mean temperature measurements of the stream and air. As seen in the figure, the model

systematically overestimates the value of ω3, particularly in winter and summer, where the
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mean bias equals 0.2. Referring to Eq. (2.22), this implies thatω1 andω2 are globally underesti-

mated by the model, hereby indicating that the parametrization of the factor η could possibly

be improved. As noted in Sect. 2.3.1, a more physically based expression could be used to

compute η, as long as a geomorphological analysis of the river watersheds can be performed.

This approach was not investigated here for the reasons mentioned earlier.

The overestimation ofω3 is probably at the origin of the fact that solar radiation is unexpectedly

missing from the selected expressions for the net radiation heat flux γφr (see Table 2.4).

Contrary to the standard regression model, the physics-inspired model presents the advantage

that the calibration range of most of its parameters can be restricted based on physical

considerations (see Table 2.3). An attempt was made to remove these constraints, which

resulted in incoming short-wave radiation being present in almost all models for γφr, but

associated with a negative coefficient. It was concluded that the unconstrained model takes

advantage of the fact that the annual cycles of air temperature and solar radiation have a

similar shape to artificially reduce the value of air temperature by subtracting a fraction of

solar radiation, hereby compensating for the too large value of ω3. This observation argues

once more in favour of a better parametrization of the factor η.

As mentioned in Sect. 2.4, the characteristic stream length Lc is found to be of the order of

4–8 km regardless of the season or the stream network resolution in the case of the physics-

inspired model. This range is in agreement with the findings of Isaak et al. (2010) and Macedo

et al. (2013). Hrachowitz et al. (2010) and Chang and Psaris (2013) rather concluded that Lc

was around 1 km; however, they did not investigate values for Lc larger than 1 km. Contrary to

our expectations, we do not observe a marked variation of Lc across seasons, probably due to

the fact that we assumed a single value for all the catchments. The annual cycle of Lc may have

been better captured by separately calibrating this parameter in each catchment individually,

but this would have contradicted our aim to derive a regional model. It should be emphasized

that the absence of an observed annual cycle for Lc does not question the decision to calibrate

the physics-inspired model on a seasonal basis, since the source temperature parametrization

is observed to vary significantly over the year (see Table 2.4).

Our model is rather equivocal regarding the width of the riparian buffer which is relevant for

the determination of stream temperature at a given point. As a matter of fact, none of the

tested buffer widths appears to prevail over the other ones in the retained parametrizations of

γφr. This ambiguity reflects the range of buffer widths used in the literature, which extends

from 30 m (e.g. Jones et al., 2006; Macedo et al., 2013) to 200 m (e.g. Scott et al., 2002; Segura

et al., 2014). This also points to the difficulty in adequately accounting for the effect of riparian

vegetation using the available spatial data sets, which often lack important details such as the

distinction between deciduous and coniferous forest.

The precision of the physics-inspired model was reported in the previous section to be rather

low in January–March. This can be explained by the fact that the non-linearity of the stream–

air temperature relationship at low air temperature values is not captured by the model. The
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Figure 2.5: Comparison of modelled against measured slopes of the regression line between
stream and air temperatures. The panels correspond to the different seasons: (a) January–
March, (b) April–June, (c) July–September, and (d) October–December. The bias b corresponds
to the average, in each season, of the difference between the modelled and measured regres-
sion slopes over all the selected stations and years (i.e. belonging to both the calibration set
and validation set 4). The 1 : 1 line is indicated as a dashed grey curve.

latter rather simulates a sharp transition from the linear regime to a constant one, since the

stream temperature values predicted to be negative are systematically replaced with 0◦C. This

implies a faster decrease towards 0◦C, which is at the origin of the strong negative model bias

in winter.

As is noticeable in Table 2.5, the model RMSE is larger in spring as compared to the other

seasons. This is attributable to the fact that many of the selected watersheds are impacted by

snowmelt in spring. Since the snow cover conditions are strongly variable both spatially and

temporally, a large dispersion of the stream temperature values is typically observed in spring.

The model performs nonetheless relatively well in this season, for its R2 value is of the same

magnitude in spring as during the rest of the year.

Advantage can be taken of the physics integrated into the model structure to investigate some

aspects of the stream temperature dynamics. For example, Fig. 2.6 displays the respective

values of the factors ω1, ω2 and ω3 appearing in Eq. (2.22) as a function of the season. These

factors correspond to the weights associated with the mean source temperature T s, average
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Figure 2.6: Seasonal values of the factors ω1, ω2 and ω3 weighting the different terms in
Eq. (2.8). The values of these weights are evaluated over the entire data set, i.e. both the
calibration set and validation set 3. The error bars indicate the confidence interval centered
around the mean and extending over 1 standard deviation on each side.

lateral inflow temperature along the network
〈

T`
〉
L and average equilibrium temperature

along the network
〈

Te
〉
L , respectively. As seen in the figure,ω3 is the largest factor of the three

in all seasons, with a value of about 0.6–0.8. This results from the fact that stream temperature

is primarily impacted by the atmospheric conditions. The other two factors are nonetheless

non-negligible, with ω1 being of the order of 0.4 in winter and ω2 being approximately equal

to 0.2 from April to December. The value of ω1 has to be put into perspective with respect to

the fact that our confidence in the model parametrization is relatively low in winter. Moreover,

following the above discussion about the computation of the factor η, the values reported here

for ω2 should be considered as a lower limit. It therefore appears that not only the net total

heat flux at the air–water interface is important in determining stream temperature, but also

the heat flux associated with the lateral inflow of water. This conclusion is in agreement with

the findings of Bogan et al. (2004), who found that the precision of their stream temperature

model was improved by including a term accounting for the lateral water inflow. Similarly,

Herb and Stefan (2011) mention that the heat input associated with groundwater infiltration

may be of the same order of magnitude as the heat flux due to atmospheric forcing in some

cases. This effect seems to be largely underestimated in the literature, since the lateral inflow

of water has often been neglected in previous stream temperature models (e.g. Edinger et al.,

1968; Bogan et al., 2003; Caissie et al., 2005; Bustillo et al., 2014).

The simplifying assumptions (i)–(vi) reported in Sect. 2.3.1 are likely to have limited the

performance of the physics-inspired model. In particular, the assumption of a spatially

homogeneous lateral inflow rate q` is expected to fail in most catchments. For example, only

the highest regions of low-altitude catchments experience snowmelt in spring. In higher-

altitude catchments, snowmelt leads to an increase in q` only at low altitudes at the beginning

of spring, and only at higher altitudes later in the season. These mechanisms introduce an

altitude dependence in q` which contradicts our assumption and may partly explain the

higher RMSE of the model in spring. Similarly, assumption (v) expresses stream width as a
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linear function of discharge. As compared to the typical power-law relationship used in fluvial

geomorphology (Knighton, 1998), this simplification may lead to an overestimation of stream

width at low discharge rates—i.e. in small catchments—and to an underestimation of stream

width at high discharge rates—i.e. in large catchments. This may in turn decrease the ability

of the model to simulate catchments of various sizes, hereby increasing its prediction error.

Assumption (vi), stating that all sources in a given catchment have the same discharge rate,

is also disputable. This is particularly true for small catchments, where the short distance to

the outlet and the low number of sources do not allow the averaging effect to be significant

enough to compensate for the introduced error.

In addition to the simplifying assumptions discussed above, the parametrizations of the

unknown terms in the analytical solution might also have impacted the model precision.

Indeed, the estimation of the source and lateral inflow temperatures using only air temperature

has recently been questioned, particularly for the catchments impacted by snowmelt or glacier

melt (Leach and Moore, 2015). This simplification may notably have contributed to increase

the model RMSE in spring. Regarding the parametrization of the term accounting for the net

radiation heat flux at the air–water interface, the use of a linear expression may appear as

limiting. We actually tested a power-law function as well, but did not succeed in calibrating

the model due to convergence issues. We also considered an alternative expression based on

an estimation of the incoming atmospheric radiation and a first-order approximation of the

long-wave radiation emitted by the stream (not shown). Rather than an improvement, this

parametrization actually led to a decrease in the model precision, as a result of its inability to

compensate for the overestimation of ω3 (see above).

As opposed to the physics-inspired model, the parameter values of the standard regression

model could not be constrained using physical considerations. As a result, the sign of some

of the linear coefficients relating the predictor variables to T i and σi are in contradiction

with our understanding of stream temperature dynamics (see Table 2.6). For example, the

stream orientation θ, measured as the cosine of the angle between north and the channel

direction, is positively related to the annual mean stream temperature T i . It was rather

expected that north-oriented catchments receive less radiation from the sun, hereby implying

lower stream temperatures. The same observation is true for the riparian forest cover fraction,

which is positively associated in the model with the annual standard deviation σi of stream

temperature. However, experimental observations tend to conclude that riparian shading

has a buffering effect on stream temperature, therefore dampening the amplitude of the

variations of the latter (see e.g. Moore et al., 2005a). Despite these inconsistencies, the standard

regression model performs better than the physics-inspired one in terms of RMSE, R2 and bias.

This fact questions further the validity of the parametrization of the physics-inspired model,

which could certainly be improved (see Sect. 2.6). On the other hand, the standard regression

model appears to be much more sensitive to the stream network resolution as compared to its

counterpart, possibly as a consequence of its lack of physical elements in its structure. This

lack also does not allow for the investigation of the physics governing stream temperature, as

can be done with the physics-inspired model (see Fig. 2.6).
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2.6 Conclusions

This study aimed to present a new statistical model for the prediction of monthly mean stream

temperature in ungauged basins. As opposed to the standard statistical methods, this model

is devised so as to incorporate physical considerations into its structure. To this end, it is built

upon the analytical solution to a simplified version of the one-dimensional heat advection

equation. Contrary to previously reported analytical solutions, the present one is obtained by

solving the equation over an entire stream network instead of a single stream each. Moreover,

the various terms of the equation are not supposed to be spatially homogeneous, which leads

to the apparition of a space averaging operator
〈·〉L applied to most terms of the solution.

This operator uses a weight which decreases exponentially with the distance to the catchment

outlet, hereby giving more emphasis to the points located near the gauging station. Both the

source and the lateral inflow terms—which are usually neglected—are retained in the final

solution to the heat advection equation. This notably enables the model to be applied in small

watersheds, where the influence of source temperature on the value of stream temperature

measured at the catchment outlet cannot be discarded.

While most terms of the analytical expression can be evaluated using meteorological obser-

vations or topographic maps, some require data which are not available. These terms are

replaced with approximations based on the spatial data sets at hand. In particular, the net

radiation heat flux at the air–water interface is expressed as a linear combination of several

physiographic variables. Similarly, the source and lateral inflow temperatures are approxi-

mated as a linear function of air temperature measured at the source location and along the

stream, respectively. Finally, the fraction η of discharge at the catchment outlet originating

from lateral water inflow along the network is estimated based on the number of sources in

the watershed. As a consequence of these approximations, the resulting model is statistical in

nature, but nevertheless retains physical aspects due to its global structure being derived from

the heat-balance equation.

The performance of the model is quite satisfactory, with a root-mean-square error of about

1.3◦C and a coefficient of determination R2 of 0.87 when used for stream temperature pre-

diction in “thermally climate-driven” catchments. These catchments, which are by far the

most abundant ones in Switzerland, correspond to those with a glacier cover lower than 50 %

and whose stream is not impacted by groundwater infiltration from a deep aquifer. Model

precision is the lowest in winter, due to the inability of the model to reproduce the fact that

stream temperature asymptotically tends towards 0◦C for negative air temperature values.

The precision of the model was also assessed by comparing it with a more standard regression

model. The latter was observed to perform slightly better, with a RMSE about 0.2◦C lower.

However, its parameters could not be interpreted from a physical point of view, hereby hin-

dering the restriction of their respective calibration ranges based on physical considerations.

This led the regression model to simulate some aspects of the stream temperature dynamics

wrongly. For example, some physiographic variables known to have a cooling effect on water
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temperature were modelled as warming up the stream. The standard regression model was

also observed to be much more sensitive than its physics-inspired counterpart with respect

to the stream network resolution. When discarding all stream segments with a Strahler order

equal to 1, the RMSE of the regression model increased from 1.12 to 1.26◦C, whereas the one

of the physics-inspired model remained constant up to 0.01◦C.

Despite a few deficiencies, the physics-inspired statistical model can be used to analyse some

aspects of the physics governing stream temperature. As an example, the relative importance

of each one of the stream heat sources could be determined from the model. Climatic forcing

was found to be the major driver of water temperature, as expected (e.g. Caissie, 2006). More

interestingly, the lateral inflow of water was identified as a non-negligible secondary heat flux.

This fact is confirmed by other studies (e.g. Bogan et al., 2004; Herb and Stefan, 2011), but

nonetheless fails to be accounted for in many stream temperature models (e.g. Caissie et al.,

2005; Bustillo et al., 2014). We therefore wish to emphasize the role of lateral water inflow in

stream temperature, even in catchments—such as those used in this study—which are not

impacted by groundwater infiltration originating from a deep aquifer.

Among the improvements that can be brought to the physics-inspired model, a more accurate

parametrization of the discharge fraction originating from lateral water inflow η appears as

a promising enhancement. In particular, η could be estimated from a geomorphological

analysis of the catchments. This approach was not retained here due to the discrepancy

between the stream networks predicted by the geomorphological analysis and the observed

ones. In case it could be implemented, such a revision is expected to improve the predicted

slope of the stream–air temperature curve. A geomorphological analysis could also positively

influence the modelling of the source and lateral inflow temperatures. The parametrization of

these two terms could be improved by including predictor variables accounting for e.g. the

glacier cover fraction or the mean altitude of the area drained by each source (or stream reach).

The model could also be substantially improved in case the characteristic stream length Lc,

which controls the extent of the spatial area over which the operator
〈·〉L acts, could be

computed instead of calibrated. Indeed, Lc does not only present a seasonal variation, but

also differs across the individual catchments, a fact which was neglected in the present work.

Finally, one might expect the model precision to improve by using a more physically based

parametrization for the net radiation heat flux—instead of the multi-linear model used here.

We expect the physics-inspired model to be easily transferable to other regions of the globe.

The parametrization of the net radiation heat flux at the air–water interface might need some

adaptation in order to correctly reflect the dominant physiographic controls on local stream

climate. For example, topographic shading is certainly not a relevant predictor variable over

flat regions. Similarly to the approach presented in this work, the most appropriate set of

predictor variables for the net radiation heat flux over a particular region can be obtained

through AICc ranking. Once set, the stream temperature model can be used to investigate e.g.

the extent of the stream network which is thermally suitable for sensitive fish species at the

regional scale (e.g. Isaak et al., 2010). This investigation can in turn serve as a basis for the

47



Chapter 2. Stream temperature prediction in ungauged basins

introduction of regulation policies or protection measures.

48



3 Deterministic stream temperature
modeling in high alpine watersheds

A slightly shortened version of this chapter has been submitted as an article to journal Geophys-

ical Model Development (GMD) under the title “StreamFlow 1.0: An extension to the spatially

distributed snow model Alpine3D for hydrological modeling and deterministic stream tempera-

ture prediction.” The authors are, in publication order: Aurélien Gallice, Mathias Bavay, Tristan

Brauchli, Francesco Comola, Michael Lehning and Hendrik Huwald. Concerning the author

contributions, A. Gallice re-wrote and enhanced the original model developed by F. Comola,

performed the analysis presented in this chapter, produced the figures and wrote the manuscript;

M. Bavay helped designing the structure of StreamFlow, wrote the CMake scripts to compile the

code, set up the CTest environment and provided much appreciated guidance on MeteoIO usage

and various aspects of C++ coding; T. Brauchli installed the two intermediate gauging stations

in the Dischma catchment, performed the salt dilution gaugings and helped a lot in setting

up the Alpine3D simulation; F. Comola gave much help regarding the structure and usage of

the original version of StreamFlow and suggested some of the analysis presented in this work;

H. Huwald and M. Lehning co-supervised the work; all co-authors helped write the manuscript.

3.1 Introduction

Mountainous areas play a major role in hydrology by accumulating precipitation as snow

and ice during the winter and redistributing it as melt water during spring and summer.

Downstream areas hereby receive larger amounts of water during the hot season, when

demand—especially in terms of agriculture—is highest. In fact, Viviroli et al. (2011) estimate

that more than 40% of the world’s mountainous regions provide an important supply for

low-land water use. Accordingly, more than one sixth of the world’s population is currently

living in areas depending on snow melt for their water supply (Barnett et al., 2005). Apart from

its relevance for downstream areas, mountain hydrology also strongly impacts hydropower

production (e.g. Schaefli et al., 2007; Finger et al., 2012; Majone et al., 2016), determines the

habitat suitability of numerous aquatic organisms (e.g. Short and Ward, 1980; Hari et al., 2006;

Wilhelm et al., 2015; Padilla et al., 2015) and even plays a noticeable role in the global emission

of carbon dioxide into the atmosphere (Butman and Raymond, 2011; Raymond et al., 2013).
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Mountainous environments have recently been identified as being especially sensitive to

climate change (Barnett et al., 2005; Stewart et al., 2005; Viviroli et al., 2011, e.g.). In particular,

winter air temperature over the last 70 years has been observed to increase by more than

twice the global mean in the European Alps (Beniston, 2012), and this trend is forecasted

to remain unchanged in the next decades (Kormann et al., 2015b). Rising air temperature

will be responsible for less precipitation falling as snow in winter and an earlier onset of

snow melt in spring (Barnett et al., 2005; Bavay et al., 2009, 2013, e.g.). As a consequence,

the spring freshet will occur earlier in the season and, assuming mean annual precipitation

to remain constant, will also have a reduced magnitude (e.g. Stewart et al., 2005; Kormann

et al., 2015b,a, to name just a few). Some studies predict an increase in winter precipitation,

which could at least partially compensate for the decreased fraction of solid precipitation

and sustain the spring freshet close to its actual level (Schaefli et al., 2007; Beniston, 2012;

Finger et al., 2012; Fatichi et al., 2015). Autumn and winter stream discharge is expected to

increase in magnitude and variability as a result of the higher fraction of precipitation falling

as rain, which might result in greater flood risks in winter (Barnett et al., 2005; Bavay et al.,

2009; Finger et al., 2012; Beniston, 2012). Summer discharge will likely be much reduced

and the drought risks therefore more pronounced, at least in the watersheds with little or no

glacier cover (Schaefli et al., 2007; Stewart et al., 2015). In glaciated catchments, increased

summer ice melt might (over)compensate for the reduced snow melt on an annual average

basis (Bavay et al., 2013; Kormann et al., 2015a). This compensation is however expected to

last only until the glaciers have shrunk to the point where ice melt discharge starts to decrease

as well, a phenomenon which has already been observed in some parts of the world (see e.g.

studies mentioned in Kormann et al., 2015a). In summary, the hydrological regimes of many

mountainous catchments are forecasted to shift from glacio-nival and nival signatures to

nivo-pluvial or even pluvial regimes (Aschwanden and Weingartner, 1985; Beniston, 2012).

As a result of the changes in climate and hydrological regime, the thermal regime of the

mountain streams will change as well in the coming decades (e.g. Morrison et al., 2002; Null

et al., 2013; Ficklin et al., 2014; Stewart et al., 2015). Due to the strong correlation between

stream and air temperatures (e.g. Mohseni et al., 1998; Caissie, 2006), the increase in air

temperature is expected to result in globally higher stream temperatures over the year (e.g.

Ferrari et al., 2007; Ficklin et al., 2012). The increase in mean annual precipitation predicted

by some studies will only slightly mitigate this temperature rise through an increase of the

mean annual discharge—and hence the heat capacity—of the streams (Ficklin et al., 2012,

2014). The reduction of the spring freshet will diminish the buffering effect of snowmelt on

stream temperature, hereby leading to larger stream temperature increases in spring (Ficklin

et al., 2014). Similarly, lower summer flows in little glaciated catchments are likely to result in

increased mean summer stream temperature and more frequent extreme temperature events

(Stewart et al., 2005; Null et al., 2013). All these predictions support the hypothesis that stream

temperature will respond in a non-linear way to the air temperature rise.

The climate change induced modifications of the hydrological and thermal regimes of alpine

streams are expected to strongly impact their ecology. The forthcoming air temperature rise
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will lead to a modification of the riparian vegetation, which in turn will affect the stream

ecosystem (Hauer et al., 1997). The higher stream temperatures will also have consequences

on the cold water fish species encountered in mountain streams, whose fry emergence date

(Elliott and Elliott, 2010), growth rate (Hari et al., 2006) and death rate (Wehrly et al., 2007)

are all mostly dependent on stream temperature. Future increases in stream temperature are

expected to result in a shift of the suitable habitat for such species to higher elevations, where

dams and other physical barriers might limit their migration and imply a reduction of their

habitat (Hauer et al., 1997; Hari et al., 2006). Padilla et al. (2015) report that the summer stream

discharge variability is currently increasing, which is detrimental to the spawning rate of fish.

However, they note that reduced spring discharge might partly compensate for the increase in

stream temperature by facilitating the upstream migration of fish.

Hydropower production might also suffer from the effects of climate change on alpine hy-

drology (e.g. Schaefli et al., 2007; Beniston, 2012; Fatichi et al., 2015). This fact is all the more

worrying in the current context of transition towards renewable energy sources, especially

for small alpine countries such as Switzerland which heavily rely on hydropower for their

electricity production (Schaefli, 2015). Several studies point at the future decrease of up to 36%

in the energy production of the dams located at high altitudes (Schaefli et al., 2007; Finger et al.,

2012; Fatichi et al., 2015), resulting from the shift of the hydrological regime from glacio-nival

to pluvial-nival. Schaefli et al. (2007) also mentions that the spillway—an emergency van

intended to avoid dam overflow—may have to be occasionally activated in the future, with all

the dramatic consequences that it entails for downstream areas.

The modification of the stream ecology and the reduction of the hydropower production

are only two examples of the consequences of climate change on mountain streams. In

order to better evaluate and predict these consequences, numerous numerical models have

been developed over the last decades. Most of them concentrate either on the prediction of

discharge (e.g. Grillakis et al., 2010; Bürger et al., 2011; Schaefli et al., 2014; Ragettli et al., 2014)

or water temperature (e.g. Caldwell et al., 2013; Tung et al., 2014; Hébert et al., 2015; Toffolon

and Piccolroaz, 2015), but few are able to simulate the two at the same time (e.g. Loinaz et al.,

2013; MacDonald et al., 2014; Comola et al., 2015). Regarding the models predicting only

discharge, they can be classified—among other possibilities and in order of increasing spatial

resolution—either as lumped, semi-distributed or fully distributed (e.g. Khakbaz et al., 2012).

Lumped models are often based on empirical equations and only allow for the computation

of stream discharge at the catchment outlet. Fully distributed models, on the other hand,

typically solve the full mass and momentum conservation equations, but require extensive

computational resources (e.g. Beven, 2012). As a trade-off between the two approaches, semi-

distributed models have become quite popular over the last decades, since they can be applied

over large areas while at the same time accounting for sub-catchment characteristics (Khakbaz

et al., 2012; Beven, 2012). An equivalent sort of classification is commonly applied to stream

temperature models, which are usually separated into statistical and mechanistic models

(Caissie, 2006). Statistical models require less input data and are usually easier to use, but their

lack of physical basis is often seen as a limit to the validity of their predictions in the context of
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Table 3.1: List of semi-distributed hydrological models which simulate both stream discharge
and stream temperature and have been reviewed in the context of the present study.

Model name Publication Time resolution Target geographic location

LARSIM-WT Haag and Luce (2008) hourly, daily small to large river basins
MODEL-Y Sullivan et al. (1990) hourly forested catchments
SHADE-HSPF Chen et al. (1998) hourly forested catchments
VIC-RMB van Vliet et al. (2012a) daily large river basins
CEQUEAU St-Hilaire et al. (2000) hourly, daily forested catchments in Canada
UBC Morrison et al. (2002) hourly large river basins
GISS GCM Ferrari et al. (2007) monthly large river basins
SWAT Ficklin et al. (2012) daily, monthly medium to large scale catchments
MIKE-SHE MIKE11 Loinaz et al. (2013) hourly medium-scale catchments
WEAP21-RTEMP Null et al. (2013) weekly large river basins
DHSVM Sun et al. (2015) hourly small forested or urban catchments
GENESYS MacDonald et al. (2014) hourly mountainous catchments
PCR-GLOBWB van Beek et al. (2012) daily large river basins

climate change studies (e.g. Piccolroaz et al., 2016). On the contrary, more credit is generally

given to the long-term forecasts of the deterministic stream temperature models, although

their accuracy is about the same—if not worse (Ficklin et al., 2014)—than the statistical models.

It should be mentioned that an intermediate sort of model, referred to as hybrid, has recently

been developed (Gallice et al., 2015; Toffolon and Piccolroaz, 2015) and shown by Piccolroaz

et al. (2016) to be suitable for climate change studies.

As opposed to the separate simulation of discharge and stream temperature, the coupled

modeling of the two offers new perspectives to investigate the effects of climate change on

mountain hydrology (e.g. Ficklin et al., 2014). For example, the variations of temperature

resulting from the fluctuations in discharge can be better resolved (e.g. van Vliet et al., 2012a;

Null et al., 2013). The use of both discharge and temperature measurement data to calibrate

the model has also been shown by Comola et al. (2015) to improve the quality of the simulation.

Surprisingly, only a few coupled hydro-thermal models have been developed to date (see

Table 3.1), probably as a result of the rather small size of the scientific community involved in

stream temperature research. Out of the 13 semi-distributed coupled models listed in Table 3.1,

only one was specifically developed for mountainous environments (MacDonald et al., 2014).

The other ones were either tailored to large-scale applications (Morrison et al., 2002; Ferrari

et al., 2007; van Vliet et al., 2012a; van Beek et al., 2012; Null et al., 2013) or aimed at being used

over low-altitude catchments (e.g. Sullivan et al., 1990; Chen et al., 1998; Haag and Luce, 2008;

Sun et al., 2015). In addition, all of these models simulate the snowpack energy-balance using

a more or less simplified approach, most of them relying on the degree-day method (e.g. van

Beek et al., 2012; Null et al., 2013; MacDonald et al., 2014).

The present study aims at presenting the improvements brought to the semi-distributed model

recently developed by Comola et al. (2015) for coupled streamflow discharge and temperature

simulations. This model, referred to as StreamFlow in the following, was specifically developed
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for high Alpine environments as it builds upon the detailed snow model Alpine3D (Lehning

et al., 2006). It was decided to entirely rewrite the code of Comola et al. so as to fully exploit the

advantages offered by object-oriented programming in terms of flexibility and code structure.

In particular, the new model is much more modular, allowing for various components of the

hydrological cycle to be modeled using different approaches. Some of these approaches have

been implemented which were not present in the original model of Comola et al., hereby

offering a wider range of modeling possibilities to the end user. The mass- and energy-balance

equations implemented in the model are detailed in Sect. 3.2, and the new code structure in

Sect. 3.3. The model is applied to a case study in Sect. 3.4 in order to demonstrate some of its

features and provide an assessment of its accuracy. Conclusions are found in Sect. 3.5.

3.2 Model description

StreamFlow is built as an independent extension to the spatially-distributed snow model

Alpine3D (Lehning et al., 2006, 2008). The latter was developed to study multiple subjects

such as the impact of climate change on snow cover (Bavay et al., 2009, 2013), the effect of

wind and topography on snow deposition (Mott and Lehning, 2010; Mott et al., 2014) or the

sublimation of drifting snow (Groot Zwaaftink et al., 2013). Alpine3D operates on a regular

mesh grid, and essentially runs the one-dimensional Snowpack model over each grid cell

independently. Snowpack computes the time evolution of the vertical snow profile, as well as

the vertical profiles of soil moisture and soil temperature (Bartelt and Lehning, 2002; Lehning

et al., 2002b,a). It accounts for the canopy layer (Gouttevin et al., 2015) and can simulate the

vertical water transport using either the Richards equation or a simple bucket scheme (Wever

et al., 2014, 2015).

StreamFlow is implemented as a semi-distributed model, i.e. based on the subdivision of the

catchment into subwatersheds. This subdivision is typically performed using the well-known

tool suite TauDEM (Tarboton, 1997), which extracts both the stream network and its corre-

sponding set of subwatersheds from the digital elevation model (DEM). The stream network

is automatically partitioned into so-called stream reaches, where each reach is uniquely as-

sociated with a subwatershed and corresponds to the portion of the stream network which

specifically drains the subwatershed in question. It should be stressed out that subwatersheds

are independent and distinct from each other, i.e. they do not spatially overlap and are con-

sidered not to interact from a hydrological point of view. Stream reaches, on the other hand,

are connected to each other: the computation of discharge and temperature in a given reach

requires the same variables to be computed in its upstream tributaries first.

As schematically represented in Fig. 3.1, StreamFlow pursues the simulation of the water flow

from the point where Alpine3D stops to model it. Each subwatershed is approximated in

StreamFlow as a linear reservoir. The total percolation rate computed by Alpine3D at the

bottom of all the soil columns belonging to a given subwatershed is considered by StreamFlow

as the inflow rate into the associated linear reservoir. The latter then computes the discharge
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2. Delineation of the 
stream network and 
subdivision of the 
catchment into 
subwatersheds 

3. Collection of the 
water percolating at 
the bottom of the soil 
columns belonging to 
each subwatershed 

4. Transfer of water to 
the stream via linear 
reservoir models, and 
computation of the 
outflow temperatures 
of the reservoirs 

5. Computation of 
discharge and 
temperature within 
the stream network 

Alpine3D 

TauDEM 

StreamFlow 

Alpine3D simulation 
(computation of the 
water and heat fluxes 
within the snowpack 
and within the soil) 

1. 

Figure 3.1: Schematic representation of the work flow in StreamFlow. Note that the first two
steps are not performed in StreamFlow itself but in Alpine3D and with the help of TauDEM,
respectively.

and temperature of the subsurface runoff flowing out of the subwatershed. Note that the term

subsurface runoff will be used in the remaining of this paper as a generic word standing for

both the fast and slow components of the subsurface runoff, which are sometimes referred to

as interflow and baseflow in the literature. Subsurface runoff produced by each subwatershed

is delivered as lateral inflow to its associated stream reach (see Fig. 3.1). In other words, the

subwatersheds are used in StreamFlow to compute the amount of subsurface water and heat

penetrating the stream network. As such, the model is only able to reproduce so-called gaining

streams, as opposed to loosing streams which would require a mechanism to transfer water

from the stream network to the subwatersheds. As a final step, StreamFlow advects water and

energy within the stream network down to the catchment outlet point. To this end, discharge

and temperature are computed within each stream reach, taking notably the water and heat
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inflows originating from the upstream reaches and from the subsurface runoff into account.

The different processing steps of StreamFlow are described into more detail below.

3.2.1 Subwatershed modeling

In StreamFlow, the discharge Qsubw (m3 s−1) of subsurface runoff is computed independently

from its temperature Tsubw (K). This allows for the different temperature modeling approaches

to be combined with every discharge computation alternative.

Water transfer

Only the linear reservoir approach developed by Comola et al. (2015) has been implemented

so far for the estimation of the subsurface runoff discharge, but the modular structure of

StreamFlow supports the integration of more complex, physically-based algorithms. The

approach of Comola et al. represents each subwatershed as two superposed linear reservoirs,

the lower one being filled at a maximum inflow rate Rmax (ms−1) and the upper one receiving

the excess inflow water. The model behavior is controlled by three user-specified parameters:

the mean characteristic residence times τres,u (s) and τres,l (s) in the upper and lower reservoirs,

and Rmax. The complete mathematical background underlying this approach is detailed in

Comola et al. (2015); a summary of the main equations and an explanatory figure can be found

in Appendix B. Depending on the approach used to spatially discretize the stream reaches,

water flowing out of each subwatershed is either transferred to its associated reach as a whole

or partitioned between the different cells composing the stream reach (see below).

Computation of the subwatershed outflow temperature

Three alternatives are available in StreamFlow for the estimation of subsurface runoff temper-

ature. The first approach corresponds to the one developed by Comola et al. (2015), which

requires subsurface runoff to be modeled as in Sect. 3.2.1 above and is therefore not compati-

ble with potential future alternatives for subsurface runoff discharge modeling. It performs

a simplified energy-balance of subsurface water at the subwatershed scale. The tempera-

ture of water stored in each one of the two superposed reservoirs is computed based on the

temperature of infiltrating water, taking thermal exchange with the surrounding soil into

account. This model requires the specification of a parameter, ksoil (s), which corresponds to

the characteristic time of thermal diffusion between the water stored in the reservoirs and the

soil. The complete description of this technique can be found in Comola et al. (2015) and is

also summarized in Appendix B for convenience.

The second method implemented in StreamFlow for the computation of Tsubw is adapted

from the approach used in the Hydrological Simulation Program–Fortran (HSPF Bicknell et al.,

1997). This technique essentially approximates the time evolution of Tsubw by smoothing and
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(a) (b) 

flow 

reach 

flow 

cell 

Figure 3.2: Available methods for spatially discretizing the stream reaches in StreamFlow:
(a) the lumped approach, treating each stream reach as a lumped entity, and (b) the discretized
approach, subdividing each reach into smaller entities called cells. Each stream reach is
represented using a different shade of blue in the figure. The grid shown in brown corresponds
to the DEM used by TauDEM to identify the subwatersheds and the stream network.

adding an offset to the time series of air temperature Ta (K),

dTsubw

dt
= 1

τHSPF

(
Ta −Tsubw +DHSPF

)
. (3.1)

In the above equation, Ta is taken as the mean air temperature over the subwatershed as

computed by Alpine3D, and the smoothing coefficient τHSPF (s) and the temperature offset

DHSPF (K) can be freely specified by the user. This equation is solved in StreamFlow using a

second order Crank-Nicholson scheme.

Finally, the third technique for estimating the temperature of subsurface flow relies on the

assumption that infiltrated water is in thermal equilibrium with the surrounding soil matrix.

As such, Tsubw can be considered to have the same value as the local soil temperature Tsoil

averaged between the soil surface and a given depth zd (m). In practice, Tsubw is determined

at any point along the stream network by identifying the cell of the Alpine3D mesh in which it

is located, and then averaging the soil temperature values computed by Alpine3D in this cell

down to depth zd.

3.2.2 Stream network modeling

As mentioned above, the computation of discharge and temperature within the stream network

is based on the subdivision of the latter into reaches. Each reach is uniquely associated

with its corresponding subwatershed and is automatically identified by TauDEM based on a

geomorphological analysis of the DEM. The stream reaches can be modeled in StreamFlow

using two different approaches (see Fig. 3.2):

(a) A lumped approach, in which each reach is treated as a single entity whose mean water

depth, outlet discharge and temperature are to be computed. This method was already

implemented by Comola et al. (2015) in the first version of StreamFlow. In this approach,
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each reach collects the subsurface runoff originating from its associated subwatershed

as a whole—no spatial discretization is performed.

(b) A discretized approach, which subdivides each reach into smaller spatial units referred

to as cells in the following. The cells are delineated using the grid pattern of the DEM

used by TauDEM to identify the subwatersheds and the stream network (see Fig. 3.2);

as a consequence, all cells do not have the same length within a single reach. This

discretization method provides higher spatial resolution than the lumped approach

and supports more advanced techniques for water and temperature routing (e.g. the

resolution of the shallow water equations). In this approach, the water flowing out

of each subwatershed is transferred to the cells of its corresponding stream reach,

proportionally to the specific drainage area of each cell.

The different methods available in StreamFlow for in-stream routing of water and energy are

described below.

Water routing

Stream discharge can be computed using two different approaches, which can both be used

with lumped or discretized reaches. A third approach, namely the shallow water equation

solver for the discretized reaches, is currently being developed and should be available in the

near future.

The first water routing technique is the same as the one already available in the original version

of StreamFlow, namely the instantaneous advection of water down to the catchment outlet.

This approach is based on the fact that, in small catchments, the amount of time required for

a rain drop to reach the catchment outlet is mostly dominated by the time spent within the

hillslopes (see e.g. Comola et al., 2015). Water depth h (m) is computed using a power function

of discharge Q (m3 s−1), i.e. h =αhQβh , where the coefficients αh and βh can be calibrated or

specified a priori.

The second approach corresponds to the well-known Muskingum-Cunge technique, shown by

Cunge (1969) to be a diffusive-wave approximation of the shallow water equations. StreamFlow

implements the modified three-point variable parameter method developed by Ponce and

Changanti (1994), which is first-order accurate in time and second-order in space. This

method can be used with both lumped and discretized stream reaches. In discretized reaches,

it estimates discharge Qn+1
i (m3 s−1) at the outlet of cell i at time tn+1 = tn +∆t as (see e.g.

Tang et al., 1999):

Qn+1
i = c1Qn

i−1 + c2Qn+1
i−1 + c3Qn

i , (3.2)

where ∆t (s) denotes the time step, Qn
i−1 the sum of the outlet discharge of cell i −1 and the

lateral subsurface flow discharge into cell i at time tn , and the coefficients {ck }k=1,2,3 (–) are
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computed as:

c1 = ki xi +0.5∆t

ki (1−xi )+0.5∆t
,

c2 = −ki xi +0.5∆t

ki (1−xi )+0.5∆t
,

c3 = ki (1−xi )−0.5∆t

ki (1−xi )+0.5∆t
.

Parameters ki (s) and xi (–) can be related to hydraulic properties of the stream cell,

ki = li

cr
, (3.3)

xi = 1

2
min

(
1, 1− Qr

crwS0li

)
, (3.4)

with li (m) denoting the cell length, w (m) the stream width, S0 (–) the local bed slope in

cell i , cr (ms−1) a representative wave celerity and Qr (m3 s−1) a representative discharge.

Manning’s formula is used to derive cr from Qr under the assumption of a rectangular channel

cross-section,

cr = 5

3

(
S0

nm
2

)3/10 (
Qr

w

)2/5

, (3.5)

where nm (sm−1/3) is the Manning coefficient, whose value is generally accepted to be within

the approximate range 0.03–0.10 for small natural streams (e.g. Phillips and Tadayon, 2006).

Qr is computed as:

Qr =
Qn

i−1 +Qn+1
i−1 +Qn

i

3
. (3.6)

Manning’s formula is also used to determine the water depth hn+1
i (m) in cell i at time tn+1

based on Qn+1
i :

hn+1
i =

(
nmQn+1

i

wS0

)3/5

. (3.7)

In order to avoid numerical instabilities, the time step ∆t is chosen according to the recom-

mendations of Tang et al. (1999),

max
i

(
2ki xi

)É∆t É min
i

(
2ki (1−xi )

)
. (3.8)

Equation (3.8) must be verified for all cells belonging to the entire stream network.

When using lumped stream reaches, Eqs. (3.2)–(3.8) have to be adapted as follows: li is to be

replaced with the reach length, S0 with the average bed slope over the reach, and Qn
i−1 with

the sum of the outlet discharge(s) of the upstream reach(es) and the lateral subsurface flow
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discharge into the stream reach at time tn . In addition, Qn
i and hn

i have to be interpreted as

the outlet discharge and mean water depth in the reach at time tn .

Both water routing techniques assume the stream width w to be spatially constant within

each reach. Several methods are available for the computation of w , such as for instance a

linear function of the total area drained by the stream reach. The possibility is also offered to

set w as a power-law function of the reach outlet discharge, hereby making w time-dependent.

Each of these methods requires the specification of two parameters, which should be set prior

to the StreamFlow simulation.

Stream energy-balance computation

The computation of in-stream temperature assumes a constant cross-sectional profile in

each stream reach separately; it is based on the one-dimensional mass and energy balance

equations solved over each stream reach (adapted from Gallice et al., 2015),

∂A

∂t
+ ∂Q

∂x
= qsubw, (3.9)

∂(A Tw)

∂t
+ ∂(Q Tw)

∂x
= wφ

ρwcp,w
+qsubw Tsubw +Q

g

cp,w
S0, (3.10)

where t (s) denotes time and x (m) the streamwise distance; A (m2), Q (m3 s−1), Tw (K) and

w (m) stand for the cross-sectional area, discharge, temperature and width of the stream

reach; φ (Wm2) corresponds to the sum of the net heat fluxes at the air–water and water–

bed interfaces; ρw (kgm−3) and cp,w (Jkg−1 K−1) denote the mass density and specific heat

capacity of water; qsubw (m3 s−1 m−1) is the lateral subsurface water inflow per unit streamwise

distance; and g (ms−2) stands for the gravitational acceleration at the Earth’s surface. Both

Tsubw, the temperature of subsurface water inflow, and S0, the local bed slope, have been

defined previously. Equations (3.9) and (3.10) are both written in conservative form. Assuming

a smooth variation of A, Q and Tw along the stream reach, the partial derivatives on the

left-hand side of Eq. (3.10) can be developed using the product rule. By inserting Eq. (3.9) and

re-arranging the terms, one obtains the following expression:

∂Tw

∂x
+ v

∂Tw

∂x
= φ

ρwcp,wh
+ qsubw

hw
(Tsubw −Tw)+ gQ

cp,whw
S0, (3.11)

where v =Q/A (ms−1) corresponds to the flow velocity and h = A/w (m) to the stream water

depth.

In Eqs. (3.9)–(3.11), the values of A, Q, v , h and w are provided by the water routing module of

Streamflow (see Sect. 3.2.2), while Tsubw is obtained from the subsurface runoff temperature

module (see Sect. 3.2.1). The value of qsubw is derived from the subsurface runoff discharge

Qsubw (see Sect. 3.2.1) depending on the stream reach type. In lumped reaches, it is simply

computed as Qsubw divided by the reach length, whereas it is calculated in each discretized
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reach cell as the fraction of Qsubw proportional to the cell specific drainage area, divided by

the cell length.

The net heat flux φ is computed as in Westhoff et al. (2007) with the following modifications:

1. Incoming short and long wave radiation are directly obtained from meteorological

measurements. They are spatially interpolated by Streamflow over the stream network

using library MeteoIO (Bavay and Egger, 2014), taking topographic shading into account.

Riparian forest shading is currently not represented in the model, hereby restricting the

application of StreamFlow to high-altitude catchments. This limitation might be relaxed

in the near future through the implementation of an appropriate shade model, taking

e.g. advantage of the improvements brought by Gouttevin et al. (2015) to the canopy

module of Snowpack.

2. The heat flux at the water–bed interface φb (Wm−2) is computed at any given point

along the stream according to Haag and Luce (2008):

φb = kbed(Tbed −Tw), (3.12)

where kbed (Wm−2 K−1) denotes the bed heat transfer coefficient, which corresponds to

the bed heat conductivity multiplied by the distance over which the heat transfer occurs.

The value of kbed can be freely specified by the user, but is fixed here to 52.0 Wm−2 K−1

after Moore et al. (2005b) and MacDonald et al. (2014). Stream bed temperature Tbed (K)

is assumed to be equal to soil temperature as modeled by Alpine3D at the point of

interest, averaged over depth zd. This depth is the same one as used by the subsurface

runoff temperature module (see Sect. 3.2.1) and should be specified prior to running

the Alpine3D simulation.

3. The latent heat flux φl (Wm−2) is approximated using a simplified Penman equation

(e.g. Hannah et al., 2004; Haag and Luce, 2008; Magnusson et al., 2012),

φl =−ρacp,a

γ

(
av w vwind +bv w

)(
es(Tw)−e(Ta)

)
, (3.13)

where Ta (K), ρa (kgm−3) and cp,a (Jkg−1 K−1) denote the temperature, mass density and

specific heat capacity of air, vwind (ms−1) the wind velocity, γ (PaK−1) the psychrometric

constant, es(Tw) (Pa) the saturated vapor pressure measured at stream temperature,

and e(Ta) (Pa) the actual vapor pressure measured at air temperature. The values of

parameters av w (–) and bv w (ms−1) are chosen after Webb and Zhang (1997), namely

av w = 2.20×10−3 and bv w = 2.08×10−3 ms−1, although they can be changed by the

user.

4. The sensible heat flux φh (Wm−2) is computed based on an approach similar to the one

60



3.2. Model description

used in Comola et al. (2015), namely as

φh =−ρacp,a
(
av w vwind +bv w

)(
Tw −Ta

)
. (3.14)

This expression for φh is preferred over the one used in Westhoff et al. (2007), since

the latter contains a term es(Tw)−e(Ta) in the denominator which we observed to be

responsible for numerical instabilities when Tw approaches Ta (not shown).

In the case of lumped stream reaches, StreamFlow uses the first order upwind finite difference

approximation of Eqs. (3.9)–(3.10) to estimate stream temperature Tw, j in each reach j (see

e.g. Westhoff et al., 2007):

A j
dTw, j

dt
= Qin, j

L j
(Tin, j −Tw, j )+qsubw, j (Tsubw, j −Tw)+ w jφ j

ρwcp,w
+L j Q j

g

cp,w
S0, (3.15)

where A j (m2), Q j (m3 s−1), S0 (–), L j (m) and w j (m) denote the cross-sectional area, outlet

discharge, mean bed slope, length and width of reach j , and φ j (Wm−2) corresponds to the

net heat flux into reach j . Qin, j and Tin, j stand for the discharge and temperature of water

draining into the reach inlet. Qin, j is simply computed as the sum of the outlet discharges

of the upstream reaches, whereas Tin, j is approximated as the discharge weighted mean of

the outlet temperatures of the upstream reaches. Tsubw, j and qsubw, j denote the temperature

and discharge per unit streamwise distance of the subsurface water inflow into reach j . Equa-

tion (3.15) is discretized in time using an implicit Euler scheme, whose solution is obtained

thanks to the simplified Brent’s root finding method proposed by Stage (2013).

In discretized stream reaches, Eq. (3.11) is solved using a splitting scheme (e.g. LeVeque, 2002).

The idea is to decompose the equation into two simpler ones, where the solution of the first

equation serves as initial condition for the second one. Similarly to Loinaz et al. (2013), we

chose here to separate heat advection from the accounting of the heat sources, since standard

approaches are available for the numerical resolution of advection in the absence of sources.

The resulting splitting scheme is the following (adapted from Loinaz et al., 2013):

∂Tw

∂t
+ v

∂Tw

∂x
= 0, (3.16)

dTw

dt
= φ

ρwcp,wh
+ qsubw

hw
(Tsubw −Tw)+ gQ

cp,whw
S0. (3.17)

Equation (3.16) is discretized over each stream reach using an explicit upwind finite volume

scheme with second-order precision in space and first-order precision in time (Berger et al.,

2005):

T n+1
w,i = T n

w,i −
vn

i ∆t

li

(
T L

w,i+1/2 −T L
w,i−1/2

)
. (3.18)

In the above equation, T n
w,i (K) and vn

i (ms−1) denote the stream temperature and flow ve-
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locity in reach cell i at time tn , ∆t corresponds to the time step and li is the length of cell i .

T L
w,i+1/2 (K) refers to the so-called left state at the right boundary of cell i , which is computed

as:

T L
w,i+1/2 = T n

w,i +
1

2
ψi (T n

w,i −T n
w,i−1), (3.19)

where the factor ψi (–), known as a slope limiter, is introduced so as to limit numerical disper-

sion. Many slope limiters have been derived for regular space discretizations (LeVeque, 2002),

but very few are available for irregular meshes (Berger et al., 2005; Zeng, 2013). StreamFlow

implements the slope limiter developed by Zeng (2013),

ψi = B(r + r k )

1+ Ar k
, (3.20)

with

r = Tw,i+1 −Tw,i

Tw,i −Tw,i−1
,

A = li−1 + li

li + li+1
,

B = 2li

li + li+1
,

k =
⌈

B

2min(1, A)−B

⌉
.

The solution to Eq. (3.18) is used as initial condition for Eq. (3.17), which is discretized in time

according to an implicit Euler scheme and solved using the root-finding method developed

by Stage (2013). A validation of the splitting scheme can be found in Appendix C, where it is

compared with analytical solutions to the heat balance equation in two simple test cases.

3.3 Model implementation

In order to allow for the calibration of its parameters, StreamFlow was developed as a stand-

alone program rather than being seamlessly integrated into Alpine3D. This permits a higher

flexibility, since Alpine3D—whose typical computation time is of the order of 24 hours when

simulating a 1 year period on a standard personal computer—does hereby not need to be

newly run each time a new parameter set is tested in StreamFlow.

For the sake of consistency, StreamFlow is, similarly to Alpine3D, implemented in C++ and

compiled using CMake. The choice was made to use version C++11 of the C++ language, since

it offers new practical features such as anonymous functions or ranged-based for loops as

compared to the C++99 standard (Lippman et al., 2012)—regardless of the fact that C++11 is

meant to supersede C++99 on the long term. The same coding strategy as detailed in Bavay

and Egger (2014) is used here, namely:
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• Advantage is taken of the object-oriented nature of C++ to clearly structure the code

and make it as modular as possible, so as to facilitate understandability and ease future

developments.

• The dependence towards third-party software is avoided as much as possible in order to

limit installation issues. The only external utility required by StreamFlow is the library

MeteoIO (Bavay and Egger, 2014), which is used to read input files and interpolate

meteorological data in space and time.

• Significant effort is put in documenting the code, both for end-users and future develop-

ers. On-line documentation provides indications regarding the installation procedure

and the steps to follow in order to launch a simulation (see http://models.slf.ch/p/

streamflow/doc/). In addition, technical documentation is directly integrated into the

source code using the doxygen tool (van Heesch, 2008).

• Particular attention is paid at keeping the coding style consistent. This task is facilitated

by the small size of the development team—mostly one person—and the young age of

the project—the creation of StreamFlow dates from 2015. The coding style is essentially

the same as in MeteoIO, with additional conventions regarding the naming of class

attributes.1

• When compiling the code, all possible gcc warnings are activated and requested to be

passed successfully. The code currently compiles on Windows, Linux and OS X.

• The program is designed so as to be as flexible as possible. In particular, its behav-

ior can be adapted without recompiling the code by modifying the configuration file,

which regroups all adjustable parameters. Additionally, the use of library MeteoIO for

preprocessing allows input data to be provided in a large variety of formats.

• Daily automated tests were set into place using CTest. This ensures that potential

errors introduced by code modifications are rapidly identified and corrected, therefore

increasing code stability.

The following sections provide some details about the code implementation and the program

work flow.

3.3.1 Program main architecture

The program is structured around a main class, HydrologicalModel, which is in charge of

computing the transport of water and energy within the hillslopes and along the stream

network (see Fig. 3.3a). This class regroups an object of type Watershed—representing the

catchment—and another one of type StreamNetwork—symbolizing the stream network.

1See http://models.slf.ch/p/streamflow/page/CodingStyle/
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Figure 3.3: Structure of StreamFlow’s source code. (a) Simplified diagram of StreamFlow’s
high level classes; (b) Diagram of the Decorator pattern used to implement abstract classes
LumpedSubwatershedInterface, LumpedStreamReachInterface and DiscretizedStreamReachIn-
terface.

Class Watershed is nothing but a container storing a collection of Subwatershed objects,

each one of them representing one of the subcatchments identified by TauDEM. As depicted

in Fig. 3.3a, class Subwatershed is subclassed into LumpedSubwatershedInterface, which

defines the interface to be implemented by lumped subwatersheds—i.e. subwatersheds

being treated as single points (see Sect. 3.2.1). Future code developments could include the

definition of a second interface inherited from Subwatershed, representing the subwatersheds

as spatially-distributed entities. Each concrete subclass of LumpedSubwatershedInterface is

intended to implement a different approach for calculating the discharge and/or temperature

of subsurface runoff (see below).

Every Subwatershed object holds a pointer to its corresponding stream reach, which is repre-

sented in the code by class StreamReach. The latter is subdivided into two abstract subclasses:

LumpedStreamReachInterface representing lumped stream reaches, and DiscretizedStream-

ReachInterface symbolizing discretized stream reaches. Each one of these subclasses is further

subclassed into concrete implementations, each implementation corresponding to a specific

method for computing stream discharge and/or temperature (see below). All the StreamReach
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objects belonging to the stream network are regrouped into the container class StreamNetwork.

Classes LumpedSubwatershedInterface, LumpedStreamReachInterface and DiscretizedStream-

ReachInterface are intentionally abstract in order to allow for the implementation of the

Decorator pattern. This standard design pattern, illustrated in Fig. 3.3b, is aimed at dynam-

ically extending the functionality of a class (Gamma et al., 1994). It is used here to separate

the discharge computation from the temperature calculation, which allows each tempera-

ture modeling approach to be combined with every discharge computation method. In its

commonly accepted definition, the Decorator pattern requires the declaration of a wrapper

class—called ConcreteDecorator in Fig. 3.3b—which implements the same interface as the

objects to be decorated—called ConcreteImplementation in the figure. The presence of ab-

stract class Decorator in the pattern (see Fig. 3.3b) allows for multiple decorators to be stacked

on top of each other, a feature which might be of interest for future developments of Stream-

Flow in case e.g. pollutant transport was to be implemented in the model as an additional

decorator. Abstract class Implementation is not part of the traditional Decorator pattern, but

was introduced in StreamFlow in order to implement functionalities which are common to

all of its subclasses, hereby reducing duplicate code. In the Decorator pattern, each call to a

member function of the wrapper is usually forwarded to the decorated object, with additional

operations occurring before and/or after the forwarded function call. As mentioned above,

this pattern is used in StreamFlow to separate the computation of discharge from the one of

temperature. For example, the concrete subclass of LumpedSubwatershedInterface, which

implements the linear reservoir model described in Sect. 3.2.1, is only concerned with the

modeling of subsurface runoff discharge. The three possible methods detailed in Sect. 3.2.1

for computing subsurface runoff temperature are implemented each in separate decorators of

this class. Similarly, some subclasses of LumpedStreamReachInterface and DiscretizedStream-

ReachInterface are in charge of computing stream discharge only; the estimation of stream

temperature occurs in the decorators. The interfaces of both decorated and decorator classes—

namely classes Implementation and Decorator in Fig 3.3b—have been designed in StreamFlow

so as to be easily extended by a casual developer, therefore facilitating the implementation of

future discharge or temperature computation methods.

3.3.2 Input reading

For StreamFlow to run properly, Alpine3D has to be configured so as to output the grids of

the water percolation rate at the bottom of the soil columns. In case stream temperature is to

be computed, StreamFlow additionally expects grids of soil temperature from Alpine3D (see

Sect. 3.2.1), on top of the same meteorological measurements as those required by Alpine3D

as input. These measurements will be interpolated by MeteoIO over the stream reaches, taking

topographic shading into account in the case of incoming short wave radiation.

Similarly to MeteoIO, StreamFlow processes its input files in a centralized manner, hereby

facilitating the understanding and reuse of the code by casual developers. All required files
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are parsed by a single class, InputReader, which supports various input formats thanks to the

integrated use of MeteoIO utilities (see Bavay and Egger, 2014). It delegates the actual parsing

of the input files to low-end classes, devised to be easily modified or enriched by end users.

3.3.3 Output writing

As a result of its semi-distributed nature, StreamFlow is able to output the discharge and

temperature of subsurface runoff produced by each subwatershed, as well as the water depth,

discharge and temperature in each stream reach. Output files are currently produced in the

SMET format,2 for which various utilities—such as parsing and visualizing functions in Matlab

and Python—are available in MeteoIO. The possibility is offered to the user to generate output

files only for certain subwatersheds and/or stream reaches.

As for the parsing of the input files, the writing of the output data is handled by a high-

level class, OutputWriter, which delegates the actual generation of the output files to low-

level classes. As mentioned in the previous section, this architecture both facilitates future

developments and eases the understanding of the global code structure.

3.3.4 Calibration module

StreamFlow comes with an optimization module used to calibrate the model parameters. It

aims to identify the parameter set minimizing the so-called objective function. The latter can

be freely specified by the user based on the following standard error measures:

• The root mean square error (RMSE)

• The Nash-Sutcliffe efficiency (NSE Nash and Sutcliffe, 1970), also known as the coeffi-

cient of determination R2

• The mean absolute error (MAE), corresponding to the average over all time steps of the

model error absolute values

• The bias, defined as the mean value of the model errors over all time steps.

Each one of the above four measures can be evaluated either for water depth, discharge or

temperature, bringing to a total of 12 the number of different error measures at disposal.

StreamFlow also supports the case where measurement data is available at more than one

point along the stream network. The objective function can be defined as any weighted sum

of some (or all) of the available error measures, hereby making the model calibration entirely

flexible. Monte Carlo simulations are currently used for calibrating the model, but other

well-known optimization algorithms such as DREAM (Vrugt and Ter Braak, 2011) or GLUE

(Beven and Binley, 1992) could be easily integrated into the code.

2See https://models.slf.ch/docserver/meteoio/SMET_specifications.pdf
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For the sake of modularity and flexibility, the list of model parameters is not managed centrally

in the source code. Instead, each parametrizable class is responsible of defining its own asso-

ciated parameters. This operation is performed through inheritance of a dedicated abstract

class, ParametrizableObject, which essentially possesses two member functions getParame-

ters and setParameters for obtaining and modifying the class parameters, respectively. The

calibration module can then reconstruct the complete list of model parameters by simply

calling method getParameters on each object inheriting from ParametrizableObject. Based on

this list, it can compute new parameter values to be tested, which are transferred back to the

individual objects through a call to their method setParameters.

In addition to its name, value and units, each model parameter in StreamFlow is associated

with a range of physically acceptable values and a flag specifying whether it should be cali-

brated or not. The physically acceptable range is used by the calibration module to restrict

the search domain for the best parameter value. The properties of each parameter can be

freely set by the user in the program configuration file. In particular, the calibration flag can

be individually set to true or false for every parameter, hereby making it possible to calibrate

only a given subset of parameters.

3.4 Case study

In view of assessing its accuracy and demonstrating some of its capabilities, StreamFlow is

tested over a high altitude catchment in Switzerland. Section 3.4.1 presents the test catchment

and the measurement data used to validate the model. The model setup is described in

Sect. 3.4.2 and the simulation results are detailed in Sect. 3.4.3.

3.4.1 Study site and measurement data

StreamFlow is tested over the Dischma catchment, located in the eastern Swiss Alps (see insert

in Fig. 3.4). The gauging station operated by the Swiss Federal Office for the Environment

(FOEN) at the location named Davos Kriegesmatte—referred to as Outlet in Fig. 3.4—is chosen

as the catchment outlet. At this point, the watershed has an area of 43.3 km2 and is mostly

covered with pasture (36%), rock outcrops (24%) and bare soil (16%), with only 2% of glacier

cover (Schaefli et al., 2014). Very little riparian vegetation is present along the stream, which

ensures that the current absence of riparian shade model in StreamFlow does not have a

large influence on the quality of the stream temperature simulation. The watershed elevation

ranges from about 1700 m to more than 3100 m above sea level. Its hydrological regime was

classified as glacio-nival by Aschwanden and Weingartner (1985), i.e. the stream discharge

is low in winter and peaks in June–July due to snow and ice melt, therefore corresponding to

a typical watershed over which StreamFlow is meant to be used. More information on the

Dischma catchment can be found in e.g. Zappa et al. (2003) and Schaefli et al. (2014).

Water depth, discharge and temperature are continuously monitored by the FOEN at the
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Figure 3.4: Map of the Dischma catchment displaying the subwatersheds (colored areas) and
stream network (light blue line) derived from the DEM using TauDEM. The locations of the
stream gauges are indicated as red triangles.

catchment outlet. In complement to the quality control performed by the FOEN, hourly mean

data is also corrected here using the procedure described in Gallice et al. (2015), namely a

combination of visual inspection and automatized outlier identification. In addition to the

FOEN station, two temporary gauging stations were installed starting on 16 January 2015 at

the locations named Am Rin and Dürrboden, indicated as red triangles in Fig. 3.4. The gauging

station at Am Rin was positioned in a small stream coming from a side valley, just above its

confluence with the main stream. The station at Dürrboden was deployed in the upper part

of the main stream, just below the confluence with the rivulet coming from the glacier. Both

stations continuously measured water depth and stream temperature at a rate of one hour.

Discharge was manually estimated using the salt dilution technique on a few days during

winter and spring, which enabled the derivation of a rating curve to convert the continuous

water depth measurements into discharge values (e.g. Weijs et al., 2013). The data from the

gauging stations at Am Rin and Dürrboden is corrected using the same protocol as the data

provided by the FOEN.

The meteorological data used to run the Alpine3D simulation and compute the stream tem-

perature in StreamFlow is obtained from two different sources:

(a) The Swiss Federal Office of Meteorology and Climatology, MeteoSwiss, which operates a

country-wide network of automatic weather stations. Two of these are in the vicinity

of the Dischma catchment: the Davos and Weissfluhjoch stations, whose respective
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locations are about 5 and 8.5 km on the North-West of the catchment outlet. They are

both equipped with heated rain gauges, the one at Davos being unshielded and the one

at Weissfluhjoch shielded. These stations provide measurements of air temperature,

relative humidity, incoming long and short wave radiation, precipitation, wind direction

and snow height every hour.

(b) The Intercantonal Measurement and Information System (IMIS), a network of auto-

mated weather stations mostly used for avalanche forecasting in Switzerland (Lehning

et al., 1999). Four of these stations are used in the present study, whose distances to the

catchment outlet are 0.9, 4.7, 5.9 and 9.5 km. They continuously measure air tempera-

ture, relative humidity, outgoing short wave radiation, wind speed and snow depth at a

rate of one hour.

All meteorological time series are visually inspected to detect sensor failure. Data flagged as

erroneous is removed from the time series.

3.4.2 Model setup

As mentioned previously, StreamFlow requires Alpine3D to be executed first. In the present

case, Alpine3D is run over a grid with 100 m resolution and with an internal time step of

15 minutes. The simulated time period extends over three hydrological years, namely from

1st October 2012 to 1st October 2015. All meteorological input data are spatially interpolated

using the inverse-distance weighting approach with lapse rate, except for solar radiation

and precipitation. Solar radiation is computed based on the measurements at Weissfluhjoch

station alone, taking atmospheric attenuation into account for each grid cell separately. Pre-

cipitation is interpolated using the data measured at the Davos station only. It is corrected for

undercatch using the approach advocated by the World Meteorological Organization (WMO)

for Hellmann gauges (Goodison et al., 1998), before being distributed over each grid cell based

on a lapse rate proportional to the measured precipitation intensity at Davos. Another proce-

dure using the data from Weissfluhjoch station in addition to the one from Davos was also

tested for interpolating precipitation. However, it was rejected since it largely overestimated

the total amount of precipitation falling over the catchment, due to the existence of a strong

North-South precipitation gradient in the area, making the measurements at Weissfluhjoch

station—located further North—less representative of the situation in the Dischma catchment

than those at Davos station—located closer to the catchment (Voegeli et al., 2016).

As an additional preliminary step to the StreamFlow simulation, the stream network and its

corresponding set of subwatersheds are, as described in Sect. 3.2, extracted from a 25 m resolu-

tion DEM 3 provided by the Swiss Federal Office of Topography, SwissTopo. Application of the

automatic Peuker–Douglas extraction method provided by TauDEM4 results in a subdivision

of the catchment into 39 subwatersheds, ranging in size from 0.2 ha to 6.4 km2 (see Fig. 3.4). It

3See http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/height/dhm25.html
4See http://hydrology.usu.edu/taudem/taudem5/help53/PeukerDouglas.html
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Table 3.2: Parameters used by StreamFlow to simulated water depth, discharge and tempera-
ture using various approaches. The parameters are described into more detail in the main text
(Sect. 3.2 and Appendix B). First column of the table mentions the part of the model in which
the parameter is used. The absence of a calibration range (marked as n/a) indicates a fixed
parameter.

Model part Parameter Units Defined in
Calibrated or Calibration Rationale for the chosen
chosen value range value or calibration range

Subwatershed
outflow discharge
(Sect. 3.2.1)

Rmax (mm day−1) main text 6.93 [0,50] Comola et al. (2015)
τres,u (day) Eq. (B.5) 22.5 [0,60] Comola et al. (2015)
τres,l (day) Eq. (B.6) 567.1 [0,600] Comola et al. (2015)

Subwatershed
outflow
temperature
(Sect. 3.2.1)

ksoil (day) Eqs. (B.7)–(B.8) 49.6 [0,50] Comola et al. (2015)
τHSPF (day) Eq. (3.1) 58.2 [0.1,100]
DHSPF (◦C) Eq. (3.1) 0.99 [−3,1]
zd (m) main text 2.40 n/a

Channel water
discharge
(Sect. 3.2.2)

aw (m−1) main text 1.52×10−7 n/a aerial photographs
bw (m) main text 0.39 n/a aerial photographs
αh (m1−3βh sβh ) main text 0.57 n/a discharge gauging curve

at watershed outlet
βh (−) main text 0.32 n/a same as for αh

nm (−) Eqs. (3.5) and (3.7) 0.04, 0.07, 0.10 n/a Phillips and Tadayon (2006)

Channel water
temperature
(Sect. 3.2.2)

av w (−) Eq. (3.13) 2.20×10−3 n/a Webb and Zhang (1997)
bv w (ms−1) Eq. (3.13) 2.08×10−3 n/a Webb and Zhang (1997)
kbed (Wm−2 K−1) Eq. (3.12) 52.0 n/a Moore et al. (2005b) and

MacDonald et al. (2014)

should be mentioned that the difference in resolution between the DEM provided as input to

Alpine3D (100×100 m) and the one used to extract the stream network (25×25 m) is seamlessly

handled by StreamFlow. This allows, as in the present case, for Alpine3D to be run over a

coarser grid than StreamFlow, hereby saving computational power and resources.

StreamFlow is configured so as to compute the width w of each stream reach as: w =
aw Areach,tot +bw , where Areach,tot (m2) denotes the total area drained by the reach—including

its upstream reaches. Parameters aw (m−1) and bw (m) are determined approximately based

on the width of the main stream estimated at sample locations using aerial photographs of

the Dischma catchment. In addition, the values of parameters αh and βh , which are required

by the model to estimate water depth when simulating discharge based on the instantaneous

advection technique (see Sect. 3.2.2), are derived from the discharge gauging curve provided

by the FOEN at the catchment outlet. All model parameters used for the StreamFlow simula-

tions presented in the next section are summarized in Table 3.2, along with their respective

calibration ranges when appropriate. For the purpose of reducing the impact of the initial

conditions on the modeled stream variables, a warm-up period of one year is considered. In

other words, the model is run over a random year before each simulation, and its state at the

end of the warm-up period is used as an initial condition for the actual simulation. The model

is calibrated over hydrological year 2013 using Monte-Carlo simulations, and validated over

hydrological years 2014 and 2015. Calibration is performed in two steps:

1. All parameters associated with water routing, whether within the hillslopes or along the
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Figure 3.5: Comparison between the measured (blue line) and simulated (red line) snow
depth at the Stillberg meteorological station over the period 2013–2015. The simulated curve
corresponds to the mean snow depth as computed by Alpine3D over the 100×100 m grid cell
containing the Stillberg station.

stream network, are calibrated by maximizing the Nash-Sutcliffe efficiency of simulated

discharge at the catchment outlet. Only the parameters associated with subsurface

runoff modeling are actually calibrated in this step (namely Rmax, τres,u and τres,l), since

the only parameter related to water routing within the stream channels (i.e. Manning’s

coefficient) is fixed to some predefined values (see Sect. 3.4.3 and Table 3.2).

2. The parameters calibrated in step 1 are kept fixed to their respective best values, while

the parameters related to stream temperature modeling are calibrated by maximizing

the NSE of simulated temperature at the catchment outlet. This step is repeated for

each method used to compute the temperature of subsurface runoff (see Sect. 3.2.1).

The parameters associated with the water heat balance in the stream network are fixed

to specific values based on physical considerations (see Table 3.2).

In order to better assess the accuracy of StreamFlow, the approach advocated by Schaefli and

Gupta (2007) is followed here. The error measures associated with StreamFlow are compared

to those of a simplistic benchmark model, so as to verify whether StreamFlow allows for more

robust predictions than those that could be made based on a basic procedure. Two benchmark

models are actually considered here, one for discharge and one for temperature. Both are

constructed by averaging, for each hour of each day of the year, the values of discharge and

temperature measured at the catchment outlet on those particular hour and day over a period

of 10 years (2005–2014). Stated otherwise, the two models correspond to the measured yearly

curves of mean hourly discharge and temperature at the catchment outlet, averaged over ten

years.
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Table 3.3: Comparison of the total volume of water Vin,simu simulated by Alpine3D to percolate
at the bottom of the watershed soil columns over each year, and the measured total volume of
water Vout,meas flowing out of the catchment each year via the river.

Hydrological year Vin,simu (m3) Vout,meas (m3) Relative difference (%)

2013 5.28×107 5.64×107 −6.3
2014 5.88×107 5.57×107 5.7
2015 5.57×107 5.18×107 7.6

3.4.3 Model evaluation

Results of the Alpine3D simulation

The Alpine3D simulation is observed to rather accurately capture the time evolution of the

snow pack. As an example, Fig. 3.5 depicts the simulated snow depth in comparison with the

measured one at the Stillberg meteorological station, which is located at an altitude of 2085 m

above sea level on the Western slope of the catchment. It can be noticed that the onset of snow

accumulation and the timing of the melting period are satisfyingly reproduced, in addition

to the fact that the snow depth appears to be overall well simulated. A more quantitative

assessment of the accuracy of the Alpine3D simulation is obtained by considering the global

volume of water transiting through the watershed each year. Thus, the measured cumulated

volume of water Vout,meas flowing through the catchment outlet each year is compared to

the simulated cumulated volume of water Vin,simu percolating at the bottom of all the soil

columns belonging to the watershed over the same year. As can be observed in Table 3.3, the

relative difference between Vout,meas and Vout,simu remains within the range ±8% for all three

hydrological years.

StreamFlow simulations of discharge and water depth

As mentioned in the previous section, StreamFlow parameters related to discharge computa-

tion are calibrated against measured discharge at the catchment outlet. To this end, 10000

Monte-Carlo simulations are run, with StreamFlow configured so as to use a time step of

1 hour and advect water in the stream channels based on the instantaneous routing scheme

(see Sect. 3.2.2). Figure 3.6 presents a comparison of the simulated and measured hourly

mean discharges over the three considered hydrological years. The uncertainty range of the

simulated curve is defined by all parameter sets associated with a NSE larger than 0.85 during

the calibration period, which amounts to a total of 300 curves. As observed in panel (a), the

simulation corresponding to the highest NSE value matches globally well with the observa-

tions, except for a few discharge peaks which are not well captured in 2013 and 2015. The

simulation uncertainty range appears to be relatively narrow on an annual scale. When looking

at a finer scale, it can be observed that the daily fluctuations of discharge are relatively well

captured by the model, as for example shown in panel (b) for the period 29 May to 8 June
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Figure 3.6: Comparison between the measured (blue line) and simulated (red line) hourly
mean discharge at the watershed outlet. Panel (a) pictures the entire simulated period, and
panels (b) and (c) correspond to zooms on two selected time periods (their extents are indi-
cated as black rectangles in panel (a)). The simulated curve was obtained with StreamFlow
configured so as to advect water in the stream channels using the instantaneous routing
approach. The uncertainty range corresponds to the 300 best runs of the model out of the
10000 Monte-Carlo simulations.

2015. On the other hand, the absence of a fast runoff component in StreamFlow prevents the

model to correctly capture short-lived discharge peaks. As displayed in panel (c), the modeled

recession in these cases is much too slow compared to the observed one.

Table 3.4 presents quantitative error measures of discharge modeled over the validation

period at the three gauging points located in the Dischma catchment (see Fig. 3.4), for the

same StreamFlow configuration as in Fig. 3.6. The accuracy of the benchmark model at the

catchment outlet is also indicated in the table for comparison. It should be mentioned that

the benchmark model could not be evaluated at the two intermediate stations since the

measurement time series at these points extend over less than a year (see Sect. 3.4.1). As

observed in the table, the discharge NSE value associated with the best StreamFlow simulation

is larger than 0.80 at all three points, as opposed to the NSE value of the benchmark model not

exceeding 0.74. On the other hand, the values of NSE-log—defined as NSE computed with

the logarithm of the discharge values—are quite comparable between both models. This is

not particularly surprising in view of the strong seasonality of the baseflow component of
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Table 3.4: Accuracy of the hourly mean discharge simulations performed by StreamFlow using
the instantaneous water routing technique. The performance of the discharge benchmark
model is indicated in the last row for comparison. The third column contains the period over
which the error measures are computed. NSE-log corresponds to the Nash-Sutcliffe efficiency
computed with the logarithm of the discharge values.

Model Location Time period
RMSE NSE NSE-log Bias

(m3 s−1) (−) (−) (m3 s−1)

StreamFlow
Outlet entire validation period 0.60 0.82 0.90 0.14
Dürrboden 17 Jan. to 25 Sept. 2015 0.30 0.81 0.91 0.11
Am Rin 17 Jan. to 17 Jul. 2015 0.10 0.82 0.76 0.02

Benchmark Outlet entire validation period 0.73 0.74 0.88 −0.04

discharge, particularly during the winter season. The NSE-log value at point Am Rin is rather

low, but should be considered with caution since the discharge gauging curve at this point is

rather uncertain (not shown). The bias of StreamFlow is observed to be positive at all three

gauging points, which certainly results from the slight overestimation of the rate of water

percolating at the bottom of the soil columns in the Alpine3D simulation (see above). Overall,

the performance of StreamFlow regarding discharge computation based on the instantaneous

water routing scheme can be considered as satisfying. Its accuracy is comparable to the one

of other existing hydrological models applied over high Alpine catchments (e.g. MacDonald

et al., 2014; Schaefli et al., 2014).

Regarding the calibration parameters, it appears that the values of Rmax and τres,u are rather

well identified (see Fig. 3.7). Indeed, their respective distributions based on the best 300 pa-

rameter sets are contained within a rather narrow interval, clearly separated from the bounds

of the respective calibration ranges. Within this interval however, the two parameters are

strongly correlated with one another, as pictured in panel (c) of Fig. 3.7. This points at the

equifinality of the parameter sets (Bárdossy, 2007), since an increase in τres,u conjugated with

a decrease in Rmax maintains the model accuracy almost constant. As opposed to τres,u and

Rmax, parameter τres,l is associated with a broad distribution, sticking to the upper boundary of

the calibration interval (see panel (a) of Fig. 3.7). As such, StreamFlow appears to be relatively

insensitive to the value of τres,l, as further emphasized by the low correlation between τres,l

and the other two parameters (Bárdossy, 2007).

In order to evaluate the influence of the channel water routing scheme on the modeled

discharge, StreamFlow was run with the following configurations in complement to the instan-

taneous routing technique evaluated above: (a) the Muskingum-Cunge approach with lumped

stream reaches and Manning’s coefficient nm set to 0.04, (b) same as (a) but with nm = 0.10,

and (c)–(d) same as (a)–(b) but with discretized stream reaches. The chosen values for Man-

ning’s coefficient correspond to the lower and upper boundaries of the uncertainty interval

estimated in the Dischma catchment based on the work of Phillips and Tadayon (2006). The

results indicate that the modeled hourly mean discharge curves in all cases (a) to (d) almost

74



3.4. Case study

M NM OM PM QM RM SM
τres,u=xÇ~óz

M

R

NM

NR

OM

R
m

ax
=xã

ã
=Ç

~ó
−

1
z E~F r=−0.68

M

MKMR

MKN

MKNR
Ñê

Éè
ì

Éå
Åó

=xJ
z

M NMM OMM PMM QMM RMM SMM
τres,l=xÇ~óz

M

R

NM

NR

OM

R
m

ax
=xã

ã
=Ç

~ó
−

1
z EÄF r=−0.32

M MKMR MKN MKNR
ÑêÉèìÉåÅó=xJz

M

MKMR

MKN

MKNR

Ñê
Éè

ì
Éå

Åó
=xJ

z

M NM OM PM QM RM SM
τres,u=xÇ~óz

M

NMM

OMM

PMM

QMM

RMM

SMM

τ r
es
,l
=xÇ

~ó
z

EÅF r=0.27

Figure 3.7: The 300 best sets of parameters associated with water transport (see Table 3.2
for more information on the parameters). Each panel contains the values of two parameters
displayed as a function of each other: (a) Rmax versus τres,l, (b) τres,u versus τres,l and (c) Rmax

versus τres,u. Each x or y axis spans the entire calibration range of its associated parameter.
The parameter distributions are indicated in blue on the sides of the corresponding panels;
for example, the distribution of the 300 best Rmax values is shown on the right-hand side of
panel (a). Person’s correlation coefficient r between each pair of parameters is indicated in
the upper right-hand corner of the associated graph.

identically correspond to the one depicted in Fig. 3.6, up to a maximum RMSE of 0.03 m3 s−1

between all curves over the entire simulated period (not shown). Similarly, the error measures

reported in Table 3.4 are also valid in cases (a) to (d). The routing technique therefore appears

to have only a very limited impact on the simulated discharge in the Dischma catchment,

which is easily explained by the small size of the watershed (Schaefli et al., 2014). Indeed,

the average streamwise distance between the stream cells and the catchment outlet is about

6.6 km, which—assuming a flow velocity of 1 ms−1—corresponds to a mean travel time of

about 2 hours down to the catchment outlet. This also explains the observed low sensitivity of

StreamFlow to the value of Manning’s coefficient in the present case. As expected, the above

results suggest that, in small to medium-sized catchments, the use of spatially discretized
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Figure 3.8: Water depth simulated by StreamFlow in hydrological year 2014 using various
channel water routing techniques. The measured water depth is indicated in blue and shown
here only as an indication (see text). Regarding the curves associated with the Muskingum-
Cunge routing technique, only those obtained using lumped stream reaches are shown (orange
and violet curves). Those corresponding to discretized stream reaches almost overlap with
their lumped counterparts, with the difference between each pair of curves amounting to a
RMSE of 0.5 mm for nm = 0.04 and 3.9 mm for nm = 0.10 over the entire period 2013–2015.

stream reaches to simulate discharge is not associated with any marked improvement with

respect to the lumped approach.

Albeit discharge is simulated unequivocally by all water routing techniques, water depth and

flow velocity are not. As pictured in Fig. 3.8 for hydrological year 2014, differences between the

simulated water depth curves are quite large, with for example a RMSE of 44.5 cm between

the curve associated with the instantaneous routing technique and the one corresponding to

the Muskingum-Cunge approach with nm = 0.04. The instantaneous water routing technique

predicts here a higher water depth as compared to the Muskingum-Cunge approach, reflecting

the values of the gauging curve coefficients αh and βh (see Sect. 3.2.2 and Table 3.2). In

addition, the predictions based on the Muskingum-Cunge technique depend on the value

of Manning’s coefficient, as expected from Eq. (3.7): the higher nm, the higher the simulated

water depth. However, as for the case of discharge, the water depth estimations do not appear

to benefit from the use of discretized stream reaches as opposed to lumped ones, since both

corresponding curves almost overlap for a fixed nm (see legend of Fig. 3.8). It should be

mentioned that comparison with the measured water depth is hazardous since the modeled

river width at the outlet gauging station was not verified to correspond to the observed one.

The measured curve is therefore only shown here as an indication. The fact that it diverges

from the curve associated with the instantaneous advection approach during winter is due to

the fact that the discharge gauging curve of FOEN is linear for small water depth values, and

adopts the form of a power function as in StreamFlow only for larger values of h. Given that
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simulated discharge is almost the same for all water routing techniques, the differences in

simulated water depth result in large differences in the simulated flow velocity as well (not

shown).

StreamFlow simulations of stream temperature

Turning now to the stream temperature simulations, we first determine an appropriate value

for the soil temperature averaging depth zd (see Sect. 3.2.1 and Eq. (3.12)). Five different

possibilities are considered here: 0.15, 0.30, 0.60, 1.20 and 2.40 m. Using StreamFlow con-

figured so as to approximate the temperature of subsurface runoff as the depth-averaged

soil temperature (Sect. 3.2.1), we find that the choice zd = 2.40 m leads to the best results

in terms of temperature-based NSE (not shown). This rather large value may be due to the

relatively low resolution of the vertical soil temperature profile computed by Alpine3D, which

was configured here to use a coarse vertical discretization of the soil columns in order to spare

computational power. The value zd = 2.40 m is nevertheless used in the remaining of this

study, since emphasis is on demonstrating the model capabilities rather than performing

particularly accurate simulations.

Figure 3.9 displays stream temperature as simulated by StreamFlow over the hydrological

years 2013–2015, with channel water being advected based on the instantaneous routing

scheme and subwatershed outflow temperature being approximated as the depth-averaged

soil temperature (same configuration as above). Several observations can be formulated from

the inspection of the figure:

• As evident from panel (a), stream temperature is generally underestimated by the model

on a daily time scale, particularly during the snow melt season in spring and throughout

the entire winter. This may be due to the simulated soil temperature being too low,

since its value averaged down to 2.40 m typically remains around 0◦C until mid-June

(not shown). Soil temperature is then modeled by Alpine3D to rapidly increase past the

snowmelt season, which might explain the better agreement between the simulated and

measured stream temperature curves during summer. In winter, measured stream tem-

perature is observed to present rises up to more than 2 ◦C, which are not reproduced by

StreamFlow. These temperature surges actually reflect the evolution of air temperature

(not shown). The fact that StreamFlow fails at reproducing them mostly results from

simulated stream temperature being constrained to remain above 0◦C. This constraint,

combined with the underestimation of modeled stream temperature by a few degrees,

results in the simulated temperature curve appearing as mostly constant in winter and

explains the inability of StreamFlow to reproduce the temperature surges. Given that

soil temperature increases with depth, the simulation might be improved by averaging

soil temperature over a deeper depth when computing the temperature of lateral water

inflows. This would correct the underestimation of temperature both in winter and in

spring, but might result in a temperature overestimation in summer. Such an approach
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Figure 3.9: Comparison between the simulated (red line) and measured (blue line) stream
temperature at the catchment outlet. Panel (a) pictures the entire simulated period (hydro-
logical years 2013 to 2015), with temperature aggregated into daily mean values for visibility.
Panels (b) and (c) display the hourly mean temperature over two selected periods of 14 days
(their respective extents are indicated as black rectangles in panel (a)). The simulated curve
was obtained with StreamFlow based on the instantaneous water routing scheme, with the
temperature of subsurface runoff being approximated as the soil temperature averaged over
a depth of 2.40 m. The uncertainty range (displayed in light red) is obtained by evaluating
StreamFlow for each one of the 300 best sets of parameters Rmax, τres,u and τres,u identified
during calibration step 1 (see Sect. 3.4.2).

would nevertheless need to be confirmed by detailed geological surveys of the Dischma

catchment, in order to verify that the average soil depth over the watershed is larger

than the value considered here for zd, namely 2.4 m.

• Panels (b) and (c) present a zoom on two selected periods during winter and summer,

respectively. StreamFlow is observed to be capable of simulating the diurnal cycle of

stream temperature, albeit its magnitude is in general too low. This underestimation of

the diurnal cycle may originate from an overestimation of water depth or, equivalently,

from an underestimation of the stream width. This hypothesis can unfortunately hardly

be tested, since water depth and stream width are difficult to quantify in small moun-

tainous streams with irregular, boulder-covered beds. We verified whether the latent and

sensible heat fluxes are not underestimated by StreamFlow. To this end, we increased
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the values of coefficients av w and bv w by 50% (see Eq. (3.13) and Table 3.2), however

this did not result in a marked improvement of the simulated diurnal cycle (not shown).

The effect of the heat exchange with the stream bed was also tested by reducing the

value of kbed by 50% (see Eq. 3.12 and Table 3.2), but this had almost no impact on the

simulated temperature curve either (not shown). It should be noted that the simulated

discharge is not thought to be at the origin of the underestimation of the temperature

diurnal cycle, owing to the fact that the daily fluctuations of discharge are quite well

captured by the model (see Fig. 3.6)—except for a few short-lived discharge surges. The

underestimated amplitude of the temperature diurnal cycle therefore appears to mostly

originate from the approach selected for the modeling of subsurface runoff temperature,

as discussed into more detail below.

• From the inspection of all three panels in Fig. 3.9, it can be stated that modeled tem-

perature is not particularly affected by the uncertainty in the values of hydrological

parameters Rmax, τres,u and τres,l. As a matter of fact, the uncertainty range of the

simulated temperature curve remains globally narrow, except around midday where

it reaches a value up to 1◦C on some days (see panel (b)). This limited sensitivity of

modeled temperature with respect to simulated discharge (and water depth) further

hints at the probable role of subsurface runoff temperature on the underestimation of

the temperature diurnal cycle.

The values of the error measures associated with Fig. 3.9 are summarized in Table 3.5. The

NSE value of the hourly mean temperature curve (0.78) is much lower than the one of the

benchmark model (0.87), which denotes a strong improvement potential. This has to be put

into perspective with the fact that the Dischma river is rather small and heavily turbulent, and

therefore more challenging to model as compared to larger, low altitude rivers. In addition, the

NSE value is comparable to the one reported by MacDonald et al. (2014) over a mountainous

watershed of similar size and altitudinal range as the Dischma catchment. The RMSE equals

1.45◦C, which is not very far from the RMSE of the benchmark model (1.14◦C). On the other

hand, the bias is rather large and negative (−0.88◦C), as already noted from the observation of

Fig 3.9 above. Regarding the model performance at the two intermediate gauging points, the

values of the error measures at Dürrboden are found to be essentially the same as at the outlet

point, except for the positive bias (see Table 3.5). Concerning Am Rin, the apparent better

values for RMSE, NSE and bias have to be weighted against the short time period over which

they are evaluated (17 January 2015 to 17 July 2015). The fact that the model accuracy is about

the same at Dürrboden and at the outlet point is a further hint that the temperature error

mostly originates from the approach used to compute lateral inflow temperature. As a matter

of fact, we would have expected a better agreement between the observed and measured

stream temperature when moving upstream along the river network in case the source and

lateral inflow temperatures had been correctly estimated by the model. As the model error is

rather constant along the stream network, we conclude that the approach used to compute

the temperature of subsurface runoff could be improved (see below).
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Table 3.5: Accuracy of the hourly mean stream temperature predictions of StreamFlow (with
zd = 2.40m), based on various approaches for advecting water in the stream channels and
computing the temperature of subsurface runoff. The accuracy of the temperature benchmark
model at the catchment outlet is indicated in the last row for comparison. All error measures
are computed over the entire validation period (1st October 2013 to 1st October 2015), except at
points Am Rin and Dürrboden for which the considered time period is the same as in Table 3.4.

Model Channel water Subwatershed outflow Location RMSE NSE Bias
routing schemea temperature schemeb (◦C) (−) (◦C)

StreamFlow

Instant. advection (lumped) Soil temperature Outlet 1.45 0.78 −0.88
Dürrboden 1.45 0.78 0.75
Am Rin 1.11 0.89 −0.05

Instant. advection (discr.) Soil temperature Outlet 1.40 0.80 −0.85
M.-C. (nm = 0.07, lumped) 1.49 0.77 −0.85
M.-C. (nm = 0.07, discr.) 1.46 0.78 −0.80

Instant. advection (lumped) Energy-balance Outlet 2.06 0.56 −1.63
HSPF 1.69 0.70 0.54

Benchmark — — Outlet 1.14 0.87 −0.03

a “M.C.” denotes the Muskingum-Cunge routing scheme, and the indications “lumped” and “discr.” between
brackets refer to the spatial discretization of the stream reaches (see Sect. 3.2.2)
b The schemes described in Sect. 3.2.1 for the computation of subsurface runoff temperature are denoted as
follows here: “soil temperature” for the scheme assuming subsurface runoff to be in thermal equilibrium with
surrounding soil, “energy-balance” for the orginial scheme implemented in StreamFlow, and “HSPF” for the
scheme inspired from the Hydrological Simulation Program–Fortran.

As already discussed above, the simulated stream temperature is not particularly sensitive to

the modeled discharge. This fact is confirmed by the values of the error measures reported

in Table 3.5 for four temperature simulations, each one based on a different water routing

scheme—namely the instantaneous advection technique or the Muskingum-Cunge approach,

combined with either a lumped or discretized modeling of the stream reaches. In the simula-

tions based on the Muskingum-Cunge approach, Manning’s coefficient is fixed to 0.07, which

corresponds to the middle of the above-defined range of plausible values in the case of the

Dischma. It appears that all four simulations are associated with a similar accuracy in terms of

stream temperature modeling, as indicated by the narrow range of NSE (0.77–0.80) and RMSE

(1.40–1.49◦C) values. Contrary to the discharge simulations, the discretized representation

of the stream reaches enables here a slight improvement of the results as compared to the

lumped approach, mainly due to a better resolution of the diurnal cycle (not shown).

In a recent study, Leach and Moore (2015) reviewed the approaches implemented in some

of the most popular stream temperature models for approximating the temperature of sub-

surface runoff. Based on a comparison with data collected in a small Canadian watershed,

they concluded that none of them performed well, except for the method implemented in the

HSPF model approaching the observations relatively closely. More interestingly, the authors

pointed at large discrepancies between the predictions of the various models. As a further

step, we propose here to investigate the effect of modeled subsurface runoff temperature on
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Figure 3.10: Comparison between various predictions of stream temperature at the catchment
outlet, where the temperature of subsurface runoff is computed based on the following
methods: the original scheme implemented in StreamFlow (“energy-balance”), the technique
of the Hydrological Simulation Program–Fortran (“HSPF”), or as soil temperature averaged
over a depth of 2.40 m (“soil temp.”). All curves are aggregated into daily mean values for
visibility.

the simulated stream temperature at the catchment outlet. To this end, three StreamFlow

simulations are run with the same configuration as above—namely lumped reaches and the

instantaneous routing scheme—except that the temperature of subsurface runoff is computed

each time based on a different method out of the three available ones (see Sect. 3.2.1). It

should be mentioned that, in virtue of the modular structure of StreamFlow, changing from

one method to the next simply requires one line to be modified in the configuration file. The

simulation results are displayed in Fig. 3.10, and the corresponding error measures can be

found in Table 3.5. It can be observed that the approach used to compute the temperature of

subsurface runoff has a strong influence on the accuracy of the modeled stream temperature.

The method originally implemented in StreamFlow appears to perform worse (NSE of 0.56,

RMSE of 2.06◦C), followed by the HSPF approach (NSE of 0.70, RMSE of 1.69◦C). The method

based on the depth-averaged soil temperature is associated with the best performance mea-

sures (see above). Overall, the three methods seem to determine the temperature of in-stream

water to a large extent, leading to variations of more than 4◦C between the different curves

(see Fig. 3.10).

As deduced above for the remarkable performances of the benchmark model in terms of

stream temperature simulation, the actual implementation of StreamFlow could be improved

upon. Given the observed strong influence of subsurface runoff temperature on modeled

stream temperature, we recommend here that future developments of StreamFlow concen-

trate on a more accurate method for computing the temperature of lateral inflow. Following

the approach presented in Leach and Moore (2015), such a method could first be developed for

a given catchment of interest. In particular, in-depth geological surveys would need to be con-
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ducted in order to gain more understanding on the dominant hillslope hydrothermal processes

in the selected catchment. These processes could then be translated into a simple process-

based model, which could be finally integrated into StreamFlow as an additional option for

computing the temperature of subsurface runoff. Ideally, additional field investigations would

need to be conducted in other catchments in order to make the process-based model more

generic, i.e. applicable over various geographical and topographical environments.

3.5 Conclusions

Combined modeling of hydrological and thermodynamic processes offers promising per-

spectives for the prediction of stream temperature at the catchment scale. The present study

describes a new coupled hydro-thermal model, named StreamFlow, which is currently in-

tended to be used in high Alpine environments. Designed as an independent extension to the

spatially-distributed snow model Alpine3D, it has been written entirely anew compared to its

initial version. The resulting code has a clear and modular structure which takes advantage

of some of the latest available object-oriented features. Several of the hydrological processes

represented in the model can be simulated using various alternatives. For example, the advec-

tion of water in the stream channels can be computed using either the Muskingum-Cunge

technique or an instantaneous routing approach. This modularity enables the model to be

adapted to the specific needs of each user, but also provides a rapid means to estimate the

uncertainty of the simulation results by comparing the predictions of the various modeling

alternatives.

Based on an evaluation over a high Alpine catchment, the model accuracy is shown to be

satisfying, with Nash-Sutcliffe efficiencies for the hourly mean discharge and hourly mean

temperature being equal to 0.82 and 0.78, respectively. Comparison with a simple benchmark

model indicates that StreamFlow correctly accounts for the dominant hydrological processes

in terms of discharge simulation, whereas its modeling of stream temperature could be im-

proved. The various water routing techniques available in StreamFlow do not appear to have

a marked effect on the quality of the simulations. On the other hand, it was observed that

the approach used to compute the temperature of subsurface runoff strongly impacts the

simulated stream temperature at the catchment outlet. This effect has not been reported in

any previous study and points at the need for more intensive field investigations of subsurface

runoff temperature.

In addition to the development of a more accurate method for computing subsurface runoff

temperature (as discussed in the previous section), several improvements can be brought to

the actual state of the model. The representation of riparian shading would allow StreamFlow

to be applied in lower-altitude, vegetated watersheds. However, similarly to the case of sub-

surface runoff temperature, the shading by riparian vegetation is a complex phenomenon

which is difficult to simulate and requires further research (Moore et al., 2005b). The mod-

eling of the ice and snow sheet forming over the stream in winter could also be included in
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StreamFlow, using for example an approach similar to the one introduced by van Beek et al.

(2012). Finally, additional modeling alternatives could be implemented for various compo-

nents of StreamFlow, such as the full St-Venant equations for the routing of water in the stream

channels.

In the near future, we plan to use StreamFlow in order to evaluate the effects of climate change

on the hydrological functioning of high alpine watersheds. In particular, advantage will be

taken of the coupled hydro-thermal nature of the model in order to investigate the impact

of the future discharge modifications on stream temperature. This study will be especially

relevant for summer time, when drought events are forecasted to become more frequent in

the future. In a second time, StreamFlow might be used to quantitatively assess the impacts

of anthropogenic thermal discharges into mountain streams. The consequences of artificial

water derivations—such as those used to transfer water into dams—on the thermal regime of

Alpine streams could also be investigated using the model. Such studies could serve as a basis

for the establishment of environmental protection and/or restoration measures, aiming for

example at preserving fish and macrovertebrate populations.
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4 Discussion

The statistical and deterministic models have been described independently in Chaps. 2 and

3, respectively. This chapter aims at discussing various points common to both models, as

well as comparing their respective domains of application.

4.1 Complementarity of the modeling approaches

The two developed models can be seen as being complementary, in the sense that the statisti-

cal (physics-based) model is aimed at providing spatial predictions of stream temperature,

whereas the deterministic model is more related to (long-term) temporal predictions. Indeed,

although it resolves the annual cycle of stream temperature, the statistical model is primarily

intended to provide temperature estimates in ungauged locations. In this respect, it may be

treated as a spatial interpolation tool, since multiple measurement sites are used to calibrate

its parameters, which are in turn used to make predictions in nearby catchments. The deter-

ministic model, on the other hand, is not expected—despite its physically-based nature—to

be directly transferable from one catchment to the next without modification of its parameters.

As a counter part, its long-term predictions are generally considered to be more reliable (e.g.

van Beek et al., 2012; MacDonald et al., 2014). It may therefore be referred to as a temporal

interpolation tool, since temperature data in a given time period can be used by the model to

estimate temperature in another distant time period through proper calibration.

Taking advantage of their complementarity, the two models could actually be combined to

perform long-term predictions of stream temperature over large spatial areas. The approach

would be similar to the one followed by Hrachowitz et al. (2010), namely: (a) perform long-

term predictions of stream temperature in selected catchments using the deterministic model,

and (b) spatially interpolate these predictions with the help of the statistical model. As a

strong limitation, it should be mentioned that anthropogenic impacts are not taken into

account by any of the two models, hereby limiting the validity of the temperature predictions

to (semi)natural streams.
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Alternatively, the two models might complement each other when studying thermally sensitive

areas. The statistical model could be used to rapidly identify, in a large spatial area, the loca-

tions where stream temperature reaches critical levels. The deterministic model could then be

applied over these locations to study into more detail the causes of the critical temperature

values or the solutions that could be considered to mitigate them.

From a model development perspective, the two models are complementary in the sense that

the deterministic one benefited from the conclusions drawn using the statistical model. In

particular, the following observations made in Chap. 2 were used during the implementation

of StreamFlow in Chap. 3:

• The characteristic length Lc of the upstream area controlling stream temperature at a

given point was found in Chap. 2 to be of the order of 4 to 8 km. As such, the entirety of

the watershed is expected to contribute to the value of the outlet stream temperature in

small catchments, which motivated our choice to take the entire stream network into

account in StreamFlow rather than a simple reach portion.

• In the formulation of the statistical model, discharge is observed to have a strong

impact on stream temperature, since it partly controls the weighting of the different

contributions to the stream temperature value at a given point and appears in the

expression of Lc. This supported the decision to implement StreamFlow as a coupled

hydro-thermal model, so as to account for the effect of hydrology on stream temperature.

• Evaluation of the statistical model over selected catchments showed that subsurface

runoff had a non-negligible effect on stream temperature. As a consequence, it was

decided to investigate this effect into more detail through the implementation of three

different possibilities to compute the temperature of subsurface runoff in StreamFlow.

In addition, it was shown in Chap. 2 that the statistical model successfully reproduces the

annual cycle of stream temperature in a variety of catchments. This hints at the fact that

catchments may have a similar thermal behavior, hereby providing more generality to the

conclusions of Chap. 3 which were obtained over a single catchment.

4.2 Extent of the spatial domain of application

As mentioned in the previous chapters, both models developed in the present thesis are

primarily intended to be used in small to medium-sized catchments, i.e. catchments ranging

in size from a few km2 to 200–300 km2. In the case of the statistical model, this restriction

originally arose from the wish to have a well-defined hydrological regime in each one of

the studied catchments. As stated by Aschwanden and Weingartner (1985), this condition

is verified in Switzerland only for watersheds smaller than 500 km2. It was expected that

catchments with different hydrological regimes might display different thermal behaviors.

As shown in Chap. 2 however, the statistical model could indifferently reproduce the annual

86



4.3. Temporal resolution

temperature curve of streams with various hydrological regimes, except for the glacial ones.

Given certain adjustments, the model could therefore be applied over larger catchments. In

particular, the model assumes the characteristic length Lc to be constant across catchments,

which might no longer be true if the range of catchment sizes is too large. As explained in

Chap. 2, Lc is expected to be roughly proportional to water depth. In very large catchments,

this depth is so much larger than in the medium-sized catchments that the model may fail. As

a workaround, different sets of model parameters could be considered, each one associated

with a different range of catchment sizes. In the model version corresponding to the largest

catchments, the first two terms of the analytical solution—i.e. those associated with the source

temperature and lateral inflow temperature contributions, respectively—might be dropped as

their corresponding weights are close to zero (see discussion in Sect. 2.3.1 and Eqs. (2.13) and

(2.14)).

Regarding the deterministic model, the restriction to medium-sized catchments resulted both

from computational resource limitations and from the absence of a riparian shade module

which would have enabled the model to be applied in low-land areas. The computational

resource problem can be solved by taking advantage of the possibility offered by StreamFlow

to use a different mesh grid than the one of the Alpine3D simulation. As such, given that the

largest fraction of the simulation time is consumed by Alpine3D, the latter could be run over a

coarse mesh grid. This is expected to affect relatively little the StreamFlow simulation, as long

as the DEM used to delineate the stream network and the subwatersheds remains relatively

fine. The absence of a vegetation module, on the other hand, might require more efforts to be

remedied. Many different approaches to account for riparian shading have been reported in

the literature, ranging from a calibrated constant factor applied to incoming solar radiation

(e.g. Westhoff et al., 2007; Haag and Luce, 2008) to sophisticated models accounting for the full

riparian vegetation geometry (e.g. Boyd and Kasper, 2003; Moore et al., 2014), passing through

simple attenuation coefficients computed based on the vegetation height, size or type (e.g.

DeWalle, 2010; MacDonald et al., 2014). Selection of one approach over the other ones should

be dictated by the available data. It should be noted that the modularity of StreamFlow allows

several techniques to be implemented, which can then be independently selected by the user

depending on the data at his disposal.

4.3 Temporal resolution

The two models do not have the same temporal resolution: while the deterministic model can

provide temperature estimates up to every second, the statistical model is not expected to

deliver reliable temperature values for time steps smaller than a week. The coarse temporal

resolution of the statistical model mostly results from the steady-state assumption which was

considered when analytically solving the heat-balance equation. This assumption cannot be

considered to hold for time steps smaller than a day, hereby constraining the model time step.

In addition, the linear functions of air temperature used to estimate the source temperature

Ts and lateral inflow temperature T` are no longer valid at small time steps (see Eqs. (2.19)
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and (2.20)). As a matter of fact, Ts and T` are generally thought to evolve in time roughly

similarly to soil temperature, whose time variation is similar to the one of air temperature at

large time scales but much less fluctuating at small time scales. As a workaround, the value of

air temperature used in the expressions of Ts and T` could be averaged over a moving time

window when considering small time steps in order to better mimic the soil temperature

variations.

Concerning the deterministic model, it should be noted that its temporal resolution is entirely

dependent on the one of the input data. Even though the model internally runs with a time

step of a few seconds to a few minutes—so as to be compliant with the CFL conditions—,

the intrinsic output resolution cannot possibly be higher than the input one. It is therefore

essential that the sampling rate of the input data matches the user needs in terms of output

resolution.

4.4 Utility of the models for biologists and stakeholders

The two models developed herein might be of interest for stream biologists, particularly those

working on fish. Indeed, as mentioned in Chap. 1, water temperature controls many biological

aspects of fish, from the functioning of its enzymes to its resistance to diseases or even its

feeding behavior (e.g. McCullough et al., 2009). Many of these aspects have recently been

written under the form of equations, as a result of ecology gradually moving from a descriptive

science to a quantitative, experimental-based science. For example, empirical models have

been developed for various salmonid species to predict their respective growth rates (e.g. Elliott

et al., 1995; Sullivan et al., 2000), their resistance to several diseases (e.g. Nelitz et al., 2007), or

even the date at which fry emerges from the nest (e.g. Elliott and Hurley, 1998). It is noteworthy

to mention that most of these behavioral models use daily mean stream temperature as their

sole—or at least principal—variable, which emphasizes once more the predominant role of

temperature on the physiology of fish. The deterministic stream temperature model presented

in Chap. 3 may therefore prove useful, when used in association with the fish behavioral

models, to predict the effect of climate change on various aspects of the life cycle of salmonids.

As an example, the daily mean temperature predictions of StreamFlow could be used together

with the model of Elliott and Hurley (1998) in order to investigate whether the incubation

period of brown trout will shorten or lengthen as a function of catchment altitude in the

future. This would in turn give insights into the geographical areas most susceptible to serve as

nesting grounds for trout. A full understanding of the climate change effects on fish using this

technique is nevertheless illusory, since not only temperature but also pollution, ultra-violet

increase and oxygen concentration (among other variables) should be taken into account

(Graham and Harrod, 2009).

Sullivan et al. (2000) and Nelitz et al. (2007) have shown that weekly averages of stream

temperature correlate well with several aspects of fish biology, such as the length of the growth

period or the resistance to diseases. As a consequence, not only StreamFlow but also the

88



4.4. Utility of the models for biologists and stakeholders

statistical model presented in Chap. 2 may prove useful for stream biologists, as long as it is

configured to provide weekly mean temperature estimates instead of monthly mean values.

As opposed to StreamFlow however, this model would not be used in climate change studies

but rather as a means to overcome the lack of stream temperature measurements so as to

investigate selected aspects of fish biology in ungauged catchments.

The effects of stream temperature on fish biology are so diverse and complex that their

translation into simple temperature criteria for fish protection is not an easy task. A certain

temperature range might be suitable for a particular species but undesirable for another one

(see e.g. Sullivan et al., 2000; Graham and Harrod, 2009). It may also be suitable for a certain

life stage, such as for the adults, but not for other life stages, such as alevins or parrs (see e.g.

Elliott and Elliott, 2010). Depending on the life stages, fish might even show temperature

preferences as a function of the season. The fact that the fish responses are gradual to the

level and period of exposition to harmful temperatures is a further complication which makes

the definition of fixed temperature criteria even more difficult (Sullivan et al., 2000). Three

different approaches have been followed to date by scientists and water management agencies

to define such criteria:

1. The historical approach was based on the review of scientific literature by experts. Both

too cold or too warm temperatures may be harmful for fish (e.g. Sullivan et al., 2000;

Elliott and Elliott, 2010), but experts have generally concentrated on warm temperatures

in anticipation of the expected temperature rise due to climate change. Their recom-

mendations were usually expressed as a maximum temperature not to be exceeded over

a certain period of time (typically a week). A safety margin was generally included in

their decision in order to account for unknown processes or measurement errors. How-

ever, as noted by Sullivan et al. (2000), this method lacks reproducibility and is subjective

with respect to the choice of studies on which the experts base their judgement.

2. As an alternative, some authors have proposed to derive stream temperature criteria

from field measurements. Their idea was to take advantage of concomitant observations

of fish presence and stream temperature in order to empirically define temperature

ranges suitable for a particular fish species. For example, Hari et al. (2006) obtained

the optimal temperature range for brown trout as a function of the day of the year by

combining the annual temperature cycles of all stream reaches in which brown trouts

were observed in Switzerland over 25 years. The same approach was followed by Eaton

et al. (1995) for 30 fish species in the United States. The advantage of this method, from

a scientific point of view, is that it provides different optimal values over the course of

the year instead of a single maximum threshold. On the other hand, this turns into a

disadvantage from a management point of view, since the application of time-varying

criteria is much more difficult to enforce and monitor.

3. A third approach has recently been investigated by authors like Sullivan et al. (2000) and

Nelitz et al. (2007), namely the derivation of a single temperature threshold value based
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on the fish physiological models described above. The method consists in choosing a

particular aspect of fish biology which is thought to best account for fish health, define

the range of healthy values for that aspect, and finally convert this healthy range into a

temperature threshold not to be exceeded. For instance, Sullivan et al. (2000) chose to

concentrate on the growth rate of fish, since large fishes have been observed to be more

resilient to diseases and have better chances of overwintering. They decided to fix the

maximum allowable difference between the observed fish weight at the end of summer

and the weight it could have reached under optimal temperature conditions to 10 %.

Based on a growth model similar to the one of Elliott et al. (1995), they computed the the-

oretical weight difference at the end of summer for an idealized fish in 19 different rivers

using daily mean temperature records. They then correlated these weight differences

with an aggregate measure of the daily mean temperature data, namely the maximum

weekly mean temperature over summer. This correlation was used to translate the 10 %

weight deficit criterion into a simple temperature threshold in terms of the aggregate

measure. A similar procedure was proposed by Nelitz et al. (2007) using additional

aspects of fish biology on top of the growth rate, namely the resistance of fish to two

diseases and the survival rate of eggs. This approach is considered by Sullivan et al.

(2000) to be promising, since it is based on sound science and allows for reproducibility.

All of the three methods described above for specifying stream temperature criteria require

the identification of target species to be protected. Salmonids have usually been chosen in

northern countries as a consequence of their high economic value and strong sensitivity to

warm temperatures. Other species—not necessarily fishes—have been considered in some

regions of the world, such as for instance macroinvertebrates in South Africa (Dallas and

Rivers-Moore, 2012). It should be emphasized that most of the current stream temperature

criteria are expressed in terms of a maximum weekly mean temperature threshold (Eaton

et al., 1995; Sullivan et al., 2000; Nelitz et al., 2007; Dallas and Rivers-Moore, 2012). Given

that the two models derived in the present thesis are able to provide weekly estimates of

stream temperature, both of them could be used by water management agencies to identify

sensitive stream reaches and/or predict their apparition in the future. Being spatially explicit

and having a fine time resolution, the deterministic model could also be used in the regulation

of anthropogenic heat discharges into streams. As a matter of fact, many states impose water

temperature increase to remain below a certain threshold downstream of thermal emissions.1

Such an application of the model would however require the daily stream temperature cycle

to be better approximated by StreamFlow, since the daily maximum temperature is currently

underestimated and the daily minimum temperature overestimated (see Chap. 3).

In order to facilitate its use by third parties, the statistical model described in Chap. 2 could

first be turned into an operational tool. To this end, the existing Python scripts which were

developed in the framework of the present thesis could be merged into a single program.

1See e.g. https://www.admin.ch/opc/fr/classified-compilation/19983281/index.html for legislative text about
the protection of surface water in Switzerland.
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Documentation, which is currently only present as comments in the scripts, could also be

greatly enhanced. Finally, the implementation of a graphical user interface—although time

and effort consuming—may also prove a valuable addition, especially if the model ends up

being used by persons with little or no programming background. StreamFlow, on the other

hand, is thought to be already sufficiently documented and well-written to be distributed to

external users. As it happens, the model is actually currently being used by an Italian start-

up in order to perform hydrological simulations. Although more targeted towards experts,

StreamFlow might also benefit from the addition of a graphical user interface in the long term

in order to gain in attractiveness.

4.5 Role of subsurface runoff temperature

One of the key findings of the present thesis is that subsurface runoff appears to exert a strong

impact on stream temperature in mountainous catchments. This finding is all the more

important as subsurface runoff has generally received less attention than other components of

the stream energy-balance, such as the surface energy exchange (Caissie, 2006). Accordingly,

many deterministic stream temperature models developed to date have either neglected this

term or been applied over stream reaches where lateral inflow was not present (e.g. Brown,

1969; Sinokrot and Stefan, 1993; Caissie et al., 2007; Roth et al., 2010; Null et al., 2013).

Both models developed in the framework of the present thesis tend to underline the prominent

role played by subsurface runoff on the shape of the annual temperature curve. Indeed, it

was shown in Chap. 2 that lateral water inflows significantly contribute to the monthly mean

stream temperature values observed in the selected catchments, especially in summer and

autumn. Similarly, the evaluation of StreamFlow in Chap. 3 revealed that the general shape of

the simulated annual stream temperature curve was very sensitive to the approach chosen

for computing the temperature of subsurface runoff. This effect might also be present at

smaller time scales; in particular, subsurface runoff might impact the diurnal cycle of stream

temperature. As such, the incorrect simulation of the subsurface runoff temperature dynamics

at the sub-daily time scale might be one of the reasons explaining the poor simulation of the

daily temperature extrema by StreamFlow. As mentioned in Chap. 3, future developments

of StreamFlow should seek at improving the simulation of the lateral energy inflows into the

stream, possibly based—as detailed below—on an approach similar to the one introduced by

Leach and Moore (2015).

The present investigations of the role of subsurface runoff on stream temperature have been

limited to small to medium-sized catchments. It would be interesting to extend this analysis

to larger, low-land catchments. We suspect that the role of lateral inflows would tend to

decrease with catchment size. As a matter of fact, assuming lateral inflow to be relatively

independent of catchment size, the ratio of lateral to in-stream discharge is expected to

decrease with increasing river size. This reasoning is supported by the expressions which were

obtained in Chap. 2 for the various weights appearing in the analytical solution to the heat
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balance equation: it was noted that the weights associated with the source and lateral inflow

temperatures decreased with increasing catchment size.

Among the experimental work needed to validate the models developed herein, the further

investigation of subsurface runoff temperature appears as one of the clear priorities. To this

end, experiments inspired from the one led by Leach and Moore (2015) should be conducted

in order to gain a better understanding of the sub-daily and seasonal dynamics of subsurface

runoff temperature, as well as of the controls on these dynamics. The Dischma catchment,

with its already long record of hydrological and snow studies and its dense instrumentation,

appears as a suitable choice for such experiments. In particular, piezometers equipped with

thermometers and water level gauges could be installed in the vicinity of the stream. Influence

of spatial scale on the subsurface temperature response could be evaluated by placing some of

these thermometers around sources, others along small tributaries and finally some along the

main channel. Detailed geological surveys of the catchment would also need to be performed

in order to identify the different soil layers and potential preferential flow paths. All these

investigations would ideally lead to the development of a conceptual model similar to the one

of Leach and Moore (2015), but better suited for high-altitude mountainous catchments in

Switzerland. This model could in turn be incorporated in StreamFlow, hereby improving the

accuracy and forecast capabilities of the model.
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Stream temperature controls many aspects of the riverine ecosystem, from the habitat suit-

ability of many aquatic species to the concentration of various chemical species. As most

studies have been conducted in low-land rivers to date, the comprehension of temperature

dynamics in mountainous streams is still incomplete. In an attempt at improving this compre-

hension, two new models for the prediction of stream temperature in Alpine catchments were

introduced in the present thesis.

The first model was conceived with the intention of estimating stream temperature in un-

gauged catchments. Through its development, demonstration was made that a new hybrid

approach could be adopted as a trade-off between the statistical and deterministic approaches.

The idea consists in simplifying the stream energy-balance equation up to the point where

it can be solved analytically, so as to obtain an expression which can be used to compute

stream temperature. The key point is to select a proper set of simplifying assumptions, not

too reductive but at the same time allowing for an analytical solution to be found. A very

similar approach was recently followed by another group of researchers (Piccolroaz et al.,

2016), with whom a collaboration was established. Using slightly more restrictive assumptions,

they obtained a simpler expression for estimating stream temperature, which does not require

the averaging of physiographic variables over the stream network. As a counter part, their

solution is somewhat less physically-based than the one reported here. For instance, it cannot

be used to estimate the relative contributions of the different heat sources on the temperature

measured at a given point. The hybrid modeling approach therefore appears to be a promising

technique, since its physical contents can be adapted as a function of the user requirements.

Researchers on stream temperature might be more interested in the complex model developed

here, while water management stakeholders might profit more from the simpler model of

Piccolroaz et al. (2016). The hybrid approach is of course not restricted to these two models:

further studies on the subject might lead to the development of new prediction tools, just

awaiting to be discovered.

The second model reported in the present work is intended to be used in climate change and

land use change studies. It relies on a deterministic approach to simulate the hydrological
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processes at the subwatershed scale, in addition to the flows of water and energy along the

stream network. It is one of the only physically-based stream temperature models available

to date which can be applied over an entire catchment. This property allows it to be run

solely with meteorological and land use input data, contrary to most other models which also

require discharge and water depth measurements. In addition, the present model accounts

for the snow pack in a detailed manner since it is designed as an extension to the physically-

based snow model Alpine3D. As a consequence, it is particularly suited for the simulation of

discharge and stream temperature in high alpine watersheds. Some of its aspects need to be

improved in order for it to be applied over lower-altitude catchments, notably the inclusion of

shading due to the riparian vegetation. Future work on this model will mostly consist in its

application over selected catchments in order to evaluate various climate-change scenarios. It

is also planned to develop a module to represent artificial water reservoirs and water intakes

(or rejections).

A common observation was made through the application of both models in Alpine catch-

ments: the inflow of water from the surrounding hillslopes appears to have a strong influence

on stream temperature. This fact has been neglected in many of the stream temperature mod-

els developed so far, possibly due to the fact that they mostly concentrated on short stream

portions. In the present case, the modeling of stream temperature over entire catchments

enabled the role of subsurface runoff to become more evident. As such, the hybrid model

estimated subsurface heat inflow to represent a noticeable part of the seasonal stream heat

balance in summer and autumn. In addition, the deterministic model pointed at the control

exerted by subsurface runoff temperature on the annual cycle of stream temperature. Of

course, these observations need to be confirmed with experimental measurements. Advan-

tage is taken of the present discussion to emphasize once more the need for field campaigns

focusing on the temperature of subsurface flow.

More generally, the future of stream temperature research probably lies in the development of

new measurement techniques and the intensification of the field campaigns. The incredible

increase of computational power over the last decades has allowed for the development of very

detailed physically-based models. As an example, the latter are currently able to simulate pore

flow at the scale of an entire catchment. However, most of their predictions cannot be validated

due to the lack of appropriate experimental data. Even in the cases where measurements are

available, the question arises as to whether the models actually simulate the same variable as

what is actually measured. Some researchers believe in technical progress to come up with new

instruments providing the required data, but others are more in favor of adapting our models

to the data at hand—e.g. avoiding to account into detail for the processes which cannot be

validated. These questions are for the moment completely open and may still require many

years to be answered. In the mean time they are responsible for intense scientific debates,

which is probably the way research has always moved forward. . .
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A Analytical solution to the energy-
balance equation

This section details the procedure for deriving the analytical solution to Eqs. (2.5)–(2.6) intro-

duced in Chapter 2.

The solution is first obtained for the case of a simple stream reach of length L (see Fig. A.1a).

Let the downstream distance be denoted as x, with x0 and x1 referring to the positions of the

reach origin and end points, respectively. The discharge Q(x1) and stream temperature T (x1)

can be easily computed by integrating Eqs. (2.5)–(2.6) between x0 and x1,

Q(x1) =Q(x0)+q`L, (A.1)

T (x1) = Q(x0)

Q(x1)
e−d(x0)/Lc T (x0)+ 1

Q(x1)

∫ x1

x0

e−d(x)/Lc ψ(x) dx, (A.2)

where

ψ(x) = q`T`(x)+Q(x)

(
γφr(x)+Ta(x)

Lc
− g

cp

dz

dx

)
. (A.3)

In Eq. (A.2), d(x) = x1 −x denotes the distance between any point x and the downstream end

point x1 (see Figure A.1a).

The above equations require the values of discharge and temperature at the upstream end of

the reach to be known. By applying them iteratively to all the reaches of a network, starting

from the most downstream one, the expressions for discharge Qout and water temperature

Tout at the network outlet can be expressed as a function of the discharges and temperatures

of the sources. At the confluences, the discharges Qu,1 and Qu,2 and the temperatures Tu,1 and

Tu,2 of the two upstream reaches can be related to the discharge Qd and temperature Td of the

downstream reach using the mass and energy-balance equations (Westhoff et al., 2007),

Qd =Qu,1 +Qu,2, (A.4)

Td = Qu,1

Qd
Tu,1 +

Qu,2

Qd
Tu,2. (A.5)

95



Appendix A. Analytical solution to the energy-balance equation
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Figure A.1: Schematic representations of (a) a stream reach and (b–c) a stream network,
illustrating the notation used to derive the analytical solution to the stream energy balance
equation.

Based on Eqs. (A.1)–(A.5), the derivation of the expressions for Qout and Tout is straightforward

and leads to the following relations:

Qout =
ns∑

i=1
Qs,i +q`Ltot, (A.6)

Tout =
ns∑

i=1

Qs,i

Qout
e−ds,i /Lc Ts,i + 1

Qout

∫
L

e−d(x)/Lc ψ(x) dx. (A.7)

In the above equations, ns refers to the number of sources in the network, Ltot denotes the

total length of the stream network, ds,i corresponds to the downstream distance of source

point xs,i to the network outlet, d(x) refers to the distance between any point x along the

network and the network outlet, L corresponds to the geometrical union of all reaches in

the stream network, and Ts,i and Qs,i denote the stream temperature and discharge at source

point xs,i , respectively. The reader is referred to Fig. A.1b for a graphical illustration of some

of the variables. The integral over L is a shorthand notation for the sum of the respective

integrals over all the reaches in the network.

Equations (A.6)–(A.7) can be written in a more convenient form using space-averaging opera-

tors. Replacing ψ with its expression defined in Eq. (A.3), the integral on the right-hand side of

Eq. (A.7) can be written as∫
L

e−d(x)/Lc ψ(x)dx = A1 q`
〈

T`
〉
L + A2

Lc

〈
γφr +Ta −Lc

g

cp

dz

dx

〉
Q , (A.8)

where the two averaging operators
〈·〉L and

〈·〉Q are defined as

〈
f
〉
L = 1

A1

∫
L

e−d(x)/Lc f (x) dx and (A.9)

〈
f
〉
Q = 1

A2

∫
L

e−d(x)/Lc Q(x) f (x) dx, (A.10)

for any integrable function f defined on L , with the normalizing factors A1 and A2 being
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defined as

A1 =
∫
L

e−d(x)/Lc dx,

=
nr∑

k=1

∫ xk,1

xk,0

e−d(x)/Lc dx

=
nr∑

k=1
Lce−dk /Lc

(
1−e−Lk /Lc

)
(A.11)

and

A2 =
∫
L

e−d(x)/Lc Q(x) dx

=
nr∑

k=1

∫ xk,1

xk,0

e−d(x)/Lc Qk (x) dx. (A.12)

In the above equations, nr denotes the number of reaches in the network; xk,0, xk,1 and Lk

refer to the upstream point, downstream point and length of reach k, respectively; dk refers

to the distance along the stream network between xk,1 and the network outlet; and Qk (x)

denotes the discharge along reach k (see Fig. A.1b). Based on Eq. (A.1), Qk may be expressed

as

Qk (x) =Q(xk,0)+q`(x −xk,0)

= ∑
j∈Πk

Qs, j +q`
∑

r∈Γk

Lr +q`(x −xk,0), (A.13)

whereΠk andΓk denote the set of source points and reaches draining into reach k, respectively,

as illustrated in Fig. A.1c. Inserting the above equation into Eq. (A.12) and re-arranging the

terms, A2 may be written as

A2 =
ns∑

i=1
Qs,i

∑
j∈Ωi

∫ x j ,1

x j ,0

e−d(x)/Lc dx

+q`
nr∑

k=1
Lk

∑
r∈∆k

∫ xr,1

xr,0

e−d(x)/Lc dx

+q`
nr∑

k=1

∫ xk,1

xk,0

e−d(x)/Lc x dx, (A.14)

whereΩi refers to the set of reaches linking the i th source point to the network outlet, and ∆k

denotes the set of reaches linking reach k to the network outlet, not including reach k itself

(see Fig. A.1c). Assuming that all source points have the same discharge Qs, and replacing the

integrals along the reaches with their respective values, Eq. (A.14) can be written more simply
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as

A2 = LcQs

ns∑
i=1

(
1−e−ds,i /Lc

)+q`Lc

nr∑
k=1

{
Lk −Lce−dk /Lc

(
1−e−Lk /Lc

)}
= Lc

(
Qtot −q`Ltot

)(
1−δs

)+q`LcLtot
(
1−δ`

)
, (A.15)

where Eq. (A.6) has been used in the second step to replace nsQs with Qtot −q`Ltot, and the

factors δs and δ` are defined as

δs = 1

ns

ns∑
i=1

e−ds,i /Lc and (A.16)

δ` =
Lc

Ltot

nr∑
k=1

e−dk /Lc
(
1−e−Lk /Lc

)= A1

Ltot
. (A.17)

Combining Eqs. (A.7), (A.8), (A.11) and (A.15), the expression for stream temperature at the

network outlet can eventually be written in a more convenient form,

Tout = (1−η)δsTs +ηδ`
〈

T`
〉
L

+ [
1− (1−η)δs −ηδ`

]〈
γφr +Ta −Lc

g

cp

dz

dx

〉
L , (A.18)

where the averaging operator
〈·〉Q has been approximated by

〈·〉L , and Ts corresponds to the

distance-weighted source temperature, averaged over all sources and weighted by a factor

decreasing exponentially with the respective distance of each source to the network outlet,

Ts = 1

nsδs

ns∑
i=1

e−ds,i /Lc Ts,i . (A.19)

The factor η appearing in Eq. (A.18) denotes the ratio between the discharge originating from

lateral inflow and the total discharge at the network outlet,

η= q`Ltot

Qtot
. (A.20)
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B Original formulation of StreamFlow’s
subwatershed bucket model

This section briefly describes the approaches originally implemented in the first version of the

code for computing the discharge and temperature of the subsurface flow generated by each

subwatershed.

B.1 Subwatershed outflow discharge computation

As illustrated in Fig. B.1a, the original model of Comola et al. approximates each subwatershed

as the vertical superposition of two linear reservoirs, where the upper one simulates the fast

response to rainfall events and the lower one the slow response. Water percolating at the

bottom of the subwatershed soil columns fills the lower reservoir up to a maximum flow

rate Rmax (ms−1), the excess water draining into the upper reservoir. This translates into

the following equations for the water levels Sres,u (m) and Sres,l (m) in the upper and lower

reservoirs, respectively:

dSres,u

dt
= Ires,u −

Qres,u

Asubw
, (B.1)

dSres,l

dt
= Ires,l −

Qres,l

Asubw
, (B.2)

where the water inflow rates Ires,u (ms−1) and Ires,l (ms−1) into the upper and lower reservoirs

are expressed as Ires,u = I − Ires,l and Ires,l = min
(
I ,Rmax

)
, with I (ms−1) denoting the total flow

rate of water percolating at the bottom of the subwatershed soil columns and Asubw (m2) the

subwatershed surface area. Qres,u (m3 s−1) and Qres,d (m3 s−1) correspond to the discharge at

the outlet of the upper and lower reservoirs, which are linearly related to the reservoir water

levels,

Qres,u = Asubw
Sres,u

τres,u
, (B.3)

Qres,l = Asubw
Sres,l

τres,l
. (B.4)
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Figure B.1: Illustrations of the models devised by Comola et al. (2015) for the computation
of (a) subsurface runoff discharge, and (b) subsurface runoff temperature. The symbols are
defined in the text.

The characteristic residence times τres,u (s) and τres,l (s) are expressed as power functions of

the subwatershed area:

τres,u = τres,u

(
Asubw

Atot

) 1
3

, (B.5)

τres,l = τres,l

(
Asubw

Atot

) 1
3

, (B.6)

where τres,u (s) and τres,l (s) are two user-specified parameters and Atot (m2) denotes the area of

the entire parent watershed. The total discharge Qsubw (m3 s−1) flowing from the subwatershed

into the stream is then computed as Qsubw =Qres,u +Qres,l. The subwatershed behavior can be

adjusted by modifying the values of parameters Rmax, τres,u and τres,l.

B.2 Subwatershed outflow temperature computation

The method developed by Comola et al. (2015) for the computation of the subwatershed

outflow temperature Tsubw (K) is depicted in Fig. B.1b. Temperatures Tres,u (K) and Tres,l (K) of

water stored in the upper and lower reservoirs are computed as:

dTres,u

dt
= Ires,u

Sres,u
(Tsoil −Tres,u)+ Tsoil −Tres,u

ksoil
, (B.7)

dTres,l

dt
= Ires,l

Sres,l
(Tsoil −Tres,l)+

T soil −Tres,u

ksoil
, (B.8)

where ksoil (s) is a calibration parameter corresponding to the characteristic time of ther-

mal diffusion and Tsoil (K) refers to soil temperature at the bottom of the subwatershed soil

columns as modeled by Alpine3D. T soil denotes the annual average of Tsoil, which is used as a
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B.2. Subwatershed outflow temperature computation

proxy for the temperature of deep soil. The first term in the right hand-side of the above two

expressions accounts for the heat flux associated with the inflow of water into the reservoirs.

The second term corresponds to the diffusive heat exchange between water and the surround-

ing soil particles. These expressions were derived by assuming that the temperature of water

percolating at the bottom of the soil columns is equal to the local soil temperature. They are

solved using a second-order Crank Nicholson scheme, and their solution is used to compute

Tsubw (K) as:

Tsubw = Qres,uTres,u +Qres,lTres,l

Qres,u +Qres,l
. (B.9)
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C Validation of the scheme used to solve
the heat balance equation

The splitting scheme described in Sect. 3.2.2 for numerically solving Eq. (3.11) is validated

here by comparing its predictions against analytical solutions. The derivation of the analytical

solutions is presented first, followed by the assessment the numerical scheme precision.

C.1 Analytical solutions to the heat balance equation

Eq. (3.11) can be written in a more compact form:

∂Tw

∂x
+ v

∂Tw

∂x
= 1

τ
Tw +σ, (C.1)

with

τ=− hw

qsubw
,

σ= φ

ρwcp,wh
+ qsubw

hw
Tsubw + gQ

cp,whw
S0.

Similarly to (e.g. Lowney, 2000), Eq. (C.1) above is simplified by assuming τ to be constant

and σ to be a function of time only. The length of the spatial domain over which the equation

is to be solved is denoted as L. It is assumed that v > 0 for all x ∈ [0,L], so that a boundary

condition must be specified at x = 0. A Dirichlet boundary condition is considered here,

Tw(0, t ) = Tin(t ) for all t Ê 0, (C.2)

where Tin(t ) is a prescribed function of time. Since the spatial domain is finite, the analytical

solution to Eq. (C.1), subject to boundary condition Eq. (C.2), will consist of a transient

phase followed by a permanent regime. During the transient phase, the initial temperature

distribution Tw,ini(x, t) is advected towards the right end of the spatial domain, while the

boundary condition Tin dictates the value of temperature entering the domain through its

left end. After the last remnant of the initial temperature distribution has exited the spatial

103



Appendix C. Validation of the scheme used to solve the heat balance equation

domain, the solution reaches its permanent regime, which is the same regardless of the initial

distribution. Only the permanent regime is of interest here, so that no initial condition needs

to be specified.

The analytical solution to Eqs. (C.1)–(C.2), under the conditions τ = cst and σ = σ(t), is

obtained by the method of characteristics (e.g. LeVeque, 2002). The two independent variables

x and t are parametrized as a function of a path variable s. Using the definition θ(s) =
T

(
x(s), t (s)

)
, we observe that

dθ

ds
= ∂Tw

∂t

dt

ds
+ ∂Tw

∂x

dx

ds
,

so that Eq. (3.11) can be re-written as

dθ

ds
= 1

τ
θ+σ, (C.3)

if the parametrizations of x and t are chosen such that:

dt

ds
= 1, (C.4)

dx

ds
= v . (C.5)

Equation (C.3) is an ordinary differential equation in which σ should be understood as a

function of s, i.e. σ(s) =σ(
t (s)

)
. Its solution can be easily found and is given by:

θ(s) =
∫ s

s0

(
σ(s′)+ θ(s0)

τ

)
exp

(
s − s′

τ

)
ds′+θ(s0), (C.6)

where s0 denotes the lower integration bound, which needs to be specified. Equation (C.4) is

trivially solved through integration between s0 and s,

t (s) = s + s0 − t0,

where t0 = t (s0). The above expression for t implies that s is equivalent to time (i.e. s ≡ t ), so

that x can be interpreted as the position of a particle moving with instantaneous velocity v as

per Eq. (C.5). In the permanent regime, each “particle” enters the spatial domain through its

left-hand side boundary. As a consequence, s0—or, equivalently, t0—needs to be chosen such

that x(s0) = 0 in the present case. This further implies that:

θ(s0) = Tw
(
x(s0), t (s0)

)= Tw(0, t0) = Tin(t0), (C.7)

where Eq. C.2 has been used in the last step. Inserting the above expression in Eq. (C.6) and

replacing θ(s) with Tw(x, t ) and s with t , one finally obtains:

Tw(x, t ) =
∫ t

t0

(
σ(t ′)+ Tin(t0)

τ

)
exp

(
t − t ′

τ

)
ds′+Tin(t0). (C.8)
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Closed-form expressions of the above equation can be found by choosing simple formulations

for σ and v . Two cases are considered here:

Test case 1: Constant velocity and sinusoidal expression for σ,

v(x, t ) = cst, for all x ∈ [0,L], t Ê 0, (C.9)

σ(t ) = aσ sin(ωt )+bσ, for all t Ê 0, (C.10)

with ω (s−1), aσ (Ks−1) and bσ (Ks−1) constant. This test aims at assessing the ability of

the splitting scheme to correctly account for time varying heat sources.

Test case 2: velocity varying linearly in space and no σ-term,

v(x, t ) = av x +bv , for all x ∈ [0,L], t Ê 0, (C.11)

σ(t ) = 0, for all t Ê 0, (C.12)

where av (s−1) and bv (ms−1) are constant and chosen such that v > 0 for all x ∈ [0,L].

This test intends to validate the robustness of the splitting scheme in the case of non-

uniform flow velocity profiles.

In both cases, the expression of Tin is chosen similarly to the one of (e.g. Lowney, 2000), who

aimed at reproducing natural diurnal variations of stream temperature,

Tin(t ) = ain sin(ωt )+bin, (C.13)

where ain (K) and bin (K) are constant, and ω is the same as in Eq. (C.10).

C.1.1 Analytical solution of test case 1

In test case 1, the solution to Eq. (C.5) under the constraint x(s0) = 0 is straightforward due to

v being constant,

x(s) = v(s − s0).

Replacing s with t and solving for t0, one obtains:

t0 = t − x

v
.

After inserting this expression in Eq. C.8, replacing σ with its sinusoidal formulation and

performing the integration, one gets the closed-form expression of the solution to Eq. (3.11) in
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Table C.1: Values chosen for the parameters associated with test cases 1 and 2 in order to
validate the numerical splitting scheme.

Name Units Value

τ (s) 2×106

ω (s−1) 2π/3600
aσ (Ks−1) 5×10−3

bσ (Ks−1) 2×10−4

av (s−1) 1/12800
bv (ms−1) 0.5
ain (K) 1.5
bin (K) 283.15

the permanent regime (i.e. for t > L/v),

Tw(x, t ) = Tin

(
t − x

v

)
exp

( x

τv

)
+bστ

[
exp

( x

τv

)
−1

]
− aστ

1+ (τω)2

(
sin(ωt )+τωcos(ωt )

)
+ aστ

1+ (τω)2

(
sin

[
ω

(
t − x

v

)]
+τωcos

[
ω

(
t − x

v

)])
exp

( x

τv

)
,

(C.14)

with Tin as defined in Eq. (C.13). It should be mentioned that the above expression is actually

valid for any formulation of Tin, not just Eq. (C.13).

C.1.2 Analytical solution of test case 2

In case v is expressed as in Eq. (C.11), the solution to Eq. (C.5) satisfying x(s0) = 0 becomes:

x(s) = bv

av

(
exp[av (s − s0)]−1

)
.

The expression for t0 is obtained by replacing s with t in the above equation:

t0 = t − 1

av
ln

(
av

bv
x +1

)
.

The analytical solution of test case 2 is obtained by inserting the above expression for t0 in

Eq. (C.8), imposing σ= 0 and performing the integration:

Tw(x, t ) = Tin

(
t − 1

av
ln

(
av

bv
x +1

))(
av

bv
x +1

)1/(avτ)

. (C.15)

The above solution describes the permanent regime, i.e. it is valid for all t Ê ln(av L/bv +1)/av .

As opposed to the solution of test case 1, which has already been reported by Lowney (2000),

the present one has—to the best of our knowledge—not been presented in any publication to
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Figure C.1: Root mean square error (RMSE) of the splitting scheme used to solve the heat
balance equation in test cases 1 (blue) and 2 (green). The RMSE is computed by comparing
the simulated and analytical temperature profiles at the end of the simulation (8 hours).
(a) Splitting scheme RMSE for various time steps with a fixed spatial discretization length of
128 m; and (b) Splitting scheme RMSE for various spatial discretization lengths with a fixed
time step of 1 s.

date.

C.2 Validation of the numerical splitting scheme

The splitting scheme is validated over a spatial domain of L = 12.8 km, for a simulated time

period of 8 hours. Table C.1 contains the values of the parameters considered in test cases 1

and 2.

Figure C.1 pictures the root mean square error (RMSE) of the splitting scheme compared to the

analytical solutions of both test cases, for various time steps and spatial discretization lengths.

Based on the RMSE values associated with test case 1, it can be suggested that the scheme

is of order 1 in time and order 2 in space, as expected from its formulation (see Sect. 3.2.2).

This is however less visible in test case 2, probably as a result of the RMSE varying over a

smaller range of time steps and spatial discretizations lengths as in the first case. In all cases

however, the scheme RMSE remains within acceptable bounds. As can be observed in Fig. C.2,

the numerical scheme is also able to satisfactorily reproduce the strong fluctuations of the

temperature profile in both test cases, except for the minima and maxima which are truncated.
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Figure C.2: Stream temperature profile at the end of the simulation (8 hours) in (a) test case
1, and (b) test case 2. The analytical temperature profiles are displayed in blue, and those
simulated by the splitting scheme in red.
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