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Preface

Research on the seismic assessment of buildings that are braced by reinforced concrete walls

has long focused on the in-plane response of walls with rectangular cross sections. As a result,

we have today a good understanding of the force-displacement response of such walls for most

failure modes that can develop. In real buildings, however, many walls have not a rectangular

section but are composed of two or more wall sections that form L-, T-, U- or more complex

shapes. The behaviour of these walls when subjected to bidirectional loading come into the focus

of seismic engineering research on reinforced concrete walls.

Raluca Constantin’s thesis contributes to this research line by studying the behaviour of U-

shaped walls. In her work, Raluca focuses on the response of these walls under loading in

the diagonal direction. This loading direction is often disregarded but she shows that it can

lead to the smallest displacement capacity and to failure modes not observed for other loading

directions. Raluca advanced the knowledge on the seismic response of U-shaped walls through an

experimental and a numerical study. She tested two U-shaped walls that differed with regard to

the applied axial load. Raluca’s tests are intensively instrumented using conventional and optical

measurement techniques and the data is made available to the research community. In addition

to the experimental study, Raluca investigated the response of U-shaped walls through detailed

numerical shell element models. These models were used to develop new analytical formulations

that can be used in the early stages of the design process. The main contributions concern the

modification of effective stiffness estimates, yield displacement formulations that account further

for shear deformations, which are particularly important for U-shaped walls, and plastic hinge

lengths for different loading directions.

Lausanne, July 2016 Katrin Beyer
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Abstract

In many countries of moderate to high seismicity, reinforced concrete (RC) core walls are used

as lateral bracing systems in mid- to high-rise buildings where they typically accommodate lift

shafts or stair cases. Unlike planar walls which provide horizontal strength and stiffness mainly

in the in-plane direction of the wall, core walls provide bidirectional strength and stiffness. This

feature complicates their inelastic behaviour which is not yet fully understood as experimental

and numerical studies are still rather scarce when compared to planar walls. Therefore, current

design codes use findings from planar walls while specific guidelines for the design and analysis

of core walls are still lacking. In addition, simple analysis tools widely used by design engineers

such as the plastic hinge model, have been derived and calibrated for columns, beams or planar

walls and their suitability for core walls has been only marginally verified. For these reasons the

current study focuses on: (1) improving the knowledge on the inelastic behaviour of U-shaped

walls under bidirectional loading and (2) on extending easily applicable engineering type models,

such as the plastic hinge model, to the analysis of U-shaped walls. The scope of the thesis

is limited to U-shaped walls, which is the simplest type of core wall that still retains the key

characteristics of such walls.

The first part of the thesis focuses on understanding the behaviour of U-shaped walls under

loading along the geometric diagonal of the section. This loading direction is not typically

considered in the design process but it was found to determine the shear design of the flanges

while the displacement capacity for this direction might be the lowest of all the loading directions.

In order to address the behaviour under diagonal loading, two large-scale quasi-static cyclic tests

on U-shaped walls were carried out. Failure mechanisms specific to diagonal loading and possible

critical design aspects related to these failure modes were identified from the experimental results.

In addition, the influence of the longitudinal reinforcement distribution on the wall behaviour

was investigated.

The second part of the thesis focuses on adapting equations used in plastic hinge model for the

analysis of U-shaped walls. Plane section analyses and a shell element model validated against the

experimental data were used to perform parametric studies on U-shaped walls. From the results

of the parametric studies a new equation for the yield curvature for any direction of horizontal

loading was proposed as well as a modified yield displacement equation that accounts for the

partially cracked wall height at yield. With this equation, predictions of yield displacements

were improved especially for very slender walls. Quantities that rely on the yield displacement,

such as the effective stiffness of the wall were also better predicted when the cracked height was

accounted for in the prediction. And finally, plastic hinge length equations were also modified to

account for the variation with the different loading directions.

Key words: U-shaped walls, diagonal loading, plastic hinge model, yield displacement, plastic

hinge length
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Résumé

Dans de nombreux pays avec une sismicité modérée ou forte, les murs noyau en béton armé

(BA) sont utilisés en tant que systèmes de contreventement latéral dans des bâtiments de hau-

teur moyenne ou grande où typiquement ils entourent des cages d’ascenseur ou d’escaliers.

Contrairement aux murs rectangulaires qui fournissent une résistance horizontale et une rigidité

principalement dans le plan du mur, les murs noyau fournissent une résistance et une rigidité

bidirectionnelle. Cette propriété complique leur comportement inélastique qui n’est aujourd’hui

pas entièrement compris car les études expérimentales et numériques sont encore plutôt rares

comparées aux murs rectangulaires. Par conséquent, les codes de dimensionnement actuels

utilisent les résultats des murs rectangulaires alors que des lignes directrices spécifiques pour

le dimensionnement et l’analyse des murs noyau sont encore manquantes. De plus, des outils

d’analyse simples largement utilisés par les ingénieurs de conception tels que le modèle de la

rotule plastique, ont été dérivés et calibrés pour des colonnes, poutres ou murs rectangulaires et

leur pertinence pour des murs noyau n’a été que partiellement vérifiée. Pour ces raisons l’étude

actuel se concentre sur : (1) améliorer la connaissance sur le comportement inélastique des murs

noyau soumis à une charge bidirectionnelle et (2) sur étendre des modèles type d’ingénierie

facilement applicables, tel que le modèle de la rotule plastique, pour l’analyse des murs noyau.

Le cadre de cette thèse se limite aux murs avec une section en forme de U, qui est le plus simple

type de mur noyau mais qui conserve encore les principales caractéristiques d’un tel mur.

La première partie de la thèse porte sur la compréhension du comportement des murs avec

une section en forme de U, soumis à une charge le long de la diagonale géométrique de la

section. Cette direction de chargement n’est généralement pas considérée dans le processus de

dimensionnement, mais elle est déterminante pour le dimensionnement en cisaillement des ailes

du mur alors que la capacité de déplacement pour cette direction pourrait être la plus faible de

toutes les directions de chargement. Afin d’investiguer le comportement sous un chargement

selon la direction diagonale, deux tests cycliques et quasi-statiques à large ont été effectués

sur des murs avec une section en forme de U. Les mécanismes de ruptures spécifiques à un

chargement selon la direction diagonale ainsi que des aspects de dimensionnement critiques liés

à ces modes de défaillance ont été identifiée suit aux tests expérimentaux. En outre, l’influence

de la distribution de l’armature longitudinale dans la section a été investiguée.

La deuxième partie de la thèse porte sur l’adaptation des équations utilisées dans le modèle de

rotule plastique à l’analyse des murs avec une section en forme de U. Deux modèles numériques,

un modèle basé sur l’hypothèse des sections planes et un modèle avec des éléments de coque, ont

été validés avec les données expérimentales et ensuite ont été utilisés pour réaliser des études

paramétriques sur des murs avec une section en forme de U.
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Avec les résultats des études paramétriques, une nouvelle équation pour la courbure d’écoulement

pour toute direction d’un chargement horizontal a été proposée ainsi qu’une nouvelle équation

pour le déplacement d’écoulement qui considère que le est mur partiellement fissuré sur l’hauteur

à l’écoulement. Les quantités qui depend du déplacement d’écoulement, tels que la rigidité

effective du mur, ont également été mieux prédites lorsque l’hauteur fissuré a été prise en compte

dans la prédiction. Et finalement, les équations de la longueur de la rotule plastique ont été

modifiées pour tenir compte de la variation avec la direction de chargement.

Mots clefs : Murs avec une section en forme de U, chargement dans la direction diagonale,

modele de la rotule plastique, déplacement d’écoulemnt
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Riassunto

In molti paesi a moderata ed alta sismicità, nuclei portanti in cemento armato, contenenti vani

scala o ascensori, vengono spesso usati come elementi sismo-resistenti per edifici medio-alti.

Diversamente dai setti rettangolari, che garantiscono rigidezza e resistenza orizzontale nella sola

direzione del loro piano, le pareti non rettangolari offrono rigidezza e resistenza bidirezionali.

Tale caratteristica rende più complesso lo studio del loro comportamento inelastico, che non è

attualmente compreso nella sua completezza, essendo poche le ricerche sperimentali e numeriche

condotte finora. Per tale motivo le norme attuali sono basate su risultati ricavati per muri

rettangolari, mentre linee guida specifiche per muri non rettangolari sono tuttora mancanti.

Inoltre, semplici modelli largamente utilizzati in ambito professionale, come il modello di

cerniera plastica, sono stati ricavati e calibrati per colonne, travi o muri rettangolari e la loro

applicabilità a muri non rettangolari è stata solo in parte verificata. Per tali ragioni questo studio si

concentra su: (1) migliorare la conoscenza del comportamento inelastico di muri ad U sollecitati

da azioni bidirezionali ed (2) estendere i modelli ingegneristici per muri rettangolari, come

ad esempio quello di cerniera plastica, all’analisi di muri ad U. Tale studio è limitato a muri

ad U, trattandosi del modello più semplice di muro non rettangolare che tuttavia mantiene le

caratteristiche chiave di tali elementi strutturali.

La prima parte della tesi si concentra sullo studio del comportamento di muri ad U sollecitati da

forze dirette secondo la diagonale geometrica della sezione. E’ stato trovato che tale direzione

di carico, non considerata in genere nella progettazione, può determinare la resistenza a taglio

delle ali. In aggiunta a ciò, anche la capacità di spostamento in tale direzione puo’ risultare

determinante. Per studiare il comportamento sotto azioni diagonali, sono stati condotti due test

quasi-statici a grande scala su muri ad U. Sono stati identificati i meccanismi di rottura relativi

alla direzione diagonale e possibili aspetti critici per la progettazione legati a tale meccanismo

di rottura. Inoltre, è stata studiata l’influenza della distribuzione dell’armatura longitudinale sul

comportamento sismico.

La seconda parte della tesi si concentra su come adattare il modello di cerniera plastica all’analisi

di muri ad U. Modelli numerici che utilizzano l’ipotesi di sezione piana ed elementi finiti di

tipo shell, validati rispetto ai risultati sperimentali, sono utilizzati al fine di condurre un’analisi

parametrica su muri ad U. Dai risultati di tale studio è stata ricavata una nuova equazione per

calcolare la curvatura di snervamento relativa ad una generica direzione di carico. Viene inoltre

proposta un’equazione per valutare lo spostamento a snervamento che considera la parziale

fessurazione della parete lungo la sua altezzaCon tale equazione viene migliorata la stima dello

spostamento equivalente, in particolare per pareti molto snelle. Considerando la zona fessurata del

muro si possono quindi meglio valutare le grandezze correlate allo spostamento a snervamento,

come la rigidezza effettiva della parete. Infine, sono state modificate le equazioni per valutare

l’estensione della cerniera plastica in modo tale da considerare le diverse direzioni di carico.

Parole chiave: muri ad U, carico diagonale, modello di cerniera plastica, spostamento a snerva-

mento, estensione della cerniera plastica.
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1. Introduction

1.1 Background and problem statement

In seismic prone areas, many medium to high-rise buildings use reinforced concrete (RC) core

walls as the main lateral load resisting element. Core walls are structural elements composed of

several rectangular wall segments, termed webs or flanges, that are connected at the vertical edges

and are closing the wall section on three sides. The fourth side of the section can be either open

or partially closed by deep beams. Due to their cross-section shape, core walls are commonly

used to accommodate lift shafts or staircases.

Despite the popularity of the core walls in practice, their inelastic behaviour under seismic

loading is not yet well understood as experimental tests on core walls are scarce when compared

to the number of tests carried out on planar walls. Extensive experimental research on planar

RC walls has led to the identification of the parameters controlling their seismic behaviour and

provided data for derivation and calibration of analytical tools and design guidelines. For core

walls, lack of experimental data has delayed the development of design guidelines. Design codes

are therefore mostly based on findings from planar wall tests, leaving to the design engineer the

difficult task of extrapolating these guidelines to core walls.

The following reasons explain the more complex seismic behaviour of core walls when compared

to that of planar walls:

• Planar walls provide horizontal strength and stiffness mainly in the in-plane direction of

the wall while core walls provide strength and stiffness in all horizontal directions. For

planar walls, only the in-plane direction of loading is considered in design, but for core

walls the designer needs to consider in addition to the principal axes of the cross-section

also other horizontal directions that could be critical for design.

• The shear lag effect limits the effectiveness of web and flanges when in tension, and hence

the wall strength is reduced when compared to the wall strength derived from a plane

section analysis [Kwa96]. The shear lag effects in core walls are further exacerbated by

the rather large shear deformations experimentally observed even for slender core walls.

Experimental tests on core walls have shown that the shear deformations are particularly

large in the wall parts that are mostly in tension when carrying significant shear loads

[BDP11].
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Chapter 1. Introduction

• Due to their cross-sectional geometry, core walls provide also torsional strength and

stiffness and hence the interaction of torsion, bending and shear should be considered.

While the wall is linear elastic, the shear centre position is fixed. In the inelastic range,

however, the position of the shear centre migrates towards the parts of the section that are

in compression, complicating thus further the evaluation of the torsional response of the

core wall [IR05].

One of the simplest types of core walls possessing all the characteristics enumerated above are

U-shaped walls and experimental studies on core walls that have been carried out in the past

focused therefore on this type of core wall. Previous research on U-shaped walls has shown the

complex behaviour that such walls exhibit under bidirectional loading. The diagonal loading

direction, which is not typically considered in design, has been identified as a particular critical

direction. This is for the following reasons: the displacement capacity is often smaller than for

principal directions, the distribution of the shear forces between the different planar wall parts is

complex and the load transfer mechanism from the wall to the foundation is unclear [BDP08b].

These unknowns raise also questions about the failure mechanisms that govern the wall behaviour

under diagonal loading. Shear failures in the web and compression failures in the flange ends are

among the most common ones observed in previous studies. This study will show that also the

out-of-plane bending of the flanges and the resulting strain gradient across the flange width can

influence the failure mode.

Despite previous experimental research on core walls focusing on U-shaped walls, the available

data is still rather scarce and it has not allowed the in-depth validation of analytical tools for

such walls. Engineering type models, such as the plastic hinge model, have been developed and

calibrated against experimental data on columns, beams or planar walls. Their applicability to

U-shaped walls has been only marginally verified. It remains therefore unclear if and how these

models can be applied to U-shaped walls for the different loading directions.

1.2 Objectives and scope of the study

The objective of this study is to make a contribution to the performance-based seismic design of

U-shaped RC core walls. The study aims at: (1) providing high quality experimental data for the

validation of numerical and analytical models, (2) improving the knowledge on the behaviour of

U-shaped walls under bidirectional loading with focus on the diagonal direction and (3) extending

easily applicable engineering type models, such as the plastic hinge model, to the analysis of

U-shaped walls.

In order to reach the first objective a new experimental campaign was performed in which two

U-shaped walls were tested under horizontal diagonal loading. The second objective was achieved

by interpreting the new experimental data and by identifying deformation behaviour and failure

mechanisms specific to diagonal loading. The third objective focuses on the extension of the

plastic hinge model to core walls by verifying existing estimates against experimental data and

results from advanced non-linear simulations and by proposing new estimates where necessary.
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1.3. Organisation of the thesis

The scope of this study is limited to the flexural and the shear behaviour of U-shaped walls

while the torsional behaviour was not specifically addressed. For all U-shaped walls in this study,

investigated experimentally or numerically, loading was applied at the height of the shear span

under the form of imposed displacements while the rotation of the wall in the cross-section plane

was always restrained at this height. The U-shaped walls discussed within this study are isolated

cantilever walls, while entire buildings including U-shaped walls were not considered.

1.3 Organisation of the thesis

This section provides a brief description of the topics covered in each chapter of the thesis. The

thesis comprises seven chapters.

Chapter 2 presents a review of previous tests on core walls and other non-planar walls. Previous

tests on U-shaped walls are discussed and key points of their non-linear behaviour are identified

as well as needs of further research identified. Different loading protocols previously applied in

experimental tests of non-planar walls are reviewed. In addition, the influence of the longitudinal

reinforcement distribution within the section on the wall behaviour is discussed.

In the second part of this Chapter 2 a review of modelling approaches for U-shaped walls is

presented. The reviewed modelling approaches are divided into three categories: simplified

models based on empirical and mechanical principles, macro models and detailed finite element

models. The models are discussed with respect to their capability to capture the inelastic behaviour

of U-shaped walls under bi-directional loading.

Chapter 3 describes the experimental tests of two U-shaped walls tested under quasi-static cyclic

loading. The test set-up, loading history and the main experimental results are included in this

chapter. The walls were tested mainly under loading in the direction of the diagonal of the

section. This allowed the identification of failure mechanisms and design issues specific to

diagonal loading of U-shaped walls. In addition, the influence of the longitudinal reinforcement

distribution on the behaviour of the wall was investigated through these tests.

In Chapter 4, the experimental results from Chapter 3 together with results from a previous

similar test campaign are investigated further. Quantities necessary in the application of the

plastic hinge model are derived from the experimental results and compared to estimates. These

quantities are: yield curvature, yield displacement, plastic hinge length, shear deformations

and ultimate strain limits. In addition, the effective stiffness ratio is investigated. From the

comparison between experimentally derived values and estimates, quantities that need further

investigation or cases where estimates are missing are identified. Particular emphasis is placed

on the yield displacement, for which new estimates are proposed based on the experimentally

observed curvature profiles at yield.
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In order to validate the new equations for the plastic hinge model, the available experimental

data on U-shaped walls is not sufficient. Therefore, a detailed shell element model was validated

against the experimental data in Chapter 5 and then it was further used for parametric studies

in Chapter 6. This latter chapter discusses in detail the setting-up of the model for U-shaped

walls and the modelling choices made. In addition, results from plane section analyses are

compared in this chapter to the experimental data in terms of wall strength and yield curvature,

and discrepancies are discussed.

In Chapter 6, a parametric study is performed for U-shaped walls with different geometries using

the validated shell element model and plane section analyses. The design of the parametric study

as well as the design of the U-shaped walls used in the study, are discussed in this chapter. From

the results of the parametric study, new estimates for yield curvatures for any loading direction,

new estimates for the effective stiffness of walls and new equations for the plastic hinge length

are proposed.

The final Chapter 7 presents a summary of the main contributions of the thesis and the conclusions

of the study. Based on the findings of this report, several directions for further research are

presented.

4



2. Review on the seismic behaviour of
U-shaped walls and modelling
approaches

This chapter is comprised of two main parts. The first part reviews experimental campaigns

of non-planar reinforced concrete (RC) walls, i.e., walls designed to carry shear forces in both

horizontal directions such as walls with L-, T-, I-, U-, C-shaped cross sections. Key findings

from these campaigns and state-of-the-art knowledge on the seismic behaviour of RC core walls

are summarised in this part (Section 2.1). The second part 2.2 presents a review of numerical

modelling approaches for U-shaped walls and identifies advantages and drawbacks of each

approach.

2.1 Seismic behaviour of non-planar walls

2.1.1 Experimental tests on non-planar walls

This section reviews experimental tests on U-shaped or C-shaped walls that are documented in

the literature. In addition, experimental campaigns on isolated non-planar walls tested under

quasi-static cyclic bidirectional loading are also included to investigate effects of loading history

on the wall behaviour. The tests included in this selection are limited to non-planar walls with

open cross-section, except one campaign on box-shaped walls which was included as it is the

most comprehensive experimental investigation of the loading history effects to date.

In Table 2.1, the test series fulfilling the outlined criteria are grouped on thematic test campaigns

and then in chronological order. The findings from these tests are discussed in more detail in

the following sections focusing on test observations for U-shaped walls, bidirectional loading

histories and the influence of the distribution of the longitudinal reinforcement on the wall

behaviour.
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2.1. Seismic behaviour of non-planar walls

2.1.2 Observations from experimental tests on U-shaped walls

• University of Illinois (UoI) tests

Two C-shaped wall were tested at the University of Illinois under quasi-static reversed

cyclic loading [SW93] (Figure 2.1). unidirectional loading was applied in the direction of

the symmetry axis of the C-shaped section, i.e, parallel to the two flanges (Figure 2.2). The

objectives of the study were: to investigate the cyclic response of non-planar walls, to study

the influence of the reinforcement amount in the unconfined concrete parts of the wall

on the wall behaviour, to determine the effective stiffness of non-planar walls at different

displacement levels and to provide data to verify numerical models. The main varying

parameter between the two tested walls was the amount of longitudinal and transversal

reinforcement in the unconfined parts of the web and the flanges. The first test unit (CLS)

had a 0.0025 longitudinal reinforcement content while the second one (CMS) had the

double of CLS. Longitudinal and transversal reinforcement contents were equal and the

reinforcement was placed only in one layer over the wall thickness, except for the boundary

elements where two layers were used. Failure for both walls was reached due to confined

concrete crushing and bar buckling in the boundary elements of the flange ends at ∼ 1.8%

drift. Upon further loading, crushing extended in nearly the entire length of the flanges.

Based on numerical results of models validated with the experimental data, the study

concluded that all the reinforcement in the web was effective in tension. Additionally, the

reinforcement amount in the unconfined wall parts was found to not have a significant

influence on the magnitude of shear displacements. The influence of the reinforcement in

the unconfined parts of the wall is discussed in more detail in Section 2.1.4.

• Ispra and Saclay tests

The Ispra and Saclay tests were part of a joint test campaign on U-shaped walls [CCM99],

which investigated the detailing rules of EC8 [CEN01] for RC walls. unidirectional shake

table tests were performed on three U-shaped walls in Saclay, while another three walls

were tested under quasi-static cyclic loading in Ispra. In the Saclay tests, the wall behaviour

was dominated by the rupture of the longitudinal reinforcement bars which fractured

prematurely due to their very small ultimate strain capacity, i.e., 2.5−2.6%. Therefore

limited data was gathered on the inelastic behaviour of the U-shaped walls.

The Ispra tests, investigated in addition to EC8 detailing rules, also the effect of the loading

history on the wall behaviour. All three walls were identical (Figure 2.1). Only the loading

pattern was different. Wall 1 was tested under unidirectional loading, in the direction

parallel to the web of the wall, Wall 2 was tested in the direction of the symmetry axis

(parallel to flanges) and Wall 3 underwent loading following a clover leaf pattern (Figure

2.2). Wall 1 failed due to bar buckling followed by concrete crushing in the boundary

element at the end of one of the flanges, where one stirrup was missing. Wall 2 failed due

to fracture of previously buckled bars in one of the flanges. Wall 3 reached failure when

loading with one flange end in compression, due to fracture of previously buckled bars,

followed by shear compression failure of the flange in compression.
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The main findings of the tests were summarised by [RF01]. The displacement capacity

in the principal directions was reduced for the bidirectional test as compared to the uni-

directional tests, but if the capacity in the diagonal direction is considered then all units

reached a similar lateral drift of ∼ δ = 3%. When the displacement loading branches

were orthogonal to the previous loading branch in the bidirectional test, they introduced

an important strength reduction in the orthogonal direction, e.g., when the wall was first

pushed to position D, then to F (Figure 2.2), the force in the web direction was reduced as

compared to the web force from the unidirectional tests. The bidirectional test was also

characterised by a more severe concrete degradation.

For the bidirectional test, when loading with one flange end in compression, almost

the entire shear resistance in the direction of the flanges was provided by the flange in

compression. The flange which was in tension at this loading position carried only a small

amount of the total shear force in the direction of the flanges. The implication in design of

this observation is to design each of the two flanges to carry the entire shear force in the

direction of the flanges [IR05].

• ETHZ tests

Two half scale U-shaped walls were tested under quasi-static complex bidirectional cyclic

loading at ETHZ (Figure 2.1 and [BDP08b]). The objectives of the test campaign were to:

identify most likely failure mechanisms for U-shaped walls, investigate strength, stiffness

and displacement capacity for different loading directions, determine the magnitude of the

different displacement components and investigate the torsional stiffness.

The main parameter varied between the tests was the wall thickness. The complex bidi-

rectional loading applied in both tests was based on a load protocol previously applied in

the testing of box-shaped piers by [HDS06]. For the U-shaped walls, at each displacement

ductility reverse loading cycles were applied in the following order: one cycle parallel to

the web, one cycle parallel to flanges, one cycle in the direction of the geometric diagonal

of the section and a ”sweep” cycle (Figure 2.2).

The wall with the larger thickness, TUA, failed in a ductile manner due to fracturing of

previously buckled reinforcement bars in the boundary element at the flange ends when

loading with corner web-flange in compression. TUB failed when loading parallel to the

web due to crushing of the compression diagonals in the unconfined concrete of the web,

despite the wall having been designed to prevent web crushing according to EC8 [CEN03].

The failure of TUB was attributed to the excessive spalling of the unconfined part of the

web under the bidirectional loading history which significantly reduced the thickness of

the web [BDP08b]. When loading parallel to the web, the web shear force was larger than

the web shear force under any other loading position.

ETHZ tests confirmed findings of the bidirectional Ispra test concerning the distribution of

the shear forces between the two flanges when loading with one flange end in compression,

i.e., flange in compression carries almost the entire shear force in the direction of the

flanges. In addition, [BDP08b] found that shear displacements were particularly large in

the wall parts which were mostly in tension and carried significant shear force (i.e., web

at position A), and the magnitude of the shear displacements depended on the loading

direction.
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When comparing the wall strength with estimates from a plastic hinge model and a cyclic

wide-column model (WCM), [BDP08b] found that for the diagonal direction (i.e., flange

end in compression or corner web-flange in compression), the maximum wall strength

was never reached. This was attributed to the significant stiffness degradation induced

by the first cycles in the principal directions which always preceded the diagonal cycles.

Displacement estimates for the two tested walls, using a plastic hinge analysis, indicated

that the displacement capacity in the diagonal direction was smaller than for any of the

principal directions [BDP08b].

• University of Washington (UoW) tests

Three identical one-third scale C-shaped walls were recently tested under quasi-static

cyclic loading at the University of Washington [LL+13] (Figure 2.1). The test campaign

investigated the effects of the loading history and of the coupling beams on the wall

behaviour. Two walls (Wall 6 and Wall 7) were tested under constant axial load ratio

and shear span, while for the third wall (Wall 8), both values were varied to simulate the

influence of the coupling beams. Wall 6 was tested under a unidirectional loading pattern

parallel to the wall web, while Wall 7 and 8 were tested under bidirectional loading. Wall

8 and initial cycles of Wall 7 were displaced according to a criss cross pattern along the

two principal axes of the C-shaped section (Figure 2.2). When loading was applied in

the direction of one principal axis, the displacement in the orthogonal direction was zero.

In the inelastic loading cycles of Wall 7, the wall was displaced in the direction of the

web while the displacement in the orthogonal direction (direction of the flanges) was kept

constant to values of 1.1−2% drift.

Failure of Wall 6 occurred due to concrete crushing and sliding at the wall base in the

construction joint while Wall 7 failed due to buckling of the longitudinal reinforcement

and subsequent rupture when loading with the corner web-flange in compression. Wall 8

failed due to loss of confinement and confined concrete crushing in the boundary elements,

when loading with increased axial load ratio.

Based on the experimental observations, [LL+13] concluded that the displacement capacity

in the direction of the web is not affected by the bidirectional cross pattern when displace-

ment in the orthogonal direction is zero, but is reduced when this displacement is non-zero.

This is consistent with findings from [RF01]. However if the displacement in the diago-

nal direction is considered, then the displacement capacity is larger for the bidirectional

test than for the unidirectional test (diagonal drift capacity bidirectional δSRSS = 2.5%

compared to unidirectional drift capacity along web δ = 2.2%). Bidirectional loading

with non-zero orthogonal displacement was also found to reduce the wall stiffness in the

direction of the web, which is again consistent with findings from [RF01].

Conclusions

The findings of previous experimental campaigns can be summarised in terms of the failure

modes of U-shaped walls and their corresponding loading directions:
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Figure 2.1: U-shaped and C-shaped wall sections of tests specimens from previous experimental cam-

paigns. Dimensions are in mm, unless otherwise specified.
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• Failure of the compression struts in the web determined by loading parallel to the web

(position A - Figure 2.2), e.g., TUB (ETHZ tests). Since the shear force taken by the web

is the largest of all the considered loading directions, the reinforcement in the web should

be determined from this loading case.

• Shear compression failure in the flange determined by loading in the diagonal direction

with the flange end in compression (position E - Figure 2.2), e.g., Wall 3 (Ispra tests). The

compressed flange carries the majority of the shear force in the direction of the flanges at

this loading position.

• Damage in the boundary elements of the flange ends (confined concrete crushing, bar

buckling, bar fracture after buckling) determined by loading in the diagonal direction with

the flange end in compression (position E - Figure 2.2) or with the flange end in tension

(position F), e.g., Wall 7 (UoW tests) and TUA (ETHZ tests). Due to the longer wall

length in the diagonal direction (i.e., wall diagonal length), for the same base curvature the

diagonal loading imposes larger strain demands on the boundary elements than loading in

the principal directions.

• Damage in the boundary elements of at the corner web-flange determined by loading in the

diagonal direction at position E or F, e.g., Wall 3 (Ispra tests).

Based on the above conclusions, the diagonal loading direction warrants hence further attention

as it is determinant for many of the failure modes for U-shaped walls. In addition, several other

reasons outline the need to investigate the diagonal direction.

• The distribution of shear forces between the two flanges is complex under diagonal loading

[RF01], [BDP08b].

• The transfer of the shear forces from wall to foundation is unclear since most of the wall

section is expected to be in tension when loading to diagonal positions. Hence locations

where the shear forces can be transferred to the foundation, i.e., compression zones, are

limited [BDP08b].

• It is unclear whether the wall displacement capacity is smaller for the diagonal direction

than for the principal directions. While numerical studies indicate this to be the case

[BDP08b], the experimental results are contradictory as the drift capacity in the diagonal

direction was found to be: smaller than for the principal loading directions (e.g., TUA from

ETHZ tests), the same as for the principal directions (e.g., Wall 3 from Ispra tests) or larger

than for the principal direction (e.g., Wall 7 from UoW tests).

2.1.3 Bidirectional loading history

This section presents a review of bidirectional loading patterns which have been previously tested

on non-planar walls. The different loading patterns are discussed in terms of their suitability to

investigate the U-shaped wall behaviour under diagonal loading.
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• Clover leaf pattern

One of the U-shaped wall specimens from the Ispra experimental campaign was tested

according to a square clover leaf pattern as shown in Figure 2.2 [PP+00b]. To reach a

diagonal position with this loading pattern, the load path is comprised of two consecutive

displacement branches: one parallel to the web and one parallel to the flanges, i.e, two

branches orthogonal to each other. As already mentioned in Section 2.1.2 test results

indicated that when displacement loading branches were orthogonal to the previous loading

branch, they introduced important strength reduction in the orthogonal direction [RF01].

Therefore it is likely that such a loading pattern would reduce the wall strength and

stiffness for the diagonal loading direction and therefore the full wall strength in the

diagonal direction might not be reached.

• Bidirectional pattern by [HDS06]

[HDS06] developed a bidirectional diagonal and ”sweep” pattern for cyclic tests of box

section piers. The same pattern was used for the two U-shaped walls from the ETHZ tests.

In addition, the diagonal and the sweep cycles were preceded by one cycle parallel to the

web and one parallel to the flanges (Figure 2.2). A shortcoming of this loading pattern is

that it can provide displacement capacity only for one loading direction, that of failure. In

addition, as previously mentioned, the loading cycles in the principal directions preceding

the diagonal ones at the same displacement ductility level, softened the wall considerably

so that the full wall strength in the diagonal direction was not reached (see Section 2.1.2

and [BDP08b]). In order to eliminate this effect and reach the full wall strength for the

diagonal direction, the diagonal cycles should be the ones cycled first at a new drift level.

• Criss cross pattern with non-zero orthogonal displacement

Wall 7 from University of Washington tests [LL+13] was loaded in the inelastic cycles

following a criss cross pattern with non-zero orthogonal displacement, i.e., loading was

applied in the direction of the web while the displacement in the direction of the flanges

was non-zero and was kept constant (Figure 2.2). This loading pattern can be considered

as variation of the clover leaf pattern and hence all conclusions mentioned from the clover

leaf pattern apply.

• Hourglass pattern

A complex bidirectional loading history, including an hourglass pattern, was applied in

the quasi-static cyclic testing of two T-shaped walls at the University of Minnesota(UoM)

[Bru09]. One of the main objectives of the test campaign was to investigate the behaviour

of non-planar walls under bidirectional loading. The applied loading pattern in the inelastic

range was comprised of the following cycles (see Figure 2.2):

– in the principal directions of the T-shaped section, i.e, parallel to the web and parallel

to the flange (for T-shaped sections, the web is the wall part with the largest plane

dimension in the direction of the symmetry axis)

– at 45o from the principal axes starting at zero deformation

– at ∼ 20o or 70o from the principal axes which resulted from the 100%+30% combi-

nation of displacements on the principal axes according to IBC 2003 [ICC03]

– following an hourglass pattern
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[Bru09] compared the wall strength for the different loading directions with results from a

monotonic flexural plane section model and found that the plane section model overesti-

mated the strength significantly for the flange direction and for the skew loading directions.

This was attributed to the sequence of loading cycles (see Figure 2.2). More specifically

inelastic web cycles at a maximum 2% drift softened the wall considerably so that the skew

cycles and the flange cycles that followed did not increase the longitudinal strain demands

beyond those previously applied by the web cycles [Bru09]. This was despite imposing in

the flange direction maximum drifts twice as large as those previously imposed for the web

direction. Similarly to the bidirectional loading pattern applied in the ETHZ tests (Figure

2.2), the complex loading pattern applied in the UoM tests significantly softened the wall,

and therefore the full wall strength was reached only for the first direction first cycled at

significant inelastic drift level.

• Diagonal pattern

Diagonal criss cross loading pattern was one of the loading patterns used for the testing

of squat box and cylinder walls [HK+00], [OS+04], [KN+07]. The test campaign was

one of most comprehensive ones to investigate the effects of the loading history on non-

planar walls, despite the very specific test units (very squat and closed section) which

were representative for walls of reactor buildings. Other loading patterns investigated

within this campaign were: a rectangular pattern, a criss cross pattern with zero orthogonal

displacement and a circular pattern (Figure 2.2). In addition, box walls were tested also

under unidirectional diagonal loading.

Force-displacement responses from the different loading patterns were then compared and

conclusions were drawn on the influence of the load path and the influence of bidirectional

loading. [KN+07] reported that the loading path does not influence the maximum attained

force and displacement capacity for the diagonal direction. In addition, the bidirectional

loading was found increase the maximum attained force as compared to the unidirectional

loading in the diagonal direction. However, despite the comprehensive investigation

(large number of test specimens and of investigated loading histories), the findings of

this campaign cannot be readily extrapolated to non-planar slender walls with open cross-

section, such as the U-shaped walls.
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Figure 2.2: Bidirectional loading histories applied to non-planar walls.
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Conclusions on loading history

Test campaigns on the bidirectional response of non-rectangular walls have employed different

types of loading histories. These loading histories vary with respect to the number of loading

directions considered, load paths and number of cycles per displacement level. Since the focus

of the tests campaign to be performed within this study is to investigate the behaviour in the

diagonal direction of the U-shaped walls, loading will be applied only in the diagonal direction

(E-F or H-G) in one diagonal displacement branch passing through zero deformation. Reaching

the diagonal position through two consecutive displacement branches (i.e, clover leaf or hourglass

pattern) reduces the wall stiffness and strength in the diagonal direction.

Diagonal loading can be applied unidirectionally, i.e., along one geometric diagonal of the

U-shaped section or bidirectionally, i.e., along both geometric diagonals in a criss cross pattern

(Figure 2.2 Japan tests). The second option is more appealing since applying such a load history

would allow the investigation of an additional parameter through the experimental tests, namely

the distribution of the longitudinal reinforcement, which is discussed in the following section.

2.1.4 Distribution of longitudinal reinforcement

For non-planar walls the shear lag effects are important and the shear displacements are partic-

ularly large even for slender walls [Bru09], [BDP08a], [ZL14]. Both effects reduce the wall

stiffness and large shear displacements can result in shear failures. It is therefore desirable to

reduce these effects. One possible way of doing so is to distribute the longitudinal reinforcement

uniformly over the wall section instead of concentrating it in the boundary elements.

[Bru09] investigated experimentally the influence on the wall behaviour of the distribution

of longitudinal reinforcement within the wall section. One of the two T-shaped walls tested

(NTW1), had the flange detailed with longitudinal reinforcement concentrated in the boundary

elements and minimal reinforcement content in the rest of the flange. The second wall (NTW2)

had the longitudinal reinforcement uniformly distributed across the flange. This resulted in

reinforcement contents in the unconfined part of the flange of 0.6% for NTW1 and 2.2% for

NTW2. The unconfined part of the web was detailed for both test units with minimal longitudinal

reinforcement content.

The shear lag effects were found to be reduced by uniformly distributing the reinforcement in

the flange. The shear lag effects (expressed as the difference between plane section analysis

estimates of moment and measured moment for a given steel strain) when loading in the direction

of the web with the flange in tension were increased by 60% for displacement of up to 2.5 times

the yield displacement when the flange of NTW1 was in tension as compared to NTW2.

The crack spacing and width was also reduced by the uniformly distributed reinforcement. The

crack pattern observed for the flange of NTW1 and the webs of both NTW1 and NTW2 showed

closely spaced and narrow flexural cracks in the region of the confined boundary elements while

in the unconfined part, cracks were steeper, wider and their spacing was larger. For the flange of

NTW2 detailed with uniformly distributed reinforcement, the cracks were closely spaced and

narrow over the entire flange length.
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Despite the wider and the more inclined cracks in the unconfined concrete of the flange of NTW1

than for the flange of NTW2, [Bru09] concluded that the longitudinal reinforcement distribution

had no significant influence on the magnitude of shear displacements. This is consistent with

findings by [SW93]. However if one considers the measured deformation components of the two

T-shaped walls for loading in the flange direction, for NTW1 the average shear displacements of

the first storey in the inelastic range (drift ≥ 1.5%) account for ∼ 39% of the total deformation

of this story while for NTW2, they account for only ∼ 27% of the deformations of the first storey.

This difference means an increase of ∼ 44% in the contribution of the shear displacements to the

total deformation of the first storey. A similar difference can be computed for the contribution

of the shear displacements in the second storey. Therefore based on these measurements, it

can be concluded that uniformly distributing the reinforcement within the wall section does

reduce the contribution of the shear deformation to the total deformation as compared to when

the reinforcement is concentrated in the boundary elements. This conclusion is consistent with

results from numerical studies on rectangular walls [SB+14].

In addition, previous research indicates that the wall failure modes can also depend on the

distribution of the longitudinal reinforcement. Shear sliding failure or out-of-plane buckling of

the boundary element seem to be favorised by the concentration of reinforcement in the boundary

elements [PP92], [RA+14], [SB+14].

Based on these considerations it was decided to investigate the influence of the distribution of

the longitudinal reinforcement distribution experimentally, through the test campaign performed

within this study. Capturing of failure modes, especially involving out-of-plane behaviour, by

means of numerical analyses is often challenging and hence experimental studies are necessary.

2.2 Modelling of U-shaped walls

Modelling approaches of different complexities have been developed by several research groups

for the analysis of non-planar walls. According to their complexity, the modelling approaches for

RC walls could be divided into three categories:

• Simplified models which are based on mechanical principles and/or empirical data

• Macro models which use a combination of different element types (e.g., beam elements,

trusses, links, springs) to account for the different wall responses (e.g., flexural, axial,

shear)

• Detailed finite element (FE) models with shell or solid elements

In the following, selected models from each category are compared in Section 2.2.1 with regard

to their ability to capture key issues of the non-linear behaviour of U-shaped walls such as: wall

strength, displacement capacity, the prediction of the different displacement components and

capturing the distribution of shear forces between the web and two flanges.
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In addition, previous studies where these models have been applied to non-planar walls are briefly

discussed. From the models compared in Section 2.2.1, the plastic hinge model and its application

to non-planar walls is discussed at length in a separate section (Section 2.2.2). Special emphasis

is given to the plastic hinge model, which is one of the most popular simplified models used by

design engineers because it is easy to use and provides reliable estimates of the displacement

capacity.

For each of the models presented in Section 2.2.1 the displacement capacity is typically deter-

mined based on limits of reinforcement and concrete strains, which are associated with certain

types of failure of reinforcement bars and concrete. The selection of appropriate strain limits is

discussed in Section 2.2.3.

In addition, this section addresses the effective stiffness of RC walls which is typically used in

linear seismic analyses to estimate the effective period of the RC building. The effective stiffness

of RC walls, defined as the stiffness at first yield, is hence an important input parameter in seismic

assessment, and for this reason state-of-the-art estimates are discussed in Section 2.2.4.

2.2.1 Modelling approaches for U-shaped walls

2.2.1.1 Simplified models

Simplified models for RC walls are typically based on empirical data or on mechanical principles

or a combination of both, e.g., plastic hinge models [PP87], [PCK07] or three-parameter kinematic

theory model [MHB16]. One of the most popular simplified models is the plastic hinge model.

This model is based on the idea that the force-displacement response of a RC wall that forms

a flexural mechanism can be obtained from the moment-curvature relationship of the section

subjected to the largest moment demand. While the shear force can be readily obtained by

dividing the moment through the shear span H, determining the displacement from the curvature

requires several assumptions.

The flexural displacement is computed as the sum of elastic and plastic displacements (Equation

2.1, where the elastic displacement is approximated with the yield displacement Δy of the wall.

The elastic curvatures, i.e., curvatures lower than yield curvature φy, are assumed to follow a

linear variation along the wall shear span. The plastic curvatures are assumed to be concentrated

in a limited region called the equivalent plastic hinge length where their variation is considered

constant [PP87] (Figure 2.3). The flexural displacements are then obtained by the integration of

the assumed curvature profiles over the wall height (Equation 2.2 and Equation 2.3).

In the plastic hinge model, the displacements due to strain penetration into the foundation are

typically included in the flexural displacements. This is done for the plastic flexural displacements

through the inclusion of a strain penetration term in the plastic hinge length equation.
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The shear displacements Δs can be added to the flexural ones, and they are accounted for through

semi-empirical models that relate the shear and the total flexural deformations Δ f . The total

displacement can then be written as in Equation 2.4.

Δ = Δy +Δp (2.1)

Δy = φy
H2

3
(2.2)

Δp, f = φpLphH (2.3)

Δ = Δy +Δp, f (1+Δs/Δ f ) (2.4)

Figure 2.3: Linear approximations of the real curvature profile and assumptions for the plastic hinge

model. The plastic hinge length Lph includes the strain penetration length Lph.

This section, presented briefly the concept of the plastic hinge model. A more detailed discussion

of the quantities involved in the application this model and the assumptions behind them is given

in Section 2.2.2. In the following, the application of the plastic hinge model to U-shaped walls

and findings from this model are presented.

The plastic hinge model was applied by [BDP08a] to predict the behaviour of the two U-shaped

walls tested at ETHZ (see Section 2.1.2 and [BDP08a]). Monotonic moment-curvature analyses

were performed for each loading position (see Figure 2.2) using a zero-length element with a

fibre section in the Opensees software [MMG09]. The behaviour of the reinforcement bars was

modelled with the Giuffre-Menegotto-Pinto model [MP73]. Popovics’ equation was used to

model the concrete behaviour, while the confined concrete was modelled using with the Mander

model [Pop73]. The strain limits for bar fracture after buckling and confined concrete crushing

were defined using recommendations by [PCK07].
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For the determination of the force-displacement curve, the yield displacement was computed

using a modified equation accounting for a partially cracked wall at yield (i.e., elastic curvature

profile was not linear over the wall height). Shear displacements were accounted for through

the ratio of shear to flexural displacements Δs/Δ f computed from according to a semi-empirical

equation newly proposed by [BDP11].

The plane section analysis predicted well the moment capacities for the principal directions of

loading. For the diagonal direction of loading the moment capacity was significantly overesti-

mated as the full moment capacity was not reached for this direction of loading [BDP08a]. The

overestimation of the moment capacity in the diagonal direction was assigned to the limitation of

this simplified monotonic model in capturing the cyclic stiffness degradation under bidirectional

loading. One other limitation of the moment-curvature analysis is that it cannot provide the

distribution of the shear forces between the two flanges, leaving such critical decisions to the

design engineer.

Predictions of the displacement capacity were done using a design and an assessment approach.

With the design approach, predicted displacement capacities were smaller than those experimen-

tally observed while with the assessment approach predictions were typically larger. However,

the displacement capacities for the different loading directions could not be exactly verified

since the walls failed only in one direction and experimental data was therefore limited. The

inherent assumption of plane sections remaining plane which can differ significantly from the

real response of the section of non-planar walls, is another limitation of the plastic hinge model.

2.2.1.2 Macro models

Macro modelling approaches refer within this study to models that use a combination of different

types of elements such as beams, trusses, links or springs to model the different responses of

a RC wall such as flexural, axial, shear or torsion. In the following, the most common macro

models used for the modelling of RC walls are briefly discussed. These models are:

• Beam-column element models

• Wide-column models

• Truss models (or lattice models)

• Macro model with ”wall element”
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Beam-column element model

In beam-column element models the wall section is modelled by a single element. Important

aspects for the characterisation of the different models are the formulation of the beam element

used and the discretisation choices, e.g., number of elements over the wall height. The choice

of the element formulation can influence the required element discretisation and the required

number of integration points per element.

Two types of beam elements can be distinguished according to their formulation: displacement-

based and force-based elements. In displacement-based elements, the displacement field is

imposed, with forces computed based on energy balance considerations while in the force-based

elements, the force field is imposed with element displacements obtained by work equivalence

balance [CAP10]. For displacement-based elements, the curvature is often assumed to vary

linearly over the element height, while for force-based elements the moment varies linearly over

the wall height. Hence, several displacement-based elements over the height are required for

the realistic modelling of a wall, while a single force-based element can be used for this task.

However, the displacement-based elements are significantly more popular in practice. For a

detailed discussion on the advantages and drawbacks of each of the two formulations the reader

is referred to [CAP10] and [ATB16].

In order to model the wall behaviour, the beam elements allow the distribution of plasticity over

the element height and are assigned a fibre-section that implicitly captures the axial-flexural

interaction. With beam element models, the shear displacements are generally either neglected or

modelled as linear elastic displacement components. The shear behaviour is hence decoupled

from the axial and flexural one. The same applies to the torsional behaviour. Incorporating the

axial-flexure-shear-torsion interaction for beam elements is an active research topic which most

often concentrates on passing from Euler-Bernoulli beam theory to higher order beam theories

[CAP15]. The effect of strain penetration can be modelled by introducing a zero-length rotational

spring at the wall base.

To assess the displacement capacity of beam-column element models, numerical strains at

integration points are compared to ultimate limit strains. However, the post-peak strains obtained

at the integration points are sensitive to the discretisation and the type of element formulation. The

length of the element where inelastic strains concentrate has a major impact on the numerically

obtained strains. For this reason, this element is typically assigned a length related to the

expected physical spread of plasticity. The equivalent plastic hinge length is often used as first

approximation [ATB16].

The material models used with fiber sections are typically one-dimensional and thus relatively

simple and straightforward to use. However, concrete behaviour such as confinement or lateral

expansion cannot be directly modelled, and are accounted for in a simplified manner.
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While the behaviour of planar RC walls can be relatively well approximated by beam-column

models, for non-planar walls, a fibre section cannot yield the distribution of shear forces between

the different wall flanges and web. Beam-element models are often used for modelling walls

within a building due to their reduced computational effort. However when modelling U-shaped

walls that have an inherent torsional resistance, the designer needs to decide on the in-plane

position of the beam element model representing the wall. The element can be placed for example

at the centroid of the wall section or at the shear centre of the elastic section. [RF01] recommends

to place the beam element model of the wall at the centroid of the wall section only if the torsional

resistance of the wall is small.

[MK+06] and [Wau09] have modelled isolated non-planar walls subjected to bidirectional loading

using beam-column element models. [MK+06] used a displacement-based beam element based

on Timoshenko beam theory to model the U-shaped wall tested under bidirectional loading in

Ispra [RF01] (see Section 2.1.1). To model the behaviour of concrete under cyclic loading a

damage model with two damage variables, one for concrete in compression and one in tension,

was used [LBMPC92]. Shear and torsion were modelled as linear and were decoupled from

the axial and flexural behaviour. Global force-displacement results matched relatively well the

experimental behaviour, but the displacement capacity or the local results were not evaluated.

[Wau09] used a force-based beam element implemented in Opensees software [MMG09] to model

the T-shaped walls tested under complex bidirectional loading at the University of Minnesota

[Bru09] (see Section 2.1.1). The T-shaped wall was modelled using force-based elements

with fibre sections to model the axial-flexural behaviour and a zero-length element with stress-

slip properties for the strain penetration. Additionally, a force-deformation shear model was

aggregated at the section level to account for shear displacements, i.e., equivalent to having shear

springs in parallel with the beam element. The force-deformation shear model was fitted with the

experimental data. After accounting for the shear displacements, the model captured well the

global force-displacement behaviour of the wall. However, the monotonic analyses significantly

overestimated the peak moments for low and medium ductilities. This difference was attributed

to the modelling of accumulated cyclic damage in steel and concrete [Wau09].

Wide-column models

In the wide-column analogy, the non-planar walls are divided into the composing web and flange

sections. Each web and flange section is represented by a vertical beam element located at

the centroid of these sections. The beam elements are then connected through horizontal links,

parallel to the weak axis of the sections, which connect in common nodes at the intersection

between web and flange.

Wide-column models (WCM) with inelastic properties for U-shaped walls have been only briefly

discussed by [RF01] and more thoroughly investigated by [BDP08d]. In the latter study, the

two U-shaped walls from the ETHZ tests [BDP08b] have been modelled using the wide-column

models. Following the set-up of the model based on existing recommendations, [BDP08d]

performed sensitivity studies regarding the geometry of the WCM, the shear and torsional

properties of the vertical elements as well as the properties of the horizontal links and updated

the model based on their findings. The WCM described in the following and whose results are

discussed herein refers to the updated model.
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The WCM was set-up in Opensees software [MMG09]. The three vertical elements corresponding

to the web and the two flanges were modelled using nonlinear displacement-based beam elements

with fibre-sections. A number of eight beam elements were used over the height of the wall below

the collar and six over the height of the collar. The in-plane and the out-of-plane shear stiffness

of the vertical elements as well as the torsional stiffness were decoupled from the flexural-axial

behaviour. The in-plane and the out-of-plane shear stiffness where modelled via zero-length

springs inserted at the connection between two beam elements. The in-plane shear stiffness was

assigned a constant value, which corresponded to about half the maximum ductility reached by

the test specimen. The out-of-plane shear stiffness was assigned a quarter of the in-plane stiffness

while the torsional stiffness was set to zero since the torsion was mainly restrained at the wall top

during experiments.

The horizontal links were placed every two vertical elements over the wall height. They were

assigned a constant torsional flexibility in order to allow warping of the section. In addition,

constant in-plane shear flexibility was assigned to the links to account for the deformations due

to vertical shear stresses transmitted at the interface web-flange.

The WCM captured well the moment capacity of the wall under bidirectional loading. The in-

plane shear flexibility assigned to the vertical elements was found to be of paramount importance

in the prediction of the experimentally attained moment capacity. Previous WCM where the

shear stiffness of the vertical elements was taken as equal to the shear stiffness of the elastic

section significantly overestimated this moment capacity. Since it relies on beam elements, the

displacement capacity of the wall requires assigning a suitable length to the element where

inelastic strains concentrate.

The WCM is one of the simplest models for non-planar walls, which directly provide the

distribution of the shear forces between the individual wall parts, i.e, web and each of the two

flanges. It is relatively simple to set-up, requires reduced computational effort and hence it could

be a good modelling option for non-planar walls with more complex geometries such as E-shaped

walls or modelling of non-planar walls as part of buildings. The limitations of the model draw

from the limitations of the beam elements: typically shear and torsional stiffness are assigned

constant values and are not function of the axial strains, the flexural strains and the state of

cracking as they are in reality. Thus the stiffness degradation during the loading history can be

only approximated through the assigned shear and torsional properties but it is not truly captured.

Truss models

Truss models (or lattice models) use a combination of beam and truss elements to model the

behaviour of RC structural elements. Typically, the RC wall is divided into several rectangular

panels over the height and length. Each panel is composed of vertical, horizontal and diagonal

truss and beam elements connected together at the four nodes of the panel. The vertical elements

are typically modelled using beam elements with fibre sections composed of concrete and steel

fibres representing the longitudinal reinforcement bars. Horizontal elements are modelled by

trusses which represent the concrete and steel behaviour in the horizontal direction. Truss

elements are also used for the diagonals of the panels formed by the vertical and the horizontal

elements to model the diagonal field of concrete.
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A 3D nonlinear beam-truss model was recently developed by [LP12] and [LP13] for modelling

of non-planar RC walls, including a U-shaped wall tested under bidirectional loading which

is discussed herein (TUB from ETHZ tests see Section 2.1 and [BDP08b]). The model used

nonlinear force-based beam elements with fibre sections in the vertical direction, nonlinear truss

elements in the in-plane horizontal directions and nonlinear truss elements in the diagonals of the

panels. In addition, linear Euler-Bernoulli beam elements were used parallel to the truss elements

in the horizontal direction, in order to model the out-of-plane bending stiffness of the segments

of the wall. A particularity of this model was that the diagonal nonlinear truss elements used a

biaxial concrete model that accounted for compression softening [VC86] and for the dependency

of the post-peak concrete strains on the mesh size.

The model of the U-shaped wall was set-up in Opensees software [MMG09]. A number of ten

beam-truss panels over the height were used for the model, and four additional panels for the

collar where the loads were applied. The concrete model used for the vertical and the horizontal

elements was based on Fuji model [HK+97] while the reinforcing steel was modelled using the

Giuffre-Menegotto-Pinto model [MP73].

The moment capacity of the U-shaped wall in the diagonal direction was relatively well captured

within 8% average difference. The displacement capacity was also well captured but only

when mesh-size effects were accounted for. Without the mesh-size effects, failure of the wall

due to crushing in the compression diagonals of the web was predicted for a lower drift than

experimentally observed, i.e., 1.8% versus 3%.

The good predictions of the strength and displacement capacity, when mesh-size effects are

considered, indicate that the model is promising for predicting the behaviour of U-shaped walls

under bidirectional loading. The model requires moderate computational expense and relatively

moderate effort to set-up. The model accounts only elastically for the out-of-plane bending,

and it does not account for the degradation of the out-of-plane shear stiffness of the wall under

bidirectional loading. The out-of-plane shear stiffness of the U-shaped walls might play a role in

the transfer of shear forces from wall to foundation, especially for loading positions where the

compression zones are limited.

Macro model with ”wall element”

A macro-element model [BDP08c] was set-up using the software PERFORM3D [Com06] and

results have been compared with experimental data from tests in ETHZ. Two types of macro-

elements were used, namely a ”shear wall element” and a ”general wall element”. The ”shear wall

element” was composed of two layers: one layer accounted for axial and flexural behaviour while

the other layer accounted for shear behaviour. The ”general wall element” had three additional

layers to the other two already mentioned. Two of the additional layers accounted for diagonal

compression struts in each of the two diagonal directions and the last layer was a horizontal fibre

layer.
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In both elements, the shear layer was assigned an elastic shear stiffness corresponding to the shear

stiffness experimentally determined at medium displacement ductility. All other deformations

modes were assigned elastic properties. Results for the ”shear wall element” under cyclic loading

were generally too stiff and the distribution of the in-plane shear forces between the two flanges

was not captured very well. The ”general wall element” showed good agreement with the

experimental data [BDP08d]. The concept of ”wall element” is rather similar to a truss panel as

presented in the previous section, but this study was mentioned here to complete the review of

the modelling studies on U-shaped walls.

2.2.1.3 Detailed FE models

Detailed FE element models are the most refined of all modelling approaches and also the most

demanding in terms of computational efforts. For this reason such models are often still limited

to modelling isolated walls.

Shell finite elements are considerably simpler, less computationally expensive and therefore

typically preferred to solid elements when modelling RC walls. If out-of-plane behaviour of

the wall is judged to be important, shell elements with multi-layers and with more complex

formulations can be used. Axial, flexure, shear and torsional behaviour as well as the interaction

between them are directly accounted for. Two-dimensional or three-dimensional material laws

are typically used with the shell element models.

The main drawbacks of these models are the large computational times and the need for post-

processing of results to obtain the quantities needed in design. The complexities of the material

models and of the element formulations can render the check and interpretation of the results

sometimes difficult.

[IR05] modelled the U-shaped wall tested in Ispra under bidirectional loading using a 3D

shell element model [PP+00b]. The concrete was modelled by means of multi-layered thin

shell elements using plane-stress assumption, while the reinforcement was modelled with truss

elements. The concrete was modelled using a biaxial fixed smeared crack approach discussed

in [IR00]. The reinforcement bars were modeling using a cyclic model which accounted for

Bauschinger effect and bar buckling.

A good match was achieved between the numerical and the experimental results, except for

the last cycles characterised by strong strength degradation. Discrepancies in the last cycles

where attributed to the limitation of the shell element via the plane-stress assumption in capturing

concrete crushing and bar buckling, as well as disregarding the flexibility due to strain penetration

in the model [IR05].
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2.2.1.4 Summary of modelling approaches

The modelling approaches outlined in the previous sections were used to model the nonlinear

behaviour of U-shaped walls. While the plastic hinge and the beam-column element models

have their merits concerning their simplicity and ease of use for design engineers, they require

further developments so they can correctly model U-shaped walls under any direction of loading.

It should be pointed out that even if more accurate results are obtained such models several

limitations cannot be overcome.

More specifically, for the design of U-shaped walls it is important to know how the forces are

distributed between by the wall parts—a result that cannot be obtained directly from plastic hinge

analysis or beam-column element models. The wide-column model with inelastic properties

constitutes an improvement in this direction as it can directly yield the quantities needed in

design. The results obtained so far with this model are promising but further validation against

experimental data and other detailed models are required.

The truss models have shown promising results in capturing the behaviour of U-shaped walls.

The displacement capacity was also well predicted as long as mesh-size effects were considered.

In general, except the plastic hinge model, determining the displacement capacity of any of the

models reliably requires either accounting for mesh-size effects or using measures that account

for the spread of inelastic strains over the element height, e.g., average rotation over the height

where plasticity spreads.

Inelastic shell element models are more and more applied in engineering practice. They require

considerable time to set-up and expertise in numerical modelling. However, such models can

offer detailed local information and as such an insight in the complex behaviour of the core

walls. Moreover, these models take directly the interaction between axial force, shear and flexure

into account. This is why Chapter 5 of this report describes the setting up and validation of a

shell element model which will be used for investigating particular aspects of the U-shaped wall

behaviour as well as for performing parametric studies in Chapter 6.

2.2.2 Estimates of quantitites for plastic hinge model

The concept of the plastic hinge model was briefly discussed in Section 2.2.1. This section

presents the state-of-the-art estimates for the different quantities involved in the application of

the plastic hinge model.

For design purposes bi-linear approximations of the moment-curvature and the corresponding

force-deformation response are typically used [PCK07] (Figure 2.4). This idealisation consists

of an initial ”elastic” branch and a post-yield ”plastic” branch. The ”elastic” branch is limited

by the yield curvature φy in the moment-curvature response and by the yield displacement Δy

in the force-deformation response. The ”plastic” branch is bounded by the yield point and the

ultimate point defined by the ultimate curvature φu or by the ultimate displacement Δu. Therefore

characterising the bi-linear force-deformation response requires knowledge of Δy and Δu, which

depend on φy and φu.
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Additional quantities necessary for computing the deformation response are: the shear displace-

ments, the plastic hinge length and the strain penetration length Lsp typically included in Lph. All

these quantities are discussed in the following, except φu which is determined from the ultimate

strain limits discussed in Section 2.2.3.

Figure 2.4: Plastic hinge analysis - obtaining the force-displacement response from the moment-curvature

response by means of several quantities: shear to flexural deformation ratio Δs/Δ f , strain penetration

length Lsp and plastic hinge length Lph

2.2.2.1 Yield curvature

The nominal yield curvature is computed as in Equation 2.5 where the first yield curvature φ ′
y,

the first yield moment My and the nominal moment Mn are determined from section analysis.

Typically these quantities are computed as follows based on recommendations by [PCK07].

The first yield corresponds to the instant when the most tensioned reinforcement bar reaches

its yield strain εsy or when the most compressed concrete fibre reaches a compression strain of

εc = 0.002. The nominal moment Mn is determined at the serviceability limit strains (i.e., strains

corresponding to residual crack widths of ∼ 1 mm and to the onset of concrete spalling) defined

as tensile reinforcement strains of εs = 0.015 or compressive concrete strains of εc = 0.004.

φy = φ ′
y
Mn

My
(2.5)

The yield curvature is considered to depend, for design purposes, only on the wall sectional

geometry and the εsy of the most tensioned reinforcement bar [PSC96]. The yield curvature can

therefore be written as in Equation 2.6 [PSC96] where Ky is the dimensionless yield curvature

and lwall is the length (depth) of the wall.

φy = Ky
εsy

lwall
(2.6)
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The dimensionless yield curvature Ky was found to depend on the geometry of the wall section,

the loading direction for non-planar walls, the distribution of the longitudinal reinforcement

within the section and to a lesser extent on the longitudinal reinforcement content. Several

researchers have derived, based on parametric sectional analysis, expressions for the Ky value

for different wall shapes other than rectangular. The emphasis was placed on I-shaped or T-

shaped section walls for bending along the principal directions of the sections [Pau02],[PCK07],

[SS+13]. The U-shaped section walls have not been addressed directly but estimates from the I-

or T-shaped walls can be used as approximations also for the principal directions of the sections

of the U-shaped walls.

[BDP08b] used such estimates from [Pau02] to compare with experimental results from two

U-shaped walls and found the agreement rather good. The 2012 DBD Model Code [SPC12]

recommends for U-shaped/ C-shaped walls the same values as those proposed by [Pau02] but

mentions that there are still uncertainties related to the simplified value of Ky for U-shaped walls

and recommends performing moment-curvature analyses to verify these design values. The

estimates for the different wall shapes are summarised in Table 2.2 and it is indicated how they

can be used as approximations for the U-shaped walls.

Table 2.2: Estimates for dimensionless yield curvature Ky of RC walls

Row

No.
Cross-section shape Loading position

[Pau02] [PCK07] [SS+13] [SPC12]

1

Rectangular -

concentrated

reinforcement

- 1.85 1.80 - 1.85

2

Rectangular -

distributed

reinforcement

- 2.15 2.00 - 2.15

3 T-shaped

Parallel to web,

flange in

compression

1.50 1.40 1.80 1.40

4 T-shaped
Parallel to web,

flange in tension
2.00 1.80 2.15 1.80

5 U-shaped
Parallel to web, one

flange in tension
use values row 3 1.80

6 U-shaped
Parallel to flanges,

web in tension
use values row 4 1.80

7 U-shaped
Parallel to flanges,

web in compression
use values row 3 1.40
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Estimates by [PCK07] are ∼ 10% higher than those by [Pau02], which they attributed to the

reinforcement strain hardening effect which was not considered in the analyses by [Pau02].

Estimates by [SS+13] for T-shaped walls presented in Table 2.2 in their simplified form, are

in their extended form (Equation 2.7) the most complex, accounting for the longitudinal rein-

forcement distribution (i.e., uniformly distributed over the wall length or concentrated toward

the boundary elements), the web length to flange length ratio A and the total wall longitudinal

reinforcement percentage ρl . In Equation 2.7 k varies between 1.8 and 2.0 while x,y and λ are

variables depending on the reinforcement distribution and loading direction: flange in tension or

flange in compression.

Ky = k+ xA+ y(ρl −λ ) (2.7)

The approximations of these estimates are compared to the new experimental data for U-shaped

walls in Section 4.3. Note that there are currently no estimates for other loading directions

than the principal ones. [BDP08b] found from comparison with two U-shaped wall tests that

the sectional analysis can be used to derive the yield curvatures also for the diagonal loading

directions.

2.2.2.2 Yield displacement

For design purposes the yield displacement is determined assuming a linear curvature profile over

the wall height H which implies a fully cracked wall over the height and hence a constant wall

stiffness. The yield displacement can be therefore estimated accounting also for the equivalent

strain penetration length at yield Ly,sp [HRS04], [PCK07]:

Δy = φy
(H +Ly,sp)

2

3
(2.8)

[HRS04] and [PCK07] propose to determine the the first yield displacement Δ′
y and hence also

the nominal yield displacement Δy by accounting for the elastic shear displacements Δs and

for the flexural displacements due to pre-yield strain penetration, which they found to account

for a significant part of the pre-yield deformations. [BDP08b] further refined the approach by

accounting for a partially cracked profile at first yield. The yield displacement could be hence

evaluated as in Equation 2.9 where kcr is a factor accounting for the extent of cracking over the

wall height at first yield.

Δy = φ ′
y

Mn

My
(
kcr

3
H2 +Ly,spH)(1+

Δs

Δ f
) (2.9)

2.2.2.3 Plastic hinge length

State-of-the-art plastic hinge length equations for walls are reviewed in this section. Only plastic

hinge lengths specifically addressing walls [BA11], [Kaz13] as well as the on of the most widely

used plastic hinge length equations [PCK07] are discussed here.
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The plastic hinge length was Lph of walls is a measure of the spread of plastic strains and

curvatures over the wall height. The spread of plastic strains over the wall height are the result of

three phenomena [PP87]:

• moment gradient Mu/My and reinforcement strain hardening fu/ fy

• tension shift effects due to inclined flexure-shear cracking

• strain penetration into the foundation

One of the most well-known equation for the plastic hinge length of the walls is based on the

work of Priestley, Paulay, Park and co-workers and it accounts for the sum of contributions of the

three above listed phenomena. The plastic hinge length is expressed under the form of Equation

2.10 [PP87], where the term related to the wall effective height H accounts for moment gradient

and strain hardening effects, the term related to the wall length lwall accounts for the tension shift

due to inclined shear-cracking while the term related to the longitudinal bar diameter db accounts

for the strain penetration into the foundation.

Lph =C1H +C2lwall +C3db (2.10)

The coefficients of the Equation 2.10 have been expressed by [PP92] resulting in Equation 2.11.

In this equation the spread of plasticity due strain hardening is directly addressed through the

reinforcement properties k = 0.2( fu/ fy −1). The spread of plasticity due to tension shift effects

is taken as 0.2lwall considered as a suitable value for assessment purposes of the displacement

capacity of RC walls. The equation is lower bounded by twice the strain penetration length

Lsp = 0.022 fydb.

Lph = min(0.08,k)H +0.2lwall +0.022 fydb ≥ 2Lsp (2.11)

Equation 2.11 has been later modified by [PCK07] for design purposes. The tension shift term was

reduced to 0.1lw to introduce some degree of conservatism when determining the displacement

capacity.

Lph = min(0.08,k)H +0.1lwall +0.022 fydb ≥ 2Lsp (2.12)

The above Lph equations are intended to be used for determining the ultimate displacement

capacity of the wall as in Equation 2.4. For this purpose, Lph estimates are usually combined with

ultimate curvature from section analysis corresponding to different ultimate states (see Section

2.2.3).
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In the determination of Lph, it was assumed that the center of the plastic hinge with the length

Lph is at the base of the wall. This is strictly true if Lph is exactly twice the strain penetration

term 0.022 fydb. If strain penetration effects are negligible the centre of the plastic hinge will be

located at the middle of the plastic hinge length. Computing the wall displacement, using one

assumption or the other was found to lead to differences of ∼ 10% in the displacement capacity

[Han13].

Recent research on the plastic hinge length of RC walls have focused on determining the Lph
values from numerical studies using detailed nonlinear finite element models validated against

experimental data. [BA11] present the setting-up of a shell element model with VecTor2 software

[WV02]. The model was validated with experimental data from a test conducted by one of the

authors, in terms of global force-displacement behaviour, as well as in terms of curvature profiles

over the wall height and strain profiles along the wall length at different drift levels. Then a

parametric study was performed on cantilever walls to investigate the influence of shear on the

Lph. The Lph value was determined as half of the height over which plasticity spreads, i.e., half

of the height of the plastic zone Lpz. This choice was the result of the observation of the authors

that inelastic curvatures vary linearly over Lpz.

The authors found that shear has a significant influence on Lph especially for squat walls after

onset of diagonal cracking. However, they concluded that it is not necessary to include the shear

stress in the formulation of Lph as long as the wall length lwall and the shear span H are accounted

for (Equation 4.25). The increase in axial load ratio N/(Ag fc) was found to reduce the plastic

hinge length of walls. This effect was attributed to the decreasing Mu/My ratio with increasing

axial force.

Lph = (0.05H +0.2lwall)(1−1.5
N

Ag fc
)≤ 0.8lwall (2.13)

The above plastic hinge length was determined at 2% global drift at the shear span of the walls.

Unlike the previously discussed equations, [BA11] did not determine Lph to match a displacement

value but used the real spread of plasticity over the wall height. The results were interpreted as a

lower bound estimate of the plastic hinge length of walls however the displacement estimates

obtained with this Lph value were not evaluated. No assumption was made for the centre of

rotation of the plastic hinge but based on the linear assumption of the inelastic curvature profile

and since strain penetration was not considered, the center is located exactly 1/3Lpz = 2/3Lph
from the wall base.

In another numerical study conducted by [Kaz13], the RC walls were modelled by means of

detailed FE model using ANSYS R© software. The lower two stories of the wall, where inelastic

strains were considered to be concentrated, were modelled using solid elements while the upper

stories were modelled using Timoshenko beam elements to reduce computation time. In order to

account for the influence of the floor-slabs on the shear flow in the wall, horizontal flanges were

modelled at floor level for the two lower stories. The foundation was also modelled to account

for the strain penetration.
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The study investigated the influence of the wall length lwall , the wall shear span H, the axial load

ratio N/(Ag fc), the horizontal reinforcement ratio in the web ρsh and longitudinal reinforcement

ratio in the boundary elements ρbl . The Lph value corresponding to the wall displacement capacity

was back-calculated from the top displacement (Equations 2.3 and Equation 2.4 without the shear

displacement factor). The shear displacements were not differentiated from the flexural ones in

this calculation while displacement due to strain penetration were found to be negligible and

were hence not considered. Using regression analysis, Equation 4.26 was derived for Lph. The

obtained Lph equation is intended to be used for the displacement capacity of the wall at the

ultimate damage state.

Lph = 0.27lwall(1− N
Ag fc

)(1− fyh

fc
)(H/lwall)

0.45 (2.14)

Plastic hinge length estimates according to [PCK07] have been compared with experimental

results of only two U-shaped walls [BDP08b]. In Section 4.5.2, the presented estimates will be

compared with additional experimental data to conclude on their suitability for capturing the Lph
values for U-shaped walls for different loading directions.

2.2.2.4 Shear displacements

Shear displacements account for a significant portion of the total deformation of RC walls, even

for relatively slender walls. For non-planar walls shear displacements are particularly large

for wall parts which are in tension [BDP08b], [ZL14] and can vary with the loading direction

[BDP08b]. Therefore they should be explicitly included in the modelling of non-planar RC walls.

Several modelling approaches for estimating the shear displacements of RC walls have been

proposed in the framework of plastic hinge analysis [PCK07], [HRS04], [BDP11], [Han13]. Such

estimates can also be used for deriving a shear stiffness value for modeling approaches where this

stiffness is assigned a constant value, e.g., beam-element models or WCM. According to these

estimates the main parameters influencing the magnitude of the shear displacements of RC walls

are: (1) the level of axial strain on the section, (2) the cracking angle in the plastic region and (3)

the shear stress demand to capacity ratio.

Shear displacements are typically expressed as a function of the flexural displacement since the

ratio of shear to flexural displacements Δs/Δ f was found to be roughly constant in the inelastic

range for RC walls with non-degrading shear mechanism, i.e., flexure controlled walls [Daz00],

[HRS04], [BDP11]. State-of-the-art estimates for Δs/Δ f ratios are discussed in the following.
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[HRS04] derived an estimate for the Δs/Δ f ratio (Equation 2.15a) based on the assumptions that:

(1) shear to flexural displacement ratios remain constant over the inelastic range for non-degrading

shear mechanisms, (2) shear deformations stem from the horizontal deformations occurring in

shear cracks and (3) shear deformations concentrate between the lowest inclined crack (crack

angle 60◦) and the highest crack which reaches the base with the θmax angle. About 35% of the

total wall flexural deformations were found to be concentrated in between these two cracks based

on comparison with experimental data. Hence the 0.35 term in the Equation 2.15a. The correction

factor α (Equation 2.15b) accounting for the shear demand to diagonal tension capacity V/Vn or

shear demand to web crushing capacity V/Vwc was introduced to account for RC walls with low

shear reinforcement content in the web or reduced web thickness for which shear displacements

would have been otherwise underestimated.

Δs

Δ f
= α0.35(1.6−0.2θmax)

lwall

H
(2.15a)

1 ≤ α = (
V
Vn

+
V

Vwc
)≤ 2 (2.15b)

[BDP11] based their estimate on the assumptions that: (1) shear to flexural displacement ratios

remain constant over the inelastic range for non-degrading shear mechanisms, (2) significant

shear deformations occur only in the plastic hinge, where curvature is assumed constant and (3)

strain state in the plastic hinge is homogeneous. [BDP11] used Mohr circle to describe the state

of strain in the plastic region. By making the assumption that the principal compressive strain

and the transversal strain are small (i.e., not a degrading shear mechanism) the shear strains were

computed only as a function of the mean axial strain of the section εm. Equation 2.16 was hence

derived, considering that shear strains concentrate in the plastic hinge region over which they are

constant and that the flexural displacement can be computed with a plastic hinge mechanism.

Δs

Δ f
= 1.5

εm

φ tanθ
1

H
(2.16)

In the above equation, φ is the constant curvature in the plastic hinge, θ is the crack angle at the

top of the fan-like pattern where cracks begin to be parallel and 1.5 is an empirical correction

factor calibrated against test data on planar and non-planar walls.
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In the application of both the previous models, it is necessary to determine the shear crack angle.

Several shear crack angle estimates can be used for this task (e.g., [CM91], [BVC06]). [Han13]

investigated the suitability of several crack angle estimates and proposed to use the approach by

[HHF11] based on comparison with experimental data from seven RC rectangular bridge piers.

This approach is based on elastic strain energy derivations and expresses the crack angle as a

function of longitudinal and transversal reinforcement contents ρl and ρh respectively (Equation

2.17). In addition, the ratio between the elastic modulus of steel Es and concrete Ec enters in the

equation kE = Es/Ec. The angle θ in Equation 2.17 is the crack angle relative to the longitudinal

axis of the wall.

tanθ = 4

√
ρh + kEρlρh

ρl + kEρlρh
(2.17)

In addition, [Han13] presented a conceptual approach for determining the shear displacements

based on the assumptions that: (1) shear displacements stem from rotation in shear cracks as

in [HRS04] model and (2) shear displacements do not concentrate in the plastic hinge but have

a linear or constant distribution over the wall height (assumption based on the experimentally

observed shear strain profiles). [Han13] proposed an analytical solution for computing the shear

displacement of an RC wall based on the kinematics of an idealised crack pattern (Equation

2.18). The magnitude of the shear displacements Δs depends on the wall height over which

cracking occurs Hcr and which is assumed to yield shear displacements. In addition, Δs depends

on the axial strain on the wall section εl(y1) which varies with the wall height (y1 is the vertical

coordinate). Therefore, in order to apply this approach it is necessary to estimate the height over

which cracking extends Hcr and the distribution of the axial strain εl over the wall height. The

model has not been validated against an experimental database but the concept seems promising.

Δs =
1

2

∫ Hcr

0

1

0.5lw

∫ 0.5lcr

0.5y
εl(y1)dy1dy (2.18)

2.2.3 Ultimate limit strains

Peak strain values at the critical section of a structural element are a good indicator of the damage

state of the element. Strains corresponding to ultimate damage states can hence be used to

determine the displacement capacity of an element. In plastic hinge models, this is done by

linking the ultimate strain to the displacement capacity via the curvature and the plastic hinge

length. For capacity designed ductile walls the ultimate damage states typically accounted for are:

(1) reinforcement bar fracture after previous buckling and (2) concrete crushing in the confined

boundary elements of the wall.

For the reinforcement bar fracture after buckling limit state, [PCK07] recommend to account for

the effects cyclic loading by reducing the ultimate steel strain under monotonic loading εsu by a

factor of 0.6. The steel tensile strain capacity under cyclic loading is affected by the compression

strains under the reverse loading cycles and by the effects of buckling. [Res93] found that a

limit on the total strain excursion εs − εc was better suited for determining the bar fracture after

buckling. However such a limit is more difficult to apply to monotonic analyses.
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[PCK07] recommend a limit concrete strain for section analysis to account for confined concrete

crushing limit state based on the model by [MPP88]. The ultimate compression state is assumed

to be reached when the confining reinforcement fractures. Therefore Equation 2.19 of the concrete

limit strain was derived by equating the strain energy absorbed by the concrete, above the value

corresponding to the unconfined concrete to strain energy absorbed by the confinement. In the

equation below, ρv is the volumetric ratio of the confinement reinforcement, fcc is the confined

concrete strength based on [MPP88] and fyv the yield strength of the confinement reinforcement.

The coefficients C1 and C2 depend on the stress-strain relationships of steel and concrete. An

average value of the C2/C1 ratio is 1.4.

εcu = 0.004+
C2ρv fyvεsu

C1 fcc
= 0.004+1.4

ρv fyvεsu

fcc
(2.19)

Another limit state that can be of particular interest for non-planar walls is the out-of-plane

buckling of the wall. This ultimate limit state is assumed to be controlled by the maximum tensile

strain [PP93], [CE99]. Under cyclic loading the edges of the wall are subjected to large tensile

strains resulting in large cracks where the reinforcement bars yield. During the reverse cycle,

when the wall edge is in compression, the compression resultant force not be applied eccentrically

due to irregularities in the material and geometry of the wall, causing the out-of-plane buckling

[PG85]. For non-planar walls, certain loading directions can impose in addition to large tensile

strains at the wall edges also out-of-plane displacements at the wall top which could speed up the

triggering of the out-of-plane buckling, e.g., the flange ends of U-shaped walls when loading in

the diagonal direction (positions E-F Figure 2.2).

To prevent the out-of-plane buckling of walls, equations have been developed to estimate the

minimum wall thickness [PP93], [CE99]. If the wall thickness is known, one can back-calculate

the tensile strain triggering the out-of-plane buckling. Both models for walls were developed

based on experimental tests on RC columns with pinned-pinned boundary conditions. While

Equation 2.20 by [PP93] can be used for walls with both one layer and two layers of longitudinal

reinforcement, Equation 2.21 by [CE99] applies only for the latter case. In the two equations, l0
can be taken as the plastic hinge length, β = 0.8 for two-layer reinforcement and ξc is computed

as in Equation 2.22 where m = ρb fy/ fc is the mechanical reinforcement ratio of the boundary

element.

εsm = 8β (
twall

l0
)2ξc (2.20)

εsm =
π2

2
(
twall

l0
)2ξc +3εsy (2.21)

ξc = 0.5(1+2.35m−
√
(5.53m2 +4.70m)) (2.22)
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2.2. Modelling of U-shaped walls

The presented strain limits will be compared with the experimental results from U-shaped walls

in Section 4.6. In plastic hinge analysis, ultimate limit strains are used with moment-section

analysis to determine the ultimate curvature of the critical section. Therefore Section 4.6 will

also evaluate the validity of the plane section assumption for U-shaped walls for the different

loading directions, i.e., if the definition of curvature can still be used for such walls at ultimate

damage state.

2.2.4 Effective stiffness of RC walls

The effective stiffness of RC walls is an important quantity in seismic design as it is typically

used to estimate the effective period of an RC building in linear seismic analyses. The structural

elements are assigned an effective stiffness typically equal to the elastic section stiffness multiplied

by a reduction factor. For RC walls, this reduction factor accounts for the increased flexibility

of the wall due to concrete flexural and shear cracking as well as due to anchorage (pull-out)

deformations at the base of the wall.

Several equations are available in the literature for estimating the effective stiffness of RC walls

(e.g., [PP92], [FB00] or [AIB07]). Most of these models account for the slender walls only for the

flexural stiffness. The effective stiffness values are typically accounted for by providing estimates

of the effective moment of inertia Ie or of the ratio of the effective moment to the gross moment

of inertia Ie/Ig, while assuming a constant wall stiffness over the height. The main parameters

found to influence the effective stiffness of RC walls are: the reinforcement yield strength fy,

the axial load ratio N/ fcAg and the wall geometry, i.e., wall length lwall or wall thickness twall .

In the following, the main equations used for estimating the effective wall stiffness are briefly

presented.

[PP92] recommends an effective stiffness value for slender RC walls expressed through the Ie

value as in Equation 2.23a. The equation is based on an analytical study on reinforced masonry

shear walls by [PH89] and corresponds to the secant stiffness of the wall at first yield of the most

tensioned reinforcement bar. For less slender walls, i.e. aspect ratio H/lwall ≤ 4, where the shear

displacements can become important, Equation 2.23b is proposed. The equation accounts for

the shear displacements and makes some allowance for the anchorage deformations, i.e., strain

penetration [PP92].

Ie = (
100

fy
+

N
fcAg

)Ig (2.23a)

Iw =
Ie

1.2+F
(2.23b)

F =
30Ie

H2lwalltwall
(2.23c)
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[FB00] proposed Equation 4.40 to estimate the effective stiffness of slender RC walls. The

equation is based on a parametric study using plane section analysis on slender rectangular

walls with uniformly distributed reinforcement. The effective stiffness was defined as the secant

stiffness at first yield of the most tensioned reinforcement bar. The shear displacements were

neglected while the axial load was considered to be constant over the height. In addition, tension

stiffening of the concrete was accounted for. The study was criticised by [FB02] for assuming

a constant axial load over the wall height, for accounting for the tension stiffening of concrete

and for ignoring the flexibility due to strain penetration. In multi-storey buildings the axial load

varies along the wall height resulting in an increase of the cracking height and hence a reduction

of the flexural stiffness [FB02].

Ie = 0.267(1+4.4
N

fcAg
)(0.62+

190

fy
)(0.76+0.005 fc)Ig (2.24)

An estimate for the flexural effective stiffness of high-rise shear walls was developed by [AIB07]

based on a trilinear bending moment-curvature model calibrated with results from one exper-

imental test on a slender wall. In order to account for the different degrees of cracking in the

wall , i.e., lightly cracked or severely cracked due to cyclic loading, [AIB07] suggested two

simplified equations as upper-bound and lower-bound estimates for the effective flexural stiffness

of high-rise core walls (Equation 4.41a).

Ie = (0.6+
N

fcAg
)Ig ≤ Ig (2.25a)

Ie = (0.2+2.5
N

fcAg
)≤ 0.71Ig (2.25b)

Instead of using an estimate for the Ie or the Ie/Ig value, a more precise effective stiffness value

can be determined by dividing the wall nominal strength Fn = Mn/H by the yield displacement

Δy [PCK07]. While the nominal strength can typically be determined by means of plane section

analysis, the determination of the yield displacement is more complex. It requires knowledge

of the yield curvature and assumptions on the curvature distribution over the height at yield,

on the shear displacements at yield and on the strain penetration also at yield. Typically the

yield displacement is taken as equal to the flexural displacement assuming a fully cracked wall

over the height (linear curvature distribution) with the base curvature equal to yield curvature

[PCK07]. A linear curvature profile will overestimate however the flexural yield displacement

and the difference is partially assigned to shear displacements and flexural displacements due to

strain penetration [PCK07].
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Since most of these estimates consider only the flexural flexibility it is expected that the predicted

effective stiffness values tend to be on the high side, since shear displacements have been shown

to constitute a significant part of the total deformation of U-shaped wall for certain loading

positions. Since both the contribution of the shear displacements to the total deformation as well

as the yield curvature depend on the different loading positions of U-shaped walls, it is expected

that also the effective stiffness should vary with the loading position.

However, to the best of the author’s knowledge, none of the here reviewed estimates been

compared with experimental results from non-planar walls loaded in different directions. For this

reason in Chapter 4, the effective stiffness estimates are compared with experimental results from

four U-shaped walls tested for different loading directions.
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3. Quasi-static tests of two U-shaped
walls under diagonal loading

3.1 Introduction

This chapter is based on experimental work performed by the author under the supervision of the

thesis director in the structural testing laboratory at EPFL. The content of this chapter has been

previously published as a journal article [CB16] DOI 10.1016/j.engstruct.2015.10.018.

The experimental test campaign and findings from quasi-static cyclic tests on two half-scale

U-shaped reinforced concrete (RC) walls performed at EPFL are presented in this chapter. The

objective of the test programme was to investigate the U-shaped wall behaviour when loaded

along the geometric diagonal of the U-shaped section. More specifically, the programme focused

on identifying failure mechanisms specific to diagonal loading and possible critical design aspects

related to these failure modes as well as particular phenomena that could explain the load transfer

mechanisms between wall sections and wall and foundation for loading in the diagonal direction.

The experimental results of the new test campaign emphasising observed phenomena typical to

U-shaped walls under diagonal loading are discussed within this chapter. The chapter is organized

in several sections. The test units, the test set-up, the loading history and the instrumentation are

presented in Section 3.2. Section 3.3 describes the failure mechanisms, the hysteretic behaviour

as well as key deformation quantities that highlight the section deformation at the wall base, the

out-of-plane bending of the flange end and the shear deformations of the wall sections. Section

3.4 gives a summary of the findings concluding with recommendations for analysis and design.

3.2 Test units, set-up, instrumentation and loading history

The test campaign is a continuation of the previous test campaign on U-shaped walls from ETH

Zurich [BDP08b]. Therefore the overall geometry of the test units is the same and the test set-up

is very similar as in the previous test campaign. The two test programmes differed only with

regard to the reinforcement layouts of the walls, the instrumentation and the loading history.
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Chapter 3. Quasi-static tests of two U-shaped walls under diagonal loading

A detailed description of the design of the test set-up and of the test units can be found in

[BDP08b] and is hence not repeated herein. Therefore the following sections discuss only briefly

the geometry of the new test units including reinforcement layouts (Section 3.2.1), material

properties (Section 3.2.2), test set-up and the instrumentation (Section 3.2.3) as well as the

loading history (Section 3.2.4).

3.2.1 Geometry of the tests units

The two U-shaped walls tested as part of this project were half-scale models of the lower two

storeys of a prototype elevator shaft and had the same dimensions as test unit TUB in [BDP08b].

Both test units, named TUC (Test Unit C) and TUD (Test Unit D) had identical longitudinal

reinforcement layouts (Figure 3.1) but differed with regard to the applied axial load ratio and

shear reinforcement: TUC was subjected to an axial load ratio of 0.06 and TUD to an axial

load ratio of 0.15. The higher axial load ratio was applied to account for the effects of possible

increase in axial force due to the shear force transferred by coupling beams. To account for the

higher shear force demand of TUD, the shear reinforcement percentage was increased by ∼ 25%

as compared with TUC. To maximise the amount of experimental information collected, it was

decided to modify the reinforcement layout of TUB slightly and investigate also the influence of

the longitudinal reinforcement distribution on the behaviour of the two wall flanges. Therefore,

for both walls one flange was detailed with longitudinal reinforcement mainly concentrated in

the boundary elements while in the other flange and the web the longitudinal reinforcement was

uniformly distributed along the wall section. The reinforcement layout for the two test units is

shown in Table 3.1. The longitudinal reinforcement content of the two flanges in the boundary

elements and in the unconfined part is given for comparison in Table 3.1, together with the

reinforcement contents of the web and the entire wall.

3.2.2 Material properties

The material properties of both test units are given in Table 3.2 and Table 3.3. The material tests

were performed in accordance with the Swiss Norm SIA262/1 [SIA03]. The concrete tensile

strength ft was derived from double-punch tests [CY80]. Concrete properties from material

tests are: concrete compressive strength fc, concrete elastic modulus Ec and the concrete tensile

strength ft correspond to properties at the day of testing, except the fc - 28days strength, which

corresponds to the cylinder concrete compressive strength at 28 days.

The yield strength fy, the ultimate strength fu and the ultimate strain εsu of the reinforcement

bars are given in Table 3.3 and correspond to properties at the day of testing. Additionally, for

the D12 bars, the hardening strain is given, which marks the end of the constant strength yield

plateau and the beginning of increasing strength strain-hardening zone. With values of fu/ fy

between 1.18 and 1.26 and values of εsu between 6.9% and 9.6%, the D8 and D12 bars belong to

“Class C” grade according to Eurocode 8 [CEN03], while the D6 bars belong to “Class B” due to

the strain value εsu lower than 7.5%.
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3.2. Test units, set-up, instrumentation and loading history

Figure 3.1: Test units TUC and TUD: cross-section and reinforcement layout (a) and elevation (b)

3.2.3 Description of test set-up and instrumentation

A photo of the test set-up is shown in Figure 3.2a. As in [BDP08b], the walls were loaded

horizontally with three actuators: the EW actuator loaded the webs at a height of hEW = 3.35

m while the NS actuators loaded the flanges of the wall at a height of hNS = 2.95 m from the

foundation (see also Figure 3.1). The tests were performed in displacement control and rotation

at the top of the wall was restrained by applying equal displacements with the NS-W and NS-E

actuators. The axial load was applied by a tendon pre-tensioned by a hollow core jack located

on a bream at the top of the wall (Figure 3.2a). The pressure in the hollow core jack was kept

constant and therefore the test unit was subjected to a constant axial load throughout the testing

(maximum variation: −2.5% to 6.4%). During testing, the wall behaviour was monitored through

conventional instruments (linear variable differential transducers (LVDTs) and load cells) and

through an optical measurement system based on triangulations of active light emitting diodes

(LEDs). Photos, manual measurements of cracks and hand notes completed the data collected

during the test. The layout of the measurement systems is shown in Figure 3.2b. LVDTs were

used to measure global horizontal displacements at the top of the wall as well as the vertical

elongation of the wall edges, which were recorded by means of four chains of eight LVDT devices

each. This instrumentation is the same as the one used in [BDP08b]. One chain of four LVDTs

was added on the inner side of each flange end to capture the vertical strain variation through the

thickness of the flange.
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The optical measurement system Optotrak Certus [NDI10] was composed of active LEDs (466

LEDs for TUC and 510 LEDs for TUD) and three position sensors recording the 3D coordinates

of the LEDs with a frequency of 2 Hz. The LEDs were glued on the outer faces of the wall in

regular grids of 100x125 mm (TUC) and 100x100 mm (TUD) to match vertical and horizontal

reinforcement spacing (Figure 3.2). One row of LEDs was also glued on the foundation in order

to record foundation uplift and sliding. The height of the LED grid extended up to ∼ 1.7 m above

the foundation as the main interest was to capture the plastic zone of the wall while respecting

the measurement volume of the optical system.

Table 3.1: Longitudinal reinforcement percentages for TUC and TUD computed for the entire section and

for the flanges and the web

Wall part ρl(%) total

ρl(%)

confined

region

ρl(%)
unconfined

region

Flange with distributed reinforcement layout

(East flange)
1.06% 1.34% 0.91%

Flange with concentrated reinforcement

layout (West flange)
1.01% 2.45% 0.31%

Web 1.16% 1.25/0.90% 1.00%

Entire wall 1.09% - -

Total reinforcement percentage for the flanges and the web was computed by counting the corners

towards the web.

Due to differences in flange reinforcement layouts, reinforcement contents of confined corner regions

are slightly different.

Table 3.2: Mean values and standard deviations of mechanical properties of concrete

E-modulus and compressive strength tests Double-punch tests

fc -

28days

[MPa]

No. of

samples
fc [MPa] Ec [GPa]

No. of

samples
ft [MPa]

No. of

samples

TUC
38.10 ±

0.7
3 42.0±1.4 31.6±3.9 3 3.2±0.2 4

TUD 37.0±1.3 3 41.5±1.2 30.3±0.8 4 3.0±0.2 4
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3.2. Test units, set-up, instrumentation and loading history

Figure 3.2: Photo of the test set-up (a) and location of the conventional and optical measurement devices

(b)

Table 3.3: Mean values and standard deviations of mechanical properties of reinforcement bars used for

TUC and TUD

fy [MPa] fu [MPa] fu/ fy [-] εsh [%] εsu [%]
No. of

samples

D6mm

bars
492±5.1 623±8.7 1.26±0.02 - 6.8±0.9 6

D8mm

bars
563±26.6 663±6.5 1.18±0.05 - 7.9±0.8 7

D12mm

bars
529±4.7 633±3.9 1.19±0.01 2.4±0.25 9.6±1.2 3

The yield strength fy was determined at the 0.2% strain offset (0.2% proof stress).
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3.2.4 Loading history

As stated in the introduction, the key objective was to understand the behaviour of the wall under

diagonal loading. Hence, the main cycles were applied along the two geometric diagonals of the

U-shaped section. The direction of the geometric diagonal joins the outer corner between web

and flange with the outer edge of the flange end (Figure 3.3b – directions E-F and H-G). Cycles

along the principal directions, i.e., loading parallel to the web (EW direction with positions A and

B - Figure 3.3) or loading parallel to the flanges (NS direction with positions C and D - Figure

3.3), were also added at small drift levels in order to check the strength capacity of the wall

in these directions, as past tests have shown that for these directions the strength capacity can

be predicted using the plane section hypothesis [BDP08b]. The loading positions are shown in

Figure 3.3b while the loading history of the test units is described below and shown in Figure 3.4:

• 0.1% drift: O–C–D–O–A–B–O

• 0.2% drift: O–C–D–O–A–B–O–E–F–O–H–G–O

• 0.3%, 0.4%, 0.6% drifts: O–E–F–O–H–G–O–C–D–O–A–B–O

• 0.8% drift: O–C–D–C–D–O–A–B–A–B–O

• 1.0%, 2.0%, 3.0% drifts: O–E–F–E–F–O–H–G–H–G–O

• 1.5%, 2.5% drifts: O–H–G–H–G–O–E–F–E–F–O

From 1.0% drift onwards, two complete reverse cycles were applied for each diagonal direction

at each drift level. The orientation of the first diagonal applied at a new drift level alternated

between the E-F direction and the H-G direction. Towards the end of the tests, the loading was

only continued along the diagonal that led still to a stable hysteretic behaviour, as extensive wall

damage had significantly reduced the stiffness in the other diagonal. The modified protocols at

the end of the test were as follows: Modifications to load protocol TUC:

• 2.5% drift: O–H–G–O– E–F– O

• 3.0% drift: O–E–O–H–O (test was stopped due to loss of vertical load bearing capacity)

Modifications to load protocol TUD:

• 1.5% drift: O–H–G–H–O–E–F–E–O (test was stopped due to loss of vertical load bearing

capacity)

44



3.2. Test units, set-up, instrumentation and loading history

Figure 3.3: Cardinal points, sign convention for forces and displacements, denomination of wall parts (a)

and loading positions (b)
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3.3 Test results

In this section the most important findings from the tests are presented. Failure mechanisms

together with hysteretic behaviour are discussed in Section 3.3.1. The influence of the reinforce-

ment layout and of the axial load on the crack pattern and crack widths is shown in Section 3.3.2.

Local deformation response specific to U-shaped walls under diagonal loading is presented in

Section 3.3.3, while Section 3.3.4 investigates the influence of the longitudinal reinforcement

layout and the axial load ratio on the shear to flexural deformation ratios.

3.3.1 Failure mechanisms and hysteretic behaviour

The failure mechanisms of the two test units are illustrated in Figures 3.5 to 3.7 while the force-

displacement hystereses are shown in Figures 3.8 to 3.9. For the two diagonal directions individual

actuator forces as well as their resultant are plotted against the wall top displacements, which were

measured by means of the horizontal LVDTs recording the NS displacements at hNS = 2.95 m

and the EW displacements at both hNS and hEW = 3.35 m. The top displacements were corrected

for the foundation flexibility (uplift and sliding) by subtracting the top displacements due to

foundation flexibility.

Foundation flexibility resulted from the uplift and the sliding of the wall foundation with respect

to the laboratory strong floor. The uplift and sliding of the foundation was computed from the

LEDs glued on the foundation (LEDs on small steel angle in Figure 3.2). Top displacement due

to uplift was computed assuming a rigid body rotation of the wall and the foundation, while the

top displacement due to sliding was simply taken equal to the sliding displacement measured

between the foundation and the laboratory strong floor. Top displacements due to foundation

flexibility accounted for ∼ 6−8% of the measured top displacements at yield drift and decreased

thereafter. The corrected top displacements and the forces were combined through the square

root of the sum of squares (SRSS) to obtain quantities representative of the diagonal directions

(Figures 3.8b-c and 3.9b-c):

FSRSS =
√

(F2
EW +F2

NS) · sign(ΔNS) (3.1)

ΔSRSS =
√

(ΔEW @2.95)2 +Δ2
NS) · sign(ΔNS) (3.2)

where FEW and FNS are the forces carried by the wall in the EW and the NS direction respectively,

while ΔEW @2.95 and ΔNS are the wall horizontal displacements in the EW and the NS directions,

both measured at hNS. The SRSS values were multiplied by the sign of the NS displacement for

plotting the hysteresis loops consistently.
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3.3. Test results

3.3.1.1 TUC

Failure mode when loading along the diagonal E-F: Failure of TUC occurred due to out-of-

plane buckling and compression failure of the flange with the concentrated reinforcement (West

flange). Failure occurred during loading in the E-F diagonal direction when the flange end was in

compression at position E (Figure 3.5). A maximum of 2.5% SRSS drift was reached for this

direction prior to wall failure. During the last cycle, the wall stiffness was significantly reduced

when loading from zero displacement towards position E, as compared to the previous cycles at

the same loading position (Figure 3.8b, d-f). In this cycle the loading was stopped at only 1.0%

drift due to extensive damage to the West flange and ∼ 35% drop in the SRSS force capacity as

compared to the maximum reached in this last cycle at this loading position (see Figure 3.8b).

Out-of-plane failure of plastic zone of West flange: The failure mode of the wall, i.e. out-of-

plane buckling of the wall end and compression failure of the unconfined concrete, was first

experimentally investigated and reported by [PG85] for walls loaded in plane. For TUC, the

evolution of wall failure can be summarised as follows: due to large displacement demands

imposed on the wall at position F (i.e., 2.5% SRSS drift), large tensile strains were developed in

the reinforcement bars of the West flange end resulting in wide horizontal cracks (∼ 4 mm) in this

region. When unloading from position F, the longitudinal bars first had to yield in compression

before the cracks could close. During this stage the plastic zone had a very small stiffness and

was as a result vulnerable to out-of-plane instability.

For rectangular walls loaded in plane, out-of-plane displacements are typically caused mainly by

construction imperfection. Loading to position E led to a large strain gradient across the flange

end (see Section 3.3.3.1), which leads to an eccentricity of the compression force acting in this

region. This strain gradient is expected to have promoted the out-of-plane buckling process. As a

result of the strain gradient, the flange end bulged towards the inside of the U-shaped wall, which

was also the direction in which the flange failed out-of-plane (Figure 3.5b).

Based on the visual observation and the force-displacement hystereses, the initiation of the

out-of-plane buckling occurred near zero SRSS top displacement when returning to zero from

the first cycle at position F with 2.5% SRSS drift. The force-displacement hystereses show

significantly reduced wall stiffness after the onset of buckling (Figure 3.8b, d-f). The fact that

onset of buckling occurred near zero displacement is in line with observations from tests on thin

T-shaped walls, which failed also due to out-of-plane buckling [RAB16]. It was found that at

this instant, cracks are open along the entire length of the wall and the out-of-plane stiffness is

therefore very small. Note that, while the out-of-plane buckling mode of TUC and the thin walls

described in [RAB16] shared many similarities, the buckling mode of the thin walls involved the

entire storey height and not just the plastic zone as observed for TUC.

Due to the out-of-plane buckling, the West flange end of TUC lost its compression carrying

capacity. To compensate for this, the compressed depth increased into the unconfined part of the

flange, leading to concrete crushing in this region and final loss of the wall force capacity both in

the direction of the flanges (NS direction - Figure 3.8d-e) and also in the direction of the web

(EW direction - Figure 3.8f).
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Figure 3.5: TUC: Out–of–plane buckling and compression failure of the concentrated reinforcement

layout flange at position E (West flange end in compression) at an SRSS drift of ∼ 1.0%. Front view of

the wall (a); close-up view of the buckled flange end (b); outside view (c) and inside view (d) of the West

flange.

Figure 3.6: TUC: Crushing of the concrete in the flange with distributed reinforcement (East) at position

H (East flange end in compression) at an SRSS drift of ∼ 2.5%. View for inner side of the East flange (a)

and view from the outer side: far-off view (b) and close-up.

Failure mode when loading along the diagonal H-G: Continuing loading along the E-F diagonal

would have led to a complete destruction of the West flange due to the out-of-plane buckling

compression failure at 1.0% drift. For this reason, this loading cycle was not completed and the

wall was cycled along the H-G diagonal instead. However, loading along this diagonal led to a

compression failure of the East flange at 2.5% SRSS drift, which had already been reached in a

previous cycle. At this point the test was stopped because of axial load failure (Figure 3.6 and

Figure 3.8g-i).
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Influence of reinforcement layout on buckling of longitudinal bars: Recent experimental research

on rectangular walls [HM+14] concluded however that walls detailed with distributed reinforce-

ment will reach lower ultimate drifts than walls with concentrated reinforcement, as the smaller

diameter bars in the boundary elements of the former will undergo early bar buckling for the

same stirrup spacing of the two walls. The failure of the U-shaped walls presented here was,

however, not controlled by bar fracture. The different diameters of longitudinal reinforcement

bars in the flanges with concentrated (West) and distributed reinforcement (East) had, however,

an influence on the onset of bar buckling and the drift at which first bar fractures were observed.

Three of the four confined boundary elements of the U-shaped walls were detailed with D8

longitudinal reinforcement bars, i.e., the end of the flange with distributed reinforcement (East)

and the two corners between a flange and the web. The fourth boundary element, i.e., the end

of the flange with concentrated reinforcement (West) was detailed with D12 vertical bars. All

four boundary elements featured the same stirrup spacing (Figure 3.1a). D8 bars of the boundary

elements buckled indeed before any D12 bar of the West flange end buckled (Figure 3.10b): Two

D8 bars first buckled in the East flange end in the first cycle at 1.5% drift at position H followed

by the buckling of one D8 bar in the confined corner between East flange and web in the second

cycle at 2.0% drift at position F. In the confined corner between West flange and web one D8 bar

first buckled in the first cycle at 2.0% drift at position G. In the following cycles, further D8 bars

buckled in these confined boundary elements. And finally, buckling initiated also in the West

flange end when a D12 bar buckled in the cycle at 2.5% drift at position E. Outside the boundary

elements, bar buckling occurred only in the unconfined concrete of the flange with concentrated

reinforcement (West). For this flange the outer D6 bar closest to the confined flange end buckled

in the first cycle at 2.5% drift at position G, hence before any buckling occurred in end of this

flange.

Bar fractures first occurred in the cycle at 2.5% drift at position G when three D8 bars fractured

in the East flange end. Their fracture however did not significantly affect the wall strength, i.e.,

the wall retained more than 80% of its SRSS force capacity (Figure 3.8c, g-i) and also of the NS

force capacity (Figure 3.8d), and was hence not considered as failure. The strength drop was not

significant since bar diameters are small and uniformly distributed throughout the flange.

Influence of the reinforcement layout on the wall stability: The observed failure modes suggested

that the flange with distributed reinforcement layout (East flange) was less prone to out-of-plane

buckling failure than the flange with concentrated reinforcement layout (West flange). Mechanical

models by Paulay and Priestley [PP93] and Chai and Elayer [CE99] show that the lateral stability

of the wall boundary element depends strongly on the maximum tensile strain the wall boundary

element had been subjected to. This threshold value of tensile strain that triggers the out-of-plane

instability decreases with increasing longitudinal reinforcement ratio [CE99], [MK03]. As a

result, flange ends with large longitudinal reinforcement contents—such as those in sections with

concentrated reinforcement layout—are more susceptible to out-of-plane buckling than flange

ends of sections with lower longitudinal reinforcement contents as in distributed reinforcement

layouts [MK03]. This trend is in line with the observed flange failures.
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Drift capacities: Along both diagonals, one full cycle with 2.5% SRSS drift was completed before

the strength dropped by 20% or more. For the test here, the wall flange with distributed and the

wall flange with concentrated reinforcement reached the same drift capacity. The failure modes

attained for the two loading directions were, however, rather different and strongly influenced by

the respective reinforcement layouts. Based on the test observations the reinforcement layouts

influence the following phenomena:

The drift related to the onset of bar buckling and bar fracture: For distributed reinforcement

layouts, the diameter of the longitudinal bars in the boundary elements is typically smaller

than for concentrated reinforcement layouts. For the same stirrup spacing, bars in the

distributed reinforcement layout will therefore buckle and fracture at smaller drifts.

The out-of-plane stability of the plastic zone: The larger the longitudinal reinforcement content

in the boundary element, the more prone is the plastic zone to out-of-plane instability. For

TUC, out-of-plane instability occurred for the West flange (concentrated reinforcement)

but not for the East flange (distributed reinforcement).

The influence of the reinforcement layout on crack widths and shear deformations is discussed in

Sections 3.3.2 and 3.3.4 respectively. For TUD the reinforcement layout had also an influence on

the compression zone depth, which is discussed in the following section.

3.3.1.2 TUD

TUD, the test unit with an axial load ratio of 0.15, failed due to an explosive compression failure

of the concrete in the flange with distributed reinforcement (East flange, Figure 3.7b-c). The

compression failure occurred after reaching position H in the second cycle at 1.5% drift (Figure

3.9c, g-i). The compression failure initiated in the confined part of the flange end and extended

suddenly to the unconfined part of the flange. Once the behaviour stabilised again, the flange

had crushed along ∼ 80% of its length (Figure 3.7c). In the previous cycle, visual inspection

indicated only limited crushing of the boundary element as shown in Figure 3.7a.

The explosive failure and the extensive concrete crushing were caused by the large compression

depth and significant compressive strains in the East flange at position H. Already in the first cycle

at position H at 1.5% drift, the compressive strains computed from optical measurements reached

for the unconfined concrete of the flange ∼ 0.003 (average strains over the height h = 75−200

mm, h measured from top of foundation). Due to the larger axial load ratio the compression zone

depth of TUD was larger than that of TUC. In addition, the distributed reinforcement layout in

the East flange led to a larger compression zone depth for the East flange than for the West flange.

But most importantly under diagonal loading with the flange end in compression (positions E and

H), the compression depth of the flange end is considerably larger than in the case of orthogonal

loading with both flange ends in compression (position C) as local deformation response indicates

(see Section 3.3.3.2).
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Figure 3.7: TUD: explosive compression failure of the distributed reinforcement layout flange (East

flange). Wall condition at 1st cycle at position H at 1.5% drift (a-b) and wall condition after failure in the

2nd cycle at position H at 1.5% drift: view on the inner side (c) and view on the outer side (d).

For TUD, the wall failure along the H-G diagonal was marked by ∼ 75% loss in the SRSS force

capacity (Figure 3.9c). The loading was therefore continued in the E-F direction, but already in

the first cycle concrete crushing in the web occurred leading to a significant strength drop at a

drift of ∼ 1.0% (Figure 3.9f). Moreover, the wall was no longer able to carry the nominal axial

load of 1950 kN.

The shear demand on TUD (SRSS force) was on average ∼ 36% larger than on TUC due to the

increased axial load ratio of the former (Figure 3.8b-c and Figure 3.9b-c). The displacement

capacity of TUD on the other hand was only 1.5% drift as compared to 2.5% drift for TUC. For

TUC the failure was initiated by large out-of-plane deformations of the flange at zero SRSS drift

(Figure 3.5) for TUD failure occurred at peak drift of a cycle when the flange failed suddenly

leading to an extensive crushing band along almost the entire length of the flange (Figure 3.7b-c).

3.3.2 Crack patterns

The crack patterns for a U-shaped wall tested under different loading directions have already been

discussed in detail elsewhere [IR05] and [BDP08b]. Beyer et al. [BDP08b] observed in their

tests, that in the web the crack patterns were similar to those encountered for typical rectangular

walls while the flanges had the steepest cracks of the entire wall, which opened when the flanges

were loaded along the diagonal directions towards positions E and H. The steepest cracks in the

web, opened in its half upper part also at positions E and H. The same observations were found

valid for the tests presented herein (Figures 3.11 and 3.12).

Since the two flanges of TUC and TUD were detailed with distributed and concentrated rein-

forcement layouts, the crack widths, spacing and the crack angles are of interest, as differences

between the two flanges were expected. Previous numerical and experimental investigations

on RC walls have shown that for concentrated reinforcement layouts, cracks in the unconfined

concrete part have larger widths and larger crack spacing than in the distributed layout case

[Bru09], [MK03] and [RA+14].
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Figure 3.8: TUC: loading positions (a), SRSS force-displacement hystereses (b-c) and for individual NS

and EW directions (d-i).
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Figure 3.9: TUD: loading positions (a), SRSS force-displacement hystereses (b-c) and for individual NS

and EW directions (d-i).

Figure 3.10: TUC: Sequence of bar buckling and fracture.
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Chapter 3. Quasi-static tests of two U-shaped walls under diagonal loading

Figure 3.11: TUC: Crack patterns at the beginning of 1.5% drift cycles: front view (a); back view (b); view

of the West flange (concentrated reinforcement) (c) and view of the East flange (distributed reinforcement)

(d).

During the testing of TUC and TUD, crack widths of selected cracks were measured manually at

several load steps. The comparison of maximum crack widths in the unconfined concrete part of

the two flanges under symmetric loading conditions for both flanges (i.e. Position C and Position

D) is shown in Figure 3.13c-d up to 0.8% drift, the last drift where loading to these positions

was applied. As expected, at Positions C and D, crack widths in the flange with concentrated

reinforcement layout (West flange) were on average 40% larger than in the flange with distributed

reinforcement layout (East flange). The inaccuracy of manual measurements for crack widths

under 1 mm, could explain the outliers in the graph: position C, δ = 0.6% and position D,

δ = 0.8%. As a result of the differences in crack patterns, at the end of the test after both flanges

underwent an equal number of loading cycles, the unconfined concrete of the concentrated layout

flange was more damaged than the unconfined concrete of the distributed layout flange (Figure

3.13a-b).

Crack angles in the unconfined concrete part of the flanges were measured from photos, averaging

the angles over the height h = 0−1.7 m for cracks that formed for the same loading direction.

Crack angles with the wall vertical axis were ∼ 15−25% smaller for the West flange than for

the East one when flange ends were in tension due to ∼ 15% higher force capacity (and hence

also higher shear demand) of the former. Crack angles varied between TUC and TUD, with

∼ 30% smaller angles with the wall vertical axis measured for TUD, indicating the increased

shear demand imposed on this wall, both on the web and on the flanges (Figures 3.11 and 3.12).

In addition the cracks were more closely spaced for TUD, which is probably the result of the

more closely spaced shear reinforcement for this test unit.
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Figure 3.12: TUD: Crack patterns at the beginning of 1.5% drift cycles: front view (a); back view

(b); view of the West flange (concentrated reinforcement) (c) and view of the East flange (distributed

reinforcement) (d).

Figure 3.13: Influence of the longitudinal reinforcement layout on the damage to the unconfined concrete

of the wall flanges. TUC wall flange condition at the end of the test: concentrated reinforcement layout

(West flange) (a) and distributed reinforcement layout (East flange) (b). Maximum crack widths in the two

flanges under symmetrical loading conditions (c-d).
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Chapter 3. Quasi-static tests of two U-shaped walls under diagonal loading

3.3.3 Local deformation response specific to diagonal loading

This section presents strain profiles that illustrate the deformation response specific to U-shaped

walls under diagonal loading. More specifically, the out-of-plane bending of the flanges is

discussed in Section 3.3.3.1 and the section deformation at the wall base in Section 3.3.3.2.

3.3.3.1 Vertical strains on the inner and outer side of the flange ends

The vertical strains on the inside and the outside of the flange ends were obtained from measure-

ments of the LVDT chains mounted on the inner and outer sides of the flange ends (Figure 3.2b

and Figure 3.14b, d). Figure 3.14 shows these vertical strains obtained for diagonal loading at

drifts of 0.4% and 1.0%. The former corresponds approximately to yield drift while the latter

corresponds to the largest drift that was reached by both TUC and TUD in both diagonal loading

directions.

The strains shown in Figure 3.14 are computed for the inner and outer faces of the wall; for this

purpose the measurements were corrected for the fact that there was an offset of approximately

4 cm between wall face and LVDT. The correction was done assuming that the strains varied

linearly over the flange thickness, i.e., between the LVDT chains on the inner and the outer side

of the flange end.

When the flange ends are under compression (positions E and H), the compressive strains on the

outer flange face that were measured with the lowest LVDT (h = 50−150 mm) are up to ∼ 2.5
times larger than on the inner flange face (Figure 3.14a-d). When the flange ends undergo tension

(positions F and G) the tensile strains on the outside are again larger than on the inside but only

by a factor up to ∼ 1.4 (Figure 3.14e-h). This strain gradient was observed also for symmetric

loading positions (NS direction) but was significantly larger in the case of diagonal loading. The

large strain gradient under diagonal loading diagonal loading promotes the out-of-plane buckling

of the flange ends (Section 3.3.3.1). As discussed in Section 3.3, TUC failed after out-of-plane

buckling of the West flange end. For TUD, the out-of-plane buckling was not critical since due

to the increased axial load ratio the tensile strains at the flange ends, which are crucial for the

triggering out-of-plane buckling [PP93], [CE99], were approximately 60% smaller than for TUC.

3.3.3.2 Vertical strains at the base of the wall

The vertical strains at the base of the wall, which are discussed in this section, were derived from

the optical measurement data and were therefore taken on the outer perimeter of the walls. The

first two rows of LEDs, namely the row on the foundation and the first row on the wall, were used

to determine average vertical strains for h = 0−75 mm. Figure 3.15 shows these vertical strain

profiles at the wall base along the perimeter of the U-shaped section for the diagonal loading

directions again plotted for the two above mentioned drift levels, i.e., 0.4% and 1.0%.
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Figure 3.14: TUC and TUD: Vertical strains on the inside and outside of the flange ends (e-l) computed

from measurements of LVDT chains mounted on the two sides of the flange ends (a-d).
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This height interval, h = 0−75 mm, at the base of the wall represents the relevant section for

the force transfer mechanism from wall to foundation. While the magnitudes of the strains over

h = 0− 75 mm may be influenced by the tensile and compressive strain penetration into the

foundation, the general trends in the strain distribution along the wall perimeter (i.e. whether

strains are compressive or tensile) are not affected. Therefore it is possible to compare qualitatively

the experimentally obtained vertical strain distribution with the one estimated using plane section

analysis, a widely used analytical tool which forms the basis of most beam-column formulations.

The two strain profiles: experimental and analytical are compared later in this section and the

discrepancies between the two are discussed.

Figure 3.15b shows the vertical strain distribution at the wall base for loading towards position

E of TUC. Peak values of compressive strains were attained—as expected—at the flange end

but also near the intersection of web and West flange. This second peak compressive strain

indicates the presence of a compression zone at the intersection of web and West flange which is

less evident at drift levels in the elastic range (0.4% drift) and more pronounced after reaching

the nominal moment capacity (1.0% drift). The presence of this compression zone is important

because, it cannot be captured by a plane section analysis but might be at the core of the force

transfer mechanism from wall to foundation for shear forces in the direction of the web as

discussed in the following section.

Comparison with section analysis estimates

The plane section analysis of the U-shaped wall was performed using a zero-length fibre element

in the “Opensees” software [MMG09]. The U-shaped section was divided into 212 concrete fibres

and 66 reinforcement fibres. The concrete areas were grouped into different zones depending

on the degree of confinement. The Concrete04 material model was used for the stress-strain

behaviour of the concrete fibres, while confinement properties were computed according to

Mander et al.[MPP88]. The Steel02 material model with default parameters was used for the

reinforcement stress-strain behaviour. Monotonic analyses were performed in displacement

control (i.e., curvature control) along the geometric diagonals of the section. Yield, nominal and

ultimate strain limits were determined following recommendations by [PCK07].

Figure 3.16 compares for position E of TUC the experimentally obtained vertical strain distribu-

tion at the wall base with the one obtained from section analysis. This figure shows that section

analysis fails to capture the parabolic variation of the experimental compressive strains along

the West flange, with the two compressive strain peaks at the West flange end and the corner

between web and West flange. As a consequence, the compression zone at the intersection of

web and West flange where high compressive strains were measured (i.e., almost as high as in the

West flange end) is also not captured with the plane section assumption. As previously stated, the

presence of the extra compression zone at the corner web-flange plays a role in the force transfer

mechanism from wall to foundation.
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Figure 3.15: TUC and TUD: Vertical strains at the base of the wall under diagonal loading directions

determined from optical measurements over the height h = 0− 75 mm above foundation on the outer

perimeter of the wall. Tensile strains are plotted on the outside of the U-shaped section (positive strains)

and compressive strains on the inside (negative strains). The values of the strains can be measured from the

outer face of the U-shaped section using the strain scale provided in the left down corner of each subplot.
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Shear forces can be transferred from wall to foundation only through compression zones at the

base of the wall as only small shear forces can be transferred through a tension zone. At position

E, section analysis yields only one compression zone at the West flange end (Figure 3.16c). This

would imply that all shear forces are transferred to the foundation at the West flange end. The

shear force in East-West direction, which is originally carried by the web (Figure 3.16a), would

therefore be transferred as an out-of-plane shear force through the West flange end.

The experimental vertical strain profile (Figure 3.16b) indicates however an additional compres-

sion zone at the corner between web and flange which can serve for transferring the web shear

force to the foundation through a more direct in-plane force path. While the test set-up did not

allow measuring the distribution of reaction forces along the base of the wall, the compression

zone at the corner between web and West flange represents strong evidence that at least part of

the shear force in the web is transferred to the foundation through this compression zone.

Similarly, at position F, the experimentally determined vertical strains deviate again from the

plane section analysis estimates (Figure 3.17b-c) due the presence of a compression zone at

the corner between West flange and web (Figure 3.17c and Figure 3.17a-b). For this case, it

is the shear force from the West flange that is most likely at least partially transferred to the

foundation through this corner. Analogous comments apply to positions H and G and to TUD

(Figure 3.17d-i).

Another difference between the experimentally obtained vertical strain distribution at the wall

base and the one obtained from section analysis at position E is the magnitude of the vertical

strains at the East flange end (Figure 3.16). Although as previously stated the magnitudes of the

two vertical strain distributions cannot be directly compared, it is however important to note that

the magnitude of the experimentally determined strains closest to the East flange end is lower

than the reinforcement yield strain even at a drift of 1.0%, i.e., approximately when the nominal

moment is reached. The experimentally determined vertical base tensile strains are expected

to be influenced by tensile strain penetration into the foundation which increases the values of

the tensile base strains [HRS04]. However, the experimentally determined strains are still about

four times lower than the section analysis strains at the East flange end (Figure 3.16c). This

clearly indicates that the experimentally determined tensile strains in the East flange end are

significantly lower than section analysis predictions, and hence so is the tensile force provided

by the reinforcement in this region. Therefore, the contribution of the tension reinforcement in

the East flange to the wall strength is significantly lower than what section analysis suggests,

i.e., not all reinforcement in the East flange is contributing effectively to the wall strength.

Analogous comments apply to positions E and H of TUD. The previous observation on the

effective contribution of the tension reinforcement does not affect positions F and G. For these

positions the flange ends are the most tensioned zones of the section and hence the reinforcement

in these zones contributes significantly to the wall strength. The implications of this are further

discussed in Section 3.3.5.

Such significant deviations from the plane section assumption are possible due to the large shear

deformations of the sections of slender core walls under diagonal loading. Shear deformations

can account for up to 50% of the total wall section deformation when sections are mainly in

tension [BDP08b] and [ZL14] and similar values have been found also for the U-shaped walls

presented herein (see Section 3.3.4).
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Figure 3.16: TUC: Compressive zones at the wall base under diagonal loading at position E at nominal

point: nominal forces (a); vertical strain distribution from experimental measurements at the outer side of

the wall (b) and from plane section analysis prediction also at the outer side of the wall (c). The values of

the strains can be measured from the outer face of the U-shaped section using the strain scale provided in

the left down corner of the subplots.
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Figure 3.17: TUC: Compressive zones at the wall base under diagonal loading at position F at nominal

point: nominal forces (a); vertical strain distribution from (b) experimental measurements and from plane

section analysis prediction (c). The values of the strains can be measured from the outer face of the

U-shaped section using the strain scale provided in the left down corner of the subplots.

Influence on confinement lengths

An important issue that results from the analysis of vertical strain profiles at the wall base is the

size of the compression zone at positions H shown in Figure 3.18 but also at position E. At these

positions the compression zones are very deep (in particular along the outer perimeter). This large

compression zone creates the potential for large compressive strains outside the confined area and

hence for concrete crushing outside the confined boundary elements. Figure 3.18 compares the

extent of the compressed flange zone under diagonal loading with the flange end in compression

(positions H or E) against the compressed zone under symmetrical loading with both flange ends

in compression (position C). The strain levels are compared for 0.6% drift which is the largest

drift for which the wall was loaded to positions C and H.

Both experimental data and section analysis results indicate that the compression zone is signifi-

cantly larger at position H (and by extension also at E) than at C. Hence the diagonal loading case

with the flange ends in compression should be the determining one for computing the confinement

length of the flanges.
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Figure 3.18: TUC: Vertical strains at the base of the wall for loading with the both flange ends in

compression (position C) and with one flange end in compression (position H): loading positions (a),

experimentally determined on the outer wall (b) and section analysis (c). Tensile strains are marked as

positive and compressive strains negative. The values of the strains can be measured from the outer face of

the U-shaped section using the strain scale provided in the left down corner of the subplots.

3.3.4 Shear to flexural displacements ratios

Typically the total horizontal displacement of a RC wall is considered to be composed of:

flexural deformations (including base rotation due to strain penetration into foundation), shear

deformations and sliding displacements at the wall base. In order to investigate the contribution

of the shear displacements to the total displacement, the shear to flexural displacements ratio

(Δs/Δ f ) is generally used as an indicator. This ratio was found to be constant over the inelastic

range for flexure-controlled walls [Daz00], [BDP11] and [ZL14].

For the two tests presented in this paper, the Δs/Δ f ratios were determined from the optical

measurement data. For each wall section component, the LED grid was divided into rectangular

elements each spanning horizontally between the two outer LED columns and vertically between

two consecutive LED rows. For each such rectangular element, flexural deformations were

computed by double-integration of the curvatures and shear deformations were computed from

the change in length of the diagonals of the elements, according to the procedure explained

in more detail in [Han13]. The procedure for computing the curvatures was slightly modified

by assuming a best linear fit of the vertical displacements over each row of LEDs. Flexural

deformations at the height of load application were derived assuming that curvatures decrease

linearly to zero from the top of the measurement grid (∼ 1.7 m) to the height of load application

(hEW = 3.35 m and hNS = 2.95 m). Over this same height interval shear deformations were

considered to be zero, as such deformations concentrate mainly in the plastic hinge region

[HRS04] and [BDP11] and hence below the height of ∼ 1.7 m.

The sliding displacements at the wall base were determined as the difference in horizontal

displacements of the foundation row of LEDs and the first row on the wall (measuring height

h = 0− 75 mm). In agreement with findings in [BDP08b], sliding displacements were small

accounting for a maximum of 3.7%, 5% and 3.5% of the total top displacement for the web, West

flange and East flange respectively for TUC at 2.5% drift and accounted for less than 2% for all

wall sections of TUD. Therefore the sliding displacements were included in the computation of

the shear displacements.
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Previous experimental research on RC core walls by [BDP08b] and [ZL14] found that the

contribution of shear displacements to the total displacements depends strongly on the loading

direction, with the largest contribution being when wall sections (flanges or web) are under net

tension. For U-shaped walls, this is the case for the web at positions E and H, the West flange

at position F and the East flange at position G. The shear displacements for these loading cases

were found to be significantly larger than those for typical slender rectangular walls ([BDP08b]

and [ZL14]). These trends are confirmed also by the two wall tests presented herein (Figure

3.19b, c and Table 3.4). The shear deformations are as large as ∼ 50− 70% of the flexural

deformations for the web at positions E and H (Figure3.19c – left), and as large as ∼ 60−100%

of the flexural deformations for the flange under tension at diagonal loading: positions F and

G (Figure 3.19b – right). For both the flanges and the web mainly in tension at these loading

positions, the contribution of the shear deformations to the total deformation increased with

higher axial load ratio (Figure 3.19b-c). Higher axial load ratio leads to higher shear demand on

the wall sections, hence smaller crack angles with vertical axis of the wall (Section 3.3.2) and

therefore larger shear deformations [HRS04], [BDP11], [Han13].

The longitudinal reinforcement layout (concentrated or distributed) also influences the contribu-

tion of the shear displacements to the total displacements: Δs/Δ f ratios are larger for the flange

with concentrated reinforcement layout than for the flange with distributed reinforcement layout

case [Bru09] and [RA+14]. Also this trend is confirmed by results from TUC and TUD, by com-

paring the two flanges with concentrated (West) and distributed (East) longitudinal reinforcement

distribution under symmetric loading conditions. More precisely Δs/Δ f ratios are compared for

the NS cycles – positions C and D (Figure 3.19d) and for the diagonal cycles – West flange at

positions E and F with East flange at positions H and G (Figure 3.19b). Δs/Δ f ratios are averaged

over the drift range over which the Δs/Δ f ratios are approximately constant, i.e., 0.6% to 2.0%

drift or 1.0%− 2.0% drift (flange in tension at positions F and G) (Figure 3.19), are given in

Table 3.4.

The flange with concentrated reinforcement layout (West flange) leads to larger Δs/Δ f ratios

than the flange with distributed reinforcement layout (East flange). The difference in Δs/Δ f

ratios results from the different longitudinal reinforcement ratios of the wall section between the

boundary elements, which is smaller for the concentrated reinforcement layout. As a result, crack

widths are larger in this area (Section 3.3.2) and so are shear deformations. This holds for either

test units irrespective of whether the flange is mainly under tension (positions F, G and D) or

compression (positions C, E and H). While the difference in percentages is substantial (∼ 14% to

∼ 44%), the absolute difference in Δs/Δ f ratios between the two flanges is only significant when

the flanges are in tension and the wall is loaded in the diagonal direction (difference in Δs/Δ f

ratios of 0.20 and 0.29) and relatively small when the flanges are in compression, i.e., as small as

0.06 (Table 3.4).
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Figure 3.19: TUC and TUD: shear to flexural displacement ratios for: the flange under compression at

position E and H (a), web under compression at positions F and G and under tension at E and H (b) and

both flanges at positions C and D (c)
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Figure 3.20: TUC and TUD: comparison of the top displacement obtained as the sum of flexural and

shear displacements, derived from the LED measurements, with the top displacements Dtot as measured

by the top LVDTs and corrected for foundation flexibility. Comparison is done for the two wall flanges,

West and East at positions E, H and C.

This does, however, not apply to TUD when the flanges are in compression: here the Δs/Δ f

ratios are slightly larger for the flange with distributed reinforcement (East flange) than for the

flange with concentrated reinforcement (West flange). It is postulated that this small difference

stems from the assumptions behind the derivation of the flexural displacements: the flexural

displacements were computed fitting a linear strain profile over the flange length, which yields for

the concentrated reinforcement layout under high axial forces a poorer fit than for the other cases.

As a result, the flexural displacements as well as the total displacements tend to be overestimated

(Figure 3.20).
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Table 3.4: Average shear to flexural deformation ratios: comparison between symmetric loading positions

for the two flanges with concentrated and distributed reinforcement

Flange in compression Flange in tension

Flange Pos. E/H Pos. C Pos. F/G Pos. D

TUC

Distrib. (East) 0.18 0.10 0.54 0.21

Conc. (West) 0.24 0.14 0.74 0.24

Difference distr.-conc. 0.06 0.04 0.20 0.03

Percentage difference [%] 33% 40% 37% 14%

TUD

Distrib. (East) 0.19 0.11 0.69 0.22

Conc. (West) 0.13 0.09 0.98 0.26

Difference distr.-conc. -0.06 -0.02 0.29 0.04

Percentage difference [%] -32% -18% 42% 18%

3.3.5 Comparison of experimentally determined moment capacities with section
analysis estimates

The U-shaped wall strength capacity under diagonal loading was shown to be significantly

overestimated by a plane section analysis, especially for loading with one flange end in com-

pression (positions E and H) [BDP08b]. For the two U-shaped wall tests presented here, the

experimentally determined moment-curvature hystereses are compared with the values obtained

from section analysis (Figure 3.21). The numerical model used for the section analysis was

briefly described in Section 3.3.3.2. The experimental curvature was determined from the LVDT

measurements, corrected to filter-out the influence of tensile and compressive strain penetration.

For this, the procedure used by Hines et al. [HRS04] was employed. The best linear fit line of the

curvature profile over the height interval h=50-850 mm was extrapolated to the wall base and

the intersecting value was taken as the experimental base curvature (Figure 3.20d). The SRSS

moment was computed as:

MSRSS =
√

(M2
EW +M2

NS) · sign(ΔNS) (3.3)

where MEW and MNS are the moments at the base of the wall for bending around the axis

perpendicular to the web and parallel to the web respectively. The SRSS value was multiplied by

the sign of the NS displacement for plotting the hysteresis loops consistently.
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Figure 3.21: Comparison between the experimentally determined moment-curvatures and results from

plane section analysis (PSA) for the diagonal loading directions (a) for TUC (b-d) and TUD (e-i). The

position of the nominal point is indicated in the moment-curvature relationships for both experiemental

(round marker) and plane section analysis (square marker).

For both test units, section analysis overestimates the SRSS moment at positions E and H by

∼ 15 to 25%. For position F of TUC and G of both TUC and TUD the match is relatively good

(less than 10% overestimation) (Figure 3.21 b-c, e-f). For position F of TUD the overestimation

is slightly higher (∼ 12%) but this is because the maximum moment capacity was most likely

not reached for this position due to prior wall failure in the other diagonal direction (see Section

3.3.1.2 and compare Figure 3.21e and f). The SRSS moment capacity is overestimated by section

analysis because it fails to capture the experimentally determined vertical strain distribution at

the base of the wall under diagonal loading (see discussion in Section 3.3.3.2).

More specifically, plane section analysis overestimates the flange width over which the tension

reinforcement contributes effectively to the strength capacity of the wall and hence overestimates

also the wall moment capacity. This effect was found to be important at positions E and H (see

Section 3.3.3.2) and hence explains the larger moment overestimations at these loading positions.

In addition, plane section analysis does not capture the extra compression zone at the corner

web-flange (see Section 3.3.3.2). Wall moment capacity estimated with plane section analysis

accounts for this zone as being in tension and hence the reinforcement in this corner contributes

to the wall strength which should not be the case as these zones are in compression (Figure 3.16

and Figure 3.17). This compression zone is again more evident at positions E and H (Figure 3.15

b, d, f, h) and less important for position F and G (Figure 3.15 c, e, g, i) hence also the relatively

smaller moment overestimations for the latter loading positions.
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3.4 Conclusions

This chapter presented results from the experimental tests of two U-shaped walls under quasi-

static loading along the diagonal directions of the section, which were loaded up to axial load

failure. The main objective was to investigate the specific behaviour of U-shaped walls under

diagonal loading. In addition, the effect of distributing the longitudinal reinforcement along

the wall length instead of concentrating it in the boundary elements was studied. From the

experimental measurements and observations the following conclusions concerning the behaviour

of U-shaped walls under diagonal loading were drawn:

• The plane section assumption, which is the basis of simple analysis tools for RC walls, does

not hold for the U-shaped walls under diagonal loading since it fails to capture the presence

of additional compression zones at the corners between web and flange. Moreover plane

section analysis overestimates the width of the flange over which the tension reinforcement

contributes to the wall moment capacity. Both these effects result in overestimations of the

moment capacity of U-shaped walls with plane section analysis for diagonal loading with

largest overestimations for loading with the flange end in compression.

• Flanges of U-shaped wall subjected to bidirectional loading seem prone to out-of-plane

buckling. For rectangular walls loaded in-plane, the out-of-plane instability is mainly

caused by construction imperfections. For flanges of U-shaped walls, out-of-plane buck-

ling of the flange ends is in addition promoted by the significant vertical strain gradient

across the flange width when the wall is subjected to diagonal loading, which leads to an

eccentricity of the axial force acting on the boundary element.

• The compression depth of the flange ends is the largest under diagonal loading with one

flange end in compression, and hence the confinement length of the flange end should

be estimated from this loading case. Particular attention should be given to adapt the

confinement reinforcement to the longitudinal reinforcement layout used, as distributed

reinforcement layout will generally require smaller stirrup spacing due to the smaller

vertical bar diameter and longer confinement lengths.

• The axial load ratio, which was the main varying parameter between the two tests, was

found to influence the wall ultimate displacement and the failure mode. The higher axial

load ratio reduced the ultimate displacement capacity of the wall as the failure modes of

both test units were compression-controlled. Both walls failed under diagonal loading with

one flange end in compression, and their failure modes involved concrete crushing in the

flange unconfined part. All these observations underline: (1) the importance of proper

confinement of the flange ends to ensure the wall displacement ductility as well as (2) the

importance of distributing more than the minimum required longitudinal reinforcement

content within the unconfined concrete part of the wall to delay or avoid excessive concrete

crushing in these regions.
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The experiments showed that the longitudinal reinforcement layout influenced the following

mechanisms:

Bar buckling : For distributed reinforcement layouts, the diameter of the longitudinal bars in

the boundary elements is typically smaller than for concentrated reinforcement layouts.

For the same stirrup spacing, bars in the distributed reinforcement layout will therefore

buckle and fracture at smaller drifts.

Out-of-plane buckling of the boundary element over the height of the plastic zone : Mechan-

ical models have shown that the larger the longitudinal reinforcement content of the bound-

ary element, the more prone it is to buckling. This was confirmed by the failure mode of

TUC, where only the flange with the concentrated reinforcement developed an out-of-plane

failure. Hence, one possible way of minimising the potential for out-of-plane buckling of

the flange ends is to distribute the longitudinal reinforcement along the wall length.

Compression zone depth : Distributed reinforcement layouts lead to larger compression zone

depths, which increases the susceptibility to concrete crushing. This was observed for

TUD, where the compression depth extended into the non-confined part and a sudden

crushing of the entire flange with distributed reinforcement was observed.

Crack widths : A distributed reinforcement layout features higher reinforcement contents in the

wall section between the boundary elements than a concentrated reinforcement layout. The

experiments showed that the increased reinforcement content helps controlling the crack

widths in this area.

Shear deformations : As a result of the smaller crack widths, distributing the longitudinal

reinforcement reduced also the shear deformations. This seems particularly important

for U-shaped walls as shear deformations can account for up ∼ 40− 50% of the total

deformation when the flanges or the web are mainly in tension.

The experimental data gathered from the two tests will complement the limited database of core

walls subjected to bidirectional loading. This data will serve as validation for future numerical

and mechanical models.

3.5 Dataset

The experimental data from the two quasi-static cyclic tests was made publicly available. The

Appendix of this report contains the link where the data can be downloaded and it also describes

how the data is organised.
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4. Experimentally derived quantitites
for the plastic hinge model

4.1 Introduction

Most of the equations for quantities involved in plastic hinge (PH) analysis are empirical or

semi-empirical and have been mainly developed for rectangular walls or even for beams and

columns (see Section 2.2.2). The suitability of these equations for the plastic hinge analysis of

core walls has been only marginally assessed [BDP08b], [SS+13] despite the popularity of the

the plastic hinge method within the design engineering community. Therefore, in this section,

existing estimates of plastic hinge quantities are compared to experimental results from four

U-shaped wall tests, namely to two quasi-static cyclic tests presented in Section 3 (TUC and

TUD) and to two previous tests by [BDP08b] (TUA and TUB), with the following objectives in

mind:

• asses suitability of the state-of-the-art PH estimates for application to U-shaped walls and

establish if new estimates are required

• derive experimental quantities for PH analysis using a consistent approach in order to allow

validation with numerical models

The findings in this section aim to complement the previous study by [BDP08b] on the suitability

of the state-of-the-art PH estimates for application to U-shaped walls. Note that some of the

experimentally derived quantities for TUA and TUB might be different from the original reference

since procedures for their derivation were modified in this chapter. Besides the comparison with

the estimates, the experimental results will also be used in Chapter 5 to validate two numerical

models for U-shaped walls, which in turn will be used for parametric studies in Chapter 6.

Therefore the derivation procedures of the PH quantities from experimental results required a

more consistent approach. These procedures will be presented throughout this chapter for each

investigated quantity.
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Chapter 4. Experimentally derived quantitites for the plastic hinge model

In the application of the PH analysis, the force-displacement relationship is obtained from a

moment-curvature response of the wall base section using estimates for the shear to flexural

displacements ratio Δs/Δ f , the plastic hinge length Lph and the strain penetration length Lsp

(Figure 4.1). The moment-curvature response can be obtained from section analysis or its bi-linear

idealisation can be directly obtained from estimates of the key quantities, such as for example the

yield curvature φy. Therefore, in this section the following experimentally derived quantities are

compared to the estimates:

• Yield curvature φy

• Yield displacement Δy

• Plastic hinge length Lph

• Ultimate strain limits

• Shear displacements Δs

In addition, the effective stiffness Ke f f of the U-shaped walls is investigated for the different

loading positions. Although Ke f f is not a necessary quantity in the application of the PH model

is can be derived straightforwardly from PH quantities as the ratio between first yield force and

first yield displacement Ke f f = Fy/Δ′
y. This is equivalent to the ratio of between nominal force

and nominal yield displacement Ke f f = Fn/Δy. The effective stiffness Ke f f is an useful quantity

in the analysis and design of buildings with RC walls, e.g. in linear analyses of RC buildings

with walls for estimating the period of the structure.

The chapter starts with Section 4.2 which presents the derivation of the displacement components,

i.e., flexural and shear displacements, necessary in the further derivation of the PH quantities. The

experimental PH quantities are then compared to estimates in the order listed above. Particular

emphasis is placed on the yield displacement Δy results and the corresponding estimates (Section

4.4). The assumption of a linear curvature profile at first yield [PCK07] and modifications to

account for the extent of cracking over the wall height are also investigated. The chapter ends

with a section on the effective stiffness of U-shaped walls (Section 4.8).

4.2 Experimentally determined displacement components

During the testing of test unit C (TUC) and test unit D (TUD) (Section 3), the wall behaviour was

monitored by means of two different measuring systems, namely: (1) a conventional measurement

system composed of linear variable differential transducers (LVDTs) and load cells and (2) an

optical measurement system composed of active light emitting diodes (LEDs) glued to the outer

surface of the wall and three cameras tracking their displacements during the test. The two

systems are presented in detail in Section 3. While the conventional measurement system was

also used for the monitoring of TUA and TUB ([BDP08b]), the optical measurement system

was newly introduced for TUC and TUD. A similar optical measurement system was previously

used for rectangular RC walls by [Han13], which presents also procedures for derivation of

displacement components from such measurements.
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4.2. Experimentally determined displacement components

Figure 4.1: Plastic hinge analysis - obtaining the force-displacement response from the moment-curvature

response by means of several quantities: shear to flexural displacements ratio Δs/Δ f , strain penetration

length Lsp and plastic hinge length Lph

Having two independent measuring systems has allowed the computation of the displacement

components in two different ways and hence the cross-checking the experimentally derived data.

This section explains how the displacements components of TUC and TUD have been derived

from the two measurements systems.

Typically the total horizontal displacement of a RC wall is considered to be composed of:

flexural displacements (including base rotation due to strain penetration into foundation) and

shear displacements (including sliding displacements at the wall base). In general, the flexural

displacements can be determined by double-integration of the average curvatures over the height

of the wall. The shear displacements can then be computed through the so-called ”indirect”

method: by subtracting the flexural displacements from the measured top horizontal displacement.

Alternatively, if the measurement system permits, the shear displacements can be computed

directly from the shear distortion of instrumented rectangular panels on the surface of the wall.

All these methods are further explained in the following.

For the conventional measuring system, curvatures were determined from the average strains of

the LVDT chains mounted at the outside edges of the wall for each wall section (web or flanges)

and also for the diagonal directions. Curvatures along the wall height for the East flange were

computed, for example, as in [BDP08b]:

φ =
δSE,i/dhLV DT,i −δNE,i/dhLV DT,i

lw′ (4.1)

where δSE,i and δNE,i are the measured displacements in the i-th instrument from the wall base,

dhLV DT,i is the measuring base length of the i-th instrument and t ′ is the horizontal distance

between the SE and NE LVDT chains.
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Chapter 4. Experimentally derived quantitites for the plastic hinge model

The shear displacements were determined from the conventional measurement system through

the indirect method: by subtracting the flexural displacements from the total top horizontal

displacements. Shear displacements were computed in this manner for all wall sections, i.e., web,

West flange and East flange, and also for the diagonal direction of the wall.

Flexural and shear displacements were also computed from the optical measurement system. For

each wall section component, the LED grid was divided into rectangular elements each spanning

horizontally between the two outer LED columns (d = 8×100 mm for the web and d = 11×100

mm for the flanges) and vertically between two consecutive LED rows (dhLED,i = 125 mm for

TUC and dhLED,i = 100 mm for TUD) (Figure 4.2). Flexural displacements were computed as in

Equation 4.2a, assuming a constant curvature over the height of the rectangular element dhLED,i.

Due to premature loss of LEDs from the outer columns of the wall section, the curvatures were

computed using a best linear fit of the vertical displacements over each row of LEDs. The shear

displacements were also computed from the rectangular LED elements from the change in length

of the element diagonals (Equation 4.2b). No correction with curvature was performed for the

shear deformations as it was assumed that curvatures are constant over the height dhLED,i, for

which the shear displacements were computed [Hir84].

Figure 4.2: Sketch for the calculation of flexural and shear displacements from the optical measurement

data, for one rectangular element. A rectangular element taken from the LED grid on the web of TUC is

given as an example.
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4.3. Yield curvature

Δ f ,i = Δ f ,i−1 +θi−1dh+
φidh2

2
(4.2a)

Δs,i = Δs,i−1 +
D2

1,i −D2
2,i

4d
(4.2b)

For both measuring systems, flexural displacements at the height of load application were derived

assuming that curvatures decrease linearly to zero from the top of the measurement grid (∼ 1.7 m

for the LED grid and 2.65 m for the LVDT chains) to the height of load application (hEW = 3.35

m and hNS = 2.95 m). Over this same height interval for the LED grid, the shear displacements

were considered to be zero, as such deformations concentrate mainly in the plastic hinge region

[BDP11], [HRS04] and hence below the height of ∼ 1.7 m.

The sliding displacements at the wall base of TUC and TUD could be determined only from the

optical measuring system as the difference in horizontal displacements of the foundation row

of LEDs and the first row on the wall (measuring height h = 0− 75 mm). In agreement with

findings in [BDP08b], sliding displacements were small accounting for a maximum of 3.7%, 5%

and 3.5% of the total top displacement for the web, West flange and East flange respectively for

TUC at 2.5% drift and accounted for less than 2% for all wall sections of TUD. Therefore the

sliding displacements were included in the computation of the shear displacements.

All deformation quantities of TUC and TUD were corrected for foundation flexibility, i.e., sliding

and uplift of the wall foundation with respect to the strong-floor of the testing laboratory. Top

displacements due to foundation flexibility were derived from the optical measurement data, and

accounted for 6−8% of the top displacements at yield drift and decreased thereafter.

4.3 Yield curvature

4.3.1 Definition

Yield curvature is a concept introduced for design purposes and it marks the boundary between

elastic and inelastic phase in a bi-linear moment-curvature relationship describing the flexural

behaviour of an RC wall (Figure 4.1). It is defined as in Equation 4.3 where φ ′
y and My are the

curvature and respectively the moment corresponding to first yield, while Mn is the moment

corresponding to nominal point or to serviceability limit state (Figure 4.1).

φy = φ ′
y
Mn

My
(4.3)
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Chapter 4. Experimentally derived quantitites for the plastic hinge model

4.3.2 Determining the experimental first yield point

Typically the first yield point is defined for section analysis as the point on the moment-curvature

response when the most tensioned reinforcement first reaches the yield strain or when the most

compressed concrete fibre reaches a strain of -0.002, whichever occurs first [PCK07]. When

assessing the first yield point from experimental data, the question arises which experimental

strains should be taken for the comparison with these limit state strains.

4.3.2.1 Strains at base of the wall

Comparing the experimental strains recorded near the wall base (the section of the largest moment

demand) with plane section analysis strains will only lead to unreliable results as anchorage

deformation (or strain-penetration effects) heavily influences the magnitude of these strains.

The term ”strain penetration” describes the following phenomena: (1) the tensile strains in the

longitudinal reinforcement do not drop to zero immediately below the wall base, but decrease

gradually with depth into the foundation and (2) similarly, on the compressed side of the wall,

below the wall base, the concrete compressive strains also dissipate with depth into the foundation

[PCK07]. As a consequence, the measured tensile and compressive strains near the base of the

wall are not representative for the deformation of the wall section itself but contain also the

deformation due to strain penetration into the foundation, e.g. [HRS04], [BDP08b]. For the cases

of TUA to TUD, the vertical strain measurements from the first LVDT above the wall base over

the height h = 0− 50 mm and the first row of LEDs (for TUC and TUD only) from the base

(h = 0−75 mm) included this strain penetration effect.

4.3.2.2 Procedures for determining first yield

However, different procedures can be used to estimate the first yield point and/or the corre-

sponding curvature φ ′
y from the experimental data. For example, [BDP08b] determined the first

yield point of TUA and TUB, based on the comparison of the average LVDT strains measured

over h = 50− 250 mm, i.e., just above the base strains, with the limit strains. The first yield

curvature was then computed as the extrapolation to the wall base of the best-linear fit of the

curvature profile over the height of h = 50− 1650 mm, interval over which the experimental

curvatures were found to be linear. A procedure of computing the base curvature from the

curvature measurements above the base with a best linear fit was suggested by [HRS04].

Another possible procedure to find the first yield point is the one used by [DBB09] to relate dif-

ferent serviceability and ultimate limit states to section analysis strains. More precisely, [DBB09]

related the curvature obtained from section analysis with the experimental base curvature, which

was taken as the extrapolation to the wall base of the best-linear fit of the curvature profile over

the plastic zone length Lpz (i.e., height over which curvatures were larger than the yield curvature).

If the experimental base curvature would be computed as in the procedure by [HRS04], then this

curvature can be compared with the one from section analysis to determine the first yield point.

In order to derive the first yield curvature with any of the above procedures, it is necessary to

check the height over which the curvature profile can be considered as linear. Therefore, the

experimental curvature profiles at first yield are discussed in the following section.
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4.3. Yield curvature

4.3.2.3 Curvature profiles and cracked height at first yield

An initial determination of the first yield point was done for all test units using the procedure

by [BDP08b], i.e., by comparing the average LVDT strains above the wall base (h = 50−250

mm) with the limit strains previously mentioned. The LVDT strains at the wall base (h = 0−50

mm) were not considered due to the inclusion of the strain penetration effect, as previously

mentioned. Instead, the strains averaged over the second LVDT (h = 50−150 mm) and the third

(h = 150− 250 mm) LVDT from the base were taken for the comparison based on the crack

spacing at first yield [BDP08b].

The experimentally determined curvature profiles from all test units and for all loading positions,

obtained at first yield determined as above, are plotted in Figures 4.3 and 4.4 for all four test units.

The shape of the curvature profile at first yield is clearly not linear over the shear span of the wall

H, i.e., H = 3.35 m for the EW direction and H = 2.95 m for all other loading directions. The

shape of these curvature profiles can be approximated by a rather bi-linear trend: linear from base

up to about half the shear span, then again linear but with a different slope up to the shear span.

The linear branch from the wall base to about half the shear span, corresponds approximately to

the height of the wall which is cracked at first yield Hcr, while the upper part of the wall remains

uncracked.

In Figures 4.3 and 4.4, the extent of cracking over the wall height at first yield Hcr was computed

assuming a linear moment profile over the wall height. Hcr was determined as the maximum

value between the height where the moment equals the cracking moment Mcr and the wall length

lwall which was included to account for tension shift effects (Equation 4.4). Mcr is the analytical

cracking moment derived as in Equation 4.5 [PP75], My is the experimentally determined moment

corresponding to the first yield point and H is the wall shear span depending on the loading

direction.

Hcr = max(lwall;(1−Mcr/My)H) (4.4)

where

Mcr = ( ft +
N
Ag

)
Ig

yt
(4.5)

where ft = 0.33
√

fc is the tensile strength of concrete, with fc as the concrete compressive

strength at the day of testing, where N/Ag is the absolute value of the axial load ratio with N as

the axial load and Ag as the gross wall section area, and where Ig is the moment of inertia of the

wall section and yt is the distance between the gravity centre of the cross-section and the extreme

tensioned fibre, both latter quantities depending on the loading direction.
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Figure 4.3: TUA and TUB: experimentally derived curvature profiles at first yield over h = 50−2650

mm for all loading positions. The curvature at the wall base over h = 0−50 mm was not plotted here as it

captures mainly the strain penetration effects and affects the readability of the graph due to its comparable

large value.

The extent of cracking determined analytically could not be verified by means of experimentally

determined strains since the cracking strain corresponded to vertical displacements of 0.02 to

0.06 mm. Such displacements represent approximately 1 to 6 � of the LVDT measurement range

and hence the reliability of such measurements seems questionable. However, the analytically

computed Hcr does seem to provide in most cases an approximately good estimate of the height

over which the curvatures are linear from the base up the wall.
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Figure 4.4: TUC and TUD: experimentally derived curvature profiles at first yield over h = 50−2650

mm for all loading positions. The curvature at the wall base over h = 0−50 mm was not plotted here as it

captures mainly the strain penetration effects and affects the readability of the graph due to its comparable

large value.
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Chapter 4. Experimentally derived quantitites for the plastic hinge model

4.3.2.4 Alternative procedure based on strains

As stated in the Introduction (Section 4.1), the experimentally derived PH quantities will be used

for validation purposes with a detailed numerical model in Section 5.2, and next the validated

numerical model will be used for parametric studies for walls with varying height, cross-section

geometry and axial load ratio (Section 6). Using the strains over the height h = 50−250 mm to

determine the first yield point of all the different wall models seems hardly sound. Therefore, it is

necessary to use a standardised procedure for determining first yield point, which can be applied

irrespective of the wall height, section geometry or axial load ratio.

A procedure which links experimental results with section analysis through local deformations

such as strains or curvatures is desirable as it allows the comparison of corresponding global

quantities such as wall yield displacement or stiffness with estimates or with numerical results.

Since the interest is also to compare the yield curvatures from section analysis with those experi-

mentally obtained, the experimentally determined vertical strains will be used for determining

the first yield. As previously discussed, the strains recorded at the base of the wall include the

effect of the strain penetration. Hence a similar procedure to the one applied for determining the

base curvature can be applied also for determining the base strains, i.e., base strain is determined

as the intersection between the best linear fit of the strains over the cracked wall height at first

yield and the wall base. Then, the first yield is determined at the instant when this base strain

reaches first one of the first yield limit strains: -0.004 concrete strain or εsy reinforcement yield

strain. The strain profiles and the corresponding linear fit are shown in Figures 4.5 and 4.6.

While the assumption of linearity over the cracked height has a physical meaning mainly for the

tensile strains, it does seem to provide a good approximation also for the compressive strains at

first yield although the compressive strains tend to typically concentrate towards the base of the

wall (Figures 4.5 and 4.6). The first yield is triggered by the reinforcement strain in all cases

except at position C and H of TUD due to the large axial load ratio of this test unit. These results

are confirmed by moment-curvature (plane section) analysis . The model used for the section

analyses is described in detail in Chapter 5 but some results will be anticipated in this section.

4.3.3 Comparison of experimental results with estimates and section analysis re-
sults

Using the procedure for determining first yield instant previously outlined, based on the linear

fit of strains above the wall base, the experimental yield curvatures are evaluated. The first

yield curvatures are derived from the curvatures above the wall base at first yield as described

in Section 4.3.2.3 while the nominal to yield moment ratio Mn/My is computed from section

analyses (see Chapter 5). The experimental yield curvatures are compared to estimates and to

section analysis results under the form of dimensionless yield curvatures Ky (Ky = φylwall/εsy) in

Table 4.1. For improved readability, the results are shown also in graphical form in Figure 4.7.
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Figure 4.5: TUA and TUB: experimentally derived strain profiles at first yield over h = 50−2650 mm

for all loading positions
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Figure 4.6: TUC and TUD: experimentally derived strain profiles at first yield over h = 50−2650 mm

for all loading positions
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4.3. Yield curvature

When computing Ky, the wall length lwall was taken as the length of the web lweb for loading

along the web, as the length of the flanges l f l for loading along the flanges, and as the geometric

diagonal of the wall ldiag =
√

l2
web + l2

f l for loading along the diagonal direction. The experimental

results for Ky are compared to section analysis predictions, again anticipated here from Section

5.1, as well as to existing estimates for core walls (Section 2.2.2). The estimates from [Pau02],

[PCK07] and [SS+13] are all derived from section analyses and yield rather similar values

between each other.

The section analysis predictions match very well the existing estimates for the principal loading

positions (A, B, C and D). No estimates for diagonal loading directions are currently available.

Except at position B of TUC where the experimentally determined yield curvature is rather

high (∼ 36% difference with section analysis and also large value as compared with other

experimental values at positions A or B), the difference between the experimentally determined

yield curvatures and the section analysis predictions are below 15% and the match is hence fairly

good. Therefore the experimental φ ′
y and Ky determined with this approach will be used from

here on in determining further experimental PH quantities.

Table 4.1: TUA to TUD: comparison of the experimentally determined dimensionless yield curvatures Ky
with section analysis results and existing estimates

Pos. Experiment Section analysis Estimates

TUA TUB TUC TUD TUA TUB TUC TUD [Pau02] [PCK07][SS+13]

A 1.41 1.42 1.60 1.80 1.36 1.35 1.53 1.64 1.40 1.50 -

B 1.39 1.28 1.95 1.59 1.36 1.35 1.43 1.53 1.40 1.50 -

C 1.66 1.76 1.94 2.36 1.62 1.74 2.00 2.05 1.80
1.85/

2.15*

2.06/

2.09*

D 1.46 1.33 1.30 1.42 1.46 1.41 1.49 1.55 1.40 1.50
1.55/

1.65*

E 1.96 2.19 2.13 2.35 1.90 2.00 2.25 2.31 - - -

F 2.05 1.80 2.14 2.19 1.85 1.88 1.98 2.04 - - -

H - - 2.19 2.43 - - 2.26 2.32 - - -

G - - 1.96 2.21 - - 2.20 2.21 - - -
1* Values for concentrated/distributed reinforcement layout.

The overall match between experimentally determined and section analysis predictions for the

yield curvatures is further improved if the Mn/My values from section analysis used for the

experimental determination of yield curvatures are replaced by the experimentally determined

Mn/My values (see Figure 5.7). Using the Mn/My values from section analyses here, allowed

to obtain yield curvatures also for the principal loading directions of TUC and TUD, which did

not reach their nominal moment during the experiments as will be discussed in Section 5.1.2.4.

These results are presented in detail in Section 5.1.2.4 but they are anticipated here to conclude

that the sectional analyses can be used to estimate the yield curvature for U-shaped walls for the

principal as well as for the diagonal loading directions.

81



Chapter 4. Experimentally derived quantitites for the plastic hinge model

(a)

Pos. A, B
Pos. C
Pos. D
Pos. E, H
Pos. F, G

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Experimental Ky=φy/lwall*εsy

PS
A

 p
re

di
ct

ed
 K

y=φ
y/l w

al
l*ε

sy

(b)

[Pau02]
[PCK07]
[SS+13]

TUA TUB TUC TUD
0

0.5

1

1.5

2

Testunit

K
y,

ex
pe

rim
en

t/K
y,

es
tim

at
e

Figure 4.7: TUA to TUD: comparison of the experimentally determined dimensionless yield curvatures

Ky with section analysis results (PSA) in (a) and with existing estimates in (b)

As a consequence, also existing estimates for yield curvatures of core walls under the principal

loading directions derived from section analyses, provide good estimates of yield curvatures

for U-shaped walls. These conclusions are in line with previous findings for TUA and TUB

[BDP08b].

4.4 Yield displacement

4.4.1 Experimental yield displacement

Analogous to the yield curvature, the yield displacement Δy marks the boundary between elastic

and inelastic phase in a bi-linear force-displacement curve (Figure 4.1b) and it can be computed

according to Equation 4.6 as the first yield displacement Δ′
y times the nominal to yield moment

ratio Mn/My. The experimental first yield displacement can be taken as the top wall displacement

(i.e., at hNS = 2.95 m, hEW = 3.35 m and hdiag = 2.90 m height above wall foundation) at the

instant of reaching the first yield based on strain limits as explained in the previous section

(Section 4.3). Then to obtain the experimental yield displacement, predictions of Mn/My values

from section analyses (Chapter 5) can be used. The experimental yield displacements determined

in this manner are given in Table 4.2 for TUA to TUD together with their corresponding top drifts,

e.g., δy,NS = Δy,NS/hNS%. Note that the yield displacements for TUA and TUB have slightly

different values than those given in [BDP08b] due to the different procedure for determining the

first yield point.

Δy = Δ′
y
Mn

My
(4.6)
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4.4. Yield displacement

Table 4.2: TUA, TUB, TUC and TUD: experimentally determined yield displacements Δy and yield drifts

δy at the height of the shear span H.

Δy [mm] δy [%]

Pos. TUA TUB TUC TUD TUA TUB TUC TUD

A 6.0 12.4 13.8 18.3 0.18 0.37 0.41 0.55

B 6.7 11.7 14.6 16.6 0.20 0.35 0.44 0.49

C 9.2 12.0 16.1 16.2 0.31 0.41 0.54 0.55

D 14.3 13.2 10.7 16.1 0.48 0.45 0.36 0.54

E 7.9 13.5 11.3 13.1 0.27 0.46 0.38 0.44

F 12.5 13.4 10.2 18.8 0.42 0.45 0.35 0.64

H - - 8.8 12.7 - - 0.30 0.43

G - - 9.0 12.7 - - 0.31 0.43

4.4.2 Yield displacement estimates

Two approaches are possible for estimating the wall yield displacement, starting from the first

yield displacement. In the most common used approach by [PCK07], it is assumed that the

wall is fully cracked over the height at first yield, i.e., a linear curvature profile over the height

is assumed (Figure 4.8a). While it is acknowledged that the wall is not fully cracked at first

yield, the intention of the linear curvature profile assumption is to compensate for the strain

penetration into the foundation to some extent for the shear displacements, while for shear critical

RC elements, the shear displacements could be added to this yield displacement [PCK07].

In the second approach, the yield displacement is estimated by predicting the individual displace-

ments components: flexural displacements including strain penetration and shear displacements

[HRS04], [BDP08b]. In the following sections, the estimates of the individual displacement

components are discussed with respect to the experimentally derived displacement components.

4.4.2.1 Flexural displacements due to wall deformation

The flexural first yield displacement Δ′
y, f was experimentally determined by double-integration of

the mean curvatures obtained from the LVDT measured strains (Section 4.2). In order to compare

with estimates, the displacement due to strain penetration Δ′
y,sp (Table 4.3) was subtracted from

the total flexural displacements.
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Chapter 4. Experimentally derived quantitites for the plastic hinge model

The flexural first yield displacement was estimated first by assuming a fully cracked profile over

the height of the wall (Figure 4.8b and corresponding Equation 4.7 according to [PCK07]). A

more accurate estimation of the flexural displacements can be obtained if the assumption of a

partially cracked curvature profile is used (Figure 4.8c and Equation 4.8 according to [BDP08b]).

By examining the experimental curvature profiles at first yield (see Figures 4.3 and 4.4), the

assumption of a bi-linear curvature profile at first yield can also be used (Figure 4.8d and again

Equation 4.7 but with a different factor k accounting for the shape of the curvature profile).

The second assumption of the bi-linear curvature profile will result in the lowest top flexural

displacement estimate since the area of the curvature profile is the smallest (Figure 4.8d).

Figure 4.8: Assumed shape of the curvature profile at first yield over the height of a cantilever wall under

a lateral point load: linear profile accounting for a fully cracked wall(b); offset bi-linear curvature profile

accounting for a partially cracked wall (c) (adapted from [BDP08b]); and continuous bi-linear profile

based on experimental curvature profiles also accounting for a partially cracked wall(d).

Δ′
y f ,1L = φ

′
y
H2

3
(4.7)

where φ ′
y is the first yield curvature and H is the wall shear span depending on the loading

direction.

Δ′
y f ,2L = kcrφ ′

y
H2

3
(4.8)

where kcr is factor accounting for the extent of the cracking over the height of the wall at first

yield and the assumed shape of the curvature profile.

The factor kcr in Equation 4.8 can be computed in a similar fashion for the two assumed curvature

profiles which account for the extent of cracking. The factor kcr corresponding to a bi-linear

profile with an offset at the cracking height (Figure 4.8c) will be termed k1 while the one

corresponding to a continuous bi-linear profile (Figure 4.8d) while be termed k2. For both cases,

the value α in Figures 4.8c,d is the ratio of the cracked to uncracked flexural wall stiffness

(EIcr/EIg). The stiffness of the uncracked wall section EIg was taken as the gross sectional

stiffness depending on the loading direction, while the stiffness of the cracked section was taken

as EIcr = My/φ ′
y. The cracked height was computed analytically as in Equations 4.4 and 4.5.
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4.4. Yield displacement

Derivation of k1 The flexural displacement corresponding to the curvature profile in Figure

4.8c can be estimated by integration of the curvature profile over H or in a simplified manner as:

Δ f ,1 = φ ′
y
H2

3
−φHcr

(H −Hcr)
2

3
+φcr

(H −Hcr)
2

3
(4.9)

From same triangles, φcr and φHcr can be written as :

φcr = αφ ′
y
(H −Hcr)

H
(4.10)

φHcr = φ ′
y
(H −Hcr)

H
(4.11)

Finally, combining Equation 4.9 with Equations 4.8, 4.10 and 4.11 and re-arranging, it results:

k1 = α +(1−α)(
H3

cr

H3
− 3H2

cr

H2
+

3Hcr

H
) (4.12)

Derivation of k2 The flexural displacement corresponding to the curvature profile in Figure

4.8d can be also estimated from the integration of the assumed curvature profile over H as in

Equation 4.13 as the sum of: (1) the flexural displacement from the curvature over the cracked

height Hcr of the wall Δ f ,Hcr , (2) the flexural displacement due to the rotation over the cracked

height θHcr and (3) the flexural displacement from the curvature over the uncracked part of the

wall.

Δ f ,2 = Δ f ,Hcr +θHcr(H −Hcr)+φcr
(H −Hcr)

2

3
(4.13)

In order to obtain the flexural displacement and the rotation at the cracked height, a reduced

cantilever structure is used (Figure 4.9b). By writing the Euler-Bernoulli beam equation (Equation

4.14) of the reduced cantilever structure and by applying the corresponding boundary conditions

(i.e., displacement and rotation at the base are zero) one obtains the rotation and the displacement

at any height of the reduced structure (Equations 4.15a and 4.15b).

M(x) =−EI
d2Δ f (x)

d2x
(4.14)

where x is the height coordinate measured from the top of the cantilever, M(x) = Frx is the

moment depending on x for the case of the reduced cantilever structure in Figure 4.9b and Δ f (x)
is the lateral displacement of the cantilever depending on x. The height of the reduced cantilever

structure Hr can be computed from Figure 4.9a, from same triangles as in Equation 4.16.
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Chapter 4. Experimentally derived quantitites for the plastic hinge model

Figure 4.9: Bi-linear curvature profile assumption at first yield over the height of a cantilever wall: full

cantilever wall under lateral point load (a); and reduced cantilever structure for computing the flexural

displacement Δ f ,Hcr and the rotation θHcr over the cracked height (b).

Δ f (x) =
Fr

EI
x3

6
− FrH2

r

2EI
x+

FrH3
r

3EI
(4.15a)

θ(x) =
Fr

EI
x2

2
− FrH2

r

2EI
(4.15b)

Hr =
Hcrφ ′

y

φ ′
y −φcr

(4.16)

If Equations 4.15a and 4.15b are evaluated for x = Hr −Hcr on the reduced cantilever structure,

one obtains the displacement Δ f ,Hcr and the rotation θHcr at the cracked height for the full

cantilever structure. If Hr and φcr computed as in 4.16 and 4.10, respectively are replaced in

Equation 4.15a and 4.15b, while taking EI = EIcr and FrHr/EIcr = φ ′
y, one obtains:

Δ f ,Hcr =
φ ′

yH2
cr

6
(2+α −α

Hcr

H
) (4.17a)

θHcr =
φ ′

yHcr

2
(1+α −α

Hcr

H
) (4.17b)

Finally, combining Equations 4.17a, 4.17b, 4.10 and 4.13, and re-arranging, one obtains factor k2

equal to kcr in Equation 4.8:

k2 = α +0.5(1−α)(−H2
cr

H2
+

3Hcr

H
) (4.18)
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4.4. Yield displacement

Comparison of experimental flexural displacements with estimates In order to judge which

assumption fits better with the experimentally determined values, the experimental flexural

displacements are compared with estimates computed according to the three curvature profile

assumptions in Figure 4.8b, c, d. Note that for this comparison the experimentally derived

curvature was used in the derivation of the estimates. The results are plotted in Figure 4.10 for all

test units.

Indeed, assuming a linear curvature profile over the height leads to flexural displacement estimates

Δ′
y f ,1L which are in most cases significantly larger than the experimental flexural displacements

(i.e., up to ∼ 50%). The two assumptions accounting for the cracking height lead to improved

estimates of the flexural displacements due to wall deformation. However, the displacement

derived with the continuous bi-linear profile (Figure 4.8d) provides overall a better match with

the experimental results.
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Figure 4.10: Comparison of experimentally determined flexural displacements with estimates (a-d).

Estimates are based on different curvature profile assumptions: linear curvature profile Δ′
y f ,1L, bi-linear

curvature profile with an offset at the cracking height Δ′
y f ,o f−2L and continous bi-linear profile Δ′

y f ,cont−2L.
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4.4.2.2 Flexural displacements due to strain penetration

The flexural displacements due to strain penetration into the foundation can be computed by

assuming that strain penetration effects produce a rigid body rotation of the wall above the wall

base. It is therefore necessary to know the base rotation θ ′
y,sp which is assigned to the strain

penetration. This rotation can be computed as the difference between the measured base curvature

at first yield φ ′
y,measured and the base curvature φ ′

y obtained from the curvature measurements above

the base (see Section 4.3), times the LVDT length over which the curvature at base was measured,

i.e., LLV DT,row1 = 50 mm (Equation 4.19). The top displacement due to strain penetration at first

yield, can then be computed as in Equation 4.20.

θ ′
y,sp = (φ ′

y,measured −φ ′
y) ·50mm (4.19)

Δ′
y,sp = θ ′

y,spH (4.20)

In order to estimate the displacement due to strain penetration, the notion of strain penetration

length is introduced L′
y,sp, over which the curvature is considered as constant and equal to the

curvature at the base of the wall section φ ′
y. Hence the base rotation due to strain penetration can

be computed as in Equation 4.21. While the base curvature can be predicted from section analysis,

the strain penetration length is typically estimated as function of the longitudinal bar diameter db
and the yield strength of the bar fy. The experimentally derived values of the displacement due to

strain penetration and the strain penetration length are given in Table 4.3.

θ ′
y,sp = L′

y,spφ ′
y (4.21)

L′
y,sp values normalised by the bar diameter and yield strength (Table 4.3 columns 10 to 13) are

on average equal to 0.006 for TUA, to 0.010 for TUB, 0.009 for TUC and 0.019 for TUD. These

values are all smaller than the constant 0.022 proposed by Paulay and Priestley [PP92]. The

difference stems most likely from the pre-stressing of the foundation of the test units which

reduced the strain penetration effects [HRS04], [BDP08b]. To account for this effect of the

foundation pre-stress on the strain penetration length, [BDP08b] proposed reducing by half the

constant of 0.022. A value of 0.011 agrees well with the overall average L′
y,sp/(db fy) values for

the four test units, and hence it will be used in estimating L′
y,sp and Δ′

y,sp. The strain penetration

lengths for the inelastic range are discussed together with the plastic hinge lengths in Section 4.5.

4.4.3 Comparison of experimental yield displacements with estimates

Estimates from both the simplified approach, assuming a linear curvature profile over the height at

yield (Equation 4.22a) and the more complex approach, accounting for shear displacements and

partially cracked profile (Equation 4.22b) are compared here with the experimentally determined

yield displacements. For clarity, the two equations for the yield displacement corresponding to

the two prediction approaches are given below:
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4.4. Yield displacement

Table 4.3: TUA, TUB, TUC and TUD: experimentally determined flexural displacements due to strain

penetration Δ′
y,sp and derived strain penetration lengths L′

y,sp

Pos. Δ′
y,sp [mm] L′

y,sp [mm] L′
y,sp/(db fy) [-]

TUA TUB TUC TUD TUA TUB TUC TUD
TUA TUB TUC TUD

A 0.0 0.6 0.8 1.5 3 72 79 125 0.000 0.013 0.018 0.028

B 0.4 0.5 0.8 1.6 47 68 66 158 0.008 0.012 0.015 0.035

C 0.0 0.2 0.3 0.4 4 15 25 35 0.001 0.003 0.006 0.008

D 0.5 0.3 0.3 1.0 64 37 37 107 0.011 0.007 0.008 0.024

E 0.0 0.2 0.2 0.5 2 33 32 57 0.000 0.006 0.007 0.013

F 0.6 0.6 0.1 1.0 94 108 12 126 0.016 0.019 0.002 0.020

H - - 0.3 0.3 - - 35 40 - - 0.008 0.009

G - - 0.3 0.7 - - 48 82 - - 0.011 0.018

Mean
0.006 0.010 0.009 0.019

Δy,1L = φy
H2

3
(4.22a)

Δy,2L = φy(k2
H2

3
+L′

y,spH)(1+
Δs

Δ f
) (4.22b)

where φy was computed from section analysis, L′
y,sp = 0.011db fy while k2 factor which accounts

for the partially cracked profile at yield was estimated as in Equation 4.18 and Δs/Δ f was

estimated as in Section 4.7.3.

Note that for the diagonal loading direction, the shear to flexural displacementss ratios were

estimated as a composition of the predicted Δs/Δ f values of the web and flanges following the

procedure detailed in [BDP08b]. The procedure uses the rectangular triangle of the total top wall

displacements along the web, flange and diagonal to derive geometrically the shear displacements

for the diagonal direction ( Δs
Δ f
)diag as the sum of projections of the shear displacements of the

web and flange onto the diagonal as shown below. β = ( Δs
Δ f
) f l is the ratio of the flange equal to

the average ratio of the two flanges for position F and G, and equal to the ratio of the flange in

compression at position E and H.
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Figure 4.11: Derivation of shear to flexural displacements ratio for the diagonal direction (taken from

[BDP08b]).

Finally, the experimental derived yield displacements are compared with the two predictions Δy,1L

and Δy,2L in Figure 4.12. Based on the results of the four test units, none of the two approaches

for predicting Δy seems to be clearly superior to the other one, with both methods leading to

somewhat reasonable estimates. However the linear curvature profile approach does seem in most

cases to underestimate the yield displacement since the shear displacements of the U-shaped

walls analysed herein are for most loading directions larger than for typical rectangular walls.

The estimate based on predicting the individual components Δy,2L matches overall well but

tends to overestimate in some cases the yield displacements (as it is the case for TUC). This

overestimation can mainly be traced back to the overestimation of the flexural yield displacements

(Figure 4.10). The large error at position F of TUD for both Δy,1L and Δy,2L is most likely due

to measurement and experimental derivation method errors: the experimentally derived yield

displacement is significantly larger than at the other loading position (see Figure 4.12).

As stated, none of the two approaches to estimate Δy seems superior to the other for the test

units analysed here in. By assuming a linear curvature profile, i.e. wall fully cracked, Δy,1L will

tend to compensate for the contribution of the shear displacements. However, if for example

the shear displacements are large, as was the case for the U-shaped walls analysed here, it is

expected that Δy,1L values will underestimate the yield displacement. On the other hand, if the

shear deformation are small as it is the case for rather slender walls, Δy,1L values will most likely

overestimate the yield displacements. This hypotheses will be further investigated for walls with

a broader range of slenderness ratio by means of parametric studies in Chapter 6.
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Figure 4.12: TUA, TUB, TUC and TUD: comparison of experimentally determined yield displacements

with estimates (a-d). Estimates based on two approaches - predicting the components Dy,2L (Equation

4.22b) and the simple approach assuming a linear curvature profile Dy,1L (Equation 4.22a)
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Chapter 4. Experimentally derived quantitites for the plastic hinge model

4.5 Plastic hinge length

The factors influencing the plastic hinge length Lph have been presented and discussed in Section

2.2.2 together with state-of-the-art Lph estimates for walls. This section presents the derivation of

the Lph values from experimental results, which are then compared to estimates in the literature.

This section discusses also the influence of the loading position and ductility demand on Lph.

The loading positions and directions considered in the experiments are shown again for clarity in

Figure 4.21.

Figure 4.13: TUA, TUB, TUC and TUD: naming of the different wall parts and cardinal directions (a)

and loading positions (b).

4.5.1 Estimates for plastic hinge lengths from experimental results

4.5.1.1 Equations for plastic hinge lengths in the literature

State-of-the-art estimates of the plastic hinge length of RC walls have been reviewed in Section

2.2.2. For convenience, the equations that will be compared to experimental results are briefly

repeated in the following.

[PCK07]a: assessment estimate which assumes the centre of rotation at the base of the wall and

accounts for strain penetration

Lph = min(0.08,k)H +0.2lwall +0.022db fy (4.23)

where k = 0.2( fu/ fy−1) with fu and fy equal to the ultimate and respectively yield strength

of the reinforcement, H is the wall shear span, lwall is the wall length and db is the vertical

reinforcement bar diameter

[PCK07]d: design version of the [PCK07]a estimate

Lph = min(0.08,k)H +0.1lwall +0.022db fy (4.24)
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4.5. Plastic hinge length

[BA11]: estimate intended as lower bound value of Lph which does not account for strain

penetration but accounts for the axial load ratio N/Ag fc while the location of the centre of

rotation is not specified, since Lph was taken half the height of the plastic zone Lpz

Lph = (0.05H +0.2lwall)(1−1.5
N

Ag fc
) (4.25)

[Kaz13]: estimate that accounts for the axial load ratio, but does not account for strain penetration

while the centre of rotation is assumed at the middle of the plastic hinge length

Lph = 0.27lwall(1− N
Ag fc

)(1− fyh

fc
)(H/lwall)

0.45 (4.26)

where fyh is the yield strength of the transverse reinforcement and fc is the concrete

compressive strength.

4.5.1.2 Particularities for diagonal loading

When estimating the plastic hinge length for the diagonal direction, an appropriate wall length

and height need to be chosen. [BDP08b] argued that either the length of the web or the flanges

should be used since the tension shift term containing the wall length is linked to the shear transfer

mechanism, which mainly works in the plane of the wall sections. Similar argumentation was

made for the choice of the height, and thus Lph for the diagonal direction can be taken as either

the Lph for the EW cycles or for the NS cycles.

Since under diagonal loading the web typically carries a larger shear stress than the flange, the

spread of plasticity is expected to be dictated by the web. For this reason, the wall length will

be taken equal to the length of the web for the diagonal positions. The shear span will be taken

as equal to hNS = 2.95 m since the top displacement for diagonal loading was measured at this

height and the plastic flexural displacement was also derived for this height.

4.5.2 Experimentally determined plastic hinge lengths

As discussed in Section 2.2.2 estimates of the plastic hinge length were derived using different

assumptions for the centre of rotation of the plastic hinge or for the contribution of the strain

penetration term. In order to compare these estimates with experimental results, different Lph
values should be derived from the experimental data corresponding to the assumptions of each

estimate.

In the following, two procedures for determining the experimental Lph values are discussed. The

first method back-calculates the Lph value from the plastic flexural displacement using the plastic

base curvature φp, and hence corresponds the Lph that best fits the top displacement. In the second

procedure, the Lph is simply taken as half of the height of the plastic zone Lpz, i.e., the Lph value

directly connected to the real spread of plasticity and independent of the plastic curvature. The

height of the plastic zone Lpz corresponds to the maximum wall height where inelastic curvatures

spread.
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Chapter 4. Experimentally derived quantitites for the plastic hinge model

4.5.2.1 Plastic hinge lengths back-calculated from top displacement

Plastic hinge lengths Lph can be determined from experimental measurements by back-calculating

their value from the displacements measured at the top of the wall and from the plastic curvature

φp [HRS04], [Han13]. The plastic part of the flexural displacement Δp, f at the height of the shear

span H stems from the plastic rotation at the wall base. Based on the assumption of the plastic

hinge model (see Section 2.2.2) that the plastic curvature φp is constant over the plastic hinge

length, Lph can be computed as in Equation 4.27 where φp is the experimentally determined

plastic curvature computed as in Equation 4.29 with the yield curvature φy given in Table 4.1.

Lph =
Δp, f

φpH
(4.27)

Δp, f = Δ f −Δy, f (4.28)

φp = φb −φy (4.29)

Base curvature

The base curvature φb in Equation 4.29 is not taken directly as the measured curvature at the base

of the wall (i.e., first row of LVDT from base h = 0−50 mm) since this measurement includes

the deformations due to strain penetration into the foundation. To obtain the base curvature

φb, [HRS04] recommends using a linear least square approximation of at least three inelastic

curvature measurements above the base crack. The best linear fit is then extrapolated to the wall

base to obtain the base curvature representative for the wall deformation [HRS04].

For the test units analysed here, all inelastic curvatures above the base crack were considered in

the least square approximation. The height over which the inelastic curvatures spread up the wall,

i.e., the height of the plastic zone Lpz, was determined as the height over which the curvatures

were larger than the nominal yield curvature φy (Figure 4.14a). In addition to this method, a

second method was used to determine the base curvature φb, namely by back-calculating the base

curvature from the rotation above the plastic zone θpz under the assumption of a linear curvature

profile over Lpz. The two methods of determining the base curvature are summarised below:

φb1: obtained by best linear fit of the curvatures over the height h f it = 50mm−Lpz and extrapo-

lating to the base level

φb2: obtained from the rotation above the plastic zone θpz using Equation 4.30.

φb2 =
2θpz

Lpz
(4.30)

where θpz is computed from curvature integration over the plastic zone height Lpz after

removing the curvature contribution due to strain penetration.
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Figure 4.14: Wall base curvature: assumptions exemplified for TUA, position A at 1.5 % drift (a) and

comparison between the base curvatures determined with the two methods φb1 and φb2

The experimental base curvatures computed with the two methods are compared in Figure 4.14b,

while the assumptions behind the calculations are exemplified in Figure 4.14a. The experimental

base curvatures shown here were computed at peak drifts of the inelastic cycles of all four test

units and loading positions. Figure 4.14b shows that both methods of determining the base

curvature yield similar results. At large peak drifts of TUC, i.e, 2.0% and 2.5% drifts, larger base

curvatures are obtained with the best fit linear method φb1 than with the rotation based method φb2.

This difference is attributed to curvature concentrations towards the wall base due to significant

damage at the these drift levels. Since the determination of the base curvature using the rotation

above the plastic zone is less sensitive to curvature peaks than the best linear fit method, the

former will be used from here on to determine the experimental plastic hinge lengths.

Strain penetration

In Equation 4.28, the plastic flexural displacement Δp, f includes the flexural displacements due

to strain penetration and hence so will the plastic hinge length Lph in Equation 4.27. Since not all

estimates of Lph include a strain penetration term, the contribution of the strain penetration will

be removed from the experimentally determined Lph in order to compare with estimates. The

contribution of the strain penetration to the wall top displacement has already been discussed

for the yield displacement in Section 4.4.2.2. The part of Lph attributed to strain penetration,

i.e., the equivalent strain penetration length Lsp can be computed similarly to L′
y,sp in Section

4.4.2.2 according to Equation 4.31. The values obtained for the experimentally determined strain

penetration lengths are shown in Figure 4.15.

Lsp =
1

φb1
(φb,measured −φb1) ·50mm (4.31)
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Chapter 4. Experimentally derived quantitites for the plastic hinge model

where φb,measured is the curvature recorded in the first LVDT from the base (h = 0−50 mm) and

includes the deformation concentrated in the base crack.

[PP92] recommends a value of 0.022db fy for the strain penetration length. Experimentally

determined values in Figure 4.15 indicate that a value of 0.011db fy is more suitable for the test

units discussed herein. As already mentioned in Section 4.4.2.2, the reason for these lower strain

penetration lengths was the bi-axial lateral pre-stressed foundation of the test units.

Finally, after evaluating the base rotation and the strain penetration length, the plastic hinge

lengths can be determined. Figure 4.16 shows the experimentally determined plastic hinge lengths

Lph −Lsp, where the strain penetration contribution was removed. The plastic hinge lengths

were determined at peak drifts of the inelastic load cycles for each loading position for TUA and

TUB, and only for the diagonal loading cycles for TUC and TUD. Plastic hinge lengths were

not determined for the principal loading directions of TUC and TUD since the wall reached for

these directions displacement ductilities of μΔ = 1.4 to 2.2 and hence such values of plastic hinge

lengths are of interest only if the wall is designed for low or medium ductility levels.

4.5.2.2 Plastic hinge lengths calculated from height of plastic zone

In the previous section, the plastic hinge length Lph was back-calculated from the experimentally

determined plastic flexural displacement Δp, f (Equation 4.27). The plastic curvature used in this

determination was computed assuming a linear plastic curvature profile over the height of the

plastic zone Lpz. However, this assumption allows to compute the Lph value independently of

Δp, f . The rotation above the height of the plastic zone is made equivalent to the rotation above

the plastic hinge length Lph where plastic curvatures are assumed constant over the height of Lph
(Figure 4.18). This condition yields Equation 4.32. The obtained plastic hinge lengths are also

shown in Figure 4.16.

Lpzφp

2
= Lphφp ⇒ Lph =

Lpz

2
(4.32)

The top plastic flexural displacement can be estimated by integrating the assumed curvature

profile as in Equation 4.33. Introducing Equation 4.32 into Equation 4.33, Δp, f can be written as

a function of Lph.

Δp, f =
Lpzφp

2
(H − Lpz

3
) (4.33)

Δp, f = Lphφp(H − 2Lph

3
) (4.34)
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Figure 4.15: TUA to TUD: experimentally determined strain penetration length Lsp normalised by the bar

diameter and yield strangth of the reinforcement db fy. The black vertical line, the grey line, the dashed

black line and the dashed grey line indicate the values of the yield drift for TUA, TUB, TUC and TUD

respectively. The black horizontal line indicates the constant value of the [PP92] estimate for Lsp/db fy of

0.022.
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Figure 4.16: TUA to TUD - experimentally determined plastic hinge lengths: (1) Lph(Dp, f ) back-

calculated from the plastic flexural displacement using φb2 and assuming the centre of the rotation at the

base of the wall (Equation 4.27) and (2) Lph(Lpz determined as half the height of the plastic zone (Equation

4.32).
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4.5. Plastic hinge length

Figure 4.17: Assumed plastic curvature distribution: (a) linear plastic curvature profile over the height of

the plastic zone Lpz and (b) equivalent constant plastic curvature profile over the plastic hinge length Lph

Note, that in the above equations, the flexural displacement due to strain penetration was not

included, and can be added separately to the flexural displacement as suggested by [GF+15].

Since, the displacement due to strain penetration is treated separately, the centre of rotation of the

plastic hinge can be computed exactly from curvature integration. Assumptions on the position of

the centre of rotation are no longer necessary. As Equation 4.34 indicates, the centre of rotation

is neither at the base of the wall nor at half the plastic hinge length from the base but at 2/3Lph
from the wall base.

The assumption made here for the plastic curvature profile distribution can be easily verified

by comparing the plastic flexural displacement estimate obtained from Equation 4.34 with the

plastic flexural displacement obtained from the integration of the experimental curvature profiles.

By assuming a linear distribution of the inelastic curvatures over Lpz (i.e., computing the plastic

flexural displacement as in Equation 4.33), the actual plastic flexural displacement derived

from integration of the experimental curvature is very well predicted (Figure 4.18). Hence the

assumption of a linear inelastic curvature profile is rather accurate.

4.5.2.3 Variations and trends of the experimentally determined plastic hinge lengths

Figure 4.16 indicates that for displacement ductilities larger than approximately 2 (μΔ ≥ 2), the

plastic hinge lengths are approximately independent of the displacement ductility for all test

units and loading positions, irrespective of the procedure used for their derivation. Hence a

single experimental Lph value can be used for μΔ ≥ 2. For TUD at positions E, F and G (unfilled

diamond marker in Figure 4.16 e-h) it is not possible to identify any trends since the wall failed

at low ductilities and only one Lph value could be determined.

In Equation 4.27, Lph is derived by assuming that the centre of rotation of the plastic hinge is

located at the base of the wall. This assumption is exact only if Lph = 2Lsp [PCK07]. If the strain

penetration length Lsp is small (i.e., 0.08H ≥ Lsp), the Lph value can be obtained by assuming

that the centre of rotation of the plastic hinge is located at the middle of the Lph. In this case

Equation 4.35 is used to derive Lph values.

Lph,mid = H −
√

H2 − 2Δp, f

φpH
(4.35)
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Figure 4.18: Verification of the assumption of linear inelastic curvature profiles: comparison of plastic

flexural displacement derived from integration of experimental profiles Δp, f ,experiment with the plastic

flexural displacement estimated from the assumed curvature profile Δp, f ,estimate
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Lph values averaged over the inelastic ductility range (μΔ ≥ 2) obtained with the two assumptions

for the location of the plastic hinge are compared in Table 4.4. Assuming the centre of rotation of

the plastic hinge is located at the wall base leads to Lph values which are ∼ 10% lower than for

Lph derived under the assumption of the centre of rotation located at the middle of the plastic

hinge length. This confirms the findings by [Han13]. In addition, the Lph values derived as half of

the height of the plastic zone (Equation 4.32) and averaged also for μΔ ≥ 2 are given in Table4.4

for all the loading positions.

If the variation of the plastic hinge length is plotted with respect to the loading position (Figure

4.19), the diagonal loading positions (E-G) lead to up to 50% smaller plastic hinge lengths when

compared to principal loading directions (A-D). In particular the values for the diagonal loading

with the corner web-flange in compression (positions F,G) are the smallest of all loading positions.

This is valid for both the plastic hinge length derived from the experimental top displacement

and plastic curvature but also for the one derived directly from the spread of plasticity as half

the height of the plastic zone. Lower plastic hinge length for the diagonal direction combined

with the smallest curvatures of all the loading directions caused by the largest wall length for

this direction (lwall =
√

l2
web + l2

f l) results in the smallest displacement capacity for the diagonal

direction.
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Figure 4.19: TUA to TUD: comparison of experimentally determined plastic hinge lengths averaged for

peak displacements larger than μΔ = 2 for the different loading positions.

101



Chapter 4. Experimentally derived quantitites for the plastic hinge model

Table 4.4: TUA to TUD - comparison between the different experimentally determined plastic hinge

lengths: (1) plastic hinge lengths back-calculated from the plastic flexural displacement assuming the

centre of rotation of the plastic hinge is located at the wall base (column three), (2) assuming the centre of

rotation of the plastic hinge is located at the middle of the plastic hinge (column four) and (3) plastic hinge

determined as half of the height of the plastic zone (column six).

Lph(Δp, f ) Lph(Lpz)

Eq. (4.27) Eq. (4.35) Difference Eq. (4.32) Difference

Col.3-4 Col.3-6

TU Pos. [mm] [mm] [%] [mm] [%]

TUA A 489 548 12 523 7

B 497 571 15 505 2

C 463 525 13 473 2

D 474 532 12 492 4

E 450 507 13 456 1

F 469 532 13 414 -12

TUB A 490 538 10 541 10

B 525 590 12 601 14

C 454 500 10 502 10

D 400 438 10 431 8

E 451 498 10 476 6

F 403 453 12 393 -2

TUC E 465 521 12 450 -3

F 280 295 5 322 15

H 468 526 12 445 -5

G 296 318 8 311 5

TUD E 414 463 12 363 -12

F 544 641 18 413 -24

H 383 418 9 406 6

G 354 384 8 360 2
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4.5.3 Discussion

The experimentally derived Lph values given in Table 4.4 are compared to their corresponding

estimates in Figure 4.20. More precisely the Lph values determined with: (1) Equation 4.27 are

compared to estimates by [PCK07] both assessment and design equations, (2) Equation 4.35 are

compared to estimates by [Kaz13] and (3) Equation 4.32 are compared to estimates by [BA11].

To remove the bias of the low experimentally determined strain penetration lengths, the strain

penetration term is not considered in the estimates by [PCK07] (Equations 4.23 and 4.24). The

other estimates used for the comparisons do not include a strain penetration effect and hence they

are compared in their original form (Equations 4.25 and 4.26).

While for most loading positions the Lph estimates are smaller than the experimentally determined

Lph, this is not the case for the diagonal loading positions (E to G) (Figure 4.20). With the

exception of the design equation by [PCK07], which has the largest degree of conservatism,

all other equations lead for the diagonal positions (especially F and G) to ∼ 10− 50% larger

Lph values than the experimentally measured ones. For the design equation [PCK07]d the Lph
estimates are ∼ 40−50% lower than the experimental Lph values, except at position F and G

where the estimates are only ∼ 30% lower than the experimental values. Despite being intended

as a lower bound value of the plastic hinge length, the estimates by [BA11] are also slightly larger

than the experimental values at position F and G while the equation by [Kaz13] results in the

largest Lph estimates and hence also the largest overestimation for the diagonal loading positions.

This overestimation is traced back to the lower plastic hinge lengths under diagonal loading than

for the principal loading directions (Figure 4.19).

Overall, existing estimates of plastic hinge lengths are approximately 50−80% of the experi-

mentally derived values for the principal loading directions (NS cycles and EW cycles). If plastic

curvatures are well estimated, the wall displacement capacities obtained with such Lph estimates

will be lower than the actual capacity of the wall, which is desirable in design. However for the

diagonal loading directions, the Lph estimates are less conservative than they are for the principal

directions and even overestimate the experimental values by up to 50%. The largest discrepancy

is obtained for positions F and G (i.e., when corner web-flange in compression). Plastic hinge

lengths estimates for the diagonal loading positions warrant hence further investigation. This

topic is addressed through a parametric study on U-shaped walls in Chapter 6.
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 Experimental Lph vs. estimates
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Figure 4.20: TUA to TUD: comparison of experimentally determined plastic hinge lengths averaged for

peak displacements larger than μΔ = 2 with corresponding estimates. The shape of the marker indicates

the test unit: triangle for TUA, circle for TUB, square for TUC and diamond for TUD. The color of the

marker indicates the estimate: empty black marker for [PCK07] assesment equation, empty grey marker

for [PCK07] design equation, black-filled marker for [Kaz13] equation and grey-filled marker for [BA11]

equation.

4.6 Ultimate limit strains

4.6.1 Introduction

To define the wall displacement capacity in the framework of PH analysis, ultimate limit strains

are used with section analysis to obtain the ultimate curvature. This curvature is then combined

with a plastic hinge length to obtain the displacement capacity of the wall. The prediction of

the experimentally derived plastic hinge lengths has been discussed in the previous section.

This section discusses the prediction of the experimentally observed ultimate limit strains and

curvatures for U-shaped walls under different loading directions.

The ultimate limit states that are discussed in this section have been experimentally observed

for at least one of the four discussed test units and are of interest in predicting the displacement

capacity of capacity designed walls. These ultimate limit states are:

• Buckling of the boundary reinforcing bars

• Fracture of the boundary reinforcing bars

• Crushing of the confined concrete

• Out-of-plane buckling of the wall boundary element
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4.6. Ultimate limit strains

Note that the concrete crushing in the compression diagonals of the web of TUB [BDP08b] is not

discussed here as this limit state is mainly related to the force capacity of the wall. A discussion

of this limit state can be found in [BDP08a].

The suitability of existing limit strain estimates to predict the ultimate limit states listed above is

assessed in this section in two ways: (1) by predicting the experimental strains measured on the

wall over the region where damage concentrated and (2) by predicting the experimentally derived

ultimate curvature by means of section analysis.

4.6.2 Experimentally determined ultimate limit strains and curvatures

The experimentally derived strains were taken from the LVDT measurement at the wall edges

as the average of strains over the height h = 50− 150 mm. The strain values near the base

(h = 0−50 mm) measured mainly the strain penetration effects into the foundation and hence

were not considered representative for the maximum strain level in the wall itself. Instead, the

average strains in the second row of LVDTs from the base were considered to represent best the

actual strain state at the critical section for drifts in the inelastic range: bar buckling and fractures

as well as concrete crushing occurred mainly at the level of the second LVDT. The strain values

were corrected for the distance between the actual position of the LVDTs (i.e, ∼ 3.5 cm from

the wall surface and ∼ 5 cm to the edge of the wall) and the edge of the corner or of the flange

end, by assuming a linear strain variation in the direction of the web and in the direction of the

flanges between the LVDT chains. The experimentally derived ultimate curvatures at the wall

base where computed from the rotation above the height of the plastic zone, i.e., computed as φb2

(see previous section).

4.6.3 Comparison with limit strain estimates

Longitudinal bar buckling in the boundary elements

Bar buckling in the boundary elements has been observed for all test units at different wall

corners and positions (Table 4.5). The total strain excursion εs − εc, i.e., maximum recorded

tensile strain in the steel bar εs and minimum recorded compressive strain εc is considered as

the best criterion for assessing the onset of bar buckling [Res93]. [Hin02] suggested an interval

of 35� ≤ εs − εc ≤ 50� as limit strain for bar buckling while [DBB09] suggested a limit of

εs − εc ≤ 35�, based on experimental tests from six rectangular walls.

The experimentally measured total strain excursions (Table 4.5 column seven) compare well

with the existing estimates except for the strains in the West flange end of TUC. At this location,

out-of-plane buckling of the boundary element occurred in the following loading cycle and hence

LVDT measurements in the previous cycle might have been influenced by the onset of global

buckling. If this case is not considered, an average value of the total strain excursion εs − εc of

44� can be obtained, which compares very well with the median of the strain interval proposed

by [Hin02].
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All total strain excursion values are larger than the 35� limit proposed by [DBB09]. These limit

strains were derived by matching the experimental base curvature at the instant of bar buckling to

the one from section analysis and back-calculating the strain value. If the same procedure is used

here, the strain excursion which should be used with section analysis to match the experimental

curvature, yields values close to 35�.

For the East flange end of TUD, the measured compressive strains εc were larger than the

maximum tensile strains εs recorded at this location and the former controlled the onset bar

buckling. For this case, lower strain limits should be used in section analysis to predict accurately

the ultimate curvature. In conclusion, the total strain excursion limit εs − εc = 35� proposed

by [DBB09] can be used with section analysis to determine the onset of buckling, as long as the

tensile strains are controlling the onset of bar buckling.

Table 4.5: Bar buckling limit state: experimentally determined LVDT strains (h = 50−150 mm) at the

limit state and comparison of experimentally determined base curvatures φb2 to section analysis curvatures

φPSA.

εLV DT Curvatures

TU
Loca-

tion Pos.
Drift εs εc εs − εc φb2 φPSA Diff.

[%] [�] [�] [�] [1/km] [1/km] [%]

TUA

West fl.

end
E 1.8 34 -3 37 34.1 35.0 3

TUB

West fl.

end
E 2.6 32 -10 42 41.7 35.0 -16

TUC

East fl.

end
H 1.5 38 -10 48 23.5 21.8 -7

Corner

NE
F 2.0 20 -24 44 18.7 21.8 17

West fl.

end
E 2.5 49 -21 70 37.2 21.8 -40

Corner

NW
G 2.0 44 -7 51 24.9 21.8 -12

TUD

East fl.

end
H 1.5 17 -27 44 10.7 21.8 104

Longitudinal bar fracture in the boundary elements

Bar fracture in the boundary elements was observed only for TUA and TUC (Table 4.6). In

plastic hinge analysis, the steel strain εs is used as a criterion for determining when bar fracture

occurs. As discussed in Section 2.2.3, a strain limit equal to 50−60% of the ultimate steel strain

εsu obtained from uni-axial bar tests is recommended to account for the effect of bar buckling.

106



4.6. Ultimate limit strains

The ultimate steel strain of the D12 bars in the West flange of TUA is of εsu = 127� while

for TUC the D8 bars had εsu = 79�. Hence, the average measured strains on the wall at bar

fracture account for 0.62 to 0.84 % of the ultimate steel strain εsu (Table 4.6 column six). Using

a limit strain of εs = 0.5εsu results in a very good match of section analysis curvatures and

experimentally determined base curvatures (column nine).

Table 4.6: Bar fracture after buckling limit state: experimentally determined LVDT strains (h = 50−150

mm) at the limit state and comparison of experimentally determined base curvatures φb2 to section analysis

curvatures φPSA.

εLV DT Curvatures

TU
Loca-

tion Pos.
Drift εs

εs
εsu

φb2

φPSA

(εs =
0.5εsu)

Diff.

[%] [�] [-]
[1/km] [1/km]

[%]

TUA

West fl.

end
F 2.1 87 0.69 42.6 44.0 3

TUC

East fl.

end
G 2.0 66 0.84 33.6 28.8 -14

Corner

NW
H 2.5 49 0.62 31.1 30.9 -1

Crushing of the confined concrete

Crushing of the confined concrete was observed for both TUC and TUD in the boundary element

of the East flange end (Table 4.7). Limited crushing of the confined boundary element occurred

also in the corners of TUC at ∼ 2.5% drift but strain values at this drift level are questionable (i.e.,

at position F and G of TUC compressed corners show positive strains) and cannot be compared

to estimates.

Strain estimates by [MPP88] (Table 4.7 column six) multiplied by a factor of 1.3 to 1.6 as

suggested by [PCK07] compare well with the average measured strains on the wall at the height

where damage occurred, i.e., h = 50−150 mm (column five). However limit state curvatures

determined from section analysis with these strain estimates significantly overestimate the

experimentally determined base curvature (column nine).

For both cases, a concrete limit strain of εc =∼−8� instead of −24� should be used in section

analyses if the section analyses curvatures were to match the experimental base curvatures. This

is in line with findings by [DBB09] who also observed that the measured wall strains where

confined concrete crushing occurred were ∼ 2.6 times larger than the strain limits derived from

section analysis for the same curvature as the experimental base curvature.
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Based on these experimental findings it is recommended to use for section analysis a concrete

limit strain equal to one third of the estimates obtained with [MPP88] equation for confined

concrete crushing. This recommendation is highly empirical as it is based on very limited

experimental data. In addition, the limit strain at the crushing of confined concrete will depend

on concrete properties and confinement reinforcement properties and layout and hence proper

validation requires extensive experimental data.

Alternatively, since confined concrete crushing is typically preceded by bar buckling, the ultimate

limit state can be defined by the limit strain that characterizes the onset of bar buckling (see Table

4.5). Note, however, that the total strain limits for the onset of bar buckling yield only good

predictions if the compressive strains are not larger than the tensile strains in which concrete

crushing limit states should be used.

Table 4.7: Crushing of the confined concrete: experimentally determined LVDT strains (h = 50−150

mm) at the limit state and comparison of experimentally determined base curvatures φb2 to section analysis

curvatures φPSA.

Strains Curvatures

TU
Loca-

tion Pos.
Drift εLV DT εc,[MPP88]

φb2
φPSA

(εc,[MPP88])
Diff.

[%] [�] [�] [1/km] [1/km] [%]

TUC

East fl.

end
H 2.0 -34 -24 24.9 64.6 160

TUD

East fl.

end
H 1.5 -30 -24 17.2 39.5 130

Out-of-plane buckling of the wall boundary element

Local out-of-plane buckling of the boundary element was observed for TUC for the West flange

end as described in Section 3. The out-of-plane buckling did not involve the entire height of

the boundary element as a global buckling would (see Section 3.3.1.1). However, without a

clear differentiation of these phenomena, estimates for maximum tensile strains triggering global

out-of-plane buckling will be used for comparison with the experimentally measured strains.

Two different estimates by [PP93] and [CE99] were discussed in Section 2.2.3. The two estimates

for the maximum tensile strain εs were computed using the experimentally determined plastic

hinge lengths (third column in Table 4.4). The two estimates yield similar values for the West

flange end, i.e., εs,Pau93 = 38� and εs,Chai99 = 37� but based on these estimates out-of-plane

buckling should have occurred for the confined ends of both flanges already at 1.5% drift, instead

of 2.5% drift. It was argued that the out-of-plane bending of the flange promoted the out-plane

buckling behaviour of the flange end due to strain gradient through the thickness of the boundary

element (Section 3). Intuitively, this should lead to out-of-plane buckling of the flange end at

smaller top drifts than when the flange is only loaded in-plane (which is the load case considered

in [PP93] and [CE99]). Therefore, the predictions for the tensile strain triggering the out-of-plane

buckling of the flange ends seem rather conservative estimates.
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4.7 Shear displacements

Shear displacements, typically used in plastic hinge analysis under the form of shear to flexural

displacement ratios Δs/Δ f , have been discussed in Section 2.2.2. In the following, the derivation

of the experimental Δs/Δ f ratios is discussed and the trends of these ratios over the ductility

range examined. The experimental Δs/Δ f ratios are compared with existing estimates.

4.7.1 Experimentally determined shear to flexural displacement ratios

4.7.1.1 Experimental determination

For TUC and TUD, the shear displacements were experimentally determined in two different

ways for the two types of conventional and optical measurements as explained in Section 4.2.

Shear displacements were derived from the conventional measurement data (LVDTs) through

the indirect method (i.e., top displacements minus flexural displacements). Shear displacements

obtained from the optical measurement (LEDs) data were derived through the direct method

(i.e., computing shear displacements from the change in length of diagonals of the rectangular

LED-composed elements, and hence independently of the flexural displacements).

The experimentally determined values from the optical measurement system will be used in this

section to assess the Δs/Δ f ratios because this method is considered to be more accurate due

to: (1) the relatively fine measurement grid as compared to the LVDT grid and (2) the good

agreement between the sum of displacement components and the measured top displacement.

The average error in the inelastic range between the sum of the deformation components and the

top measured displacements for all loading positions is of 3.2% for the web, 0.8% for the West

flange and 2.0% for the East flange with standard deviations of 7.9%, 3.8% and 6.3% respectively.

Positions A and B were not accounted for in the measurements for the flanges and positions C

and D were not accounted for in the measurements for the web.

For consistency, the shear displacements of TUA and TUB included in this section were also

experimentally determined using the direct method. However, for TUA and TUB a conventional

measurement system was used: string pots arranged diagonally and spanning rectangular panels

over the outer faces of the flanges and the web. The procedure used for TUA and TUB is described

in detail elsewhere [BDP08a]. The errors between the sum of displacement components and the

measured top displacement were found to vary from approximately −20% to +10% with largest

errors typically towards the elastic range [BDP08a].

4.7.1.2 Variation of shear displacements with displacement ductility

The experimentally determined Δs/Δ f ratios are shown in Figures 4.22 and 4.23 for all four test

units, for the different wall sections and loading positions. As already observed by previous

researchers [HRS04], [DBB09], [BDP11], for flexure controlled walls the Δs/Δ f ratios are

approximately constant in the inelastic range (i.e., for drifts larger than the nominal yield drift

δy). The loading positions and the wall cardinal directions are repeated in Figure 4.21 for good

readability of results.
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Figure 4.21: TUA, TUB, TUC and TUD: naming of the different wall parts and cardinal directions (a)

and loading positions (b).

The Δs/Δ f ratios depend strongly on the loading direction, with the largest contribution being

when wall sections (flanges or web) are under net tension. This is the case for the web at positions

A, B, E and H and for the West flange at position F and East flange at position G (Figures 4.22

a, b, e, f and 4.23 a, b, e, f). For example, for the West flange at position F of TUC and TUD

(Figure 4.23e-f), the Δs/Δ f ratios are as high as 1.00 (i.e., shear displacements equal to flexural

displacements) and hence significantly higher than for typical rectangular slender walls. This is

in line with experimental findings by [BDP08b] for U-shaped walls and [ZL14] for L-shaped and

T-shaped walls.

At positions E and H, one obtains negative Δs/Δ f ratios for the East and the West flange

respectively (Figures 4.22e-f and 4.23 e-h). [BDP08b] first observed this trend in their tests and

related this observation to the drop in the flange force (NSE force and NSW force, respectively)

which reached its peak shortly after zero displacement and then decreased with increasing drifts.

Since the trend of the Δs/Δ f ratios is constant over the inelastic phase, a single Δs/Δ f ratio can

be used to characterise the shear deformation. This value was determined for each test unit, for

the different wall sections and each loading positions as the average of the Δs/Δ f ratios at peak

displacements larger than the yield displacement. The values are given in Tables 4.8 and 4.9.

4.7.2 Estimates for the shear displacements in the inelastic range

The empirical models by [HRS04] and [BDP11] presented in Section 2.2.2 are used here to predict

the Δs/Δ f ratios corresponding to the inelastic range for all four test units. For convenience the

equations for both models are repeated here:

Δs

Δ f
= α0.35(1.6−0.2θmax)

lwall

H
(4.36a)
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Figure 4.22: TUA and TUB: Experimentally determined shear to flexural displacement ratios

Table 4.8: TUA to TUB: experimentally determined average values of the Δs/Δ f ratios in the inelastic

phase

TUA TUB

Pos. West fl. East fl. Web West fl. East fl. Web

A - - 0.12 - - 0.31

B - - 0.17 - - 0.33

C 0.06 0.08 - 0.18 0.14 -1.05

D 0.18 0.13 - 0.25 0.23 0.17

E 0.06 -0.05 0.25 0.21 -0.06 0.65

F 0.54 0.11 0.15 0.86 0.26 0.25
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Figure 4.23: TUA and TUB: experimentally determined shear to flexural displacement ratios
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Table 4.9: TUC to TUD: experimentally determined average values of the Δs/Δ f ratios in the inelastic

phase

TUC TUD

Pos. West fl. East fl. Web West fl. East fl. Web

A - - 0.25 - - 0.33

B - - 0.25 - - 0.26

C 0.16 0.16 - 0.12 0.16 -

D 0.26 0.21 - 0.31 0.26 -

E 0.15 -0.12 0.50 0.13 -0.13 0.60

F 1.11 0.11 0.21 1.22 0.15 0.18

H -0.17 0.22 0.42 -0.17 0.19 0.37

G 0.15 0.69 0.22 0.26 1.18 0.26

1 ≤ α = (
V
Vn

+
V

Vwc
)≤ 2 (4.36b)

where Vn is the diagonal tension capacity, Vwc is the web crushing capacity and θmax is the angle

of the highest crack whose tip reaches the wall base.

Δs

Δ f
= 1.5

εm

φ tanθ
1

H
(4.37)

where φ is the wall curvature assumed constant over the plastic hinge, θ is the crack angle at the

top of the fan-like pattern where cracks begin to be parallel and 1.5 is an empirical correction

factor.

For both models the crack angle θ according to Equation 4.38 was used. This equation includes

both the transversal ρh and the longitudinal reinforcement ρl contents to capture the variation of

crack angles between the flange with distributed reinforcement and the one with concentrated

reinforcement, while kE is the ratio between the modulus of elasticity of steel and concrete

kE = Es/Ec (see also Section 2.2.2).

tanθ = 4

√
ρh + kEρlρh

ρl + kEρlρh
(4.38)
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In the model by [HRS04], the correction factor α (Equation 4.36b) was determined using as

the shear demand V , the nominal shear force associated to the moment obtained from section

analysis. The diagonal tension capacity Vn was determined using the modified UCSD model

[PCK07], where a displacement ductility μΔ = 6 was assumed in the computation of the concrete

contribution Vc. The diagonal compression capacity was calculated according to [CEN04] (6.2.3).

In the model by [BDP11], the mean axial strain over the wall sections εm and the curvature φ
corresponding to the plastic hinge, were derived from section analysis at nominal point.

The results obtained with the two models for all test units are compared to the experimentally

determined Δs/Δ f ratios in Figures 4.24 and 4.25. The model by [BDP11] shows a rather good

match with the experimentally determined Δs/Δ f ratios. The model by [HRS04] predicts for all

test units and loading positions very similar Δs/Δ f ratios. This is caused by the correction factor

α (Equation 4.36b), which varies very little as the ratio of the shear demand to shear capacity

was close to 1 for both the diagonal tension and the diagonal compression capacities. Hence α
was in most cases slightly lower than 2 or equal to 2 if the estimated shear demand was higher

than the design shear capacity.

When comparing the two approaches, [BDP11] yields better estimates than [HRS04] for medium

Δs/Δ f ratios as well as for the large Δs/Δ f ratios. None of the two approaches captures the

negative Δs/Δ f ratios.

4.7.3 Estimates for the shear displacements at yield

The shear displacements at yield are of interest when estimating the wall yield displacement by

predicting separately the flexural displacements and the shear displacements (Section 4.4.2). The

experimental shear to flexural displacements ratios were taken as the Δs/Δ f ratios at first yield,

where the point of first yield was determined based on strains as discussed in Section 4.3.2.4.

Estimates were computed using the [BDP11] model, since it resulted in good estimates for the

inelastic Δs/Δ f ratios. The comparison for all test units is shown in Figure 4.26.

The Δs/Δ f ratios at yield are still relatively well captured with Equation 4.37, although the match

is poorer than for the shear displacements in the inelastic range. The reasons for this observation

are two-fold: (1) Equation 4.37 was calibrated for shear displacements in the inelastic range

while the experimental Δs/Δ f ratios at yield are slightly different than the experimental values in

the inelastic range (see Figures 4.22 and 4.23) and (2) Δs/Δ f ratios at yield are more sensitive to

measurement errors, e.g. a error of 1-2 mm in the shear displacements can lead to errors of 10-20

% in the Δs/Δ f ratios when top displacements are of below 10 mm. Despite these shortcomings,

Equation 4.37 still provides reasonable estimates for the Δs/Δ f ratios at yield and will be used

for this purpose in Chapter 6.
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4.7. Shear displacements
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Figure 4.24: TUA, TUB, TUC and TUD: comparison of experimentally determined shear to flexural

displacement ratios Δs/Δ f in the inelastic phase with estimates based on the [BDP11] model.
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Figure 4.25: TUA, TUB, TUC and TUD: comparison of experimentally determined shear to flexural

displacement ratios Δs/Δ f in the inelastic phase with estimates based on the [HRS04] model.
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(a)

TUA

Web Pos.A,B
Fl. Pos.C
Fl. Pos.D
Web Pos.E,H
Web Pos.F,G
W.fl. Pos.E, E.fl. Pos.H
E.fl. Pos.E, W.fl. Pos.H
W.fl. Pos.F, E.fl. Pos.G
E.fl. Pos.F, W.fl. Pos.G

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

Experimental Δs/Δf [−]

Pr
ed

ic
te

d
Δ s/Δ

f [−
]

(b)

TUB

Web Pos.A,B
Fl. Pos.C
Fl. Pos.D
Web Pos.E,H
Web Pos.F,G
W.fl. Pos.E, E.fl. Pos.H
E.fl. Pos.E, W.fl. Pos.H
W.fl. Pos.F, E.fl. Pos.G
E.fl. Pos.F, W.fl. Pos.G

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

Experimental Δs/Δf [−]

Pr
ed

ic
te

d
Δ s/Δ

f [−
]

Web Pos.A,B
W.fl. Pos.C
W.fl. Pos.D
E.fl. Pos.C

E.fl. Pos.D
Web Pos.E,H
Web Pos.F,G
W.fl. Pos.E
E.fl. Pos.H

(c)

TUC

E.fl. Pos.E
W.fl. Pos.H
W.fl. Pos.F
E.fl. Pos.G
E.fl. Pos.F
W.fl. Pos.G

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

Experimental Δs/Δf [−]

Pr
ed

ic
te

d
Δ s/Δ

f [−
]

Web Pos.A,B
W.fl. Pos.C
W.fl. Pos.D
E.fl. Pos.C

E.fl. Pos.D
Web Pos.E,H
Web Pos.F,G
W.fl. Pos.E
E.fl. Pos.H

(d)

TUD

E.fl. Pos.E
W.fl. Pos.H
W.fl. Pos.F
E.fl. Pos.G
E.fl. Pos.F
W.fl. Pos.G

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

Experimental Δs/Δf [−]

Pr
ed

ic
te

d
Δ s/Δ

f [−
]

Figure 4.26: TUA, TUB, TUC and TUD: comparison of experimentally determined shear to flexural

displacements ratios Δs/Δ f at yield with estimates based on the [BDP11]
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4.8 Effective stiffness of RC walls

The effective stiffness is an important quantity in the design of RC walls. Most estimates of the

effective stiffness are expressed under the form of the ratio of the effective moment of inertia Ie

to the gross moment of inertia of the section Ig, while assuming a constant wall stiffness over the

height.

In order to compare with existing estimates, the experimentally derived effective stiffness Ke f f ,exp

will be expressed under the form of a ratio of effective stiffness to the elastic flexural stiffness

of a cantilever wall Kth = 3EcIg/H3, where Ec is the concrete modulus of elasticity obtained

from material tests and H is the height of the cantilever wall. The effective stiffness Ke f f ,exp

was determined experimentally as the ratio between the first yield force F ′
y and the first yield

displacement Δ′
y, both obtained from experimental measurements at the instant of first yield. The

instant of first yield was determined for each loading position based on strain limits as discussed

in Section 4.3. The estimates for the effective stiffness ratios have been reviewed in Section 2.2.4

and are briefly repeated below.

[PP92]: estimate which accounts for shear displacements and strain penetration for walls with

aspect ratios lower than four

Ie = (
100

fy
+

N
fcAg

)Ig (4.39a)

Iw =
Ie

1.2+F
(4.39b)

F =
30Ie

H2lwalltwall
(4.39c)

[FB00]: approach for for slender walls, does not consider shear displacements but considers

tension stiffening

Ie = 0.267(1+4.4
N

fcAg
)(0.62+

190

fy
)(0.76+0.005 fc)Ig (4.40)

[AIB07]: approach for high-rise slender walls, does not consider shear displacements, suggests

lower bound and upper bound depending on the extent of cracking

Ie = (0.6+
N

fcAg
)Ig ≤ Ig (4.41a)

Ie = (0.2+2.5
N

fcAg
)≤ 0.71Ig (4.41b)
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4.8. Effective stiffness of RC walls

In addition, estimates based on the predicted yield displacements are included in the comparison,

namely Δy,1L and Δy,2L estimates. In the computation of the estimates for the diagonal loading

direction, the length of the wall was taken as lwall = ldiag and the wall height as H = hNS. The

experimentally determined effective stiffness ratios Ke f f ,exp/Kth are compared with existing

estimates in Figure 4.27.

Estimates by [AIB07] led to a lower bound of the effective stiffness ratio of approximately 0.26 to

0.56 (one constant value for each test unit) while the upper bound led to values of approximately

0.62 to 0.75 and hence these estimates were in all cases too high. Therefore they have been not

been included in Figure 4.27 to improve the readability of the figure. As Figure 4.27 shows,

the estimates by [PP92] led to values close to the experimental ones but do not capture the fact

that effective stiffness vary with loading position. [FB00] estimates are too high and are also

constant for all loading positions since they do not vary in any way with the loading position.

Only estimates based on the yield displacements, i.e., Δy,1L and Δy,2L vary for the different loading

positions.

In most cases the effective stiffness ratio estimates based on the yield displacements are slightly

overestimating the experimentally derived stiffness ratio but for TUD the difference is significant.

While the yield displacements are well estimated (4.12), this difference is caused by the overesti-

mation of the nominal moment by section analysis. The comparison between experimental and

section analysis results is discussed in detail in Section 5.1.

In conclusion, for the test units analysed herein, several approaches can provide reasonable

estimates of the effective stiffness ratio. Despite the somewhat large scatter, estimates based

on the yield displacements typically capture the variation with the loading position, while the

estimate by [PP92] provides a good average match of the values without however capturing the

trend with the loading position. Another important point is that the test units included here all

have slenderness ratios H/lwall between 2.6 and 2.8 depending on the loading position, which is

a rather limited slenderness range. Therefore the suitability of these estimates should be verified

against a broader slenderness ratio range and especially for walls with large slenderness ratios

since core walls are typically encountered in mid-to-high rise buildings. The effective stiffness

ratios will be further investigated by means of parametric studies in Chapter 6.
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Figure 4.27: TUA, TUB, TUC and TUD: comparison of experimentally determined effective stiffness

ratios Ke f f ,exp/Kth with estimates (a-b).

4.9 Conclusions

The objective of this chapter was to derive the experimental quantities required in plastic hinge

models, from the quasi-static cyclic tests of four U-shaped walls and to compare these quantities

with existing estimates. Different procedures for deriving the plastic hinge quantities were

investigated so that the derived quantities are compatible with plane section analysis. It was found

that despite the invalidity of the plane section assumption, section analysis curvatures can be used

with limit strain estimates to determine the limit states of the wall, even at ultimate limit states.

The experimentally derived quantities will be used for the validation of two numerical finite

element models at both local and global level in Chapter 5. In the following, the main conclusions

from the comparison between the experimental PH quantities and existing estimates as well as

the new proposed estimates and recommendations are summarised.

Yield curvature and displacement : The yield curvature, experimentally determined, was pre-

dicted relatively well by existing estimates for the principal loading directions (∼ 15%

difference). For the diagonal loading directions, estimates are not available in the literature

but yield curvatures could be predicted well using section analysis.
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4.9. Conclusions

The yield displacement was assessed in two ways: (1) by integrating the assumed linear

curvature profile over the wall height at yield and (2) as the sum of the contributions of

the flexural displacements due to wall deformation, flexural displacements due to strain

penetration into the foundation and shear displacements. A new estimate for the flexural

displacement due to wall deformation was proposed assuming a bi-linear curvature profile

at yield, i.e., a partially cracked wall over the height. The match between the two different

yield displacement estimates and the experimentally derived ones was moderately good,

with none of the two approaches providing clearly superior estimates to the other one for

the test units analysed herein.

However the approach for determining the yield displacement by accounting for the

shear displacements and the partially cracked wall is expected to give relatively good

estimates for a larger range of wall configurations as long as the shear displacements and

the flexural displacements are well estimated. By comparison, the approach assuming

a linear curvature profile is expected to lead to good estimates only as long as the shear

displacements compensate for the extent of cracking along the wall height. For more

slender walls, as it is the case for core walls in mid-to-high rise buildings, the shear

displacements will be small and hence the latter approach is expected to overestimate

the yield displacement. This aspect will be hence further examined in Chapter 6 when

U-shaped walls with various geometries and slenderness ratios are analysed.

Plastic hinge length : The experimentally determined plastic hinge lengths were found yield

the smallest values for the diagonal directions, in particular for loading with the corner

web-flange in compression. Combined with the smallest curvatures under diagonal loading,

this leads to lower displacement capacities for diagonal loading than for the principal

loading directions. In addition, the experimental plastic hinge lengths were compared

to state-of-the-art estimates for walls. All equations provided conservative estimates for

the principal directions of loading. For the diagonal loading positions, especially for

positions F and G (corner web-flange in compression), most equations overestimated

the experimentally determined plastic hinge lengths or the degree of conservatism was

significantly reduced when compared to the principal directions. Overestimating the plastic

hinge lengths leads to unconservative displacement capacity estimates. For this reason, the

plastic hinge lengths for the diagonal loading directions are further investigated in Chapter

6.

Ultimate limit strains : In order to obtain the displacement capacity of the wall, plastic hinge

lengths are combined with ultimate curvatures derived from section analysis at the ultimate

limit strains. Existing ultimate limit strain estimates for bar buckling, bar fracture and

confined concrete crushing matched well the average measured strains on the wall at the

location where damage occurred. However, when used in section analysis, the ultimate

curvature was significantly overestimated if failure was controlled by the concrete strains,

e.g., case of confined concrete crushing.

The following limit strains used with section analysis were found to predict well the

experimentally determined ultimate curvatures:

• Bar buckling: total strain excursion εs − εc = 35� [DBB09]

• Bar fracture after buckling: tensile steel strain εs = 0.5εsu [PCK07]
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• Confined concrete crushing: concrete compressive strain εc = 1/3εc,[MPP88]

It is recommended to reduce the limit strain for confined concrete crushing to one third of

the estimated value from [MPP88] equation. This recommendation is in line with previous

findings for rectangular walls [DBB09] although it is based on limited experimental data.

Alternatively, the strain corresponding to the bar buckling limit state which precedes

confined concrete crushing can be used to determine the ultimate curvature, as long as

tensile strains are controlling the behaviour at the damage location. For TUC also the strain

limits related to the out-of-plane buckling of the boundary element [PP93], [CE99] were

examined but found to be very conservative estimates.

Shear displacements : The shear displacements to flexural displacement ratios Δs/Δ f were

found to be constant over the inelastic ductility range, which was expected as the walls

did not have a significant shear degrading mechanism. Over the elastic range, Δs/Δ f ratios

were either increasing towards the yield drift or constant depending on the loading position.

Δs/Δ f ratios in the inelastic range and at yield were captured fairly well with estimates by

[BDP11] and a cracking angle accounting for the reinforcement contents in the wall.

Effective stiffness : In addition to the quantities required for the application of the plastic hinge

model, effective stiffness estimates were assessed for all test units. Estimates by [PP92]

for walls with aspect ratios lower than four were found to give the best results in terms

of errors but they failed to capture the variation of the stiffness with the loading position.

The variation was captured by predictions that are based on yield curvatures obtained

from section analysis, despite a larger scatter in values due to discrepancies between the

predicted and the experimentally measured moment at first yield. Estimates from models

that do not account in a direct or indirect way for the shear displacements significantly

overestimate the effective stiffness. Since the range of slenderness ratios of the test units

included herein is rather limited (H/lwall=2.6 to 2.8), further studies including also more

slender walls are required to assess the suitability of these stiffness estimates. The effective

stiffness of U-shaped walls is further investigated in Chapter 6.
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5. Validation of two numerical models
for U-shaped walls

In the previous chapter, the experimental data from four quasi-static cyclic tests on U-shaped

walls under bi-directional loading (TUA to TUD) was used to derive experimental quantities for

the plastic hinge (PH) model. The experimental values were compared with existing estimates

and research needs were identified. These research needs are to be addressed through parametric

studies performed with suitable numerical models.

Hence, the objective of this section is to assess the suitability of two numerical models for

capturing the seismic behaviour of reinforced concrete (RC) U-shaped walls by comparing the

numerical results to experimentally derived quantities. The first model, plane section analysis,

was chosen due to its simplicity and because it lies at the basis of plastic hinge analysis and most

beam column formulations widely used in the design practice (Section 5.1). From section analysis

one obtains the moment-curvature relationship of the section of the wall, hence information only

about the wall flexural behaviour. The second model is a detailed shell element model aiming to

capture the complete behaviour of U-shaped walls, i.e., flexural as well as shear and torsional

behaviour (Section 5.2).

As the interest is to use these two numerical models to perform parametric studies and derive

estimates for several plastic hinge quantities (Chapter 6), the two models are compared against

the experimentally derived quantities as follows:

• Plane section analysis: in terms of moment capacity, yield curvature φy.

• Shell element model: in terms of force capacity, yield curvature φy, yield displacement Δy,

plastic hinge length Lph, shear to flexural deformation ratios Δs/Δ f and effective stiffness

Ke f f .

Following these comparisons, conclusions on the capabilities and drawbacks of the models are

drawn in Section 5.3. Their suitability for parametric studies is also discussed in this last section.
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Chapter 5. Validation of two numerical models for U-shaped walls

5.1 Plane section analysis

In this section, plane section analysis (PSA) is used to predict the moment capacity and the yield

curvature of RC core walls. These quantities are typically necessary in a plastic hinge analysis

to predict the force-displacement response of the wall under horizontal loading. For this task, a

model for the plane section analysis is set-up in Section 5.1.1. The numerical results obtained

from this model are then compared to the experimentally derived results from four quasi-static

cyclic tests in Section 5.1.2 and conclusions are presented in Section 5.1.3.

5.1.1 Model set-up

Monotonic plane section analyses of the four U-shaped sections of TUA, TUB, TUC and TUD

were performed by means of a relatively simple numerical model using the “Opensees” software

[MMG09]. A zero-length fibre element with approximately 200 concrete fibres and one fibre per

reinforcement bar was used to model the sections (Figure 5.1a). For all sections, the concrete areas

were grouped into different zones depending on the degree of confinement. The confined and

unconfined concrete were model using the stress-strain relationship by [Pop73], i.e., Concrete04

material model in Opensees, while confinement properties were computed according to [MPP88]

(Figure 5.1c). The reinforcement was modelled using an uni-axial Giuffre-Menegotto-Pinto steel

material [FPB83], i.e., Steel02 material model in Opensees, with default parameters (Figure

5.1b).

Analyses were performed in displacement control. For the diagonal loading directions the loading

was applied in a displacement controlled-mode so that the applied curvature vector had the same

direction as one of the geometric diagonals of the section. Yield, nominal and ultimate strain

limits were determined using recommendations by [PCK07] and discussed in the following.
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Figure 5.1: Section analysis model: subdivision of the section and examples of stress-strain relationships

applied to reinforcement and concrete fibres
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5.1. Plane section analysis

5.1.2 Model validation

5.1.2.1 Experimental determination of moment-curvature relationship

In order to compare the numerical results from a plane section analysis (PSA) to experimental

data, the moment-curvature relationship must first be determined for all the directions in which

loading was applied during the experiments. The directions (NS, EW and diagonal) and positions

(A to G) along which displacements were applied at the top of the wall are shown in Figure 5.2b-c.

When applying displacements along the geometric diagonals of the wall section, two diagonal

loading directions are distinguished: loading direction between positions E and F (diagonal E-F)

and loading direction between positions H and G (diagonal H-G).

The experimentally determined moment was computed from the actuator forces multiplied by

the shear span corresponding to each direction, i.e., hNS = 2.95 m for the NS cycles (positions C

and D) and hEW = 3.35 m for the EW cycles (positions A and B). For loading along the diagonal

directions, the moment was taken as equal to the SRSS moment of the NS and EW directions

computed as in Equation 5.1. The SRSS value was multiplied by the sign of the NS force for

plotting the hysteresis loops consistently, while MEW and MNS are the moments at the base of the

wall for bending around the axis perpendicular to the web and parallel to the web respectively.

MSRSS =
√

(M2
EW +M2

NS) · sign(FNS) (5.1)

The experimentally determined curvature was derived by extrapolating to the wall base the linear

fit of the curvature profile over h = 50−850 mm (Figure 5.2a). This height interval was the mean

range over which the curvature profile was linear over the entire ductility range.

δ=0.4%

δ=1.0%

δ=1.5%
Best linear fit

−20 −15 −10 −5 0
0

0.5

1

1.5

2

2.5

Diag. curvature [1/km]

H
ei

gh
t a

bo
ve

 fo
un

da
tio

n 
[m

] TUC: Pos. E

(a)

Figure 5.2: Example for the procedure of determining the experimental base curvature (a) and wall

sections and directions alng which displacements were applied at the top of the wall (b-c)

The experimentally derived moment-curvature relationship is compared to the PSA moment-

curvature relationship in Figure 5.3 for TUA and TUB and in Figure 5.4 for TUC and TUD for

all the loading directions. In the following sections, the differences between the experimentally

determined moment-curvature relationship and PSA results will be discussed in terms of moment

capacity, yield curvature and ultimate curvature as these are the quantities typically required from

PSA when the plastic hinge model is applied.
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Figure 5.3: TUA and TUB: comparison of the experimentally derived moment-curvature relationship

with section analysis results
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Figure 5.4: TUC and TUD: comparison of the experimentally derived moment-curvature relationship

with section analysis results
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5.1.2.2 Moment capacity

For TUA and TUB, the moment capacity is well predicted by the plane section analysis (PSA)

for the principal loading directions, i.e., for the EW and the NS cycles (Figure 5.3a-b). For TUC

and TUD, on the other hand, a different loading protocol was applied and loading in the principal

directions was stopped just after the elastic phase. This is confirmed by the approximate linear

shape of the experimentally determined moment-curvature hysteresis in the EW cycles of TUC

and TUD (Figure 5.4a-b). Therefore the predicted moment capacity is slightly larger than the

maximum moment reached for this loading direction. For the NS cycles, the hysteresis loops

are slightly fatter than the EW direction indicating that the wall had passed the elastic phase

for this direction. The match between the numerical and the experimental moment-curvature

relationships up to where loading was stopped for the NS cycles, is very good for this loading

direction. It can hence be concluded that plane section analysis provides a good estimate of

the moment capacity of the U-shaped walls for the principal directions of loading, and this

observation is in line with the previous remarks from [BDP08b].

For the diagonal loading directions however, section analysis overestimates the experimentally

attained moment capacities by ∼ 10 to 30% depending on the test unit and loading position. This

observation is valid for all four test units and all diagonal loading positions (Figures 5.3c and

5.4c-d).

For TUA and TUB, the difference between plane section analysis and experimental results can

be partially attributed to the fact that the loading in the diagonal direction was applied after the

wall had already been loaded in the principal directions, i.e., at this instant the wall had already

softened. For TUC and TUD, this was no longer the case since in the inelastic range the cycles

in the principal directions were omitted and the wall was loaded only in the diagonal directions.

The cause for the overestimation of the moment capacity by section analysis for TUC and TUD

was already discussed in the interpretation of the experimental results (Chapter 3).

It was concluded that under diagonal loading, the moment capacity is overestimated by plane

section analysis due to the inability of this numerical model to capture the vertical strain distribu-

tion at the base of the wall. Two main differences were identified after comparing the assumed

numerical vertical strain distribution to the experimentally determined vertical strain distribution

at the base of the wall. Firstly, the flange width over which the tension reinforcement contributes

effectively to the strength capacity of the wall is overestimated by section analysis and so is

thus the moment capacity (Section 3.3.3.2 and Figure 5.5a-b). Secondly, the experimental strain

distribution indicates the presence of an extra compression zone at the corner web-flange that

is not captured by section analysis which accounts for this zone as being in tension (Section

3.3.3.2 and Figure 5.5a-b). Hence section analysis predicts that the reinforcement in this corner

contributes in tension to the wall strength thus further increases the estimate of the moment

capacity. Both phenomena are more important when loading with the flange end in compression,

i.e., positions E and H, than for loading with corner web-flange in compression, i.e., positions

F and G (Figure 5.4c-d and Section 3.3.3.2) which explains the larger moment overestimation

at the former loading positions. These observations can be extrapolated also to TUA and TUB

to explain part of the overestimation by section analysis of the attained experimental moment

capacity (Figures 5.3c).
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5.1.2.3 Moment capacity accounting for the effective flange width

As previously stated, part of the overestimation of the moment prediction under diagonal loading

is due to overestimating the length of the flange in tension which contributes to the wall strength,

i.e., shear lag effect. This effect can be taken into account in a plane section analysis by reducing

the length of the flange in tension at these loading positions. Loading to position E (West flange

end in compression) is first examined. A new wall section was set-up for TUC (Figure 5.5a) to

account for the effective flange width. For position E, this effective flange width was taken as

the length of the East flange for which the measured vertical strains reached the reinforcement

yield strain at the nominal point (Figure 5.5b). The geometry of the new wall section is shown in

Figure 5.6a.

The new moment-curvature results for position E are compared to the experimentally derived

ones as well as to results from section analysis using the full wall section. Accounting for the

effective flange width improves predictions of the SRSS moment (Figure 5.6g): the moment

capacity is now 20% higher than the experimental moment capacity whereas the moment capacity

of the full section was ∼ 30% higher. If the moment capacity in the two principal directions of the

wall is examined (Figure 5.6c, e), the moment capacity in the direction of the web (EW moment

computed about the direction of the flanges) is reduced as compared to the EW moment capacity

of the full wall section. The moment in the direction of the flanges (NS moment computed

about the direction of the web) is however increased as compared to the NS moment of the full

wall section since the removed section contributed to the NS moment with opposite sign to this

moment.

While for position E the new section approximates better the vertical strains in the East flange,

the compression zone at the interface between West flange and web is still not captured. This is

considered to contribute to the remaining discrepancies between the predicted moment capacity

and the experimentally attained one when loading with the flange end in compression.

Loading to position F (corner between East flange and web in compression) is considered in

the following. The experimentally determined vertical strain profile indicates compressive or

low tensile strains in the corner between the web and the West flange whereas the PSA strain

profile indicates large tensile strains in this region (Figure 5.5d-f). The discrepancy leads to an

overestimation of the experimental moment for this loading position. To compensate for the fact

that this compression zone is not captured by PSA, the concept of effective flange width is used

also for loading to position F. In this case the length of the West flange is reduced to the effective

flange width taken as previously for position E, i.e., 0.75 of the flange length. The reduced wall

section is shown in Figure 5.6b.
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Chapter 5. Validation of two numerical models for U-shaped walls

The new moment-curvature results for position F indicate that using the effective flange width

reduces the predicted SRSS moment capacity, which is now ∼ 20% lower than the experimentally

obtained capacity (Figure 5.6g). The wall strength in the direction of the flanges (NS moment -

Figure 5.6e) was already well predicted with the full wall section and only the strength in the

direction of the web (EW moment - Figure 5.6c) was overestimated. With the reduced wall

section, the moment capacity is reduced for both directions as compared to the full wall section

and for both directions the predicted capacity is lower than the experimentally attained capacity.

If a longer effective flange width would be used, the SRSS moment capacity could be well

predicted but the errors associated with the NS and EW moment would increase. Therefore, even

if the effective flange width is adjusted, monotonic plane section analyses will still not match the

experimentally obtained moment capacity components in the two principal directions of the wall.

For completeness, the reduced wall section accounting for the effective flange width was used

to predict the moment capacity also at positions H and G (East flange end in compression and

corner web-West flange in compression, respectively). These moment predictions from the

reduced wall section (Figure 5.6d,f and h) confirm the conclusions drawn from positions E and F,

respectively. Further discrepancies in wall strength between monotonic plane section analyses

and the experimentally attained value are due to the applied loading history of the experiments as

discussed in Section 5.2.4.
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Figure 5.5: Vertical strains at the base of the wall under diagonal loading to position E: direction of

the applied top displacement (a), experimentally determined vertical strains from LED measurements

(h = 0−75 mm) at nominal point (b) and vertical strains obtained from plane section analysis (PSA) at

nominal point analysed using the full wall section or assuming an effective flange length (c).
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Figure 5.6: Comparison of moment-curvature relationships obtained from section analysis (PSA) with

the experimentally derived ones when assuming an effective flange width for TUC: reduced wall section

to account for the effective flange width at positions E and G (a), at positions H and F (b) and obtained

moment-curvature relationships (c-h).
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5.1.2.4 Yield curvature

The yield curvature marks the boundary between the elastic branch and the inelastic branch in an

idealised moment-curvature response as previously discussed in Section 2.2.2 and 4.3. It is an

important input parameter to many displacement-based design methods, which are frequently

applied in the conceptual design phase.

The derivation of the yield curvature from the experimental data has been explained in detail in

Section 4.3. In order to judge whether section analysis can capture the experimentally determined

yield curvatures, each of the two quantities involved in deriving the yield curvature are assessed

separately, namely the first yield curvature φ ′
y and the ratio between the nominal moment and the

yield moment Mn/My. These two quantities are combined as in Equation 6.3 to give the nominal

yield curvature.

φy = φ ′
y
Mn

My
(5.2)

First yield curvature φ ′
y The point of first yield was determined experimentally as the instant

when the maximum tensile base strain first exceeded the reinforcement yield strain εsy or the

maximum absolute compressive strain first exceeded εcy = 0.002 [PCK07]. The base strain was

computed as the extrapolation to the wall base of the best linear fit of the strain profile over the

cracked height (see Section 4.3). The first yield curvature then corresponded to the linear fit

of the curvature profile over the cracked height extrapolated to the wall base. These values are

compared to the first yield curvature results from section analysis in Figure 5.7a where the first

yield curvature from section analysis corresponds to the curvature at the instant when the most

tensioned reinforcement fibre exceeds its yield strain εsy or the most compressed concrete strain

exceeds εcy .

It is found that first yield curvatures obtained from section analysis (PSA) match rather well the

experimentally derived ones. Except at position B of TUC, where the PSA value is ∼ 26% lower

than the experimental value, for the other experimental values the match is within ∼ 15% error,

and hence a good match. The mismatch at position B of TUC is most likely caused by errors in

the experimental derivation of the first yield curvature, since the experimental first yield curvature

for this case is significantly higher than for the other test units (with same geometry and similar

reinforcement yield strength).

Mn/My ratio For both experimental and numerical results, the yield moment My was deter-

mined as the moment corresponding to the point of first yield. Limit strains were also used to

determine the nominal point, and hence the nominal moment.
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5.1. Plane section analysis

The nominal moment capacity from section analysis was taken as the moment at the instant when

the strain in the most tensioned reinforcement fibre first exceeded 0.015 or when the strain in the

most compressed concrete fibre exceeded a compression strain of 0.004 whichever occurred first

[PCK07]. The experimental nominal point was determined also by comparing the base strain

with the same nominal strain limits listed above. The base strain determining the experimental

nominal point was computed following a procedure similar to the one employed for determining

the point of first yield. Assuming that the plastic strains are linearly distributed over the wall

height for which φ ≥ φ ′
y, the strains were linearly fitted and the fit was extrapolated to the wall

base. With this procedure, it was found that the nominal moment was not reached for loading to

positions A, B, C and D of TUC and A, B and D of TUD. The experimentally and numerically

determined results are compared in Figure 5.7b.

The nominal to yield moment Mn/My ratios are typically estimated less well by section analysis

than the first yield curvature with differences up to ∼ 17%. However, overall the match between

the experimental and the section analysis results of Mn/My ratios is still considered to be good.

Yield curvature φy Having compared the quantities entering in the computation of the yield

curvature, the experimental and the section analysis (PSA) results are finally compared in Figure

5.7c. The differences between the numerical (PSA) and the experimental yield curvature results

stem from the differences in the first yield curvature φ ′
y and the nominal to yield moment ratios

Mn/My. Overall, the errors from these two quantities either cancel out or accumulate resulting

in differences between the numerical and the experimentally determined yield curvatures of

∼ 20% which can be considered as a satisfactory match given that the yield curvatures find their

application in particular in the conceptual design phase.
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Figure 5.7: Comparison of experimentally derived first yield curvature φ ′
y (a), nominal to first yield

moment ratio Mn/My (b) and nominal yield curvature φy(c) with plane section analysis (PSA) results.
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5.1.3 Summary of findings from plane section analysis

Quantities from the moment-curvature relationship required for the application of the plastic

hinge model were experimentally derived and compared to numerical results from plane section

analysis (PSA) in terms of moment capacity and yield curvature. The ultimate curvature was not

discussed in this chapter as it was already compared to experimental data and conclusions were

formulated in in Chapter 4. For the quantities investigated here, the following conclusions were

drawn:

Moment capacity can be predicted with good accuracy by section analysis for the principal

loading directions. For the diagonal loading directions however, PSA overestimated the

experimentally determined moment capacities. The cause of this overestimation was

identified to be the inability of PSA to capture the experimentally determined vertical

strain distribution at the wall base. If the effective flange width is accounted for at position

E (flange end in compression), the prediction of the moment capacity improves but it

is still ∼ 20% higher than the experimental one. Further differences are assigned to the

presence of a compression zone at the corner web-flange, which cannot be captured by a

plane section hypothesis. Accounting for an effective flange width at position F (corner

web-flange in compression) could lead to a good prediction of the overall SRSS moment

but the moments in the two principal directions of the wall are still not captured. The

discrepancy between the predicted moment capacity from monotonic section analyses and

the experimentally attained moment capacity are further explained in Section 5.2.4.

Yield curvature can be predicted relatively well by section analysis within 20% difference

from the experimentally determined yield curvatures. While the first yield curvature φ ′
y

was predicted quite well, the nominal to yield moment ratios Mn/My were typically less

well predicted but the match was still rather good (∼ 17%) resulting in an overall good

prediction of φy.

5.2 Shell element model

In addition to the plane section analysis previously discussed, a shell element model was also

set-up to model the behaviour of U-shaped walls. A short description of the software used for this

task is first given (Section 5.2.1), followed by a detailed presentation of the set-up of the shell

element model (Section 5.2.2). Since one objective is to use the this model to perform parametric

studies to derive plastic hinge quantities, the shell element model is then validated against the

experimental data from four quasi-static tests (Section 5.2.3). Finally, the influence of the loading

history on the numerical results is also discussed (Section 5.2.4).
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5.2.1 VecTor4 software

The shell element model was set-up using VecTor4 (VT4) software [PV93], [Hry13]. VecTor4

(originally called APECS then RASP) is a nonlinear finite element analysis (NLFEA) software for

modelling RC structures, developed at the University of Toronto [Hry13]. VecTor4 software was

chosen because it specifically addresses reinforced concrete structures through state-of-the-art

material models already implemented in the software. The software has the ability to model 3D

reinforced concrete structures by means of multi-layered shell elements that can account for the

out-of-plane behavior of the element including the transverse shear strains [PV93], [Hry13]. The

VecTor4 software is currently under development and the version used for all the analyses within

this report is version 4.10 (dated 14.06.2012). All the VecTor4 analyses performed for this report

used only material models and finite elements already implemented in the software.

VecTor2 (VT2) [WV02] is another software developed at the University of Toronto for RC

structures, part of the same suite programs as VecTor4. While VecTor2 addresses in-plane RC

structures and is more widely used than VecTor4, the two programs share most of the material

models. Therefore many of the material model references will be addressed through VecTor2

references throughout this section.

Shell element

VecTor4 uses a nine-node multi-layered shell element with five degrees of freedom (DOF) per

node: three translations and two out-of-plane rotations. Eight nodes are located on the boundary

of the the shell element and one in the middle (Figure 5.8a). The displacement type shell element

is based on the following assumptions: (1) plane sections prior to deformations remain plane after

deformation but not necessarily normal to the element mid-surface (Mindlin theory [Min51]) and

(2) stresses normal to the element mid-surface are negligible. Quadratic shape functions describe

the displacement field of the element using nine Gauss integration points over the element (Figure

5.8b).

The shell element was provided with a layered approach to account for the variation of stresses

and stiffness through the thickness of the shell (Figure 5.8c). In-plane strains are assumed constant

over the thickness of one layer and vary linearly from one layer to another, i.e., over the thickness

of the shell element. In the original shell element formulation by [OF84]), the out-of-plane shear

strains followed a uniform strain distribution through the thickness of the element. However

this distribution was modified in VecTor4 software to a parabolic one [Hry13], and this later

distribution is used for the models described herein. The strain normal to the mid-surface of

the shell elements is derived from enforcing the condition of zero out-of-plane normal stress. A

complete description of the shell element used for the analyses and its implementation in VecTor4

software is beyond the scope of this report, and therefore for a complete description the reader is

referred to [Hry13].
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5.2. Shell element model

Figure 5.8: Characteristics of the shell element implemented in VecTor4: (a) element nodes and degrees

of freedom (adapted after [PV93]); (b) location of the integration points; and (c) layered approach

Material models

State-of-the art material models are employed for the cracked reinforced concrete as the VecTor4

implements the Modified Compression Field Theory (MCFT) [VC86] and the Disturbed Stress

Field Model (DSFM) [VL+01]. The MCFT is a generalized approach based on first principle

mechanics that describes the behaviour of cracked RC elements under bi-axial loading. The

cracked reinforced concrete is treated as an orthotropic material using a smeared rotating crack

approach, i.e., cracks are considered as distributed over the element and can rotate following the

changing direction of the principal concrete compressive stress. Average stresses and strains are

used to write the equilibrium, compatibility and stress-strain relationships. A key feature of the

MCFT is the examination of the local crack conditions with respect to the local stresses that can

be transmitted across the crack.

The DSFM extends the formulations of the MCFT by including shear slip at the crack surface in

the compatibility relationships. The restriction from the MCFT that the directions of the principal

stresses and strains remain coincident is hence removed as well as the necessity of performing

the crack slip check when examining the local crack conditions. For both MCFT and DSFM,

the stress-strain relationship for the concrete accounts for the reduction of the compression

strength and stiffness due to cracking and tensile strains in the transverse direction (compression

softening). Concrete response after cracking accounts for the tensile stresses between cracks due

to the bond between reinforcement and concrete (tension stiffening). Perfect bond is assumed

between the in-plane reinforcement and the concrete. While some of the material options are

discussed in more detail in the following section, for a complete overview of the material models

and their software implementation, the reader is referred to [Hry13] and [WV02].
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Chapter 5. Validation of two numerical models for U-shaped walls

5.2.2 Model set-up

5.2.2.1 Reference model: geometry, mesh and material models

A 3D model for U-shaped core walls was set-up using the VecTor4 (VT4) software with the

objective was to validate the model against the experimentally derived data from the four U-

shaped walls: TUA, TUB, TUC and TUD (see Chapter 4). Figure 5.9 shows the model in

elevation and cross-section for TUC. The geometry of the model is composed of two parts: the

U-shaped wall from foundation to collar (height above foundation h =0-2720 mm) and of the

collar connected to the wall (height above foundation h =2720-3560 mm), which enabled the

application of the loads. The collar of the wall was modelled with an offset from the mid-surface

of the wall so that the loading would be applied at the same position as in the experiments. The

foundation of the test unit was not modelled but instead all nodes at the base of the wall were

fully fixed (all DOFs restrained).

Figure 5.9: Mesh discretisation of the VT4 model for TUB, TUC and TUD: (a) elevation view of the wall

mid-surface and (b) cross-section view with layer discretisation

A number of six distinct modelling ”zones” were assigned to the model to account for the changes

in geometry and material properties. Changes in reinforcement ratio, bar diameter, thickness of

the wall or the presence of confining reinforcement, required new zones in the model. The final

mesh was determined by the division of the wall into the distinct ”zones”, by the accuracy of

the results when compared with the experimental ones and by the necessity to have a reasonable

mesh density from the point of view of the convergence of results and computational time.
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5.2. Shell element model

The final mesh of the wall was composed 18 x 10 approximately square shell elements: 18

elements over the cross-section (six elements over the length of each flange and the web) and 10

equal-height elements over the height of the wall(Figure 5.9b). The collar was also modelled with

18 elements over the cross-section and with four elements over the height. The wall thickness

was discretised into eight equally thick concrete layers (Figure 5.9b). A mesh sensitivity study is

presented in Section 5.2.2.2.

The in-plane reinforcement, both vertical and horizontal, was modelled as smeared reinforcement

(Figure 5.9b). In total, four reinforcement layers were assigned per element (two vertical and two

horizontal layers) with their position within the wall thickness corresponding to the actual location

of the reinforcement bars. The different in-plane reinforcement percentages were accounted for

by assigning different thicknesses to the reinforcement layers. The out-of-plane reinforcement

(confinement reinforcement) was assigned as a property of the concrete in the confined zones

which is accounted for in the material matrix and influences the computation of strains and

stresses in the in-plane directions.

The behaviour models used for setting-up the U-shaped wall model were chosen based on the

sensitivity study described in Section 5.2.2.3 as well as on recommendations by [Hry13] and

[WV02]. These models chosen for the final model, that was validated and then used for the

parametric study, are summarised below.

• Convergence Criteria : Displacements - Weighted

• Concrete Compression Base Curve : Hognestad parabola

• Compression Post-Peak : Modified Park-Kent

• Concrete Compression Softening : Vecchio 1992-A

• Concrete Tension Stiffening : Modified Bentz

• Concrete Tension Softening : Linear

• Concrete Tension Splitting : Not considered

• Concrete Confined Strength : Kupfer/Richart

• Concrete Dilatation : Fixed Poisson Ratio

• Concrete Cracking Criterion : Mohr-Coulomb(Stress)

• Concrete Crack Slip Check : Basic (DSFM/MCFT)

• Concrete Crack Width Check : Crack limit(agg/2.5)

• Concrete Bond or Adhesion : Perfect bond

• Concrete Creep and Relaxation : Not considered

• Concrete Hysteresis : Nonlinear w/offsets

• Reinforcement Hysteresis : Bauschinger(Seckin)
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Chapter 5. Validation of two numerical models for U-shaped walls

• Reinforcement Dowel Action : Not considered

• Reinforcement Buckling : Not considered

• Element Strain Histories : Considered

• Element Slip Distortions : Not considered

• Geometric Nonlinearity : Not considered

• Crack Allocation Process : Uniform spacing

5.2.2.2 Mesh sensitivity

To determine the final mesh, sensitivity studies were performed varying the number of elements

over the height, over the section or both. The number of layers over the thickness of the elements

was also varied. For this task the model for TUB was analysed for monotonic loading in one of

the principal directions (position B).

The influence of the element mesh size on the numerical results was assesssed based on the

comparison of the numerical results from the model with different meshes with the experimental

data. The results were compared at the global level in terms of force-displacement curves and at

the local level in terms of vertical strains at the most compressed and the most tensioned wall

edges. For position B, investigated here, the most tensioned edge corresponds to the NW corner

while the most compressed edge corresponds to the NE corner (see Figure 5.2b).

The mesh sensitivity was tested by changing the number of elements over the height of the wall

between base and collar (collar not included), the number of elements over the wall section or by

changing both number simultaneously. Dividing the section into several elements was somewhat

limited by the different confined and unconfined concrete regions in the wall. Therefore the wall

section could be divided into 15, 18 or 22 elements. Next, in order to test the influence of the

element height on the numerical results, the wall was divided in five, ten or 20 equal elements

over the height. And finally, reducing or increasing the element size simultaneously over the

length and the height was taken into account by comparing three models: 15 elements/section

and 5 elements/height (15S x 5H), 18 elements/section and 10 elements/height (18S x 10H) and

22 elements/section and 20 elements/height (22S x 20H). The global results (force-displacement

curves) for all the meshes are compared with the experimental hysteresis in Figure 5.10. As the

graphs indicate the variation of the force-displacement curves between the models with different

meshes is rather small.
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Figure 5.10: Mesh sensitivity: comparison of the experimental force-displacement curve with numerical

results obtained from models by varying the element length (a), varying the element height (b) and varying

the element length and height (c)
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Chapter 5. Validation of two numerical models for U-shaped walls

At the local level, the vertical strain profiles over the wall height at the most compressed (NE

corner) and at the most tensioned (NW corner) wall edges are examined (Figure 5.11a). The

experimental vertical strain profiles were determined as the average strains of the LVDT chains

mounted at the outside edges of the wall as explained in Section 4.2 (Figure 5.11b). The numerical

vertical strains were computed from the vertical displacements of nodes on the mid-surface of the

wall model (Figure 5.11c). The experimental strains were corrected for the distance between the

measurement device and the outer corners of the wall. The numerical strains were also corrected

for the distance between the mid-surface and the outer corner of the wall. Both corrections were

done assuming a linear vertical strain profile over the length of the flanges and the length of the

web.

The experimental and the numerical results of models with different meshes are compared in

Figures 5.12, 5.13 and 5.14. These local results are discussed by first comparing the numerical

results from the final model with the experimental results, and secondly by comparing the

numerical results from the different meshes between each other.

Figure 5.11: Location of the vertical strains at the wall outer corners (NE corner and NW corner) examined

for local behaviour at position B (a). The vertical strains at the NW and NE corners were obtained by

correcting the measured strains from LVDTs (b) and the numerical strains obtained at the wall mid-surface

(c) by assuming a linear vertical strain profile along the length of the web and of the flanges.

In the tensile strain profile, at low displacement ductility (μΔ = 1) the numerical vertical strains

match rather well the experimental strain profile (Figure 5.12). The experimental strain at the base

of the wall (over h = 0−50 mm) is not plotted due to graph readability and because it mainly ac-

counts for the strain penetration effect which is not modelled here. The experimental compressive

strains at this displacement level are also matched relatively well by the numerical model. At a

medium displacement ductility (μΔ = 3), VecTor4 predicts an important concentration of tensile

strains over the third element above the base which was not observed in the experiment (Figure

5.13b). However at high displacement ductility (μΔ = 4− 6) this concentration of numerical

strains becomes less important and the numerical strain profile approaches the experimental

strain profile (Figure 5.13c). The compressive strain profile is well captured by the model at low

ductilities but not for medium and large ductilities, irrespective of the chosen mesh (Figure 5.12a,

5.13a and 5.14a).
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5.2. Shell element model

The numerical strain profiles obtained with the different meshes show some differences especially

at medium and large displacement ductilities (Figures 5.13b-c and 5.14b-c). Changing the number

of elements over the wall height has the most important influence on the vertical strain results

(Figures 5.13) while the number of elements over the section have a lesser influence (Figures

5.12). While the model is sensitive to mesh size for medium and height ductilities, at low

ductilities the mesh influence is negligible (Figure 5.13a and 5.14a). The intermediate size mesh

that gives the closest results to the experimental ones is chosen for the final model.
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Figure 5.12: Mesh sensitivity: comparison of the experimental average vertical strains with numerical

average vertical strains obtained from models by varying the numbers of elements per section. The results

are compared for the wall edge with the maximum tensile strains (NE corner) (a-c) and for the edge with

the minimum compressive strains (NW corner) (d-f) at position A and at three displacement ductilitiy

levels: at low ductility μΔ = 1, at medium ductility μΔ = 3 and at a large ductility μΔ = 6.
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Figure 5.13: Mesh sensitivity: comparison of the experimentally derived average vertical strains with

numerical average vertical strains obtained from models by varying the numbers of elements per height.

The results are compared for the wall edge with the maximum tensile strains (NE corner) (a-c) and for the

edge with the minimum compressive strains (NW corner) (d-f) at position A and at three displacement

ductilitiy levels: at low ductility μΔ = 1, at medium ductility μΔ = 3 and at a large ductility μΔ = 6.
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Figure 5.14: Mesh sensitivity: comparison of the experimentally derived average vertical strains with

numerical average vertical strains obtained from models by varying the numbers of elements per section

and per height. The results are compared for the wall edge with the maximum tensile strains (NE corner)

(a-c) and for the edge with the minimum compressive strains (NW corner) (d-f) at position A and at three

displacement ductilitiy levels: at low ductility μΔ = 1, at medium ductility μΔ = 3 and at a large ductility

μΔ = 6.
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Number of layers over the wall thickness The shell element can be subdivided into several

layers over the thickness. For the final model, the elements were divided into eight layers through

the wall thickness. To test the sensitivity of the results to the layer discretisation, a model with

four and one with 16 layers through the thickness were considered. The force-displacements

results are given in Figure 5.10d and indicate that the layer discretisation has little effect on the

overall force-displacement curve. In terms of vertical strains, the layer discretisation influences

the tensile strain results for medium and large ductilities (Figure 5.15): a large layer thickness

reduces to some extent the strain concentration in the third element while a small layer thickness

amplifies it. For tensile strains at low ductilities as well as for compression strains at all ductilities,

the layer discretisation has very little influence on the local results.
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Figure 5.15: Mesh sensitivity: comparison of the experimentally derived average vertical strains with

numerical average vertical strains obtained from models by varying the numbers of layers per thickness of

element. he results are compared for the wall edge with the maximum tensile strains (NE corner) (a-c)

and for the edge with the minimum compressive strains (NW corner) (d-f) at position A and at three

displacement ductilitiy levels: at low ductility μΔ = 1, at medium ductility μΔ = 3 and at a large ductility

μΔ = 6.
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In conclusion, while the mesh sizing and layer discretisation does not influence the strength and

stiffness of the wall, they do influence the magnitude of strains at medium and high ductilities

and might hence influence the wall displacement capacity and failure mode.

5.2.2.3 Material models and analysis options: sensitivity studies

The series of VecTor programs are equipped with a wide choice of material models and options

[WV02]. For VecTor4 the choice of material options is somewhat limited as compared for

example with VecTor2 but still the user has wide range of choices. Performing sensitivity studies

for all the material models using the full wall model of one of the tested U-shaped walls would

be very time consuming. Therefore the following strategy was adopted: the material models are

assess sed using a one-element model with different boundary conditions and loading history,

and based on these results only the most “promising” models are then evaluated using the full

U-shaped wall model. When testing material models using the U-shaped model, comparison is

made with the “ reference model” which represents the final model used for the validation and

parametric study and which is previously described in Section 5.2.2.1.

Concrete compression pre-peak behaviour Six models are available to describe the pre-peak

behaviour of concrete. These models compute the principal compressive stress fc3 if the principal

compressive strain εc3 is less than the peak strain εp. While some models were derived for normal

strength concrete, other have a steeper ascending branch in order to represent high strength

concrete. The models were tested on a model with one single shell element without reinforcement

applying the boundary conditions as shown in Figure 5.16a. An incremental displacement which

compresses the element was applied at the top nodes of the element. The resulting stress-strain

curves are given in Figure 5.16b and they are compared to the experimental stress-strain curve

obtained from one concrete cylinder test corresponding to TUC at the day of testing. The linear

pre-peak model was not represented in the graph as this model is not normally used.
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Figure 5.16: Behaviour of concrete in compression: concrete compression base curves
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The comparison of the pre-peak models with the experimental stress-strain curve indicates that

Hognestad, Hoshikuma and Popovics NSC all provide a rather good match. These three models

will be investigated together with their corresponding post-peak curve on the full TUB model.

Concrete compression post-peak behaviour The compression post-peak models compute the

principal compressive stress fc3 for principal compressive strains εc3 larger than the peak strain

εp. The peak stress and strain are determined by modifying the concrete cylinder strength and the

corresponding strain to account for compression softening due to coexisting tensile strains and

for strength enhancement due to confinement. Most of the post-peak models are formulated in

the context of confined concrete and hence if the element is not confined all post-peak models

yield the same stress-strain relationship (except for Saenz/Spacone). Hence the post-peak models

are all assessed in the context of confined concrete for one element model with the boundary

conditions as shown in Figure 5.17a. The element has no in-plane reinforcement and has a ratio

of 0.75% of out-of-plane reinforcement, which is a typical confinement ratio for the test units

investigated here. An incremental displacement which compresses the element was applied at

the top nodes of the element. The Modified Park-Kent model which is also the recommended

default model [WV02], provides the lowest degradation of the compressive stresses after peak

as compared to the other models. Monotya2003 and Popovics/Mander have an intermediate

behaviour while with Hoshikuma the degradation is faster. Saenz/Spacone model differentiates

from all the other as the degradation initiates earlier in this model. The Modified Park-Kent, the

Popovics/ Mander and the Hoshikuma models will be further investigated using the full TUB

model.
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Figure 5.17: Behaviour of concrete in compression: tested model with a single shell element (a) and

VecTor4 post-peak models (b)
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Concrete compression softening Compression softening refers to the reduction of the uni-

axial concrete strength and strain (cylinder test strength and strain) due to coexisting transverse

cracking and tensile straining. In VecTor4, the compression softening models are implemented

by multiplying either both the uni-axial strength and strain or just the strength, with a reduction

factor βd in order to obtain the peak strength fp and strain εp. A one-element model is again

considered with the boundary and loading conditions as shown in Figure 5.18a. An incremental

displacement which compresses the element was applied at the top nodes of the element while a

constant displacement was applied on one side of the element. The results given in Figure 5.18b

show that the compression softening can vary significantly. Only Vecchio1992A, Vecchio1992C

and Vecchio-Collins 1982 reduce both the strength and the strain while the others modify only the

strength. However the Vecchio-Collins 1982 model does not recognize shear slip effects when

these are included in the analyses and hence this model is also disregarded. As the remaining

models: Vecchio1992A and Vecchio1992C provide similar results, Vecchio1992A is chosen for

the final model.

(b)
Compression softening

Not considered
Vecchio 1992A
Vecchio 1992B
Vecchio 1992C
Vecchio−Collins 1986
Vecchio−Collins 1982

0 2 4 6 8 10
0

10

20

30

40

50

Principal min. strain εc3 [mm/m]

Pr
in

ci
pa

l m
in

. s
tre

ss
 σ

c3
 [M

Pa
]

Figure 5.18: Behaviour of concrete in compression softening models: tested model with a single shell

element (a) and VecTor4 models (b)

Confined concrete strength Confined concrete is implemented in VecTor4 by multiplying the

uni-axial strength fc and strain ε0 (from cylinder test) with an amplifying factor βl in order to

obtain the peak strength fp and strain εp. Note that the computation of the peak strength and

strain includes also the factor βd which accounts for the compression softening effects (Equations

5.3 and 5.4). The different strength enhancement models are shown in Figure 5.19b as tested on

a one-element model (Figure 5.19a).

The three confined concrete models provide rather different results: Selby model results in the

most rapidly descending post-peak branch and lowest confined strength and strain, with Montoya/

Ottosen the degradation after post-peak is very small while Kupfer/ Richart provides intermediate

confinement strength and strain. The Kupfer/ Richart was chosen for the final model.

fp = βd ·βl · fc (5.3)
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Chapter 5. Validation of two numerical models for U-shaped walls

εp = βd ·βl · ε0 (5.4)
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Figure 5.19: Behaviour of concrete in compression-confined concrete strength: tested model with a single

shell element (a) and VecTor4 models (b)

Lateral expansion model for concrete The lateral expansion feature accounts for the lateral

expansion of the concrete volume under increasing compressive strains. If the concrete is confined,

this expansion results in passive confining pressures which can increase the strength and strain

capacity of the concrete in compression. The lateral expansion is introduced in the software

through the Poisson ratio, which relates the expansion of concrete in one principal direction

orthogonal to the one in which compression the compression load is applied. The simplest model

available considers a constant Poisson ratio, i.e., a Poisson ratio that is independent of the applied

compressive strains. All the other models account for an increasing Poisson ratio with increasing

compressive strains. The results for a one-element model are shown in Figure 5.20.

All models considering a variable Poisson ratio lead to an increase in the peak strength and strain

with increasing compressive strain, which has been also observed in experimental tests [KHR69].

However their response is rather unstable. The fixed Poisson ratio shows the most numerically

stable behaviour and despite not being the most realistic model, it is the preferred option for the

final model due to its numerical stability.

Concrete tension stiffening Tension stiffening is a phenomenon specific to reinforced concrete

in tension. When the reinforced concrete cracks, the stresses in the concrete in the direct vicinity

of the cracks reduce to zero. However with increasing distance to the crack surface, tensile

stresses in the concrete increase due to the bond between reinforcement and concrete. These

stresses together with the reinforcement stresses give the stiffness of the reinforced concrete

which is therefore larger than the stiffness of the reinforcement alone.
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Figure 5.20: Behaviour of concrete in compression-lateral expansion models: tested model with a single

shell element (a) and VecTor4 models (b)

The tension stiffening is implemented in the software by modifying the post-peak behaviour of

concrete in tension. When tension stiffening is not considered, the concrete tensile stress drop

immediately to zero stress after reaching the cracking stress fcr (Figure 5.21b). Depending on the

tension stiffening model used, the principal tensile stress in concrete fc1 after cracking can be

written as a function of the cracking stress fcr and the bond characteristics between reinforcement

and concrete. The tension stiffening models provided in VecTor4 were tested on a one-element

model, with 0.5% vertical reinforcement content. An incremental displacement that tensions the

element was applied at the top nodes of the element (Figure 5.21a). Tension softening was not

considered (see next section).

Except the Izumo, Maekawa et al. model, all the other tension stiffening models yield rather

similar results (Figure 5.21b). The Modified Bentz model is chosen for the final model since

it also accounts for the characteristics of the bond between reinforcement and concrete. Since

tension stiffening affects the wall effective stiffness which is one the quantities of interest in the

model validation, the tension stiffening influence will be further assess sed on the TUB wall

model.

Concrete tension softening Tension softening is a phenomenon specific to plain concrete in

tension: after cracking the concrete stresses do not decrease immediately to zero but the strength

drop is gradual as the crack fracture process progresses. Tension softening is accounted for in

VecTor4 by including a post-peak branch in the stress-strain behaviour of concrete. Note that

also tension stiffening is included in the same manner, i.e. by including a post-peak descending

branch. When both phenomena are considered, the post-peak principal concrete tensile stress is

described by the maximum of the tensile stresses resulting from the two phenomena.
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Figure 5.21: Behaviour of concrete in tension: tested model with a single shell element (a) and VecTor4

tension stiffening models (b)

A one-element model was again considered in order to assess s the different tension softening

models. Initially, tension stiffening was not considered, but in this way, all tension softening

models yielded the same stress-strain relationship. Therefore the Modified Bentz was assigned as

an option for tension stiffening, while the vertical reinforcement content was reduced to almost

zero, thus reducing also the influence of considering the tension stiffening on the results.

The different tension softening models show various trends from a rapidly descending branch

(Nonlinear Yamamoto) to a more slowly descending one (Nonlinear Hordijk). The linear model,

which is the simplest model available, was chosen for the final wall model since more complex

models were not considered necessary. As discussed in the following sections, the influence of

tension softening on the results of the TUB wall model is negligible for the global results and

rather small for the local results.
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Figure 5.22: Behaviour of concrete in tension: tested model with a single shell element (a) and VecTor4

tension softening models (b)
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Concrete compression curve - TUB model The different models where further examined

by analysing the TUB model for the retained pre-peak and post-peak curves. The models are

assessed in terms of global behaviour (force-displacement curve) and in terms of local behaviour

(vertical strains profile over the wall height) by comparison to the experimentally determined

results.

The force-displacement comparison, shown in Figure 5.23a indicates that the VecTor4 model

matches rather well the experimental behaviour in terms of stiffness and strength. The overall

differences between the models are very small.

When evaluating the vertical strain profiles (Figure 5.24), the differences between the models

are still not significant especially at low ductilities while for medium and high ductility some

trends can be observed. More precisely, the combination of Hognestad/ Park-Kent provides the

best match with the experimental results. The Hoshikuma model gives rather similar results to

Hognestad/ Park-Kent. Based on these observations the Hognestad/ Park-Kent combination is

used to describe the concrete compression curve in the final model.

MCFT vs. DSFM - TUB model One material modelling option which was not evaluated on

the one-element model is the choice between the Modified Compression Field Theory (MCFT)

and the Disturbed Stress Field Model (DSFM). As previously stated, MCFT assumes that the

principal stresses and strains are aligned. For DSFM this assumption is no longer valid and the

principal stress rotation can lag behind the rotation of the principal strain [VL+01]. While MCFT

requires examination of the local crack conditions (crack slip check) in order to address possible

failure modes along the crack, the DSFM explicitly calculates the crack slip deformations and

hence the crack slip check is no longer necessary.

From a practical point of view, DSFM was mainly developed to extend the application of MCFT

to reinforced concrete structures that are very lightly or very heavily reinforced because for such

extreme reinforcement ratios MCFT over- or under-predicted the shear stiffness and strength

[VL+01]. The test units considered here have a reinforcement percentage around ∼ 1% which

is hence considered a medium reinforcement content. It is therefore expected that MCFT and

DSFM yield similar responses.

Indeed this is confirmed after comparing the two models at the global level (Figure 5.23b)

and at the local level (Figure 5.25). Some more important variations can be observed only at

the local level at high ductilities (μΔ = 6) in the tensile strains (Figure 5.25c). Based on this

comparison with the experimental results, the MCFT seems to be a more suitable choice. For this

comparison the following complementary modelling options were used: crack slip check - Basic

(DSFM/MCFT) option and for element slip distortions - Walraven.
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Figure 5.23: Sensitivity of the force-displacement curve to the compression pre-peak and post-peak

models (a) and to the choice of analytical model (MCFT or DSFM) (b)
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Figure 5.24: Sensitivity of the vertical strain profiles to the compression pre-peak and post-peak models
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Figure 5.25: Sensitivity of the vertical strain profiles to the choice of analytical model (MCFT or DSFM)

155



Chapter 5. Validation of two numerical models for U-shaped walls

Tension stiffening and softening - TUB model The post-peak behaviour of concrete in tension

is expected to significantly influence the effective stiffness of the wall, i.e., the secant stiffness

through the first yield point, which is one the quantities of interest here. To verify this, results

from the TUB model where tension stiffening is not considered were compared with the results

from the reference model and with the experimentally derived quantities. The reference model

which was described in Section 5.2.2.1 includes both tension stiffening (Modified Bentz) and

tension softening (Linear). Note that, as previously mentioned VecTor4 does not consider tension

softening when tension stiffening is neglected. Hence the results shown in Figure 5.26 consider

that concrete tensile strength drops immediately to zero after cracking.

Neglecting tension stiffening and softening reduced significantly the initial wall stiffness when

compared to the reference model. More importantly, this model has also a significantly lower

stiffness than the experimental force-displacement curve.

When comparing the vertical strain profiles, the match between the reference model strains and

the experimental ones is rather good at yield (μΔ = 1). The model without tension stiffening

and softening significantly overestimates the tensile strains in the upper part of the wall at yield,

while underestimating the strains at the base. In contrast, at medium and high ductilities it is

the latter model that predicts well the tensile strain distribution over the height of the wall, and

the concentration of strains in the third element no longer occurs. This would indicate that the

post-peak tension behaviour of concrete is responsible for the concentration of plastic strains in

the third element above the base, which was observed in Section 5.2.2.2.

Figure 5.26 compares the force-displacement results when tension softening is not considered

with results from the base model and experimental results. Not accounting for tension softening

reduces slightly the elastic stiffness. However the largest differences with the final model and

with the experimental results can be seen in the local results at yield. Without tension softening,

the tensile strains in the upper part of the wall are overestimated at μΔ = 1. Without tension

softening, the tensile strains at medium and large ductilities are now concentrated in the second

element from the base, which is closer to the experimental observations.

In conclusion, not considering tension stiffening and softening underestimates significantly the

elastic stiffness of the wall as well as it overestimates the tensile strains in the upper part of the

wall at yield. Therefore it is necessary to consider these phenomena in the model if the elastic

branch of the force-displacement curve is of interest, despite the shortcomings of these models

related to numerical concentration of strains.

5.2.2.4 Material properties

The reinforcement stress-strain curves were fitted with the experimentally obtained curves of steel

tests at the day of testing (Figure 5.29a). The steel properties introduced in the model correspond

to those at day of testing, except the ultimate strain which was assigned a very large value.
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Figure 5.26: Sensitivity of the force-displacement curve to the choice of tension stiffening (a) and tension

softening (b) models
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Figure 5.27: Sensitivity of the vertical strain profiles to the tension stiffening model
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Figure 5.28: Sensitivity of the vertical strain profiles to the tension softening model
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The concrete compressive strength fc was taken from cylinder tests at the day of testing. The

corresponding peak strain at maximum strength was set to the default VecTor4 value ε0 =
1.8+0.0075 fc. For the elastic modulus and the tensile strength, the default VecTor4 values were

also assigned: Ec = 5500
√

fc and ft = 0.33
√

fc correspondingly. As already discussed for the

concrete compressive base curve the Hognestad model is used for the pre-peak and the Modified

Park-Kent for the post-peak. To account for the cyclic behaviour, the concrete hysteresis is

described by a nonlinear model with offsets (Figure 5.29).
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Figure 5.29: Vector4 material models: (a) D8 and D12 reinforcement of TUC and TUD; and (b) unconfined

concrete of TUC

Concrete tensile strength The extent of cracking over the height of the wall is one of the

quantities of interest here. Since cracking depends significantly on the concrete tensile strength

ft , its influence on the results was verified by performing one analysis with half the default tensile

strength. The default tensile strength is computed in VecTor4 as ft = 0.33
√

fc, where fc is the

uni-axial concrete compressive strength.
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Figure 5.30: Sensitivity of the force-displacement curve to the value of the concrete tensile strngth

Figure 5.30 indicates that the model with ft leads to a reduced initial wall stiffness when compared

to the reference model and also when compared to the experimental results. In terms of local

behaviour, the tensile strains at yield are overestimated in the upper part of the wall at yield,

indicating that using half the value of ft will overestimate the extent of cracking over the wall

height. At the same, the tensile strains towards the base of the wall, are underestimated when

reducing ft . At medium and high ductilities, reducing ft has little influence on the tensile strain

profile. Since capturing the extent of cracking at yield is essential, the default concrete tensile

strength ft = 0.33
√

fc will be used in all the analyses.
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Figure 5.31: Sensitivity of the vertical strain profiles to the value of the concrete tensile strength
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5.2.2.5 Load application and load history

The collar where all the loads were applied, was assigned a large tensile and compressive concrete

strength to account for the pre-tensioning which was applied on the collar during the experiments.

Four compressive forces representative for the axial load were applied vertically at the top of the

collar with their resultant acting at the gravity centre of the wall U-shaped section (Figure 5.9).

The three lateral loads were all applied by means of displacement increments for all analyses.

In all four tests which are used for the validation of the model, bi-directional loading histories

were applied ([BDP08a] and Section 3). The same load histories were also applied to the VecTor4

models, except for TUA and TUB where the elastic cycles, as listed below, were applied in

displacement control instead of force control as in the experiments.

The loading positions and directions are shown in Figure 5.2b-c. Three lateral loading directions:

EW, NS and diagonal E-F, with two loading positions each were distinguished for TUA and TUB.

For TUC and TUD, an additional loading direction is considered, i.e., diagonal H-G, due to the

loading protocol and the asymmetry of the vertical reinforcement in the two wall flanges (Section

3). The loading history of all test units is summarised below:

• TUA and TUB

– Elastic cycles: one cycle along EW, NS and diagonal E-F directions up 25%, 50%,

75% and 100% of the predicted force at first yield

– Inelastic cycles: one cycle along EW, NS, diagonal E-F directions and one sweep

cycle at each displacement ductility μΔ = 1,2,3,4,6 (and 8 only for TUA)

• TUC and TUD

– Elastic cycles: one cycle along diagonal E-F (Diag.1), diagonal H-G, NS and EW

direction at drifts δ = 0.1%,0.2%,0.3%,0.4% and 0.6%

– Elastic cycles: two consecutive cycles per drift along NS followed by two cycles

along EW direction at δ = 0.8%

– Inelastic cycles: two consecutive cycles per drift along diagonal E-F then two cycles

along diagonal H-G δ = 1.0%

– Inelastic cycles: two consecutive cycles per drift along diagonal H-G then two cycles

along diagonal E-F δ = 1.5%

– Inelastic cycles (only for TUC): continue alternating diagonals E-F and H-G at

δ = 2.0%,2.5%

5.2.3 Model validation

Once the model was set-up its validation is done against experimental results from the four

quasi-static cyclic tests on U-shaped walls, namely TUA and TUB reported by [BDP08a] and

TUC and TUD reported in Chapter 3. The VecTor4 models for the four walls differ with regard

to concrete and steel properties, with regard to the imposed loading history both horizontal and

vertical load as well as with regard to the vertical reinforcement contents. The mesh was kept the

same for all models (Figure 5.9).
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Chapter 5. Validation of two numerical models for U-shaped walls

In the following, the numerical results from the VecTor4 analyses are discussed with respect to

the experimentally derived values focusing on quantities involved in the plastic hinge model,

since these quantities will also be of interest for the parametric studies. For consistency, the

numerically determined quantities are derived using the same procedures that were used for the

derivation of the experimental results (Section 4).

5.2.3.1 Force-displacement curves

The comparison between the experimental and the numerically obtained force-displacement

hystereses is shown in Figures 5.32 to 5.34 with the force-displacement hystereses displayed for

each loading direction and each test unit. The VecTor4 model captures very well the experimental

force-displacement hysteresis in terms of strength, loading and reloading stiffness for all test

units and loading directions.

5.2.3.2 Yield curvature

The yield curvature φy is determined from the results of the shell element model following the

same procedure as for the experimental results (Section 5.1.2.4). More precisely, the first yield is

determined at the instant when the tensile strain at the base of the wall corresponding to the most

tensioned flexural reinforcement bar reaches the reinforcement yield strain. The base strain was

determined by extrapolating to the wall base a linear fit of the strains over the cracked height of

the wall Hcr, where Hcr is computed as in Equation 5.5. In this equation, Mcr is the analytical

cracking moment, My is the first yield moment from section analysis and H is the wall shear span

depending on the loading direction.

Hcr = max(lwall;(1−Mcr/My) ·H) (5.5)

Once the first yield instant is determined, the first yield curvature φ ′
y is determined also by a

best linear fit procedure and extrapolation to the base. The curvature profile at first yield is also

fitted over Hcr and extrapolated to the wall base, thus giving the first yield curvature. Curvature

profiles at first yield obtained from the analyses are shown for comparison with the experimentally

derived profiles in Figures 5.35 and 5.36. The match between the experimentally and numerically

determined curvatures profiles at first yield is overall rather good.

As Figure 5.37 indicates, the first yield curvatures obtained as explained above are slightly

overestimated by the numerical model. This is the result of having the first yield instant being

determined slightly later, i.e. for larger top displacements, in the numerical model due to larger

size of the numerical load step increment as compared to the experimental load step. This will

also lead to larger first yield moments and hence lower nominal to first yield moment ratios

Mn/My. As will be discussed in the following, this difference is of little importance since the

larger first yield curvatures φ ′
y and displacements Δ′

y combined with the lower nominal to first

yield moment ratios Mn/My will lead to good predictions of the nominal yield curvature φy and

displacement Δy, which are the quantities of interest.
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A B

(a)

West East

Pos.A

Pos.BTUA: EW cycles

Experiment
VT4

−100 −75 −50 −25 0 25 50 75 100
−800

−600

−400

−200

0

200

400

600

800

EW displacement at h=3.35 m [mm]

EW
 fo

rc
e 

[k
N

]
−3 −2 −1 0 1 2 3

Drift [%]

A B

(b)

West East

Pos.A

Pos.BTUB: EW cycles

Experiment
VT4

−100 −75 −50 −25 0 25 50 75 100
−800

−600

−400

−200

0

200

400

600

800

EW displacement at h=3.35 m [mm]

EW
 fo

rc
e 

[k
N

]

−3 −2 −1 0 1 2 3
Drift [%]

C

D

(c)

South North

Pos.C

Pos.DTUA: NS cycles

Experiment
VT4

−100 −75 −50 −25 0 25 50 75 100
−800

−600

−400

−200

0

200

400

600

800

NS displacement at h=2.95 m [mm]

N
S 

fo
rc

e 
[k

N
]

−4 −3 −2 −1 0 1 2 3 4
Drift [%]

C

D

(d)

South North

Pos.C

Pos.DTUB: NS cycles

Experiment
VT4

−100 −75 −50 −25 0 25 50 75 100
−800

−600

−400

−200

0

200

400

600

800

NS displacement at h=2.95 m [mm]

N
S 

fo
rc

e 
[k

N
]

−4 −3 −2 −1 0 1 2 3 4
Drift [%]

E

F

(e)

SW NE

Pos.E

Pos.FTUA: Diag. cycles

Experiment
VT4

−100 −75 −50 −25 0 25 50 75 100
−800

−600

−400

−200

0

200

400

600

800

SRSS displacement at h=2.95 m [mm]

SR
SS

 fo
rc

e 
[k

N
]

−4 −3 −2 −1 0 1 2 3 4
Drift [%]

E

F

(f)

SW NE

Pos.E

Pos.FTUB: Diag. cycles

Experiment
VT4

−100 −75 −50 −25 0 25 50 75 100
−800

−600

−400

−200

0

200

400

600

800

SRSS displacement at h=2.95 m [mm]

SR
SS

 fo
rc

e 
[k

N
]

−4 −3 −2 −1 0 1 2 3 4
Drift [%]

Figure 5.32: TUAand TUB: Comparison between the experimentally determined force-displacement

hystereses and full-cyclic VecTor4 (VT4) predictions

163



Chapter 5. Validation of two numerical models for U-shaped walls

A B

(a)

West East

Pos.A

Pos.BTUC: EW cycles

Experiment
VT4

−100 −75 −50 −25 0 25 50 75 100
−800

−600

−400

−200

0

200

400

600

800

EW displacement at h=3.35 m [mm]

EW
 fo

rc
e 

[k
N

]

−3 −2 −1 0 1 2 3
Drift [%]

C

D

(b)

South North

Pos.C

Pos.DTUC: NS cycles

Experiment
VT4

−100 −75 −50 −25 0 25 50 75 100
−800

−600

−400

−200

0

200

400

600

800

NS displacement at h=2.95 m [mm]

N
S 

fo
rc

e 
[k

N
]

−4 −3 −2 −1 0 1 2 3 4
Drift [%]

E

F

(c)

SW NE

Pos.E

Pos.FTUC: Diag. cycles

Experiment
VT4

−100 −75 −50 −25 0 25 50 75 100
−800

−600

−400

−200

0

200

400

600

800

SRSS displacement at h=2.95 m [mm]

SR
SS

 fo
rc

e 
[k

N
]

−4 −3 −2 −1 0 1 2 3 4
Drift [%]

G
H

(d)

SW NE

Pos.H

Pos.GTUC: Diag. cycles

Experiment
VT4

−100 −75 −50 −25 0 25 50 75 100
−800

−600

−400

−200

0

200

400

600

800

SRSS displacement at h=2.95 m [mm]

SR
SS

 fo
rc

e 
[k

N
]

−4 −3 −2 −1 0 1 2 3 4
Drift [%]

Figure 5.33: TUC: Comparison between the experimentally determined force-displacement hystereses

and full-cyclic VecTor4 (VT4) predictions
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Figure 5.34: TUD: Comparison between the experimentally determined force-displacement hystereses

and full-cyclic VecTor4 (VT4) predictions
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Figure 5.35: TUA and TUB: comparison of experimentally determined curvatures profiles at first yield

with VT4 results
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Figure 5.36: TUC and TUD: comparison of experimentally determined curvatures profiles at first yield

with VT4 results
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Chapter 5. Validation of two numerical models for U-shaped walls

Next, in order to obtain the nominal yield curvature φy, the yield and the nominal moment need to

be determined. The yield moment is defined as the moment when the base strain corresponds to

the yield strain limits and the nominal moment as the moment when the nominal strain limits are

reached. The same procedure was used for deriving the nominal moment from the experimental

data (Section 5.1.2.4). The nominal limit strains are εs = 0.015 or εc = −0.004 whichever occurs

first. The base strain is obtained by extrapolating to the wall base the best linear fit of the strain

profiles over the height of inelastic strains. A linear variation of the inelastic strains is hence

assumed.

A comparison of the numerically and experimentally obtained Mn/My ratios is shown in Figure

5.37b. As discussed, the predictions of the nominal moment to first yield moment Mn/My ratio

are slightly lower that the experimentally derived Mn/My ratios, within ∼ 20− 30% (Figure

5.37b) due to the higher numerical yield moments My (Figure 5.39a).

Finally, the nominal yield curvature will be obtained by multiplying the first yield curvature

φ ′
y with the Mn/My ratio. The discrepancies between the numerically and the experimentally

determined nominal yield curvatures stem from the differences in two multiplied quantities which

tend to cancel out (Figure 5.37c) since the φ ′
y is slightly overestimated while Mn/My is slightly

underestimated. Overall, the shell element model captures relatively well the experimentally

derived nominal yield curvatures: within ∼ 20% difference if the positions E and F of TUA are

not considered.

Note that for TUA, the experimental data for the elastic cycles to 25% and 50% of the yield

force was missing (Figure 5.32) as the top displacements were too small to be recorded by the

measurement instruments. The experimental first yield instant was determined during the first

recorded cycle (loading up to 75% of the yield force) but the first yield instant might have already

been reached in the missing cycles. Hence the experimentally determined wall response of TUA

in the elastic range is most likely softer than the actual wall behaviour especially for positions

cycled last at this ductility, i.e., positions E and F but also positions C and D. For these loading

cases of TUA, empty markers are used in the figures.

5.2.3.3 Yield displacement

The yield displacement can be directly obtained from the VecTor4 model as the displacement

at the first yield instant Δ′
y multiplied by the Mn/My ratio. The numerically determined first

yield displacement is shown in Figure 5.37c for comparison with the experimentally determined

values while the nominal yield displacement Δy is given in Figure 5.37d. Again if the values for

TUA at the missing data positions are not considered, the match for the Δy is fairly good, within

∼ 20−30% difference.

The first yield and the nominal points from experimental and numerical results are shown on

the force-displacement curves in one example in Figure 5.38. Despite predicting larger first

yield displacements Δ′
y and hence also larger first yield moments My, VecTor4 underestimates the

Mn/My ratio and hence the nominal yield displacement Δy = Δ′
y ·Mn/My is well predicted.
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Figure 5.37: Comparison between the experimentally determined quantities and the VecTor4 derived

quantities at yield: first yield curvature (a), nominal to yield moment ratio (b), nominal yield curvature(c),

first yield flexural displacement(d), first yield displacement (e) and nominal yield displacement (f)
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Figure 5.38: TUC: comparison of experimentally determined curvatures profiles at first yield with VT4

results

5.2.3.4 Effective stiffness

The effective stiffness of the U-shaped wall under the different loading direction was evaluated

from the experimental results in Section 4.8 as the force at first yield divided by the displacement

at first yield. The numerical values of the effective stiffness are also determined in this manner. As

discussed, while the first yield displacements are typically slightly overestimated (Figure 5.37d),

so are the first yield moments (Figure 5.39). Hence the overall match of the effective stiffness

ratios Ke f f /Kth (i.e., effective stiffness divided by the elastic stiffness of the gross section) is

relatively good, again after removing the points corresponding to the missing cycles of TUA.
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Figure 5.39: Comparison between the experimentally determined quantities and the VecTor4 derived

quantities: first yield moment (a) and effective stiffness ratio(b)
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5.2. Shell element model

5.2.3.5 Plastic hinge length

In Section 4.5, the experimentally determined plastic hinge length was evaluated in two ways

in order to compare with estimates: (1) by back-calculating the Lph value from the top plastic

flexural displacement and (2) by taking Lph as half the height of the plastic zone Lpz. For both

approaches, the match between the Lph experimental and numerical values will depend on how

well the numerical model captures the experimental curvature distribution over the wall height

in the inelastic range. The curvature profiles, experimentally and numerically determined, are

hence compared for one of the test units, TUB, in Figure 5.40 for the different loading positions

and displacement ductilities. The match between the experimental and the numerical determined

curvature profiles is rather good and hence also the match between the plastic hinge values

derived from the curvature profile is rather good and match the experimentally observed constant

trends of the plastic hinge lengths over the ductility range (Figures 5.41 and 5.42).

If average values over the inelastic range (δ ≥ δy) of the plastic hinge length computed as half

the height of the plastic zone Lph = Lpz/2 are compared to the numerically determined values

(Figure 5.43), the match is relatively good. The experimental Lph average values are captured by

the VecTor4 model within an error of ∼ 20% with numerical values typically underestimating

the experimental values. For TUD, the differences between experimental and numerical Lph
values of are larger than for the other test units. However the experimental Lph values of TUD are

less reliable since only one or two Lph values are available to compute the average Lph at these

loading positions and they correspond to low displacement ductilities (μΔ = 2− 3) which are

more sensitive to measurement errors.
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Figure 5.40: TUB: comparison between the experimentally determined curvature profiles and the curvature

profiles from the VecTor4 model at displacement ductilities μΔ = 4 and 6.
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Figure 5.41: TUA and TUB: Comparison of experimentally determined plastic hinge lengths Lph (Exp.)

with numerically determined Lph from VecTor4 (VT4) analyses. Plastic hinge lengths Lph were computed

assuming the centre of rotation at the middle of the plastic hinge length.
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Figure 5.42: TUC and TUD: Comparison of experimentally determined plastic hinge lengths Lph (Exp.)

with numerically determined Lph from VecTor4 (VT4) analyses. Plastic hinge lengths Lph were computed

assuming the centre of rotation at the middle of the plastic hinge length.
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Figure 5.43: TUA to TUD: comparison of experimentally determined average plastic hinge lengths Lph
(Exp.) with numerically determined Lph from VecTor4 (VT4) analyses. Plastic hinge lengths values at

peak drifts larger than twice the yield drift (δ ≤ 2δy) were averaged.
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Chapter 5. Validation of two numerical models for U-shaped walls

5.2.3.6 Ratio of shear to flexural displacements

The experimentally derived shear to flexural displacements ratios Δs/Δ f have been determined

and discussed in Section 4.7. The numerical Δs/Δ f ratios were computed from the displacements

of the nodes located at the four vertical edges of the wall (Figure 5.9). Average curvatures were

computed over the height of one-element row (h = 272 mm) and they were integrated over the

shear span of the wall (h = 0−H) to obtained the flexural displacements. The shear deformations

were derived over one row of elements (extending horizontally over one wall section: web or

flanges) from the change in the length of the diagonals over this row of elements as in Section

4.7.

The experimentally determined Δs/Δ f ratios are compared to the numerical ratios in Figures 5.45

and 5.46 for the values over the ductility range and in Figure 5.47 for average values over the

inelastic range. For the naming of the different wall sections (flanges and web) as well as for the

loading positions and directions, the reader is referred to Figure 5.44.

Despite overestimating the large Δs/Δ f ratios (e.g., Web at position E or H) the model captures

relatively well the experimental Δs/Δ f ratios. The model also captures the negative Δs/Δ f ratios

of the flange in tension at positions E or H (Figure 5.47).

Figure 5.44: Cardinal points for the wall (a) and loading cycles and positions for the principal directions

(b) and for the diagonal directions (c)
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Figure 5.45: TUA and TUB: comparison of experimentally determined shear to flexural displacement

ratios Δs/Δ f with numerically Δs/Δ f from VecTor4 (VT4) analyses
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Figure 5.46: TUC and TUD: comparison of experimentally determined shear to flexural displacement

ratios Δs/Δ f with numerically Δs/Δ f from VecTor4 (VT4) analyses
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Figure 5.47: TUA to TUD: Comparison between the experimentally determined shear to flexural defor-

mation averge ratio Δs/Δ f with numerically Δs/Δ f from VecTor4 (VT4) analyses

5.2.4 Influence of the loading history

5.2.4.1 Introduction

The shell element model presented in Section 5.2.2 was validated against experimental data in

Section 5.2.3. For this validation, the model was subjected to the same loading history as in the

experiments, i.e., a multi-directional cyclic loading (see Section 5.2.2.5). However, it is intended

to use this shell element model for parametric studies. Given the large number of analyses to be

performed, cyclic analyses would be too computationally expensive. Therefore, it is envisaged

to perform the parametric studies as monotonic analyses. However, before doing so, one must

check whether the loading history influences the numerical results of interest namely the wall

strength, the yield curvature and displacement, the effective stiffness and the plastic hinge length.
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Chapter 5. Validation of two numerical models for U-shaped walls

The monotonic analyses included in this section were performed using the same shell element

models of TUA, TUB, TUC and TUD as the ones used for the cyclic analyses presented in

Section 5.2.2. Monotonic analyses to each of the individual loading positions were carried out,

i.e., to positions A to G (Figure 5.2b).

5.2.4.2 Wall strength

The force-displacement curves obtained with the shell element model under multi-directional

cyclic loading and under monotonic loading are compared in Figures 5.48, 5.49 and 5.50. For the

principal loading directions, the force capacity obtained under cyclic loading is similar to the

one obtained under monotonic loading. However, for the diagonal loading directions the force

capacity obtained from the monotonic analyses is up to 20% higher than in the cyclic analyses

depending on the loading position. The cause of these differences is investigated in the following.

The loading history applied in the experiments and in the cyclic analyses of the shell element

model differs from a monotonic loading in two regards. Firstly, the loading is cyclic and secondly,

it is multi-directional, i.e., loading is applied in several directions successively: e.g., for TUC two

complete reverse cycles are applied in the direction of the E-F diagonal followed by two reverse

cycles applied in the diagonal H-G, all at the same ductility level (Figure 5.51a). In order to

understand what effect each of the two characteristics has on the wall strength, a uni-directional

but cyclic analysis in the diagonal direction E-F is performed (Figure 5.51b).

A comparison of the three analyses for the TUC model (monotonic, cyclic uni-directional and

cyclic multi-directional) is presented in Figure 5.52 for the diagonal direction E-F. While under

monotonic and cyclic uni-directional loading the wall model reaches similar force capacities, for

the cyclic multi-directional loading, the force capacity is smaller than the one obtained from the

other two analyses. These results indicate that:

• Monotonic analysis will predict rather well the wall strength in the diagonal directions

under cyclic loading if the wall is loaded uni-directionally.

• The difference in strength between cyclic unidirectional and cyclic multi-directional is

mainly caused by the cyclic loading history of the bars which undergo loading beyond

yield and partial unloading when the wall is pushed to the different directions. In addition,

the shear deformations are more significant in the multi-directional loading history than for

the monotonic analyses (see Section 5.2.4.5 and hence they exacerbate shear lag effects

which further increase the difference in strength between the different loading histories.

5.2.4.3 Yield curvature, yield displacement and effective stiffness

Yield curvature, yield displacement and effective stiffness ratios were derived from the numerical

results of the monotonic analyses using the same procedures as for the cyclic analyses (see

Section 5.2.3.2, 5.2.3.3 and 5.2.3.4). These numerical values are compared in Figures 5.53 and

5.55 to the experimentally derived quantities (for derivation see Chapter 4).
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Figure 5.48: TUA and TUB: Comparison between the numerically obtained force-displacement hystereses

from VecTor4(VT4) under full-cyclic loading history (Cyclic) and monotonic loading (Monotonic)
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Figure 5.49: TUC: Comparison between the numerically obtained force-displacement hystereses from

VecTor4(VT4) under full-cyclic loading history (Cyclic) and monotonic loading (Monotonic)
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Figure 5.50: TUD: Comparison between the numerically obtained force-displacement hystereses from

VecTor4(VT4) under full-cyclic loading history (Cyclic) and monotonic loading(Monotonic)

Figure 5.51: Loading patterns for U-shaped walls: (a) diagonal criss-cross as applied in the inelastic

cycles of TUC and TUD, (b) diagonal uni-directional, (c) principal directions criss-cross and (d) principal

direction with orthogonal pre-displacement
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Figure 5.52: Shell element model for TUC: influence of the loading history on the force-displacement

hysteresis

Grey markers are used for values that are obtained for the direction that is cycled first at a new

drift level and white markers for directions that are cycled second, third or fourth (e.g., for TUA

and TUB, loading to a new displacement ductility was first applied in the EW direction (parallel

to the web), the second cycle was applied in NS direction (parallel to the flanges) and the third

cycle in diagonal direction). The different plotting styles are used to separate between the effects

of cyclic loading and the effects of multi-directional loading, which was found to significantly

soften the wall when compared to a uni-directional cyclic loading (Figure 5.52).

The flexural response of the wall at yield, i.e., yield curvature φy and flexural first yield dis-

placement Δ′
y, f , are captured by the monotonic analyses with the same precision as by the cyclic

analyses, irrespective of the loading direction that was cycled first at a new drift level (Figure

5.53c-d). However, the first yield displacement Δ′
y, composed of the flexural and the shear

displacement at first yield (Δ′
y = Δ′

y, f +Δ′
y,s), is captured by the monotonic analyses with a lower

precision than by the cyclic analyses (∼ −40/+ 40%). Since the flexural first yield displace-

ment Δ′
y, f is well captured (Figure 5.53e), the difference between the Δ′

y values from cyclic and

monotonic analyses must stem from the shear response of the wall at first yield Δ′
y,s. Indeed, the

shear displacements at first yield Δ′
y,s are typically smaller for the monotonic analyses than for

the cyclic analyses (Figure 5.54).

If the effects of the multi-directional loading are removed by considering only the loading

positions from the first cycle at a new drift level (i.e., positions A and B for TUA and TUB,

and positions E and F for TUC and TUD), the monotonic analyses predict the experimentally

determined first yield displacement Δ′
y with a similar precision as the cyclic analyses (∼−15/+

25%). The monotonic analyses predict the experimentally determined nominal yield displacement

Δy (Figure 5.53f) with an error of ∼−30/+20%, which is also similar to the precision of the

cyclic analyses results.

182



5.2. Shell element model

Since the shear displacements at first yield are mostly underestimated by the monotonic analyses,

the effective stiffness Ke f f is hence expected to be overestimated. Indeed, Ke f f is predicted with

similar precision by the monotonic and cyclic analyses for directions that are cycled first at the

same displacement ductility level. For directions that are cycled second, third or fourth at a new

drift level, the monotonic analyses overestimate Ke f f by up to ∼ 80% (Figure 5.55b).

5.2.4.4 Plastic hinge length

The experimental curvature profiles are compared with curvature profiles obtained numerically

from the monotonic analyses for different loading positions and displacement ductilities of TUB

(Figure 5.56). The match is rather good although at positions C, D and F, the monotonic curvatures

tend to concentrate at the wall base. As a result, for these positions the height over which inelastic

curvatures concentrate tends to reduce especially for lower displacement ductilities ( e.g., position

D in Figure 5.57).

Lph predictions computed as half the height of the plastic zone Lpz from the monotonic analyses

are compared to the experimentally determined Lph values in order to assess the error when

predicting Lph values from the monotonic analyses. First, Lph values averaged over the inelastic

range are compared. The experimentally determined Lph values at peak displacements of the

cycles larger than displacement ductility μΔ = 2 were averaged since these values showed a

constant trend with the displacement. The numerically determined Lph values were also averaged

over same displacement interval. Figure 5.58a shows that the precision of predicting Lph average

from monotonic analyses is rather poor, as experimental values are underestimated by up to 60%.

Unlike the Lph values determined from the experimental data and from the cyclic analyses, which

follow a rather constant trend over the ductility range (Figure 5.41 and 5.42), the Lph values from

monotonic analyses tend to slightly increase with increasing top displacement for most loading

positions. Hence, it seems more suitable to compare the Lph value at ultimate displacement

instead of an average over the ductility range. By doing so, the predictions of the Lph using

the monotonic analyses are now ∼ 0− 30% lower than the experimental quantities (Figure

5.58b). Note that for this comparison, the numerical ultimate displacement was determined as the

displacement corresponding to the instant when the base curvature reaches the ultimate curvature

determined from section analysis.

5.2.4.5 Ratio of shear to flexural displacements under monotonic loading

To assess the influence of the loading history on the shear displacements, the numerically

determined Δs/Δ f ratios from cyclic and monotonic analyses are compared between each other.

This comparison is preferred to comparing experimental ratios and ratios from monotonic analyses

since differences are clearer and more detailed data is available.

Numerically determined shear to flexural displacement ratios Δs/Δ f derived as in Section 5.2.3.6

were averaged for peak top displacements in the inelastic range (μΔ ≥ 1). For both cyclic and

monotonic analyses the average Δs/Δ f ratios were computed for the same top displacements.
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Figure 5.53: Comparison between the experimentally determined quantities and the VecTor4 derived

quantities at yield from monotonic analyses: first yield curvature (a), nominal to yield moment ratio (b),

nominal yield curvature(c), first yield flexural displacement(d), first yield displacement (e) and nominal

yield displacement (f)

184



5.2. Shell element model

 First yield shear displacement Δ’y,s TUA
TUB
TUC
TUD

1st cycle
2nd+ cycle

A B C D E F H G
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Loading positions

Δ’
ys

,m
on

ot
on

ic
/Δ

’ ys
,c

yc
lic

Figure 5.54: Numerical first yield shear displacements: comparison between results from monotonic and

cyclic multi-directional analyses
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Figure 5.55: Comparison between the experimentally determined quantities and the VecTor4 derived

quantities from monotonic analyses: first yield moment (a) and effective stiffness ratio(b)
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Figure 5.56: TUB: comparison between the experimentally determined curvature profiles and the curvature

profiles from the VecTor4 model at displacement ductilities μΔ = 4 and 6.
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Figure 5.57: TUB, loading position D (flange ends in tension, web in compression): (a) comparison

between experimental, cyclic analyses and monotonic analyses in terms of curvature profiles in the inelastic

range and (b) the height of the plastic zone Lpz.
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Figure 5.58: Plastic hinge length: comparison of the experimentally determined Lph,experiment average

value over the inelastic range (i.e., average of values at peak displacements for which μδ ≥ 2) with

the numerically determined Lph,V T 4 average value from the monotonic analyses results (a) and with the

numerical Lph,V T 4 value at ultimate displacement (b).

Figure 5.59 shows that the Δs/Δ f ratios obtained from the monotonic analyses are up to by up to

∼ 40% lower than the ratios obtained from the cyclic analyses. The largest percentage differences

are obtained for positions C and D (Figure 5.59a) but in absolute values the differences are

actually small, i.e., below ∼ 0.05 (Figure 5.59b). The largest absolute differences are seen for the

Δs/Δ f ratio at positions F and G (∼ 0.1−0.15). At these loading positions, larger crack widths

in the unconfined concrete of the flange in tension and of the web are obtained from the cyclic

analyses as compared to the monotonic ones (Figure 5.60). At positions E and H, the Δs/Δ f

ratios from monotonic loading are similar or even slightly higher than those from cyclic loading.

This can be explained by the larger shear forces that are attained for monotonic loading (Figures

5.48, 5.49 and 5.50).

If the Δs/Δ f ratio is considered as an indicator of the wall shear stiffness it can be concluded that

cyclic loading reduces the shear stiffness of the wall. At the same top displacement, crack widths

in the concrete from the cyclic analyses are larger than those from monotonic ones, thus shear

transfer through aggregate interlock, is reduced and shear flexibility in increased.
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Figure 5.59: TUA to TUD: numerically determined shear to flexural displacement ratios Δs/Δ f - com-

parison between cyclic and monotonic analysis results averaged for the same top displacements in the

inelastic range: (a) comparison of percentage difference and (b) comparison of actual values.
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Figure 5.60: TUC: numerically determined cracks widths and orientation at 2% drift at position F (Web-

East flange corner in compression) in the central concrete layer (layer 5 with its centre located at 6.25

cm from th outer face of the wall) and central integration point (GP 5): (a) from cyclic analyses(b) from

monotonic analyses. 2D view of the U-shaped wall, unfolded from the inner side. The numbers given

inside each element indicate the crack widths.
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5.3 Conclusions

In this chapter two numerical models were compared to experimental data from quasi-static

cyclic tests on four U-shaped walls (TUA, TUB, TUC and TUD). The two numerical models

were: (1) a simple and widely used plane section analysis; and (2) a detailed shell element model.

As the objective is to use these two numerical models for parametric studies to derive plastic

hinge quantities for U-shaped walls, the results from both models were evaluated with respect

to several quantities. The influence of the loading history on the results of the shell element

model was also investigated in this section. This was done by comparing results from the cyclic

analyses subjected to the full cyclic loading history, with cycles imposed in several directions

successively at the same displacement level, as applied in the experiments, and results from

monotonic analyses of the same models. The conclusions are summarised in the following.

Wall strength : The moment capacity was well captured for the principal loading directions by

both section analysis and the shell element model. Only the shell element model was able

to capture the experimentally determined wall strength reached under diagonal loading

while monotonic section analysis lead to a significant overestimation of the wall strength

for this direction. Section analysis predictions of the overall moment under diagonal

loading were improved if the wall section was reduced to account for the effective flange

width but predictions of strength components in the principal directions were not. Further

discrepancies between monotonic plane section analyses and the experimentally attained

moment originated in the experimentally applied loading history.

The maximum attainable wall strength was found to depend on the applied loading history.

Monotonic analyses using the shell element model can be used to predict the wall strength

under uni-directional cyclic loading. However, care should be taken when complex multi-

directional loading histories are involved. For these cases, accounting for the cyclic loading

history of the reinforcement bars and for shear lag effects is critical in predicting accurately

the wall strength.

Yield curvature φy : The section analysis and the shell model captured the yield curvature

relatively well. Both models can therefore be used to derive φy with an accuracy of ±20%,

irrespective of the applied loading history.

Yield displacement Δy and effective stiffness Ke f f : For these two quantities the shell element

model resulted in fairly good estimates of the experimental results (∼ 20−30% difference

for Δy and slightly higher for Ke f f ). As both quantities are typically used in a conceptual

design phase, these errors are acceptable.

While the flexural response at first yield (yield curvature φy and first yield flexural dis-

placement Δ′
y) was not influenced by the loading history, the shear response was. Under

monotonic loading, shear deformations at first yield were typically lower than under cyclic

loading leading to smaller yield displacements Δy and higher effective stiffness Ke f f than

in the cyclic analyses. However, if only the direction that was cycled first at a new dis-

placement level is considered (i.e., a loading history equivalent to a uni-directional cyclic

loading), the softening effect of the full loading history is filtered-out and results from

monotonic analyses lead to predictions of Δy and Ke f f as good as those from the analyses

with the full loading history.
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Chapter 5. Validation of two numerical models for U-shaped walls

Plastic hinge length Lph : The Lph values were slightly underestimated by the model by up to

30%. The Lph values determined from the monotonic analyses were typically smaller than

those from cyclic analysis due to numerical concentration of curvatures at the wall base in

the monotonic analyses. Despite this discrepancy, if the Lph value at ultimate displacement

is considered, the match with the experimental Lph values improves and the error is

similar to the one from the cyclic analyses. Hence, Lph values derived from the numerical

analyses can be used to predict a slightly conservative value of the experimental Lph values,

which is suitable for design purposes. Moreover, irrespective of this underestimation, a

parametric study using monotonic analyses is still expected to provide indications on the

main quantities influencing the Lph values specific to U-shaped walls.

Ratio of shear to flexural displacements Δs/Δ f : The shell element model predicted very well

the Δs/Δ f ratios of all test units in the inelastic range, including the negative ratio of one

of the flanges under diagonal loading. Δs/Δ f ratios derived from the monotonic analyses

were found to be lower than those derived from cyclic analyses, indicating a lower shear

stiffness of the wall under the full cyclic loading than under monotonic loading which

contributes to the observed softening response of the wall under the full cyclic loading.

Having evaluated the discrepancies between the numerical and experimental results, as well

as the influence of the loading history it is concluded that the two numerical models that were

investigated here can be used under monotonic loading for parametric studies for U-shaped walls.

Section analysis will be used to derive yield curvature estimates while the shell element model

will be used to derive estimates for the yield displacement, the effective stiffness and the plastic

hinge lengths with the precision as discussed above (Chapter 6). These values, to be obtained

from the monotonic analyses, were shown to be representative for a reversed cyclic loading

applied in only one direction of the wall section. Such a loading history seems more reasonable

for design purposes than the loading history applied in the experiments used for the validation

of the models, where loading was applied in several different directions successively, leading to

considerable softening of the wall and reduction of the wall strength.
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6. Yield and ultimate displacement of
U-shaped walls

6.1 Introduction

The objective of this section is to derive several quantities that characterise the displacement

response of U-shaped RC walls under seismic loading. More specifically, yield curvature, yield

displacement, effective stiffness ratio and plastic hinge lengths are investigated for U-shaped

cantilever walls subjected to horizontal displacements in different directions. To this purpose, a

parametric study is conducted by means of the two numerical models that have been validated in

Chapter 5, i.e., a plane section analysis model and a shell element model.

Existing estimates for the yield curvature φy of U-shaped wall sections are compared against

the analyses results and new values that account also for the angle of the loading direction are

proposed. The new analytical expression of the yield displacement Δy,2L, accounting for the extent

of cracking over the wall height, presented in Section 4.4 is validated against the analyses results

of the shell element model. The effective stiffness Ke f f derived with the new yield displacement

expression is compared with the numerical results and modifications are proposed to the existing

effective stiffness estimates, which account for the cracked height. Finally, plastic hinge lengths

are derived from the results of the shell element model, compared to existing estimates and new

equations that consider also the average shear stress ratio are proposed.

6.2 Design of the parametric study

This section describes the wall geometries chosen for the parametric study as well as their design.

The main parameters that are varied within the study are discussed and the numerical models

used for the analyses are briefly presented.
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Chapter 6. Yield and ultimate displacement of U-shaped walls

6.2.1 Design of the U-shaped RC walls

6.2.1.1 General design considerations and parameters of the study

Typically, RC core walls are used as the main lateral force resisting structural elements in mid-to-

high-rise buildings. Therefore, the U-shaped walls designed for this study are representative for

this type of buildings. Since buildings with RC core walls are very popular in the seismic areas

in the U.S., the American Standard ACI318-11 [ACI11] provides some design indications and

requirements that specifically address RC core walls. For this reason the design of the walls in

this study follows the American Standard ACI318-11 design code considering the typical mid-to-

high-rise RC core wall dimensions and reinforcement detailing encountered in the U.S. design

practice [MG+12], [SML03], [SM08], [LL+13], [Bru09] and [Fie15] - email communication.

Three wall sections with different web to flange length ratios lweb/l f l were considered for the

design. The variation of the lweb/l f l ratio was achieved through variation of the web length. These

three wall sections were designed with the longitudinal reinforcement uniformly distributed along

the section. Another set of three walls with the same overall dimensions as the first three was

detailed with the longitudinal reinforcement concentrated in the confined boundary elements.

All six wall sections had the same total longitudinal reinforcement ratio of ∼ ρtot = 0.95%. The

obtained wall sections are shown in Figure 6.2.

For each of the six wall sections, the wall shear span H was varied by changing the number of

stories: 10, 15 and 20 stories. The storey height was taken as hstorey = 3.3 m. Based on a linear

lateral static force distribution compatible with the first eigen mode, the resulting shear span was

approximately equal to 0.7Hwall . These shear spans led to values of shear span to web length

ratios of H/lweb= 2.56 to 10.26, hence rather slender walls. The wall thickness was the same for

all models and was equal to twall = 450 mm.The values of the varying parameters of the wall

models are summarised in the following.

• web to flange length ratio lweb/l f l : 1.25, 1.875 and 2.5 by varying the web length lweb from

4.5 m to 9.0 m

• axial load ratio n = N/( fcAg): 0.02, 0.06 and 0.10

• shear span H: 23.10 m, 34.65 m and 46.20 m which represent walls with a number of

stories Nstories equal to: 10, 15 and 20 stories

• vertical reinforcement layout: vertical reinforcement uniformly distributed over the section

or mainly concentrated at the wall boundary elements
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Figure 6.1: Loading directions considered for the design. Bending along the web direction: position A

(a); bending along the flange direction with the flange ends in compression: position C (b); bending along

the flanges direction with the web in compression: position D (c) and bending along the geometric wall

diagonal with the flange end in compression: position E (d) or with the corner web-flange in compression:

position F (e).

The wall flexural capacity was computed from section analyses for five loading cases (Figure

6.1): bending in the web direction (position A), bending in the flange direction with the flange

ends in compression (position C), bending in the flanges direction with the web in compression

(position D) and bending in the direction of the geometric wall diagonal with the flange end in

compression (position E) or with the corner web-flange in compression (position F). According

to ACI318-11 (21.9.5.2), the wall section considered for the flexural strength calculation should

be reduced to account for the effective flange width, which extends “from the face of the web a

distance equal to the smaller of one-half the distance to an adjacent wall web and 25 percent of

the total wall height”. For all the wall sections analysed here, this results in having the effective

flange width equal to the entire length of the flange or of the web, depending on the loading

direction.

The expected values of the material properties were used for both concrete and reinforcement

[AAS09] and they are summarised in Table 6.1. The higher mode effects, which can amplify

the wall shear demand, were taken into account in a simplified manner through the dynamic

amplification factor ω as recommended by [SEA08]. For buildings with more than six stories

[SEA08] suggests a value of ω given by Equation 6.1, which is based on research by [PP93]. In

this equation, Nstories is the number of stories and need not be taken larger than 15. Therefore for

more than 15 stories, ω = 1.8.

ω = 1.3+
Nstories

30
(6.1)
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Table 6.1: Expected material properties used for the wall models in the parametric study

Reinforcement Concrete

Bar diam. fy fu Es εsu fc Ec εc

[mm] [MPa] [Mpa] [GPa] [�] [MPa] [MPa] [�]

14-30 470 625 200 100 45 31.6 2.00

The shear reinforcement was computed for the following determining load cases: shear rein-

forcement in the web was determined from bending in the direction of the web while the one in

the flanges was determined under bending along the diagonal direction with one flange end in

compression. At this loading position the shear demand on the flange is the largest as the majority

of the shear force in the direction of the flanges is taken by the flange in compression ([RF01],

[BDP08b] and Section 3.3.1).

The wall satisfies the shear stress limit imposed by ACI318-11 [ACI11] (21.9.4.4) for the vertical

wall segments, i.e., web or flange: the shear strength shall be lower than 0.83Acv
√

fc for any

individual vertical wall segment or lower than 0.66Acv
√

fc for all vertical wall segments resisting

a common force.

6.2.1.2 Design procedure steps

This section outlines the step by step procedure that was followed when designing the U-shaped

walls that were analysed within the parametric study. The wall section dimensions and vertical

reinforcement content were initially assumed based on typical values and detailing encountered

in U.S. seismic design practice.

1. Perform section analysis of the wall section to determine the moment capacity for each

loading position and compute the corresponding shear force demand Vnec for each shear

span.

2. Multiply the shear force demand with the dynamic amplification factor to account for the

higher mode effects: V ∗
nec =Vnecω

3. Dimension shear reinforcement of the web for the largest shear demand V ∗
nec in the direction

of the web, of the five analysed loading positions. Do the same for the flanges. The

necessary shear reinforcement content is back-calculated from Equation 6.2 which defines

the shear strength of special structural walls according to ACI318-11 (21.9.4.1.), and

where Acv is the gross area of the flanges or of the web, αc is a coefficient accounting

for the slenderness of the of the wall (equal 0.17 for H/lwall ≥ 2.0), fc is the concrete

compressive strength, fy is the yield strength of the shear reinforcement and ρh is the shear

reinforcement content.

V ∗
nec = Acv(αc

√
fc +ρh fy) (6.2)

4. Compute the shear force capacity Vdesign for the web and for the flanges obtained with

Equation 6.2 for the proposed shear reinforcement contents.
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6.2. Design of the parametric study

5. Check if:

• Vdesign, f langes ≤ 0.66Acv
√

fc when both flanges are resisting a common lateral force

(position C) and where Acv is the gross area of both flanges;

• Vdesign, f lange ≤ 0.83Acw
√

fc when only one flange resists the entire shear force in the

direction of the flanges (position E) and where Acw is the gross area of one flange;

• Vdesign,web ≤ 0.83Acw
√

fc (position A) where Acw is the gross area of the web;

If these conditions are not met, increase the wall thickness and restart design procedure

from 1, else end design procedure.

6.2.1.3 Confinement lengths

ACI318-11 suggests the use of plane section analysis to determine the compression depths c
on the wall section. Since the application of plane section analysis is questionable (see Section

3.3.3.2), these depths were determined from the shell element model.

The compression depths c on the flange ends were determined from loading in the diagonal

direction with one flange in compression. At the corner into the web and into the flange these

depth were determined from loading with the corner in compression (position F). The minimum

confinement lengths were taken as the largest of c−0.1lwall and c/2 [ACI11] 21.9.6.4.

ACI318-11 (21.9.6.4) requires that the confined boundary elements include the effective flange

width in compression. For the wall sections analysed here, this would mean that the entire wall

section needs to be confined since the effective flange width is approximately equal to the length

of the web or of the flanges. While indeed the shell element model results indicated that almost

the entire flange requires confinement when the axial load is the largest, confining also the entire

web seems overly conservative and based on the shell element model results not necessary. The

resulting confinement is shown for all the wall sections in Figure 6.2. The same confinement

reinforcement percentage was used for all wall sections.

6.2.2 Numerical models

6.2.2.1 Plane section analysis

A fibre section model was set-up for section analyses using the Opensees software [MMG09]

and validated against experimental data in Section 5.1. The same model is adapted for the walls

in the parametric study herein and used to derive values of the nominal yield curvature φy. The

mesh for the wall sections with the largest web length, with both concentrated and distributed

vertical reinforcement layout, is shown in Figure 6.3. As in the validation models, loading is

applied in displacement control by imposing curvature increments in the direction of the web, in

the direction of the flange or in the direction of the geometric diagonal of the walls. The axial

load was applied at the gravity centre of the section.
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Chapter 6. Yield and ultimate displacement of U-shaped walls

Figure 6.2: Cross-sections of the U-shaped walls designed to be analysed in the parametric study. All

dimensions are in mm.

(a)

Distributed: lweb/lfl=2.5

(b)

Concentrated: lweb/lfl=2.5

Figure 6.3: Opensees fibre models of the U-shaped wall sections with lweb/l f l=2.5: Dw f 2.5 (distributed

reinforcement layout) (a) and Cw f 2.5 (concentrated reinforcement layout) (b)
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6.3. Yield curvature

6.2.2.2 Shell element model

A shell element model using VecTor4 (VT4) software [PV93], [Hry13] was validated against

experimental data from U-shaped wall tests in Chapter 5. The validated model was then adapted to

match the geometry and properties of the U-shaped walls that are analysed withinthis parametric

study.

The walls were analysed as cantilever walls subjected to a horizontal displacement at their top.

The walls were modelled up to the height of the shear span, which was taken equal for both

principal loading directions, i.e., horizontal displacement was applied in the direction of the

flanges and of the web at the same height H (Figure 6.4). The axial load was equally distributed

over the height of the wall and applied at each storey height. At each storey, the axial loads were

applied at four nodes of the wall section so that the resultant force acted at the gravity centre of

the section.

The first three stories of the wall were modelled using a refined mesh in order to have a detailed

representation of strains and curvatures over the zone where plastic deformations are expected.

Above the first three stories the mesh size is increased as shown in Figure 6.4. Due to limitations

on the maximum number of elements, the wall models corresponding to Nstories = 20 and web

to flange length ratios lweb/l f l=1.875 and 2.5 had a refined mesh over the first two stories only.

Only the walls with one reinforcement layout (distributed) were considered for the shell element

model resulting in 135 analyses. All the principal loading directions were considered for the

analyses, and in addition, analyses for loading along the wall geometric diagonal (position E and

F) were performed. The reasons for this choice are two-fold: (1) loading along the geometric

diagonal instead of a fixed skew angle, like for example 45◦, captures also the influence of the

bending angle (Figure 6.8), since the angle of bending of the geometric diagonal changes with

lweb/l f l and (2) loading along the diagonal directions leads to the lowest ultimate curvature of

all loading positions, since the wall length is the longest, and hence possibly also to the lowest

displacement capacity.

6.3 Yield curvature

The yield curvature φy is an important design quantity marking the border between the “elastic”

and the “plastic” branches of the bi-linear idealisation of the moment-curvature response. In

this section, the yield curvature φy is evaluated from both plane section and shell element model

analyses. Results are compared with existing estimates and new parameters influencing the value

of the yield curvature are identified. Finally, new estimates for yield curvatures when loading the

U-shaped wall section under any bending angle α are proposed in Section 6.3.3.
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Chapter 6. Yield and ultimate displacement of U-shaped walls

Figure 6.4: VecTor4 model in elevation and sections for the Dw f 2.5 wall configuration (i.e., distributed

reinforcement and web to flange length ratio lweb/l f l=2.5) with Nstories=15
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6.3. Yield curvature

6.3.1 Results from plane section analysis

The yield curvature was computed as in Equation 6.3. The first yield curvature φ ′
y from section

analysis corresponds to the curvature at the instant when the most tensioned reinforcement

fibre exceeds its yield strain εsy or the strain in the most compressed concrete fibre exceeds

εcy =−0.002 whichever occurs first. In an analogous manner, the nominal point is reached when

the reinforcement tensile strain first attains 0.015 or a concrete compressive strain attains 0.004

whichever occurs first [PCK07].

φy = φ ′
y
Mn

My
(6.3)

For a more meaningful evaluation of the results, the dimensionless yield curvature Ky will be

used in this section, defined as in Equation 6.4, where φy is the nominal yield curvature, εsy is the

yield strain of the most tensioned reinforcement bar and lwall is the wall length in the direction

of loading. The dimensionless yield curvatures Ky are obtained using a wall length equal to

the length of the web lweb for bending in the web direction (Position A) and to the length of

the flanges l f l for bending in the flange direction (Position C and D). For loading in directions

other than the principal directions, the wall length is taken as the distance perpendicular to the

neutral axis, between the most tensioned and the most compressed fibre. This means that for

loading along the diagonal of the wall, the wall length is equal to the geometric diagonal, i.e,

ldiag =
√

l2
web + l2

f l .

Except for the principal loading directions, the other bending directions investigated were: (1)

bending along the geometric diagonal of the section with one flange end in compression (Position

E) or with the corner web-flange in compression (Position F) as well as (2) loading at a 45 ◦ angle

with respect to the principal loading directions, with one flange end in compression (Position E45)

or with the corner web-flange in compression (Position F45). For clarity, the loading positions

are shown in Figure 6.5a.

Ky = φy
lwall

εsy
(6.4)

The results for the dimensionless yield curvatures Ky are shown for different loading positions of

the U-shaped wall section in Figures 6.5 and 6.6. Figure 6.5 shows the variation of Ky with the

axial load ratio. For the practical values of axial load ratio (i.e., 0.02 to 0.10), the dimensionless

yield curvatures remain rather constant.

The influence of the web to flange ratio lweb/l f l is also not very significant (Figure 6.6), except

at Positions E and F (Figure 6.6e, f) where Ky increases with increasing lweb/l f l . Unlike for

the positions E45 and F45 where the bending angle remains constant irrespective of lweb/l f l , at

positions E and F the bending angle varies since loading is done along the geometrical diagonal

which also changes with lweb/l f l . Therefore Ky varies significantly with the bending angle,

illustrated as angle α in Figure 6.8.
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As expected, distributed reinforcement layouts lead to larger dimensionless yield curvatures Ky

than concentrated reinforcement layouts due to increased compression depths at yield. Values of

Ky for walls with distributed reinforcement layout are ∼ 2−10% larger than for the concentrated

layout case depending on the loading position. The difference in yield curvatures for distributed

and concentrated reinforcement layouts are similar to those reported for T-shaped walls [SS+13]

and somewhat smaller than those reported for planar walls [PCK07].

6.3.2 Comparison with existing estimates

After having established the main trends of the dimensionless yield curvature Ky with the varied

parameters, Ky values obtained from section analyses are compared with existing estimates in this

section. As already discussed in Section 2.2.2, Ky estimates have not been specifically derived

for U-shaped walls but values from other flanged wall sections can be adapted to U-shaped walls.

For convenience, these adaptations are briefly enumerated below:

• Curvature applied parallel to the web of the U-section (Position A) - consider values from

I-shaped walls loaded parallel to their web ([Pau02], [PCK07])

• Curvature applied parallel to the flanges of the U-section with the flange ends in compres-

sion and the web in tension (Position C) - consider values from I-shaped walls loaded

perpendicular to the web of the I-section [Pau02], [PCK07] or T-shaped walls loaded with

the flange of the T-section in tension and the web toe in compression [SS+13]

• Curvature applied parallel to the flanges of the U-section with the flange ends in tension

and web in compression (Position D) - consider values from T-shaped walls loaded with

flange of the T-section in compression and the web toe in tension [SS+13], [Pau02] and

[PCK07]

The Ky values are shown in Figure 6.7 for the principal loading directions, together with their

corresponding estimates, for both the distributed and the concentrated reinforcement layout. For

all the principal loading positions, existing estimates for Ky values match rather well the section

analysis results. At position A, the estimates by [PCK07] seem to be provide a matcher with

numerical results than those by [Pau02] (Figure 6.7a, b). For positions C and D, estimates by

[SS+13] result in a slightly better overall match than the other estimates while also accounting for

the small variation due to the web to flange length ratio lweb/l f l (Figure 6.7c, f). In conclusion,

the dimensionless yield curvature for the principal loading direction of the U-shaped walls can be

determined with sufficient accuracy using existing estimates adapted from other types of flanged

walls. This finding is in line with previous observations from Section 4.3 as well as by [BDP08b].

As already mentioned, no estimates are currently available for other loading directions than the

principal ones. This issue is addressed in the following section.
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Figure 6.5: Dimensionless yield curvature Ky from plane section analyses: influence of the axial load

ratio. Loading directions (a) and Ky results for the different loading positions (c-f)
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Figure 6.6: Dimensionless yield curvature Ky from plane section analyses: influence of the web to flange

ratio. Loading directions (a) and Ky results for the different loading positions (c-f)
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Figure 6.7: Dimensionless yield curvature Ky from plane section analyses: comparison with existing

estimates for the orthogonal loading directions
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Figure 6.8: Bending axis when performing the sweep analysis by varying the angle α of the bending

axis with respect to the horizontal axis (α = 0◦): 0◦ ≤ α ≤ 180◦ (a). During the sweep, one flange of the

wall is mainly compressed, the other flange is mainly tensioned (b) while the web is manily tensioned for

α < 90◦ and partially compressed for α > 90◦.

6.3.3 New estimates for yield curvature for any loading direction

Sweep analyses, with a bending angle α (Figure 6.8) incremented in steps of 9◦ were performed

for all the wall configurations. The dimensionless nominal yield curvatures Ky for the distributed

and the concentrated reinforcement layout cases are plotted in Figure 6.9. The two graphs clearly

show the influence of the loading angle as well as a less significant influence of the web to flange

length ratio lweb/l f l .
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Figure 6.9: Dimensionless yield curvature Ky from plane section analyses: results from sweep analyses
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The nominal and the yield moment Mn and My used in the computation of Ky = φ ′
y

Mn
My

lwall
εsy

were

taken as the SRSS moment at nominal and at first yield for most directions. However, for loading

directions at angles close to the principal loading directions, the curvature decomposed along

of the principal directions, e.g., φweb in Figure 6.12c, was considerably smaller than the yield

curvature in the loading direction of interest (e.g. φ ′
y in Figure 6.12c). In such a case, using the

SRSS moments to compute Mn/My does not seem reasonable as the large Mn/My ratio from

the SRSS moment is associated to the web direction where the curvature is small, whereas the

bending occurs mostly in the flange direction. Hence, for this case, the Mn/My was computed

from the moment at yield and nominal in the direction of the flanges. The Mn/My ratio was

similarly computed for all cases where the curvature at first yield in one of the principal directions

was considerably smaller than the first yield curvature in the loading direction, i.e., arbitrarily

taken as smaller than half of the yield curvature.

(b)
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Figure 6.10: Nominal to yield moment ratio for loading directions close to the principal directions of the

sections: (a) plane section deformation and (b) moment-curvature relationships for the laoding case from

(a)

6.3.3.1 Derivation of yield curvature estimates for any loading direction

Figure 6.11 shows the bending of a U-shaped wall section in the direction of the geometric

diagonal of the wall (i.e.,curvature applied in the diagonal direction). At the instant of first yield,

i.e., when the reinforcement yield strain εsy is reached in the most tensioned fibre, the diagonal

curvature reaches the first yield curvature φdiag = φ ′
y. The following geometrical relations can

hence be written as shown in Figure 6.11 :

φweb =
ε2 − ε1

lweb
(6.5a)

φ f l =
ε1 + ε3

l f l
(6.5b)

φdiag =
ε2 + ε3

lwall
(6.5c)
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Figure 6.11: First yield curvature when loading in the direction of the geometric diagonal of the wall

(curvature applied in the diagonal direction): (a) section dimensions and loading direction and (b) plane

section deformation under the applied loading

If ε2 and ε3 are taken from Equations 6.5a and 6.5b, respectively and introduced in Equation6.5c,

one obtains that the diagonal curvature φdiag is equal to:

φdiag =
φweblweb +φ f l l f l

lwall
(6.6)

In Figure 6.11 , the diagonal loading direction was chosen for easy geometrical representation,

but the derived Equation 6.6 is valid for any loading direction. The loading direction is accounted

for by defining the wall length as the length perpendicular to the neutral axis between the most

compressed and the most tensioned fibre of the section (see Figure 6.12c) depends on the loading

direction (bending angle α) and the web to flange ratio lweb/l f l (lwall =
√

l2
web + l2

f lsin(α +

atan(l f l/lweb)). Hence, the first yield curvature for any loading direction can be written as in

Equation 6.7.

φ ′
y =

φweblweb +φ f l l f l√
l2
web + l2

f lsin(α +atan(l f l/lweb))
(6.7)

Note that the curvatures φweb and φ f l (Figure 6.11) are not equal to the first yield curvatures

for loading in the direction of the web φ ′
y,web or in the direction the flanges φ ′

y, f l , but they are

smaller as shown in Figure 6.12a-c. If the relation between φweb for an arbitrary loading direction

and φ ′
y,web, and also between φ f l and φ ′

y, f l would be known, then one could write the first yield

curvature for any loading direction as a function of the first yield curvatures for loading in the

principal wall directions. Therefore, Equation 6.7 is rewritten as:

φ ′
y = φ ′

y,web

ly
tens,web

εsy

εsy

ltens,web

lweb

lwall
+φ ′

y, f l

ly
tens, f l

εsy

εsy

ltens, f l

l f l

lwall
(6.8a)
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Figure 6.12: Section deformation at first yield for different loading directions: (a) curvature applied in the

direction of the flanges with the flange ends in compression (α = 0◦), (b) curvature applied in the direction

of the web (α = 90◦) and (c) curvature applied in an arbitrary direction (0◦ < α < 90◦)
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φ ′
y = φ ′

y,web

ly
tens,web

ltens,web

lweb

lwall
+φ ′

y, f l

ly
tens, f l

ltens, f l

l f l

lwall
(6.8b)

Next, it is convenient to pass on the right side of Equation 6.8b from first yield curvatures φ ′
y to

nominal yield curvatures φy. Therefore, if we write the nominal yield curvature for loading in the

direction of the flanges (Figure 6.12a) as φy, f l = φ ′
y, f lMn, f l/My, f l and similarly for the curvature

when loading in the direction of the web (Figure 6.12b) φy, f l = φ ′
y, f lMn,web/My,web Equation 6.8b

can be rewritten as Equation 6.9.

φ ′
y = φy,web

My,web

Mn,web

ly
tens,web

ltens,web

lweb

lwall
+φy, f l

My, f l

Mn, f l

ly
tens, f l

ltens, f l

l f l

lwall
(6.9)

Since the sought quantity is the nominal yield curvature, the entire equation is multiplied by

the ratio of nominal to yield moment Mn(α)/My(α) corresponding to the bending angle α
(Equation 6.10a). Since Mn(α)/My(α) can be roughly approximated as constant when the angle

α varies (Figure 6.13a), Equation 6.10a is simplified to Equation 6.10b. Then, in order to pass to

dimensionless yield curvatures Ky, the equation is further multiplied by the wall length lwall and

divided by the reinforcement yield strain εsy resulting in Equation 6.10c and 6.10d.
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Figure 6.13: Variation of the ratio of nominal to yield moment (a) and of the tensioned wall length (b)

with the bending angle α .
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Ky = Ky,web
ly
tens,web

ltens,web
+Ky, f l

ly
tens, f l

ltens, f l
(6.10d)

The dimensionless yield curvature Ky is hence a function of the dimensionless yield curvatures for

the principal loading directions of the wall. Ky varies with the wall lengths that are under tension

for the different loading angles ltens,web and ltens, f l . Figure 6.13b shows, the variation of these two

quantities with the bending angle. For practical purposes, the variation of ly
tens,web/ltens,web and

of ly
tens, f l/ltens, f l with the bending angle α can be approximated by sin(α) and cos(α). Hence if

these values are introduced in Equation 6.10d, the dimensionless yield curvature can be estimated

as in Equation 6.11.

Estimates from Equation 6.11 match well the dimensionless yield curvature from section analyses

(Figure 6.14). For the distributed reinforcement layout the mean of all the ratios between the

estimated and the section analysis yield curvature (Ky/Ky,PSA) was of 1.08 with a coefficient of

variation COV = 8.2% while for the concentrated reinforcement layout this mean was of 1.14

and COV = 7.2%. Note that this precision can be improved if the variation of the ratio of nominal

to yield moment Mn/My with the bending angle is considered. In Equation 6.11, it was assumed

that Mn/My is constant irrespective of the bending angle.

Ky = Ky,webcos(α)+Ky, f lsin(α) (6.11)
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Figure 6.14: Comparison between dimensionless yield curvatures (Ky = φylwall/εsy) obtained from

section analyses and estimates for the case of (a) distributed reinforcement layout and (b) concentrated

reinforcement layout.
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Chapter 6. Yield and ultimate displacement of U-shaped walls

6.3.4 Comparison of section analysis and shell element model results

Most of the existing studies on the yield curvature have been based on moment-curvature analyses

(plane section assumption) [PK98], [Pau02], [SS+13], [PCK07] as it is also the case for the

previous section. In this section, yield curvatures derived from plane section analyses are

compared with results from shell element model analyses.

The dimensionless yield curvature Ky was computed from analyses of the shell element model

according to the procedure used in the model validation (Section 5.2.3). Briefly, the first yield

was determined in the shell element model as the instant when the base curvature reaches the first

yield curvature determined from section analyses φ ′
y while the nominal moment corresponded to

reaching a base tensile strain of 0.015 or base compression strain of -0.004 whichever occurred

first. The base curvature at first yield and the base strain at nominal point were determined by

extrapolating to the wall base the linear fit of the curvatures and correspondingly of the strains,

over the cracked height of the wall at first yield Hcr (Section 6.4) and over the height of the plastic

zone at nominal, respectively.

The two sets of Ky values are compared in Figure 6.15 with respect to the web to flange ratio

lweb/l f l , and implicitly with the bending angle for the diagonal loading directions. Figures 6.15a,

b indicate a rather good match between the Ky values obtained from the two different types of

analyses.
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Figure 6.15: Comparison of dimensionless yield curvature Ky obtained from plane section analyses (PSA)

and from shell element model analyses (VT4).

6.4 Yield displacement

Once estimates of the yield curvature are available, it is possible to compute the yield displacement

of the wall. In this section, estimates of the yield displacement are computed according to the

procedure outlined in Section 5.2.3 which was verified against the experimental data. These

estimates are then compared with values of the yield displacement obtained from the shell

element model parametric analyses (Section 6.2.2.2), model which was also verified against the

experimental data.
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6.4. Yield displacement

The procedure for estimating the yield displacement is briefly repeated here for convenience

(Equations 6.12 to 6.14). The yield displacement is computed as the sum of the displacement

components: flexural displacement due to wall deformation assuming a wall that is cracked over

part of the height and shear displacements. The flexural displacement due to strain penetration

into the foundation is not considered here since it was not accounted for in the shell element

model.

The shear displacement at yield were accounted for through the shear to flexural displacement

ratio Δs/Δ f estimate. This estimate follows the Equation 4.37, except the correction factor has

been reduced from 1.5 to 1.0 to account for the reduced shear displacements under monotonic

loading (see Section 5.2.4).

Dy,2L = Ky
εsy

lwall
kcr

H2

3
(1+

Δs

Δ f
) (6.12)

where H is the wall shear span, kcr is a factor accounting for the partially cracked wall over the

height assuming a bi-linear curvature profile at yield (see Section 4.4 and Equation 6.13) and

Δs/Δ f is the shear to flexural displacement ratio (Equation 6.14 [BDP11]).

k = β +0.5(1−β )(3
Hcr

H
− (

Hcr

H
)2) (6.13)

where β is the ratio of cracked to uncracked flexural wall stiffness (EIcr/EIg) and Hcr is the

height up to which the wall is cracked at first yield.

Δs

Δ f
= 1.0

εm

φ tanθ
1

H
(6.14)

where φ is the constant curvature in the plastic hinge, θ is the crack angle at the top of the fan-like

pattern where cracks begin to be parallel.

The yield displacements from the shell element model are obtained as the displacement at first

yield times the nominal to yield moment ratio Mn/My. The comparison between the analysis

results and the estimated yield displacements is shown in Figure 6.16 for all wall configurations

and heights and all loading directions. Additionally, yield displacements estimated under the

assumption of a fully cracked wall at yield (linear curvature profile) [PCK07] are added to the

plots for comparison. The assumption of a fully cracked wall is intended to implicitly account

for the strain penetration at yield and partially for the shear deformations [PCK07]. In order

compare equivalent quantitates, the displacement due to strain penetration was subtracted from

the estimate assuming a linear curvature profile at yield (Equation 6.15)..

Dy,1L = Ky
εsy

lwall
(
H2

3
−LspH) (6.15)
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Chapter 6. Yield and ultimate displacement of U-shaped walls

As expected, the Δy,1L estimate provides in all cases, yield displacements that are larger than the

Δy,2L estimates. For rather slender walls, i.e., H/lwall ≥ 4 the yield displacement predictions Δy,1L

overestimate the yield displacements obtained from the analyses Δy,num for all loading positions

with up to 50%. For these walls, the Δy,2L estimate matches rather well the yield displacements

obtained from the analyses.

For walls with slenderness 2.6 ≤ H/lwall ≤ 4, Δy,1L and Δy,2L predictions typically underestimate

the analyses results Δy,num. For these walls: (1) shear displacements are larger than for more

slender walls (H/lwall ≥ 4), and (2) tension shift effects due to shear cracking are more important

and increase the cracked height. The two phenomena lead to large yield displacements Δy,num for

these walls.

The Δy,1L estimates compensate for the contribution of the shear deformations to the total

displacement through the linear curvature profile. If shear displacements are significant (i.e.,

2.6 < H/lwall < 4) the estimate matches well or underestimates the Δy,num values. When shear

displacements are small (i.e.,H/lwall ≥ 4), Δy,1L overestimates the Δy,num values (Figure 6.16).

Since Δy,2L accounts specifically for the shear deformations while Δy,1L partially compensates

for them with the possibility to add them in case of walls with important shear deformations

[PCK07], the two estimates are also compared without the shear deformations of Δy,2L (Figure

6.17). The superiority of the Δy,2L estimate becomes even more evident. Without the shear

deformations Δy,2L are slightly low at positions A and E for very slender walls and significantly

lower for walls with 2.6 < H/lwall < 4 for these positions. For this latter category of walls,

further discrepancies between Δy,2L and Δy,num stem from the prediction of the cracked height.

For walls with low slenderness ratio, the cracked height is influenced by diagonal cracking that

leads to larger cracked heights due to tension shift(Figure 6.18). The tension shift was considered

in simplified manner in the prediction of the cracked height (see Section 4.3.2.3).
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Figure 6.16: Comparison of yield displacement estimates Δy,1L and Δy,2L with numerical results from the

shell element model Δy,num for the different loading positions (a-f).
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Figure 6.17: Comparison of yield displacement estimates Δy,1L and Δy,2L without shear displacements,

with numerical results from the shell element model Δy,num for the different loading positions (a-f).
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Figure 6.18: Comparison of cracked height predictions with cracked height obtained from the numerical

model as the height over which the maximum vertical strain at the edges of the wall are larger than the

cracking strain.
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6.5 Effective stiffness ratio

In this section, Ke f f ,num values obtained from the shell element model analyses are compared to

estimates based on gross sectional stiffness and estimates based on yield displacement predictions.

The effective stiffness of the walls was computed as outlined in Section 5.2.3.4 as the nominal

force divided by the nominal yield displacement. This is equivalent to computing Ke f f as the

first yield force divided by the first yield displacement. The effective stiffness ratio was then

computed as the effective stiffness Ke f f divided by the elastic flexural stiffness of a cantilever

wall Kth = 3EcIg/H3, where Ec is the concrete elastic modulus and Ig is the moment of inertia of

the uncracked U-shaped section depending on the loading direction.

6.5.1 Comparison with existing estimates

Effective stiffness ratio estimates by [FB00], [PP92] and [PCK07] are included in this comparison

against the parametric study results. In addition, the stiffness ratios based on the predicted yield

displacements Δy,2L and Δy,1L are included in the comparison.

The effective stiffness ratios that are based on gross sectional stiffness were summarised in

Section 4 and are briefly repeated here for convenience. The effective stiffness ratio by [FB00]

(Equation 6.16) were derived by accounting for a partially cracked wall over the height at yield

as well as for the tension stiffening effect, but did not consider the shear deformations or the

strain penetration into the foundation. In addition the axial force was considered constant over

the height of the wall. Estimates by [PP92] (Equation 6.17a) accounted for strain penetration and

for walls with an aspect ratio H/lwall lower than 4 also for shear deformations. Finally, [PCK07]

recommends to evaluate the effective stiffness as the secant flexural stiffness at yield (Equation

6.18). Note that estimates based on Equation 6.18 are very similar to estimates based on the yield

displacement Δy,1L and for this reason only the latter estimates are included in the comparison.

Ie/Ig = 0.267(1+4.4
N

fcAg
)(0.62+

190

fy
)(0.76+0.005 fc) (6.16)

where N/( fcAg) is the axial load ratio, fy is the reinforcement yield strength and fc is the concrete

compression strength.

Ie/Ig = (
100

fy
+

N
fcAg

);H/lwall ≥ 4 (6.17a)

Iw/Ig = Ie/Ig
1

1.2+F
;H/lwall < 4 (6.17b)

where F = 30Ie/(H2twall lwall).

Ie/Ig =
Mn

φyEcIg
(6.18)
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6.5. Effective stiffness ratio

When computing the effective stiffness ratios based on the predicted yield displacements the

nominal moment was obtained from section analyses. The yield displacement Dy,2L is based on a

bilinear curvature distribution over the height of the wall; the kink of this distribution is at the

cracked height. When evaluating Dy,2L the cracked height was taken from the numerical model

instead of the predicted value, in order to capture the errors related to the employed concept for

determining the effective stiffness and to not propagate errors in the prediction of the cracked

height prediction, which was already discussed in the previous section. The the effective stiffness

ratio Ke f f ,num/Kth that are obtained from the shell element model of are compared to the different

estimates in Figures 6.19 to 6.22.

While estimates by [PP92] provide on average the best match with the numerical results, only the

estimates which account for the cracked height completely capture the variation of the stiffness

with the wall slenderness ratio (Figures 6.19 and 6.22). The equation by [PP92] partially captures

this trend by accounting for the wall geometry for slenderness ratios H/lwall < 4.

The yield displacement prediction based on the linear curvature profile at yield Δy,1L did not

capture the variation of the yield displacement with the H/lwall (Section 6.4). Therefore stiffness

estimates based on Δy,1L do not capture this variation either (Figure 6.21).

The equation by [FB00] generally overestimates the numerical effective stiffness ratios. In the

derivation of this equation the cracked height due to the moment gradient was accounted for

but its increase due to tension shift effects was not. In addition, shear deformations were not

considered or accounted for in any way. Therefore this equation results in a stiffer response.

6.5.2 Trends of effective stiffness with the different loading positions

The variation of the effective stiffness ratio Ke f f /Kth determined from the shell element model

is discussed in this section with respect to axial load ratio, slenderness ratio H/lwall and web to

flange ratio lweb/l f l . For all the loading positions, increasing the axial load ratio increases the

compression zone of the wall and hence also the stiffness of the wall (Figure 6.23).

For low wall slenderness ratios H/lwall ≤ 4 the effective stiffness is proportional to the ratio

H/lwall . For these walls, the shear deformations and the effects of diagonal cracking on the

cracking height increase with decreasing slenderness ratios and the effective stiffness reduces.

For more slender walls (H/lwall > 4), the effective stiffness does not varies with the slenderness

ratio (e.g., positions C and D in Figure 6.24d,e).

Increasing the web to flange ratio lweb/l f l by increasing the length of the web, results in reduced

effective stiffness due to reduction of the slenderness ratio. At position C, increasing the web

length increases the compression depth on the flange ends while at position D it leads to smaller

compression depth on the web. Hence for the former effective stiffness is increased while for the

latter it is decreased.
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6.5.3 Modified equation for effective stiffness ratio

From the above observations and the comparison of the effective stiffness ratios that were obtained

from the analyses of nonlinear shell element models with estimates reported in the literature, one

finds that the height over which the wall cracks at yield plays an important role in the prediction

of the effective stiffness.

Since the existing estimates by [PP92] (Equation 6.17a) provided on average a rather good match

with the shell element model results, this estimate is modified in this section to account for the

effects of cracked height on the effective stiffness ratio.

The equation by [PP92] was derived as the flexural stiffness of the wall and a assumed constant

flexural stiffness over the wall height, i.e., linear curvature profile over the height. Hence in

order to introduce the cracked height in this equation, one can relate the two curvature profile

assumptions: linear curvature profile and bi-linear curvature profile accounting for the cracked

height. The connection can be done through the factor k (Equation 6.19) which related the flexural

displacements computed with the two assumptions (see Section 6.4).

k = β +0.5(1−β )(3
Hcr

H
− (

Hcr

H
)2) (6.19)

By assuming that the gross sectional stiffness Ig reduces by half when cracking occurs, then

β = EIcr/EIg is equal to 0.5. By further neglecting the squared term of Hcr/H in Equation

6.19, the k factor simplifies to k = 0.5+0.75Hcr/H and can be introduced into Equation 6.17a.

Since k is proportional to the yield displacement, it will be inversely proportional to the stiffness.

Equation 6.17a then becomes:

(Ie/Ig)mod2 = (
100

fy
+

N
fcAg

)
1

0.5+0.75 Hcr
H

;H/lwall ≥ 4 (6.20a)

(Iw/Ig)mod2 = Ie/Ig
1

1.2+F
1

0.5+0.75 Hcr
H

;H/lwall < 4 (6.20b)

The resulting effective stiffness ratios are plotted against the results from the shell element model

in Figure 6.26. Indeed, introducing the cracked height in the stiffness estimate equation by [PP92]

the match with the numerical results is improved, especially at positions A, E, C and F since the

cracked height is dependent on the axial force. For position D, the improvement is less because

the cracked height at this position is rather independent of wall geometry.
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Figure 6.19: Comparison of effective stiffness estimates from [PP92] with shell element model results for

different loading positions (a-f)
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Figure 6.20: Comparison of effective stiffness estimates from [FB00] with shell element model results for

different loading positions (a-f)
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Figure 6.21: Comparison of effective stiffness estimates based on yield displacement predcitions Δy,1L
with shell element model results for different loading positions (a-f)
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Figure 6.22: Comparison of effective stiffness estimates based on yield displacement predcitions Δy,2L
with shell element model results for different loading positions (a-f)
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Figure 6.23: Trends of the effective stiffness ratios obtained from the shell element model results

Ke f f ,num/Kth with the axial load ratio n = N/( fcAg) for the different loading positions.
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Figure 6.24: Trends of effective stiffness ratios obtained from the shell element model results Ke f f ,num/Kth
with the wall slenderness H/lwall for the different loading positions.
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Figure 6.25: Trends of effective stiffness ratios obtained from the shell element model results Ke f f ,num/Kth
with the web to flange ratio lweb/l f l for the different loading positions.

225



Chapter 6. Yield and ultimate displacement of U-shaped walls

l
web

/l
fl
=1.25

l
web

/l
fl
=1.875

l
web

/l
fl
=2.5

n=0.02

n=0.06

n=0.10

Pos. A

[PP92 modified]

(b)
H=23.1 m

H=34.65 m

H=46.2 m

0 0.15 0.3 0.45 0.6
0

0.15

0.3

0.45

0.6

Keff,numeric/Kth

K
ef

f,e
st

im
at

e/K
th

l
web

/l
fl
=1.25

l
web

/l
fl
=1.875

l
web

/l
fl
=2.5

n=0.02

n=0.06

n=0.10

Pos. C

[PP92 modified]

(c)
H=23.1 m

H=34.65 m

H=46.2 m

0 0.15 0.3 0.45 0.6
0

0.15

0.3

0.45

0.6

Keff,numeric/Kth

K
ef

f,e
st

im
at

e/K
th

l
web

/l
fl
=1.25

l
web

/l
fl
=1.875

l
web

/l
fl
=2.5

n=0.02

n=0.06

n=0.10

Pos. D

[PP92 modified]

(d)
H=23.1 m

H=34.65 m

H=46.2 m

0 0.15 0.3 0.45 0.6
0

0.15

0.3

0.45

0.6

Keff,numeric/Kth

K
ef

f,e
st

im
at

e/K
th

l
web

/l
fl
=1.25

l
web

/l
fl
=1.875

l
web

/l
fl
=2.5

n=0.02

n=0.06

n=0.10

Pos. E

[PP92 modified]

(e)
H=23.1 m

H=34.65 m

H=46.2 m

0 0.15 0.3 0.45 0.6
0

0.15

0.3

0.45

0.6

Keff,numeric/Kth

K
ef

f,e
st

im
at

e/K
th

l
web

/l
fl
=1.25

l
web

/l
fl
=1.875

l
web

/l
fl
=2.5

n=0.02

n=0.06

n=0.10

Pos. F

[PP92 modified]

(f)
H=23.1 m

H=34.65 m

H=46.2 m

0 0.15 0.3 0.45 0.6
0

0.15

0.3

0.45

0.6

Keff,numeric/Kth

K
ef

f,e
st

im
at

e/K
th

Figure 6.26: Comparison of effective stiffness ratios estimates with shell element mode results: [PP92]

estimate modified to account for the cracked height (Equation 6.20a)
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6.6 Plastic hinge lengths

This section presents the derivation of a new equation for the plastic hinge length based on

the results of the parametric study. First, the curvature profiles over the height of the wall

are examined for the inelastic displacement range. Then, the displacement capacity of the

analysed walls is determined and its variation with the different loading positions is discussed.

Displacement predictions using existing estimates of the plastic hinge length are compared to the

numerical displacement capacity. Finally, the determination of the numerical plastic hinge length

is presented and a new prediction equation for plastic hinge length proposed.

Note that throughout the section, the contribution of the strain penetration to the plastic hinge

length was not considered since it was not accounted for in the shell element model. Strain

penetration can be considered separately and the flexural displacement due to strain penetration

can be added to the final value of the ultimate displacement capacity as for example in [GF+15].

6.6.1 Inelastic curvature profiles

Examples of curvature profiles over the wall height when the wall responds in the inelastic

range are presented in Figure 6.27. The figure shows the profiles for one wall configuration that

was analysed within the parametric study for different drift levels, axial load ratios and loading

positions. The axial load is distributed over the height of the wall and applied at each storey

level. The change in axial force at a storey leads also to a change in moment capacity. As a

result, one observes a concentration of curvatures just above the storey levels where the ratio of

moment demand to moment capacity is smallest. The curvature profile contains therefore spikes

just above the storey level.

In experimental tests or numerical simulations where the axial load is constant over the height of

the wall, the height of the plastic zone Lpz is evaluated as the maximum wall height over which

curvatures exceed yield curvatures. For the walls analysed here where the axial force variation

over the height of the wall is modelled by applying axial forces at each storey level, the resulting

spiky curvature profile will lead to rather large Lpz values and more importantly, it disrupts the

linearity of the inelastic curvature profiles over Lpz. Therefore, for this study the height of the

plastic zone is determined as 2/3 of the maximum height over which curvatures exceed yield

curvatures.

6.6.2 Displacement capacity

The displacement capacity of the walls in the parametric study was determined based on the

ultimate curvature obtained from section analysis φu,PSA. For the shell element model, the ultimate

displacement was reached when the base curvature φb2 attained the φu,PSA value.
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Figure 6.27: Curvature profiles at drifts of δ = 2% and δ = 3% for two axial load levels and for all

loading positions (a-f). Results are shown for the wall model with web to flange ratio lweb/l f l = 1.875 and

shear span of H = 34.65 m.
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The ultimate curvature from section analysis was determined as the curvature corresponding

to reaching one of the two ultimate limit states, whichever occurred first: (1) bar fracture after

buckling or (2) confined concrete crushing. The bar fracture limit state was considered reached

when the maximum tensile strain in the reinforcement bar exceeded 0.5εsu. The confined concrete

crushing limit state was reached when the minimum compressive strain exceeded one third of

the strain estimate by [MPP88]. These values were established based on comparison with

experimental results and section analysis in Section 4.6. In the shell element model, the curvature

at the base of the wall φb2 was determined from the rotation above the height of Lpz assuming a

linear curvature profile over this height.

The obtained displacement capacities are shown in terms of ultimate drift for the different loading

positions and wall configurations in Figure 6.28. Several observations can be made from this

figure:

• The smallest drift capacity of all the investigated loading positions often corresponds to

one of the two diagonal loading positions: either with one flange end in compression

(compression failure) either with the flange end in tension (tension failure). When the axial

load ratio is the highest (n =0.1), the smallest drift capacity can correspond to position C

(e.g., case of wall with H = 23.1 m and lweb/l f l = 2.5). The latter is caused by the deep

compression zones, in particular for large web to flange length ratios.

• For tension controlled failures (round markers) the drift capacity increases with increasing

axial load ratio which is partially related to the higher spread of plastic deformations (see

Section 6.6.1.

• For compression controlled failures (triangle markers) the drift capacity decreases with

increasing axial load ratio. In addition, when the axial load ratio increases, the failure

mode migrates from tension failure to compression failure for loading positions with one

or both flange ends in compression. The axial load ratio should hence be limited in order

to ensure sufficient drift capacity for these loading positions.

The plastic flexural displacements at ultimate Δp, f are determined from the shell element model by

integration of curvature profiles minus the predicted yield flexural displacement Δy,2L/(1+Δs/Δ f ).
The plastic hinge length estimates are combined with the plastic curvatures obtained from section

analyses as the ultimate curvature minus the nominal yield curvature φp = φu,PSA − φy,PSA to

predict the plastic displacement at ultimate limit state. For each estimate, the centre of rotation

of the plastic hinge needs to be considered accordingly to the derivation of the estimate: centre

of rotation at the base of the wall [PCK07], centre of rotation at the centre of the plastic hinge

length [Kaz13] and centre of rotation at one third Lpz from base [BA11]. Only the estimates by

[BA11] are compared here and hence only the equation for this case is given, but conclusions in

this section apply to all other estimates discussed above. The following estimates of the plastic

displacements at ultimate were hence used:

Dp,[BA11] = Lph,[BA11]φp(H − 2

3
Lph,[BA11]) (6.21)
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Figure 6.28: Ultimate drift capacities of the different wall configurations accounting for tension failure

due to bar fracture (round marker) and for compression failure due to confined concrete crushing (triangle

marker). The axial load ratio n is indicated by the full, half-full or empty markers. The ultimate drift

values δ , three for each loading position correspond to axial load ratios: the value placed down to n =0.02

while the placed upper of the three to n =0.1.
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In the estimates, the wall length was taken as equal to the web length at positions A, E and F and

equal to the flange length at positions C and D. The shear stress τ plotted in Figure 6.32 was

computed at positions A, E and F as the average shear stress on the web while at C and D as

the average shear stress on the flanges. Shear demands were obtained from the section analysis

moments

The comparison between the estimates for the plastic flexural displacement and numerical results

is done for each loading position with respect to the wall length (Figure 6.30), shear span

(Figure 6.29), axial load ratio (Figure 6.31) and shear stress demand (Figure 6.32). From these

comparisons the following observations can be made:

• The plastic displacement is typically underestimated for most loading positions, which is

in line with the purpose of the Lph estimate by [BA11] that are intended as a lower bound.

At position F, the plastic displacement is however significantly overestimated especially

for walls with low axial load ratio and long webs. The overestimation of the plastic hinge

length at position F was also observed when comparing the equations by [BA11] with the

experimental data (Section 4.5.3).

• The trend of the plastic hinge length with the axial load ratio is not well captured by the

estimates by [BA11]. Increasing axial load results in more pronounced inelastic curvature

spikes at the storey levels and hence larger plastic zone heights Lpz. [BA11] had found that

increased axial load reduces the spread of inelastic curvatures over the wall height. The

difference between the two cases lies in the application of the axial loads: distributed at

each storey level in the study presented herein and concentrated at the top of the wall in the

study by [BA11].

• The variation of the plastic displacement with the shear stress demand is also not well

captured (Figure 6.32). [BA11] argued that for planar walls, it is not necessary to account

for the shear stress demand in the expression of Lph as long as the shear span and the

wall length are accounted for. However for non-planar walls, varying wall dimensions

other than lwall or H can modify the shear stress demand, which in turn affects the tension

shift effects due to diagonal cracking and hence the plastic hinge length. For example,

at position C, increasing the length of the web lweb increases the shear stress demand on

the flanges while the wall length does not modify. Hence the increase in shear stress is

not accounted for in the expression of Lph. Overall Lph values corresponding to large

shear stresses are underestimated while the values corresponding to low shear stresses are

overestimated.
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Figure 6.29: Comparison between the numerically determined plastic displacement at ultimate limit state

and the predicted displacements using plastic hinge length estimates by [BA11] with respect to the wall

shear span Hs.
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Figure 6.30: Comparison between the numerically determined plastic displacement at ultimate limit state

and the predicted displacements using plastic hinge length estimates by [BA11] with respect to the wall

length lwall .
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Figure 6.31: Comparison between the numerically determined plastic displacement at ultimate limit state

and the predicted displacements using plastic hinge length estimates by [BA11] with respect to the axial

load ratio n = N/( fcAg).
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Figure 6.32: Comparison between the numerically determined plastic displacement at ultimate limit state

and the predicted displacements using plastic hinge length estimates by [BA11] with respect to the shear

stress demand τ .
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6.6.3 Plastic hinge length

Based on the observations from the comparison of the plastic displacements with the estimates,

results from the shell element model are used in this section to propose new estimates for the

plastic hinge length Lph. The plastic hinge length was derived from the shell element model by

back-calculating its value from the numerical ultimate displacement (Equation 6.23). In this

equation, it is assumed that the center of rotation of the plastic hinge is located at 2/3Lph from

the wall base.

Lph = 1.5H −
√

2.25H2 − 6Δp

φp
(6.22)

6.6.3.1 Trends with wall length, shear span, axial load ratio and shear stress

The trends of the obtained Lph values with respect to shear span, wall length, axial load ratio

and shear stress are shown in Figures 6.33 to 6.36 for the different loading positions. The main

observations from these figures are summarised in the following:

• Plastic hinge length increases with the wall shear span due to moment gradient and with

the wall length due to tension shift effects caused by the diagonal cracking. These trends

are confirmed by the Figures 6.33 and 6.32. The wall length corresponding to positions C

and D is the length of the flanges l f l which was not varied during the parametric study.

• Increasing the axial load ratio increases the plastic hinge length due the development of

inelastic curvature spikes at the storey level for the larger axial load ratios as previously

discussed.

• Plastic hinge length increases with increasing shear stress demand as it contributes to the

tension shift effects. Walls with large shear spans H have high slenderness ratios H/lwall
and hence low shear stress demands but can have large plastic hinge lengths due to the

shear span contribution (see Figure 6.36). As already mentioned, the shear stress demand

should be accounted for in the expression of the plastic hinge length since for non-planar

walls, modifications of different wall dimensions other than lwall and H can modify the

shear stress demand and hence the plastic hinge length due to the tension shift effects

caused by diagonal cracking (e.g., position C in Figure 6.36c).

6.6.3.2 New estimates for plastic hinge lengths

The Lph values obtained from the shell element model are used in this section to derive new

estimates for plastic hinge lengths of U-shaped walls. The objective is to obtain a general

expression for all the loading positions. The variation of the plastic hinge length with the loading

position is to be accounted for through the wall length and the shear stress demand.
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Figure 6.33: Trends of the plastic hinge length values determined from the shell element model with

respect to the shear span Hs.
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Figure 6.34: Trends of the plastic hinge length values determined from the shell element model with

respect to the shear stress demand lwall .
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Figure 6.35: Trends of the plastic hinge length values determined from the shell element model with

respect to the axial load ratio n = N/( fcAg).
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Figure 6.36: Trends of the plastic hinge length values determined from the shell element model with

respect to the shear stress demand τ .
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In the following, in order to evaluate the importance of the different variables in predicting the

plastic hinge length, these variables are introduced consecutively in the general expression of the

plastic hinge length which is fitted to the Lph values from the numerical model. The data fitting

was performed using a nonlinear least square solver as implemented in Matlab [Mat13] software

(@lsqnlin function) which minimises the sum of squares of the residuals.

The general form of the equation that is first considered is Lph = a1H +a2lwall is the simplest

plastic hinge equation for walls, accounting only for the shear span and the wall length. The

obtained coefficients of the data fitting, the mean of the ratio between predicted and numerical

Lph value and the coefficient of variation are given in Figure 6.37a. This figure shows that the

equation does not capture at least one trend, as predicted values display rather constant value

bands for the same shear span value.

Next, the average shear stress is added into the general form of to the equation under the form of a

ratio of demand to capacity, i.e., of shear stress demand on the wall to the shear stress at diagonal

cracking (taken as 0.17
√

fc [ACI11] with the coefficient of 0.17 included in the coefficient of

lwall).

Considering the influence of the average shear stress, improves the fit of the equation with the

numerical data (Figure 6.37b), except for the slender walls (large shear span - black markers)

where shear stresses are small and hence do not influence the tension shift effects due to diagonal

cracking. If in addition to the average shear stress, the axial load ratio is included in the general

equation, the trends are now well captured (Figure 6.37c). The final form of the proposed Lph
estimate is given in Equation 6.23. The final mean error of the predicted to numerical Lph value

is 0.98 and a coefficient of variation of COV = 18% is obtained.

Lph = (0.05H +0.05lwall
τ

0.17
√

fc
)(1+4n) (6.23)

In the above equation, at position A and E, the wall length was taken as the length of the web

and the shear stress τ as the average shear stress corresponding to the web and determined using

section analysis. At positions C and D, the length of the flanges and the shear stress on the flanges

was considered, with the shear force in the direction of the flanges equally distributed between

the flanges.

Initially at position F, the same wall length and average shear stress as for positions A and E

were considered. However, after examining the strain profiles for these loading position (Figure

6.38) as discussed in the following, it was decided to take the wall length and the average shear

stress on the section as the mean between the web and the flange, i.e., lwall = (lweb + l f l)/2 and

τ = (τweb + τ f l)/2. It was observed that the tensile strains that control the curvature profile for

this loading position (SW corner in Figure 6.38) and hence the plastic hinge length are influenced

by both the web and the flange characteristics. Considering lwall = lweb would best describe the

tensile strain distribution at the NW corner (Figure 6.38c) while considering lwall = l f l would not

account in any way for the influence of the web which carries a significantly larger shear force

than the flanges at this loading position. It was assumed that at position F, the entire shear force

in the direction of the flanges is carried by one flange only.
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Figure 6.37: Fitting of the Lph values with different equations accounting for: wall length lwall and shear

span Hs (a) and shear stress τ (b) and axial load ratio n (c).
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Figure 6.38: Vertical strain profiles over the height at position F at the edges of the mid-surface of the

wall at position (a). Strains are shown for a wall with a shear span of H = 23.1 m, axial load ratio of

n = 0.06 and with the web to flange length ratio of lweb/l f l = 1.25 (b) and lweb/l f l = 2.5 (c).
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6.7. Conclusions

The obtained scatter of predicted to observed plastic hinge length results from predicting the

plastic hinge length for all loading directions with a single equation. Only at positions C and

D, the coefficient corresponding to the wall length lwall are about twice as those obtained for

positions A, E and F. However, the estimate of this coefficient is not very robust since the flange

length was not varied within the parametric study. For positions C and D, one has therefore only

one lwall value. The web length, on the other hand, which was considered as wall length for the

other positions, was varied between lweb = 4.5−9.0 m. Having flange lengths that are larger than

the web length would lead to wall geometries not commonly encountered in practice and hence

their variation was not consider in the design of the parametric study.

A previous study on the plastic hinge length of columns has differentiated between the plastic

hinge length associated to tension failure and the one associated to compression failure, to

account for the different spread of plasticity on the tensioned and on the compressed side of the

wall[GF+15]. For the walls in the parametric study presented herein, from 135 analyses results,

89 were tension controlled failures and the rest were compression controlled. The confined

concrete crushing limit state was determining for all walls at position C and to walls with large

axial load ratios at position E. However, it was found that the failure type (tension or compression

controlled) does not influence the value of the plastic hinge length when ultimate limit strains of

0.5εsu and 1/3εcu,[MPP88] are used for the steel limit strain and concrete limit strain respectively

(Section 4.6).

Table 6.2: Coefficients for the general form of the plastic hinge length equation Lph = (a1H +
a2lwall

τ
0.17

√
fc
)(1+a3n) when fitting the individual loading positions.

Pos. a1 a2 a3
Mean

(
Lph,predicted
Lph,numeric

)
COV (%)

A 0.055 0.056 2.5 1.02 12

C 0.040 0.099 3.6 1.01 15

D 0.059 0.129 3.6 1.00 9

E 0.049 0.063 2.8 0.99 9

F 0.058 0.058 2.7 1.01 16

6.7 Conclusions

Yield curvature, yield displacements, effective stiffness ratios and plastic hinge lengths were

derived from monotonic analyses of a detailed shell element model for U-shaped walls validated

against experimental data. The numerical results obtained from the model were compared to

several existing estimates as well as to the newly developed estimates. For each of the quantities,

the following conclusions were drawn:

Yield curvature : New estimates for the yield curvature of U-shaped walls under any loading

direction were proposed. Yield curvatures obtained from section analyses were compared

to the yield curvatures obtained from the shell element model analyses and were found to

match well for all analysed wall geometries.
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Yield displacement :A new equation of the yield displacement proposed in Chapter 4 was

expressed as the sum of the displacement components at yield, i.e., flexural displacements

due to wall deformation and shear displacements. The new feature of the model is that

it accounts for the partially cracked wall over the height at yield through an assumed bi-

linear curvature profile. The new equation was verified for walls with a broad slenderness

ratio 2.6 ≤ H/lwall ≤ 12.8. By comparison, yield displacement estimate based on the

assumption of a linear curvature profile at yield led to rather high estimates of the yield

displacement for the more slender walls (H/lwall > 4) since it overcompensated for the

shear deformations, which are reduced for very slender walls.

Effective stiffness : Effective stiffness ratios obtained from the shell element model varied with

wall geometry and loading direction were well captured by the prediction based on the new

yield displacement estimate. Existing estimate by [PP92] also matched well on average the

shell element model results but did not capture the influence of diagonal cracking on the

cracked height and hence on the flexural flexibility. Modifying this estimate to account

for the cracked height improved the match between the effective stiffness ratio estimates

and the numerically obtained ones. The prediction based on the yield displacement

estimate assuming a linear curvature profile led to high stiffness estimate for the walls with

low slenderness (2.56 < H/lwall < 4) and to low stiffness estimate for the slender walls

(H/lwall > 4).

Plastic hinge lengths : These lengths were found to increase with increasing axial load ratio.

Unlike previous studies on the plastic hinge lengths of walls which considered that the

axial load ratio is entirely applied at the top of the wall, in this study the axial load was

considered to be applied at the storey levels. This modelling assumption led to spikes of

inelastic curvatures just above the storey level where the axial loads were introduced, as

the ratio of moment demand to moment capacity was largest above the storey level. In

addition, the shear stress was found to be important in the prediction of the plastic hinge

length for non-planar. For such walls, changing a wall dimension other than the shear span

or the wall length in the direction of loading can modify the shear stress and hence plastic

hinge length due to tension shift effects. Therefore, a new expression for the plastic hinge

length was proposed for all the loading directions and it accounts for the shear stress on

the wall in addition to the wall length, shear span and axial load ratio. It was found that the

same plastic hinge lengths can be used for tension or the compression controlled failures as

long as suitable concrete limit strains are used in section analysis to determine the ultimate

curvature.

244



7. Summary, conclusions and outlook

7.1 Summary and conclusions

Reinforced concrete (RC) core walls are widely used as the main lateral load resisting element in

mid- to high-rise buildings. Despite its popularity, studies on the seismic response of RC core

walls remain scarce and their inelastic behaviour has only relatively recently been investigated

through few experimental and numerical studies [RF01], [BDP08b] and [LL+13]. This study

complements the previous ones by highlighting the importance of the diagonal loading direction

in the analysis and design of U-shaped walls and by adapting quantities of the plastic hinge

model for the analysis of U-shaped walls. The main contributions of this study are: (1) provide

experimental data on the behaviour of U-shaped walls under diagonal loading, (2) evaluate the

limits of applicability of plane section analysis for determining the strength and displacement

capacity of U-shaped walls and (3) adapt equations for the deformation quantities of the plastic

hinge model for the analysis of U-shaped walls. New or modified equations were proposed for

the following quantities: yield curvatures, yield displacements, plastic hinge lengths and ultimate

strain limits for section analysis for compression controlled failure. The most important findings

and conclusions are discussed in the following.

Behaviour of U-shaped walls under diagonal loading

An experimental campaign on two U-shaped walls (TUC and TUD) was presented in terms of

test set-up, loading history and experimental findings in Chapter 3. The walls were tested under

quasi-static cyclic loading in the directions of the geometric diagonals of the U-shaped section.

The experimental results provided insights into the behaviour of U-shaped walls under diagonal

loading.

Failure modes

It was found that the flange ends are subjected to a significant longitudinal strain gradient across

the flange width, which promotes out-of-plane buckling of the flange ends (failure mode of TUC).

In addition, when loading with the flange end in compression, the compression zone is very

deep and extends over almost the entire flange length. Therefore, the wall is prone to brittle

compressive failures over a significant part of the flange length (failure mode of TUC).
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Influence of longitudinal reinforcement distribution

The influence of the distribution of the longitudinal reinforcement within the section on the wall

behaviour was experimentally evaluated. Distributing the reinforcement uniformly within the

section was found to reduce the crack widths and as a consequence also the shear deformations.

In addition, the longitudinal reinforcement distribution was found to influence the failure modes.

The larger the longitudinal reinforcement content of the boundary element, i.e., the more the

longitudinal reinforcement is concentrated in the boundary elements, the more susceptible the

boundary element is to failure due to out-of-plane bending. The distributed reinforcement layout,

on the other hand, leads to larger compression zone depths, which increases the susceptibility to

concrete crushing.

Plane section assumption

Finally, the experimentally determined longitudinal strain profiles along the wall perimeter

confirmed the invalidity of the assumption that plane sections remain plane. This manifested itself

in particular in non-linear strain profiles and additional compression zones at the intersections of

web and flange .

Limits of application of the plane section analysis to U-shaped walls

Despite the invalidity of the plane section assumption, it remains an analysis that simplifies

analyses considerably and therefore its limitations in predicting the strength and displacement

capacity of U-shaped walls were investigated. Monotonic plane section analysis was used to

model a set of four U-shaped walls that were tested under bi-directional loading.

Strength prediction

Plane section analysis was found to yield reasonable estimates of the wall strength for bending in

the principal directions but significantly overestimated the experimentally attained wall strength

for bending in the diagonal direction. The causes of this overestimation were identified by means

of a shell element model validated against the experimental data and analysed for different loading

histories and directions: monotonic, cyclic unidirectional and cyclic bidirectional.

The difference in strength between the monotonic and the cyclic uni-directional analyses was

relatively small and was assigned to shear lag effects. For cyclic loading, the crack widths tend

to be larger and upon load reversal open along the entire length of the wall. As a result, the

shear deformations tend to be larger under cyclic than under monotonic loading. However, the

difference between the cyclic unidirectional and cyclic bidirectional loading was more significant

and indicated that capturing the loading history of the reinforcement bars was critical in predicting

accurately the wall strength.

The loading history of the bars could be incorporated in a cyclic plane section analysis by

including unloading and reloading rules for steel models while shear lag effects can be accounted

for through effective flange widths.
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Curvature prediction

Monotonic plane section analyses predicted well the yield and ultimate curvatures for U-shaped

walls. Despite the invalidity of the assumption thatplane sections remain plane, the experimentally

determined ultimate curvatures were well predicted by section analysis as long as suitable ultimate

strain limits were used. To this purpose ultimate limit strains for confined concrete crushing

were adapted for use with section analysis based on comparison with experimental results. For

limit states controlled by reinforcement bars (buckling and rupture after buckling) limit strains

reported in the literature yielded good results.

Application of plastic hinge model to U-shaped walls

The plastic hinge model is very popular with design engineers because it is relatively simple to

apply and it yields—if properly calibrated- robust predictions of the displacement capacity of

RC members undergoing inelastic deformations. These predictions are simple to obtain and are

particularly useful during early phases of the design process. Up to today, equations for yield

curvatures and plastic hinge lengths have been proposed for walls with rectangular, barbelled

or box-shaped cross sections. This study extends the application of the plastic hinge model to

U-shaped walls by: (1) providing new yield curvatures for any loading direction because these

were previously available only for the principal loading directions, (2) by modifying the yield

displacement equation to account for the partially cracked height because the previous equation,

which assumed a fully cracked wall at yield, was found to be too simplifying, (3) by adapting the

ultimate limit strain for compression controlled failure for use with section analysis, and (4) by

adapting the plastic hinge length equation to include the influence of the average shear stress on

the section.

Yield displacement

From the observation of the experimentally obtained curvature profiles at yield, a new equation

for the yield displacement was proposed. The yield displacement is computed as the sum of

contributions of the flexural displacement due to wall deformation and shear displacements.

The novelty lies in assuming a bi-linear curvature profile at yield to account for the partially

cracked height of the wall. The new equation captures well the yield displacement for walls

with a wide range of slenderness ratios (2.6 ≤ H/lwall ≤ 12.8). The simplifying assumption of a

linear curvature profile at yield results in overestimations of the yield displacements for rather

slender walls (H/lwall > 4). The newly proposed approach, which is based on a bilinear curvature

profile, can be extended to any wall geometry as long as yield curvatures, cracked heights, shear

displacements and strain penetration lengths are well predicted.

Ultimate displacement

The displacement capacity can be estimated using plastic hinge lengths that vary for the different

loading directions combined with ultimate curvatures from section analyses. Shear displacements

should be included when predicting the wall displacement capacity, since their contribution was

found to be significant even for slender U-shaped walls.
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The results of a parametric study using the validated shell element model showed that the plastic

hinge lengths of U-shaped walls depend on the wall length, the shear span, the axial load ratio

and the average shear stress on the section. The influence of the loading direction was included

through the wall length and through the average shear stress, which differs for the different

loading positions. The inclusion of the average shear stress is novel and was found necessary in

order to account for the influence of changes in the core wall geometry not accounted for through

the wall length. Contrary to previous plastic hinge length equations that include the influence

of the axial load on the spread of plasticity, the plastic hinge length was found to increase with

increasing axial load ratio. The difference comes from the assumption on the distribution of the

axial load ratio over the wall height: distributed at each storey level in this study and applied at

the top of the wall in previous studies.

Importance of considering the diagonal loading direction

When analysing U-shaped walls, the designer should consider besides the loading cases in

principal directions of the section also the loading in the direction of the geometric diagonal of

the section. The diagonal loading case is the critical one for designing the shear reinforcement in

the flanges. In addition, the diagonal loading position leads to the largest compression depths for

the flange ends in the experiments performed within this study and is therefore determinant when

designing the confining reinforcement of the flanges.

Numerical and experimental investigations have shown that from all the investigated directions,

the displacement capacity in diagonal direction is the lowest if the limit states bar fracture after

buckling and crushing of the confined concrete are controlling the displacement capacity. The

displacement capacity in diagonal direction can be further reduced by out-of-plane buckling of

the flange end, which is promoted by a strain gradient across the flange width. This new complex

failure mode experimentally observed is however difficult to capture numerically and was outside

the scope of this thesis (see “Outlook” below). The diagonal direction is also determinant for the

shear design of the flanges. The only failure mode that is not controlled by the diagonal loading

direction is the shear failure of the web. The shear design of the web should be based on the

loading direction parallel to the web, for which the shear force demand on the web is largest.

Recommendation for the distribution of the longitudinal reinforcement

From the findings of the experimental campaign it is recommended to detail the walls with

longitudinal reinforcement uniformly distributed in the section. While this may increase the

compression depth on the flanges and therefore the susceptibility to concrete crushing failures, the

shear deformations and the shear lag effects are reduced. This reduction is especially appealing

for non-planar walls where shear deformations and shear lag can significantly reduce the wall

strength and stiffness in flexure and shear. Distributing the longitudinal reinforcement uniformly

along the wall section can also prevent sliding shear failures.
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7.2 Outlook

This study addressed the response of isolated U-shaped walls when subjected to displacements in

different loading directions and following different loading histories. Future work should address

in particular open questions with regard to the torsional response of core walls, the response of

core walls as elements within a structural system and with regard to the design of core walls.

Influence of torsion on the U-shaped wall behaviour: All U-shaped walls investigated in this

study were isolated walls, for which the rotation was restrained at the wall top. The

influence of a rotation at the wall head on the wall behaviour was therefore not considered

within this study. Future studies should investigate (1) the effect of flexural deformations

on the torsional stiffness and strength, (2) the influence of torsional response on failure

modes, in particular also on the out-of-plane stability of flanges.

Analysis of buildings with U-shaped walls: This study focused on isolated U-shaped walls. In

reality, core walls will be part of a structural system and connected to horizontal structural

members such as slabs and coupling beams. The interaction with these structural members

should be investigated and modelling approaches developed that are suitable for capturing

this interaction.

Design guidelines for U-shaped walls: The design of U-shaped walls was only briefly discussed

when designing the walls of the parametric study. The main issues that require further

investigation are: (1) the confinement of the flange ends, (2) the shear design of the

flanges and (3) consideration of out-of-plane bending when assessing the stability of the

flange ends. The experimental tests have shown that diagonal loading with one flange

end in compression leads to the largest compression zone depth in the flange ends and

that compressive strains are non-linearly distributed along this flange. Due to the latter

observation section analysis cannot capture the flange response and other simple analysis

tools that allow to predict the required confinement lengths for the flanges need to be

developed. Furthermore, it is at present not clear whether such elongated cross sections

can be effectively confined. The out-of-plane bending of the flanges influences the stability

of the flange ends but at present stability models that account for the out-of-plane bending

are missing. Research on this topic is currently ongoing within the scope of the follow-up

project.
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Appendix

A.1 Introduction

This appendix provides additional information on the experimental tests carried out at structural

testing laboratory at EPFL on two half-scale U-shaped walls: TUC and TUD (Figure A.1). The

test objectives, test set-up, applied loading history and the interpretation of the test results have

been presented in Chapter 3. The data from these two tests has been made publicly available and

has been assigned DOI 10.6084/m9.figshare.3507749. The data can be downloaded using the

following link:

https://figshare.com/articles/Quasi-static cyclic tests of two U-shaped RC walls under diagonal
loading/3507749

This appendix presents how the data is organized and how it can be reused. When using any of

the data, please cite the following reference:

R. Constantin and K. Beyer. Behaviour of U-shaped RC walls under quasi-static cyclic diagonal

loading. Engineering Structures, 106(1):36-52, 2016. DOI:10.1016/j.engstruct.2015.10.018

A.2 Instrumentation of the test units

The two test units were each instrumented with two different measurement systems: one composed

of conventional measurement devices and one optical measurement system. Both measurement

systems are described in the following.

The conventional measurement system was composed of the following conventional measurement

devices that recorded continuously at a frequency of 1 Hz:

• load cells of the force actuators measuring the applied horizontal forces (Figure A.1)

• load cells measuring the applied axial force (Figure A.1)

• linear variable differential transducers (LVDTs) measuring the relative horizontal displace-

ment of the top of the wall at h = 2.95 m and h = 3.35 m (Figures A.2 and A.3)

• LVDTs measuring the vertical shortening and elongation at four outer vertical edges of the

wall (Figures A.2 and A.3)
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• LVDTs measuring the vertical shortening and elongation at two inner vertical edges of the

wall near the flange ends

The optical measurement system Optotrack from NDI (Optotrack Certus HD [NDI10]) was

composed of the following devices that recorded continuously at a frequency of 2 Hz:

• ∼ 500 light emitting diodes (LEDs) glued on the outer surface of the wall (Figures A.4

and A.5)

• three position sensors each comprising three digital cameras that recorded the x, y and z

coordinates of the LEDs (Figure A.1)

Figure A.1: Sketch of the test set-up
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A.2. Instrumentation of the test units

Figure A.2: Sketch of the measurement systems: top view (left) and 3D view (right)

Figure A.3: TUC and TUD: Sketch of the LVDT chains mounted on the outer wall edges of the flanges

and on the inner edge at the flange ends. In addition the positions of the LVDTs measuring the global wall

top displacements are shown. All dimensions are in mm.
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Figure A.4: TUC: Sketch of the positions of the LEDs glued on the outer faces of the wall, the local

coordinate axes with respect to which the processed optical data is given and the numbering of the LEDs

after data post-processing. Grey colour marks LEDs that are obsolete, i.e., that were not visible to the

position sensors during testing.
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A.2. Instrumentation of the test units

Figure A.5: TUD: Sketch of the positions of the LEDs glued on the outer faces of the wall, the local

coordinate axes with respect to which the processed optical data is given and the numbering of the LEDs

after data post-processing. Grey colour marks LEDs that are obsolete, i.e., that were not visible to the

position sensors during testing.
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A.3 Loading history

The main loading cycles were applied along the two geometric diagonals of the U-shaped section:

directions E-F and H-G (Figure A.6). Cycles along the principal directions were also added at

small drift levels in order to check the strength capacity of the wall in these directions. The load

step numbers, their corresponding loading position and the target drifts at each load step are

summarised for both test units in Figure A.7. The loading for TUD was stopped at LS80.

Figure A.6: Nomenclature of wall parts, cardinal orientation and loading positions

A.4 Test data

A.4.1 Organisation of data

The data is organised as in Figure A.8. The data was divided into two large folders: the

‘01 Documents and data’ and the ‘02 Photos’ folders and they have been archive in a total of

eight zip files. The first folder comprises a subfolder ‘01 Documents and paper’ which contains

all the relevant documents to understanding and reusing the experimental data. Three other

subfolders were included in the first folder: a subfolder containing processed and unprocessed

measurements from the conventional instruments for both test units, a subfolder containing

processed and unprocessed measurements from the optical system and a subfolder containing

processed and unprocessed data from the material tests. A ‘Metadata conventional channels.xlsx’

file that provides sign conventions and information on the conventional measurement instruments

used was included in the conventional measurements for each test unit.

A.4.2 Unprocessed data

The unprocessed data contains the original files as recorded by the measurement systems during

the testing of the walls. The type of files recorded will depend on the type of measurement

systems used.
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A.4. Test data

Figure A.7: Load step number, corresponding loading position and target drifts. The last loadstep for

TUD is LS80.

.
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Figure A.8: Sketch of the data organisation.

.
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A.4. Test data

A.4.2.1 Conventional measurement data

The conventional measurements were recorded using the CATMAN software [HBM00]. This

software outputs ascii files that contain the unmodified measurements as recorded by the system.

A channel is assigned to each instrument of the system. The type of recorded measurements and

the corresponding channel names are listed below:

• Measurement of forces and displacements of the horizontal actuators: ACTU FORCE EW,

ACTU FORCE NSW, ACTU FORCE NSE, ACTU DISP EW, ACTU DISP NSW and

ACTU DISP NSE

• Measurement of the applied axial forces from the two load cells placed between the top

steel beam and the wall collar: F AX W, F AX E (TUC) or measurements of axial force

load cell placed on the pre-stressed axial tendon: F AX 1 and of pressure applied in the

hollow core jack: PRESS AX (TUD)

• Measurements of relative horizontal displacements at the top of the wall using LVDTs:

DISP EWh295, DISP EWh335, DISP NSW, DISP NSE

• Measurements of shortening and elongation of the wall edges using six LVDT chains:

SWi1 to SWi4, SW1 to SW8, NW1 to NW8, NE1 to NE8, SE1 to SE8 and SEi1 to SEi4

• Voltage measurement exported from the NDI system to indicate when the optical system

was recording: LED. The conventional system recording was always started before and

stopped after the NDI recording. This voltage measurement was used to synchronise the

conventional and the optical measurement system.

• Additional measurements to check the safety of the test set-up during loading. One LVDT

fixed below the strong floor of the testing laboratory to record the vertical displacement of

the strong floor during loading: DISP SLAB. Inclinometers fixed on the wall collar and

on the top steel beam and measuring their inclination with respect to the wall vertical axis

during loading: INCLIN WALL, INCLIN BEAM (only for TUC).

The files are labelled as ‘LSxx to LSxx+1.txt’ to indicate measurement during loading from one

load step to the next and ‘LSxx.txt’ to indicate measurement at load step (i.e., while holding the

wall position at the target displacement).

A.4.2.2 Optical measurement data

The data recorded from the NDI measurement system was placed in the subfolder named

‘03 Data optical measurements’. For each separate recording the NDI system exports the mea-

surement data to an Excel file. In addition an ascii file with extension ‘nco’ is created carrying

data on the settings of the NDI system. The files are named ‘LSxx to LSxx+1 001’ for measure-

ments when loading from one load step to the next and ‘LSxx’ for measurements while holding

the position at one load step. The Excel files are named as the ‘nco’ files are, plus the suffix

‘ 3d.xls’: ‘LSxx to LSxx+1 001 3d.xls’ and ‘LSxx 001 3d xls’.
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Each Excel file has three header lines. These lines indicate the number of frames included in the

file (i.e., number of measurements values for one coordinate of a LED), the recording frequency

in Hz (2 Hz for both TUC and TUD) and the units of the coordinate measurements (mm). A

blank line follows the header lines, then comes the actual measurement data that is organised

in columns. The first column stores the frame index that always starts from one. From the

second column on, the coordinate measurements of the LEDs follow. These measurement are

organised by LED number and by x, y and z coordinate. For example the second, third and fourth

column which correspond to LED number 1 are labelled Marker 1x, Marker 1y and Marker 1z

respectively. In the unprocessed data, the numbering of the LEDs is random. If a LED was not

visible to the position sensors during loading, the columns corresponding to this LED are blank.

A.4.2.3 Measurement irregularities

Several measurement irregularities occurred during the testing of TUC and TUD. These irregular-

ities are listed below:

• During the testing of TUC, due to a malfunction of the actuator system, loading from

position H to G (LS35 to LS36) was done in steps and data files were stitched together for

post-processing. In addition, when reaching LS36 one of the three actuators continued to

load slightly above the target drift but at a high speed. It applied a small torsion on the wall

but no important additional cracks were observed after this.

• For both TUC and TUD, the LEDs glued on the foundation originally followed a regular

grid consistent with the grid of the LEDs on the wall surface. However several LEDs on the

foundation were removed prior to commencing the tests as their visibility to the position

sensors was obstructed by the pre-tensioning bar ends and plates. Additional LEDs were

not visible during the entire testing procedure but were left in place and marked as obsolete.

A.4.3 Processed data

Both the conventional and the optical measurement data were processed in order to reduce the

amount of data and to make it easy to use. The processing consisted of: synchronising the optical

and the conventional measurement data, removing any bias in the measurements not related to

the actual wall behaviour (e.g., accidental touching of measurement instruments or LEDs that

had fallen off but were still recording) and organising the data in one set of measurements during

loading between load steps. The measurements during loading (i.e., files of type LSxx to LSxx+1)

were assembled together resulting in one single continuous vector of 57110 data points for TUC

and 19146 data points for TUD.

A.4.3.1 Conventional measurement data

The measurements of the conventional instruments have been offset so that the deformations and

displacements at initial load step LS0 are zero. The measurements of the actuator forces, time

channel and voltage channel were not offset.
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A.4. Test data

The signs of some of the top displacement measurements and actuator forces were inverted so that

they match the sign convention for the wall as described in ‘Metadata conventional channels.xlsx’.

In addition, the processed top displacements were modified to remove the contribution of the

foundation flexibility (foundation uplift and sliding with respect to the strong floor) recorded by

means of the LEDs glued on the steel plates on the foundation.

A.4.3.2 Optical measurement data

Several processing steps were performed for the optical measurement data:

• The data was smoothed over a range of 20 data points in order to remove measurement

noise. Smoothing was done using the Matlab function ‘smooth’ [Mat13].

• For each flange and the web, the coordinate system was rotated and shifted so that it is

aligned with the local xyz coordinate system of each wall part, i.e., web or flanges. For any

of the three wall parts, the local x axis is always aligned with the length of the wall part,

the local y axis is aligned with the wall height and local z axis is perpendicular on the wall

surface and oriented from the wall towards the position sensor (Figures A.4 and A.5). The

origin of the local coordinate system is always: at mid-length of each wall part (x axis), at

the base of the wall specimen (y axis) and at the outer wall surface (z axis).

• The optical measurement data was synchronised with the processed conventional measure-

ment data. In order to have the same number of measurement values for both systems, the

measurement frequency of the optical system (2 Hz) was reduced to the frequency of the

conventional system (1 Hz).

• LEDs that fell off during testing were identified and the corresponding entries were replaced

by NaN (Not a Number) entries.

• LEDs were renumbered starting from the base of the East flange, from left to right on

the outer wall surface. Obsolete LEDs, i.e., LEDs that were not visible during testing are

numbered at the end for each wall part and are shown in grey in Figures A.4 and A.5.

The processed optical measurements for all LEDs are stored in three separate csv files, one for

each x, y and z coordinate. The three files are named: ‘TUC optical processed Xcoordinate.csv’,

‘TUC optical processed Ycoordinate.csv’ and ‘TUC optical processed Zcoordinate.csv’, for the

case of TUC and similarly for TUD. The processed x, y and z coordinates are expressed with

respect to the local axes of each of the wall parts (Figures A.4 and A.5).
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A.4.4 Photos

All the photos documenting the construction, test set-up and the damage during testing of the

two specimens were saved in the second main folder ‘02 Photos’. The photos documenting the

damage of the walls were taken at load steps while holding the wall position at the target peak

displacement. These photos are found in the ‘02 TUC testing’ and ‘04 TUD testing’ and are

organised in folders ‘LSxx’ created for each load step numbered xx. Each ‘LSxx’ folder contains

global photos of the wall specimen taken from the front (view of the inner wall faces), back (view

perpendicular on the web), and the two sides (views perpendicular on the two flanges). These

global photos are saved in ‘Overview’ subfolder. In addition, when damage became significant

detailed photos at the damage locations were taken. These are photos were saved in the subfolder

‘Detailed’.

At each load step, the cracks were traced using blue, red, black and green pens in order to

render the cracks visible on photos. Each color corresponded to different loading positions: red -

positions A and F, blue - positions B and and E, black - positions C and H, green - positions D

and G (see also Figure A.6).
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Notations and abbreviations

Capital Latin Letters

Ag Gross concrete area of a section

Acv
Gross cross section area of wall parts (web or flange) resisting a common lateral

force

Acw Gross cross section area of one wall part resisting all the lateral force

E Elastic modulus

Ec Elastic modulus of concrete

Es Elastic modulus of steel reinforcement

EIcr Cracked (effective) flexural stiffness

EIg Uncracked gross flexural stiffness

FEW Force in EW direction

FNS Force in NS direction

F ′
y Shear force at first yield

Fn Shear force at nominal

H Effective height of a building or the height of a wall subjected to a point load at H

Hcr Height of the wall over which cracking extends

Hwall Height of the wall

Ke f f Effective wall stiffness

Kth Elastic flexural wall stiffness

Ky Dimensionless yield curvature

Ky, f l Dimensionless yield curvature for loading in the flange direction

Ky,web Dimensionless yield curvature for loading in the web direction

Lph Plastic hinge length

Lpz Height of the plastic zone (i.e., where plasticity spreads)

Lsp Strain penetration length

L′
y,sp Strain penetration length at first yield

M Bending moment at the wall base

MEW Moment at the wall base due to FEW

MNS Moment at the wall base due to FNS

MSRSS SRSS moment at the wall base computed from FEW and FNS

Mcr Moment at the wall base at flexural cracking

My Moment at the wall base at first yield

Mn Moment at the wall base at nominal

Mu Moment at the wall base at ultimate

N Axial load
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Nstories Number of stories the building braced by the U-shaped wall

Vnec Shear force demand

V ∗
nec Shear force demand accounting for the dynamic amplification factor

Vn Diagonal tension capacity

Vwc Web crushing capacity

Small Latin Letters

c Compression depth of a section

db Gross concrete area of a section

fc Gross cross section area of the wall section

fy Yield strength of the longitudinal reinforcement

fyh Yield strength of the transversal reinforcement

ft Tensile strength of concrete

fu Ultimate strength of the reinforcement

h Height of one or several measuring instruments

hstorey Storey height

hEW Height of load application in the EW direction

hNS Height of load application in the NS direction

kcr Factor accounting for the partially cracked wall height at yield

kE Ratio between the modulus of elasticity of steel and concrete

l f l Length of the flanges of the U-shaped wall

ldiag Length of the diagonal of the U-shaped section

lwall Length of the wall perpendicular to the neutral axis

lweb Length of the web of the U-shaped wall

ltens, f l Tensioned length of the web at yield when loading in an arbitrary direction

ltens,web Tensioned length of the flange at yield when loading in an arbitrary direction

ly
tens, f l

Tensioned length of the flange at yield when loading in the direction of the flanges

(bending about the web)

ly
tens,web

Tensioned length of the web at yield when loading in the direction of the web

(bending about the flanges)

n Axial load ratio

twall Thickness of the flanges and of the web of the U-shaped wall
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Capital Greek Letters

ΔEW Displacement in EW direction

ΔNS Displacement in NS direction

ΔSRSS SRSS displacement at h=2.95 m of the test units

Δ f Flexural displacement

Δs Shear displacement

Δp, f Plastic flexural displacement

Δy Nominal yield displacement

Δy,1L Yield displacement estimate assuming a linear curvature profile

Δy,2L Yield displacement estimate assuming a bi-linear curvature profile

Δ′
y First yield displacement

Δ′
y, f Flexural displacement at first yield

Δ′
y,s Shear displacement at first yield

Δ′
y,sp Flexural displacement at first yield due to strain penetration into the foundation

φ Curvature of a wall section

φb Curvature at the base of the wall determined from the curvatures above

φcr Curvature at cracking of the concrete section

φy Nominal yield curvature of a wall section

φ ′
y First yield curvature of a wall section

φp Plastic curvature of a wall section

φu Ultimate curvature of a wall section

φy,web
Nominal yield curvature for loading in the web direction (bending about the

flanges)

φy, f l
Nominal yield curvature for loading in the flange direction (bending about the

web)

φ ′
y,web First yield curvature for loading in the web direction (bending about the flanges)

φ ′
y, f l First yield curvature for loading in the flange direction (bending about the web)

Small Greek Letters

α Bending angle measured between the neutral axis of the current loading position

and neutral axis at position C (see Figure 6.12)

α Ratio of cracked to uncracked flexural stiffness α = EIcr/EIg

δ Drift at the effective height

δy Yield drift at the effective

εc Maximum compressive strain of a section at the location of the reinforcement bar
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εcu Ultimate compressive strain capacity of concrete

εcy Concrete compressive strain at first yield

εs Maximum tensile strain of a section at the location of the reinforcement bar

εsh Strain at the end of the strain hardening plateau

εsy Yield strain of the longitudinal reinforcement

εsu Tensile strain capacity of a reinforcement bar

θ Rotation at the wall base

θ Crack angle with the vertical axis of the wall

θ ′
sp Rotation at the wall base due to strain penetration into the foundation

θpz Rotation from curvature integration over the height of the plastic zone

μΔ Displacement ductility

ρh Transversal reinforcement content

ρl Longitudinal reinforcement content

ρtot Total longitudinal reinforcement content

τ Average shear stress on the section

τweb Average shear stress on the web

τ f l Average shear stress on the flanges

ω Dynamic amplification factor

Abbreviations

Dw f 2.5 Distributed reinforcement, web to flange length ratio lweb/l f l = 2.5

LED Light Emitting Diode

LVDT Linear Variable Differential Transducer

NA Neutral axis

PH Plastic Hinge

RC Reinforced Concrete

SRSS Square Root of Sum of Squares

TUC Test Unit C

TUD Test Unit D

VT4 VecTor4 software

Remark: Notations that were introduced in the only in the literature review sections are defined

when introduced and are not included in this notation list.
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