Seismic behaviour and analysis of U-shaped RC walls

THESE N° 7133 (2016)

PRESENTEE LE 26 AOUT 2016
A LA FACULTE DE L'ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT
LABORATOIRE DU GENIE PARASISMIQUE ET DYNAMIQUE DES STRUCTURES
PROGRAMME DOCTORAL EN GENIE CIVIL ET ENVIRONNEMENT

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Raluca-Tereza CONSTANTIN

acceptée sur proposition du jury:

Prof. A. Nussbaumer, président du jury
Prof. K. Beyer, directrice de thése
Prof. B. Stojadinovic, rapporteur
Prof. S. Sritharan, rapporteur
Prof. A. Muttoni, rapporteur

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2016






Preface

Research on the seismic assessment of buildings that are braced by reinforced concrete walls
has long focused on the in-plane response of walls with rectangular cross sections. As a result,
we have today a good understanding of the force-displacement response of such walls for most
failure modes that can develop. In real buildings, however, many walls have not a rectangular
section but are composed of two or more wall sections that form L-, T-, U- or more complex
shapes. The behaviour of these walls when subjected to bidirectional loading come into the focus
of seismic engineering research on reinforced concrete walls.

Raluca Constantin’s thesis contributes to this research line by studying the behaviour of U-
shaped walls. In her work, Raluca focuses on the response of these walls under loading in
the diagonal direction. This loading direction is often disregarded but she shows that it can
lead to the smallest displacement capacity and to failure modes not observed for other loading
directions. Raluca advanced the knowledge on the seismic response of U-shaped walls through an
experimental and a numerical study. She tested two U-shaped walls that differed with regard to
the applied axial load. Raluca’s tests are intensively instrumented using conventional and optical
measurement techniques and the data is made available to the research community. In addition
to the experimental study, Raluca investigated the response of U-shaped walls through detailed
numerical shell element models. These models were used to develop new analytical formulations
that can be used in the early stages of the design process. The main contributions concern the
modification of effective stiffness estimates, yield displacement formulations that account further
for shear deformations, which are particularly important for U-shaped walls, and plastic hinge
lengths for different loading directions.

Lausanne, July 2016 Katrin Beyer
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Abstract

In many countries of moderate to high seismicity, reinforced concrete (RC) core walls are used
as lateral bracing systems in mid- to high-rise buildings where they typically accommodate lift
shafts or stair cases. Unlike planar walls which provide horizontal strength and stiffness mainly
in the in-plane direction of the wall, core walls provide bidirectional strength and stiffness. This
feature complicates their inelastic behaviour which is not yet fully understood as experimental
and numerical studies are still rather scarce when compared to planar walls. Therefore, current
design codes use findings from planar walls while specific guidelines for the design and analysis
of core walls are still lacking. In addition, simple analysis tools widely used by design engineers
such as the plastic hinge model, have been derived and calibrated for columns, beams or planar
walls and their suitability for core walls has been only marginally verified. For these reasons the
current study focuses on: (1) improving the knowledge on the inelastic behaviour of U-shaped
walls under bidirectional loading and (2) on extending easily applicable engineering type models,
such as the plastic hinge model, to the analysis of U-shaped walls. The scope of the thesis
is limited to U-shaped walls, which is the simplest type of core wall that still retains the key
characteristics of such walls.

The first part of the thesis focuses on understanding the behaviour of U-shaped walls under
loading along the geometric diagonal of the section. This loading direction is not typically
considered in the design process but it was found to determine the shear design of the flanges
while the displacement capacity for this direction might be the lowest of all the loading directions.
In order to address the behaviour under diagonal loading, two large-scale quasi-static cyclic tests
on U-shaped walls were carried out. Failure mechanisms specific to diagonal loading and possible
critical design aspects related to these failure modes were identified from the experimental results.
In addition, the influence of the longitudinal reinforcement distribution on the wall behaviour
was investigated.

The second part of the thesis focuses on adapting equations used in plastic hinge model for the
analysis of U-shaped walls. Plane section analyses and a shell element model validated against the
experimental data were used to perform parametric studies on U-shaped walls. From the results
of the parametric studies a new equation for the yield curvature for any direction of horizontal
loading was proposed as well as a modified yield displacement equation that accounts for the
partially cracked wall height at yield. With this equation, predictions of yield displacements
were improved especially for very slender walls. Quantities that rely on the yield displacement,
such as the effective stiffness of the wall were also better predicted when the cracked height was
accounted for in the prediction. And finally, plastic hinge length equations were also modified to
account for the variation with the different loading directions.

Key words: U-shaped walls, diagonal loading, plastic hinge model, yield displacement, plastic
hinge length






Résumé

Dans de nombreux pays avec une sismicité modérée ou forte, les murs noyau en béton armé
(BA) sont utilisés en tant que systemes de contreventement latéral dans des batiments de hau-
teur moyenne ou grande ol typiquement ils entourent des cages d’ascenseur ou d’escaliers.
Contrairement aux murs rectangulaires qui fournissent une résistance horizontale et une rigidité
principalement dans le plan du mur, les murs noyau fournissent une résistance et une rigidité
bidirectionnelle. Cette propriété complique leur comportement inélastique qui n’est aujourd’hui
pas entierement compris car les études expérimentales et numériques sont encore plutot rares
comparées aux murs rectangulaires. Par conséquent, les codes de dimensionnement actuels
utilisent les résultats des murs rectangulaires alors que des lignes directrices spécifiques pour
le dimensionnement et I’analyse des murs noyau sont encore manquantes. De plus, des outils
d’analyse simples largement utilisés par les ingénieurs de conception tels que le modele de la
rotule plastique, ont été dérivés et calibrés pour des colonnes, poutres ou murs rectangulaires et
leur pertinence pour des murs noyau n’a été que partiellement vérifiée. Pour ces raisons 1’étude
actuel se concentre sur : (1) améliorer la connaissance sur le comportement inélastique des murs
noyau soumis a une charge bidirectionnelle et (2) sur étendre des modeles type d’ingénierie
facilement applicables, tel que le modele de la rotule plastique, pour I’analyse des murs noyau.
Le cadre de cette these se limite aux murs avec une section en forme de U, qui est le plus simple
type de mur noyau mais qui conserve encore les principales caractéristiques d’un tel mur.

La premiere partie de la theése porte sur la compréhension du comportement des murs avec
une section en forme de U, soumis a une charge le long de la diagonale géométrique de la
section. Cette direction de chargement n’est généralement pas considérée dans le processus de
dimensionnement, mais elle est déterminante pour le dimensionnement en cisaillement des ailes
du mur alors que la capacité de déplacement pour cette direction pourrait étre la plus faible de
toutes les directions de chargement. Afin d’investiguer le comportement sous un chargement
selon la direction diagonale, deux tests cycliques et quasi-statiques a large ont été effectués
sur des murs avec une section en forme de U. Les mécanismes de ruptures spécifiques a un
chargement selon la direction diagonale ainsi que des aspects de dimensionnement critiques liés
a ces modes de défaillance ont été identifiée suit aux tests expérimentaux. En outre, I’influence
de la distribution de I’armature longitudinale dans la section a été investiguée.

La deuxieme partie de la these porte sur I’adaptation des équations utilisées dans le modele de
rotule plastique a I’analyse des murs avec une section en forme de U. Deux modeles numériques,
un modele basé sur I’hypothese des sections planes et un modele avec des éléments de coque, ont
été validés avec les données expérimentales et ensuite ont été utilisés pour réaliser des études
paramétriques sur des murs avec une section en forme de U.
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Avec les résultats des études paramétriques, une nouvelle équation pour la courbure d’écoulement
pour toute direction d’un chargement horizontal a été proposée ainsi qu’une nouvelle équation
pour le déplacement d’écoulement qui considere que le est mur partiellement fissuré sur 1’hauteur
a I’écoulement. Les quantités qui depend du déplacement d’écoulement, tels que la rigidité
effective du mur, ont également été mieux prédites lorsque 1’hauteur fissuré a été prise en compte
dans la prédiction. Et finalement, les équations de la longueur de la rotule plastique ont été
modifiées pour tenir compte de la variation avec la direction de chargement.

Mots clefs : Murs avec une section en forme de U, chargement dans la direction diagonale,
modele de la rotule plastique, déplacement d’écoulemnt
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Riassunto

In molti paesi a moderata ed alta sismicita, nuclei portanti in cemento armato, contenenti vani
scala o ascensori, vengono spesso usati come elementi sismo-resistenti per edifici medio-alti.
Diversamente dai setti rettangolari, che garantiscono rigidezza e resistenza orizzontale nella sola
direzione del loro piano, le pareti non rettangolari offrono rigidezza e resistenza bidirezionali.
Tale caratteristica rende pitt complesso lo studio del loro comportamento inelastico, che non ¢
attualmente compreso nella sua completezza, essendo poche le ricerche sperimentali e numeriche
condotte finora. Per tale motivo le norme attuali sono basate su risultati ricavati per muri
rettangolari, mentre linee guida specifiche per muri non rettangolari sono tuttora mancanti.
Inoltre, semplici modelli largamente utilizzati in ambito professionale, come il modello di
cerniera plastica, sono stati ricavati e calibrati per colonne, travi o muri rettangolari e la loro
applicabilita a muri non rettangolari ¢ stata solo in parte verificata. Per tali ragioni questo studio si
concentra su: (1) migliorare la conoscenza del comportamento inelastico di muri ad U sollecitati
da azioni bidirezionali ed (2) estendere i modelli ingegneristici per muri rettangolari, come
ad esempio quello di cerniera plastica, all’analisi di muri ad U. Tale studio ¢ limitato a muri
ad U, trattandosi del modello piu semplice di muro non rettangolare che tuttavia mantiene le
caratteristiche chiave di tali elementi strutturali.

La prima parte della tesi si concentra sullo studio del comportamento di muri ad U sollecitati da
forze dirette secondo la diagonale geometrica della sezione. E’ stato trovato che tale direzione
di carico, non considerata in genere nella progettazione, puo determinare la resistenza a taglio
delle ali. In aggiunta a ci0, anche la capacita di spostamento in tale direzione puo’ risultare
determinante. Per studiare il comportamento sotto azioni diagonali, sono stati condotti due test
quasi-statici a grande scala su muri ad U. Sono stati identificati i meccanismi di rottura relativi
alla direzione diagonale e possibili aspetti critici per la progettazione legati a tale meccanismo
di rottura. Inoltre, ¢ stata studiata I’influenza della distribuzione dell’armatura longitudinale sul
comportamento sismico.

La seconda parte della tesi si concentra su come adattare il modello di cerniera plastica all’analisi
di muri ad U. Modelli numerici che utilizzano I’ipotesi di sezione piana ed elementi finiti di
tipo shell, validati rispetto ai risultati sperimentali, sono utilizzati al fine di condurre un’analisi
parametrica su muri ad U. Dai risultati di tale studio ¢ stata ricavata una nuova equazione per
calcolare la curvatura di snervamento relativa ad una generica direzione di carico. Viene inoltre
proposta un’equazione per valutare lo spostamento a snervamento che considera la parziale
fessurazione della parete lungo la sua altezzaCon tale equazione viene migliorata la stima dello
spostamento equivalente, in particolare per pareti molto snelle. Considerando la zona fessurata del
muro si possono quindi meglio valutare le grandezze correlate allo spostamento a snervamento,
come la rigidezza effettiva della parete. Infine, sono state modificate le equazioni per valutare
I’estensione della cerniera plastica in modo tale da considerare le diverse direzioni di carico.

Parole chiave: muri ad U, carico diagonale, modello di cerniera plastica, spostamento a snerva-
mento, estensione della cerniera plastica.
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1. Introduction

1.1 Background and problem statement

In seismic prone areas, many medium to high-rise buildings use reinforced concrete (RC) core
walls as the main lateral load resisting element. Core walls are structural elements composed of
several rectangular wall segments, termed webs or flanges, that are connected at the vertical edges
and are closing the wall section on three sides. The fourth side of the section can be either open
or partially closed by deep beams. Due to their cross-section shape, core walls are commonly
used to accommodate lift shafts or staircases.

Despite the popularity of the core walls in practice, their inelastic behaviour under seismic
loading is not yet well understood as experimental tests on core walls are scarce when compared
to the number of tests carried out on planar walls. Extensive experimental research on planar
RC walls has led to the identification of the parameters controlling their seismic behaviour and
provided data for derivation and calibration of analytical tools and design guidelines. For core
walls, lack of experimental data has delayed the development of design guidelines. Design codes
are therefore mostly based on findings from planar wall tests, leaving to the design engineer the
difficult task of extrapolating these guidelines to core walls.

The following reasons explain the more complex seismic behaviour of core walls when compared
to that of planar walls:

e Planar walls provide horizontal strength and stiffness mainly in the in-plane direction of
the wall while core walls provide strength and stiffness in all horizontal directions. For
planar walls, only the in-plane direction of loading is considered in design, but for core
walls the designer needs to consider in addition to the principal axes of the cross-section
also other horizontal directions that could be critical for design.

e The shear lag effect limits the effectiveness of web and flanges when in tension, and hence
the wall strength is reduced when compared to the wall strength derived from a plane
section analysis [Kwa96]. The shear lag effects in core walls are further exacerbated by
the rather large shear deformations experimentally observed even for slender core walls.
Experimental tests on core walls have shown that the shear deformations are particularly
large in the wall parts that are mostly in tension when carrying significant shear loads
[BDP11].
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e Due to their cross-sectional geometry, core walls provide also torsional strength and
stiffness and hence the interaction of torsion, bending and shear should be considered.
While the wall is linear elastic, the shear centre position is fixed. In the inelastic range,
however, the position of the shear centre migrates towards the parts of the section that are
in compression, complicating thus further the evaluation of the torsional response of the
core wall [IR05].

One of the simplest types of core walls possessing all the characteristics enumerated above are
U-shaped walls and experimental studies on core walls that have been carried out in the past
focused therefore on this type of core wall. Previous research on U-shaped walls has shown the
complex behaviour that such walls exhibit under bidirectional loading. The diagonal loading
direction, which is not typically considered in design, has been identified as a particular critical
direction. This is for the following reasons: the displacement capacity is often smaller than for
principal directions, the distribution of the shear forces between the different planar wall parts is
complex and the load transfer mechanism from the wall to the foundation is unclear [BDPO8b].
These unknowns raise also questions about the failure mechanisms that govern the wall behaviour
under diagonal loading. Shear failures in the web and compression failures in the flange ends are
among the most common ones observed in previous studies. This study will show that also the
out-of-plane bending of the flanges and the resulting strain gradient across the flange width can
influence the failure mode.

Despite previous experimental research on core walls focusing on U-shaped walls, the available
data is still rather scarce and it has not allowed the in-depth validation of analytical tools for
such walls. Engineering type models, such as the plastic hinge model, have been developed and
calibrated against experimental data on columns, beams or planar walls. Their applicability to
U-shaped walls has been only marginally verified. It remains therefore unclear if and how these
models can be applied to U-shaped walls for the different loading directions.

1.2 Objectives and scope of the study

The objective of this study is to make a contribution to the performance-based seismic design of
U-shaped RC core walls. The study aims at: (1) providing high quality experimental data for the
validation of numerical and analytical models, (2) improving the knowledge on the behaviour of
U-shaped walls under bidirectional loading with focus on the diagonal direction and (3) extending
easily applicable engineering type models, such as the plastic hinge model, to the analysis of
U-shaped walls.

In order to reach the first objective a new experimental campaign was performed in which two
U-shaped walls were tested under horizontal diagonal loading. The second objective was achieved
by interpreting the new experimental data and by identifying deformation behaviour and failure
mechanisms specific to diagonal loading. The third objective focuses on the extension of the
plastic hinge model to core walls by verifying existing estimates against experimental data and
results from advanced non-linear simulations and by proposing new estimates where necessary.
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The scope of this study is limited to the flexural and the shear behaviour of U-shaped walls
while the torsional behaviour was not specifically addressed. For all U-shaped walls in this study,
investigated experimentally or numerically, loading was applied at the height of the shear span
under the form of imposed displacements while the rotation of the wall in the cross-section plane
was always restrained at this height. The U-shaped walls discussed within this study are isolated
cantilever walls, while entire buildings including U-shaped walls were not considered.

1.3 Organisation of the thesis

This section provides a brief description of the topics covered in each chapter of the thesis. The
thesis comprises seven chapters.

Chapter 2 presents a review of previous tests on core walls and other non-planar walls. Previous
tests on U-shaped walls are discussed and key points of their non-linear behaviour are identified
as well as needs of further research identified. Different loading protocols previously applied in
experimental tests of non-planar walls are reviewed. In addition, the influence of the longitudinal
reinforcement distribution within the section on the wall behaviour is discussed.

In the second part of this Chapter 2 a review of modelling approaches for U-shaped walls is
presented. The reviewed modelling approaches are divided into three categories: simplified
models based on empirical and mechanical principles, macro models and detailed finite element
models. The models are discussed with respect to their capability to capture the inelastic behaviour
of U-shaped walls under bi-directional loading.

Chapter 3 describes the experimental tests of two U-shaped walls tested under quasi-static cyclic
loading. The test set-up, loading history and the main experimental results are included in this
chapter. The walls were tested mainly under loading in the direction of the diagonal of the
section. This allowed the identification of failure mechanisms and design issues specific to
diagonal loading of U-shaped walls. In addition, the influence of the longitudinal reinforcement
distribution on the behaviour of the wall was investigated through these tests.

In Chapter 4, the experimental results from Chapter 3 together with results from a previous
similar test campaign are investigated further. Quantities necessary in the application of the
plastic hinge model are derived from the experimental results and compared to estimates. These
quantities are: yield curvature, yield displacement, plastic hinge length, shear deformations
and ultimate strain limits. In addition, the effective stiffness ratio is investigated. From the
comparison between experimentally derived values and estimates, quantities that need further
investigation or cases where estimates are missing are identified. Particular emphasis is placed
on the yield displacement, for which new estimates are proposed based on the experimentally
observed curvature profiles at yield.
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In order to validate the new equations for the plastic hinge model, the available experimental
data on U-shaped walls is not sufficient. Therefore, a detailed shell element model was validated
against the experimental data in Chapter 5 and then it was further used for parametric studies
in Chapter 6. This latter chapter discusses in detail the setting-up of the model for U-shaped
walls and the modelling choices made. In addition, results from plane section analyses are
compared in this chapter to the experimental data in terms of wall strength and yield curvature,
and discrepancies are discussed.

In Chapter 6, a parametric study is performed for U-shaped walls with different geometries using
the validated shell element model and plane section analyses. The design of the parametric study
as well as the design of the U-shaped walls used in the study, are discussed in this chapter. From
the results of the parametric study, new estimates for yield curvatures for any loading direction,
new estimates for the effective stiffness of walls and new equations for the plastic hinge length
are proposed.

The final Chapter 7 presents a summary of the main contributions of the thesis and the conclusions
of the study. Based on the findings of this report, several directions for further research are
presented.



2. Review on the seismic behaviour of
U-shaped walls and modelling
approaches

This chapter is comprised of two main parts. The first part reviews experimental campaigns
of non-planar reinforced concrete (RC) walls, i.e., walls designed to carry shear forces in both
horizontal directions such as walls with L-, T-, I-, U-, C-shaped cross sections. Key findings
from these campaigns and state-of-the-art knowledge on the seismic behaviour of RC core walls
are summarised in this part (Section 2.1). The second part 2.2 presents a review of numerical
modelling approaches for U-shaped walls and identifies advantages and drawbacks of each
approach.

2.1 Seismic behaviour of non-planar walls

2.1.1 Experimental tests on non-planar walls

This section reviews experimental tests on U-shaped or C-shaped walls that are documented in
the literature. In addition, experimental campaigns on isolated non-planar walls tested under
quasi-static cyclic bidirectional loading are also included to investigate effects of loading history
on the wall behaviour. The tests included in this selection are limited to non-planar walls with
open cross-section, except one campaign on box-shaped walls which was included as it is the
most comprehensive experimental investigation of the loading history effects to date.

In Table 2.1, the test series fulfilling the outlined criteria are grouped on thematic test campaigns
and then in chronological order. The findings from these tests are discussed in more detail in
the following sections focusing on test observations for U-shaped walls, bidirectional loading
histories and the influence of the distribution of the longitudinal reinforcement on the wall
behaviour.
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Table 2.1: Selected experimental tests on non-planar RC walls
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2.1.2 Observations from experimental tests on U-shaped walls

e University of Illinois (Uol) tests

Two C-shaped wall were tested at the University of Illinois under quasi-static reversed
cyclic loading [SW93] (Figure 2.1). unidirectional loading was applied in the direction of
the symmetry axis of the C-shaped section, i.e, parallel to the two flanges (Figure 2.2). The
objectives of the study were: to investigate the cyclic response of non-planar walls, to study
the influence of the reinforcement amount in the unconfined concrete parts of the wall
on the wall behaviour, to determine the effective stiffness of non-planar walls at different
displacement levels and to provide data to verify numerical models. The main varying
parameter between the two tested walls was the amount of longitudinal and transversal
reinforcement in the unconfined parts of the web and the flanges. The first test unit (CLS)
had a 0.0025 longitudinal reinforcement content while the second one (CMS) had the
double of CLS. Longitudinal and transversal reinforcement contents were equal and the
reinforcement was placed only in one layer over the wall thickness, except for the boundary
elements where two layers were used. Failure for both walls was reached due to confined
concrete crushing and bar buckling in the boundary elements of the flange ends at ~ 1.8%
drift. Upon further loading, crushing extended in nearly the entire length of the flanges.
Based on numerical results of models validated with the experimental data, the study
concluded that all the reinforcement in the web was effective in tension. Additionally, the
reinforcement amount in the unconfined wall parts was found to not have a significant
influence on the magnitude of shear displacements. The influence of the reinforcement in
the unconfined parts of the wall is discussed in more detail in Section 2.1.4.

e Ispra and Saclay tests

The Ispra and Saclay tests were part of a joint test campaign on U-shaped walls [CCM99],
which investigated the detailing rules of EC8 [CENO1] for RC walls. unidirectional shake
table tests were performed on three U-shaped walls in Saclay, while another three walls
were tested under quasi-static cyclic loading in Ispra. In the Saclay tests, the wall behaviour
was dominated by the rupture of the longitudinal reinforcement bars which fractured
prematurely due to their very small ultimate strain capacity, i.e., 2.5 —2.6%. Therefore
limited data was gathered on the inelastic behaviour of the U-shaped walls.

The Ispra tests, investigated in addition to ECS8 detailing rules, also the effect of the loading
history on the wall behaviour. All three walls were identical (Figure 2.1). Only the loading
pattern was different. Wall 1 was tested under unidirectional loading, in the direction
parallel to the web of the wall, Wall 2 was tested in the direction of the symmetry axis
(parallel to flanges) and Wall 3 underwent loading following a clover leaf pattern (Figure
2.2). Wall 1 failed due to bar buckling followed by concrete crushing in the boundary
element at the end of one of the flanges, where one stirrup was missing. Wall 2 failed due
to fracture of previously buckled bars in one of the flanges. Wall 3 reached failure when
loading with one flange end in compression, due to fracture of previously buckled bars,
followed by shear compression failure of the flange in compression.
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The main findings of the tests were summarised by [RFO1]. The displacement capacity
in the principal directions was reduced for the bidirectional test as compared to the uni-
directional tests, but if the capacity in the diagonal direction is considered then all units
reached a similar lateral drift of ~ 8 = 3%. When the displacement loading branches
were orthogonal to the previous loading branch in the bidirectional test, they introduced
an important strength reduction in the orthogonal direction, e.g., when the wall was first
pushed to position D, then to F (Figure 2.2), the force in the web direction was reduced as
compared to the web force from the unidirectional tests. The bidirectional test was also
characterised by a more severe concrete degradation.

For the bidirectional test, when loading with one flange end in compression, almost
the entire shear resistance in the direction of the flanges was provided by the flange in
compression. The flange which was in tension at this loading position carried only a small
amount of the total shear force in the direction of the flanges. The implication in design of
this observation is to design each of the two flanges to carry the entire shear force in the
direction of the flanges [IROS5].

e ETHZ tests

Two half scale U-shaped walls were tested under quasi-static complex bidirectional cyclic
loading at ETHZ (Figure 2.1 and [BDPO8b]). The objectives of the test campaign were to:
identify most likely failure mechanisms for U-shaped walls, investigate strength, stiffness
and displacement capacity for different loading directions, determine the magnitude of the
different displacement components and investigate the torsional stiffness.

The main parameter varied between the tests was the wall thickness. The complex bidi-
rectional loading applied in both tests was based on a load protocol previously applied in
the testing of box-shaped piers by [HDS06]. For the U-shaped walls, at each displacement
ductility reverse loading cycles were applied in the following order: one cycle parallel to
the web, one cycle parallel to flanges, one cycle in the direction of the geometric diagonal
of the section and a “sweep” cycle (Figure 2.2).

The wall with the larger thickness, TUA, failed in a ductile manner due to fracturing of
previously buckled reinforcement bars in the boundary element at the flange ends when
loading with corner web-flange in compression. TUB failed when loading parallel to the
web due to crushing of the compression diagonals in the unconfined concrete of the web,
despite the wall having been designed to prevent web crushing according to EC8 [CENO3].
The failure of TUB was attributed to the excessive spalling of the unconfined part of the
web under the bidirectional loading history which significantly reduced the thickness of
the web [BDPO8b]. When loading parallel to the web, the web shear force was larger than
the web shear force under any other loading position.

ETHZ tests confirmed findings of the bidirectional Ispra test concerning the distribution of
the shear forces between the two flanges when loading with one flange end in compression,
i.e., flange in compression carries almost the entire shear force in the direction of the
flanges. In addition, [BDPO8b] found that shear displacements were particularly large in
the wall parts which were mostly in tension and carried significant shear force (i.e., web
at position A), and the magnitude of the shear displacements depended on the loading
direction.
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When comparing the wall strength with estimates from a plastic hinge model and a cyclic
wide-column model (WCM), [BDPO8b] found that for the diagonal direction (i.e., flange
end in compression or corner web-flange in compression), the maximum wall strength
was never reached. This was attributed to the significant stiffness degradation induced
by the first cycles in the principal directions which always preceded the diagonal cycles.
Displacement estimates for the two tested walls, using a plastic hinge analysis, indicated
that the displacement capacity in the diagonal direction was smaller than for any of the
principal directions [BDPO8b].

o University of Washington (UoW) tests

Three identical one-third scale C-shaped walls were recently tested under quasi-static
cyclic loading at the University of Washington [LL"13] (Figure 2.1). The test campaign
investigated the effects of the loading history and of the coupling beams on the wall
behaviour. Two walls (Wall 6 and Wall 7) were tested under constant axial load ratio
and shear span, while for the third wall (Wall 8), both values were varied to simulate the
influence of the coupling beams. Wall 6 was tested under a unidirectional loading pattern
parallel to the wall web, while Wall 7 and 8 were tested under bidirectional loading. Wall
8 and initial cycles of Wall 7 were displaced according to a criss cross pattern along the
two principal axes of the C-shaped section (Figure 2.2). When loading was applied in
the direction of one principal axis, the displacement in the orthogonal direction was zero.
In the inelastic loading cycles of Wall 7, the wall was displaced in the direction of the
web while the displacement in the orthogonal direction (direction of the flanges) was kept
constant to values of 1.1 — 2% drift.

Failure of Wall 6 occurred due to concrete crushing and sliding at the wall base in the
construction joint while Wall 7 failed due to buckling of the longitudinal reinforcement
and subsequent rupture when loading with the corner web-flange in compression. Wall 8
failed due to loss of confinement and confined concrete crushing in the boundary elements,
when loading with increased axial load ratio.

Based on the experimental observations, [LL"13] concluded that the displacement capacity
in the direction of the web is not affected by the bidirectional cross pattern when displace-
ment in the orthogonal direction is zero, but is reduced when this displacement is non-zero.
This is consistent with findings from [RFO1]. However if the displacement in the diago-
nal direction is considered, then the displacement capacity is larger for the bidirectional
test than for the unidirectional test (diagonal drift capacity bidirectional dsgss = 2.5%
compared to unidirectional drift capacity along web 6 = 2.2%). Bidirectional loading
with non-zero orthogonal displacement was also found to reduce the wall stiffness in the
direction of the web, which is again consistent with findings from [RFO1].

Conclusions

The findings of previous experimental campaigns can be summarised in terms of the failure
modes of U-shaped walls and their corresponding loading directions:
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e Failure of the compression struts in the web determined by loading parallel to the web
(position A - Figure 2.2), e.g., TUB (ETHZ tests). Since the shear force taken by the web
is the largest of all the considered loading directions, the reinforcement in the web should
be determined from this loading case.

e Shear compression failure in the flange determined by loading in the diagonal direction
with the flange end in compression (position E - Figure 2.2), e.g., Wall 3 (Ispra tests). The
compressed flange carries the majority of the shear force in the direction of the flanges at
this loading position.

e Damage in the boundary elements of the flange ends (confined concrete crushing, bar
buckling, bar fracture after buckling) determined by loading in the diagonal direction with
the flange end in compression (position E - Figure 2.2) or with the flange end in tension
(position F), e.g., Wall 7 (UoW tests) and TUA (ETHZ tests). Due to the longer wall
length in the diagonal direction (i.e., wall diagonal length), for the same base curvature the
diagonal loading imposes larger strain demands on the boundary elements than loading in
the principal directions.

e Damage in the boundary elements of at the corner web-flange determined by loading in the
diagonal direction at position E or F, e.g., Wall 3 (Ispra tests).

Based on the above conclusions, the diagonal loading direction warrants hence further attention
as it is determinant for many of the failure modes for U-shaped walls. In addition, several other
reasons outline the need to investigate the diagonal direction.

e The distribution of shear forces between the two flanges is complex under diagonal loading
[RFO1], [BDPOSDb].

e The transfer of the shear forces from wall to foundation is unclear since most of the wall
section is expected to be in tension when loading to diagonal positions. Hence locations
where the shear forces can be transferred to the foundation, i.e., compression zones, are
limited [BDPO8b].

e It is unclear whether the wall displacement capacity is smaller for the diagonal direction
than for the principal directions. While numerical studies indicate this to be the case
[BDPO8b], the experimental results are contradictory as the drift capacity in the diagonal
direction was found to be: smaller than for the principal loading directions (e.g., TUA from
ETHZ tests), the same as for the principal directions (e.g., Wall 3 from Ispra tests) or larger
than for the principal direction (e.g., Wall 7 from UoW tests).

2.1.3 Bidirectional loading history

This section presents a review of bidirectional loading patterns which have been previously tested
on non-planar walls. The different loading patterns are discussed in terms of their suitability to
investigate the U-shaped wall behaviour under diagonal loading.

11
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e Clover leaf pattern

One of the U-shaped wall specimens from the Ispra experimental campaign was tested
according to a square clover leaf pattern as shown in Figure 2.2 [PPT00b]. To reach a
diagonal position with this loading pattern, the load path is comprised of two consecutive
displacement branches: one parallel to the web and one parallel to the flanges, i.e, two
branches orthogonal to each other. As already mentioned in Section 2.1.2 test results
indicated that when displacement loading branches were orthogonal to the previous loading
branch, they introduced important strength reduction in the orthogonal direction [RFO1].
Therefore it is likely that such a loading pattern would reduce the wall strength and
stiffness for the diagonal loading direction and therefore the full wall strength in the
diagonal direction might not be reached.

Bidirectional pattern by [HDS06]

[HDSO06] developed a bidirectional diagonal and ”sweep” pattern for cyclic tests of box
section piers. The same pattern was used for the two U-shaped walls from the ETHZ tests.
In addition, the diagonal and the sweep cycles were preceded by one cycle parallel to the
web and one parallel to the flanges (Figure 2.2). A shortcoming of this loading pattern is
that it can provide displacement capacity only for one loading direction, that of failure. In
addition, as previously mentioned, the loading cycles in the principal directions preceding
the diagonal ones at the same displacement ductility level, softened the wall considerably
so that the full wall strength in the diagonal direction was not reached (see Section 2.1.2
and [BDPOS8D]). In order to eliminate this effect and reach the full wall strength for the
diagonal direction, the diagonal cycles should be the ones cycled first at a new drift level.

Criss cross pattern with non-zero orthogonal displacement

Wall 7 from University of Washington tests [LL"13] was loaded in the inelastic cycles
following a criss cross pattern with non-zero orthogonal displacement, i.e., loading was
applied in the direction of the web while the displacement in the direction of the flanges
was non-zero and was kept constant (Figure 2.2). This loading pattern can be considered
as variation of the clover leaf pattern and hence all conclusions mentioned from the clover
leaf pattern apply.

Hourglass pattern

A complex bidirectional loading history, including an hourglass pattern, was applied in
the quasi-static cyclic testing of two T-shaped walls at the University of Minnesota(UoM)
[Bru09]. One of the main objectives of the test campaign was to investigate the behaviour
of non-planar walls under bidirectional loading. The applied loading pattern in the inelastic
range was comprised of the following cycles (see Figure 2.2):

— in the principal directions of the T-shaped section, i.e, parallel to the web and parallel
to the flange (for T-shaped sections, the web is the wall part with the largest plane
dimension in the direction of the symmetry axis)

— at 45° from the principal axes starting at zero deformation

— at ~ 20° or 70° from the principal axes which resulted from the 100% + 30% combi-
nation of displacements on the principal axes according to IBC 2003 [ICCO03]

— following an hourglass pattern
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[Bru09] compared the wall strength for the different loading directions with results from a
monotonic flexural plane section model and found that the plane section model overesti-
mated the strength significantly for the flange direction and for the skew loading directions.
This was attributed to the sequence of loading cycles (see Figure 2.2). More specifically
inelastic web cycles at a maximum 2% drift softened the wall considerably so that the skew
cycles and the flange cycles that followed did not increase the longitudinal strain demands
beyond those previously applied by the web cycles [Bru09]. This was despite imposing in
the flange direction maximum drifts twice as large as those previously imposed for the web
direction. Similarly to the bidirectional loading pattern applied in the ETHZ tests (Figure
2.2), the complex loading pattern applied in the UoM tests significantly softened the wall,
and therefore the full wall strength was reached only for the first direction first cycled at
significant inelastic drift level.

Diagonal pattern

Diagonal criss cross loading pattern was one of the loading patterns used for the testing
of squat box and cylinder walls [HK*00], [OST04], [KN*07]. The test campaign was
one of most comprehensive ones to investigate the effects of the loading history on non-
planar walls, despite the very specific test units (very squat and closed section) which
were representative for walls of reactor buildings. Other loading patterns investigated
within this campaign were: a rectangular pattern, a criss cross pattern with zero orthogonal
displacement and a circular pattern (Figure 2.2). In addition, box walls were tested also
under unidirectional diagonal loading.

Force-displacement responses from the different loading patterns were then compared and
conclusions were drawn on the influence of the load path and the influence of bidirectional
loading. [KNT07] reported that the loading path does not influence the maximum attained
force and displacement capacity for the diagonal direction. In addition, the bidirectional
loading was found increase the maximum attained force as compared to the unidirectional
loading in the diagonal direction. However, despite the comprehensive investigation
(large number of test specimens and of investigated loading histories), the findings of
this campaign cannot be readily extrapolated to non-planar slender walls with open cross-
section, such as the U-shaped walls.

13



Chapter 2. Review on the seismic behaviour of U-shaped walls and modelling approaches

Uol tests ETHZ tests
TUA TUB
D D
CLS
CMS G F G, F
A B A B
q / q /
E U = H E U = H

/ /

C C
0—A—B—0 0—A—B—-0
0—-C—D—-0 0—C—D—-0
O—E—F—-0 O0—E—F—-0

0—-A—-G—->D—-C—-H—-B—-0 0—-»A—-G—D—-C—-H—-»B—-0

Ispra tests

Wall 1 Wall 2 Wall 3
G D F
0—D—F—B—A—E—-C—0
0—-D—-G—A—-B—-H—-C—-0
A B
O
E C H
UoM tests
NTWI1
NTW2
D
For drifts larger than yield:
Gl & Fl 0—-C—D—C—D—C—D—0 @ 1.5 Dy

0—C—-D—-C—-D—-C—-D—0 @ 3=1.0% (D) and +1.5% (C)
0—G2—H2—0 @ 3SRSS=1.5% (G2) and 1.5% (H2)
0—A—B—0@ 6=1.0%

F2 0—F1-El—>0@ 5SRSS=1.5%
B B 0-A-B—0@ §=1.5%
E2 0—C—D—C—D—0 @ 5=1.0% (D) and 1.5% (C)

0—-C—-D—-C—-D—-C—-D—-0 @ 6=1.5% (D) and 2.0% (C)
0—Gl—-FI—-El->C—-H1—0 @ 3SRSS=2.0% (C)
0—-A—B—A—-B—-0 @ 6=1.5%

El H1 O0—-A—B—>A—-B—>A—B—-0 @ 5=2.0%; 6=2.5%; 6=3.0%
0—A—B—0 @ 6=4.0%

C
UoW tests
Wall 4 Wall 5 Wall 6
G D F p
A 5 B A o B
All drift levels:
O—A—B—
0—C—D—0
Additional cycles for 5>1%:
C—E—H—-C
D—G—F—D
Japan tests
S, ®
1 @0 OOO®
&) CAN 20 >
©) (6] O o
¥ N\
°F e © @ 6lo) @®

Figure 2.2: Bidirectional loading histories applied to non-planar walls.

14



2.1. Seismic behaviour of non-planar walls

Conclusions on loading history

Test campaigns on the bidirectional response of non-rectangular walls have employed different
types of loading histories. These loading histories vary with respect to the number of loading
directions considered, load paths and number of cycles per displacement level. Since the focus
of the tests campaign to be performed within this study is to investigate the behaviour in the
diagonal direction of the U-shaped walls, loading will be applied only in the diagonal direction
(E-F or H-G) in one diagonal displacement branch passing through zero deformation. Reaching
the diagonal position through two consecutive displacement branches (i.e, clover leaf or hourglass
pattern) reduces the wall stiffness and strength in the diagonal direction.

Diagonal loading can be applied unidirectionally, i.e., along one geometric diagonal of the
U-shaped section or bidirectionally, i.e., along both geometric diagonals in a criss cross pattern
(Figure 2.2 Japan tests). The second option is more appealing since applying such a load history
would allow the investigation of an additional parameter through the experimental tests, namely
the distribution of the longitudinal reinforcement, which is discussed in the following section.

2.1.4 Distribution of longitudinal reinforcement

For non-planar walls the shear lag effects are important and the shear displacements are partic-
ularly large even for slender walls [Bru09], [BDPOS8a], [ZL14]. Both effects reduce the wall
stiffness and large shear displacements can result in shear failures. It is therefore desirable to
reduce these effects. One possible way of doing so is to distribute the longitudinal reinforcement
uniformly over the wall section instead of concentrating it in the boundary elements.

[Bru09] investigated experimentally the influence on the wall behaviour of the distribution
of longitudinal reinforcement within the wall section. One of the two T-shaped walls tested
(NTW1), had the flange detailed with longitudinal reinforcement concentrated in the boundary
elements and minimal reinforcement content in the rest of the flange. The second wall (NTW?2)
had the longitudinal reinforcement uniformly distributed across the flange. This resulted in
reinforcement contents in the unconfined part of the flange of 0.6% for NTW1 and 2.2% for
NTW?2. The unconfined part of the web was detailed for both test units with minimal longitudinal
reinforcement content.

The shear lag effects were found to be reduced by uniformly distributing the reinforcement in
the flange. The shear lag effects (expressed as the difference between plane section analysis
estimates of moment and measured moment for a given steel strain) when loading in the direction
of the web with the flange in tension were increased by 60% for displacement of up to 2.5 times
the yield displacement when the flange of NTW1 was in tension as compared to NTW2.

The crack spacing and width was also reduced by the uniformly distributed reinforcement. The
crack pattern observed for the flange of NTW1 and the webs of both NTW1 and NTW2 showed
closely spaced and narrow flexural cracks in the region of the confined boundary elements while
in the unconfined part, cracks were steeper, wider and their spacing was larger. For the flange of
NTW?2 detailed with uniformly distributed reinforcement, the cracks were closely spaced and
narrow over the entire flange length.
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Despite the wider and the more inclined cracks in the unconfined concrete of the flange of NTW1
than for the flange of NTW2, [Bru09] concluded that the longitudinal reinforcement distribution
had no significant influence on the magnitude of shear displacements. This is consistent with
findings by [SW93]. However if one considers the measured deformation components of the two
T-shaped walls for loading in the flange direction, for NTW1 the average shear displacements of
the first storey in the inelastic range (drift > 1.5%) account for ~ 39% of the total deformation
of this story while for NTW2, they account for only ~ 27% of the deformations of the first storey.
This difference means an increase of ~ 44% in the contribution of the shear displacements to the
total deformation of the first storey. A similar difference can be computed for the contribution
of the shear displacements in the second storey. Therefore based on these measurements, it
can be concluded that uniformly distributing the reinforcement within the wall section does
reduce the contribution of the shear deformation to the total deformation as compared to when
the reinforcement is concentrated in the boundary elements. This conclusion is consistent with
results from numerical studies on rectangular walls [SBT14].

In addition, previous research indicates that the wall failure modes can also depend on the
distribution of the longitudinal reinforcement. Shear sliding failure or out-of-plane buckling of
the boundary element seem to be favorised by the concentration of reinforcement in the boundary
elements [PP92], [RA T 14], [SBT14].

Based on these considerations it was decided to investigate the influence of the distribution of
the longitudinal reinforcement distribution experimentally, through the test campaign performed
within this study. Capturing of failure modes, especially involving out-of-plane behaviour, by
means of numerical analyses is often challenging and hence experimental studies are necessary.

2.2 Modelling of U-shaped walls

Modelling approaches of different complexities have been developed by several research groups
for the analysis of non-planar walls. According to their complexity, the modelling approaches for
RC walls could be divided into three categories:

e Simplified models which are based on mechanical principles and/or empirical data

e Macro models which use a combination of different element types (e.g., beam elements,
trusses, links, springs) to account for the different wall responses (e.g., flexural, axial,
shear)

e Detailed finite element (FE) models with shell or solid elements

In the following, selected models from each category are compared in Section 2.2.1 with regard
to their ability to capture key issues of the non-linear behaviour of U-shaped walls such as: wall
strength, displacement capacity, the prediction of the different displacement components and
capturing the distribution of shear forces between the web and two flanges.
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In addition, previous studies where these models have been applied to non-planar walls are briefly
discussed. From the models compared in Section 2.2.1, the plastic hinge model and its application
to non-planar walls is discussed at length in a separate section (Section 2.2.2). Special emphasis
is given to the plastic hinge model, which is one of the most popular simplified models used by
design engineers because it is easy to use and provides reliable estimates of the displacement
capacity.

For each of the models presented in Section 2.2.1 the displacement capacity is typically deter-
mined based on limits of reinforcement and concrete strains, which are associated with certain
types of failure of reinforcement bars and concrete. The selection of appropriate strain limits is
discussed in Section 2.2.3.

In addition, this section addresses the effective stiffness of RC walls which is typically used in
linear seismic analyses to estimate the effective period of the RC building. The effective stiffness
of RC walls, defined as the stiffness at first yield, is hence an important input parameter in seismic
assessment, and for this reason state-of-the-art estimates are discussed in Section 2.2.4.

2.2.1 Modelling approaches for U-shaped walls
2.2.1.1 Simplified models

Simplified models for RC walls are typically based on empirical data or on mechanical principles
or a combination of both, e.g., plastic hinge models [PP87], [PCKO7] or three-parameter kinematic
theory model [MHB16]. One of the most popular simplified models is the plastic hinge model.
This model is based on the idea that the force-displacement response of a RC wall that forms
a flexural mechanism can be obtained from the moment-curvature relationship of the section
subjected to the largest moment demand. While the shear force can be readily obtained by
dividing the moment through the shear span H, determining the displacement from the curvature
requires several assumptions.

The flexural displacement is computed as the sum of elastic and plastic displacements (Equation
2.1, where the elastic displacement is approximated with the yield displacement A, of the wall.
The elastic curvatures, i.e., curvatures lower than yield curvature ¢y, are assumed to follow a
linear variation along the wall shear span. The plastic curvatures are assumed to be concentrated
in a limited region called the equivalent plastic hinge length where their variation is considered
constant [PP87] (Figure 2.3). The flexural displacements are then obtained by the integration of
the assumed curvature profiles over the wall height (Equation 2.2 and Equation 2.3).

In the plastic hinge model, the displacements due to strain penetration into the foundation are
typically included in the flexural displacements. This is done for the plastic flexural displacements
through the inclusion of a strain penetration term in the plastic hinge length equation.
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The shear displacements A can be added to the flexural ones, and they are accounted for through
semi-empirical models that relate the shear and the total flexural deformations Ay. The total
displacement can then be written as in Equation 2.4.

A=A +A, 2.1
H2
Ay= 0y 2.2)
Ap s = 0pLouH (2.3)
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Figure 2.3: Linear approximations of the real curvature profile and assumptions for the plastic hinge
model. The plastic hinge length L, includes the strain penetration length L.

This section, presented briefly the concept of the plastic hinge model. A more detailed discussion
of the quantities involved in the application this model and the assumptions behind them is given
in Section 2.2.2. In the following, the application of the plastic hinge model to U-shaped walls
and findings from this model are presented.

The plastic hinge model was applied by [BDP08a] to predict the behaviour of the two U-shaped
walls tested at ETHZ (see Section 2.1.2 and [BDP08a]). Monotonic moment-curvature analyses
were performed for each loading position (see Figure 2.2) using a zero-length element with a
fibre section in the Opensees software [MMGO09]. The behaviour of the reinforcement bars was
modelled with the Giuffre-Menegotto-Pinto model [MP73]. Popovics’ equation was used to
model the concrete behaviour, while the confined concrete was modelled using with the Mander
model [Pop73]. The strain limits for bar fracture after buckling and confined concrete crushing
were defined using recommendations by [PCKO7].
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For the determination of the force-displacement curve, the yield displacement was computed
using a modified equation accounting for a partially cracked wall at yield (i.e., elastic curvature
profile was not linear over the wall height). Shear displacements were accounted for through
the ratio of shear to flexural displacements A;/A; computed from according to a semi-empirical
equation newly proposed by [BDP11].

The plane section analysis predicted well the moment capacities for the principal directions of
loading. For the diagonal direction of loading the moment capacity was significantly overesti-
mated as the full moment capacity was not reached for this direction of loading [BDP08a]. The
overestimation of the moment capacity in the diagonal direction was assigned to the limitation of
this simplified monotonic model in capturing the cyclic stiffness degradation under bidirectional
loading. One other limitation of the moment-curvature analysis is that it cannot provide the
distribution of the shear forces between the two flanges, leaving such critical decisions to the
design engineer.

Predictions of the displacement capacity were done using a design and an assessment approach.
With the design approach, predicted displacement capacities were smaller than those experimen-
tally observed while with the assessment approach predictions were typically larger. However,
the displacement capacities for the different loading directions could not be exactly verified
since the walls failed only in one direction and experimental data was therefore limited. The
inherent assumption of plane sections remaining plane which can differ significantly from the
real response of the section of non-planar walls, is another limitation of the plastic hinge model.

2.2.1.2 Macro models

Macro modelling approaches refer within this study to models that use a combination of different
types of elements such as beams, trusses, links or springs to model the different responses of
a RC wall such as flexural, axial, shear or torsion. In the following, the most common macro
models used for the modelling of RC walls are briefly discussed. These models are:

Beam-column element models

Wide-column models

Truss models (or lattice models)

Macro model with ”wall element”
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Beam-column element model

In beam-column element models the wall section is modelled by a single element. Important
aspects for the characterisation of the different models are the formulation of the beam element
used and the discretisation choices, e.g., number of elements over the wall height. The choice
of the element formulation can influence the required element discretisation and the required
number of integration points per element.

Two types of beam elements can be distinguished according to their formulation: displacement-
based and force-based elements. In displacement-based elements, the displacement field is
imposed, with forces computed based on energy balance considerations while in the force-based
elements, the force field is imposed with element displacements obtained by work equivalence
balance [CAP10]. For displacement-based elements, the curvature is often assumed to vary
linearly over the element height, while for force-based elements the moment varies linearly over
the wall height. Hence, several displacement-based elements over the height are required for
the realistic modelling of a wall, while a single force-based element can be used for this task.
However, the displacement-based elements are significantly more popular in practice. For a
detailed discussion on the advantages and drawbacks of each of the two formulations the reader
is referred to [CAP10] and [ATB16].

In order to model the wall behaviour, the beam elements allow the distribution of plasticity over
the element height and are assigned a fibre-section that implicitly captures the axial-flexural
interaction. With beam element models, the shear displacements are generally either neglected or
modelled as linear elastic displacement components. The shear behaviour is hence decoupled
from the axial and flexural one. The same applies to the torsional behaviour. Incorporating the
axial-flexure-shear-torsion interaction for beam elements is an active research topic which most
often concentrates on passing from Euler-Bernoulli beam theory to higher order beam theories
[CAP15]. The effect of strain penetration can be modelled by introducing a zero-length rotational
spring at the wall base.

To assess the displacement capacity of beam-column element models, numerical strains at
integration points are compared to ultimate limit strains. However, the post-peak strains obtained
at the integration points are sensitive to the discretisation and the type of element formulation. The
length of the element where inelastic strains concentrate has a major impact on the numerically
obtained strains. For this reason, this element is typically assigned a length related to the
expected physical spread of plasticity. The equivalent plastic hinge length is often used as first
approximation [ATB16].

The material models used with fiber sections are typically one-dimensional and thus relatively
simple and straightforward to use. However, concrete behaviour such as confinement or lateral
expansion cannot be directly modelled, and are accounted for in a simplified manner.
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While the behaviour of planar RC walls can be relatively well approximated by beam-column
models, for non-planar walls, a fibre section cannot yield the distribution of shear forces between
the different wall flanges and web. Beam-element models are often used for modelling walls
within a building due to their reduced computational effort. However when modelling U-shaped
walls that have an inherent torsional resistance, the designer needs to decide on the in-plane
position of the beam element model representing the wall. The element can be placed for example
at the centroid of the wall section or at the shear centre of the elastic section. [RF01] recommends
to place the beam element model of the wall at the centroid of the wall section only if the torsional
resistance of the wall is small.

[MK*06] and [Wau09] have modelled isolated non-planar walls subjected to bidirectional loading
using beam-column element models. [MK06] used a displacement-based beam element based
on Timoshenko beam theory to model the U-shaped wall tested under bidirectional loading in
Ispra [RFO1] (see Section 2.1.1). To model the behaviour of concrete under cyclic loading a
damage model with two damage variables, one for concrete in compression and one in tension,
was used [LBMPC92]. Shear and torsion were modelled as linear and were decoupled from
the axial and flexural behaviour. Global force-displacement results matched relatively well the
experimental behaviour, but the displacement capacity or the local results were not evaluated.

[Wau09] used a force-based beam element implemented in Opensees software [MMGO09] to model
the T-shaped walls tested under complex bidirectional loading at the University of Minnesota
[Bru09] (see Section 2.1.1). The T-shaped wall was modelled using force-based elements
with fibre sections to model the axial-flexural behaviour and a zero-length element with stress-
slip properties for the strain penetration. Additionally, a force-deformation shear model was
aggregated at the section level to account for shear displacements, i.e., equivalent to having shear
springs in parallel with the beam element. The force-deformation shear model was fitted with the
experimental data. After accounting for the shear displacements, the model captured well the
global force-displacement behaviour of the wall. However, the monotonic analyses significantly
overestimated the peak moments for low and medium ductilities. This difference was attributed
to the modelling of accumulated cyclic damage in steel and concrete [Wau(9].

Wide-column models

In the wide-column analogy, the non-planar walls are divided into the composing web and flange
sections. Each web and flange section is represented by a vertical beam element located at
the centroid of these sections. The beam elements are then connected through horizontal links,
parallel to the weak axis of the sections, which connect in common nodes at the intersection
between web and flange.

Wide-column models (WCM) with inelastic properties for U-shaped walls have been only briefly
discussed by [RF01] and more thoroughly investigated by [BDPO8d]. In the latter study, the
two U-shaped walls from the ETHZ tests [BDPO8b] have been modelled using the wide-column
models. Following the set-up of the model based on existing recommendations, [BDP08d]
performed sensitivity studies regarding the geometry of the WCM, the shear and torsional
properties of the vertical elements as well as the properties of the horizontal links and updated
the model based on their findings. The WCM described in the following and whose results are
discussed herein refers to the updated model.
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The WCM was set-up in Opensees software [MMGO09]. The three vertical elements corresponding
to the web and the two flanges were modelled using nonlinear displacement-based beam elements
with fibre-sections. A number of eight beam elements were used over the height of the wall below
the collar and six over the height of the collar. The in-plane and the out-of-plane shear stiffness
of the vertical elements as well as the torsional stiffness were decoupled from the flexural-axial
behaviour. The in-plane and the out-of-plane shear stiffness where modelled via zero-length
springs inserted at the connection between two beam elements. The in-plane shear stiffness was
assigned a constant value, which corresponded to about half the maximum ductility reached by
the test specimen. The out-of-plane shear stiffness was assigned a quarter of the in-plane stiffness
while the torsional stiffness was set to zero since the torsion was mainly restrained at the wall top
during experiments.

The horizontal links were placed every two vertical elements over the wall height. They were
assigned a constant torsional flexibility in order to allow warping of the section. In addition,
constant in-plane shear flexibility was assigned to the links to account for the deformations due
to vertical shear stresses transmitted at the interface web-flange.

The WCM captured well the moment capacity of the wall under bidirectional loading. The in-
plane shear flexibility assigned to the vertical elements was found to be of paramount importance
in the prediction of the experimentally attained moment capacity. Previous WCM where the
shear stiffness of the vertical elements was taken as equal to the shear stiffness of the elastic
section significantly overestimated this moment capacity. Since it relies on beam elements, the
displacement capacity of the wall requires assigning a suitable length to the element where
inelastic strains concentrate.

The WCM is one of the simplest models for non-planar walls, which directly provide the
distribution of the shear forces between the individual wall parts, i.e, web and each of the two
flanges. It is relatively simple to set-up, requires reduced computational effort and hence it could
be a good modelling option for non-planar walls with more complex geometries such as E-shaped
walls or modelling of non-planar walls as part of buildings. The limitations of the model draw
from the limitations of the beam elements: typically shear and torsional stiffness are assigned
constant values and are not function of the axial strains, the flexural strains and the state of
cracking as they are in reality. Thus the stiffness degradation during the loading history can be
only approximated through the assigned shear and torsional properties but it is not truly captured.

Truss models

Truss models (or lattice models) use a combination of beam and truss elements to model the
behaviour of RC structural elements. Typically, the RC wall is divided into several rectangular
panels over the height and length. Each panel is composed of vertical, horizontal and diagonal
truss and beam elements connected together at the four nodes of the panel. The vertical elements
are typically modelled using beam elements with fibre sections composed of concrete and steel
fibres representing the longitudinal reinforcement bars. Horizontal elements are modelled by
trusses which represent the concrete and steel behaviour in the horizontal direction. Truss
elements are also used for the diagonals of the panels formed by the vertical and the horizontal
elements to model the diagonal field of concrete.
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A 3D nonlinear beam-truss model was recently developed by [LP12] and [LP13] for modelling
of non-planar RC walls, including a U-shaped wall tested under bidirectional loading which
is discussed herein (TUB from ETHZ tests see Section 2.1 and [BDP0O8b]). The model used
nonlinear force-based beam elements with fibre sections in the vertical direction, nonlinear truss
elements in the in-plane horizontal directions and nonlinear truss elements in the diagonals of the
panels. In addition, linear Euler-Bernoulli beam elements were used parallel to the truss elements
in the horizontal direction, in order to model the out-of-plane bending stiffness of the segments
of the wall. A particularity of this model was that the diagonal nonlinear truss elements used a
biaxial concrete model that accounted for compression softening [VC86] and for the dependency
of the post-peak concrete strains on the mesh size.

The model of the U-shaped wall was set-up in Opensees software [MMGO09]. A number of ten
beam-truss panels over the height were used for the model, and four additional panels for the
collar where the loads were applied. The concrete model used for the vertical and the horizontal
elements was based on Fuji model [HK™97] while the reinforcing steel was modelled using the
Giuffre-Menegotto-Pinto model [MP73].

The moment capacity of the U-shaped wall in the diagonal direction was relatively well captured
within 8% average difference. The displacement capacity was also well captured but only
when mesh-size effects were accounted for. Without the mesh-size effects, failure of the wall
due to crushing in the compression diagonals of the web was predicted for a lower drift than
experimentally observed, i.e., 1.8% versus 3%.

The good predictions of the strength and displacement capacity, when mesh-size effects are
considered, indicate that the model is promising for predicting the behaviour of U-shaped walls
under bidirectional loading. The model requires moderate computational expense and relatively
moderate effort to set-up. The model accounts only elastically for the out-of-plane bending,
and it does not account for the degradation of the out-of-plane shear stiffness of the wall under
bidirectional loading. The out-of-plane shear stiftness of the U-shaped walls might play a role in
the transfer of shear forces from wall to foundation, especially for loading positions where the
compression zones are limited.

Macro model with ”’wall element”

A macro-element model [BDP08c] was set-up using the software PERFORM3D [ComO06] and
results have been compared with experimental data from tests in ETHZ. Two types of macro-
elements were used, namely a ”shear wall element” and a ’general wall element”. The ’shear wall
element” was composed of two layers: one layer accounted for axial and flexural behaviour while
the other layer accounted for shear behaviour. The ”general wall element” had three additional
layers to the other two already mentioned. Two of the additional layers accounted for diagonal
compression struts in each of the two diagonal directions and the last layer was a horizontal fibre
layer.
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In both elements, the shear layer was assigned an elastic shear stiffness corresponding to the shear
stiffness experimentally determined at medium displacement ductility. All other deformations
modes were assigned elastic properties. Results for the ”shear wall element” under cyclic loading
were generally too stiff and the distribution of the in-plane shear forces between the two flanges
was not captured very well. The “general wall element” showed good agreement with the
experimental data [BDPO8d]. The concept of “wall element” is rather similar to a truss panel as
presented in the previous section, but this study was mentioned here to complete the review of
the modelling studies on U-shaped walls.

2.2.1.3 Detailed FE models

Detailed FE element models are the most refined of all modelling approaches and also the most
demanding in terms of computational efforts. For this reason such models are often still limited
to modelling isolated walls.

Shell finite elements are considerably simpler, less computationally expensive and therefore
typically preferred to solid elements when modelling RC walls. If out-of-plane behaviour of
the wall is judged to be important, shell elements with multi-layers and with more complex
formulations can be used. Axial, flexure, shear and torsional behaviour as well as the interaction
between them are directly accounted for. Two-dimensional or three-dimensional material laws
are typically used with the shell element models.

The main drawbacks of these models are the large computational times and the need for post-
processing of results to obtain the quantities needed in design. The complexities of the material
models and of the element formulations can render the check and interpretation of the results
sometimes difficult.

[IRO5] modelled the U-shaped wall tested in Ispra under bidirectional loading using a 3D
shell element model [PP*00b]. The concrete was modelled by means of multi-layered thin
shell elements using plane-stress assumption, while the reinforcement was modelled with truss
elements. The concrete was modelled using a biaxial fixed smeared crack approach discussed
in [IR00]. The reinforcement bars were modeling using a cyclic model which accounted for
Bauschinger effect and bar buckling.

A good match was achieved between the numerical and the experimental results, except for
the last cycles characterised by strong strength degradation. Discrepancies in the last cycles
where attributed to the limitation of the shell element via the plane-stress assumption in capturing
concrete crushing and bar buckling, as well as disregarding the flexibility due to strain penetration
in the model [IRO5].
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2.2.1.4 Summary of modelling approaches

The modelling approaches outlined in the previous sections were used to model the nonlinear
behaviour of U-shaped walls. While the plastic hinge and the beam-column element models
have their merits concerning their simplicity and ease of use for design engineers, they require
further developments so they can correctly model U-shaped walls under any direction of loading.
It should be pointed out that even if more accurate results are obtained such models several
limitations cannot be overcome.

More specifically, for the design of U-shaped walls it is important to know how the forces are
distributed between by the wall parts—a result that cannot be obtained directly from plastic hinge
analysis or beam-column element models. The wide-column model with inelastic properties
constitutes an improvement in this direction as it can directly yield the quantities needed in
design. The results obtained so far with this model are promising but further validation against
experimental data and other detailed models are required.

The truss models have shown promising results in capturing the behaviour of U-shaped walls.
The displacement capacity was also well predicted as long as mesh-size effects were considered.
In general, except the plastic hinge model, determining the displacement capacity of any of the
models reliably requires either accounting for mesh-size effects or using measures that account
for the spread of inelastic strains over the element height, e.g., average rotation over the height
where plasticity spreads.

Inelastic shell element models are more and more applied in engineering practice. They require
considerable time to set-up and expertise in numerical modelling. However, such models can
offer detailed local information and as such an insight in the complex behaviour of the core
walls. Moreover, these models take directly the interaction between axial force, shear and flexure
into account. This is why Chapter 5 of this report describes the setting up and validation of a
shell element model which will be used for investigating particular aspects of the U-shaped wall
behaviour as well as for performing parametric studies in Chapter 6.

2.2.2 Estimates of quantitites for plastic hinge model

The concept of the plastic hinge model was briefly discussed in Section 2.2.1. This section
presents the state-of-the-art estimates for the different quantities involved in the application of
the plastic hinge model.

For design purposes bi-linear approximations of the moment-curvature and the corresponding
force-deformation response are typically used [PCKO7] (Figure 2.4). This idealisation consists
of an initial "elastic” branch and a post-yield ”plastic” branch. The “elastic”” branch is limited
by the yield curvature ¢, in the moment-curvature response and by the yield displacement A,
in the force-deformation response. The “’plastic” branch is bounded by the yield point and the
ultimate point defined by the ultimate curvature ¢, or by the ultimate displacement A,,. Therefore
characterising the bi-linear force-deformation response requires knowledge of A, and A, which
depend on ¢, and ¢,.
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Additional quantities necessary for computing the deformation response are: the shear displace-
ments, the plastic hinge length and the strain penetration length Ly, typically included in L. All
these quantities are discussed in the following, except ¢, which is determined from the ultimate
strain limits discussed in Section 2.2.3.
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Figure 2.4: Plastic hinge analysis - obtaining the force-displacement response from the moment-curvature
response by means of several quantities: shear to flexural deformation ratio Ag/Ay, strain penetration
length Ly, and plastic hinge length L,

2.2.2.1 Yield curvature

The nominal yield curvature is computed as in Equation 2.5 where the first yield curvature (j)y/,
the first yield moment M, and the nominal moment M,, are determined from section analysis.
Typically these quantities are computed as follows based on recommendations by [PCKO7].
The first yield corresponds to the instant when the most tensioned reinforcement bar reaches
its yield strain &, or when the most compressed concrete fibre reaches a compression strain of
& = 0.002. The nominal moment M,, is determined at the serviceability limit strains (i.e., strains
corresponding to residual crack widths of ~ 1 mm and to the onset of concrete spalling) defined
as tensile reinforcement strains of & = 0.015 or compressive concrete strains of & = 0.004.

My
oy = ¢yﬁy (2.5)

The yield curvature is considered to depend, for design purposes, only on the wall sectional
geometry and the &, of the most tensioned reinforcement bar [PSC96]. The yield curvature can
therefore be written as in Equation 2.6 [PSC96] where K, is the dimensionless yield curvature
and /. is the length (depth) of the wall.

0, = K. Esy
y =

=y (2.6)
Y lwall
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The dimensionless yield curvature K, was found to depend on the geometry of the wall section,
the loading direction for non-planar walls, the distribution of the longitudinal reinforcement
within the section and to a lesser extent on the longitudinal reinforcement content. Several
researchers have derived, based on parametric sectional analysis, expressions for the K, value
for different wall shapes other than rectangular. The emphasis was placed on I-shaped or T-
shaped section walls for bending along the principal directions of the sections [Pau02],[PCKO07],
[SST13]. The U-shaped section walls have not been addressed directly but estimates from the I-
or T-shaped walls can be used as approximations also for the principal directions of the sections
of the U-shaped walls.

[BDPO8b] used such estimates from [Pau02] to compare with experimental results from two
U-shaped walls and found the agreement rather good. The 2012 DBD Model Code [SPC12]
recommends for U-shaped/ C-shaped walls the same values as those proposed by [Pau02] but
mentions that there are still uncertainties related to the simplified value of K, for U-shaped walls
and recommends performing moment-curvature analyses to verify these design values. The
estimates for the different wall shapes are summarised in Table 2.2 and it is indicated how they
can be used as approximations for the U-shaped walls.

Table 2.2: Estimates for dimensionless yield curvature K, of RC walls

Row Cross-section shape  Loading position
No. P gp [Pau02] [PCKO7] [SST13] [SPCI2]
Rectangular -
1 concentrated - 1.85 1.80 - 1.85
reinforcement
Rectangular -
2 distributed - 2.15 2.00 - 2.15
reinforcement
Parallel to web,
3 T-shaped flange in 1.50 1.40 1.80 1.40
compression
4 T-shaped Paralleltoweb, = 50120 215 180
flange in tension
5 U-shaped Parallel t.o Web’. one use values row 3 1.80
flange in tension
6 U-shaped Paralle'l 0 ﬂapges, use values row 4 1.80
web in tension
7 U-shaped Parallel to flanges, use values row 3 1.40

web in compression
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Estimates by [PCKO7] are ~ 10% higher than those by [Pau02], which they attributed to the
reinforcement strain hardening effect which was not considered in the analyses by [Pau02].
Estimates by [SS™13] for T-shaped walls presented in Table 2.2 in their simplified form, are
in their extended form (Equation 2.7) the most complex, accounting for the longitudinal rein-
forcement distribution (i.e., uniformly distributed over the wall length or concentrated toward
the boundary elements), the web length to flange length ratio A and the total wall longitudinal
reinforcement percentage p;. In Equation 2.7 k varies between 1.8 and 2.0 while x,y and A are
variables depending on the reinforcement distribution and loading direction: flange in tension or
flange in compression.

Ky =k+xA+y(p—A) 2.7)

The approximations of these estimates are compared to the new experimental data for U-shaped
walls in Section 4.3. Note that there are currently no estimates for other loading directions
than the principal ones. [BDPO8b] found from comparison with two U-shaped wall tests that
the sectional analysis can be used to derive the yield curvatures also for the diagonal loading
directions.

2.2.2.2 Yield displacement

For design purposes the yield displacement is determined assuming a linear curvature profile over
the wall height H which implies a fully cracked wall over the height and hence a constant wall
stiffness. The yield displacement can be therefore estimated accounting also for the equivalent
strain penetration length at yield L, ;, [HRS04], [PCKO7]:

A, = )f 2.8)

[HRS04] and [PCKO7] propose to determine the the first yield displacement A’y and hence also
the nominal yield displacement A, by accounting for the elastic shear displacements A, and
for the flexural displacements due to pre-yield strain penetration, which they found to account
for a significant part of the pre-yield deformations. [BDPO8b] further refined the approach by
accounting for a partially cracked profile at first yield. The yield displacement could be hence
evaluated as in Equation 2.9 where k., is a factor accounting for the extent of cracking over the
wall height at first yield.

A

M, A
Ay

My

ker
(“H? 4 Ly, H) (1 +

3 (2.9)

Ay = ‘Py/

2.2.2.3 Plastic hinge length

State-of-the-art plastic hinge length equations for walls are reviewed in this section. Only plastic
hinge lengths specifically addressing walls [BA11], [Kaz13] as well as the on of the most widely
used plastic hinge length equations [PCKO7] are discussed here.
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The plastic hinge length was L, of walls is a measure of the spread of plastic strains and
curvatures over the wall height. The spread of plastic strains over the wall height are the result of
three phenomena [PP87]:

e moment gradient M, /M, and reinforcement strain hardening f,/ fy
o tension shift effects due to inclined flexure-shear cracking

e strain penetration into the foundation

One of the most well-known equation for the plastic hinge length of the walls is based on the
work of Priestley, Paulay, Park and co-workers and it accounts for the sum of contributions of the
three above listed phenomena. The plastic hinge length is expressed under the form of Equation
2.10 [PP87], where the term related to the wall effective height H accounts for moment gradient
and strain hardening effects, the term related to the wall length /,,,;; accounts for the tension shift
due to inclined shear-cracking while the term related to the longitudinal bar diameter dj, accounts
for the strain penetration into the foundation.

Ly = C1H + Colyya + Csd), (2.10)

The coefficients of the Equation 2.10 have been expressed by [PP92] resulting in Equation 2.11.
In this equation the spread of plasticity due strain hardening is directly addressed through the
reinforcement properties k = 0.2(f,,/fy — 1). The spread of plasticity due to tension shift effects
is taken as 0.21,,,;; considered as a suitable value for assessment purposes of the displacement
capacity of RC walls. The equation is lower bounded by twice the strain penetration length
L, = 0.022 f,dp.

Ly = min(0.08,k)H + 0201 +0.022f,dj, > 2L, 2.11)

Equation 2.11 has been later modified by [PCKO7] for design purposes. The tension shift term was
reduced to 0.1/, to introduce some degree of conservatism when determining the displacement
capacity.

Ly, = min(0.08,k)H +0.114,4; +0.022f,dp > 2Ly, 2.12)

The above L,, equations are intended to be used for determining the ultimate displacement
capacity of the wall as in Equation 2.4. For this purpose, L, estimates are usually combined with
ultimate curvature from section analysis corresponding to different ultimate states (see Section
2.2.3).
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In the determination of Ly, it was assumed that the center of the plastic hinge with the length
Ly, is at the base of the wall. This is strictly true if L, is exactly twice the strain penetration
term 0.022 fd),. If strain penetration effects are negligible the centre of the plastic hinge will be
located at the middle of the plastic hinge length. Computing the wall displacement, using one
assumption or the other was found to lead to differences of ~ 10% in the displacement capacity
[Han13].

Recent research on the plastic hinge length of RC walls have focused on determining the Ly,
values from numerical studies using detailed nonlinear finite element models validated against
experimental data. [BA11] present the setting-up of a shell element model with VecTor2 software
[WV02]. The model was validated with experimental data from a test conducted by one of the
authors, in terms of global force-displacement behaviour, as well as in terms of curvature profiles
over the wall height and strain profiles along the wall length at different drift levels. Then a
parametric study was performed on cantilever walls to investigate the influence of shear on the
L. The Ly, value was determined as half of the height over which plasticity spreads, i.e., half
of the height of the plastic zone L. This choice was the result of the observation of the authors
that inelastic curvatures vary linearly over L.

The authors found that shear has a significant influence on L, especially for squat walls after
onset of diagonal cracking. However, they concluded that it is not necessary to include the shear
stress in the formulation of L, as long as the wall length /,,,; and the shear span H are accounted
for (Equation 4.25). The increase in axial load ratio N/(A, f,) was found to reduce the plastic
hinge length of walls. This effect was attributed to the decreasing M, /M, ratio with increasing
axial force.

N
Ly, = (0.05H + 0.21,q11) (1 — 15A ) < 0.81an (2.13)

8Jc¢

The above plastic hinge length was determined at 2% global drift at the shear span of the walls.
Unlike the previously discussed equations, [BA11] did not determine L, to match a displacement
value but used the real spread of plasticity over the wall height. The results were interpreted as a
lower bound estimate of the plastic hinge length of walls however the displacement estimates
obtained with this L,, value were not evaluated. No assumption was made for the centre of
rotation of the plastic hinge but based on the linear assumption of the inelastic curvature profile
and since strain penetration was not considered, the center is located exactly 1/3L,. = 2/3L,,
from the wall base.

In another numerical study conducted by [Kaz13], the RC walls were modelled by means of
detailed FE model using ANSYS® software. The lower two stories of the wall, where inelastic
strains were considered to be concentrated, were modelled using solid elements while the upper
stories were modelled using Timoshenko beam elements to reduce computation time. In order to
account for the influence of the floor-slabs on the shear flow in the wall, horizontal flanges were
modelled at floor level for the two lower stories. The foundation was also modelled to account
for the strain penetration.
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2.2. Modelling of U-shaped walls

The study investigated the influence of the wall length /,,,;;, the wall shear span H, the axial load
ratio N/(A, f.), the horizontal reinforcement ratio in the web py, and longitudinal reinforcement
ratio in the boundary elements pj;. The L, value corresponding to the wall displacement capacity
was back-calculated from the top displacement (Equations 2.3 and Equation 2.4 without the shear
displacement factor). The shear displacements were not differentiated from the flexural ones in
this calculation while displacement due to strain penetration were found to be negligible and
were hence not considered. Using regression analysis, Equation 4.26 was derived for L. The
obtained L, equation is intended to be used for the displacement capacity of the wall at the
ultimate damage state.

N Sy 0.45
Agfc)(l—f)(H/lwau) (2.14)

Ly = 0.27Lya (1 —
fe

Plastic hinge length estimates according to [PCKO07] have been compared with experimental
results of only two U-shaped walls [BDPO8b]. In Section 4.5.2, the presented estimates will be
compared with additional experimental data to conclude on their suitability for capturing the L,
values for U-shaped walls for different loading directions.

2.2.2.4 Shear displacements

Shear displacements account for a significant portion of the total deformation of RC walls, even
for relatively slender walls. For non-planar walls shear displacements are particularly large
for wall parts which are in tension [BDPO8b], [ZL.14] and can vary with the loading direction
[BDPO8b]. Therefore they should be explicitly included in the modelling of non-planar RC walls.

Several modelling approaches for estimating the shear displacements of RC walls have been
proposed in the framework of plastic hinge analysis [PCKO07], [HRS04], [BDP11], [Han13]. Such
estimates can also be used for deriving a shear stiffness value for modeling approaches where this
stiffness is assigned a constant value, e.g., beam-element models or WCM. According to these
estimates the main parameters influencing the magnitude of the shear displacements of RC walls
are: (1) the level of axial strain on the section, (2) the cracking angle in the plastic region and (3)
the shear stress demand to capacity ratio.

Shear displacements are typically expressed as a function of the flexural displacement since the
ratio of shear to flexural displacements A;/A; was found to be roughly constant in the inelastic
range for RC walls with non-degrading shear mechanism, i.e., flexure controlled walls [Daz00],
[HRS04], [BDP11]. State-of-the-art estimates for A;/A ratios are discussed in the following.
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[HRS04] derived an estimate for the Ay /A ratio (Equation 2.15a) based on the assumptions that:
(1) shear to flexural displacement ratios remain constant over the inelastic range for non-degrading
shear mechanisms, (2) shear deformations stem from the horizontal deformations occurring in
shear cracks and (3) shear deformations concentrate between the lowest inclined crack (crack
angle 60°) and the highest crack which reaches the base with the 6,,,, angle. About 35% of the
total wall flexural deformations were found to be concentrated in between these two cracks based
on comparison with experimental data. Hence the 0.35 term in the Equation 2.15a. The correction
factor o (Equation 2.15b) accounting for the shear demand to diagonal tension capacity V /V,, or
shear demand to web crushing capacity V /V,,. was introduced to account for RC walls with low
shear reinforcement content in the web or reduced web thickness for which shear displacements
would have been otherwise underestimated.

A !
I} = a0.35(1.6—0.29max)%” (2.15a)
vV oV
1<a=(—+-—)<2 (2.15b)
(V}’l VWC)

[BDP11] based their estimate on the assumptions that: (1) shear to flexural displacement ratios
remain constant over the inelastic range for non-degrading shear mechanisms, (2) significant
shear deformations occur only in the plastic hinge, where curvature is assumed constant and (3)
strain state in the plastic hinge is homogeneous. [BDP11] used Mohr circle to describe the state
of strain in the plastic region. By making the assumption that the principal compressive strain
and the transversal strain are small (i.e., not a degrading shear mechanism) the shear strains were
computed only as a function of the mean axial strain of the section &,. Equation 2.16 was hence
derived, considering that shear strains concentrate in the plastic hinge region over which they are
constant and that the flexural displacement can be computed with a plastic hinge mechanism.

Ay |
— =15 — 2.16
Ar Otan® H ( )

In the above equation, ¢ is the constant curvature in the plastic hinge, 0 is the crack angle at the
top of the fan-like pattern where cracks begin to be parallel and 1.5 is an empirical correction
factor calibrated against test data on planar and non-planar walls.
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In the application of both the previous models, it is necessary to determine the shear crack angle.
Several shear crack angle estimates can be used for this task (e.g., [CM91], [BVCO06]). [Han13]
investigated the suitability of several crack angle estimates and proposed to use the approach by
[HHF11] based on comparison with experimental data from seven RC rectangular bridge piers.
This approach is based on elastic strain energy derivations and expresses the crack angle as a
function of longitudinal and transversal reinforcement contents p; and p;, respectively (Equation
2.17). In addition, the ratio between the elastic modulus of steel E; and concrete E,. enters in the
equation kg = E;/E.. The angle 0 in Equation 2.17 is the crack angle relative to the longitudinal
axis of the wall.

ran6 — & Pn~+kepipn 2.17)
pi +kepipn

In addition, [Han13] presented a conceptual approach for determining the shear displacements
based on the assumptions that: (1) shear displacements stem from rotation in shear cracks as
in [HRS04] model and (2) shear displacements do not concentrate in the plastic hinge but have
a linear or constant distribution over the wall height (assumption based on the experimentally
observed shear strain profiles). [Han13] proposed an analytical solution for computing the shear
displacement of an RC wall based on the kinematics of an idealised crack pattern (Equation
2.18). The magnitude of the shear displacements A; depends on the wall height over which
cracking occurs H., and which is assumed to yield shear displacements. In addition, Ay depends
on the axial strain on the wall section &(y;) which varies with the wall height (y; is the vertical
coordinate). Therefore, in order to apply this approach it is necessary to estimate the height over
which cracking extends H,, and the distribution of the axial strain & over the wall height. The
model has not been validated against an experimental database but the concept seems promising.

1 H,., 1 0.51.,
szf/ g dyd 2.18
=2 )y 050 Jos, 1(y1)dydy (2.18)

2.2.3 Ultimate limit strains

Peak strain values at the critical section of a structural element are a good indicator of the damage
state of the element. Strains corresponding to ultimate damage states can hence be used to
determine the displacement capacity of an element. In plastic hinge models, this is done by
linking the ultimate strain to the displacement capacity via the curvature and the plastic hinge
length. For capacity designed ductile walls the ultimate damage states typically accounted for are:
(1) reinforcement bar fracture after previous buckling and (2) concrete crushing in the confined
boundary elements of the wall.

For the reinforcement bar fracture after buckling limit state, [PCKO7] recommend to account for
the effects cyclic loading by reducing the ultimate steel strain under monotonic loading &, by a
factor of 0.6. The steel tensile strain capacity under cyclic loading is affected by the compression
strains under the reverse loading cycles and by the effects of buckling. [Res93] found that a
limit on the total strain excursion & — €, was better suited for determining the bar fracture after
buckling. However such a limit is more difficult to apply to monotonic analyses.
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[PCKO7] recommend a limit concrete strain for section analysis to account for confined concrete
crushing limit state based on the model by [MPP88]. The ultimate compression state is assumed
to be reached when the confining reinforcement fractures. Therefore Equation 2.19 of the concrete
limit strain was derived by equating the strain energy absorbed by the concrete, above the value
corresponding to the unconfined concrete to strain energy absorbed by the confinement. In the
equation below, p, is the volumetric ratio of the confinement reinforcement, f. is the confined
concrete strength based on [MPP88] and fy, the yield strength of the confinement reinforcement.
The coefficients C| and C, depend on the stress-strain relationships of steel and concrete. An
average value of the C, /C ratio is 1.4.

Czpvfyvavu —0.004+1 4pvfyvgsu

&, = 0.004 4
Cl cc cc

(2.19)

Another limit state that can be of particular interest for non-planar walls is the out-of-plane
buckling of the wall. This ultimate limit state is assumed to be controlled by the maximum tensile
strain [PP93], [CE99]. Under cyclic loading the edges of the wall are subjected to large tensile
strains resulting in large cracks where the reinforcement bars yield. During the reverse cycle,
when the wall edge is in compression, the compression resultant force not be applied eccentrically
due to irregularities in the material and geometry of the wall, causing the out-of-plane buckling
[PG85]. For non-planar walls, certain loading directions can impose in addition to large tensile
strains at the wall edges also out-of-plane displacements at the wall top which could speed up the
triggering of the out-of-plane buckling, e.g., the flange ends of U-shaped walls when loading in
the diagonal direction (positions E-F Figure 2.2).

To prevent the out-of-plane buckling of walls, equations have been developed to estimate the
minimum wall thickness [PP93], [CE99]. If the wall thickness is known, one can back-calculate
the tensile strain triggering the out-of-plane buckling. Both models for walls were developed
based on experimental tests on RC columns with pinned-pinned boundary conditions. While
Equation 2.20 by [PP93] can be used for walls with both one layer and two layers of longitudinal
reinforcement, Equation 2.21 by [CE99] applies only for the latter case. In the two equations,
can be taken as the plastic hinge length, § = 0.8 for two-layer reinforcement and &, is computed
as in Equation 2.22 where m = p; f,/ f. is the mechanical reinforcement ratio of the boundary
element.

t
Em = SB( v;all )256‘ (220)
0
752 tyall 2
Em = 7( ) gc + 38sy 2.21)
2 I
E.=0.5(1+2.35m—+/(5.53m* +4.70m)) (2.22)
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The presented strain limits will be compared with the experimental results from U-shaped walls
in Section 4.6. In plastic hinge analysis, ultimate limit strains are used with moment-section
analysis to determine the ultimate curvature of the critical section. Therefore Section 4.6 will
also evaluate the validity of the plane section assumption for U-shaped walls for the different
loading directions, i.e., if the definition of curvature can still be used for such walls at ultimate
damage state.

2.2.4 Effective stiffness of RC walls

The effective stiffness of RC walls is an important quantity in seismic design as it is typically
used to estimate the effective period of an RC building in linear seismic analyses. The structural
elements are assigned an effective stiffness typically equal to the elastic section stiffness multiplied
by a reduction factor. For RC walls, this reduction factor accounts for the increased flexibility
of the wall due to concrete flexural and shear cracking as well as due to anchorage (pull-out)
deformations at the base of the wall.

Several equations are available in the literature for estimating the effective stiffness of RC walls
(e.g., [PP92], [FBOO] or [AIBO7]). Most of these models account for the slender walls only for the
flexural stiffness. The effective stiffness values are typically accounted for by providing estimates
of the effective moment of inertia /, or of the ratio of the effective moment to the gross moment
of inertia I, /I,, while assuming a constant wall stiffness over the height. The main parameters
found to influence the effective stiffness of RC walls are: the reinforcement yield strength fy,
the axial load ratio N/ f.A, and the wall geometry, i.e., wall length /,,,;; or wall thickness #,,4;.
In the following, the main equations used for estimating the effective wall stiffness are briefly
presented.

[PP92] recommends an effective stiffness value for slender RC walls expressed through the I,
value as in Equation 2.23a. The equation is based on an analytical study on reinforced masonry
shear walls by [PH89] and corresponds to the secant stiffness of the wall at first yield of the most
tensioned reinforcement bar. For less slender walls, i.e. aspect ratio H/1,,,;; < 4, where the shear
displacements can become important, Equation 2.23b is proposed. The equation accounts for
the shear displacements and makes some allowance for the anchorage deformations, i.e., strain
penetration [PP92].

100 N

I, =(—+ I (2.23a)
( _fy fCAg) 8
I,
I, = 2o F (2.23b)
301
F - (2.23¢)
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[FBOO] proposed Equation 4.40 to estimate the effective stiffness of slender RC walls. The
equation is based on a parametric study using plane section analysis on slender rectangular
walls with uniformly distributed reinforcement. The effective stiffness was defined as the secant
stiffness at first yield of the most tensioned reinforcement bar. The shear displacements were
neglected while the axial load was considered to be constant over the height. In addition, tension
stiffening of the concrete was accounted for. The study was criticised by [FB02] for assuming
a constant axial load over the wall height, for accounting for the tension stiffening of concrete
and for ignoring the flexibility due to strain penetration. In multi-storey buildings the axial load
varies along the wall height resulting in an increase of the cracking height and hence a reduction
of the flexural stiffness [FBO2].

fij‘ g)(0.62+ 1fgyo)(o.76+0.005 fol, (2.24)

I, =0267(1+4.4

An estimate for the flexural effective stiffness of high-rise shear walls was developed by [AIB07]
based on a trilinear bending moment-curvature model calibrated with results from one exper-
imental test on a slender wall. In order to account for the different degrees of cracking in the
wall , i.e., lightly cracked or severely cracked due to cyclic loading, [AIBO7] suggested two
simplified equations as upper-bound and lower-bound estimates for the effective flexural stiffness
of high-rise core walls (Equation 4.41a).

N
I, = (0.6+ 1, <I (2.25a)
e ( f(;Ag> 8 8
N
L=(02+25)<0.71l, (2.25b)
cAg

Instead of using an estimate for the /, or the I, /I, value, a more precise effective stiffness value
can be determined by dividing the wall nominal strength F,, = M,,/H by the yield displacement
A, [PCKO7]. While the nominal strength can typically be determined by means of plane section
analysis, the determination of the yield displacement is more complex. It requires knowledge
of the yield curvature and assumptions on the curvature distribution over the height at yield,
on the shear displacements at yield and on the strain penetration also at yield. Typically the
yield displacement is taken as equal to the flexural displacement assuming a fully cracked wall
over the height (linear curvature distribution) with the base curvature equal to yield curvature
[PCKO7]. A linear curvature profile will overestimate however the flexural yield displacement
and the difference is partially assigned to shear displacements and flexural displacements due to
strain penetration [PCKO7].
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Since most of these estimates consider only the flexural flexibility it is expected that the predicted
effective stiffness values tend to be on the high side, since shear displacements have been shown
to constitute a significant part of the total deformation of U-shaped wall for certain loading
positions. Since both the contribution of the shear displacements to the total deformation as well
as the yield curvature depend on the different loading positions of U-shaped walls, it is expected
that also the effective stiffness should vary with the loading position.

However, to the best of the author’s knowledge, none of the here reviewed estimates been
compared with experimental results from non-planar walls loaded in different directions. For this
reason in Chapter 4, the effective stiffness estimates are compared with experimental results from
four U-shaped walls tested for different loading directions.
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3. Quasi-static tests of two U-shaped
walls under diagonal loading

3.1 Introduction

This chapter is based on experimental work performed by the author under the supervision of the
thesis director in the structural testing laboratory at EPFL. The content of this chapter has been
previously published as a journal article [CB16] DOI 10.1016/j.engstruct.2015.10.018.

The experimental test campaign and findings from quasi-static cyclic tests on two half-scale
U-shaped reinforced concrete (RC) walls performed at EPFL are presented in this chapter. The
objective of the test programme was to investigate the U-shaped wall behaviour when loaded
along the geometric diagonal of the U-shaped section. More specifically, the programme focused
on identifying failure mechanisms specific to diagonal loading and possible critical design aspects
related to these failure modes as well as particular phenomena that could explain the load transfer
mechanisms between wall sections and wall and foundation for loading in the diagonal direction.

The experimental results of the new test campaign emphasising observed phenomena typical to
U-shaped walls under diagonal loading are discussed within this chapter. The chapter is organized
in several sections. The test units, the test set-up, the loading history and the instrumentation are
presented in Section 3.2. Section 3.3 describes the failure mechanisms, the hysteretic behaviour
as well as key deformation quantities that highlight the section deformation at the wall base, the
out-of-plane bending of the flange end and the shear deformations of the wall sections. Section
3.4 gives a summary of the findings concluding with recommendations for analysis and design.

3.2 Test units, set-up, instrumentation and loading history

The test campaign is a continuation of the previous test campaign on U-shaped walls from ETH
Zurich [BDPO8b]. Therefore the overall geometry of the test units is the same and the test set-up
is very similar as in the previous test campaign. The two test programmes differed only with
regard to the reinforcement layouts of the walls, the instrumentation and the loading history.
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A detailed description of the design of the test set-up and of the test units can be found in
[BDPO8b] and is hence not repeated herein. Therefore the following sections discuss only briefly
the geometry of the new test units including reinforcement layouts (Section 3.2.1), material
properties (Section 3.2.2), test set-up and the instrumentation (Section 3.2.3) as well as the
loading history (Section 3.2.4).

3.2.1 Geometry of the tests units

The two U-shaped walls tested as part of this project were half-scale models of the lower two
storeys of a prototype elevator shaft and had the same dimensions as test unit TUB in [BDPOSb].
Both test units, named TUC (Test Unit C) and TUD (Test Unit D) had identical longitudinal
reinforcement layouts (Figure 3.1) but differed with regard to the applied axial load ratio and
shear reinforcement: TUC was subjected to an axial load ratio of 0.06 and TUD to an axial
load ratio of 0.15. The higher axial load ratio was applied to account for the effects of possible
increase in axial force due to the shear force transferred by coupling beams. To account for the
higher shear force demand of TUD, the shear reinforcement percentage was increased by ~ 25%
as compared with TUC. To maximise the amount of experimental information collected, it was
decided to modify the reinforcement layout of TUB slightly and investigate also the influence of
the longitudinal reinforcement distribution on the behaviour of the two wall flanges. Therefore,
for both walls one flange was detailed with longitudinal reinforcement mainly concentrated in
the boundary elements while in the other flange and the web the longitudinal reinforcement was
uniformly distributed along the wall section. The reinforcement layout for the two test units is
shown in Table 3.1. The longitudinal reinforcement content of the two flanges in the boundary
elements and in the unconfined part is given for comparison in Table 3.1, together with the
reinforcement contents of the web and the entire wall.

3.2.2 Material properties

The material properties of both test units are given in Table 3.2 and Table 3.3. The material tests
were performed in accordance with the Swiss Norm SIA262/1 [SIAO3]. The concrete tensile
strength f; was derived from double-punch tests [CY80]. Concrete properties from material
tests are: concrete compressive strength f,, concrete elastic modulus £, and the concrete tensile
strength f; correspond to properties at the day of testing, except the f, - 28days strength, which
corresponds to the cylinder concrete compressive strength at 28 days.

The yield strength f,, the ultimate strength f,, and the ultimate strain &, of the reinforcement
bars are given in Table 3.3 and correspond to properties at the day of testing. Additionally, for
the D12 bars, the hardening strain is given, which marks the end of the constant strength yield
plateau and the beginning of increasing strength strain-hardening zone. With values of f,/fy
between 1.18 and 1.26 and values of &, between 6.9% and 9.6%, the D8 and D12 bars belong to
“Class C” grade according to Eurocode 8 [CENO3], while the D6 bars belong to “Class B” due to
the strain value &, lower than 7.5%.
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Figure 3.1: Test units TUC and TUD: cross-section and reinforcement layout (a) and elevation (b)

3.2.3 Description of test set-up and instrumentation

A photo of the test set-up is shown in Figure 3.2a. As in [BDPOS8b], the walls were loaded
horizontally with three actuators: the EW actuator loaded the webs at a height of hgy = 3.35
m while the NS actuators loaded the flanges of the wall at a height of hys = 2.95 m from the
foundation (see also Figure 3.1). The tests were performed in displacement control and rotation
at the top of the wall was restrained by applying equal displacements with the NS-W and NS-E
actuators. The axial load was applied by a tendon pre-tensioned by a hollow core jack located
on a bream at the top of the wall (Figure 3.2a). The pressure in the hollow core jack was kept
constant and therefore the test unit was subjected to a constant axial load throughout the testing
(maximum variation: —2.5% to 6.4%). During testing, the wall behaviour was monitored through
conventional instruments (linear variable differential transducers (LVDTSs) and load cells) and
through an optical measurement system based on triangulations of active light emitting diodes
(LEDs). Photos, manual measurements of cracks and hand notes completed the data collected
during the test. The layout of the measurement systems is shown in Figure 3.2b. LVDTs were
used to measure global horizontal displacements at the top of the wall as well as the vertical
elongation of the wall edges, which were recorded by means of four chains of eight LVDT devices
each. This instrumentation is the same as the one used in [BDP0O8b]. One chain of four LVDTs
was added on the inner side of each flange end to capture the vertical strain variation through the
thickness of the flange.
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Chapter 3. Quasi-static tests of two U-shaped walls under diagonal loading

The optical measurement system Optotrak Certus [NDI10] was composed of active LEDs (466
LEDs for TUC and 510 LEDs for TUD) and three position sensors recording the 3D coordinates
of the LEDs with a frequency of 2 Hz. The LEDs were glued on the outer faces of the wall in
regular grids of 100x125 mm (TUC) and 100x100 mm (TUD) to match vertical and horizontal
reinforcement spacing (Figure 3.2). One row of LEDs was also glued on the foundation in order
to record foundation uplift and sliding. The height of the LED grid extended up to ~ 1.7 m above
the foundation as the main interest was to capture the plastic zone of the wall while respecting
the measurement volume of the optical system.

Table 3.1: Longitudinal reinforcement percentages for TUC and TUD computed for the entire section and
for the flanges and the web

pi(%) pi(%)
Wall part pi(%) total confined unconfined
region region
Flange with distributed reinforcement layout 1.06% 1.34% 0.91%
(East flange)
Flange with concentrated reinforcement 1.01% 5 459 0.31%
layout (West flange)
Web 1.16% 1.25/0.90% 1.00%
Entire wall 1.09% - -

Total reinforcement percentage for the flanges and the web was computed by counting the corners

towards the web.
Due to differences in flange reinforcement layouts, reinforcement contents of confined corner regions

are slightly different.

Table 3.2: Mean values and standard deviations of mechanical properties of concrete

E-modulus and compressive strength tests Double-punch tests
fe -
28days sI:r(r)l. IO:S fe [MPal  E. [GPal sI:r(r)l. loefs fi IMPa] sla\llr?l' i)efs
[MPa P p p
TUC 3861(7) + 3 420414 31.6+3.9 3 3.24+0.2 4
TUD 37.0+1.3 3 41.5+1.2 30.3+0.8 4 3.0+0.2 4
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Figure 3.2: Photo of the test set-up (a) and location of the conventional and optical measurement devices

(b)

Table 3.3: Mean values and standard deviations of mechanical properties of reinforcement bars used for
TUC and TUD

No. of
IMPal i IMPal S/ el el
D:;?Sm 492451 623487  1.26+0.02 - 6.840.9 6
D8mm
o 5634266 663465  1.18+0.05 ; 7.940.8 7
D12mm
o 520447 633439  1.1940.01 244025 9.6+1.2 3

The yield strength f, was determined at the 0.2% strain offset (0.2% proof stress).
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Chapter 3. Quasi-static tests of two U-shaped walls under diagonal loading

3.2.4 Loading history

As stated in the introduction, the key objective was to understand the behaviour of the wall under
diagonal loading. Hence, the main cycles were applied along the two geometric diagonals of the
U-shaped section. The direction of the geometric diagonal joins the outer corner between web
and flange with the outer edge of the flange end (Figure 3.3b — directions E-F and H-G). Cycles
along the principal directions, i.e., loading parallel to the web (EW direction with positions A and
B - Figure 3.3) or loading parallel to the flanges (NS direction with positions C and D - Figure
3.3), were also added at small drift levels in order to check the strength capacity of the wall
in these directions, as past tests have shown that for these directions the strength capacity can
be predicted using the plane section hypothesis [BDPO8b]. The loading positions are shown in
Figure 3.3b while the loading history of the test units is described below and shown in Figure 3.4:

e 0.1% drift: O-C-D-0O-A-B-0O

e 0.2% drift: O-C-D-O-A-B-O-E-F-O-H-G-O

0.3%, 0.4%, 0.6% drifts: O-E-F-O-H-G-O-C-D-O-A-B-O

0.8% drift: O-C-D-C-D-O-A-B-A-B-O

1.0%, 2.0%, 3.0% drifts: O—-E-F-E-F-O-H-G-H-G-O

1.5%, 2.5% drifts: O-H-G-H-G-O-E-F-E-F-O

From 1.0% drift onwards, two complete reverse cycles were applied for each diagonal direction
at each drift level. The orientation of the first diagonal applied at a new drift level alternated
between the E-F direction and the H-G direction. Towards the end of the tests, the loading was
only continued along the diagonal that led still to a stable hysteretic behaviour, as extensive wall
damage had significantly reduced the stiffness in the other diagonal. The modified protocols at
the end of the test were as follows: Modifications to load protocol TUC:

e 2.5% drift: O-H-G-O- E-F- 0O

e 3.0% drift: O—E—O-H-O (test was stopped due to loss of vertical load bearing capacity)

Modifications to load protocol TUD:

o 1.5% drift: O-H-G-H-O-E-F-E-O (test was stopped due to loss of vertical load bearing
capacity)
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Chapter 3. Quasi-static tests of two U-shaped walls under diagonal loading

3.3 Test results

In this section the most important findings from the tests are presented. Failure mechanisms
together with hysteretic behaviour are discussed in Section 3.3.1. The influence of the reinforce-
ment layout and of the axial load on the crack pattern and crack widths is shown in Section 3.3.2.
Local deformation response specific to U-shaped walls under diagonal loading is presented in
Section 3.3.3, while Section 3.3.4 investigates the influence of the longitudinal reinforcement
layout and the axial load ratio on the shear to flexural deformation ratios.

3.3.1 Failure mechanisms and hysteretic behaviour

The failure mechanisms of the two test units are illustrated in Figures 3.5 to 3.7 while the force-
displacement hystereses are shown in Figures 3.8 to 3.9. For the two diagonal directions individual
actuator forces as well as their resultant are plotted against the wall top displacements, which were
measured by means of the horizontal LVDTs recording the NS displacements at iys = 2.95 m
and the EW displacements at both /yg and hgw = 3.35 m. The top displacements were corrected
for the foundation flexibility (uplift and sliding) by subtracting the top displacements due to
foundation flexibility.

Foundation flexibility resulted from the uplift and the sliding of the wall foundation with respect
to the laboratory strong floor. The uplift and sliding of the foundation was computed from the
LEDs glued on the foundation (LEDs on small steel angle in Figure 3.2). Top displacement due
to uplift was computed assuming a rigid body rotation of the wall and the foundation, while the
top displacement due to sliding was simply taken equal to the sliding displacement measured
between the foundation and the laboratory strong floor. Top displacements due to foundation
flexibility accounted for ~ 6 — 8% of the measured top displacements at yield drift and decreased
thereafter. The corrected top displacements and the forces were combined through the square
root of the sum of squares (SRSS) to obtain quantities representative of the diagonal directions
(Figures 3.8b-c and 3.9b-c):

Fsrss = £/ (Fgw + Fys) - sign(Ays) 3.1

Aswss = \/ (Aew @2.95)% + AZ) - sign(Aws) (32)

where Fgy and Fys are the forces carried by the wall in the EW and the NS direction respectively,
while Agw @2.95 and Ay are the wall horizontal displacements in the EW and the NS directions,
both measured at 4yg. The SRSS values were multiplied by the sign of the NS displacement for
plotting the hysteresis loops consistently.
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3.3. Test results

3.3.11 TUC

Failure mode when loading along the diagonal E-F: Failure of TUC occurred due to out-of-
plane buckling and compression failure of the flange with the concentrated reinforcement (West
flange). Failure occurred during loading in the E-F diagonal direction when the flange end was in
compression at position E (Figure 3.5). A maximum of 2.5% SRSS drift was reached for this
direction prior to wall failure. During the last cycle, the wall stiffness was significantly reduced
when loading from zero displacement towards position E, as compared to the previous cycles at
the same loading position (Figure 3.8b, d-f). In this cycle the loading was stopped at only 1.0%
drift due to extensive damage to the West flange and ~ 35% drop in the SRSS force capacity as
compared to the maximum reached in this last cycle at this loading position (see Figure 3.8b).

Out-of-plane failure of plastic zone of West flange: The failure mode of the wall, i.e. out-of-
plane buckling of the wall end and compression failure of the unconfined concrete, was first
experimentally investigated and reported by [PG85] for walls loaded in plane. For TUC, the
evolution of wall failure can be summarised as follows: due to large displacement demands
imposed on the wall at position F (i.e., 2.5% SRSS drift), large tensile strains were developed in
the reinforcement bars of the West flange end resulting in wide horizontal cracks (~ 4 mm) in this
region. When unloading from position F, the longitudinal bars first had to yield in compression
before the cracks could close. During this stage the plastic zone had a very small stiffness and
was as a result vulnerable to out-of-plane instability.

For rectangular walls loaded in plane, out-of-plane displacements are typically caused mainly by
construction imperfection. Loading to position E led to a large strain gradient across the flange
end (see Section 3.3.3.1), which leads to an eccentricity of the compression force acting in this
region. This strain gradient is expected to have promoted the out-of-plane buckling process. As a
result of the strain gradient, the flange end bulged towards the inside of the U-shaped wall, which
was also the direction in which the flange failed out-of-plane (Figure 3.5b).

Based on the visual observation and the force-displacement hystereses, the initiation of the
out-of-plane buckling occurred near zero SRSS top displacement when returning to zero from
the first cycle at position F with 2.5% SRSS drift. The force-displacement hystereses show
significantly reduced wall stiffness after the onset of buckling (Figure 3.8b, d-f). The fact that
onset of buckling occurred near zero displacement is in line with observations from tests on thin
T-shaped walls, which failed also due to out-of-plane buckling [RAB16]. It was found that at
this instant, cracks are open along the entire length of the wall and the out-of-plane stiffness is
therefore very small. Note that, while the out-of-plane buckling mode of TUC and the thin walls
described in [RAB16] shared many similarities, the buckling mode of the thin walls involved the
entire storey height and not just the plastic zone as observed for TUC.

Due to the out-of-plane buckling, the West flange end of TUC lost its compression carrying
capacity. To compensate for this, the compressed depth increased into the unconfined part of the
flange, leading to concrete crushing in this region and final loss of the wall force capacity both in
the direction of the flanges (NS direction - Figure 3.8d-e) and also in the direction of the web
(EW direction - Figure 3.8f).
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Figure 3.5: TUC: Out—of—plane buckling and compression failure of the concentrated reinforcement
layout flange at position E (West flange end in compression) at an SRSS drift of ~ 1.0%. Front view of
the wall (a); close-up view of the buckled flange end (b); outside view (c) and inside view (d) of the West

flange.
fﬁ'%}'
L] .‘. O i

Figure 3.6: TUC: Crushing of the concrete in the flange with distributed reinforcement (East) at position
H (East flange end in compression) at an SRSS drift of ~ 2.5%. View for inner side of the East flange (a)
and view from the outer side: far-off view (b) and close-up.

Failure mode when loading along the diagonal H-G: Continuing loading along the E-F diagonal
would have led to a complete destruction of the West flange due to the out-of-plane buckling
compression failure at 1.0% drift. For this reason, this loading cycle was not completed and the
wall was cycled along the H-G diagonal instead. However, loading along this diagonal led to a
compression failure of the East flange at 2.5% SRSS drift, which had already been reached in a
previous cycle. At this point the test was stopped because of axial load failure (Figure 3.6 and
Figure 3.8g-1).
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Influence of reinforcement layout on buckling of longitudinal bars: Recent experimental research
on rectangular walls [HM™ 14] concluded however that walls detailed with distributed reinforce-
ment will reach lower ultimate drifts than walls with concentrated reinforcement, as the smaller
diameter bars in the boundary elements of the former will undergo early bar buckling for the
same stirrup spacing of the two walls. The failure of the U-shaped walls presented here was,
however, not controlled by bar fracture. The different diameters of longitudinal reinforcement
bars in the flanges with concentrated (West) and distributed reinforcement (East) had, however,
an influence on the onset of bar buckling and the drift at which first bar fractures were observed.

Three of the four confined boundary elements of the U-shaped walls were detailed with D8
longitudinal reinforcement bars, i.e., the end of the flange with distributed reinforcement (East)
and the two corners between a flange and the web. The fourth boundary element, i.e., the end
of the flange with concentrated reinforcement (West) was detailed with D12 vertical bars. All
four boundary elements featured the same stirrup spacing (Figure 3.1a). D8 bars of the boundary
elements buckled indeed before any D12 bar of the West flange end buckled (Figure 3.10b): Two
DS bars first buckled in the East flange end in the first cycle at 1.5% drift at position H followed
by the buckling of one D8 bar in the confined corner between East flange and web in the second
cycle at 2.0% drift at position F. In the confined corner between West flange and web one D8 bar
first buckled in the first cycle at 2.0% drift at position G. In the following cycles, further DS bars
buckled in these confined boundary elements. And finally, buckling initiated also in the West
flange end when a D12 bar buckled in the cycle at 2.5% drift at position E. Outside the boundary
elements, bar buckling occurred only in the unconfined concrete of the flange with concentrated
reinforcement (West). For this flange the outer D6 bar closest to the confined flange end buckled
in the first cycle at 2.5% drift at position G, hence before any buckling occurred in end of this
flange.

Bar fractures first occurred in the cycle at 2.5% drift at position G when three D8 bars fractured
in the East flange end. Their fracture however did not significantly affect the wall strength, i.e.,
the wall retained more than 80% of its SRSS force capacity (Figure 3.8c, g-i) and also of the NS
force capacity (Figure 3.8d), and was hence not considered as failure. The strength drop was not
significant since bar diameters are small and uniformly distributed throughout the flange.

Influence of the reinforcement layout on the wall stability: The observed failure modes suggested
that the flange with distributed reinforcement layout (East flange) was less prone to out-of-plane
buckling failure than the flange with concentrated reinforcement layout (West flange). Mechanical
models by Paulay and Priestley [PP93] and Chai and Elayer [CE99] show that the lateral stability
of the wall boundary element depends strongly on the maximum tensile strain the wall boundary
element had been subjected to. This threshold value of tensile strain that triggers the out-of-plane
instability decreases with increasing longitudinal reinforcement ratio [CE99], [MKO03]. As a
result, flange ends with large longitudinal reinforcement contents—such as those in sections with
concentrated reinforcement layout—are more susceptible to out-of-plane buckling than flange
ends of sections with lower longitudinal reinforcement contents as in distributed reinforcement
layouts [MKO3]. This trend is in line with the observed flange failures.
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Drift capacities: Along both diagonals, one full cycle with 2.5% SRSS drift was completed before
the strength dropped by 20% or more. For the test here, the wall flange with distributed and the
wall flange with concentrated reinforcement reached the same drift capacity. The failure modes
attained for the two loading directions were, however, rather different and strongly influenced by
the respective reinforcement layouts. Based on the test observations the reinforcement layouts
influence the following phenomena:

The drift related to the onset of bar buckling and bar fracture: For distributed reinforcement
layouts, the diameter of the longitudinal bars in the boundary elements is typically smaller
than for concentrated reinforcement layouts. For the same stirrup spacing, bars in the
distributed reinforcement layout will therefore buckle and fracture at smaller drifts.

The out-of-plane stability of the plastic zone: The larger the longitudinal reinforcement content
in the boundary element, the more prone is the plastic zone to out-of-plane instability. For
TUC, out-of-plane instability occurred for the West flange (concentrated reinforcement)
but not for the East flange (distributed reinforcement).

The influence of the reinforcement layout on crack widths and shear deformations is discussed in
Sections 3.3.2 and 3.3.4 respectively. For TUD the reinforcement layout had also an influence on
the compression zone depth, which is discussed in the following section.

3.3.1.2 TUD

TUD, the test unit with an axial load ratio of 0.15, failed due to an explosive compression failure
of the concrete in the flange with distributed reinforcement (East flange, Figure 3.7b-c). The
compression failure occurred after reaching position H in the second cycle at 1.5% drift (Figure
3.9c¢, g-1). The compression failure initiated in the confined part of the flange end and extended
suddenly to the unconfined part of the flange. Once the behaviour stabilised again, the flange
had crushed along ~ 80% of its length (Figure 3.7c). In the previous cycle, visual inspection
indicated only limited crushing of the boundary element as shown in Figure 3.7a.

The explosive failure and the extensive concrete crushing were caused by the large compression
depth and significant compressive strains in the East flange at position H. Already in the first cycle
at position H at 1.5% drift, the compressive strains computed from optical measurements reached
for the unconfined concrete of the flange ~ 0.003 (average strains over the height 2 =75 — 200
mm, h measured from top of foundation). Due to the larger axial load ratio the compression zone
depth of TUD was larger than that of TUC. In addition, the distributed reinforcement layout in
the East flange led to a larger compression zone depth for the East flange than for the West flange.
But most importantly under diagonal loading with the flange end in compression (positions E and
H), the compression depth of the flange end is considerably larger than in the case of orthogonal
loading with both flange ends in compression (position C) as local deformation response indicates
(see Section 3.3.3.2).
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Figure 3.7: TUD: explosive compression failure of the distributed reinforcement layout flange (East
flange). Wall condition at 1st cycle at position H at 1.5% drift (a-b) and wall condition after failure in the
2nd cycle at position H at 1.5% drift: view on the inner side (c) and view on the outer side (d).

For TUD, the wall failure along the H-G diagonal was marked by ~ 75% loss in the SRSS force
capacity (Figure 3.9c). The loading was therefore continued in the E-F direction, but already in
the first cycle concrete crushing in the web occurred leading to a significant strength drop at a
drift of ~ 1.0% (Figure 3.9f). Moreover, the wall was no longer able to carry the nominal axial
load of 1950 kN.

The shear demand on TUD (SRSS force) was on average ~ 36% larger than on TUC due to the
increased axial load ratio of the former (Figure 3.8b-c and Figure 3.9b-c). The displacement
capacity of TUD on the other hand was only 1.5% drift as compared to 2.5% drift for TUC. For
TUC the failure was initiated by large out-of-plane deformations of the flange at zero SRSS drift
(Figure 3.5) for TUD failure occurred at peak drift of a cycle when the flange failed suddenly
leading to an extensive crushing band along almost the entire length of the flange (Figure 3.7b-c).

3.3.2 Crack patterns

The crack patterns for a U-shaped wall tested under different loading directions have already been
discussed in detail elsewhere [IR05] and [BDPO8b]. Beyer et al. [BDPO8b] observed in their
tests, that in the web the crack patterns were similar to those encountered for typical rectangular
walls while the flanges had the steepest cracks of the entire wall, which opened when the flanges
were loaded along the diagonal directions towards positions E and H. The steepest cracks in the
web, opened in its half upper part also at positions E and H. The same observations were found
valid for the tests presented herein (Figures 3.11 and 3.12).

Since the two flanges of TUC and TUD were detailed with distributed and concentrated rein-
forcement layouts, the crack widths, spacing and the crack angles are of interest, as differences
between the two flanges were expected. Previous numerical and experimental investigations
on RC walls have shown that for concentrated reinforcement layouts, cracks in the unconfined
concrete part have larger widths and larger crack spacing than in the distributed layout case
[Bru09], [MKO03] and [RAT14].
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Figure 3.9: TUD: loading positions (a), SRSS force-displacement hystereses (b-c) and for individual NS
and EW directions (d-i).
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Chapter 3. Quasi-static tests of two U-shaped walls under diagonal loading

Figure 3.11: TUC: Crack patterns at the beginning of 1.5% drift cycles: front view (a); back view (b); view
of the West flange (concentrated reinforcement) (c) and view of the East flange (distributed reinforcement)

(d).

During the testing of TUC and TUD, crack widths of selected cracks were measured manually at
several load steps. The comparison of maximum crack widths in the unconfined concrete part of
the two flanges under symmetric loading conditions for both flanges (i.e. Position C and Position
D) is shown in Figure 3.13c-d up to 0.8% drift, the last drift where loading to these positions
was applied. As expected, at Positions C and D, crack widths in the flange with concentrated
reinforcement layout (West flange) were on average 40% larger than in the flange with distributed
reinforcement layout (East flange). The inaccuracy of manual measurements for crack widths
under 1 mm, could explain the outliers in the graph: position C, § = 0.6% and position D,
0 = 0.8%. As a result of the differences in crack patterns, at the end of the test after both flanges
underwent an equal number of loading cycles, the unconfined concrete of the concentrated layout
flange was more damaged than the unconfined concrete of the distributed layout flange (Figure
3.13a-b).

Crack angles in the unconfined concrete part of the flanges were measured from photos, averaging
the angles over the height # = 0 — 1.7 m for cracks that formed for the same loading direction.
Crack angles with the wall vertical axis were ~ 15 —25% smaller for the West flange than for
the East one when flange ends were in tension due to ~ 15% higher force capacity (and hence
also higher shear demand) of the former. Crack angles varied between TUC and TUD, with
~ 30% smaller angles with the wall vertical axis measured for TUD, indicating the increased
shear demand imposed on this wall, both on the web and on the flanges (Figures 3.11 and 3.12).
In addition the cracks were more closely spaced for TUD, which is probably the result of the
more closely spaced shear reinforcement for this test unit.
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3.3. Test results

Figure 3.12: TUD: Crack patterns at the beginning of 1.5% drift cycles: front view (a); back view
(b); view of the West flange (concentrated reinforcement) (c) and view of the East flange (distributed
reinforcement) (d).
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Figure 3.13: Influence of the longitudinal reinforcement layout on the damage to the unconfined concrete
of the wall flanges. TUC wall flange condition at the end of the test: concentrated reinforcement layout
(West flange) (a) and distributed reinforcement layout (East flange) (b). Maximum crack widths in the two
flanges under symmetrical loading conditions (c-d).
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Chapter 3. Quasi-static tests of two U-shaped walls under diagonal loading

3.3.3 Local deformation response specific to diagonal loading

This section presents strain profiles that illustrate the deformation response specific to U-shaped
walls under diagonal loading. More specifically, the out-of-plane bending of the flanges is
discussed in Section 3.3.3.1 and the section deformation at the wall base in Section 3.3.3.2.

3.3.3.1 Vertical strains on the inner and outer side of the flange ends

The vertical strains on the inside and the outside of the flange ends were obtained from measure-
ments of the LVDT chains mounted on the inner and outer sides of the flange ends (Figure 3.2b
and Figure 3.14b, d). Figure 3.14 shows these vertical strains obtained for diagonal loading at
drifts of 0.4% and 1.0%. The former corresponds approximately to yield drift while the latter
corresponds to the largest drift that was reached by both TUC and TUD in both diagonal loading
directions.

The strains shown in Figure 3.14 are computed for the inner and outer faces of the wall; for this
purpose the measurements were corrected for the fact that there was an offset of approximately
4 cm between wall face and LVDT. The correction was done assuming that the strains varied
linearly over the flange thickness, i.e., between the LVDT chains on the inner and the outer side
of the flange end.

When the flange ends are under compression (positions E and H), the compressive strains on the
outer flange face that were measured with the lowest LVDT (A = 50 — 150 mm) are up to ~ 2.5
times larger than on the inner flange face (Figure 3.14a-d). When the flange ends undergo tension
(positions F and G) the tensile strains on the outside are again larger than on the inside but only
by a factor up to ~ 1.4 (Figure 3.14e-h). This strain gradient was observed also for symmetric
loading positions (NS direction) but was significantly larger in the case of diagonal loading. The
large strain gradient under diagonal loading diagonal loading promotes the out-of-plane buckling
of the flange ends (Section 3.3.3.1). As discussed in Section 3.3, TUC failed after out-of-plane
buckling of the West flange end. For TUD, the out-of-plane buckling was not critical since due
to the increased axial load ratio the tensile strains at the flange ends, which are crucial for the
triggering out-of-plane buckling [PP93], [CE99], were approximately 60% smaller than for TUC.

3.3.3.2 Vertical strains at the base of the wall

The vertical strains at the base of the wall, which are discussed in this section, were derived from
the optical measurement data and were therefore taken on the outer perimeter of the walls. The
first two rows of LEDs, namely the row on the foundation and the first row on the wall, were used
to determine average vertical strains for 7 = 0 — 75 mm. Figure 3.15 shows these vertical strain
profiles at the wall base along the perimeter of the U-shaped section for the diagonal loading
directions again plotted for the two above mentioned drift levels, i.e., 0.4% and 1.0%.
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Figure 3.14: TUC and TUD: Vertical strains on the inside and outside of the flange ends (e-1) computed
from measurements of LVDT chains mounted on the two sides of the flange ends (a-d).
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Chapter 3. Quasi-static tests of two U-shaped walls under diagonal loading

This height interval, 7 = 0 — 75 mm, at the base of the wall represents the relevant section for
the force transfer mechanism from wall to foundation. While the magnitudes of the strains over
h = 0—75 mm may be influenced by the tensile and compressive strain penetration into the
foundation, the general trends in the strain distribution along the wall perimeter (i.e. whether
strains are compressive or tensile) are not affected. Therefore it is possible to compare qualitatively
the experimentally obtained vertical strain distribution with the one estimated using plane section
analysis, a widely used analytical tool which forms the basis of most beam-column formulations.
The two strain profiles: experimental and analytical are compared later in this section and the
discrepancies between the two are discussed.

Figure 3.15b shows the vertical strain distribution at the wall base for loading towards position
E of TUC. Peak values of compressive strains were attained—as expected—at the flange end
but also near the intersection of web and West flange. This second peak compressive strain
indicates the presence of a compression zone at the intersection of web and West flange which is
less evident at drift levels in the elastic range (0.4% drift) and more pronounced after reaching
the nominal moment capacity (1.0% drift). The presence of this compression zone is important
because, it cannot be captured by a plane section analysis but might be at the core of the force
transfer mechanism from wall to foundation for shear forces in the direction of the web as
discussed in the following section.

Comparison with section analysis estimates

The plane section analysis of the U-shaped wall was performed using a zero-length fibre element
in the “Opensees” software [MMGO9]. The U-shaped section was divided into 212 concrete fibres
and 66 reinforcement fibres. The concrete areas were grouped into different zones depending
on the degree of confinement. The Concrete04 material model was used for the stress-strain
behaviour of the concrete fibres, while confinement properties were computed according to
Mander et al.[MPP88]. The Steel02 material model with default parameters was used for the
reinforcement stress-strain behaviour. Monotonic analyses were performed in displacement
control (i.e., curvature control) along the geometric diagonals of the section. Yield, nominal and
ultimate strain limits were determined following recommendations by [PCKO7].

Figure 3.16 compares for position E of TUC the experimentally obtained vertical strain distribu-
tion at the wall base with the one obtained from section analysis. This figure shows that section
analysis fails to capture the parabolic variation of the experimental compressive strains along
the West flange, with the two compressive strain peaks at the West flange end and the corner
between web and West flange. As a consequence, the compression zone at the intersection of
web and West flange where high compressive strains were measured (i.e., almost as high as in the
West flange end) is also not captured with the plane section assumption. As previously stated, the
presence of the extra compression zone at the corner web-flange plays a role in the force transfer
mechanism from wall to foundation.
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Figure 3.15: TUC and TUD: Vertical strains at the base of the wall under diagonal loading directions
determined from optical measurements over the height # = 0 — 75 mm above foundation on the outer
perimeter of the wall. Tensile strains are plotted on the outside of the U-shaped section (positive strains)
and compressive strains on the inside (negative strains). The values of the strains can be measured from the
outer face of the U-shaped section using the strain scale provided in the left down corner of each subplot.
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Chapter 3. Quasi-static tests of two U-shaped walls under diagonal loading

Shear forces can be transferred from wall to foundation only through compression zones at the
base of the wall as only small shear forces can be transferred through a tension zone. At position
E, section analysis yields only one compression zone at the West flange end (Figure 3.16¢). This
would imply that all shear forces are transferred to the foundation at the West flange end. The
shear force in East-West direction, which is originally carried by the web (Figure 3.16a), would
therefore be transferred as an out-of-plane shear force through the West flange end.

The experimental vertical strain profile (Figure 3.16b) indicates however an additional compres-
sion zone at the corner between web and flange which can serve for transferring the web shear
force to the foundation through a more direct in-plane force path. While the test set-up did not
allow measuring the distribution of reaction forces along the base of the wall, the compression
zone at the corner between web and West flange represents strong evidence that at least part of
the shear force in the web is transferred to the foundation through this compression zone.

Similarly, at position F, the experimentally determined vertical strains deviate again from the
plane section analysis estimates (Figure 3.17b-c) due the presence of a compression zone at
the corner between West flange and web (Figure 3.17c and Figure 3.17a-b). For this case, it
is the shear force from the West flange that is most likely at least partially transferred to the
foundation through this corner. Analogous comments apply to positions H and G and to TUD
(Figure 3.17d-1).

Another difference between the experimentally obtained vertical strain distribution at the wall
base and the one obtained from section analysis at position E is the magnitude of the vertical
strains at the East flange end (Figure 3.16). Although as previously stated the magnitudes of the
two vertical strain distributions cannot be directly compared, it is however important to note that
the magnitude of the experimentally determined strains closest to the East flange end is lower
than the reinforcement yield strain even at a drift of 1.0%, i.e., approximately when the nominal
moment is reached. The experimentally determined vertical base tensile strains are expected
to be influenced by tensile strain penetration into the foundation which increases the values of
the tensile base strains [HRS04]. However, the experimentally determined strains are still about
four times lower than the section analysis strains at the East flange end (Figure 3.16c). This
clearly indicates that the experimentally determined tensile strains in the East flange end are
significantly lower than section analysis predictions, and hence so is the tensile force provided
by the reinforcement in this region. Therefore, the contribution of the tension reinforcement in
the East flange to the wall strength is significantly lower than what section analysis suggests,
i.e., not all reinforcement in the East flange is contributing effectively to the wall strength.
Analogous comments apply to positions E and H of TUD. The previous observation on the
effective contribution of the tension reinforcement does not affect positions F and G. For these
positions the flange ends are the most tensioned zones of the section and hence the reinforcement
in these zones contributes significantly to the wall strength. The implications of this are further
discussed in Section 3.3.5.

Such significant deviations from the plane section assumption are possible due to the large shear
deformations of the sections of slender core walls under diagonal loading. Shear deformations
can account for up to 50% of the total wall section deformation when sections are mainly in
tension [BDPO8b] and [ZL.14] and similar values have been found also for the U-shaped walls
presented herein (see Section 3.3.4).
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Figure 3.16: TUC: Compressive zones at the wall base under diagonal loading at position E at nominal
point: nominal forces (a); vertical strain distribution from experimental measurements at the outer side of
the wall (b) and from plane section analysis prediction also at the outer side of the wall (c). The values of
the strains can be measured from the outer face of the U-shaped section using the strain scale provided in
the left down corner of the subplots.
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Figure 3.17: TUC: Compressive zones at the wall base under diagonal loading at position F at nominal
point: nominal forces (a); vertical strain distribution from (b) experimental measurements and from plane
section analysis prediction (c). The values of the strains can be measured from the outer face of the
U-shaped section using the strain scale provided in the left down corner of the subplots.

Influence on confinement lengths

An important issue that results from the analysis of vertical strain profiles at the wall base is the
size of the compression zone at positions H shown in Figure 3.18 but also at position E. At these
positions the compression zones are very deep (in particular along the outer perimeter). This large
compression zone creates the potential for large compressive strains outside the confined area and
hence for concrete crushing outside the confined boundary elements. Figure 3.18 compares the
extent of the compressed flange zone under diagonal loading with the flange end in compression
(positions H or E) against the compressed zone under symmetrical loading with both flange ends
in compression (position C). The strain levels are compared for 0.6% drift which is the largest
drift for which the wall was loaded to positions C and H.

Both experimental data and section analysis results indicate that the compression zone is signifi-
cantly larger at position H (and by extension also at E) than at C. Hence the diagonal loading case
with the flange ends in compression should be the determining one for computing the confinement
length of the flanges.
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Figure 3.18: TUC: Vertical strains at the base of the wall for loading with the both flange ends in
compression (position C) and with one flange end in compression (position H): loading positions (a),
experimentally determined on the outer wall (b) and section analysis (c). Tensile strains are marked as
positive and compressive strains negative. The values of the strains can be measured from the outer face of
the U-shaped section using the strain scale provided in the left down corner of the subplots.

3.3.4 Shear to flexural displacements ratios

Typically the total horizontal displacement of a RC wall is considered to be composed of:
flexural deformations (including base rotation due to strain penetration into foundation), shear
deformations and sliding displacements at the wall base. In order to investigate the contribution
of the shear displacements to the total displacement, the shear to flexural displacements ratio
(As/Ay) is generally used as an indicator. This ratio was found to be constant over the inelastic
range for flexure-controlled walls [Daz00], [BDP11] and [ZL14].

For the two tests presented in this paper, the A;/Af ratios were determined from the optical
measurement data. For each wall section component, the LED grid was divided into rectangular
elements each spanning horizontally between the two outer LED columns and vertically between
two consecutive LED rows. For each such rectangular element, flexural deformations were
computed by double-integration of the curvatures and shear deformations were computed from
the change in length of the diagonals of the elements, according to the procedure explained
in more detail in [Han13]. The procedure for computing the curvatures was slightly modified
by assuming a best linear fit of the vertical displacements over each row of LEDs. Flexural
deformations at the height of load application were derived assuming that curvatures decrease
linearly to zero from the top of the measurement grid (~ 1.7 m) to the height of load application
(hgw = 3.35 m and hys = 2.95 m). Over this same height interval shear deformations were
considered to be zero, as such deformations concentrate mainly in the plastic hinge region
[HRSO04] and [BDP11] and hence below the height of ~ 1.7 m.

The sliding displacements at the wall base were determined as the difference in horizontal
displacements of the foundation row of LEDs and the first row on the wall (measuring height
h =0—75 mm). In agreement with findings in [BDPO8b], sliding displacements were small
accounting for a maximum of 3.7%, 5% and 3.5% of the total top displacement for the web, West
flange and East flange respectively for TUC at 2.5% drift and accounted for less than 2% for all
wall sections of TUD. Therefore the sliding displacements were included in the computation of
the shear displacements.
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3.3. Test results

Previous experimental research on RC core walls by [BDP0O8b] and [ZL.14] found that the
contribution of shear displacements to the total displacements depends strongly on the loading
direction, with the largest contribution being when wall sections (flanges or web) are under net
tension. For U-shaped walls, this is the case for the web at positions E and H, the West flange
at position F and the East flange at position G. The shear displacements for these loading cases
were found to be significantly larger than those for typical slender rectangular walls ([BDPO8b]
and [ZL.14]). These trends are confirmed also by the two wall tests presented herein (Figure
3.19b, c and Table 3.4). The shear deformations are as large as ~ 50 — 70% of the flexural
deformations for the web at positions E and H (Figure3.19c — left), and as large as ~ 60 — 100%
of the flexural deformations for the flange under tension at diagonal loading: positions F and
G (Figure 3.19b —right). For both the flanges and the web mainly in tension at these loading
positions, the contribution of the shear deformations to the total deformation increased with
higher axial load ratio (Figure 3.19b-c). Higher axial load ratio leads to higher shear demand on
the wall sections, hence smaller crack angles with vertical axis of the wall (Section 3.3.2) and
therefore larger shear deformations [HRS04], [BDP11], [Han13].

The longitudinal reinforcement layout (concentrated or distributed) also influences the contribu-
tion of the shear displacements to the total displacements: A, /Ay ratios are larger for the flange
with concentrated reinforcement layout than for the flange with distributed reinforcement layout
case [Bru09] and [RA14]. Also this trend is confirmed by results from TUC and TUD, by com-
paring the two flanges with concentrated (West) and distributed (East) longitudinal reinforcement
distribution under symmetric loading conditions. More precisely A, /A ratios are compared for
the NS cycles — positions C and D (Figure 3.19d) and for the diagonal cycles — West flange at
positions E and F with East flange at positions H and G (Figure 3.19b). A;/Ay ratios are averaged
over the drift range over which the A;/Ay ratios are approximately constant, i.e., 0.6% to 2.0%
drift or 1.0% — 2.0% drift (flange in tension at positions F and G) (Figure 3.19), are given in
Table 3.4.

The flange with concentrated reinforcement layout (West flange) leads to larger Ay /Ay ratios
than the flange with distributed reinforcement layout (East flange). The difference in Ay/Af
ratios results from the different longitudinal reinforcement ratios of the wall section between the
boundary elements, which is smaller for the concentrated reinforcement layout. As a result, crack
widths are larger in this area (Section 3.3.2) and so are shear deformations. This holds for either
test units irrespective of whether the flange is mainly under tension (positions F, G and D) or
compression (positions C, E and H). While the difference in percentages is substantial (~ 14% to
~ 44%), the absolute difference in A;/A ratios between the two flanges is only significant when
the flanges are in tension and the wall is loaded in the diagonal direction (difference in Ay /A
ratios of 0.20 and 0.29) and relatively small when the flanges are in compression, i.e., as small as
0.06 (Table 3.4).
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Figure 3.19: TUC and TUD: shear to flexural displacement ratios for: the flange under compression at
position E and H (a), web under compression at positions F and G and under tension at E and H (b) and
both flanges at positions C and D (c)
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Figure 3.20: TUC and TUD: comparison of the top displacement obtained as the sum of flexural and
shear displacements, derived from the LED measurements, with the top displacements Dtot as measured
by the top LVDTs and corrected for foundation flexibility. Comparison is done for the two wall flanges,
West and East at positions E, H and C.

This does, however, not apply to TUD when the flanges are in compression: here the A;/Af
ratios are slightly larger for the flange with distributed reinforcement (East flange) than for the
flange with concentrated reinforcement (West flange). It is postulated that this small difference
stems from the assumptions behind the derivation of the flexural displacements: the flexural
displacements were computed fitting a linear strain profile over the flange length, which yields for
the concentrated reinforcement layout under high axial forces a poorer fit than for the other cases.
As aresult, the flexural displacements as well as the total displacements tend to be overestimated
(Figure 3.20).
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Table 3.4: Average shear to flexural deformation ratios: comparison between symmetric loading positions
for the two flanges with concentrated and distributed reinforcement

Flange in compression Flange in tension
Flange Pos. E/H Pos. C Pos. F/G Pos. D
TUC
Distrib. (East) 0.18 0.10 0.54 0.21
Conc. (West) 0.24 0.14 0.74 0.24
Difference distr.-conc. 0.06 0.04 0.20 0.03
Percentage difference [%] 33% 40% 37% 14%
TUD
Distrib. (East) 0.19 0.11 0.69 0.22
Conc. (West) 0.13 0.09 0.98 0.26
Difference distr.-conc. -0.06 -0.02 0.29 0.04
Percentage difference [%] -32% -18% 42% 18%

3.3.5 Comparison of experimentally determined moment capacities with section
analysis estimates

The U-shaped wall strength capacity under diagonal loading was shown to be significantly
overestimated by a plane section analysis, especially for loading with one flange end in com-
pression (positions E and H) [BDPO8b]. For the two U-shaped wall tests presented here, the
experimentally determined moment-curvature hystereses are compared with the values obtained
from section analysis (Figure 3.21). The numerical model used for the section analysis was
briefly described in Section 3.3.3.2. The experimental curvature was determined from the LVDT
measurements, corrected to filter-out the influence of tensile and compressive strain penetration.
For this, the procedure used by Hines et al. [HRS04] was employed. The best linear fit line of the
curvature profile over the height interval h=50-850 mm was extrapolated to the wall base and
the intersecting value was taken as the experimental base curvature (Figure 3.20d). The SRSS
moment was computed as:

Msgss = 1/ (MI%W —I—MI%,S) . Sigl’l(ANs) 3.3)

where Mgw and Mys are the moments at the base of the wall for bending around the axis
perpendicular to the web and parallel to the web respectively. The SRSS value was multiplied by
the sign of the NS displacement for plotting the hysteresis loops consistently.
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Figure 3.21: Comparison between the experimentally determined moment-curvatures and results from
plane section analysis (PSA) for the diagonal loading directions (a) for TUC (b-d) and TUD (e-i). The
position of the nominal point is indicated in the moment-curvature relationships for both experiemental
(round marker) and plane section analysis (square marker).

For both test units, section analysis overestimates the SRSS moment at positions E and H by
~ 15 to 25%. For position F of TUC and G of both TUC and TUD the match is relatively good
(Iess than 10% overestimation) (Figure 3.21 b-c, e-f). For position F of TUD the overestimation
is slightly higher (~ 12%) but this is because the maximum moment capacity was most likely
not reached for this position due to prior wall failure in the other diagonal direction (see Section
3.3.1.2 and compare Figure 3.21e and f). The SRSS moment capacity is overestimated by section
analysis because it fails to capture the experimentally determined vertical strain distribution at
the base of the wall under diagonal loading (see discussion in Section 3.3.3.2).

More specifically, plane section analysis overestimates the flange width over which the tension
reinforcement contributes effectively to the strength capacity of the wall and hence overestimates
also the wall moment capacity. This effect was found to be important at positions E and H (see
Section 3.3.3.2) and hence explains the larger moment overestimations at these loading positions.
In addition, plane section analysis does not capture the extra compression zone at the corner
web-flange (see Section 3.3.3.2). Wall moment capacity estimated with plane section analysis
accounts for this zone as being in tension and hence the reinforcement in this corner contributes
to the wall strength which should not be the case as these zones are in compression (Figure 3.16
and Figure 3.17). This compression zone is again more evident at positions E and H (Figure 3.15
b, d, f, h) and less important for position F and G (Figure 3.15 c, e, g, i) hence also the relatively
smaller moment overestimations for the latter loading positions.
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3.4 Conclusions

This chapter presented results from the experimental tests of two U-shaped walls under quasi-
static loading along the diagonal directions of the section, which were loaded up to axial load
failure. The main objective was to investigate the specific behaviour of U-shaped walls under
diagonal loading. In addition, the effect of distributing the longitudinal reinforcement along
the wall length instead of concentrating it in the boundary elements was studied. From the
experimental measurements and observations the following conclusions concerning the behaviour
of U-shaped walls under diagonal loading were drawn:

e The plane section assumption, which is the basis of simple analysis tools for RC walls, does
not hold for the U-shaped walls under diagonal loading since it fails to capture the presence
of additional compression zones at the corners between web and flange. Moreover plane
section analysis overestimates the width of the flange over which the tension reinforcement
contributes to the wall moment capacity. Both these effects result in overestimations of the
moment capacity of U-shaped walls with plane section analysis for diagonal loading with
largest overestimations for loading with the flange end in compression.

e Flanges of U-shaped wall subjected to bidirectional loading seem prone to out-of-plane
buckling. For rectangular walls loaded in-plane, the out-of-plane instability is mainly
caused by construction imperfections. For flanges of U-shaped walls, out-of-plane buck-
ling of the flange ends is in addition promoted by the significant vertical strain gradient
across the flange width when the wall is subjected to diagonal loading, which leads to an
eccentricity of the axial force acting on the boundary element.

e The compression depth of the flange ends is the largest under diagonal loading with one
flange end in compression, and hence the confinement length of the flange end should
be estimated from this loading case. Particular attention should be given to adapt the
confinement reinforcement to the longitudinal reinforcement layout used, as distributed
reinforcement layout will generally require smaller stirrup spacing due to the smaller
vertical bar diameter and longer confinement lengths.

e The axial load ratio, which was the main varying parameter between the two tests, was
found to influence the wall ultimate displacement and the failure mode. The higher axial
load ratio reduced the ultimate displacement capacity of the wall as the failure modes of
both test units were compression-controlled. Both walls failed under diagonal loading with
one flange end in compression, and their failure modes involved concrete crushing in the
flange unconfined part. All these observations underline: (1) the importance of proper
confinement of the flange ends to ensure the wall displacement ductility as well as (2) the
importance of distributing more than the minimum required longitudinal reinforcement
content within the unconfined concrete part of the wall to delay or avoid excessive concrete
crushing in these regions.
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The experiments showed that the longitudinal reinforcement layout influenced the following
mechanisms:

Bar buckling : For distributed reinforcement layouts, the diameter of the longitudinal bars in
the boundary elements is typically smaller than for concentrated reinforcement layouts.
For the same stirrup spacing, bars in the distributed reinforcement layout will therefore
buckle and fracture at smaller drifts.

Out-of-plane buckling of the boundary element over the height of the plastic zone : Mechan-
ical models have shown that the larger the longitudinal reinforcement content of the bound-
ary element, the more prone it is to buckling. This was confirmed by the failure mode of
TUC, where only the flange with the concentrated reinforcement developed an out-of-plane
failure. Hence, one possible way of minimising the potential for out-of-plane buckling of
the flange ends is to distribute the longitudinal reinforcement along the wall length.

Compression zone depth : Distributed reinforcement layouts lead to larger compression zone
depths, which increases the susceptibility to concrete crushing. This was observed for
TUD, where the compression depth extended into the non-confined part and a sudden
crushing of the entire flange with distributed reinforcement was observed.

Crack widths : A distributed reinforcement layout features higher reinforcement contents in the
wall section between the boundary elements than a concentrated reinforcement layout. The
experiments showed that the increased reinforcement content helps controlling the crack
widths in this area.

Shear deformations : As a result of the smaller crack widths, distributing the longitudinal
reinforcement reduced also the shear deformations. This seems particularly important
for U-shaped walls as shear deformations can account for up ~ 40 — 50% of the total
deformation when the flanges or the web are mainly in tension.

The experimental data gathered from the two tests will complement the limited database of core
walls subjected to bidirectional loading. This data will serve as validation for future numerical
and mechanical models.

3.5 Dataset

The experimental data from the two quasi-static cyclic tests was made publicly available. The
Appendix of this report contains the link where the data can be downloaded and it also describes
how the data is organised.
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4. Experimentally derived quantitites
for the plastic hinge model

4.1 Introduction

Most of the equations for quantities involved in plastic hinge (PH) analysis are empirical or
semi-empirical and have been mainly developed for rectangular walls or even for beams and
columns (see Section 2.2.2). The suitability of these equations for the plastic hinge analysis of
core walls has been only marginally assessed [BDPO8b], [SS™13] despite the popularity of the
the plastic hinge method within the design engineering community. Therefore, in this section,
existing estimates of plastic hinge quantities are compared to experimental results from four
U-shaped wall tests, namely to two quasi-static cyclic tests presented in Section 3 (TUC and
TUD) and to two previous tests by [BDP08b] (TUA and TUB), with the following objectives in
mind:

e asses suitability of the state-of-the-art PH estimates for application to U-shaped walls and
establish if new estimates are required

e derive experimental quantities for PH analysis using a consistent approach in order to allow
validation with numerical models

The findings in this section aim to complement the previous study by [BDPO8b] on the suitability
of the state-of-the-art PH estimates for application to U-shaped walls. Note that some of the
experimentally derived quantities for TUA and TUB might be different from the original reference
since procedures for their derivation were modified in this chapter. Besides the comparison with
the estimates, the experimental results will also be used in Chapter 5 to validate two numerical
models for U-shaped walls, which in turn will be used for parametric studies in Chapter 6.
Therefore the derivation procedures of the PH quantities from experimental results required a
more consistent approach. These procedures will be presented throughout this chapter for each
investigated quantity.
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In the application of the PH analysis, the force-displacement relationship is obtained from a
moment-curvature response of the wall base section using estimates for the shear to flexural
displacements ratio Ay /Ay, the plastic hinge length L, and the strain penetration length L,
(Figure 4.1). The moment-curvature response can be obtained from section analysis or its bi-linear
idealisation can be directly obtained from estimates of the key quantities, such as for example the
yield curvature ¢,. Therefore, in this section the following experimentally derived quantities are
compared to the estimates:

e Yield curvature ¢,
e Yield displacement A,
e Plastic hinge length L,

e Ultimate strain limits

Shear displacements A

In addition, the effective stiffness K,y of the U-shaped walls is investigated for the different
loading positions. Although K,y is not a necessary quantity in the application of the PH model
is can be derived straightforwardly from PH quantities as the ratio between first yield force and
first yield displacement K, rr = F,/ A;. This is equivalent to the ratio of between nominal force
and nominal yield displacement K,y = F, /A,. The effective stiffness K, /s is an useful quantity
in the analysis and design of buildings with RC walls, e.g. in linear analyses of RC buildings
with walls for estimating the period of the structure.

The chapter starts with Section 4.2 which presents the derivation of the displacement components,
i.e., flexural and shear displacements, necessary in the further derivation of the PH quantities. The
experimental PH quantities are then compared to estimates in the order listed above. Particular
emphasis is placed on the yield displacement A, results and the corresponding estimates (Section
4.4). The assumption of a linear curvature profile at first yield [PCK07] and modifications to
account for the extent of cracking over the wall height are also investigated. The chapter ends
with a section on the effective stiffness of U-shaped walls (Section 4.8).

4.2 Experimentally determined displacement components

During the testing of test unit C (TUC) and test unit D (TUD) (Section 3), the wall behaviour was
monitored by means of two different measuring systems, namely: (1) a conventional measurement
system composed of linear variable differential transducers (LVDTs) and load cells and (2) an
optical measurement system composed of active light emitting diodes (LEDs) glued to the outer
surface of the wall and three cameras tracking their displacements during the test. The two
systems are presented in detail in Section 3. While the conventional measurement system was
also used for the monitoring of TUA and TUB (|[BDP08b]), the optical measurement system
was newly introduced for TUC and TUD. A similar optical measurement system was previously
used for rectangular RC walls by [Han13], which presents also procedures for derivation of
displacement components from such measurements.
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Figure 4.1: Plastic hinge analysis - obtaining the force-displacement response from the moment-curvature
response by means of several quantities: shear to flexural displacements ratio A;/Ay, strain penetration
length L, and plastic hinge length L,

Having two independent measuring systems has allowed the computation of the displacement
components in two different ways and hence the cross-checking the experimentally derived data.
This section explains how the displacements components of TUC and TUD have been derived
from the two measurements systems.

Typically the total horizontal displacement of a RC wall is considered to be composed of:
flexural displacements (including base rotation due to strain penetration into foundation) and
shear displacements (including sliding displacements at the wall base). In general, the flexural
displacements can be determined by double-integration of the average curvatures over the height
of the wall. The shear displacements can then be computed through the so-called “indirect”
method: by subtracting the flexural displacements from the measured top horizontal displacement.
Alternatively, if the measurement system permits, the shear displacements can be computed
directly from the shear distortion of instrumented rectangular panels on the surface of the wall.
All these methods are further explained in the following.

For the conventional measuring system, curvatures were determined from the average strains of
the LVDT chains mounted at the outside edges of the wall for each wall section (web or flanges)
and also for the diagonal directions. Curvatures along the wall height for the East flange were
computed, for example, as in [BDPO8b]:

_ Ose i/dhypri — ONE i/dhiypr,i

9 " @.1)

where &5 ; and Syg; are the measured displacements in the i-th instrument from the wall base,
dhrypr,; is the measuring base length of the i-th instrument and ¢ is the horizontal distance
between the SE and NE LVDT chains.
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The shear displacements were determined from the conventional measurement system through
the indirect method: by subtracting the flexural displacements from the total top horizontal
displacements. Shear displacements were computed in this manner for all wall sections, i.e., web,
West flange and East flange, and also for the diagonal direction of the wall.

Flexural and shear displacements were also computed from the optical measurement system. For
each wall section component, the LED grid was divided into rectangular elements each spanning
horizontally between the two outer LED columns (d = 8 x 100 mm for the web and d = 11 x 100
mm for the flanges) and vertically between two consecutive LED rows (dh;gp; = 125 mm for
TUC and dhrep,; = 100 mm for TUD) (Figure 4.2). Flexural displacements were computed as in
Equation 4.2a, assuming a constant curvature over the height of the rectangular element dhygp ;.
Due to premature loss of LEDs from the outer columns of the wall section, the curvatures were
computed using a best linear fit of the vertical displacements over each row of LEDs. The shear
displacements were also computed from the rectangular LED elements from the change in length
of the element diagonals (Equation 4.2b). No correction with curvature was performed for the
shear deformations as it was assumed that curvatures are constant over the height dh;gp ;, for
which the shear displacements were computed [Hir84].
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Figure 4.2: Sketch for the calculation of flexural and shear displacements from the optical measurement
data, for one rectangular element. A rectangular element taken from the LED grid on the web of TUC is
given as an example.
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dh?

Ari=Ari 1 +6_1dh+ ¢l2 (4.2a)
Di,—D3,

Asi = Dyimt +— (4.2b)

For both measuring systems, flexural displacements at the height of load application were derived
assuming that curvatures decrease linearly to zero from the top of the measurement grid (~ 1.7 m
for the LED grid and 2.65 m for the LVDT chains) to the height of load application (hgw = 3.35
m and /ys = 2.95 m). Over this same height interval for the LED grid, the shear displacements
were considered to be zero, as such deformations concentrate mainly in the plastic hinge region
[BDP11], [HRSO04] and hence below the height of ~ 1.7 m.

The sliding displacements at the wall base of TUC and TUD could be determined only from the
optical measuring system as the difference in horizontal displacements of the foundation row
of LEDs and the first row on the wall (measuring height # = 0 —75 mm). In agreement with
findings in [BDPOS8Db], sliding displacements were small accounting for a maximum of 3.7%, 5%
and 3.5% of the total top displacement for the web, West flange and East flange respectively for
TUC at 2.5% drift and accounted for less than 2% for all wall sections of TUD. Therefore the
sliding displacements were included in the computation of the shear displacements.

All deformation quantities of TUC and TUD were corrected for foundation flexibility, i.e., sliding
and uplift of the wall foundation with respect to the strong-floor of the testing laboratory. Top
displacements due to foundation flexibility were derived from the optical measurement data, and
accounted for 6 — 8% of the top displacements at yield drift and decreased thereafter.

4.3 Yield curvature

4.3.1 Definition

Yield curvature is a concept introduced for design purposes and it marks the boundary between
elastic and inelastic phase in a bi-linear moment-curvature relationship describing the flexural
behaviour of an RC wall (Figure 4.1). It is defined as in Equation 4.3 where ¢J’, and M, are the
curvature and respectively the moment corresponding to first yield, while M,, is the moment
corresponding to nominal point or to serviceability limit state (Figure 4.1).

/Ml’l
o, = ¢yﬁy 4.3)
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4.3.2 Determining the experimental first yield point

Typically the first yield point is defined for section analysis as the point on the moment-curvature
response when the most tensioned reinforcement first reaches the yield strain or when the most
compressed concrete fibre reaches a strain of -0.002, whichever occurs first [PCK07]. When
assessing the first yield point from experimental data, the question arises which experimental
strains should be taken for the comparison with these limit state strains.

4.3.2.1 Strains at base of the wall

Comparing the experimental strains recorded near the wall base (the section of the largest moment
demand) with plane section analysis strains will only lead to unreliable results as anchorage
deformation (or strain-penetration effects) heavily influences the magnitude of these strains.
The term ”strain penetration” describes the following phenomena: (1) the tensile strains in the
longitudinal reinforcement do not drop to zero immediately below the wall base, but decrease
gradually with depth into the foundation and (2) similarly, on the compressed side of the wall,
below the wall base, the concrete compressive strains also dissipate with depth into the foundation
[PCKO7]. As a consequence, the measured tensile and compressive strains near the base of the
wall are not representative for the deformation of the wall section itself but contain also the
deformation due to strain penetration into the foundation, e.g. [HRS04], [BDPOS8b]. For the cases
of TUA to TUD, the vertical strain measurements from the first LVDT above the wall base over
the height # = 0 — 50 mm and the first row of LEDs (for TUC and TUD only) from the base
(h =0 —"75 mm) included this strain penetration effect.

4.3.2.2 Procedures for determining first yield

However, different procedures can be used to estimate the first yield point and/or the corre-
sponding curvature ¢y’ from the experimental data. For example, [BDP0O8b] determined the first
yield point of TUA and TUB, based on the comparison of the average LVDT strains measured
over h = 50 — 250 mm, i.e., just above the base strains, with the limit strains. The first yield
curvature was then computed as the extrapolation to the wall base of the best-linear fit of the
curvature profile over the height of # = 50 — 1650 mm, interval over which the experimental
curvatures were found to be linear. A procedure of computing the base curvature from the
curvature measurements above the base with a best linear fit was suggested by [HRS04].

Another possible procedure to find the first yield point is the one used by [DBB09] to relate dif-
ferent serviceability and ultimate limit states to section analysis strains. More precisely, [DBB09]
related the curvature obtained from section analysis with the experimental base curvature, which
was taken as the extrapolation to the wall base of the best-linear fit of the curvature profile over
the plastic zone length L, (i.e., height over which curvatures were larger than the yield curvature).
If the experimental base curvature would be computed as in the procedure by [HRS04], then this
curvature can be compared with the one from section analysis to determine the first yield point.

In order to derive the first yield curvature with any of the above procedures, it is necessary to
check the height over which the curvature profile can be considered as linear. Therefore, the
experimental curvature profiles at first yield are discussed in the following section.
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4.3. Yield curvature

4.3.2.3 Curvature profiles and cracked height at first yield

An initial determination of the first yield point was done for all test units using the procedure
by [BDPOS8Db], i.e., by comparing the average LVDT strains above the wall base (h = 50 — 250
mm) with the limit strains previously mentioned. The LVDT strains at the wall base (h = 0 — 50
mm) were not considered due to the inclusion of the strain penetration effect, as previously
mentioned. Instead, the strains averaged over the second LVDT (h = 50 — 150 mm) and the third
(h =150 — 250 mm) LVDT from the base were taken for the comparison based on the crack
spacing at first yield [BDPO8b].

The experimentally determined curvature profiles from all test units and for all loading positions,
obtained at first yield determined as above, are plotted in Figures 4.3 and 4.4 for all four test units.
The shape of the curvature profile at first yield is clearly not linear over the shear span of the wall
H,i.e., H=3.35 m for the EW direction and H = 2.95 m for all other loading directions. The
shape of these curvature profiles can be approximated by a rather bi-linear trend: linear from base
up to about half the shear span, then again linear but with a different slope up to the shear span.
The linear branch from the wall base to about half the shear span, corresponds approximately to
the height of the wall which is cracked at first yield H,,, while the upper part of the wall remains
uncracked.

In Figures 4.3 and 4.4, the extent of cracking over the wall height at first yield H,., was computed
assuming a linear moment profile over the wall height. H., was determined as the maximum
value between the height where the moment equals the cracking moment M, and the wall length
l,yq;7 Which was included to account for tension shift effects (Equation 4.4). M., is the analytical
cracking moment derived as in Equation 4.5 [PP75], M, is the experimentally determined moment
corresponding to the first yield point and H is the wall shear span depending on the loading
direction.

Her = max(Lya; (1 — M /My)H) (4.4)
where
N 1
o= (fi + Ag)y, (4.5)

where f; = 0.33\/f. is the tensile strength of concrete, with f, as the concrete compressive
strength at the day of testing, where N /A, is the absolute value of the axial load ratio with N as
the axial load and A, as the gross wall section area, and where /, is the moment of inertia of the
wall section and y; is the distance between the gravity centre of the cross-section and the extreme
tensioned fibre, both latter quantities depending on the loading direction.
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Figure 4.3: TUA and TUB: experimentally derived curvature profiles at first yield over 7 = 50 — 2650
mm for all loading positions. The curvature at the wall base over # = 0 — 50 mm was not plotted here as it
captures mainly the strain penetration effects and affects the readability of the graph due to its comparable
large value.

The extent of cracking determined analytically could not be verified by means of experimentally
determined strains since the cracking strain corresponded to vertical displacements of 0.02 to
0.06 mm. Such displacements represent approximately 1 to 6 %o of the LVDT measurement range
and hence the reliability of such measurements seems questionable. However, the analytically
computed H,, does seem to provide in most cases an approximately good estimate of the height
over which the curvatures are linear from the base up the wall.
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Chapter 4. Experimentally derived quantitites for the plastic hinge model

4.3.2.4 Alternative procedure based on strains

As stated in the Introduction (Section 4.1), the experimentally derived PH quantities will be used
for validation purposes with a detailed numerical model in Section 5.2, and next the validated
numerical model will be used for parametric studies for walls with varying height, cross-section
geometry and axial load ratio (Section 6). Using the strains over the height # = 50 — 250 mm to
determine the first yield point of all the different wall models seems hardly sound. Therefore, it is
necessary to use a standardised procedure for determining first yield point, which can be applied
irrespective of the wall height, section geometry or axial load ratio.

A procedure which links experimental results with section analysis through local deformations
such as strains or curvatures is desirable as it allows the comparison of corresponding global
quantities such as wall yield displacement or stiffness with estimates or with numerical results.
Since the interest is also to compare the yield curvatures from section analysis with those experi-
mentally obtained, the experimentally determined vertical strains will be used for determining
the first yield. As previously discussed, the strains recorded at the base of the wall include the
effect of the strain penetration. Hence a similar procedure to the one applied for determining the
base curvature can be applied also for determining the base strains, i.e., base strain is determined
as the intersection between the best linear fit of the strains over the cracked wall height at first
yield and the wall base. Then, the first yield is determined at the instant when this base strain
reaches first one of the first yield limit strains: -0.004 concrete strain or &, reinforcement yield
strain. The strain profiles and the corresponding linear fit are shown in Figures 4.5 and 4.6.

While the assumption of linearity over the cracked height has a physical meaning mainly for the
tensile strains, it does seem to provide a good approximation also for the compressive strains at
first yield although the compressive strains tend to typically concentrate towards the base of the
wall (Figures 4.5 and 4.6). The first yield is triggered by the reinforcement strain in all cases
except at position C and H of TUD due to the large axial load ratio of this test unit. These results
are confirmed by moment-curvature (plane section) analysis . The model used for the section
analyses is described in detail in Chapter 5 but some results will be anticipated in this section.

4.3.3 Comparison of experimental results with estimates and section analysis re-
sults

Using the procedure for determining first yield instant previously outlined, based on the linear
fit of strains above the wall base, the experimental yield curvatures are evaluated. The first
yield curvatures are derived from the curvatures above the wall base at first yield as described
in Section 4.3.2.3 while the nominal to yield moment ratio M, /M, is computed from section
analyses (see Chapter 5). The experimental yield curvatures are compared to estimates and to
section analysis results under the form of dimensionless yield curvatures Ky (Ky = @ylyq11/€sy) in
Table 4.1. For improved readability, the results are shown also in graphical form in Figure 4.7.
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4.3. Yield curvature

When computing Ky, the wall length /,,,;; was taken as the length of the web /,,,;, for loading
along the web, as the length of the flanges /5, for loading along the flanges, and as the geometric

diagonal of the wall 1y, = lvzveb + l%l for loading along the diagonal direction. The experimental

results for K, are compared to section analysis predictions, again anticipated here from Section
5.1, as well as to existing estimates for core walls (Section 2.2.2). The estimates from [Pau02],
[PCKO7] and [SST13] are all derived from section analyses and yield rather similar values
between each other.

The section analysis predictions match very well the existing estimates for the principal loading
positions (A, B, C and D). No estimates for diagonal loading directions are currently available.
Except at position B of TUC where the experimentally determined yield curvature is rather
high (~ 36% difference with section analysis and also large value as compared with other
experimental values at positions A or B), the difference between the experimentally determined
yield curvatures and the section analysis predictions are below 15% and the match is hence fairly
good. Therefore the experimental ¢)’, and K, determined with this approach will be used from
here on in determining further experimental PH quantities.

Table 4.1: TUA to TUD: comparison of the experimentally determined dimensionless yield curvatures K,
with section analysis results and existing estimates

Pos. Experiment Section analysis Estimates

TUA TUB TUC TUD TUA TUB TUC TUD [Pau02] [PCKO7][SS*13]
A 141 142 160 180 136 135 153 164 140 1.50 -
B 1.39 128 195 159 136 135 143 153 140 1.50 -

1.85/  2.06/
C 1.66 176 194 236 162 174 2.00 205 1.80 2 15%  2.09%
D 146 133 130 142 146 141 149 155 140 1.50 11'65554
E 196 219 213 235 190 200 225 231 - - -
F 205 180 214 219 185 188 198 2.04 - - -
H - - 219 243 - - 226 232 - - -
G - - 1.96 2.21 - - 220 221 - - -

I+ Values for concentrated/distributed reinforcement layout.

The overall match between experimentally determined and section analysis predictions for the
yield curvatures is further improved if the M, /M, values from section analysis used for the
experimental determination of yield curvatures are replaced by the experimentally determined
M, /M, values (see Figure 5.7). Using the M, /M, values from section analyses here, allowed
to obtain yield curvatures also for the principal loading directions of TUC and TUD, which did
not reach their nominal moment during the experiments as will be discussed in Section 5.1.2.4.
These results are presented in detail in Section 5.1.2.4 but they are anticipated here to conclude
that the sectional analyses can be used to estimate the yield curvature for U-shaped walls for the
principal as well as for the diagonal loading directions.
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Figure 4.7: TUA to TUD: comparison of the experimentally determined dimensionless yield curvatures
K, with section analysis results (PSA) in (a) and with existing estimates in (b)

As a consequence, also existing estimates for yield curvatures of core walls under the principal
loading directions derived from section analyses, provide good estimates of yield curvatures
for U-shaped walls. These conclusions are in line with previous findings for TUA and TUB
[BDPOS8b].

4.4 Yield displacement

4.4.1 Experimental yield displacement

Analogous to the yield curvature, the yield displacement A, marks the boundary between elastic
and inelastic phase in a bi-linear force-displacement curve (Figure 4.1b) and it can be computed
according to Equation 4.6 as the first yield displacement A;, times the nominal to yield moment
ratio M, /M,. The experimental first yield displacement can be taken as the top wall displacement
(i.e., at hys = 2.95 m, hgw = 3.35 m and hyj,e = 2.90 m height above wall foundation) at the
instant of reaching the first yield based on strain limits as explained in the previous section
(Section 4.3). Then to obtain the experimental yield displacement, predictions of M, /M, values
from section analyses (Chapter 5) can be used. The experimental yield displacements determined
in this manner are given in Table 4.2 for TUA to TUD together with their corresponding top drifts,
e.g., Oyns = Ayns/hns%. Note that the yield displacements for TUA and TUB have slightly
different values than those given in [BDP0O8b] due to the different procedure for determining the
first yield point.

M,
Ay = A;,ﬁy (4.6)
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Table 4.2: TUA, TUB, TUC and TUD: experimentally determined yield displacements A, and yield drifts
Oy at the height of the shear span H.

Ay [mm] Oy [%]

Pos. TUA TUB TUC TUD TUA TUB TUC TUD
A 6.0 12.4 13.8 18.3 0.18 0.37 0.41 0.55
B 6.7 11.7 14.6 16.6 0.20 0.35 0.44 0.49
C 9.2 12.0 16.1 16.2 0.31 0.41 0.54 0.55
D 14.3 13.2 10.7 16.1 0.48 0.45 0.36 0.54
E 7.9 13.5 11.3 13.1 0.27 0.46 0.38 0.44
F 12.5 134 10.2 18.8 0.42 0.45 0.35 0.64
H - - 8.8 12.7 - - 0.30 0.43
G - - 9.0 12.7 - - 0.31 0.43

4.4.2 Yield displacement estimates

Two approaches are possible for estimating the wall yield displacement, starting from the first
yield displacement. In the most common used approach by [PCKO7], it is assumed that the
wall is fully cracked over the height at first yield, i.e., a linear curvature profile over the height
is assumed (Figure 4.8a). While it is acknowledged that the wall is not fully cracked at first
yield, the intention of the linear curvature profile assumption is to compensate for the strain
penetration into the foundation to some extent for the shear displacements, while for shear critical
RC elements, the shear displacements could be added to this yield displacement [PCKO07].

In the second approach, the yield displacement is estimated by predicting the individual displace-
ments components: flexural displacements including strain penetration and shear displacements
[HRS04], [BDPO8b]. In the following sections, the estimates of the individual displacement
components are discussed with respect to the experimentally derived displacement components.

4.4.2.1 Flexural displacements due to wall deformation

The flexural first yield displacement A; ¢ was experimentally determined by double-integration of
the mean curvatures obtained from the LVDT measured strains (Section 4.2). In order to compare
with estimates, the displacement due to strain penetration A;"S , (Table 4.3) was subtracted from
the total flexural displacements.
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The flexural first yield displacement was estimated first by assuming a fully cracked profile over
the height of the wall (Figure 4.8b and corresponding Equation 4.7 according to [PCKO07]). A
more accurate estimation of the flexural displacements can be obtained if the assumption of a
partially cracked curvature profile is used (Figure 4.8c and Equation 4.8 according to [BDPO8b]).
By examining the experimental curvature profiles at first yield (see Figures 4.3 and 4.4), the
assumption of a bi-linear curvature profile at first yield can also be used (Figure 4.8d and again
Equation 4.7 but with a different factor k£ accounting for the shape of the curvature profile).
The second assumption of the bi-linear curvature profile will result in the lowest top flexural
displacement estimate since the area of the curvature profile is the smallest (Figure 4.8d).

(a) Fy (b) (©) (d)
< =~
jan)
esf =
Veaeeaeacd ~

4 ap, ¢
Figure 4.8: Assumed shape of the curvature profile at first yield over the height of a cantilever wall under
a lateral point load: linear profile accounting for a fully cracked wall(b); offset bi-linear curvature profile

accounting for a partially cracked wall (c) (adapted from [BDPO8b]); and continuous bi-linear profile
based on experimental curvature profiles also accounting for a partially cracked wall(d).

' H?
L= 9 (4.7)

where ¢y’ is the first yield curvature and H is the wall shear span depending on the loading
direction.

H2

8o = ka9 4.8)

where k., is factor accounting for the extent of the cracking over the height of the wall at first
yield and the assumed shape of the curvature profile.

The factor k., in Equation 4.8 can be computed in a similar fashion for the two assumed curvature
profiles which account for the extent of cracking. The factor k., corresponding to a bi-linear
profile with an offset at the cracking height (Figure 4.8c) will be termed k; while the one
corresponding to a continuous bi-linear profile (Figure 4.8d) while be termed k,. For both cases,
the value « in Figures 4.8c,d is the ratio of the cracked to uncracked flexural wall stiffness
(El.;/EIl,). The stiffness of the uncracked wall section EI, was taken as the gross sectional
stiffness depending on the loading direction, while the stiffness of the cracked section was taken
as El., =M,/ ¢}’,. The cracked height was computed analytically as in Equations 4.4 and 4.5.
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Derivation of k; The flexural displacement corresponding to the curvature profile in Figure
4.8c can be estimated by integration of the curvature profile over H or in a simplified manner as:

H? (H—H,,)? (H—H,.)?
— A/ cr cr
Afl - (py? - (pH(:r 3 + ¢Cr 3 (4.9)
From same triangles, ¢, and ¢y, can be written as :
! (H - Hcr)
Qor = Q) (4.10)
! (H - Hcr)
O, =0 @.11)

Finally, combining Equation 4.9 with Equations 4.8, 4.10 and 4.11 and re-arranging, it results:

H 3H2 3H,.
H® H*> H

ky = o+ (1—a)( ) (4.12)

Derivation of k The flexural displacement corresponding to the curvature profile in Figure
4.8d can be also estimated from the integration of the assumed curvature profile over H as in
Equation 4.13 as the sum of: (1) the flexural displacement from the curvature over the cracked
height H,, of the wall A; 7, (2) the flexural displacement due to the rotation over the cracked
height 6y, and (3) the flexural displacement from the curvature over the uncracked part of the
wall.

(H—H,)*

Af72 - Af’Ht‘r + eHcr (H - Hcr) + ¢Cr 3

(4.13)

In order to obtain the flexural displacement and the rotation at the cracked height, a reduced
cantilever structure is used (Figure 4.9b). By writing the Euler-Bernoulli beam equation (Equation
4.14) of the reduced cantilever structure and by applying the corresponding boundary conditions
(i.e., displacement and rotation at the base are zero) one obtains the rotation and the displacement
at any height of the reduced structure (Equations 4.15a and 4.15b).

d*Ay(x)
d%x

M(x) = —EI (4.14)

where x is the height coordinate measured from the top of the cantilever, M(x) = F,x is the
moment depending on x for the case of the reduced cantilever structure in Figure 4.9b and Az (x)
is the lateral displacement of the cantilever depending on x. The height of the reduced cantilever
structure H, can be computed from Figure 4.9a, from same triangles as in Equation 4.16.
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Figure 4.9: Bi-linear curvature profile assumption at first yield over the height of a cantilever wall: full
cantilever wall under lateral point load (a); and reduced cantilever structure for computing the flexural
displacement Ay 5. and the rotation 6y, over the cracked height (b).

F. x3 B F.H> FH’

Ap(x) = 2 4.15
10 =516 " 2Er T 3E (4.152)
F. x> F.H?
O(x) = —-— — 7 4.15b
=517~ 28 (4.15b)
H. ¢!
H, = J (4.16)
q))/r - ¢cr

If Equations 4.15a and 4.15b are evaluated for x = H, — H,, on the reduced cantilever structure,
one obtains the displacement Ay y. and the rotation 6, at the cracked height for the full
cantilever structure. If H, and ¢, computed as in 4.16 and 4.10, respectively are replaced in
Equation 4.15a and 4.15b, while taking EI = El,, and F,H, /El., = (j)y’, one obtains:

'H? H
At h, = e, R+a—o I;’) (4.17a)
(Pchr H,,
0y = -2 l+a—a 4.17b
H,, > (1+ I ) ( )

Finally, combining Equations 4.17a, 4.17b, 4.10 and 4.13, and re-arranging, one obtains factor k,
equal to k., in Equation 4.8:

H?2  3H,.,
k2:a+0.5(1—a)(fH—Cz’+ Hc) (4.18)
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4.4. Yield displacement

Comparison of experimental flexural displacements with estimates In order to judge which
assumption fits better with the experimentally determined values, the experimental flexural
displacements are compared with estimates computed according to the three curvature profile
assumptions in Figure 4.8b, ¢, d. Note that for this comparison the experimentally derived
curvature was used in the derivation of the estimates. The results are plotted in Figure 4.10 for all
test units.

Indeed, assuming a linear curvature profile over the height leads to flexural displacement estimates
A; .1, Which are in most cases significantly larger than the experimental flexural displacements
(i.e., up to ~ 50%). The two assumptions accounting for the cracking height lead to improved
estimates of the flexural displacements due to wall deformation. However, the displacement
derived with the continuous bi-linear profile (Figure 4.8d) provides overall a better match with
the experimental results.
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Figure 4.10: Comparison of experimentally determined flexural displacements with estimates (a-d).
Estimates are based on different curvature profile assumptions: linear curvature profile A} ., , bi-linear
curvature profile with an offset at the cracking height A; f.0f—21, @nd continous bi-linear profile A; fcont—2L"
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Chapter 4. Experimentally derived quantitites for the plastic hinge model

4.4.2.2 Flexural displacements due to strain penetration

The flexural displacements due to strain penetration into the foundation can be computed by
assuming that strain penetration effects produce a rigid body rotation of the wall above the wall
base. It is therefore necessary to know the base rotation Gy’_’sp which is assigned to the strain
penetration. This rotation can be computed as the difference between the measured base curvature
at first yield ¢y’7measm , and the base curvature q)}’, obtained from the curvature measurements above
the base (see Section 4.3), times the LVDT length over which the curvature at base was measured,
i.e., Liypr row1 = 50 mm (Equation 4.19). The top displacement due to strain penetration at first
yield, can then be computed as in Equation 4.20.

6y/,sp = (¢y/,measured - q))lz) -50mm (419)
/ !
Aysp = Oy5pH (4.20)

In order to estimate the displacement due to strain penetration, the notion of strain penetration
length is introduced L; sp> Over which the curvature is considered as constant and equal to the
curvature at the base of the wall section d)}’ Hence the base rotation due to strain penetration can
be computed as in Equation 4.21. While the base curvature can be predicted from section analysis,
the strain penetration length is typically estimated as function of the longitudinal bar diameter d,
and the yield strength of the bar f;. The experimentally derived values of the displacement due to
strain penetration and the strain penetration length are given in Table 4.3.

!/ ! !
Oysp = Lysp¥y “.21)

L’yﬁ sp Values normalised by the bar diameter and yield strength (Table 4.3 columns 10 to 13) are
on average equal to 0.006 for TUA, to 0.010 for TUB, 0.009 for TUC and 0.019 for TUD. These
values are all smaller than the constant 0.022 proposed by Paulay and Priestley [PP92]. The
difference stems most likely from the pre-stressing of the foundation of the test units which
reduced the strain penetration effects [HRS04], [BDPO8b]. To account for this effect of the
foundation pre-stress on the strain penetration length, [BDPO8b] proposed reducing by half the
constant of 0.022. A value of 0.011 agrees well with the overall average L,/ (dfy) values for
the four test units, and hence it will be used in estimating L; ;, and A{ ;. The strain penetration
lengths for the inelastic range are discussed together with the plastic hinge lengths in Section 4.5.

4.4.3 Comparison of experimental yield displacements with estimates

Estimates from both the simplified approach, assuming a linear curvature profile over the height at
yield (Equation 4.22a) and the more complex approach, accounting for shear displacements and
partially cracked profile (Equation 4.22b) are compared here with the experimentally determined
yield displacements. For clarity, the two equations for the yield displacement corresponding to
the two prediction approaches are given below:
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4.4. Yield displacement

Table 4.3: TUA, TUB, TUC and TUD: experimentally determined flexural displacements due to strain
penetration A, . and derived strain penetration lengths L;

Y,sp ),SP

Pos. A, [mm] Ly, [mm] L,/ (dpfy) [-]
TUA TUB TUC TUD| TUA TUB TUC TUD TUA TUB  TUC  TUD
A 00 06 08 1.5 3 7279 125 | 0.000 0.013 0.018 0.028
B 04 05 08 16| 47 68 66 158 | 0.008 0.012 0.015 0.035
C 00 02 03 04 4 15 25 35 | 0.001 0.003 0.006 0.008
D 05 03 03 10| 64 37 37 107 | 0.011 0.007 0.008 0.024
E 00 02 02 05 2 33 32 57 | 0.000 0.006 0.007 0.013
F 06 06 01 10| 94 108 12 126 | 0.016 0.019 0.002 0.020
H - - 03 03 - - 35 40 - - 0.008 0.009
G - - 03 0.7 - - 48 82 - - 0.011 0.018
0.006 0.010 0.009 0.019

Mean

H2
AyiL= ¢y? (4.222)
H? A
AL = ¢y(k27 +L;,SPH)(1 + I;) (4.22b)

where ¢, was computed from section analysis, L; sp = 0.011d, fy while k; factor which accounts
for the partially cracked profile at yield was estimated as in Equation 4.18 and A;/A; was
estimated as in Section 4.7.3.

Note that for the diagonal loading direction, the shear to flexural displacementss ratios were
estimated as a composition of the predicted A;/A values of the web and flanges following the
procedure detailed in [BDPO8b]. The procedure uses the rectangular triangle of the total top wall
displacements along the web, flange and diagonal to derive geometrically the shear displacements
for the diagonal direction (%;)diag as the sum of projections of the shear displacements of the

web and flange onto the diagonal as shown below. f = (ﬁ—;) 1 1s the ratio of the flange equal to

the average ratio of the two flanges for position F and G, and equal to the ratio of the flange in
compression at position E and H.
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Figure 4.11: Derivation of shear to flexural displacements ratio for the diagonal direction (taken from
[BDPO8Db]).

Finally, the experimental derived yield displacements are compared with the two predictions A, 17,
and A, »; in Figure 4.12. Based on the results of the four test units, none of the two approaches
for predicting A, seems to be clearly superior to the other one, with both methods leading to
somewhat reasonable estimates. However the linear curvature profile approach does seem in most
cases to underestimate the yield displacement since the shear displacements of the U-shaped
walls analysed herein are for most loading directions larger than for typical rectangular walls.

The estimate based on predicting the individual components A,>; matches overall well but
tends to overestimate in some cases the yield displacements (as it is the case for TUC). This
overestimation can mainly be traced back to the overestimation of the flexural yield displacements
(Figure 4.10). The large error at position F of TUD for both A, 17 and A, »; is most likely due
to measurement and experimental derivation method errors: the experimentally derived yield
displacement is significantly larger than at the other loading position (see Figure 4.12).

As stated, none of the two approaches to estimate A, seems superior to the other for the test
units analysed here in. By assuming a linear curvature profile, i.e. wall fully cracked, A, ;; will
tend to compensate for the contribution of the shear displacements. However, if for example
the shear displacements are large, as was the case for the U-shaped walls analysed here, it is
expected that A, 7 values will underestimate the yield displacement. On the other hand, if the
shear deformation are small as it is the case for rather slender walls, A, 17, values will most likely
overestimate the yield displacements. This hypotheses will be further investigated for walls with
a broader range of slenderness ratio by means of parametric studies in Chapter 6.
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Figure 4.12: TUA, TUB, TUC and TUD: comparison of experimentally determined yield displacements
with estimates (a-d). Estimates based on two approaches - predicting the components D, »;, (Equation
4.22b) and the simple approach assuming a linear curvature profile Dy, 1; (Equation 4.22a)
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Chapter 4. Experimentally derived quantitites for the plastic hinge model

4.5 Plastic hinge length

The factors influencing the plastic hinge length L, have been presented and discussed in Section
2.2.2 together with state-of-the-art L, estimates for walls. This section presents the derivation of
the L, values from experimental results, which are then compared to estimates in the literature.
This section discusses also the influence of the loading position and ductility demand on L.
The loading positions and directions considered in the experiments are shown again for clarity in
Figure 4.21.

(a) (b)

Line of action of Line of action of
NS-W actuator NS-E actuator
Web
Y Y Line of action of
-t EW actuator D
West corner East corner G F
West flange East flange A B
North (0)
L] N
West%% East
South
E C H
West flange East flange
end end

Figure 4.13: TUA, TUB, TUC and TUD: naming of the different wall parts and cardinal directions (a)
and loading positions (b).

4.5.1 Estimates for plastic hinge lengths from experimental results

4.5.1.1 Equations for plastic hinge lengths in the literature

State-of-the-art estimates of the plastic hinge length of RC walls have been reviewed in Section
2.2.2. For convenience, the equations that will be compared to experimental results are briefly
repeated in the following.

[PCKO7]a: assessment estimate which assumes the centre of rotation at the base of the wall and
accounts for strain penetration

Ly, = min(0.08,k)H +0.21,,4; +0.022d), f, (4.23)

where k =0.2(f,/fy— 1) with f, and f, equal to the ultimate and respectively yield strength
of the reinforcement, H is the wall shear span, /,,,; is the wall length and d}, is the vertical
reinforcement bar diameter

[PCKO7]d: design version of the [PCKO07]a estimate

Lyp =min(0.08,k)H 4 0.11,,4; + 0.022d), f,, (4.24)
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4.5. Plastic hinge length

[BAI1]: estimate intended as lower bound value of L,, which does not account for strain
penetration but accounts for the axial load ratio N/A, f, while the location of the centre of
rotation is not specified, since L,, was taken half the height of the plastic zone L,

N
Agfe

Ly = (0.05H +0.2L0) (1 = 1.5-—) (4.25)

[Kaz13]: estimate that accounts for the axial load ratio, but does not account for strain penetration
while the centre of rotation is assumed at the middle of the plastic hinge length

N oy

L,,=0.271 1-—
ph wall( Ang fc

)(H /L) (4.26)

where fy), is the yield strength of the transverse reinforcement and f, is the concrete
compressive strength.

4.5.1.2 Particularities for diagonal loading

When estimating the plastic hinge length for the diagonal direction, an appropriate wall length
and height need to be chosen. [BDP08b] argued that either the length of the web or the flanges
should be used since the tension shift term containing the wall length is linked to the shear transfer
mechanism, which mainly works in the plane of the wall sections. Similar argumentation was
made for the choice of the height, and thus L, for the diagonal direction can be taken as either
the L, for the EW cycles or for the NS cycles.

Since under diagonal loading the web typically carries a larger shear stress than the flange, the
spread of plasticity is expected to be dictated by the web. For this reason, the wall length will
be taken equal to the length of the web for the diagonal positions. The shear span will be taken
as equal to hys = 2.95 m since the top displacement for diagonal loading was measured at this
height and the plastic flexural displacement was also derived for this height.

4.5.2 Experimentally determined plastic hinge lengths

As discussed in Section 2.2.2 estimates of the plastic hinge length were derived using different
assumptions for the centre of rotation of the plastic hinge or for the contribution of the strain
penetration term. In order to compare these estimates with experimental results, different L,
values should be derived from the experimental data corresponding to the assumptions of each
estimate.

In the following, two procedures for determining the experimental L, values are discussed. The
first method back-calculates the L, value from the plastic flexural displacement using the plastic
base curvature ¢,, and hence corresponds the L, that best fits the top displacement. In the second
procedure, the L, is simply taken as half of the height of the plastic zone L, i.e., the L, value
directly connected to the real spread of plasticity and independent of the plastic curvature. The
height of the plastic zone L, corresponds to the maximum wall height where inelastic curvatures
spread.
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Chapter 4. Experimentally derived quantitites for the plastic hinge model

4.5.2.1 Plastic hinge lengths back-calculated from top displacement

Plastic hinge lengths L, can be determined from experimental measurements by back-calculating
their value from the displacements measured at the top of the wall and from the plastic curvature
¢, [HRS04], [Han13]. The plastic part of the flexural displacement A,, ; at the height of the shear
span H stems from the plastic rotation at the wall base. Based on the assumption of the plastic
hinge model (see Section 2.2.2) that the plastic curvature ¢, is constant over the plastic hinge
length, L,, can be computed as in Equation 4.27 where ¢, is the experimentally determined
plastic curvature computed as in Equation 4.29 with the yield curvature ¢, given in Table 4.1.

Ap.s
L, = 2L 4.27)
P eH
Aps=Ar—Ays (4.28)
Op =0 — ¢y (4.29)

Base curvature

The base curvature ¢, in Equation 4.29 is not taken directly as the measured curvature at the base
of the wall (i.e., first row of LVDT from base 2 = 0 — 50 mm) since this measurement includes
the deformations due to strain penetration into the foundation. To obtain the base curvature
¢, [HRS04] recommends using a linear least square approximation of at least three inelastic
curvature measurements above the base crack. The best linear fit is then extrapolated to the wall
base to obtain the base curvature representative for the wall deformation [HRS04].

For the test units analysed here, all inelastic curvatures above the base crack were considered in
the least square approximation. The height over which the inelastic curvatures spread up the wall,
i.e., the height of the plastic zone L,,, was determined as the height over which the curvatures
were larger than the nominal yield curvature ¢, (Figure 4.14a). In addition to this method, a
second method was used to determine the base curvature ¢, namely by back-calculating the base
curvature from the rotation above the plastic zone 6, under the assumption of a linear curvature
profile over L,,. The two methods of determining the base curvature are summarised below:

¢p1: obtained by best linear fit of the curvatures over the height A s; = 50mm — L,,; and extrapo-
lating to the base level

@p2: obtained from the rotation above the plastic zone 6, using Equation 4.30.

20,
Ly,

Op2 = (4.30)

where 0, is computed from curvature integration over the plastic zone height L, after
removing the curvature contribution due to strain penetration.
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Figure 4.14: Wall base curvature: assumptions exemplified for TUA, position A at 1.5 % drift (a) and
comparison between the base curvatures determined with the two methods ¢ and ¢,

The experimental base curvatures computed with the two methods are compared in Figure 4.14b,
while the assumptions behind the calculations are exemplified in Figure 4.14a. The experimental
base curvatures shown here were computed at peak drifts of the inelastic cycles of all four test
units and loading positions. Figure 4.14b shows that both methods of determining the base
curvature yield similar results. At large peak drifts of TUC, i.e, 2.0% and 2.5% drifts, larger base
curvatures are obtained with the best fit linear method ¢ than with the rotation based method ¢y,.
This difference is attributed to curvature concentrations towards the wall base due to significant
damage at the these drift levels. Since the determination of the base curvature using the rotation
above the plastic zone is less sensitive to curvature peaks than the best linear fit method, the
former will be used from here on to determine the experimental plastic hinge lengths.

Strain penetration

In Equation 4.28, the plastic flexural displacement A, ¢ includes the flexural displacements due
to strain penetration and hence so will the plastic hinge length L, in Equation 4.27. Since not all
estimates of L, include a strain penetration term, the contribution of the strain penetration will
be removed from the experimentally determined L, in order to compare with estimates. The
contribution of the strain penetration to the wall top displacement has already been discussed
for the yield displacement in Section 4.4.2.2. The part of L, attributed to strain penetration,
i.e., the equivalent strain penetration length L, can be computed similarly to L;i,sp in Section
4.4.2.2 according to Equation 4.31. The values obtained for the experimentally determined strain
penetration lengths are shown in Figure 4.15.

1

bor =51

(¢h,measured - (Pbl) -50mm “4.31)

95



Chapter 4. Experimentally derived quantitites for the plastic hinge model

where @y, neasurea 18 the curvature recorded in the first LVDT from the base (2 = 0 — 50 mm) and
includes the deformation concentrated in the base crack.

[PP92] recommends a value of 0.022d,f, for the strain penetration length. Experimentally
determined values in Figure 4.15 indicate that a value of 0.011d, f, is more suitable for the test
units discussed herein. As already mentioned in Section 4.4.2.2, the reason for these lower strain
penetration lengths was the bi-axial lateral pre-stressed foundation of the test units.

Finally, after evaluating the base rotation and the strain penetration length, the plastic hinge
lengths can be determined. Figure 4.16 shows the experimentally determined plastic hinge lengths
L,y — Lgp, where the strain penetration contribution was removed. The plastic hinge lengths
were determined at peak drifts of the inelastic load cycles for each loading position for TUA and
TUB, and only for the diagonal loading cycles for TUC and TUD. Plastic hinge lengths were
not determined for the principal loading directions of TUC and TUD since the wall reached for
these directions displacement ductilities of tp = 1.4 to 2.2 and hence such values of plastic hinge
lengths are of interest only if the wall is designed for low or medium ductility levels.

4.5.2.2 Plastic hinge lengths calculated from height of plastic zone

In the previous section, the plastic hinge length L, was back-calculated from the experimentally
determined plastic flexural displacement A, ; (Equation 4.27). The plastic curvature used in this
determination was computed assuming a linear plastic curvature profile over the height of the
plastic zone L,,. However, this assumption allows to compute the L, value independently of
A, r. The rotation above the height of the plastic zone is made equivalent to the rotation above
the plastic hinge length L,, where plastic curvatures are assumed constant over the height of L,
(Figure 4.18). This condition yields Equation 4.32. The obtained plastic hinge lengths are also
shown in Figure 4.16.

L L
p;% = Lpn$p = Lpn = % (432)

The top plastic flexural displacement can be estimated by integrating the assumed curvature
profile as in Equation 4.33. Introducing Equation 4.32 into Equation 4.33, A,  can be written as
a function of L.

L L
By =100 L) (433)
2L
Ap = Lon$p(H — TM) (4.34)
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Figure 4.15: TUA to TUD: experimentally determined strain penetration length Ly, normalised by the bar
diameter and yield strangth of the reinforcement dj, f,. The black vertical line, the grey line, the dashed
black line and the dashed grey line indicate the values of the yield drift for TUA, TUB, TUC and TUD
respectively. The black horizontal line indicates the constant value of the [PP92] estimate for Ly, /dp Sy of
0.022.
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Figure 4.16: TUA to TUD - experimentally determined plastic hinge lengths: (1) L,;(D), ) back-
calculated from the plastic flexural displacement using ¢, and assuming the centre of the rotation at the

base of the wall (Equation 4.27) and (2) L,,;,(LpZ determined as half the height of the plastic zone (Equation
4.32).
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Figure 4.17: Assumed plastic curvature distribution: (a) linear plastic curvature profile over the height of
the plastic zone L, and (b) equivalent constant plastic curvature profile over the plastic hinge length L,

Note, that in the above equations, the flexural displacement due to strain penetration was not
included, and can be added separately to the flexural displacement as suggested by [GFT15].
Since, the displacement due to strain penetration is treated separately, the centre of rotation of the
plastic hinge can be computed exactly from curvature integration. Assumptions on the position of
the centre of rotation are no longer necessary. As Equation 4.34 indicates, the centre of rotation
is neither at the base of the wall nor at half the plastic hinge length from the base but at 2/3L,,
from the wall base.

The assumption made here for the plastic curvature profile distribution can be easily verified
by comparing the plastic flexural displacement estimate obtained from Equation 4.34 with the
plastic flexural displacement obtained from the integration of the experimental curvature profiles.
By assuming a linear distribution of the inelastic curvatures over L, (i.e., computing the plastic
flexural displacement as in Equation 4.33), the actual plastic flexural displacement derived
from integration of the experimental curvature is very well predicted (Figure 4.18). Hence the
assumption of a linear inelastic curvature profile is rather accurate.

4.5.2.3 Variations and trends of the experimentally determined plastic hinge lengths

Figure 4.16 indicates that for displacement ductilities larger than approximately 2 (ua > 2), the
plastic hinge lengths are approximately independent of the displacement ductility for all test
units and loading positions, irrespective of the procedure used for their derivation. Hence a
single experimental L, value can be used for pa > 2. For TUD at positions E, F and G (unfilled
diamond marker in Figure 4.16 e-h) it is not possible to identify any trends since the wall failed
at low ductilities and only one L, value could be determined.

In Equation 4.27, L, is derived by assuming that the centre of rotation of the plastic hinge is
located at the base of the wall. This assumption is exact only if L,, = 2Ly, [PCKO7]. If the strain
penetration length Ly, is small (i.e., 0.08H > Ly,), the L, value can be obtained by assuming
that the centre of rotation of the plastic hinge is located at the middle of the Ly,. In this case
Equation 4.35 is used to derive L, values.

2A, f

Lowmia =H — (|H? —
ph.mid ¢pH

(4.35)

99



Chapter 4. Experimentally derived quantitites for the plastic hinge model

(a) 1.5 T T T T T T T (b) 1.5 T T T T T T T
_ EW cycles A TUA _ NS cycles A TUA
I |
=125k O TUB ] T 125k O TUB |
£ o TUC £ o TUC
2 0o .. © TUD 2 o % TUD
& 1 yomwa s o) EAVANSAwmy's.y & 1 N RO 72080 &8O A
e, | o
E07sF 3 g075F 1
8 Pos.A Pos.B 1 $ Pos.C Pos.D
20.5 R I 1 S [ S S ‘;:0.5 P S TP S I S S B
A 3 =2 -1 0 1 2 3 4 98 44 3 =2 -1 0 1 2 3 4
Drift[%)] Drift[%)]
(c) 1.5 T T T T T T T ] (d) 1.5 T T T T T T T
Diag. cycles A TUA ] _ Diag. cycles
I 1 |
= 125F © TUB 3 =125 B Tue
£ o TUC | 2 ¢ TUD
o 0 TUD o @oo
3 1 O eri 3 GRO A0 g1 GEGRS 2
8 =
‘é 0.75F b ‘é 0.75F b
8 Pos.E Pos.F 1 & Pos.H Pos.G
‘;»_0.5””A‘HA 1 S 1 1 s “5»_0'5””AH‘A 1 Ll 1 1 A
/4 3 =2 -1 0 1 2 3 4 95 =4 -3 =2 -1 0 1 2 3 4
Drift[%)] Drift[%]

Figure 4.18: Verification of the assumption of linear inelastic curvature profiles: comparison of plastic
flexural displacement derived from integration of experimental profiles A, ¢ .\perimens With the plastic
flexural displacement estimated from the assumed curvature profile A, ¢ estimare
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4.5. Plastic hinge length

L, values averaged over the inelastic ductility range (s > 2) obtained with the two assumptions
for the location of the plastic hinge are compared in Table 4.4. Assuming the centre of rotation of
the plastic hinge is located at the wall base leads to L, values which are ~ 10% lower than for
L), derived under the assumption of the centre of rotation located at the middle of the plastic
hinge length. This confirms the findings by [Han13]. In addition, the L, values derived as half of
the height of the plastic zone (Equation 4.32) and averaged also for ip > 2 are given in Table4.4
for all the loading positions.

If the variation of the plastic hinge length is plotted with respect to the loading position (Figure
4.19), the diagonal loading positions (E-G) lead to up to 50% smaller plastic hinge lengths when
compared to principal loading directions (A-D). In particular the values for the diagonal loading
with the corner web-flange in compression (positions F,G) are the smallest of all loading positions.
This is valid for both the plastic hinge length derived from the experimental top displacement
and plastic curvature but also for the one derived directly from the spread of plasticity as half
the height of the plastic zone. Lower plastic hinge length for the diagonal direction combined
with the smallest curvatures of all the loading directions caused by the largest wall length for

this direction (/,,q;; = 4 /lfv on T l]%l) results in the smallest displacement capacity for the diagonal

direction.
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Figure 4.19: TUA to TUD: comparison of experimentally determined plastic hinge lengths averaged for
peak displacements larger than pa = 2 for the different loading positions.
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Table 4.4: TUA to TUD - comparison between the different experimentally determined plastic hinge
lengths: (1) plastic hinge lengths back-calculated from the plastic flexural displacement assuming the
centre of rotation of the plastic hinge is located at the wall base (column three), (2) assuming the centre of
rotation of the plastic hinge is located at the middle of the plastic hinge (column four) and (3) plastic hinge
determined as half of the height of the plastic zone (column six).

Lpn(Ap.r) Lpn (Lpz)
Eq. (4.27) Eq. (4.35) Difference Eq. (4.32) Difference
Col.3-4 Col.3-6
TU Pos. [mm] [mm] [%] [mm] [%]
TUA A 489 548 12 523 7
B 497 571 15 505 2
C 463 525 13 473 2
D 474 532 12 492 4
E 450 507 13 456 1
F 469 532 13 414 -12
TUB A 490 538 10 541 10
B 525 590 12 601 14
C 454 500 10 502 10
D 400 438 10 431
E 451 498 10 476
F 403 453 12 393 -2
TUC E 465 521 12 450 -3
F 280 295 5 322 15
H 468 526 12 445 -5
G 296 318 8 311 5
TUD E 414 463 12 363 -12
F 544 641 18 413 -24
H 383 418 9 406 6
G 354 384 8 360 2
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4.5. Plastic hinge length

4.5.3 Discussion

The experimentally derived L, values given in Table 4.4 are compared to their corresponding
estimates in Figure 4.20. More precisely the L, values determined with: (1) Equation 4.27 are
compared to estimates by [PCKO07] both assessment and design equations, (2) Equation 4.35 are
compared to estimates by [Kaz13] and (3) Equation 4.32 are compared to estimates by [BA11].
To remove the bias of the low experimentally determined strain penetration lengths, the strain
penetration term is not considered in the estimates by [PCKO07] (Equations 4.23 and 4.24). The
other estimates used for the comparisons do not include a strain penetration effect and hence they
are compared in their original form (Equations 4.25 and 4.26).

While for most loading positions the L, estimates are smaller than the experimentally determined
Ly, this is not the case for the diagonal loading positions (E to G) (Figure 4.20). With the
exception of the design equation by [PCKO07], which has the largest degree of conservatism,
all other equations lead for the diagonal positions (especially F and G) to ~ 10 — 50% larger
L, values than the experimentally measured ones. For the design equation [PCKO7]d the L,
estimates are ~ 40 — 50% lower than the experimental L, values, except at position F and G
where the estimates are only ~ 30% lower than the experimental values. Despite being intended
as a lower bound value of the plastic hinge length, the estimates by [BA11] are also slightly larger
than the experimental values at position F and G while the equation by [Kaz13] results in the
largest L, estimates and hence also the largest overestimation for the diagonal loading positions.
This overestimation is traced back to the lower plastic hinge lengths under diagonal loading than
for the principal loading directions (Figure 4.19).

Overall, existing estimates of plastic hinge lengths are approximately 50 — 80% of the experi-
mentally derived values for the principal loading directions (NS cycles and EW cycles). If plastic
curvatures are well estimated, the wall displacement capacities obtained with such L, estimates
will be lower than the actual capacity of the wall, which is desirable in design. However for the
diagonal loading directions, the L, estimates are less conservative than they are for the principal
directions and even overestimate the experimental values by up to 50%. The largest discrepancy
is obtained for positions F and G (i.e., when corner web-flange in compression). Plastic hinge
lengths estimates for the diagonal loading positions warrant hence further investigation. This
topic is addressed through a parametric study on U-shaped walls in Chapter 6.
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Figure 4.20: TUA to TUD: comparison of experimentally determined plastic hinge lengths averaged for
peak displacements larger than up = 2 with corresponding estimates. The shape of the marker indicates
the test unit: triangle for TUA, circle for TUB, square for TUC and diamond for TUD. The color of the
marker indicates the estimate: empty black marker for [PCK07] assesment equation, empty grey marker
for [PCKO07] design equation, black-filled marker for [Kaz13] equation and grey-filled marker for [BA11]
equation.

4.6 Ultimate limit strains

4.6.1 Introduction

To define the wall displacement capacity in the framework of PH analysis, ultimate limit strains
are used with section analysis to obtain the ultimate curvature. This curvature is then combined
with a plastic hinge length to obtain the displacement capacity of the wall. The prediction of
the experimentally derived plastic hinge lengths has been discussed in the previous section.
This section discusses the prediction of the experimentally observed ultimate limit strains and
curvatures for U-shaped walls under different loading directions.

The ultimate limit states that are discussed in this section have been experimentally observed
for at least one of the four discussed test units and are of interest in predicting the displacement
capacity of capacity designed walls. These ultimate limit states are:

e Buckling of the boundary reinforcing bars
e Fracture of the boundary reinforcing bars
e Crushing of the confined concrete

e Out-of-plane buckling of the wall boundary element
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4.6. Ultimate limit strains

Note that the concrete crushing in the compression diagonals of the web of TUB [BDPO08b] is not
discussed here as this limit state is mainly related to the force capacity of the wall. A discussion
of this limit state can be found in [BDPO08a].

The suitability of existing limit strain estimates to predict the ultimate limit states listed above is
assessed in this section in two ways: (1) by predicting the experimental strains measured on the
wall over the region where damage concentrated and (2) by predicting the experimentally derived
ultimate curvature by means of section analysis.

4.6.2 Experimentally determined ultimate limit strains and curvatures

The experimentally derived strains were taken from the LVDT measurement at the wall edges
as the average of strains over the height # = 50 — 150 mm. The strain values near the base
(h = 0 — 50 mm) measured mainly the strain penetration effects into the foundation and hence
were not considered representative for the maximum strain level in the wall itself. Instead, the
average strains in the second row of LVDTs from the base were considered to represent best the
actual strain state at the critical section for drifts in the inelastic range: bar buckling and fractures
as well as concrete crushing occurred mainly at the level of the second LVDT. The strain values
were corrected for the distance between the actual position of the LVDTs (i.e, ~ 3.5 cm from
the wall surface and ~ 5 cm to the edge of the wall) and the edge of the corner or of the flange
end, by assuming a linear strain variation in the direction of the web and in the direction of the
flanges between the LVDT chains. The experimentally derived ultimate curvatures at the wall
base where computed from the rotation above the height of the plastic zone, i.e., computed as @,
(see previous section).

4.6.3 Comparison with limit strain estimates
Longitudinal bar buckling in the boundary elements

Bar buckling in the boundary elements has been observed for all test units at different wall
corners and positions (Table 4.5). The total strain excursion & — €., i.e., maximum recorded
tensile strain in the steel bar & and minimum recorded compressive strain &, is considered as
the best criterion for assessing the onset of bar buckling [Res93]. [Hin02] suggested an interval
of 35%0 < & — & < 50%0 as limit strain for bar buckling while [DBB09] suggested a limit of
& — & < 35%0, based on experimental tests from six rectangular walls.

The experimentally measured total strain excursions (Table 4.5 column seven) compare well
with the existing estimates except for the strains in the West flange end of TUC. At this location,
out-of-plane buckling of the boundary element occurred in the following loading cycle and hence
LVDT measurements in the previous cycle might have been influenced by the onset of global
buckling. If this case is not considered, an average value of the total strain excursion & — &, of
44%y can be obtained, which compares very well with the median of the strain interval proposed
by [Hin02].

105



Chapter 4. Experimentally derived quantitites for the plastic hinge model

All total strain excursion values are larger than the 35%o limit proposed by [DBB09]. These limit
strains were derived by matching the experimental base curvature at the instant of bar buckling to
the one from section analysis and back-calculating the strain value. If the same procedure is used
here, the strain excursion which should be used with section analysis to match the experimental
curvature, yields values close to 35%o.

For the East flange end of TUD, the measured compressive strains £ were larger than the
maximum tensile strains & recorded at this location and the former controlled the onset bar
buckling. For this case, lower strain limits should be used in section analysis to predict accurately
the ultimate curvature. In conclusion, the total strain excursion limit & — €. = 35%0 proposed
by [DBB09] can be used with section analysis to determine the onset of buckling, as long as the
tensile strains are controlling the onset of bar buckling.

Table 4.5: Bar buckling limit state: experimentally determined LVDT strains (2 = 50 — 150 mm) at the
limit state and comparison of experimentally determined base curvatures @, to section analysis curvatures

Opsa-

ErvpT Curvatures
Loca- . .
TU tion Pos. Drift & & & — & Op Opsa Diff.
[%0] [Y00] [Yo] [Yo0] [1/km]  [1/km] [%]
West fl.
TUA end E 1.8 34 -3 37 34.1 35.0 3
West fl.
TUB end E 2.6 32 -10 42 41.7 35.0 -16
East fl.
TUC end H 1.5 38 -10 48 23.5 21.8 -7
Corner
NE F 2.0 20 =24 44 18.7 21.8 17
Westfl. p s 49 21 70 372 218  -40
end
Corner
NW G 2.0 44 -7 51 24.9 21.8 -12
East fl.
TUD end H 1.5 17 227 44 10.7 21.8 104

Longitudinal bar fracture in the boundary elements

Bar fracture in the boundary elements was observed only for TUA and TUC (Table 4.6). In
plastic hinge analysis, the steel strain & is used as a criterion for determining when bar fracture
occurs. As discussed in Section 2.2.3, a strain limit equal to 50 — 60% of the ultimate steel strain
&, obtained from uni-axial bar tests is recommended to account for the effect of bar buckling.
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4.6. Ultimate limit strains

The ultimate steel strain of the D12 bars in the West flange of TUA is of &, = 127%0 while
for TUC the D8 bars had &, = 79%0. Hence, the average measured strains on the wall at bar
fracture account for 0.62 to 0.84 % of the ultimate steel strain &, (Table 4.6 column six). Using
a limit strain of & = 0.5¢, results in a very good match of section analysis curvatures and
experimentally determined base curvatures (column nine).

Table 4.6: Bar fracture after buckling limit state: experimentally determined LVDT strains (2 = 50 — 150
mm) at the limit state and comparison of experimentally determined base curvatures ¢, to section analysis
curvatures Qps.

Evpr Curvatures
U e Dt & O(dfzi | Diff,
(%] [l D kmy kmp
TUA “fs;ﬂ' F 21 87 0.69 426 440 3
TUC Eiiilﬂ‘ G 20 66 0.84 336 288  -14
Cl(\)lrvf,er H 25 49 062  3L1 309 -1

Crushing of the confined concrete

Crushing of the confined concrete was observed for both TUC and TUD in the boundary element
of the East flange end (Table 4.7). Limited crushing of the confined boundary element occurred
also in the corners of TUC at ~ 2.5% drift but strain values at this drift level are questionable (i.e.,
at position F and G of TUC compressed corners show positive strains) and cannot be compared
to estimates.

Strain estimates by [MPP88] (Table 4.7 column six) multiplied by a factor of 1.3 to 1.6 as
suggested by [PCKO07] compare well with the average measured strains on the wall at the height
where damage occurred, i.e., & = 50 — 150 mm (column five). However limit state curvatures
determined from section analysis with these strain estimates significantly overestimate the
experimentally determined base curvature (column nine).

For both cases, a concrete limit strain of €. =~ —8%q instead of —24% should be used in section
analyses if the section analyses curvatures were to match the experimental base curvatures. This
is in line with findings by [DBB09] who also observed that the measured wall strains where
confined concrete crushing occurred were ~ 2.6 times larger than the strain limits derived from
section analysis for the same curvature as the experimental base curvature.
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Chapter 4. Experimentally derived quantitites for the plastic hinge model

Based on these experimental findings it is recommended to use for section analysis a concrete
limit strain equal to one third of the estimates obtained with [MPP8&8] equation for confined
concrete crushing. This recommendation is highly empirical as it is based on very limited
experimental data. In addition, the limit strain at the crushing of confined concrete will depend
on concrete properties and confinement reinforcement properties and layout and hence proper
validation requires extensive experimental data.

Alternatively, since confined concrete crushing is typically preceded by bar buckling, the ultimate
limit state can be defined by the limit strain that characterizes the onset of bar buckling (see Table
4.5). Note, however, that the total strain limits for the onset of bar buckling yield only good
predictions if the compressive strains are not larger than the tensile strains in which concrete
crushing limit states should be used.

Table 4.7: Crushing of the confined concrete: experimentally determined LVDT strains (& = 50 — 150
mm) at the limit state and comparison of experimentally determined base curvatures ¢y, to section analysis
curvatures (ps.

Strains Curvatures

U  LocE Drift ¢ é Ppsa Diff.

tion  Pos. ot €. [MPPSS] r2 (&c1mppsg)) '

[%] [Y00] [Yoo] [1/km] [1/km] [%0]
East fl.

TUC end H 2.0 -34 -24 24.9 64.6 160
East fl.

TUD end H 1.5 -30 -24 17.2 39.5 130

Out-of-plane buckling of the wall boundary element

Local out-of-plane buckling of the boundary element was observed for TUC for the West flange
end as described in Section 3. The out-of-plane buckling did not involve the entire height of
the boundary element as a global buckling would (see Section 3.3.1.1). However, without a
clear differentiation of these phenomena, estimates for maximum tensile strains triggering global
out-of-plane buckling will be used for comparison with the experimentally measured strains.

Two different estimates by [PP93] and [CE99] were discussed in Section 2.2.3. The two estimates
for the maximum tensile strain & were computed using the experimentally determined plastic
hinge lengths (third column in Table 4.4). The two estimates yield similar values for the West
flange end, i.e., & puo93 = 38%0 and & craivg = 37%o but based on these estimates out-of-plane
buckling should have occurred for the confined ends of both flanges already at 1.5% drift, instead
of 2.5% drift. It was argued that the out-of-plane bending of the flange promoted the out-plane
buckling behaviour of the flange end due to strain gradient through the thickness of the boundary
element (Section 3). Intuitively, this should lead to out-of-plane buckling of the flange end at
smaller top drifts than when the flange is only loaded in-plane (which is the load case considered
in [PP93] and [CE99]). Therefore, the predictions for the tensile strain triggering the out-of-plane
buckling of the flange ends seem rather conservative estimates.
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4.7 Shear displacements

Shear displacements, typically used in plastic hinge analysis under the form of shear to flexural
displacement ratios A/ Ay, have been discussed in Section 2.2.2. In the following, the derivation
of the experimental A;/Ay ratios is discussed and the trends of these ratios over the ductility
range examined. The experimental A;/A ratios are compared with existing estimates.

4.7.1 Experimentally determined shear to flexural displacement ratios
4.7.1.1 Experimental determination

For TUC and TUD, the shear displacements were experimentally determined in two different
ways for the two types of conventional and optical measurements as explained in Section 4.2.
Shear displacements were derived from the conventional measurement data (LVDTs) through
the indirect method (i.e., top displacements minus flexural displacements). Shear displacements
obtained from the optical measurement (LEDs) data were derived through the direct method
(i.e., computing shear displacements from the change in length of diagonals of the rectangular
LED-composed elements, and hence independently of the flexural displacements).

The experimentally determined values from the optical measurement system will be used in this
section to assess the A;/A ratios because this method is considered to be more accurate due
to: (1) the relatively fine measurement grid as compared to the LVDT grid and (2) the good
agreement between the sum of displacement components and the measured top displacement.
The average error in the inelastic range between the sum of the deformation components and the
top measured displacements for all loading positions is of 3.2% for the web, 0.8% for the West
flange and 2.0% for the East flange with standard deviations of 7.9%, 3.8% and 6.3% respectively.
Positions A and B were not accounted for in the measurements for the flanges and positions C
and D were not accounted for in the measurements for the web.

For consistency, the shear displacements of TUA and TUB included in this section were also
experimentally determined using the direct method. However, for TUA and TUB a conventional
measurement system was used: string pots arranged diagonally and spanning rectangular panels
over the outer faces of the flanges and the web. The procedure used for TUA and TUB is described
in detail elsewhere [BDP08a]. The errors between the sum of displacement components and the
measured top displacement were found to vary from approximately —20% to +10% with largest
errors typically towards the elastic range [BDPO8a].

4.7.1.2 Variation of shear displacements with displacement ductility

The experimentally determined A,/A ratios are shown in Figures 4.22 and 4.23 for all four test
units, for the different wall sections and loading positions. As already observed by previous
researchers [HRS04], [DBB09], [BDP11], for flexure controlled walls the A,/A; ratios are
approximately constant in the inelastic range (i.e., for drifts larger than the nominal yield drift
0,). The loading positions and the wall cardinal directions are repeated in Figure 4.21 for good
readability of results.
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Figure 4.21: TUA, TUB, TUC and TUD: naming of the different wall parts and cardinal directions (a)
and loading positions (b).

The A;/Ay ratios depend strongly on the loading direction, with the largest contribution being
when wall sections (flanges or web) are under net tension. This is the case for the web at positions
A, B, E and H and for the West flange at position F and East flange at position G (Figures 4.22
a, b, e, fand 4.23 a, b, e, f). For example, for the West flange at position F of TUC and TUD
(Figure 4.23e-f), the A;/Ay ratios are as high as 1.00 (i.e., shear displacements equal to flexural
displacements) and hence significantly higher than for typical rectangular slender walls. This is
in line with experimental findings by [BDP0O8b] for U-shaped walls and [ZL14] for L-shaped and
T-shaped walls.

At positions E and H, one obtains negative A /Af ratios for the East and the West flange
respectively (Figures 4.22e-f and 4.23 e-h). [BDPOS8D] first observed this trend in their tests and
related this observation to the drop in the flange force (NSE force and NSW force, respectively)
which reached its peak shortly after zero displacement and then decreased with increasing drifts.

Since the trend of the A;/Ay ratios is constant over the inelastic phase, a single A /Ay ratio can
be used to characterise the shear deformation. This value was determined for each test unit, for
the different wall sections and each loading positions as the average of the A;/Ay ratios at peak
displacements larger than the yield displacement. The values are given in Tables 4.8 and 4.9.

4.7.2 Estimates for the shear displacements in the inelastic range

The empirical models by [HRS04] and [BDP11] presented in Section 2.2.2 are used here to predict
the A;/A; ratios corresponding to the inelastic range for all four test units. For convenience the
equations for both models are repeated here:

A !
I; = 00.35(1.6— O.ZGW)%‘” (4.36a)
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Figure 4.22: TUA and TUB: Experimentally determined shear to flexural displacement ratios

Table 4.8: TUA to TUB: experimentally determined average values of the A,/Ay ratios in the inelastic

phase

TUA TUB
Pos.  Westfl. Eastfl. Web West fl.  East fl. Web
A - - 0.12 - - 0.31
B - - 0.17 - - 0.33
C 0.06 0.08 - 0.18 0.14 -1.05
D 0.18 0.13 - 0.25 0.23 0.17
E 0.06 -0.05 0.25 0.21 -0.06 0.65
F 0.54 0.11 0.15 0.86 0.26 0.25

111



Chapter 4. Experimentally derived quantitites for the plastic hinge model

(€]
LS T T T
L Wi
[ TUC: EW cycles viwveb

1F .
o
s“'O.S_- -
<1m i H\v\\' v_v/v/v,v,'

ol ]

Pos.A 5\, 5V Pos.B ]
—05 TR T AT PR 4 ST
-1 -0.5 0 0.5 1
Drift [%]
()
1.5
[ ' I éWestﬂ.
| TUC: NS cycles OFast fl.

Ir ;
o1 ]
< 1 WD%EGQ@ ]

of 7o Seeo ]

- Pos.C 5\, 5y Pos.D ]
—05 T AT P M STy
-1 -0.5 0 0.5
Drift [%]
(©)]
1.5 T T T T T
[ HWest fl.
i TUC: Diag. 1 cycles OFast fl.
I ¥ Web ]
T [ ]
s“‘ 05_‘ b
T T T
0:_ O\O/O\O_% _:
i Pos.E d 3 Pos.F:
,0.5....|....|....|....|....|....'
-3 -2 -1 0 1 2 3
Drift [%]
(8
T T T T T a
i TUC: Diag. 2 cycles OFast fl.
Ir FWeb 7
i [ C@O\Q\O_O\O ]
s“‘ 0.5 b
oF % _:
i Pos.H ; 3 Pos.G:
sl iyl
- -2 -1 0 1 2 3

Drift [%]

(®)
L5 T T T ]
A W ]
| TUD: EW cycles web ]
1 n
T E
S]“"OS_' ]
aQ” i H\%\v v_v)'/'/H ]
0F ]
Pos.A 5\ 5\, Pos.B
—0.5 cov e b b b
-1 -0.5 0 0.5 1
Drift [%]
(d)
1.5 T T T
[ BWest fl. ]
| TUD: NS cycles OFastfl. 1
Ir ]
T E
3“05_- b
<0 8¢D<6=6§5 ]
of 7O S000 :
Pos.C 5\, 5\, Pos.D
-0.5 cov v Ve v b Ty
-1 -0.5 0 0.5 1
Drift [%]
®
1.5 T T T
[ . BWestfl. ]
i TUD: Diag. 1 cycles OFastfl. |
I ¥Web ]
€T [ ]
< 03¢ V\'*\; .
< ]
N B\B‘EEE Mfo ]
Pos.E 5 8 Pos.FE
-0.5 e v b v b b b
-2 -1 0 1 2
Drift [%)]
(h)
1.5 TTrrrrrror TTrrrrrroT TITTrrrroT
r BWestfl. ]
i TUD: Diag. 2 cycles OFastfl. |
I Fweb ]
< 05t ]
< 0 ]
N :
Pos.H 5\, 5\, Pos.G
705 s v b v v b b b
-2 -1 0 1 2

Drift [%]

Figure 4.23: TUA and TUB: experimentally determined shear to flexural displacement ratios
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Table 4.9: TUC to TUD: experimentally determined average values of the A;/A ratios in the inelastic
phase

TUC TUD

Pos.  Westfl. Eastfl. Web West fl.  East fl. Web
A - - 0.25 - - 0.33
B - - 0.25 - - 0.26
C 0.16 0.16 - 0.12 0.16 -
D 0.26 0.21 - 0.31 0.26 -
E 0.15 -0.12 0.50 0.13 -0.13 0.60
F 1.11 0.11 0.21 1.22 0.15 0.18
H -0.17 0.22 0.42 -0.17 0.19 0.37
G 0.15 0.69 0.22 0.26 1.18 0.26
lga:(K+L)§2 (4.36b)

where V), is the diagonal tension capacity, V,,. is the web crushing capacity and 6,,,, is the angle
of the highest crack whose tip reaches the wall base.

Ay |
— =15 — 4.37
Ar @tand H (4.37)

where ¢ is the wall curvature assumed constant over the plastic hinge, 0 is the crack angle at the
top of the fan-like pattern where cracks begin to be parallel and 1.5 is an empirical correction
factor.

For both models the crack angle 6 according to Equation 4.38 was used. This equation includes
both the transversal p, and the longitudinal reinforcement p; contents to capture the variation of
crack angles between the flange with distributed reinforcement and the one with concentrated
reinforcement, while kg is the ratio between the modulus of elasticity of steel and concrete
kg = E/E,. (see also Section 2.2.2).

o/ Prt+KkEPIPK

4.38
pi +kepipn (4-38)

tan@ =
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In the model by [HRS04], the correction factor o (Equation 4.36b) was determined using as
the shear demand V, the nominal shear force associated to the moment obtained from section
analysis. The diagonal tension capacity V,, was determined using the modified UCSD model
[PCKO7], where a displacement ductility s = 6 was assumed in the computation of the concrete
contribution V... The diagonal compression capacity was calculated according to [CEN04] (6.2.3).
In the model by [BDP11], the mean axial strain over the wall sections &, and the curvature ¢
corresponding to the plastic hinge, were derived from section analysis at nominal point.

The results obtained with the two models for all test units are compared to the experimentally
determined A;/Ay ratios in Figures 4.24 and 4.25. The model by [BDP11] shows a rather good
match with the experimentally determined A/Ay ratios. The model by [HRS04] predicts for all
test units and loading positions very similar A;/A ratios. This is caused by the correction factor
a (Equation 4.36b), which varies very little as the ratio of the shear demand to shear capacity
was close to 1 for both the diagonal tension and the diagonal compression capacities. Hence o
was in most cases slightly lower than 2 or equal to 2 if the estimated shear demand was higher
than the design shear capacity.

When comparing the two approaches, [BDP11] yields better estimates than [HRS04] for medium
As/Ay ratios as well as for the large A;/A; ratios. None of the two approaches captures the
negative Ay /Ay ratios.

4.7.3 Estimates for the shear displacements at yield

The shear displacements at yield are of interest when estimating the wall yield displacement by
predicting separately the flexural displacements and the shear displacements (Section 4.4.2). The
experimental shear to flexural displacements ratios were taken as the A;/A ratios at first yield,
where the point of first yield was determined based on strains as discussed in Section 4.3.2.4.
Estimates were computed using the [BDP11] model, since it resulted in good estimates for the
inelastic A;/Ay ratios. The comparison for all test units is shown in Figure 4.26.

The As/Ay ratios at yield are still relatively well captured with Equation 4.37, although the match
is poorer than for the shear displacements in the inelastic range. The reasons for this observation
are two-fold: (1) Equation 4.37 was calibrated for shear displacements in the inelastic range
while the experimental A;/Ay ratios at yield are slightly different than the experimental values in
the inelastic range (see Figures 4.22 and 4.23) and (2) A,/A ratios at yield are more sensitive to
measurement errors, e.g. a error of 1-2 mm in the shear displacements can lead to errors of 10-20
% in the A;/Ay ratios when top displacements are of below 10 mm. Despite these shortcomings,
Equation 4.37 still provides reasonable estimates for the A;/A ratios at yield and will be used
for this purpose in Chapter 6.

114



4.7. Shear displacements

(a) 2 T T T T (b) 2 T T T T

TUA 1 TUB ]
1.5F b 1.5 -
T 1 = ]
Pl e PR S .
Slm A o 4 Web Pos.A,B 4 ﬂm 4 Web Pos.AB B
2 O Fl.Pos.C 1 2 A B @ FLPsC 1
£ O Fl. Pos.D i £ O FI. Pos.D 1
75 05+ ® O Web Pos.EH - ;"'E 05+ ¢ Web Pos.E,H -
~ O Web Pos.F.G 1 ~ O Web Pos.F,G 1
O W.fl. Pos.E, E.fl. Pos.H| O W.fl. Pos.E, E.fl. Pos.H]
A EAfl Pos.E, W.fl. Pos.H] A A EAfl. Pos.E, W.fl. Pos.H
o O W.fl. Pos.F, E.fl. Pos.G1 0 a O W.fl. Pos.F, E.fl. Pos.G]
A EAfl Pos.F, W.fl. Pos.G| A E.Afl. Pos.F, W.fl. Pos.G]|

-0.5 PSS NS S S S NS ST ST S S S S SR N S S ! —0.5 PSSR S [ SU SR SN SRS S S ST S S S S S S S Y
-0.5 0 0.5 1 1.5 2 -0.5 0 0.5 1 1.5 2

Experimental Ag/Af [] Experimental Ag/Af [-]
(c) 2 T T T T d 2 T T T T

TUC ] TUD ]
15+ . 15+ -
i 1 T ]
S]u_ 1F A [ A, gu- 1F . A,
<” o i <” 7
3 A 13 a o ]
3 00 1z N ]
B 05 . B 05k -
£ A EAfl. Pos.E | & O o A EAfl. Pos.E |
OEfl.PosD A W.fl. Pos.HH OEMlLPosD A W.fl. Pos.H
@ Web Pos.AB O WebPos EH O W.fl. Pos.F]| Web Pos.A,B ¢ Web Pos.EH O W.fl. Pos.F|
ok 788 Qwfl Pos.c < WebPos.F.G W E.fl. Pos.G| ok ﬁOW.ﬂ. Pos.c O WebPosF,G M Efl. Pos.G_|
OW.fLPosp WML PosE AEf Posk | OW.fl. PosD B W.lL.PosE A EAf PosF -
OQEAfl Pos.c BEfLPosH AWl Pos.Gl OEfl.Pos.c BEfLPosH AWl PosG]

B S S R B B S W M B
-0.5 0 0.5 1 1.5 2 0.5 0 0.5 1 1.5 2

Experimental AS/Af [-] Experimental AS/Af -]

Figure 4.24: TUA, TUB, TUC and TUD: comparison of experimentally determined shear to flexural
displacement ratios A, /A in the inelastic phase with estimates based on the [BDP11] model.
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Figure 4.25: TUA, TUB, TUC and TUD: comparison of experimentally determined shear to flexural
displacement ratios A, /A in the inelastic phase with estimates based on the [HRS04] model.
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Figure 4.26: TUA, TUB, TUC and TUD: comparison of experimentally determined shear to flexural
displacements ratios A;/A r at yield with estimates based on the [BDP11]
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4.8 Effective stiffness of RC walls

The effective stiffness is an important quantity in the design of RC walls. Most estimates of the
effective stiffness are expressed under the form of the ratio of the effective moment of inertia /,
to the gross moment of inertia of the section /o, while assuming a constant wall stiffness over the
height.

In order to compare with existing estimates, the experimentally derived effective stiffness K, ¢ oxp
will be expressed under the form of a ratio of effective stiffness to the elastic flexural stiffness
of a cantilever wall K, = 3E.I,/H 3, where E, is the concrete modulus of elasticity obtained
from material tests and H is the height of the cantilever wall. The effective stiffness K, oxp
was determined experimentally as the ratio between the first yield force F)f and the first yield
displacement A;, both obtained from experimental measurements at the instant of first yield. The
instant of first yield was determined for each loading position based on strain limits as discussed
in Section 4.3. The estimates for the effective stiffness ratios have been reviewed in Section 2.2.4
and are briefly repeated below.

[PP92]: estimate which accounts for shear displacements and strain penetration for walls with
aspect ratios lower than four

100 N

IL=(—+—)1 (4.39a)
e ( 3 chg) 8

I
= 4.39b
Y124 F (4-39)

301,

F=——— 4.39

Hzlwalltwall ( C)

[FBOO]: approach for for slender walls, does not consider shear displacements but considers
tension stiffening

N 0.624 2%)0.76 +0.005 fl, (4.40)

I, =0.267(1+4.4
( JeAg fy

[AIBO7]: approach for high-rise slender walls, does not consider shear displacements, suggests
lower bound and upper bound depending on the extent of cracking

N
I, = (0.6 1, <] 4.41
e=( +fCAg)g_g (4.41a)

N

I,=(02+25—) <071l (4.41b)
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4.8. Effective stiffness of RC walls

In addition, estimates based on the predicted yield displacements are included in the comparison,
namely Ay 1, and Ay, estimates. In the computation of the estimates for the diagonal loading
direction, the length of the wall was taken as /,,q;; = lgiqe and the wall height as H = hyg. The
experimentally determined effective stiffness ratios K,fs cxp/Kin are compared with existing
estimates in Figure 4.27.

Estimates by [AIB07] led to a lower bound of the effective stiffness ratio of approximately 0.26 to
0.56 (one constant value for each test unit) while the upper bound led to values of approximately
0.62 to 0.75 and hence these estimates were in all cases too high. Therefore they have been not
been included in Figure 4.27 to improve the readability of the figure. As Figure 4.27 shows,
the estimates by [PP92] led to values close to the experimental ones but do not capture the fact
that effective stiffness vary with loading position. [FBOO] estimates are too high and are also
constant for all loading positions since they do not vary in any way with the loading position.
Only estimates based on the yield displacements, i.e., Ay 17 and Ay 5y vary for the different loading
positions.

In most cases the effective stiffness ratio estimates based on the yield displacements are slightly
overestimating the experimentally derived stiffness ratio but for TUD the difference is significant.
While the yield displacements are well estimated (4.12), this difference is caused by the overesti-
mation of the nominal moment by section analysis. The comparison between experimental and
section analysis results is discussed in detail in Section 5.1.

In conclusion, for the test units analysed herein, several approaches can provide reasonable
estimates of the effective stiffness ratio. Despite the somewhat large scatter, estimates based
on the yield displacements typically capture the variation with the loading position, while the
estimate by [PP92] provides a good average match of the values without however capturing the
trend with the loading position. Another important point is that the test units included here all
have slenderness ratios H /I,,,;; between 2.6 and 2.8 depending on the loading position, which is
a rather limited slenderness range. Therefore the suitability of these estimates should be verified
against a broader slenderness ratio range and especially for walls with large slenderness ratios
since core walls are typically encountered in mid-to-high rise buildings. The effective stiffness
ratios will be further investigated by means of parametric studies in Chapter 6.

119



Chapter 4. Experimentally derived quantitites for the plastic hinge model

(a) 0.5 T T T T 1 (b) 05 T T T T
TUA ] TUB ]
0.4 T 04 b
Mﬁ Om m O M€ mo O o
S5 03F A D [PCKOT]{ T 03f A D [PCKOT]
3 ] 3 o ]
i ook © Dy z oak é AA © D,
J’ : O [FB00] M“s : Vg < O [FB00]
¥4 5 X v [PP92] ] v [PP92] ]
0.1F A ;. 01F y
o ] o ]
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
eff,experimem/ th Keff,experimem/ th
(¢) 05 T T T T 1 (d) 05 T T T T
TUC ] TUD : ]
041 b 041 o -m 8 .
= ] = A A ]
:4 ] M ]
=5 03} m Do A D [PCKOTI{ T3 03} § Oé A D [PCKOT]
3 i3 A o Dy, : E © Dy 7
= 02} i = 02f v '
el e o [FBOO] el v o [FB0O]
%/ v v [PP92] ] v [PP92] ]
0.1F T 0.1F b
o ] o ]
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
eff.experimem/ th Keff,experiment/ th

Figure 4.27: TUA, TUB, TUC and TUD: comparison of experimentally determined effective stiffness
ratios Kefs exp/ Ky, With estimates (a-b).

4.9 Conclusions

The objective of this chapter was to derive the experimental quantities required in plastic hinge
models, from the quasi-static cyclic tests of four U-shaped walls and to compare these quantities
with existing estimates. Different procedures for deriving the plastic hinge quantities were
investigated so that the derived quantities are compatible with plane section analysis. It was found
that despite the invalidity of the plane section assumption, section analysis curvatures can be used
with limit strain estimates to determine the limit states of the wall, even at ultimate limit states.

The experimentally derived quantities will be used for the validation of two numerical finite
element models at both local and global level in Chapter 5. In the following, the main conclusions
from the comparison between the experimental PH quantities and existing estimates as well as
the new proposed estimates and recommendations are summarised.

Yield curvature and displacement : The yield curvature, experimentally determined, was pre-
dicted relatively well by existing estimates for the principal loading directions (~ 15%
difference). For the diagonal loading directions, estimates are not available in the literature
but yield curvatures could be predicted well using section analysis.
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The yield displacement was assessed in two ways: (1) by integrating the assumed linear
curvature profile over the wall height at yield and (2) as the sum of the contributions of
the flexural displacements due to wall deformation, flexural displacements due to strain
penetration into the foundation and shear displacements. A new estimate for the flexural
displacement due to wall deformation was proposed assuming a bi-linear curvature profile
at yield, i.e., a partially cracked wall over the height. The match between the two different
yield displacement estimates and the experimentally derived ones was moderately good,
with none of the two approaches providing clearly superior estimates to the other one for
the test units analysed herein.

However the approach for determining the yield displacement by accounting for the
shear displacements and the partially cracked wall is expected to give relatively good
estimates for a larger range of wall configurations as long as the shear displacements and
the flexural displacements are well estimated. By comparison, the approach assuming
a linear curvature profile is expected to lead to good estimates only as long as the shear
displacements compensate for the extent of cracking along the wall height. For more
slender walls, as it is the case for core walls in mid-to-high rise buildings, the shear
displacements will be small and hence the latter approach is expected to overestimate
the yield displacement. This aspect will be hence further examined in Chapter 6 when
U-shaped walls with various geometries and slenderness ratios are analysed.

Plastic hinge length : The experimentally determined plastic hinge lengths were found yield
the smallest values for the diagonal directions, in particular for loading with the corner
web-flange in compression. Combined with the smallest curvatures under diagonal loading,
this leads to lower displacement capacities for diagonal loading than for the principal
loading directions. In addition, the experimental plastic hinge lengths were compared
to state-of-the-art estimates for walls. All equations provided conservative estimates for
the principal directions of loading. For the diagonal loading positions, especially for
positions F and G (corner web-flange in compression), most equations overestimated
the experimentally determined plastic hinge lengths or the degree of conservatism was
significantly reduced when compared to the principal directions. Overestimating the plastic
hinge lengths leads to unconservative displacement capacity estimates. For this reason, the
plastic hinge lengths for the diagonal loading directions are further investigated in Chapter
6.

Ultimate limit strains : In order to obtain the displacement capacity of the wall, plastic hinge
lengths are combined with ultimate curvatures derived from section analysis at the ultimate
limit strains. Existing ultimate limit strain estimates for bar buckling, bar fracture and
confined concrete crushing matched well the average measured strains on the wall at the
location where damage occurred. However, when used in section analysis, the ultimate
curvature was significantly overestimated if failure was controlled by the concrete strains,
e.g., case of confined concrete crushing.

The following limit strains used with section analysis were found to predict well the
experimentally determined ultimate curvatures:

e Bar buckling: total strain excursion & — €. = 35% [DBB09]
e Bar fracture after buckling: tensile steel strain & = 0.5¢&;, [PCKO07]
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e Confined concrete crushing: concrete compressive strain € = 1/3€. yppsg]

It is recommended to reduce the limit strain for confined concrete crushing to one third of
the estimated value from [MPP88] equation. This recommendation is in line with previous
findings for rectangular walls [DBB09] although it is based on limited experimental data.
Alternatively, the strain corresponding to the bar buckling limit state which precedes
confined concrete crushing can be used to determine the ultimate curvature, as long as
tensile strains are controlling the behaviour at the damage location. For TUC also the strain
limits related to the out-of-plane buckling of the boundary element [PP93], [CE99] were
examined but found to be very conservative estimates.

Shear displacements : The shear displacements to flexural displacement ratios A;/Ay were

found to be constant over the inelastic ductility range, which was expected as the walls
did not have a significant shear degrading mechanism. Over the elastic range, A/A ratios
were either increasing towards the yield drift or constant depending on the loading position.
Ay /Ay ratios in the inelastic range and at yield were captured fairly well with estimates by
[BDP11] and a cracking angle accounting for the reinforcement contents in the wall.

Effective stiffness : In addition to the quantities required for the application of the plastic hinge
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model, effective stiffness estimates were assessed for all test units. Estimates by [PP92]
for walls with aspect ratios lower than four were found to give the best results in terms
of errors but they failed to capture the variation of the stiffness with the loading position.
The variation was captured by predictions that are based on yield curvatures obtained
from section analysis, despite a larger scatter in values due to discrepancies between the
predicted and the experimentally measured moment at first yield. Estimates from models
that do not account in a direct or indirect way for the shear displacements significantly
overestimate the effective stiffness. Since the range of slenderness ratios of the test units
included herein is rather limited (H /I,,4;;=2.6 to 2.8), further studies including also more
slender walls are required to assess the suitability of these stiffness estimates. The effective
stiffness of U-shaped walls is further investigated in Chapter 6.



5. Validation of two numerical models
for U-shaped walls

In the previous chapter, the experimental data from four quasi-static cyclic tests on U-shaped
walls under bi-directional loading (TUA to TUD) was used to derive experimental quantities for
the plastic hinge (PH) model. The experimental values were compared with existing estimates
and research needs were identified. These research needs are to be addressed through parametric
studies performed with suitable numerical models.

Hence, the objective of this section is to assess the suitability of two numerical models for
capturing the seismic behaviour of reinforced concrete (RC) U-shaped walls by comparing the
numerical results to experimentally derived quantities. The first model, plane section analysis,
was chosen due to its simplicity and because it lies at the basis of plastic hinge analysis and most
beam column formulations widely used in the design practice (Section 5.1). From section analysis
one obtains the moment-curvature relationship of the section of the wall, hence information only
about the wall flexural behaviour. The second model is a detailed shell element model aiming to
capture the complete behaviour of U-shaped walls, i.e., flexural as well as shear and torsional
behaviour (Section 5.2).

As the interest is to use these two numerical models to perform parametric studies and derive
estimates for several plastic hinge quantities (Chapter 6), the two models are compared against
the experimentally derived quantities as follows:

e Plane section analysis: in terms of moment capacity, yield curvature ¢y.

e Shell element model: in terms of force capacity, yield curvature ¢, yield displacement A,,
plastic hinge length L, shear to flexural deformation ratios A;/A and effective stiffness

Keff

Following these comparisons, conclusions on the capabilities and drawbacks of the models are
drawn in Section 5.3. Their suitability for parametric studies is also discussed in this last section.
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5.1 Plane section analysis

In this section, plane section analysis (PSA) is used to predict the moment capacity and the yield
curvature of RC core walls. These quantities are typically necessary in a plastic hinge analysis
to predict the force-displacement response of the wall under horizontal loading. For this task, a
model for the plane section analysis is set-up in Section 5.1.1. The numerical results obtained
from this model are then compared to the experimentally derived results from four quasi-static
cyclic tests in Section 5.1.2 and conclusions are presented in Section 5.1.3.

5.1.1 Model set-up

Monotonic plane section analyses of the four U-shaped sections of TUA, TUB, TUC and TUD
were performed by means of a relatively simple numerical model using the “Opensees” software
[MMGO9]. A zero-length fibre element with approximately 200 concrete fibres and one fibre per
reinforcement bar was used to model the sections (Figure 5.1a). For all sections, the concrete areas
were grouped into different zones depending on the degree of confinement. The confined and
unconfined concrete were model using the stress-strain relationship by [Pop73], i.e., Concrete04
material model in Opensees, while confinement properties were computed according to [MPP88]
(Figure 5.1¢). The reinforcement was modelled using an uni-axial Giuffre-Menegotto-Pinto steel
material [FPB83], i.e., Steel02 material model in Opensees, with default parameters (Figure
5.1b).

Analyses were performed in displacement control. For the diagonal loading directions the loading
was applied in a displacement controlled-mode so that the applied curvature vector had the same
direction as one of the geometric diagonals of the section. Yield, nominal and ultimate strain
limits were determined using recommendations by [PCKO07] and discussed in the following.
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Figure 5.1: Section analysis model: subdivision of the section and examples of stress-strain relationships
applied to reinforcement and concrete fibres
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5.1.2 Model validation

5.1.2.1 Experimental determination of moment-curvature relationship

In order to compare the numerical results from a plane section analysis (PSA) to experimental
data, the moment-curvature relationship must first be determined for all the directions in which
loading was applied during the experiments. The directions (NS, EW and diagonal) and positions
(A to G) along which displacements were applied at the top of the wall are shown in Figure 5.2b-c.
When applying displacements along the geometric diagonals of the wall section, two diagonal
loading directions are distinguished: loading direction between positions E and F (diagonal E-F)
and loading direction between positions H and G (diagonal H-G).

The experimentally determined moment was computed from the actuator forces multiplied by
the shear span corresponding to each direction, i.e., iys = 2.95 m for the NS cycles (positions C
and D) and hgw = 3.35 m for the EW cycles (positions A and B). For loading along the diagonal
directions, the moment was taken as equal to the SRSS moment of the NS and EW directions
computed as in Equation 5.1. The SRSS value was multiplied by the sign of the NS force for
plotting the hysteresis loops consistently, while Mgw and Mys are the moments at the base of the
wall for bending around the axis perpendicular to the web and parallel to the web respectively.

Msgss = 1/ (MIE"W +M1%’S) . Sigl’l(FNs) 5.1

The experimentally determined curvature was derived by extrapolating to the wall base the linear
fit of the curvature profile over # = 50 — 850 mm (Figure 5.2a). This height interval was the mean
range over which the curvature profile was linear over the entire ductility range.
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Figure 5.2: Example for the procedure of determining the experimental base curvature (a) and wall
sections and directions alng which displacements were applied at the top of the wall (b-c)

The experimentally derived moment-curvature relationship is compared to the PSA moment-
curvature relationship in Figure 5.3 for TUA and TUB and in Figure 5.4 for TUC and TUD for
all the loading directions. In the following sections, the differences between the experimentally
determined moment-curvature relationship and PSA results will be discussed in terms of moment
capacity, yield curvature and ultimate curvature as these are the quantities typically required from
PSA when the plastic hinge model is applied.
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5.1.2.2 Moment capacity

For TUA and TUB, the moment capacity is well predicted by the plane section analysis (PSA)
for the principal loading directions, i.e., for the EW and the NS cycles (Figure 5.3a-b). For TUC
and TUD, on the other hand, a different loading protocol was applied and loading in the principal
directions was stopped just after the elastic phase. This is confirmed by the approximate linear
shape of the experimentally determined moment-curvature hysteresis in the EW cycles of TUC
and TUD (Figure 5.4a-b). Therefore the predicted moment capacity is slightly larger than the
maximum moment reached for this loading direction. For the NS cycles, the hysteresis loops
are slightly fatter than the EW direction indicating that the wall had passed the elastic phase
for this direction. The match between the numerical and the experimental moment-curvature
relationships up to where loading was stopped for the NS cycles, is very good for this loading
direction. It can hence be concluded that plane section analysis provides a good estimate of
the moment capacity of the U-shaped walls for the principal directions of loading, and this
observation is in line with the previous remarks from [BDP0O8b].

For the diagonal loading directions however, section analysis overestimates the experimentally
attained moment capacities by ~ 10 to 30% depending on the test unit and loading position. This
observation is valid for all four test units and all diagonal loading positions (Figures 5.3c and
5.4c-d).

For TUA and TUB, the difference between plane section analysis and experimental results can
be partially attributed to the fact that the loading in the diagonal direction was applied after the
wall had already been loaded in the principal directions, i.e., at this instant the wall had already
softened. For TUC and TUD, this was no longer the case since in the inelastic range the cycles
in the principal directions were omitted and the wall was loaded only in the diagonal directions.
The cause for the overestimation of the moment capacity by section analysis for TUC and TUD
was already discussed in the interpretation of the experimental results (Chapter 3).

It was concluded that under diagonal loading, the moment capacity is overestimated by plane
section analysis due to the inability of this numerical model to capture the vertical strain distribu-
tion at the base of the wall. Two main differences were identified after comparing the assumed
numerical vertical strain distribution to the experimentally determined vertical strain distribution
at the base of the wall. Firstly, the flange width over which the tension reinforcement contributes
effectively to the strength capacity of the wall is overestimated by section analysis and so is
thus the moment capacity (Section 3.3.3.2 and Figure 5.5a-b). Secondly, the experimental strain
distribution indicates the presence of an extra compression zone at the corner web-flange that
is not captured by section analysis which accounts for this zone as being in tension (Section
3.3.3.2 and Figure 5.5a-b). Hence section analysis predicts that the reinforcement in this corner
contributes in tension to the wall strength thus further increases the estimate of the moment
capacity. Both phenomena are more important when loading with the flange end in compression,
i.e., positions E and H, than for loading with corner web-flange in compression, i.e., positions
F and G (Figure 5.4c-d and Section 3.3.3.2) which explains the larger moment overestimation
at the former loading positions. These observations can be extrapolated also to TUA and TUB
to explain part of the overestimation by section analysis of the attained experimental moment
capacity (Figures 5.3c).
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5.1.2.3 Moment capacity accounting for the effective flange width

As previously stated, part of the overestimation of the moment prediction under diagonal loading
is due to overestimating the length of the flange in tension which contributes to the wall strength,
i.e., shear lag effect. This effect can be taken into account in a plane section analysis by reducing
the length of the flange in tension at these loading positions. Loading to position E (West flange
end in compression) is first examined. A new wall section was set-up for TUC (Figure 5.5a) to
account for the effective flange width. For position E, this effective flange width was taken as
the length of the East flange for which the measured vertical strains reached the reinforcement
yield strain at the nominal point (Figure 5.5b). The geometry of the new wall section is shown in
Figure 5.6a.

The new moment-curvature results for position E are compared to the experimentally derived
ones as well as to results from section analysis using the full wall section. Accounting for the
effective flange width improves predictions of the SRSS moment (Figure 5.6g): the moment
capacity is now 20% higher than the experimental moment capacity whereas the moment capacity
of the full section was ~ 30% higher. If the moment capacity in the two principal directions of the
wall is examined (Figure 5.6c, e), the moment capacity in the direction of the web (EW moment
computed about the direction of the flanges) is reduced as compared to the EW moment capacity
of the full wall section. The moment in the direction of the flanges (NS moment computed
about the direction of the web) is however increased as compared to the NS moment of the full
wall section since the removed section contributed to the NS moment with opposite sign to this
moment.

While for position E the new section approximates better the vertical strains in the East flange,
the compression zone at the interface between West flange and web is still not captured. This is
considered to contribute to the remaining discrepancies between the predicted moment capacity
and the experimentally attained one when loading with the flange end in compression.

Loading to position F (corner between East flange and web in compression) is considered in
the following. The experimentally determined vertical strain profile indicates compressive or
low tensile strains in the corner between the web and the West flange whereas the PSA strain
profile indicates large tensile strains in this region (Figure 5.5d-f). The discrepancy leads to an
overestimation of the experimental moment for this loading position. To compensate for the fact
that this compression zone is not captured by PSA, the concept of effective flange width is used
also for loading to position F. In this case the length of the West flange is reduced to the effective
flange width taken as previously for position E, i.e., 0.75 of the flange length. The reduced wall
section is shown in Figure 5.6b.
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Chapter 5. Validation of two numerical models for U-shaped walls

The new moment-curvature results for position F indicate that using the effective flange width
reduces the predicted SRSS moment capacity, which is now ~ 20% lower than the experimentally
obtained capacity (Figure 5.6g). The wall strength in the direction of the flanges (NS moment -
Figure 5.6e) was already well predicted with the full wall section and only the strength in the
direction of the web (EW moment - Figure 5.6c) was overestimated. With the reduced wall
section, the moment capacity is reduced for both directions as compared to the full wall section
and for both directions the predicted capacity is lower than the experimentally attained capacity.
If a longer effective flange width would be used, the SRSS moment capacity could be well
predicted but the errors associated with the NS and EW moment would increase. Therefore, even
if the effective flange width is adjusted, monotonic plane section analyses will still not match the
experimentally obtained moment capacity components in the two principal directions of the wall.

For completeness, the reduced wall section accounting for the effective flange width was used
to predict the moment capacity also at positions H and G (East flange end in compression and
corner web-West flange in compression, respectively). These moment predictions from the
reduced wall section (Figure 5.6d,f and h) confirm the conclusions drawn from positions E and F,
respectively. Further discrepancies in wall strength between monotonic plane section analyses
and the experimentally attained value are due to the applied loading history of the experiments as
discussed in Section 5.2.4.
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Figure 5.5: Vertical strains at the base of the wall under diagonal loading to position E: direction of
the applied top displacement (a), experimentally determined vertical strains from LED measurements
(h=0—75 mm) at nominal point (b) and vertical strains obtained from plane section analysis (PSA) at
nominal point analysed using the full wall section or assuming an effective flange length (c).
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5.1.2.4 Yield curvature

The yield curvature marks the boundary between the elastic branch and the inelastic branch in an
idealised moment-curvature response as previously discussed in Section 2.2.2 and 4.3. It is an
important input parameter to many displacement-based design methods, which are frequently
applied in the conceptual design phase.

The derivation of the yield curvature from the experimental data has been explained in detail in
Section 4.3. In order to judge whether section analysis can capture the experimentally determined
yield curvatures, each of the two quantities involved in deriving the yield curvature are assessed
separately, namely the first yield curvature ¢)’, and the ratio between the nominal moment and the
yield moment M, /M,. These two quantities are combined as in Equation 6.3 to give the nominal
yield curvature.

1M
¢y = (pyﬁy (5.2)

First yield curvature ¢§ The point of first yield was determined experimentally as the instant
when the maximum tensile base strain first exceeded the reinforcement yield strain &, or the
maximum absolute compressive strain first exceeded €., = 0.002 [PCKO07]. The base strain was
computed as the extrapolation to the wall base of the best linear fit of the strain profile over the
cracked height (see Section 4.3). The first yield curvature then corresponded to the linear fit
of the curvature profile over the cracked height extrapolated to the wall base. These values are
compared to the first yield curvature results from section analysis in Figure 5.7a where the first
yield curvature from section analysis corresponds to the curvature at the instant when the most
tensioned reinforcement fibre exceeds its yield strain &, or the most compressed concrete strain
exceeds & .

It is found that first yield curvatures obtained from section analysis (PSA) match rather well the
experimentally derived ones. Except at position B of TUC, where the PSA value is ~ 26% lower
than the experimental value, for the other experimental values the match is within ~ 15% error,
and hence a good match. The mismatch at position B of TUC is most likely caused by errors in
the experimental derivation of the first yield curvature, since the experimental first yield curvature
for this case is significantly higher than for the other test units (with same geometry and similar
reinforcement yield strength).

M, /M, ratio For both experimental and numerical results, the yield moment M, was deter-
mined as the moment corresponding to the point of first yield. Limit strains were also used to
determine the nominal point, and hence the nominal moment.

132



5.1. Plane section analysis

The nominal moment capacity from section analysis was taken as the moment at the instant when
the strain in the most tensioned reinforcement fibre first exceeded 0.015 or when the strain in the
most compressed concrete fibre exceeded a compression strain of 0.004 whichever occurred first
[PCKO7]. The experimental nominal point was determined also by comparing the base strain
with the same nominal strain limits listed above. The base strain determining the experimental
nominal point was computed following a procedure similar to the one employed for determining
the point of first yield. Assuming that the plastic strains are linearly distributed over the wall
height for which ¢ > gb)’,, the strains were linearly fitted and the fit was extrapolated to the wall
base. With this procedure, it was found that the nominal moment was not reached for loading to
positions A, B, C and D of TUC and A, B and D of TUD. The experimentally and numerically
determined results are compared in Figure 5.7b.

The nominal to yield moment M, /M, ratios are typically estimated less well by section analysis
than the first yield curvature with differences up to ~ 17%. However, overall the match between
the experimental and the section analysis results of M, /M, ratios is still considered to be good.

Yield curvature ¢y Having compared the quantities entering in the computation of the yield
curvature, the experimental and the section analysis (PSA) results are finally compared in Figure
5.7c. The differences between the numerical (PSA) and the experimental yield curvature results
stem from the differences in the first yield curvature q)y' and the nominal to yield moment ratios
M, /M. Overall, the errors from these two quantities either cancel out or accumulate resulting
in differences between the numerical and the experimentally determined yield curvatures of
~ 20% which can be considered as a satisfactory match given that the yield curvatures find their
application in particular in the conceptual design phase.
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5.1.3 Summary of findings from plane section analysis

Quantities from the moment-curvature relationship required for the application of the plastic
hinge model were experimentally derived and compared to numerical results from plane section
analysis (PSA) in terms of moment capacity and yield curvature. The ultimate curvature was not
discussed in this chapter as it was already compared to experimental data and conclusions were
formulated in in Chapter 4. For the quantities investigated here, the following conclusions were
drawn:

Moment capacity can be predicted with good accuracy by section analysis for the principal
loading directions. For the diagonal loading directions however, PSA overestimated the
experimentally determined moment capacities. The cause of this overestimation was
identified to be the inability of PSA to capture the experimentally determined vertical
strain distribution at the wall base. If the effective flange width is accounted for at position
E (flange end in compression), the prediction of the moment capacity improves but it
is still ~ 20% higher than the experimental one. Further differences are assigned to the
presence of a compression zone at the corner web-flange, which cannot be captured by a
plane section hypothesis. Accounting for an effective flange width at position F (corner
web-flange in compression) could lead to a good prediction of the overall SRSS moment
but the moments in the two principal directions of the wall are still not captured. The
discrepancy between the predicted moment capacity from monotonic section analyses and
the experimentally attained moment capacity are further explained in Section 5.2.4.

Yield curvature can be predicted relatively well by section analysis within 20% difference
from the experimentally determined yield curvatures. While the first yield curvature (l)y’
was predicted quite well, the nominal to yield moment ratios M, /M, were typically less
well predicted but the match was still rather good (~ 17%) resulting in an overall good
prediction of ¢y.

5.2 Shell element model

In addition to the plane section analysis previously discussed, a shell element model was also
set-up to model the behaviour of U-shaped walls. A short description of the software used for this
task is first given (Section 5.2.1), followed by a detailed presentation of the set-up of the shell
element model (Section 5.2.2). Since one objective is to use the this model to perform parametric
studies to derive plastic hinge quantities, the shell element model is then validated against the
experimental data from four quasi-static tests (Section 5.2.3). Finally, the influence of the loading
history on the numerical results is also discussed (Section 5.2.4).
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5.2.1 VecTor4 software

The shell element model was set-up using VecTor4 (VT4) software [PV93], [Hry13]. VecTor4
(originally called APECS then RASP) is a nonlinear finite element analysis (NLFEA) software for
modelling RC structures, developed at the University of Toronto [Hry13]. VecTor4 software was
chosen because it specifically addresses reinforced concrete structures through state-of-the-art
material models already implemented in the software. The software has the ability to model 3D
reinforced concrete structures by means of multi-layered shell elements that can account for the
out-of-plane behavior of the element including the transverse shear strains [PV93], [Hry13]. The
VecTor4 software is currently under development and the version used for all the analyses within
this report is version 4.10 (dated 14.06.2012). All the VecTor4 analyses performed for this report
used only material models and finite elements already implemented in the software.

VecTor2 (VT2) [WVO02] is another software developed at the University of Toronto for RC
structures, part of the same suite programs as VecTor4. While VecTor2 addresses in-plane RC
structures and is more widely used than VecTor4, the two programs share most of the material
models. Therefore many of the material model references will be addressed through VecTor2
references throughout this section.

Shell element

VecTor4 uses a nine-node multi-layered shell element with five degrees of freedom (DOF) per
node: three translations and two out-of-plane rotations. Eight nodes are located on the boundary
of the the shell element and one in the middle (Figure 5.8a). The displacement type shell element
is based on the following assumptions: (1) plane sections prior to deformations remain plane after
deformation but not necessarily normal to the element mid-surface (Mindlin theory [Min51]) and
(2) stresses normal to the element mid-surface are negligible. Quadratic shape functions describe
the displacement field of the element using nine Gauss integration points over the element (Figure
5.8b).

The shell element was provided with a layered approach to account for the variation of stresses
and stiffness through the thickness of the shell (Figure 5.8c). In-plane strains are assumed constant
over the thickness of one layer and vary linearly from one layer to another, i.e., over the thickness
of the shell element. In the original shell element formulation by [OF84]), the out-of-plane shear
strains followed a uniform strain distribution through the thickness of the element. However
this distribution was modified in VecTor4 software to a parabolic one [Hry13], and this later
distribution is used for the models described herein. The strain normal to the mid-surface of
the shell elements is derived from enforcing the condition of zero out-of-plane normal stress. A
complete description of the shell element used for the analyses and its implementation in VecTor4
software is beyond the scope of this report, and therefore for a complete description the reader is
referred to [Hry13].
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Figure 5.8: Characteristics of the shell element implemented in VecTor4: (a) element nodes and degrees
of freedom (adapted after [PV93]); (b) location of the integration points; and (c) layered approach

Material models

State-of-the art material models are employed for the cracked reinforced concrete as the VecTor4
implements the Modified Compression Field Theory (MCFT) [VC86] and the Disturbed Stress
Field Model (DSFM) [VL"01]. The MCFT is a generalized approach based on first principle
mechanics that describes the behaviour of cracked RC elements under bi-axial loading. The
cracked reinforced concrete is treated as an orthotropic material using a smeared rotating crack
approach, i.e., cracks are considered as distributed over the element and can rotate following the
changing direction of the principal concrete compressive stress. Average stresses and strains are
used to write the equilibrium, compatibility and stress-strain relationships. A key feature of the
MCEFT is the examination of the local crack conditions with respect to the local stresses that can
be transmitted across the crack.

The DSFM extends the formulations of the MCFT by including shear slip at the crack surface in
the compatibility relationships. The restriction from the MCFT that the directions of the principal
stresses and strains remain coincident is hence removed as well as the necessity of performing
the crack slip check when examining the local crack conditions. For both MCFT and DSFM,
the stress-strain relationship for the concrete accounts for the reduction of the compression
strength and stiffness due to cracking and tensile strains in the transverse direction (compression
softening). Concrete response after cracking accounts for the tensile stresses between cracks due
to the bond between reinforcement and concrete (tension stiffening). Perfect bond is assumed
between the in-plane reinforcement and the concrete. While some of the material options are
discussed in more detail in the following section, for a complete overview of the material models
and their software implementation, the reader is referred to [Hry13] and [WV02].
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Chapter 5. Validation of two numerical models for U-shaped walls

5.2.2 Model set-up
5.2.2.1 Reference model: geometry, mesh and material models

A 3D model for U-shaped core walls was set-up using the VecTor4 (VT4) software with the
objective was to validate the model against the experimentally derived data from the four U-
shaped walls: TUA, TUB, TUC and TUD (see Chapter 4). Figure 5.9 shows the model in
elevation and cross-section for TUC. The geometry of the model is composed of two parts: the
U-shaped wall from foundation to collar (height above foundation 4 =0-2720 mm) and of the
collar connected to the wall (height above foundation 2 =2720-3560 mm), which enabled the
application of the loads. The collar of the wall was modelled with an offset from the mid-surface
of the wall so that the loading would be applied at the same position as in the experiments. The
foundation of the test unit was not modelled but instead all nodes at the base of the wall were
fully fixed (all DOFs restrained).
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Figure 5.9: Mesh discretisation of the VT4 model for TUB, TUC and TUD: (a) elevation view of the wall
mid-surface and (b) cross-section view with layer discretisation

A number of six distinct modelling ”zones” were assigned to the model to account for the changes
in geometry and material properties. Changes in reinforcement ratio, bar diameter, thickness of
the wall or the presence of confining reinforcement, required new zones in the model. The final
mesh was determined by the division of the wall into the distinct ”zones”, by the accuracy of
the results when compared with the experimental ones and by the necessity to have a reasonable
mesh density from the point of view of the convergence of results and computational time.
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5.2. Shell element model

The final mesh of the wall was composed 18 x 10 approximately square shell elements: 18
elements over the cross-section (six elements over the length of each flange and the web) and 10
equal-height elements over the height of the wall(Figure 5.9b). The collar was also modelled with
18 elements over the cross-section and with four elements over the height. The wall thickness
was discretised into eight equally thick concrete layers (Figure 5.9b). A mesh sensitivity study is
presented in Section 5.2.2.2.

The in-plane reinforcement, both vertical and horizontal, was modelled as smeared reinforcement
(Figure 5.9b). In total, four reinforcement layers were assigned per element (two vertical and two
horizontal layers) with their position within the wall thickness corresponding to the actual location
of the reinforcement bars. The different in-plane reinforcement percentages were accounted for
by assigning different thicknesses to the reinforcement layers. The out-of-plane reinforcement
(confinement reinforcement) was assigned as a property of the concrete in the confined zones
which is accounted for in the material matrix and influences the computation of strains and
stresses in the in-plane directions.

The behaviour models used for setting-up the U-shaped wall model were chosen based on the
sensitivity study described in Section 5.2.2.3 as well as on recommendations by [Hry13] and
[WVO02]. These models chosen for the final model, that was validated and then used for the
parametric study, are summarised below.

e Convergence Criteria : Displacements - Weighted

e Concrete Compression Base Curve : Hognestad parabola
e Compression Post-Peak : Modified Park-Kent

o Concrete Compression Softening : Vecchio 1992-A

o Concrete Tension Stiffening : Modified Bentz

o Concrete Tension Softening : Linear

e Concrete Tension Splitting : Not considered

e Concrete Confined Strength : Kupfer/Richart

e Concrete Dilatation : Fixed Poisson Ratio

e Concrete Cracking Criterion : Mohr-Coulomb(Stress)
e Concrete Crack Slip Check : Basic (DSFM/MCEFT)

e Concrete Crack Width Check : Crack limit(agg/2.5)

e Concrete Bond or Adhesion : Perfect bond

e Concrete Creep and Relaxation : Not considered

e Concrete Hysteresis : Nonlinear w/offsets

e Reinforcement Hysteresis : Bauschinger(Seckin)
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Chapter 5. Validation of two numerical models for U-shaped walls

Reinforcement Dowel Action : Not considered

Reinforcement Buckling : Not considered

Element Strain Histories : Considered

Element Slip Distortions : Not considered

Geometric Nonlinearity : Not considered

Crack Allocation Process : Uniform spacing

5.2.2.2 Mesh sensitivity

To determine the final mesh, sensitivity studies were performed varying the number of elements
over the height, over the section or both. The number of layers over the thickness of the elements
was also varied. For this task the model for TUB was analysed for monotonic loading in one of
the principal directions (position B).

The influence of the element mesh size on the numerical results was assesssed based on the
comparison of the numerical results from the model with different meshes with the experimental
data. The results were compared at the global level in terms of force-displacement curves and at
the local level in terms of vertical strains at the most compressed and the most tensioned wall
edges. For position B, investigated here, the most tensioned edge corresponds to the NW corner
while the most compressed edge corresponds to the NE corner (see Figure 5.2b).

The mesh sensitivity was tested by changing the number of elements over the height of the wall
between base and collar (collar not included), the number of elements over the wall section or by
changing both number simultaneously. Dividing the section into several elements was somewhat
limited by the different confined and unconfined concrete regions in the wall. Therefore the wall
section could be divided into 15, 18 or 22 elements. Next, in order to test the influence of the
element height on the numerical results, the wall was divided in five, ten or 20 equal elements
over the height. And finally, reducing or increasing the element size simultaneously over the
length and the height was taken into account by comparing three models: 15 elements/section
and 5 elements/height (15S x SH), 18 elements/section and 10 elements/height (18S x 10H) and
22 elements/section and 20 elements/height (22S x 20H). The global results (force-displacement
curves) for all the meshes are compared with the experimental hysteresis in Figure 5.10. As the
graphs indicate the variation of the force-displacement curves between the models with different
meshes is rather small.
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Figure 5.10: Mesh sensitivity: comparison of the experimental force-displacement curve with numerical
results obtained from models by varying the element length (a), varying the element height (b) and varying
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141



Chapter 5. Validation of two numerical models for U-shaped walls

At the local level, the vertical strain profiles over the wall height at the most compressed (NE
corner) and at the most tensioned (NW corner) wall edges are examined (Figure 5.11a). The
experimental vertical strain profiles were determined as the average strains of the LVDT chains
mounted at the outside edges of the wall as explained in Section 4.2 (Figure 5.11b). The numerical
vertical strains were computed from the vertical displacements of nodes on the mid-surface of the
wall model (Figure 5.11c). The experimental strains were corrected for the distance between the
measurement device and the outer corners of the wall. The numerical strains were also corrected
for the distance between the mid-surface and the outer corner of the wall. Both corrections were
done assuming a linear vertical strain profile over the length of the flanges and the length of the
web.

The experimental and the numerical results of models with different meshes are compared in
Figures 5.12, 5.13 and 5.14. These local results are discussed by first comparing the numerical
results from the final model with the experimental results, and secondly by comparing the
numerical results from the different meshes between each other.
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Figure 5.11: Location of the vertical strains at the wall outer corners (NE corner and NW corner) examined
for local behaviour at position B (a). The vertical strains at the NW and NE corners were obtained by
correcting the measured strains from LVDTs (b) and the numerical strains obtained at the wall mid-surface
(c) by assuming a linear vertical strain profile along the length of the web and of the flanges.

In the tensile strain profile, at low displacement ductility (ua = 1) the numerical vertical strains
match rather well the experimental strain profile (Figure 5.12). The experimental strain at the base
of the wall (over 7 = 0 — 50 mm) is not plotted due to graph readability and because it mainly ac-
counts for the strain penetration effect which is not modelled here. The experimental compressive
strains at this displacement level are also matched relatively well by the numerical model. At a
medium displacement ductility (ua = 3), VecTor4 predicts an important concentration of tensile
strains over the third element above the base which was not observed in the experiment (Figure
5.13b). However at high displacement ductility (up = 4 — 6) this concentration of numerical
strains becomes less important and the numerical strain profile approaches the experimental
strain profile (Figure 5.13c). The compressive strain profile is well captured by the model at low
ductilities but not for medium and large ductilities, irrespective of the chosen mesh (Figure 5.12a,
5.13a and 5.14a).
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5.2. Shell element model

The numerical strain profiles obtained with the different meshes show some differences especially
at medium and large displacement ductilities (Figures 5.13b-c and 5.14b-c). Changing the number
of elements over the wall height has the most important influence on the vertical strain results
(Figures 5.13) while the number of elements over the section have a lesser influence (Figures
5.12). While the model is sensitive to mesh size for medium and height ductilities, at low
ductilities the mesh influence is negligible (Figure 5.13a and 5.14a). The intermediate size mesh
that gives the closest results to the experimental ones is chosen for the final model.
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Figure 5.12: Mesh sensitivity: comparison of the experimental average vertical strains with numerical
average vertical strains obtained from models by varying the numbers of elements per section. The results
are compared for the wall edge with the maximum tensile strains (NE corner) (a-c) and for the edge with
the minimum compressive strains (NW corner) (d-f) at position A and at three displacement ductilitiy
levels: at low ductility pa = 1, at medium ductility pp = 3 and at a large ductility yua = 6.
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Figure 5.13: Mesh sensitivity: comparison of the experimentally derived average vertical strains with
numerical average vertical strains obtained from models by varying the numbers of elements per height.
The results are compared for the wall edge with the maximum tensile strains (NE corner) (a-c) and for the
edge with the minimum compressive strains (NW corner) (d-f) at position A and at three displacement
ductilitiy levels: at low ductility pua = 1, at medium ductility ta = 3 and at a large ductility up = 6.
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Figure 5.14: Mesh sensitivity: comparison of the experimentally derived average vertical strains with
numerical average vertical strains obtained from models by varying the numbers of elements per section
and per height. The results are compared for the wall edge with the maximum tensile strains (NE corner)
(a-c) and for the edge with the minimum compressive strains (NW corner) (d-f) at position A and at three
displacement ductilitiy levels: at low ductility ua = 1, at medium ductility s = 3 and at a large ductility
U = 6.
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Number of layers over the wall thickness The shell element can be subdivided into several
layers over the thickness. For the final model, the elements were divided into eight layers through
the wall thickness. To test the sensitivity of the results to the layer discretisation, a model with
four and one with 16 layers through the thickness were considered. The force-displacements
results are given in Figure 5.10d and indicate that the layer discretisation has little effect on the
overall force-displacement curve. In terms of vertical strains, the layer discretisation influences
the tensile strain results for medium and large ductilities (Figure 5.15): a large layer thickness
reduces to some extent the strain concentration in the third element while a small layer thickness
amplifies it. For tensile strains at low ductilities as well as for compression strains at all ductilities,
the layer discretisation has very little influence on the local results.
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Figure 5.15: Mesh sensitivity: comparison of the experimentally derived average vertical strains with
numerical average vertical strains obtained from models by varying the numbers of layers per thickness of
element. he results are compared for the wall edge with the maximum tensile strains (NE corner) (a-c)
and for the edge with the minimum compressive strains (NW corner) (d-f) at position A and at three
displacement ductilitiy levels: at low ductility ta = 1, at medium ductility gy = 3 and at a large ductility

Ua = 6.
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In conclusion, while the mesh sizing and layer discretisation does not influence the strength and
stiffness of the wall, they do influence the magnitude of strains at medium and high ductilities
and might hence influence the wall displacement capacity and failure mode.

5.2.2.3 Material models and analysis options: sensitivity studies

The series of VecTor programs are equipped with a wide choice of material models and options
[WVO02]. For VecTor4 the choice of material options is somewhat limited as compared for
example with VecTor2 but still the user has wide range of choices. Performing sensitivity studies
for all the material models using the full wall model of one of the tested U-shaped walls would
be very time consuming. Therefore the following strategy was adopted: the material models are
assess sed using a one-element model with different boundary conditions and loading history,
and based on these results only the most “promising” models are then evaluated using the full
U-shaped wall model. When testing material models using the U-shaped model, comparison is
made with the ““ reference model” which represents the final model used for the validation and
parametric study and which is previously described in Section 5.2.2.1.

Concrete compression pre-peak behaviour Six models are available to describe the pre-peak
behaviour of concrete. These models compute the principal compressive stress fs if the principal
compressive strain £ is less than the peak strain €,. While some models were derived for normal
strength concrete, other have a steeper ascending branch in order to represent high strength
concrete. The models were tested on a model with one single shell element without reinforcement
applying the boundary conditions as shown in Figure 5.16a. An incremental displacement which
compresses the element was applied at the top nodes of the element. The resulting stress-strain
curves are given in Figure 5.16b and they are compared to the experimental stress-strain curve
obtained from one concrete cylinder test corresponding to TUC at the day of testing. The linear
pre-peak model was not represented in the graph as this model is not normally used.
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Figure 5.16: Behaviour of concrete in compression: concrete compression base curves
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The comparison of the pre-peak models with the experimental stress-strain curve indicates that
Hognestad, Hoshikuma and Popovics NSC all provide a rather good match. These three models
will be investigated together with their corresponding post-peak curve on the full TUB model.

Concrete compression post-peak behaviour The compression post-peak models compute the
principal compressive stress f.3 for principal compressive strains €. larger than the peak strain
€,. The peak stress and strain are determined by modifying the concrete cylinder strength and the
corresponding strain to account for compression softening due to coexisting tensile strains and
for strength enhancement due to confinement. Most of the post-peak models are formulated in
the context of confined concrete and hence if the element is not confined all post-peak models
yield the same stress-strain relationship (except for Saenz/Spacone). Hence the post-peak models
are all assessed in the context of confined concrete for one element model with the boundary
conditions as shown in Figure 5.17a. The element has no in-plane reinforcement and has a ratio
of 0.75% of out-of-plane reinforcement, which is a typical confinement ratio for the test units
investigated here. An incremental displacement which compresses the element was applied at
the top nodes of the element. The Modified Park-Kent model which is also the recommended
default model [WV02], provides the lowest degradation of the compressive stresses after peak
as compared to the other models. Monotya2003 and Popovics/Mander have an intermediate
behaviour while with Hoshikuma the degradation is faster. Saenz/Spacone model differentiates
from all the other as the degradation initiates earlier in this model. The Modified Park-Kent, the
Popovics/ Mander and the Hoshikuma models will be further investigated using the full TUB
model.
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Figure 5.17: Behaviour of concrete in compression: tested model with a single shell element (a) and
VecTor4 post-peak models (b)
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Concrete compression softening Compression softening refers to the reduction of the uni-
axial concrete strength and strain (cylinder test strength and strain) due to coexisting transverse
cracking and tensile straining. In VecTor4, the compression softening models are implemented
by multiplying either both the uni-axial strength and strain or just the strength, with a reduction
factor f3; in order to obtain the peak strength f, and strain €,. A one-element model is again
considered with the boundary and loading conditions as shown in Figure 5.18a. An incremental
displacement which compresses the element was applied at the top nodes of the element while a
constant displacement was applied on one side of the element. The results given in Figure 5.18b
show that the compression softening can vary significantly. Only Vecchio1992A, Vecchio1992C
and Vecchio-Collins 1982 reduce both the strength and the strain while the others modify only the
strength. However the Vecchio-Collins 1982 model does not recognize shear slip effects when
these are included in the analyses and hence this model is also disregarded. As the remaining
models: Vecchio1992A and Vecchio1992C provide similar results, Vecchio1992A is chosen for
the final model.
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Figure 5.18: Behaviour of concrete in compression softening models: tested model with a single shell
element (a) and VecTor4 models (b)

Confined concrete strength Confined concrete is implemented in VecTor4 by multiplying the
uni-axial strength f. and strain & (from cylinder test) with an amplifying factor §; in order to
obtain the peak strength f, and strain €,. Note that the computation of the peak strength and
strain includes also the factor B; which accounts for the compression softening effects (Equations
5.3 and 5.4). The different strength enhancement models are shown in Figure 5.19b as tested on
a one-element model (Figure 5.19a).

The three confined concrete models provide rather different results: Selby model results in the
most rapidly descending post-peak branch and lowest confined strength and strain, with Montoya/
Ottosen the degradation after post-peak is very small while Kupfer/ Richart provides intermediate
confinement strength and strain. The Kupfer/ Richart was chosen for the final model.

fo=Ba- B fe (5.3)
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Figure 5.19: Behaviour of concrete in compression-confined concrete strength: tested model with a single
shell element (a) and VecTor4 models (b)

Lateral expansion model for concrete The lateral expansion feature accounts for the lateral
expansion of the concrete volume under increasing compressive strains. If the concrete is confined,
this expansion results in passive confining pressures which can increase the strength and strain
capacity of the concrete in compression. The lateral expansion is introduced in the software
through the Poisson ratio, which relates the expansion of concrete in one principal direction
orthogonal to the one in which compression the compression load is applied. The simplest model
available considers a constant Poisson ratio, i.e., a Poisson ratio that is independent of the applied
compressive strains. All the other models account for an increasing Poisson ratio with increasing
compressive strains. The results for a one-element model are shown in Figure 5.20.

All models considering a variable Poisson ratio lead to an increase in the peak strength and strain
with increasing compressive strain, which has been also observed in experimental tests [KHR69].
However their response is rather unstable. The fixed Poisson ratio shows the most numerically
stable behaviour and despite not being the most realistic model, it is the preferred option for the
final model due to its numerical stability.

Concrete tension stiffening Tension stiffening is a phenomenon specific to reinforced concrete
in tension. When the reinforced concrete cracks, the stresses in the concrete in the direct vicinity
of the cracks reduce to zero. However with increasing distance to the crack surface, tensile
stresses in the concrete increase due to the bond between reinforcement and concrete. These
stresses together with the reinforcement stresses give the stiffness of the reinforced concrete
which is therefore larger than the stiffness of the reinforcement alone.
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Figure 5.20: Behaviour of concrete in compression-lateral expansion models: tested model with a single
shell element (a) and VecTor4 models (b)

The tension stiffening is implemented in the software by modifying the post-peak behaviour of
concrete in tension. When tension stiffening is not considered, the concrete tensile stress drop
immediately to zero stress after reaching the cracking stress f,, (Figure 5.21b). Depending on the
tension stiffening model used, the principal tensile stress in concrete f, after cracking can be
written as a function of the cracking stress f., and the bond characteristics between reinforcement
and concrete. The tension stiffening models provided in VecTor4 were tested on a one-element
model, with 0.5% vertical reinforcement content. An incremental displacement that tensions the
element was applied at the top nodes of the element (Figure 5.21a). Tension softening was not
considered (see next section).

Except the Izumo, Maekawa et al. model, all the other tension stiffening models yield rather
similar results (Figure 5.21b). The Modified Bentz model is chosen for the final model since
it also accounts for the characteristics of the bond between reinforcement and concrete. Since
tension stiffening affects the wall effective stiffness which is one the quantities of interest in the
model validation, the tension stiffening influence will be further assess sed on the TUB wall
model.

Concrete tension softening Tension softening is a phenomenon specific to plain concrete in
tension: after cracking the concrete stresses do not decrease immediately to zero but the strength
drop is gradual as the crack fracture process progresses. Tension softening is accounted for in
VecTor4 by including a post-peak branch in the stress-strain behaviour of concrete. Note that
also tension stiffening is included in the same manner, i.e. by including a post-peak descending
branch. When both phenomena are considered, the post-peak principal concrete tensile stress is
described by the maximum of the tensile stresses resulting from the two phenomena.
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Figure 5.21: Behaviour of concrete in tension: tested model with a single shell element (a) and VecTor4
tension stiffening models (b)

A one-element model was again considered in order to assess s the different tension softening
models. Initially, tension stiffening was not considered, but in this way, all tension softening
models yielded the same stress-strain relationship. Therefore the Modified Bentz was assigned as
an option for tension stiffening, while the vertical reinforcement content was reduced to almost
zero, thus reducing also the influence of considering the tension stiffening on the results.

The different tension softening models show various trends from a rapidly descending branch
(Nonlinear Yamamoto) to a more slowly descending one (Nonlinear Hordijk). The linear model,
which is the simplest model available, was chosen for the final wall model since more complex
models were not considered necessary. As discussed in the following sections, the influence of
tension softening on the results of the TUB wall model is negligible for the global results and
rather small for the local results.
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Figure 5.22: Behaviour of concrete in tension: tested model with a single shell element (a) and VecTor4
tension softening models (b)
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5.2. Shell element model

Concrete compression curve - TUB model The different models where further examined
by analysing the TUB model for the retained pre-peak and post-peak curves. The models are
assessed in terms of global behaviour (force-displacement curve) and in terms of local behaviour
(vertical strains profile over the wall height) by comparison to the experimentally determined
results.

The force-displacement comparison, shown in Figure 5.23a indicates that the VecTor4 model
matches rather well the experimental behaviour in terms of stiffness and strength. The overall
differences between the models are very small.

When evaluating the vertical strain profiles (Figure 5.24), the differences between the models
are still not significant especially at low ductilities while for medium and high ductility some
trends can be observed. More precisely, the combination of Hognestad/ Park-Kent provides the
best match with the experimental results. The Hoshikuma model gives rather similar results to
Hognestad/ Park-Kent. Based on these observations the Hognestad/ Park-Kent combination is
used to describe the concrete compression curve in the final model.

MCEFT vs. DSFM - TUB model One material modelling option which was not evaluated on
the one-element model is the choice between the Modified Compression Field Theory (MCFT)
and the Disturbed Stress Field Model (DSFM). As previously stated, MCFT assumes that the
principal stresses and strains are aligned. For DSFM this assumption is no longer valid and the
principal stress rotation can lag behind the rotation of the principal strain [VLT01]. While MCFT
requires examination of the local crack conditions (crack slip check) in order to address possible
failure modes along the crack, the DSFM explicitly calculates the crack slip deformations and
hence the crack slip check is no longer necessary.

From a practical point of view, DSFM was mainly developed to extend the application of MCFT
to reinforced concrete structures that are very lightly or very heavily reinforced because for such
extreme reinforcement ratios MCFT over- or under-predicted the shear stiffness and strength
[VL'01]. The test units considered here have a reinforcement percentage around ~ 1% which
is hence considered a medium reinforcement content. It is therefore expected that MCFT and
DSFM yield similar responses.

Indeed this is confirmed after comparing the two models at the global level (Figure 5.23b)
and at the local level (Figure 5.25). Some more important variations can be observed only at
the local level at high ductilities (ua = 6) in the tensile strains (Figure 5.25c). Based on this
comparison with the experimental results, the MCFT seems to be a more suitable choice. For this
comparison the following complementary modelling options were used: crack slip check - Basic
(DSFM/MCEFT) option and for element slip distortions - Walraven.
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Figure 5.23: Sensitivity of the force-displacement curve to the compression pre-peak and post-peak
models (a) and to the choice of analytical model (MCFT or DSFM) (b)
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Chapter 5. Validation of two numerical models for U-shaped walls

Tension stiffening and softening - TUB model The post-peak behaviour of concrete in tension
is expected to significantly influence the effective stiffness of the wall, i.e., the secant stiffness
through the first yield point, which is one the quantities of interest here. To verify this, results
from the TUB model where tension stiffening is not considered were compared with the results
from the reference model and with the experimentally derived quantities. The reference model
which was described in Section 5.2.2.1 includes both tension stiffening (Modified Bentz) and
tension softening (Linear). Note that, as previously mentioned VecTor4 does not consider tension
softening when tension stiffening is neglected. Hence the results shown in Figure 5.26 consider
that concrete tensile strength drops immediately to zero after cracking.

Neglecting tension stiffening and softening reduced significantly the initial wall stiftness when
compared to the reference model. More importantly, this model has also a significantly lower
stiffness than the experimental force-displacement curve.

When comparing the vertical strain profiles, the match between the reference model strains and
the experimental ones is rather good at yield (y = 1). The model without tension stiffening
and softening significantly overestimates the tensile strains in the upper part of the wall at yield,
while underestimating the strains at the base. In contrast, at medium and high ductilities it is
the latter model that predicts well the tensile strain distribution over the height of the wall, and
the concentration of strains in the third element no longer occurs. This would indicate that the
post-peak tension behaviour of concrete is responsible for the concentration of plastic strains in
the third element above the base, which was observed in Section 5.2.2.2.

Figure 5.26 compares the force-displacement results when tension softening is not considered
with results from the base model and experimental results. Not accounting for tension softening
reduces slightly the elastic stiffness. However the largest differences with the final model and
with the experimental results can be seen in the local results at yield. Without tension softening,
the tensile strains in the upper part of the wall are overestimated at puy = 1. Without tension
softening, the tensile strains at medium and large ductilities are now concentrated in the second
element from the base, which is closer to the experimental observations.

In conclusion, not considering tension stiffening and softening underestimates significantly the
elastic stiffness of the wall as well as it overestimates the tensile strains in the upper part of the
wall at yield. Therefore it is necessary to consider these phenomena in the model if the elastic
branch of the force-displacement curve is of interest, despite the shortcomings of these models
related to numerical concentration of strains.

5.2.2.4 Material properties

The reinforcement stress-strain curves were fitted with the experimentally obtained curves of steel
tests at the day of testing (Figure 5.29a). The steel properties introduced in the model correspond
to those at day of testing, except the ultimate strain which was assigned a very large value.
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Figure 5.27: Sensitivity of the vertical strain profiles to the tension stiffening model
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5.2. Shell element model

The concrete compressive strength f. was taken from cylinder tests at the day of testing. The
corresponding peak strain at maximum strength was set to the default VecTor4 value g =
1.840.0075f,. For the elastic modulus and the tensile strength, the default VecTor4 values were
also assigned: E. = 55004/ and f; = 0.33./f, correspondingly. As already discussed for the
concrete compressive base curve the Hognestad model is used for the pre-peak and the Modified
Park-Kent for the post-peak. To account for the cyclic behaviour, the concrete hysteresis is
described by a nonlinear model with offsets (Figure 5.29).
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Figure 5.29: Vector4 material models: (a) D8 and D12 reinforcement of TUC and TUD; and (b) unconfined
concrete of TUC

Concrete tensile strength The extent of cracking over the height of the wall is one of the
quantities of interest here. Since cracking depends significantly on the concrete tensile strength
[z, its influence on the results was verified by performing one analysis with half the default tensile
strength. The default tensile strength is computed in VecTor4 as f; = 0.33+/f., where f is the
uni-axial concrete compressive strength.

© u, -]

- —f£=0.165Vfc ]

0 2 4 6 8

600 T T T LI

TUB: Pos. B ]

% 400F A .

3 7/ Exveri 1

1] . xperiment |

< / 1

= 200 —£=033VR ]

g ]
2
g
=
m

7200 I I I I I
—20 0 20 40 60 80 100 120

EW top displacement at h=3.35m [mm]

Figure 5.30: Sensitivity of the force-displacement curve to the value of the concrete tensile strngth

Figure 5.30 indicates that the model with f; leads to a reduced initial wall stiffness when compared
to the reference model and also when compared to the experimental results. In terms of local
behaviour, the tensile strains at yield are overestimated in the upper part of the wall at yield,
indicating that using half the value of f; will overestimate the extent of cracking over the wall
height. At the same, the tensile strains towards the base of the wall, are underestimated when
reducing f;. At medium and high ductilities, reducing f; has little influence on the tensile strain
profile. Since capturing the extent of cracking at yield is essential, the default concrete tensile
strength f; = 0.33,/f. will be used in all the analyses.

159



Chapter 5. Validation of two numerical models for U-shaped walls

(2) (®) (c)
r T T T T ] r T T 7] C T T ]
33 TUB: Pos. B 1, =1 33 TUB: Pos. B =3 33 TUB: Pos. B =6
NW corner NW corner NW corner
3F R 3F R 3k R
£ Experiment
§ 25F | f¢:0‘3wf°’ 1 25F 1 25F b
=
=] - - s
2 5l L= f=0.165VEc | 5L | L |
E .
2
o 1.5 1 L5F 1 L5F b
)
=
2 1F b 1F b 1F b
Q
=
0.5F 1 05F 1 05F b
O | | | 0 | 0 | |
-1 0 1 2 3 4 5 0 20 40 60 0 20 40 60
Vertical strains [mm/m] Vertical strains [mm/m] Vertical strains [mm/m]
(d) (e) ®
r T T T ] T T T T ] T T T T ]
33 TUB: Pos. B uA=1 33 TUB: Pos. B uA=3 33 TUB: Pos. B uA=6
NE corner NE corner NE corner
3r b 3F b 3F b
E
_g 25F 1 25F 1 25F L b
g |
= 1
3 2F R 2F | R 2F : R
= 1 5
© J
o 1.5F 141 1.5F 141 1.5F . R
g "
=
2 1F R 1+ R 1+ R
Q
jan}
0.5 1 05F I 1 05F b
o
O | | | O | | | Il | | 0 | | | | | |
-2 -15 -1 -05 0 05 1 S5 -4-3-2-1 01 2 3 S5 -4-3-2-1 01 2 3
Vertical strains [mm/m] Vertical strains [mm/m] Vertical strains [mm/m]

Figure 5.31: Sensitivity of the vertical strain profiles to the value of the concrete tensile strength
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5.2.2.5 Load application and load history

The collar where all the loads were applied, was assigned a large tensile and compressive concrete
strength to account for the pre-tensioning which was applied on the collar during the experiments.
Four compressive forces representative for the axial load were applied vertically at the top of the
collar with their resultant acting at the gravity centre of the wall U-shaped section (Figure 5.9).
The three lateral loads were all applied by means of displacement increments for all analyses.

In all four tests which are used for the validation of the model, bi-directional loading histories
were applied ([BDP08a] and Section 3). The same load histories were also applied to the VecTor4
models, except for TUA and TUB where the elastic cycles, as listed below, were applied in
displacement control instead of force control as in the experiments.

The loading positions and directions are shown in Figure 5.2b-c. Three lateral loading directions:
EW, NS and diagonal E-F, with two loading positions each were distinguished for TUA and TUB.
For TUC and TUD, an additional loading direction is considered, i.e., diagonal H-G, due to the
loading protocol and the asymmetry of the vertical reinforcement in the two wall flanges (Section
3). The loading history of all test units is summarised below:

e TUA and TUB

— Elastic cycles: one cycle along EW, NS and diagonal E-F directions up 25%, 50%,
75% and 100% of the predicted force at first yield

— Inelastic cycles: one cycle along EW, NS, diagonal E-F directions and one sweep
cycle at each displacement ductility pua = 1,2,3,4,6 (and 8 only for TUA)

e TUC and TUD

— Elastic cycles: one cycle along diagonal E-F (Diag.1), diagonal H-G, NS and EW
direction at drifts 6 = 0.1%,0.2%,0.3%,0.4% and 0.6%

— Elastic cycles: two consecutive cycles per drift along NS followed by two cycles
along EW direction at 6 = 0.8%

— Inelastic cycles: two consecutive cycles per drift along diagonal E-F then two cycles
along diagonal H-G 6 = 1.0%

— Inelastic cycles: two consecutive cycles per drift along diagonal H-G then two cycles
along diagonal E-F § = 1.5%

— Inelastic cycles (only for TUC): continue alternating diagonals E-F and H-G at
6=2.0%,2.5%

5.2.3 Model validation

Once the model was set-up its validation is done against experimental results from the four
quasi-static cyclic tests on U-shaped walls, namely TUA and TUB reported by [BDPO8a] and
TUC and TUD reported in Chapter 3. The VecTor4 models for the four walls differ with regard
to concrete and steel properties, with regard to the imposed loading history both horizontal and
vertical load as well as with regard to the vertical reinforcement contents. The mesh was kept the
same for all models (Figure 5.9).
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Chapter 5. Validation of two numerical models for U-shaped walls

In the following, the numerical results from the VecTor4 analyses are discussed with respect to
the experimentally derived values focusing on quantities involved in the plastic hinge model,
since these quantities will also be of interest for the parametric studies. For consistency, the
numerically determined quantities are derived using the same procedures that were used for the
derivation of the experimental results (Section 4).

5.2.3.1 Force-displacement curves

The comparison between the experimental and the numerically obtained force-displacement
hystereses is shown in Figures 5.32 to 5.34 with the force-displacement hystereses displayed for
each loading direction and each test unit. The VecTor4 model captures very well the experimental
force-displacement hysteresis in terms of strength, loading and reloading stiffness for all test
units and loading directions.

5.2.3.2 Yield curvature

The yield curvature ¢y is determined from the results of the shell element model following the
same procedure as for the experimental results (Section 5.1.2.4). More precisely, the first yield is
determined at the instant when the tensile strain at the base of the wall corresponding to the most
tensioned flexural reinforcement bar reaches the reinforcement yield strain. The base strain was
determined by extrapolating to the wall base a linear fit of the strains over the cracked height of
the wall H,,, where H,, is computed as in Equation 5.5. In this equation, M,, is the analytical
cracking moment, M, is the first yield moment from section analysis and H is the wall shear span
depending on the loading direction.

Her = max(Lya; (1 —Mer/My) -H) (5.5)

Once the first yield instant is determined, the first yield curvature ¢}’, is determined also by a
best linear fit procedure and extrapolation to the base. The curvature profile at first yield is also
fitted over H,, and extrapolated to the wall base, thus giving the first yield curvature. Curvature
profiles at first yield obtained from the analyses are shown for comparison with the experimentally
derived profiles in Figures 5.35 and 5.36. The match between the experimentally and numerically
determined curvatures profiles at first yield is overall rather good.

As Figure 5.37 indicates, the first yield curvatures obtained as explained above are slightly
overestimated by the numerical model. This is the result of having the first yield instant being
determined slightly later, i.e. for larger top displacements, in the numerical model due to larger
size of the numerical load step increment as compared to the experimental load step. This will
also lead to larger first yield moments and hence lower nominal to first yield moment ratios
M, /M,. As will be discussed in the following, this difference is of little importance since the
larger first yield curvatures (l)v’ and displacements A’y combined with the lower nominal to first
yield moment ratios M, /M, will lead to good predictions of the nominal yield curvature ¢, and
displacement A, which are the quantities of interest.
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Chapter 5. Validation of two numerical models for U-shaped walls

Next, in order to obtain the nominal yield curvature ¢y, the yield and the nominal moment need to
be determined. The yield moment is defined as the moment when the base strain corresponds to
the yield strain limits and the nominal moment as the moment when the nominal strain limits are
reached. The same procedure was used for deriving the nominal moment from the experimental
data (Section 5.1.2.4). The nominal limit strains are & = 0.015 or €. = —0.004 whichever occurs
first. The base strain is obtained by extrapolating to the wall base the best linear fit of the strain
profiles over the height of inelastic strains. A linear variation of the inelastic strains is hence
assumed.

A comparison of the numerically and experimentally obtained M, /M, ratios is shown in Figure
5.37b. As discussed, the predictions of the nominal moment to first yield moment M, /M, ratio
are slightly lower that the experimentally derived M, /M, ratios, within ~ 20 — 30% (Figure
5.37b) due to the higher numerical yield moments M, (Figure 5.39a).

Finally, the nominal yield curvature will be obtained by multiplying the first yield curvature
¢y’ with the M, /M, ratio. The discrepancies between the numerically and the experimentally
determined nominal yield curvatures stem from the differences in two multiplied quantities which
tend to cancel out (Figure 5.37c) since the (l)}’, is slightly overestimated while M, /M, is slightly
underestimated. Overall, the shell element model captures relatively well the experimentally
derived nominal yield curvatures: within ~ 20% difference if the positions E and F of TUA are
not considered.

Note that for TUA, the experimental data for the elastic cycles to 25% and 50% of the yield
force was missing (Figure 5.32) as the top displacements were too small to be recorded by the
measurement instruments. The experimental first yield instant was determined during the first
recorded cycle (loading up to 75% of the yield force) but the first yield instant might have already
been reached in the missing cycles. Hence the experimentally determined wall response of TUA
in the elastic range is most likely softer than the actual wall behaviour especially for positions
cycled last at this ductility, i.e., positions E and F but also positions C and D. For these loading
cases of TUA, empty markers are used in the figures.

5.2.3.3 Yield displacement

The yield displacement can be directly obtained from the VecTor4 model as the displacement
at the first yield instant A;, multiplied by the M, /M, ratio. The numerically determined first
yield displacement is shown in Figure 5.37c¢ for comparison with the experimentally determined
values while the nominal yield displacement A, is given in Figure 5.37d. Again if the values for
TUA at the missing data positions are not considered, the match for the A, is fairly good, within
~ 20 —30% difference.

The first yield and the nominal points from experimental and numerical results are shown on
the force-displacement curves in one example in Figure 5.38. Despite predicting larger first
yield displacements A; and hence also larger first yield moments M,, VecTor4 underestimates the
M, /M, ratio and hence the nominal yield displacement A, = A; -M, /M, is well predicted.
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Figure 5.37: Comparison between the experimentally determined quantities and the VecTor4 derived
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5.2.3.4 Effective stiffness

The effective stiffness of the U-shaped wall under the different loading direction was evaluated
from the experimental results in Section 4.8 as the force at first yield divided by the displacement
at first yield. The numerical values of the effective stiffness are also determined in this manner. As
discussed, while the first yield displacements are typically slightly overestimated (Figure 5.37d),

SRSS displacement at h=2.95 m [mm]

so are the first yield moments (Figure 5.39). Hence the overall match of the effective stiffness
ratios K. 77 /Ky, (i.e., effective stiffness divided by the elastic stiffness of the gross section) is
relatively good, again after removing the points corresponding to the missing cycles of TUA.
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Figure 5.39: Comparison between the experimentally determined quantities and the VecTor4 derived

quantities: first yield moment (a) and effective stiffness ratio(b)
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5.2. Shell element model

5.2.3.5 Plastic hinge length

In Section 4.5, the experimentally determined plastic hinge length was evaluated in two ways
in order to compare with estimates: (1) by back-calculating the L, value from the top plastic
flexural displacement and (2) by taking L, as half the height of the plastic zone L. For both
approaches, the match between the L, experimental and numerical values will depend on how
well the numerical model captures the experimental curvature distribution over the wall height
in the inelastic range. The curvature profiles, experimentally and numerically determined, are
hence compared for one of the test units, TUB, in Figure 5.40 for the different loading positions
and displacement ductilities. The match between the experimental and the numerical determined
curvature profiles is rather good and hence also the match between the plastic hinge values
derived from the curvature profile is rather good and match the experimentally observed constant
trends of the plastic hinge lengths over the ductility range (Figures 5.41 and 5.42).

If average values over the inelastic range (8 > §,) of the plastic hinge length computed as half
the height of the plastic zone L, = L,;/2 are compared to the numerically determined values
(Figure 5.43), the match is relatively good. The experimental L, average values are captured by
the VecTor4 model within an error of ~ 20% with numerical values typically underestimating
the experimental values. For TUD, the differences between experimental and numerical Ly,
values of are larger than for the other test units. However the experimental L, values of TUD are
less reliable since only one or two L, values are available to compute the average L, at these
loading positions and they correspond to low displacement ductilities (up = 2 — 3) which are
more sensitive to measurement errors.
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Figure 5.40: TUB: comparison between the experimentally determined curvature profiles and the curvature
profiles from the VecTor4 model at displacement ductilities pp = 4 and 6.
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Figure 5.41: TUA and TUB: Comparison of experimentally determined plastic hinge lengths L, (Exp.)
with numerically determined L, from VecTor4 (VT4) analyses. Plastic hinge lengths L, were computed
assuming the centre of rotation at the middle of the plastic hinge length.
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Figure 5.42: TUC and TUD: Comparison of experimentally determined plastic hinge lengths L, (Exp.)
with numerically determined L, from VecTor4 (VT4) analyses. Plastic hinge lengths L, were computed
assuming the centre of rotation at the middle of the plastic hinge length.
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Chapter 5. Validation of two numerical models for U-shaped walls

5.2.3.6 Ratio of shear to flexural displacements

The experimentally derived shear to flexural displacements ratios A;/A have been determined
and discussed in Section 4.7. The numerical A;/A ratios were computed from the displacements
of the nodes located at the four vertical edges of the wall (Figure 5.9). Average curvatures were
computed over the height of one-element row (2 = 272 mm) and they were integrated over the
shear span of the wall (h = 0 — H) to obtained the flexural displacements. The shear deformations
were derived over one row of elements (extending horizontally over one wall section: web or
flanges) from the change in the length of the diagonals over this row of elements as in Section
4.7.

The experimentally determined A,/Ay ratios are compared to the numerical ratios in Figures 5.45
and 5.46 for the values over the ductility range and in Figure 5.47 for average values over the
inelastic range. For the naming of the different wall sections (flanges and web) as well as for the
loading positions and directions, the reader is referred to Figure 5.44.

Despite overestimating the large A, /A ratios (e.g., Web at position E or H) the model captures
relatively well the experimental A;/A ratios. The model also captures the negative A /A ratios
of the flange in tension at positions E or H (Figure 5.47).

(a) (b) (c)

D
G F

EW cycles

A B

West flange East flange

NS cycles ¢ Diag. cycles

Figure 5.44: Cardinal points for the wall (a) and loading cycles and positions for the principal directions
(b) and for the diagonal directions (c)
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Figure 5.45: TUA and TUB: comparison of experimentally determined shear to flexural displacement
ratios Ay /Ay with numerically Ay / Ay from VecTor4 (VT4) analyses
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Figure 5.46: TUC and TUD: comparison of experimentally determined shear to flexural displacement
ratios Ay/A s with numerically A, /A r from VecTor4 (VT4) analyses
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Figure 5.47: TUA to TUD: Comparison between the experimentally determined shear to flexural defor-
mation averge ratio Ay /A  with numerically A, / Ay from VecTor4 (VT4) analyses

5.2.4 Influence of the loading history
5.2.4.1 Introduction

The shell element model presented in Section 5.2.2 was validated against experimental data in
Section 5.2.3. For this validation, the model was subjected to the same loading history as in the
experiments, i.e., a multi-directional cyclic loading (see Section 5.2.2.5). However, it is intended
to use this shell element model for parametric studies. Given the large number of analyses to be
performed, cyclic analyses would be too computationally expensive. Therefore, it is envisaged
to perform the parametric studies as monotonic analyses. However, before doing so, one must
check whether the loading history influences the numerical results of interest namely the wall
strength, the yield curvature and displacement, the effective stiffness and the plastic hinge length.
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Chapter 5. Validation of two numerical models for U-shaped walls

The monotonic analyses included in this section were performed using the same shell element
models of TUA, TUB, TUC and TUD as the ones used for the cyclic analyses presented in
Section 5.2.2. Monotonic analyses to each of the individual loading positions were carried out,
i.e., to positions A to G (Figure 5.2b).

5.2.4.2 Wall strength

The force-displacement curves obtained with the shell element model under multi-directional
cyclic loading and under monotonic loading are compared in Figures 5.48, 5.49 and 5.50. For the
principal loading directions, the force capacity obtained under cyclic loading is similar to the
one obtained under monotonic loading. However, for the diagonal loading directions the force
capacity obtained from the monotonic analyses is up to 20% higher than in the cyclic analyses
depending on the loading position. The cause of these differences is investigated in the following.

The loading history applied in the experiments and in the cyclic analyses of the shell element
model differs from a monotonic loading in two regards. Firstly, the loading is cyclic and secondly,
it is multi-directional, i.e., loading is applied in several directions successively: e.g., for TUC two
complete reverse cycles are applied in the direction of the E-F diagonal followed by two reverse
cycles applied in the diagonal H-G, all at the same ductility level (Figure 5.51a). In order to
understand what effect each of the two characteristics has on the wall strength, a uni-directional
but cyclic analysis in the diagonal direction E-F is performed (Figure 5.51b).

A comparison of the three analyses for the TUC model (monotonic, cyclic uni-directional and
cyclic multi-directional) is presented in Figure 5.52 for the diagonal direction E-F. While under
monotonic and cyclic uni-directional loading the wall model reaches similar force capacities, for
the cyclic multi-directional loading, the force capacity is smaller than the one obtained from the
other two analyses. These results indicate that:

e Monotonic analysis will predict rather well the wall strength in the diagonal directions
under cyclic loading if the wall is loaded uni-directionally.

e The difference in strength between cyclic unidirectional and cyclic multi-directional is
mainly caused by the cyclic loading history of the bars which undergo loading beyond
yield and partial unloading when the wall is pushed to the different directions. In addition,
the shear deformations are more significant in the multi-directional loading history than for
the monotonic analyses (see Section 5.2.4.5 and hence they exacerbate shear lag effects
which further increase the difference in strength between the different loading histories.

5.2.4.3 Yield curvature, yield displacement and effective stiffness

Yield curvature, yield displacement and effective stiffness ratios were derived from the numerical
results of the monotonic analyses using the same procedures as for the cyclic analyses (see
Section 5.2.3.2, 5.2.3.3 and 5.2.3.4). These numerical values are compared in Figures 5.53 and
5.55 to the experimentally derived quantities (for derivation see Chapter 4).
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Figure 5.48: TUA and TUB: Comparison between the numerically obtained force-displacement hystereses
from VecTor4(VT4) under full-cyclic loading history (Cyclic) and monotonic loading (Monotonic)
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Figure 5.49: TUC: Comparison between the numerically obtained force-displacement hystereses from
VecTor4(VT4) under full-cyclic loading history (Cyclic) and monotonic loading (Monotonic)
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Figure 5.50: TUD: Comparison between the numerically obtained force-displacement hystereses from
VecTor4(VT4) under full-cyclic loading history (Cyclic) and monotonic loading(Monotonic)
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direction with orthogonal pre-displacement
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Figure 5.52: Shell element model for TUC: influence of the loading history on the force-displacement
hysteresis

Grey markers are used for values that are obtained for the direction that is cycled first at a new
drift level and white markers for directions that are cycled second, third or fourth (e.g., for TUA
and TUB, loading to a new displacement ductility was first applied in the EW direction (parallel
to the web), the second cycle was applied in NS direction (parallel to the flanges) and the third
cycle in diagonal direction). The different plotting styles are used to separate between the effects
of cyclic loading and the effects of multi-directional loading, which was found to significantly
soften the wall when compared to a uni-directional cyclic loading (Figure 5.52).

The flexural response of the wall at yield, i.e., yield curvature ¢, and flexural first yield dis-
placement A;! #» are captured by the monotonic analyses with the same precision as by the cyclic
analyses, irrespective of the loading direction that was cycled first at a new drift level (Figure
5.53c-d). However, the first yield displacement A/, composed of the flexural and the shear
displacement at first yield (A’y = A;f + A& ¢, 1s captured by the monotonic analyses with a lower
precision than by the cyclic analyses (~ —40/ 4 40%). Since the flexural first yield displace-
ment A;’ 7 1s well captured (Figure 5.53e), the difference between the A’y values from cyclic and
monotonic analyses must stem from the shear response of the wall at first yield A; .- Indeed, the
shear displacements at first yield A’y’s are typically smaller for the monotonic analyses than for

the cyclic analyses (Figure 5.54).

If the effects of the multi-directional loading are removed by considering only the loading
positions from the first cycle at a new drift level (i.e., positions A and B for TUA and TUB,
and positions E and F for TUC and TUD), the monotonic analyses predict the experimentally
determined first yield displacement A;, with a similar precision as the cyclic analyses (~ —15/ +
25%). The monotonic analyses predict the experimentally determined nominal yield displacement
A, (Figure 5.53f) with an error of ~ —30/ +20%, which is also similar to the precision of the
cyclic analyses results.
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5.2. Shell element model

Since the shear displacements at first yield are mostly underestimated by the monotonic analyses,
the effective stiffness K, s is hence expected to be overestimated. Indeed, K, is predicted with
similar precision by the monotonic and cyclic analyses for directions that are cycled first at the
same displacement ductility level. For directions that are cycled second, third or fourth at a new
drift level, the monotonic analyses overestimate K, sy by up to ~ 80% (Figure 5.55b).

5.2.4.4 Plastic hinge length

The experimental curvature profiles are compared with curvature profiles obtained numerically
from the monotonic analyses for different loading positions and displacement ductilities of TUB
(Figure 5.56). The match is rather good although at positions C, D and F, the monotonic curvatures
tend to concentrate at the wall base. As a result, for these positions the height over which inelastic
curvatures concentrate tends to reduce especially for lower displacement ductilities ( e.g., position
D in Figure 5.57).

L, predictions computed as half the height of the plastic zone L, from the monotonic analyses
are compared to the experimentally determined L, values in order to assess the error when
predicting L, values from the monotonic analyses. First, L, values averaged over the inelastic
range are compared. The experimentally determined L, values at peak displacements of the
cycles larger than displacement ductility up = 2 were averaged since these values showed a
constant trend with the displacement. The numerically determined L, values were also averaged
over same displacement interval. Figure 5.58a shows that the precision of predicting L, average
from monotonic analyses is rather poor, as experimental values are underestimated by up to 60%.

Unlike the L, values determined from the experimental data and from the cyclic analyses, which
follow a rather constant trend over the ductility range (Figure 5.41 and 5.42), the L, values from
monotonic analyses tend to slightly increase with increasing top displacement for most loading
positions. Hence, it seems more suitable to compare the L, value at ultimate displacement
instead of an average over the ductility range. By doing so, the predictions of the L, using
the monotonic analyses are now ~ 0 —30% lower than the experimental quantities (Figure
5.58b). Note that for this comparison, the numerical ultimate displacement was determined as the
displacement corresponding to the instant when the base curvature reaches the ultimate curvature
determined from section analysis.

5.2.4.5 Ratio of shear to flexural displacements under monotonic loading

To assess the influence of the loading history on the shear displacements, the numerically
determined A, /Ay ratios from cyclic and monotonic analyses are compared between each other.
This comparison is preferred to comparing experimental ratios and ratios from monotonic analyses
since differences are clearer and more detailed data is available.

Numerically determined shear to flexural displacement ratios A, /A derived as in Section 5.2.3.6
were averaged for peak top displacements in the inelastic range (ta > 1). For both cyclic and
monotonic analyses the average A;/Ay ratios were computed for the same top displacements.
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Figure 5.53: Comparison between the experimentally determined quantities and the VecTor4 derived
quantities at yield from monotonic analyses: first yield curvature (a), nominal to yield moment ratio (b),
nominal yield curvature(c), first yield flexural displacement(d), first yield displacement (e) and nominal
yield displacement (f)
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Figure 5.55: Comparison between the experimentally determined quantities and the VecTor4 derived
quantities from monotonic analyses: first yield moment (a) and effective stiffness ratio(b)
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profiles from the VecTor4 model at displacement ductilities tp = 4 and 6.

Height above foundation [m]

T T T T

TUB:Pos.D u A=4

Experiment
— VT4 Cyclic
+ = VT4 Monotonic

7

15 30 45
Curvature [1/km]

(b) u, -]
0 4 6 8

7 1600 T T T
] TUB: Pos.D
1 1200 - b
1 g
1 Esoof
i N
] [=%
N —
E 400 _ o Experiment
1 © VT4 Cyclic
] ~VT4 Monotonic |

0 I I I I I I
75 0 0.5 1 2 2.5 3 3.5 4

Drift[%)]

Figure 5.57: TUB, loading position D (flange ends in tension, web in compression): (a) comparison
between experimental, cyclic analyses and monotonic analyses in terms of curvature profiles in the inelastic
range and (b) the height of the plastic zone L.
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Figure 5.58: Plastic hinge length: comparison of the experimentally determined Ly, experimen: average
value over the inelastic range (i.e., average of values at peak displacements for which ugs > 2) with
the numerically determined L, yr4 average value from the monotonic analyses results (a) and with the
numerical L, yr4 value at ultimate displacement (b).

Figure 5.59 shows that the A;/Ay ratios obtained from the monotonic analyses are up to by up to
~ 40% lower than the ratios obtained from the cyclic analyses. The largest percentage differences
are obtained for positions C and D (Figure 5.59a) but in absolute values the differences are
actually small, i.e., below ~ 0.05 (Figure 5.59b). The largest absolute differences are seen for the
Ay /Ay ratio at positions F and G (~ 0.1 —0.15). At these loading positions, larger crack widths
in the unconfined concrete of the flange in tension and of the web are obtained from the cyclic
analyses as compared to the monotonic ones (Figure 5.60). At positions E and H, the A;/Af
ratios from monotonic loading are similar or even slightly higher than those from cyclic loading.
This can be explained by the larger shear forces that are attained for monotonic loading (Figures
5.48,5.49 and 5.50).

If the As/Ay ratio is considered as an indicator of the wall shear stiffness it can be concluded that
cyclic loading reduces the shear stiffness of the wall. At the same top displacement, crack widths
in the concrete from the cyclic analyses are larger than those from monotonic ones, thus shear
transfer through aggregate interlock, is reduced and shear flexibility in increased.
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Figure 5.60: TUC: numerically determined cracks widths and orientation at 2% drift at position F (Web-
East flange corner in compression) in the central concrete layer (layer 5 with its centre located at 6.25
cm from th outer face of the wall) and central integration point (GP 5): (a) from cyclic analyses(b) from
monotonic analyses. 2D view of the U-shaped wall, unfolded from the inner side. The numbers given
inside each element indicate the crack widths.
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5.3 Conclusions

In this chapter two numerical models were compared to experimental data from quasi-static
cyclic tests on four U-shaped walls (TUA, TUB, TUC and TUD). The two numerical models
were: (1) a simple and widely used plane section analysis; and (2) a detailed shell element model.
As the objective is to use these two numerical models for parametric studies to derive plastic
hinge quantities for U-shaped walls, the results from both models were evaluated with respect
to several quantities. The influence of the loading history on the results of the shell element
model was also investigated in this section. This was done by comparing results from the cyclic
analyses subjected to the full cyclic loading history, with cycles imposed in several directions
successively at the same displacement level, as applied in the experiments, and results from
monotonic analyses of the same models. The conclusions are summarised in the following.

Wall strength : The moment capacity was well captured for the principal loading directions by
both section analysis and the shell element model. Only the shell element model was able
to capture the experimentally determined wall strength reached under diagonal loading
while monotonic section analysis lead to a significant overestimation of the wall strength
for this direction. Section analysis predictions of the overall moment under diagonal
loading were improved if the wall section was reduced to account for the effective flange
width but predictions of strength components in the principal directions were not. Further
discrepancies between monotonic plane section analyses and the experimentally attained
moment originated in the experimentally applied loading history.

The maximum attainable wall strength was found to depend on the applied loading history.
Monotonic analyses using the shell element model can be used to predict the wall strength
under uni-directional cyclic loading. However, care should be taken when complex multi-
directional loading histories are involved. For these cases, accounting for the cyclic loading
history of the reinforcement bars and for shear lag effects is critical in predicting accurately
the wall strength.

Yield curvature ¢, : The section analysis and the shell model captured the yield curvature
relatively well. Both models can therefore be used to derive ¢, with an accuracy of +20%,
irrespective of the applied loading history.

Yield displacement A, and effective stiffness K. s : For these two quantities the shell element
model resulted in fairly good estimates of the experimental results (~ 20 — 30% difference
for A, and slightly higher for K, 7). As both quantities are typically used in a conceptual
design phase, these errors are acceptable.

While the flexural response at first yield (yield curvature ¢, and first yield flexural dis-
placement A;,) was not influenced by the loading history, the shear response was. Under
monotonic loading, shear deformations at first yield were typically lower than under cyclic
loading leading to smaller yield displacements A, and higher effective stiffness K, than
in the cyclic analyses. However, if only the direction that was cycled first at a new dis-
placement level is considered (i.e., a loading history equivalent to a uni-directional cyclic
loading), the softening effect of the full loading history is filtered-out and results from
monotonic analyses lead to predictions of A, and K, ¢ as good as those from the analyses
with the full loading history.
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Plastic hinge length L, : The L,;, values were slightly underestimated by the model by up to
30%. The L, values determined from the monotonic analyses were typically smaller than
those from cyclic analysis due to numerical concentration of curvatures at the wall base in
the monotonic analyses. Despite this discrepancy, if the L, value at ultimate displacement
is considered, the match with the experimental L,, values improves and the error is
similar to the one from the cyclic analyses. Hence, L, values derived from the numerical
analyses can be used to predict a slightly conservative value of the experimental L, values,
which is suitable for design purposes. Moreover, irrespective of this underestimation, a
parametric study using monotonic analyses is still expected to provide indications on the
main quantities influencing the L, values specific to U-shaped walls.

Ratio of shear to flexural displacements A;/A; : The shell element model predicted very well
the Ay /A ratios of all test units in the inelastic range, including the negative ratio of one
of the flanges under diagonal loading. A,/Ay ratios derived from the monotonic analyses
were found to be lower than those derived from cyclic analyses, indicating a lower shear
stiffness of the wall under the full cyclic loading than under monotonic loading which
contributes to the observed softening response of the wall under the full cyclic loading.

Having evaluated the discrepancies between the numerical and experimental results, as well
as the influence of the loading history it is concluded that the two numerical models that were
investigated here can be used under monotonic loading for parametric studies for U-shaped walls.
Section analysis will be used to derive yield curvature estimates while the shell element model
will be used to derive estimates for the yield displacement, the effective stiffness and the plastic
hinge lengths with the precision as discussed above (Chapter 6). These values, to be obtained
from the monotonic analyses, were shown to be representative for a reversed cyclic loading
applied in only one direction of the wall section. Such a loading history seems more reasonable
for design purposes than the loading history applied in the experiments used for the validation
of the models, where loading was applied in several different directions successively, leading to
considerable softening of the wall and reduction of the wall strength.
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6. Yield and ultimate displacement of
U-shaped walls

6.1 Introduction

The objective of this section is to derive several quantities that characterise the displacement
response of U-shaped RC walls under seismic loading. More specifically, yield curvature, yield
displacement, effective stiffness ratio and plastic hinge lengths are investigated for U-shaped
cantilever walls subjected to horizontal displacements in different directions. To this purpose, a
parametric study is conducted by means of the two numerical models that have been validated in
Chapter 5, i.e., a plane section analysis model and a shell element model.

Existing estimates for the yield curvature ¢, of U-shaped wall sections are compared against
the analyses results and new values that account also for the angle of the loading direction are
proposed. The new analytical expression of the yield displacement A, >, , accounting for the extent
of cracking over the wall height, presented in Section 4.4 is validated against the analyses results
of the shell element model. The effective stiffness K, s derived with the new yield displacement
expression is compared with the numerical results and modifications are proposed to the existing
effective stiffness estimates, which account for the cracked height. Finally, plastic hinge lengths
are derived from the results of the shell element model, compared to existing estimates and new
equations that consider also the average shear stress ratio are proposed.

6.2 Design of the parametric study

This section describes the wall geometries chosen for the parametric study as well as their design.
The main parameters that are varied within the study are discussed and the numerical models
used for the analyses are briefly presented.
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6.2.1 Design of the U-shaped RC walls

6.2.1.1 General design considerations and parameters of the study

Typically, RC core walls are used as the main lateral force resisting structural elements in mid-to-
high-rise buildings. Therefore, the U-shaped walls designed for this study are representative for
this type of buildings. Since buildings with RC core walls are very popular in the seismic areas
in the U.S., the American Standard ACI318-11 [ACI11] provides some design indications and
requirements that specifically address RC core walls. For this reason the design of the walls in
this study follows the American Standard ACI318-11 design code considering the typical mid-to-
high-rise RC core wall dimensions and reinforcement detailing encountered in the U.S. design
practice [MG™12], [SMLO03], [SMO08], [LL*13], [Bru09] and [Fiel5] - email communication.

Three wall sections with different web to flange length ratios /,,.;/ls; were considered for the
design. The variation of the /. /I ratio was achieved through variation of the web length. These
three wall sections were designed with the longitudinal reinforcement uniformly distributed along
the section. Another set of three walls with the same overall dimensions as the first three was
detailed with the longitudinal reinforcement concentrated in the confined boundary elements.
All six wall sections had the same total longitudinal reinforcement ratio of ~ p;,; = 0.95%. The
obtained wall sections are shown in Figure 6.2.

For each of the six wall sections, the wall shear span H was varied by changing the number of
stories: 10, 15 and 20 stories. The storey height was taken as A,y = 3.3 m. Based on a linear
lateral static force distribution compatible with the first eigen mode, the resulting shear span was
approximately equal to 0.7H,,;. These shear spans led to values of shear span to web length
ratios of H /l,,.p= 2.56 to 10.26, hence rather slender walls. The wall thickness was the same for
all models and was equal to t,,,;; = 450 mm.The values of the varying parameters of the wall
models are summarised in the following.

o web to flange length ratio /.5 /1;: 1.25, 1.875 and 2.5 by varying the web length /,,,;, from
45mt09.0m

e axial load ratio n = N/(fcA,): 0.02, 0.06 and 0.10

e shear span H: 23.10 m, 34.65 m and 46.20 m which represent walls with a number of
stories Nyories €qual to: 10, 15 and 20 stories

o vertical reinforcement layout: vertical reinforcement uniformly distributed over the section
or mainly concentrated at the wall boundary elements
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Figure 6.1: Loading directions considered for the design. Bending along the web direction: position A
(a); bending along the flange direction with the flange ends in compression: position C (b); bending along
the flanges direction with the web in compression: position D (c) and bending along the geometric wall
diagonal with the flange end in compression: position E (d) or with the corner web-flange in compression:
position F (e).

The wall flexural capacity was computed from section analyses for five loading cases (Figure
6.1): bending in the web direction (position A), bending in the flange direction with the flange
ends in compression (position C), bending in the flanges direction with the web in compression
(position D) and bending in the direction of the geometric wall diagonal with the flange end in
compression (position E) or with the corner web-flange in compression (position F). According
to ACI318-11 (21.9.5.2), the wall section considered for the flexural strength calculation should
be reduced to account for the effective flange width, which extends “from the face of the web a
distance equal to the smaller of one-half the distance to an adjacent wall web and 25 percent of
the total wall height”. For all the wall sections analysed here, this results in having the effective
flange width equal to the entire length of the flange or of the web, depending on the loading
direction.

The expected values of the material properties were used for both concrete and reinforcement
[AASQ9] and they are summarised in Table 6.1. The higher mode effects, which can amplify
the wall shear demand, were taken into account in a simplified manner through the dynamic
amplification factor @ as recommended by [SEAOS]. For buildings with more than six stories
[SEA08] suggests a value of @ given by Equation 6.1, which is based on research by [PP93]. In
this equation, Ny,s 1S the number of stories and need not be taken larger than 15. Therefore for
more than 15 stories, @ = 1.8.

Ns ories
: (6.1)

=13
0] + 30
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Table 6.1: Expected material properties used for the wall models in the parametric study

Reinforcement Concrete
Bar diam. 5 fu E; Eu fe E. &
[mm] [MPa] [Mpa] [GPa] [%0] [MPa] [MPa] [00]
14-30 470 625 200 100 45 31.6 2.00

The shear reinforcement was computed for the following determining load cases: shear rein-
forcement in the web was determined from bending in the direction of the web while the one in
the flanges was determined under bending along the diagonal direction with one flange end in
compression. At this loading position the shear demand on the flange is the largest as the majority
of the shear force in the direction of the flanges is taken by the flange in compression ([RFO1],
[BDPO8b] and Section 3.3.1).

The wall satisfies the shear stress limit imposed by ACI318-11 [ACI11] (21.9.4.4) for the vertical
wall segments, i.e., web or flange: the shear strength shall be lower than 0.83A.,+/f. for any
individual vertical wall segment or lower than 0.66A..,+/f,. for all vertical wall segments resisting
a common force.

6.2.1.2 Design procedure steps

This section outlines the step by step procedure that was followed when designing the U-shaped
walls that were analysed within the parametric study. The wall section dimensions and vertical
reinforcement content were initially assumed based on typical values and detailing encountered
in U.S. seismic design practice.

1. Perform section analysis of the wall section to determine the moment capacity for each
loading position and compute the corresponding shear force demand V.. for each shear
span.

2. Multiply the shear force demand with the dynamic amplification factor to account for the
higher mode effects: V... = V,ec @

nec

3. Dimension shear reinforcement of the web for the largest shear demand V.. in the direction
of the web, of the five analysed loading positions. Do the same for the flanges. The
necessary shear reinforcement content is back-calculated from Equation 6.2 which defines
the shear strength of special structural walls according to ACI318-11 (21.9.4.1.), and
where A., is the gross area of the flanges or of the web, ¢, is a coefficient accounting
for the slenderness of the of the wall (equal 0.17 for H/l,,,; > 2.0), f. is the concrete
compressive strength, f is the yield strength of the shear reinforcement and pj, is the shear

reinforcement content.

Vn*ec = ACV(aC \/ﬁ + th)) (6.2)

4. Compute the shear force capacity Vg, for the web and for the flanges obtained with
Equation 6.2 for the proposed shear reinforcement contents.
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5. Check if:

(position C) and where A, is the gross area of both flanges;

® Viesion, flanges < 0.66A.,+/ f. when both flanges are resisting a common lateral force

® Viesion, flange < 0.83A¢,+/ fc When only one flange resists the entire shear force in the
direction of the flanges (position E) and where A, is the gross area of one flange;

® Viesignweb < 0.83A0,+/fc (position A) where A,,, is the gross area of the web;

If these conditions are not met, increase the wall thickness and restart design procedure
from 1, else end design procedure.

6.2.1.3 Confinement lengths

ACI318-11 suggests the use of plane section analysis to determine the compression depths ¢
on the wall section. Since the application of plane section analysis is questionable (see Section
3.3.3.2), these depths were determined from the shell element model.

The compression depths ¢ on the flange ends were determined from loading in the diagonal
direction with one flange in compression. At the corner into the web and into the flange these
depth were determined from loading with the corner in compression (position F). The minimum
confinement lengths were taken as the largest of ¢ — 0.11,,,;; and ¢/2 [ACI11] 21.9.6.4.

ACI318-11 (21.9.6.4) requires that the confined boundary elements include the effective flange
width in compression. For the wall sections analysed here, this would mean that the entire wall
section needs to be confined since the effective flange width is approximately equal to the length
of the web or of the flanges. While indeed the shell element model results indicated that almost
the entire flange requires confinement when the axial load is the largest, confining also the entire
web seems overly conservative and based on the shell element model results not necessary. The
resulting confinement is shown for all the wall sections in Figure 6.2. The same confinement
reinforcement percentage was used for all wall sections.

6.2.2 Numerical models
6.2.2.1 Plane section analysis

A fibre section model was set-up for section analyses using the Opensees software [MMG09]
and validated against experimental data in Section 5.1. The same model is adapted for the walls
in the parametric study herein and used to derive values of the nominal yield curvature ¢,. The
mesh for the wall sections with the largest web length, with both concentrated and distributed
vertical reinforcement layout, is shown in Figure 6.3. As in the validation models, loading is
applied in displacement control by imposing curvature increments in the direction of the web, in
the direction of the flange or in the direction of the geometric diagonal of the walls. The axial
load was applied at the gravity centre of the section.
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Figure 6.2: Cross-sections of the U-shaped walls designed to be analysed in the parametric study. All
dimensions are in mm.
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Figure 6.3: Opensees fibre models of the U-shaped wall sections with [, /11=2.5: Dwf2.5 (distributed
reinforcement layout) (a) and Cwf2.5 (concentrated reinforcement layout) (b)
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6.3. Yield curvature

6.2.2.2 Shell element model

A shell element model using VecTor4 (VT4) software [PV93], [Hry13] was validated against
experimental data from U-shaped wall tests in Chapter 5. The validated model was then adapted to
match the geometry and properties of the U-shaped walls that are analysed withinthis parametric
study.

The walls were analysed as cantilever walls subjected to a horizontal displacement at their top.
The walls were modelled up to the height of the shear span, which was taken equal for both
principal loading directions, i.e., horizontal displacement was applied in the direction of the
flanges and of the web at the same height H (Figure 6.4). The axial load was equally distributed
over the height of the wall and applied at each storey height. At each storey, the axial loads were
applied at four nodes of the wall section so that the resultant force acted at the gravity centre of
the section.

The first three stories of the wall were modelled using a refined mesh in order to have a detailed
representation of strains and curvatures over the zone where plastic deformations are expected.
Above the first three stories the mesh size is increased as shown in Figure 6.4. Due to limitations
on the maximum number of elements, the wall models corresponding to Ng,ies = 20 and web
to flange length ratios /. /1;;=1.875 and 2.5 had a refined mesh over the first two stories only.
Only the walls with one reinforcement layout (distributed) were considered for the shell element
model resulting in 135 analyses. All the principal loading directions were considered for the
analyses, and in addition, analyses for loading along the wall geometric diagonal (position E and
F) were performed. The reasons for this choice are two-fold: (1) loading along the geometric
diagonal instead of a fixed skew angle, like for example 45°, captures also the influence of the
bending angle (Figure 6.8), since the angle of bending of the geometric diagonal changes with
lywen /11 and (2) loading along the diagonal directions leads to the lowest ultimate curvature of
all loading positions, since the wall length is the longest, and hence possibly also to the lowest
displacement capacity.

6.3 Yield curvature

2

The yield curvature ¢, is an important design quantity marking the border between the “elastic
and the “plastic” branches of the bi-linear idealisation of the moment-curvature response. In
this section, the yield curvature ¢, is evaluated from both plane section and shell element model
analyses. Results are compared with existing estimates and new parameters influencing the value
of the yield curvature are identified. Finally, new estimates for yield curvatures when loading the
U-shaped wall section under any bending angle ¢ are proposed in Section 6.3.3.
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Figure 6.4: VecTor4 model in elevation and sections for the Dw f2.5 wall configuration (i.e., distributed
reinforcement and web to flange length ratio /. /1 71=2.5) with Nyzories=15
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6.3. Yield curvature

6.3.1 Results from plane section analysis

The yield curvature was computed as in Equation 6.3. The first yield curvature q)y’, from section
analysis corresponds to the curvature at the instant when the most tensioned reinforcement
fibre exceeds its yield strain &, or the strain in the most compressed concrete fibre exceeds
€, = —0.002 whichever occurs first. In an analogous manner, the nominal point is reached when
the reinforcement tensile strain first attains 0.015 or a concrete compressive strain attains 0.004
whichever occurs first [PCKO7].

/Ml’l
¢y = ‘Pyﬁy (6.3)

For a more meaningful evaluation of the results, the dimensionless yield curvature K, will be
used in this section, defined as in Equation 6.4, where ¢, is the nominal yield curvature, &, is the
yield strain of the most tensioned reinforcement bar and /,,,;; is the wall length in the direction
of loading. The dimensionless yield curvatures K, are obtained using a wall length equal to
the length of the web /., for bending in the web direction (Position A) and to the length of
the flanges [y, for bending in the flange direction (Position C and D). For loading in directions
other than the principal directions, the wall length is taken as the distance perpendicular to the
neutral axis, between the most tensioned and the most compressed fibre. This means that for
loading along the diagonal of the wall, the wall length is equal to the geometric diagonal, i.e,

laiag = \/ lvzveb + 11201-

Except for the principal loading directions, the other bending directions investigated were: (1)
bending along the geometric diagonal of the section with one flange end in compression (Position
E) or with the corner web-flange in compression (Position F) as well as (2) loading at a 45 ° angle
with respect to the principal loading directions, with one flange end in compression (Position E45)
or with the corner web-flange in compression (Position F45). For clarity, the loading positions
are shown in Figure 6.5a.

(6.4)

The results for the dimensionless yield curvatures K, are shown for different loading positions of
the U-shaped wall section in Figures 6.5 and 6.6. Figure 6.5 shows the variation of K, with the
axial load ratio. For the practical values of axial load ratio (i.e., 0.02 to 0.10), the dimensionless
yield curvatures remain rather constant.

The influence of the web to flange ratio /,,.;/1f; is also not very significant (Figure 6.6), except
at Positions E and F (Figure 6.6e, f) where K, increases with increasing /¢ /l;. Unlike for
the positions E45 and F45 where the bending angle remains constant irrespective of 1,05/, at
positions E and F the bending angle varies since loading is done along the geometrical diagonal
which also changes with l,,., /7. Therefore K, varies significantly with the bending angle,
illustrated as angle ¢ in Figure 6.8.
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As expected, distributed reinforcement layouts lead to larger dimensionless yield curvatures K
than concentrated reinforcement layouts due to increased compression depths at yield. Values of
Ky, for walls with distributed reinforcement layout are ~ 2 — 10% larger than for the concentrated
layout case depending on the loading position. The difference in yield curvatures for distributed
and concentrated reinforcement layouts are similar to those reported for T-shaped walls [SST13]
and somewhat smaller than those reported for planar walls [PCKO07].

6.3.2 Comparison with existing estimates

After having established the main trends of the dimensionless yield curvature K, with the varied
parameters, K, values obtained from section analyses are compared with existing estimates in this
section. As already discussed in Section 2.2.2, K|, estimates have not been specifically derived
for U-shaped walls but values from other flanged wall sections can be adapted to U-shaped walls.
For convenience, these adaptations are briefly enumerated below:

o Curvature applied parallel to the web of the U-section (Position A) - consider values from
I-shaped walls loaded parallel to their web ([Pau02], [PCKO07])

e Curvature applied parallel to the flanges of the U-section with the flange ends in compres-
sion and the web in tension (Position C) - consider values from I-shaped walls loaded
perpendicular to the web of the I-section [Pau02], [PCKO07] or T-shaped walls loaded with
the flange of the T-section in tension and the web toe in compression [SST13]

o Curvature applied parallel to the flanges of the U-section with the flange ends in tension
and web in compression (Position D) - consider values from T-shaped walls loaded with
flange of the T-section in compression and the web toe in tension [SST13], [Pau02] and
[PCKO7]

The K, values are shown in Figure 6.7 for the principal loading directions, together with their
corresponding estimates, for both the distributed and the concentrated reinforcement layout. For
all the principal loading positions, existing estimates for K, values match rather well the section
analysis results. At position A, the estimates by [PCK07] seem to be provide a matcher with
numerical results than those by [Pau02] (Figure 6.7a, b). For positions C and D, estimates by
[SST13] result in a slightly better overall match than the other estimates while also accounting for
the small variation due to the web to flange length ratio /.. /17 (Figure 6.7c, f). In conclusion,
the dimensionless yield curvature for the principal loading direction of the U-shaped walls can be
determined with sufficient accuracy using existing estimates adapted from other types of flanged
walls. This finding is in line with previous observations from Section 4.3 as well as by [BDPO8b].

As already mentioned, no estimates are currently available for other loading directions than the
principal ones. This issue is addressed in the following section.
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Figure 6.5: Dimensionless yield curvature K, from plane section analyses: influence of the axial load
ratio. Loading directions (a) and K|, results for the different loading positions (c-f)
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Figure 6.8: Bending axis when performing the sweep analysis by varying the angle o of the bending
axis with respect to the horizontal axis (o = 0°): 0° < @ < 180° (a). During the sweep, one flange of the
wall is mainly compressed, the other flange is mainly tensioned (b) while the web is manily tensioned for

o < 90° and partially compressed fo

r o> 90°.

6.3.3 New estimates for yield curvature for any loading direction

Sweep analyses, with a bending angle o (Figure 6.8) incremented in steps of 9° were performed
for all the wall configurations. The dimensionless nominal yield curvatures K, for the distributed
and the concentrated reinforcement layout cases are plotted in Figure 6.9. The two graphs clearly
show the influence of the loading angle as well as a less significant influence of the web to flange

length ratio L /1.
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Figure 6.9: Dimensionless yield curvature K, from plane section analyses: results from sweep analyses
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! My byt
Y My gy
taken as the SRSS moment at nominal and at first yield for most directions. However, for loading

directions at angles close to the principal loading directions, the curvature decomposed along
of the principal directions, e.g., ¢, in Figure 6.12c, was considerably smaller than the yield
curvature in the loading direction of interest (e.g. ¢}f in Figure 6.12c). In such a case, using the
SRSS moments to compute M, /M, does not seem reasonable as the large M, /M, ratio from
the SRSS moment is associated to the web direction where the curvature is small, whereas the
bending occurs mostly in the flange direction. Hence, for this case, the M, /M, was computed
from the moment at yield and nominal in the direction of the flanges. The M, /M, ratio was
similarly computed for all cases where the curvature at first yield in one of the principal directions
was considerably smaller than the first yield curvature in the loading direction, i.e., arbitrarily
taken as smaller than half of the yield curvature.

The nominal and the yield moment M,, and M, used in the computation of K, = were
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Figure 6.10: Nominal to yield moment ratio for loading directions close to the principal directions of the
sections: (a) plane section deformation and (b) moment-curvature relationships for the laoding case from

(a)

6.3.3.1 Derivation of yield curvature estimates for any loading direction

Figure 6.11 shows the bending of a U-shaped wall section in the direction of the geometric
diagonal of the wall (i.e.,curvature applied in the diagonal direction). At the instant of first yield,
i.e., when the reinforcement yield strain &, is reached in the most tensioned fibre, the diagonal
curvature reaches the first yield curvature ¢y, = ¢)’,. The following geometrical relations can
hence be written as shown in Figure 6.11 :

& — &
Puveh = 21 ! (6.52)
web
&+ &
0= — 1 3 (6.5b)
11
&+e
¢diag: 21 ”3 (65C)
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Es

Figure 6.11: First yield curvature when loading in the direction of the geometric diagonal of the wall
(curvature applied in the diagonal direction): (a) section dimensions and loading direction and (b) plane
section deformation under the applied loading

If & and &3 are taken from Equations 6.5a and 6.5b, respectively and introduced in Equation6.5c,
one obtains that the diagonal curvature ¢y, is equal to:

Oweblwer + Pril s

(6.6)
lwall

¢diag =

In Figure 6.11 , the diagonal loading direction was chosen for easy geometrical representation,
but the derived Equation 6.6 is valid for any loading direction. The loading direction is accounted
for by defining the wall length as the length perpendicular to the neutral axis between the most
compressed and the most tensioned fibre of the section (see Figure 6.12c) depends on the loading

direction (bending angle ¢t) and the web to flange ratio lyep/ls1 (lyay = ,/lfveb—kll%lsin(a +

atan(ly;/lep)). Hence, the first yield curvature for any loading direction can be written as in
Equation 6.7.

we. lWe l
o = Oweblwen + Prilyi 67

’ A /lvzvel7 + l%lsin(a +atan(ly/lyep))

Note that the curvatures ¢,,.;, and ¢ (Figure 6.11) are not equal to the first yield curvatures
for loading in the direction of the web ¢y’7w ., OF in the direction the flanges q); 41> but they are
smaller as shown in Figure 6.12a-c. If the relation between ¢,,.; for an arbitrary loading direction
and ¢y”web, and also between ¢ and gby’: 71 Would be known, then one could write the first yield
curvature for any loading direction as a function of the first yield curvatures for loading in the
principal wall directions. Therefore, Equation 6.7 is rewritten as:

y

¢/ _ ¢/ ltens,web
— Yy,web 0, fl
Y > esy ltens,web lwall »f esy ltens,fl lwall

y
8sy lweb / ltens,fl 8sy lfl

(6.8a)
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Figure 6.12: Section deformation at first yield for different loading directions: (a) curvature applied in the
direction of the flanges with the flange ends in compression (&« = 0°), (b) curvature applied in the direction
of the web (v = 90°) and (c) curvature applied in an arbitrary direction (0° < o < 90°)
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y y
ltens,web lweb / ltens,ﬂ lfl

web ), f1
ltens,web lwall »f ltens,fl lwall

0, =9, (6.8b)

Next, it is convenient to pass on the right side of Equation 6.8b from first yield curvatures d)}’, to
nominal yield curvatures ¢,. Therefore, if we write the nominal yield curvature for loading in the
direction of the flanges (Figure 6.12a) as ¢,y = ¢y’7 1M g1 /M, ¢ and similarly for the curvature
when loading in the direction of the web (Figure 6.12b) ¢, », = ¢y/, ﬂmeeb /M,,,.e» Equation 6.8b

can be rewritten as Equation 6.9.

y y
My,web ltenx,web lweb My,fl ltens,fl lfl

(P)/; = (Py,web (69)

1
Mn,web lten&web lwall Mn,fl ltenx,fl lwall

Since the sought quantity is the nominal yield curvature, the entire equation is multiplied by
the ratio of nominal to yield moment M, (a)/M,(c) corresponding to the bending angle o
(Equation 6.10a). Since M, (a)/M,(ct) can be roughly approximated as constant when the angle
« varies (Figure 6.13a), Equation 6.10a is simplified to Equation 6.10b. Then, in order to pass to
dimensionless yield curvatures K, the equation is further multiplied by the wall length /,,,;; and
divided by the reinforcement yield strain &, resulting in Equation 6.10c and 6.10d.

(a) 2 T T T T T T T T (b) 2 T T T T T T T T
li,ens,web/ltens,web
1.5F -~ li’cns,ﬂ/ltcns,ﬂ .
= T — sin(or)
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Figure 6.13: Variation of the ratio of nominal to yield moment (a) and of the tensioned wall length (b)
with the bending angle o.

Y y
(P)/)Mn(a) = (Py,web MYvW@b M”(a) ltens,web Lyeb + (Py,fl MY,web Mn(a) ltens,fl lfl (6.102)
My (o) My yvet, My () Liensweb Lvatt My ey My(@) Liens f1 Lyait
M, (@) Bens web boeb b ofl Ly
1T ens,web twe ens,
: = Pyweb;— S (6.10b)
¢) My(Ot) ¢y e ltens,web lwall w ltens,fl lwall
ol g ensveb b st 151y (6 100
= ) b /s, 1 . C
! Esy e ltens,web Esy Y ltens,fl Esy
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v P
K, = Ky,webw +Ky,fl;ﬂ1¢ (6.10d)
tens,web tens, fl

The dimensionless yield curvature K is hence a function of the dimensionless yield curvatures for
the principal loading directions of the wall. K, varies with the wall lengths that are under tension
for the different loading angles /ey, wep and e, s1. Figure 6.13b shows, the variation of these two
quantities with the bending angle. For practical purposes, the variation of l[yenw " /liens we» and
of I ens.f1/ lrens, 1 With the bending angle & can be approximated by sin(et) and cos(a). Hence if
these values are introduced in Equation 6.10d, the dimensionless yield curvature can be estimated

as in Equation 6.11.

Estimates from Equation 6.11 match well the dimensionless yield curvature from section analyses
(Figure 6.14). For the distributed reinforcement layout the mean of all the ratios between the
estimated and the section analysis yield curvature (K, /K, psa) was of 1.08 with a coefficient of
variation COV = 8.2% while for the concentrated reinforcement layout this mean was of 1.14
and COV =7.2%. Note that this precision can be improved if the variation of the ratio of nominal
to yield moment M, /M, with the bending angle is considered. In Equation 6.11, it was assumed
that M, /M, is constant irrespective of the bending angle.

Ky = K, epcos(a) + Ky, psin(a) (6.11)
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Figure 6.14: Comparison between dimensionless yield curvatures (Ky = @ylyq/€sy) obtained from
section analyses and estimates for the case of (a) distributed reinforcement layout and (b) concentrated
reinforcement layout.
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6.3.4 Comparison of section analysis and shell element model results

Most of the existing studies on the yield curvature have been based on moment-curvature analyses
(plane section assumption) [PK98], [Pau02], [SS*13], [PCKO07] as it is also the case for the
previous section. In this section, yield curvatures derived from plane section analyses are
compared with results from shell element model analyses.

The dimensionless yield curvature K, was computed from analyses of the shell element model
according to the procedure used in the model validation (Section 5.2.3). Briefly, the first yield
was determined in the shell element model as the instant when the base curvature reaches the first
yield curvature determined from section analyses d)}’, while the nominal moment corresponded to
reaching a base tensile strain of 0.015 or base compression strain of -0.004 whichever occurred
first. The base curvature at first yield and the base strain at nominal point were determined by
extrapolating to the wall base the linear fit of the curvatures and correspondingly of the strains,
over the cracked height of the wall at first yield H,., (Section 6.4) and over the height of the plastic
zone at nominal, respectively.

The two sets of K, values are compared in Figure 6.15 with respect to the web to flange ratio
Lyven/1f1, and implicitly with the bending angle for the diagonal loading directions. Figures 6.15a,
b indicate a rather good match between the K, values obtained from the two different types of
analyses.
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0 0.5 1 1.5 2 2.5 3
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Figure 6.15: Comparison of dimensionless yield curvature K|, obtained from plane section analyses (PSA)
and from shell element model analyses (VT4).

6.4 Yield displacement

Once estimates of the yield curvature are available, it is possible to compute the yield displacement
of the wall. In this section, estimates of the yield displacement are computed according to the
procedure outlined in Section 5.2.3 which was verified against the experimental data. These
estimates are then compared with values of the yield displacement obtained from the shell
element model parametric analyses (Section 6.2.2.2), model which was also verified against the
experimental data.
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The procedure for estimating the yield displacement is briefly repeated here for convenience
(Equations 6.12 to 6.14). The yield displacement is computed as the sum of the displacement
components: flexural displacement due to wall deformation assuming a wall that is cracked over
part of the height and shear displacements. The flexural displacement due to strain penetration
into the foundation is not considered here since it was not accounted for in the shell element
model.

The shear displacement at yield were accounted for through the shear to flexural displacement
ratio Ay /Ay estimate. This estimate follows the Equation 4.37, except the correction factor has
been reduced from 1.5 to 1.0 to account for the reduced shear displacements under monotonic
loading (see Section 5.2.4).

& H? A
Dyor = Ky7—ker—(1+ Z;

(6.12)
lwall 3

where H is the wall shear span, k., is a factor accounting for the partially cracked wall over the
height assuming a bi-linear curvature profile at yield (see Section 4.4 and Equation 6.13) and
A /Ay is the shear to flexural displacement ratio (Equation 6.14 [BDP11]).

k:[3+0.5(17ﬁ)(3i1;’7( i )%) (6.13)

where fB is the ratio of cracked to uncracked flexural wall stiffness (El../El,) and H,, is the
height up to which the wall is cracked at first yield.

Ag En 1
—=1.0 — 6.14
Ay ¢tan® H (6.19)

where ¢ is the constant curvature in the plastic hinge, 0 is the crack angle at the top of the fan-like
pattern where cracks begin to be parallel.

The yield displacements from the shell element model are obtained as the displacement at first
yield times the nominal to yield moment ratio M, /M,. The comparison between the analysis
results and the estimated yield displacements is shown in Figure 6.16 for all wall configurations
and heights and all loading directions. Additionally, yield displacements estimated under the
assumption of a fully cracked wall at yield (linear curvature profile) [PCKO07] are added to the
plots for comparison. The assumption of a fully cracked wall is intended to implicitly account
for the strain penetration at yield and partially for the shear deformations [PCKO7]. In order
compare equivalent quantitates, the displacement due to strain penetration was subtracted from
the estimate assuming a linear curvature profile at yield (Equation 6.15)..

&y (iz

Dy =K, 3

(L, H) (6.15)
lwall
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Chapter 6. Yield and ultimate displacement of U-shaped walls

As expected, the A, 1, estimate provides in all cases, yield displacements that are larger than the
A,y estimates. For rather slender walls, i.e., H/l,,q;; > 4 the yield displacement predictions Ay 7,
overestimate the yield displacements obtained from the analyses A, for all loading positions
with up to 50%. For these walls, the A, >; estimate matches rather well the yield displacements
obtained from the analyses.

For walls with slenderness 2.6 < H /L, < 4, A .1 and A, 57 predictions typically underestimate
the analyses results A, ;. For these walls: (1) shear displacements are larger than for more
slender walls (H /1,,4;; > 4), and (2) tension shift effects due to shear cracking are more important
and increase the cracked height. The two phenomena lead to large yield displacements A, ,,,,, for
these walls.

The A1, estimates compensate for the contribution of the shear deformations to the total
displacement through the linear curvature profile. If shear displacements are significant (i.e.,
2.6 < H/l,q < 4) the estimate matches well or underestimates the A, ., values. When shear
displacements are small (i.e.,H /l,,q; > 4), A, 11 overestimates the A, ., values (Figure 6.16).

Since A, »;, accounts specifically for the shear deformations while A, j;, partially compensates
for them with the possibility to add them in case of walls with important shear deformations
[PCKO7], the two estimates are also compared without the shear deformations of A, »; (Figure
6.17). The superiority of the Ay ,; estimate becomes even more evident. Without the shear
deformations A, 57, are slightly low at positions A and E for very slender walls and significantly
lower for walls with 2.6 < H/I,,,;; < 4 for these positions. For this latter category of walls,
further discrepancies between Ay >, and A, ,,, stem from the prediction of the cracked height.
For walls with low slenderness ratio, the cracked height is influenced by diagonal cracking that
leads to larger cracked heights due to tension shift(Figure 6.18). The tension shift was considered
in simplified manner in the prediction of the cracked height (see Section 4.3.2.3).
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Figure 6.16: Comparison of yield displacement estimates A, j; and A, »; with numerical results from the
shell element model A, ,,, for the different loading positions (a-f).
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Figure 6.17: Comparison of yield displacement estimates A, 17 and A, >; without shear displacements,
with numerical results from the shell element model A, ., for the different loading positions (a-f).
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Figure 6.18: Comparison of cracked height predictions with cracked height obtained from the numerical
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cracking strain.
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Chapter 6. Yield and ultimate displacement of U-shaped walls

6.5 Effective stiffness ratio

In this section, Kt num values obtained from the shell element model analyses are compared to
estimates based on gross sectional stiffness and estimates based on yield displacement predictions.
The effective stiffness of the walls was computed as outlined in Section 5.2.3.4 as the nominal
force divided by the nominal yield displacement. This is equivalent to computing K, as the
first yield force divided by the first yield displacement. The effective stiffness ratio was then
computed as the effective stiffness K, rr divided by the elastic flexural stiffness of a cantilever
wall Ky, = 3E.1,/H 3 where E. is the concrete elastic modulus and I, is the moment of inertia of
the uncracked U-shaped section depending on the loading direction.

6.5.1 Comparison with existing estimates

Effective stiffness ratio estimates by [FB0O0], [PP92] and [PCKO07] are included in this comparison
against the parametric study results. In addition, the stiffness ratios based on the predicted yield
displacements A, >7 and A, 1, are included in the comparison.

The effective stiffness ratios that are based on gross sectional stiffness were summarised in
Section 4 and are briefly repeated here for convenience. The effective stiffness ratio by [FB0O]
(Equation 6.16) were derived by accounting for a partially cracked wall over the height at yield
as well as for the tension stiffening effect, but did not consider the shear deformations or the
strain penetration into the foundation. In addition the axial force was considered constant over
the height of the wall. Estimates by [PP92] (Equation 6.17a) accounted for strain penetration and
for walls with an aspect ratio H /1,,,;; lower than 4 also for shear deformations. Finally, [PCK07]
recommends to evaluate the effective stiffness as the secant flexural stiffness at yield (Equation
6.18). Note that estimates based on Equation 6.18 are very similar to estimates based on the yield
displacement A, 1, and for this reason only the latter estimates are included in the comparison.

N 062+ 22076 +0.0051) (6.16)

f L'Ag y

/I, = 0.267(1+4.4

where N /(f.Ag) is the axial load ratio, f; is the reinforcement yield strength and f. is the concrete
compression strength.

100 N
L/l =(——+—);H/lyu >4 (6.17a)
e/g (fy chg) /
1
L,/1, :Ie/lgil.Z—i—F;H/lwall <4 (6.17b)

where F = 301, / (H*tyaiilwair)-

M,
OyEcl;

L/l = (6.18)
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6.5. Effective stiffness ratio

When computing the effective stiffness ratios based on the predicted yield displacements the
nominal moment was obtained from section analyses. The yield displacement Dy, is based on a
bilinear curvature distribution over the height of the wall; the kink of this distribution is at the
cracked height. When evaluating D, »;, the cracked height was taken from the numerical model
instead of the predicted value, in order to capture the errors related to the employed concept for
determining the effective stiffness and to not propagate errors in the prediction of the cracked
height prediction, which was already discussed in the previous section. The the effective stiffness
ratio Ko ¢ ¢ yum/ Ksp that are obtained from the shell element model of are compared to the different
estimates in Figures 6.19 to 6.22.

While estimates by [PP92] provide on average the best match with the numerical results, only the
estimates which account for the cracked height completely capture the variation of the stiffness
with the wall slenderness ratio (Figures 6.19 and 6.22). The equation by [PP92] partially captures
this trend by accounting for the wall geometry for slenderness ratios H /1,1 < 4.

The yield displacement prediction based on the linear curvature profile at yield A, j; did not
capture the variation of the yield displacement with the H /I,,,;; (Section 6.4). Therefore stiffness
estimates based on A, 1, do not capture this variation either (Figure 6.21).

The equation by [FB0O] generally overestimates the numerical effective stiffness ratios. In the
derivation of this equation the cracked height due to the moment gradient was accounted for
but its increase due to tension shift effects was not. In addition, shear deformations were not
considered or accounted for in any way. Therefore this equation results in a stiffer response.

6.5.2 Trends of effective stiffness with the different loading positions

The variation of the effective stiffness ratio K, rr/Ky, determined from the shell element model
is discussed in this section with respect to axial load ratio, slenderness ratio H /l,,,;; and web to
flange ratio l,,.5/15;. For all the loading positions, increasing the axial load ratio increases the
compression zone of the wall and hence also the stiffness of the wall (Figure 6.23).

For low wall slenderness ratios H /l,,,;; < 4 the effective stiffness is proportional to the ratio
H/l,,q. For these walls, the shear deformations and the effects of diagonal cracking on the
cracking height increase with decreasing slenderness ratios and the effective stiffness reduces.
For more slender walls (H /1,,,; > 4), the effective stiffness does not varies with the slenderness
ratio (e.g., positions C and D in Figure 6.24d,e).

Increasing the web to flange ratio /.., /7 by increasing the length of the web, results in reduced
effective stiffness due to reduction of the slenderness ratio. At position C, increasing the web
length increases the compression depth on the flange ends while at position D it leads to smaller
compression depth on the web. Hence for the former effective stiffness is increased while for the
latter it is decreased.
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Chapter 6. Yield and ultimate displacement of U-shaped walls

6.5.3 Modified equation for effective stiffness ratio

From the above observations and the comparison of the effective stiffness ratios that were obtained
from the analyses of nonlinear shell element models with estimates reported in the literature, one
finds that the height over which the wall cracks at yield plays an important role in the prediction
of the effective stiffness.

Since the existing estimates by [PP92] (Equation 6.17a) provided on average a rather good match
with the shell element model results, this estimate is modified in this section to account for the
effects of cracked height on the effective stiffness ratio.

The equation by [PP92] was derived as the flexural stiffness of the wall and a assumed constant
flexural stiffness over the wall height, i.e., linear curvature profile over the height. Hence in
order to introduce the cracked height in this equation, one can relate the two curvature profile
assumptions: linear curvature profile and bi-linear curvature profile accounting for the cracked
height. The connection can be done through the factor k (Equation 6.19) which related the flexural
displacements computed with the two assumptions (see Section 6.4).

k:ﬁ+0.5(1—[3)(3}1{;’—(—)2) (6.19)

By assuming that the gross sectional stiffness I, reduces by half when cracking occurs, then
B = El../El, is equal to 0.5. By further neglecting the squared term of H../H in Equation
6.19, the k factor simplifies to k = 0.5+ 0.75H,,/H and can be introduced into Equation 6.17a.
Since k is proportional to the yield displacement, it will be inversely proportional to the stiffness.
Equation 6.17a then becomes:

100 N 1
L/1)moar = (— + H/ Ly >4 6.20a
e/ Tg)mod2 (fy fCAg)0.5+o.75% /bt (6-202)
1 1
(Iw/Ig)moa? = Ie/Ig H/lwa” <4 (620b)

124+ F0.5+0.75%:"

The resulting effective stiffness ratios are plotted against the results from the shell element model
in Figure 6.26. Indeed, introducing the cracked height in the stiffness estimate equation by [PP92]
the match with the numerical results is improved, especially at positions A, E, C and F since the
cracked height is dependent on the axial force. For position D, the improvement is less because
the cracked height at this position is rather independent of wall geometry.
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Figure 6.19: Comparison of effective stiffness estimates from [PP92] with shell element model results for

different loading positions (a-f)
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Figure 6.20: Comparison of effective stiffness estimates from [FB0OO] with shell element model results for
different loading positions (a-f)
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Figure 6.21: Comparison of effective stiffness estimates based on yield displacement predcitions Ay 17,
with shell element model results for different loading positions (a-f)
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Figure 6.22: Comparison of effective stiffness estimates based on yield displacement predcitions A, »;,
with shell element model results for different loading positions (a-f)
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Figure 6.23: Trends of the effective stiffness ratios obtained from the shell element model results
Ke £ f.num/ Ky with the axial load ratio n = N /(f.A,) for the different loading positions.
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Figure 6.24: Trends of effective stiffness ratios obtained from the shell element model results K. £ num /K
with the wall slenderness H /I, for the different loading positions.

224



6.5. Effective stiffness ratio

(b) 0.8 . . . .
@ Pos. D PosA On=0.02 m H=23.1m
Loading direction Pos. F @n=0.06 M H=34.65m
along flanges 0.6 F ©1-0.10 B =462 m
Pos. A T el /=125 ]
= ]
= - m! /1 =1875
Loading directio %‘_ 04 web 1 1
along web MT) v lweb/IHZZAS
1 Loading direction 02k § a
Pos. E along diagonal .
-E L L v
Pos. C (U L e L
0 1 2 3 4 5
lweb/l -]
(C) 0.8 T T T T (d) 0.8 T T T T
PosC On=0.02 m H=23.1m PosD On=0.02 m H=23.1m
@n=0.06 M H=34.65m On=0.06 ™ H=34.65m
0.6 - 0.6 -
010 B H=462m @®n—010 ™ H=462m
B el /=125 T ol /125 ]
i B wel o wel ]
;\{: 04F B v ml /=1.8754 %: 04F o ] lwcb/lﬂ=1.875—_
% g V vl =25 W 6 = ; vl 125
02f ] 02f © oy ]
ol L 1 . ol 1 A 1
0 1 2 3 4 5 0 1 2 3 4 5
lweb/lﬂ[i] 1web/lﬂ[i]
(e) 0.8 T T T T (f) 0.8 T T T T
PosE On=0.02 m H=23.1m PosF On=0.02 m H=23.1m
@n=0.06 M H=34.65m On=0.06 ™ H=34.65m
06[ ®no010 ®H462m 0.6r ®noi0 WH=462m
g, el /=125 J, el /=125 ]
= ]
g‘: 04} ' ml /1.=1.8751 %‘: 04F - ml /=1875 8
= . &~ .
M 8 g § V Lo/1i723 Ve g ] VL1525
0.2 u b 0.2 B b
v
ol L 1 . ol 1 A TR R
0 1 2 3 4 5 0 1 2 3 4 5
1web/lfl[i] 1Web/lﬂ[i]

Figure 6.25: Trends of effective stiffness ratios obtained from the shell element model results Ko ¢ jum / Kin
with the web to flange ratio /¢ /1 11 for the different loading positions.
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Figure 6.26: Comparison of effective stiffness ratios estimates with shell element mode results: [PP92]
estimate modified to account for the cracked height (Equation 6.20a)
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6.6 Plastic hinge lengths

This section presents the derivation of a new equation for the plastic hinge length based on
the results of the parametric study. First, the curvature profiles over the height of the wall
are examined for the inelastic displacement range. Then, the displacement capacity of the
analysed walls is determined and its variation with the different loading positions is discussed.
Displacement predictions using existing estimates of the plastic hinge length are compared to the
numerical displacement capacity. Finally, the determination of the numerical plastic hinge length
is presented and a new prediction equation for plastic hinge length proposed.

Note that throughout the section, the contribution of the strain penetration to the plastic hinge
length was not considered since it was not accounted for in the shell element model. Strain
penetration can be considered separately and the flexural displacement due to strain penetration
can be added to the final value of the ultimate displacement capacity as for example in [GF"15].

6.6.1 Inelastic curvature profiles

Examples of curvature profiles over the wall height when the wall responds in the inelastic
range are presented in Figure 6.27. The figure shows the profiles for one wall configuration that
was analysed within the parametric study for different drift levels, axial load ratios and loading
positions. The axial load is distributed over the height of the wall and applied at each storey
level. The change in axial force at a storey leads also to a change in moment capacity. As a
result, one observes a concentration of curvatures just above the storey levels where the ratio of
moment demand to moment capacity is smallest. The curvature profile contains therefore spikes
just above the storey level.

In experimental tests or numerical simulations where the axial load is constant over the height of
the wall, the height of the plastic zone L, is evaluated as the maximum wall height over which
curvatures exceed yield curvatures. For the walls analysed here where the axial force variation
over the height of the wall is modelled by applying axial forces at each storey level, the resulting
spiky curvature profile will lead to rather large L, values and more importantly, it disrupts the
linearity of the inelastic curvature profiles over L. Therefore, for this study the height of the
plastic zone is determined as 2/3 of the maximum height over which curvatures exceed yield
curvatures.

6.6.2 Displacement capacity

The displacement capacity of the walls in the parametric study was determined based on the
ultimate curvature obtained from section analysis ¢, psa. For the shell element model, the ultimate
displacement was reached when the base curvature ¢, attained the ¢, pga value.
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Figure 6.27: Curvature profiles at drifts of 8 = 2% and 6 = 3% for two axial load levels and for all
loading positions (a-f). Results are shown for the wall model with web to flange ratio /.. /! 11 =1.875 and
shear span of H = 34.65 m.
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The ultimate curvature from section analysis was determined as the curvature corresponding
to reaching one of the two ultimate limit states, whichever occurred first: (1) bar fracture after
buckling or (2) confined concrete crushing. The bar fracture limit state was considered reached
when the maximum tensile strain in the reinforcement bar exceeded 0.5&;,. The confined concrete
crushing limit state was reached when the minimum compressive strain exceeded one third of
the strain estimate by [MPP88]. These values were established based on comparison with
experimental results and section analysis in Section 4.6. In the shell element model, the curvature
at the base of the wall ¢» was determined from the rotation above the height of L,, assuming a
linear curvature profile over this height.

The obtained displacement capacities are shown in terms of ultimate drift for the different loading
positions and wall configurations in Figure 6.28. Several observations can be made from this
figure:

e The smallest drift capacity of all the investigated loading positions often corresponds to
one of the two diagonal loading positions: either with one flange end in compression
(compression failure) either with the flange end in tension (tension failure). When the axial
load ratio is the highest (n =0.1), the smallest drift capacity can correspond to position C
(e.g., case of wall with H =23.1 m and [, /15 = 2.5). The latter is caused by the deep
compression zones, in particular for large web to flange length ratios.

e For tension controlled failures (round markers) the drift capacity increases with increasing
axial load ratio which is partially related to the higher spread of plastic deformations (see
Section 6.6.1.

e For compression controlled failures (triangle markers) the drift capacity decreases with
increasing axial load ratio. In addition, when the axial load ratio increases, the failure
mode migrates from tension failure to compression failure for loading positions with one
or both flange ends in compression. The axial load ratio should hence be limited in order
to ensure sufficient drift capacity for these loading positions.

The plastic flexural displacements at ultimate A, ; are determined from the shell element model by
integration of curvature profiles minus the predicted yield flexural displacement A > /(14+A;/Af).
The plastic hinge length estimates are combined with the plastic curvatures obtained from section
analyses as the ultimate curvature minus the nominal yield curvature ¢, = @, psa — @y psa to
predict the plastic displacement at ultimate limit state. For each estimate, the centre of rotation
of the plastic hinge needs to be considered accordingly to the derivation of the estimate: centre
of rotation at the base of the wall [PCKO7], centre of rotation at the centre of the plastic hinge
length [Kaz13] and centre of rotation at one third L,, from base [BA11]. Only the estimates by
[BA11] are compared here and hence only the equation for this case is given, but conclusions in
this section apply to all other estimates discussed above. The following estimates of the plastic
displacements at ultimate were hence used:

2
Dy, Ba11] = Lpn,parn $p(H — ngh,[BAll]) (6.21)

229



Chapter 6. Yield and ultimate displacement of U-shaped walls

PRI SR ST SR S

Drift flange [%]
S

Drift flange [%]
(=}

—2r -2F g .69%
=2.79% 7%

0=3.11%
7%

HH%
HHw
to—to

2
=N
R S R

—4 1 “4T H=46.2m
1 /=1-25
76 76 1 1 1 1
-6 6 -6 -4 -2 0 2 4 6
Drift web [%]
6 . . 6
=3.5 1
32 —O—1n=0.02 ]
4k ) - n=0.06 4b <
=%% ——n=0.10 | ]
=17 ] ]
= 2 1 = 2r b
= 2410 1 = ]
> =2.29% > 1
5h =221% & 1
£ 0 @ £ 0
= 1 = 1
& ) & 1
— 4 St B
A 2t =2.03% 4 A/ 2t =2.69% .
=2.23% =1.72% ] =2.58% g:3.07% 1
=1.89% =1.82% =2.58% =3.27% 1
=2.17% ] 5=3.62% ]
“4I H=23.1m 1 4 H=462m 1
L, o/15=1-875 1o/=1-875 ]
_6 i i i i _6 i i i i
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Drift web [%)] Drift web [%)]
6 6 .
4 4t 9
= 2 = 2r 1
S, e 1
(o] () 4
on on 4
g 0 S 0
= = 1
h=! & 1
s 8 af §2.69% ]
. g=2.53% =2.67% 1
=1.79% =1.72% =2.02% =2.87% 1
=2.45% ] =3.1% ]
4T H=231m 1 4T H=46.2m 1
L o/=25 L o/=25 ]
76 | TR | P 1 76 PR T R SR | IR |
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Drift web [%] Drift web [%]

Figure 6.28: Ultimate drift capacities of the different wall configurations accounting for tension failure
due to bar fracture (round marker) and for compression failure due to confined concrete crushing (triangle
marker). The axial load ratio # is indicated by the full, half-full or empty markers. The ultimate drift
values 0, three for each loading position correspond to axial load ratios: the value placed down to n =0.02
while the placed upper of the three to n =0.1.
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In the estimates, the wall length was taken as equal to the web length at positions A, E and F and
equal to the flange length at positions C and D. The shear stress 7 plotted in Figure 6.32 was
computed at positions A, E and F as the average shear stress on the web while at C and D as
the average shear stress on the flanges. Shear demands were obtained from the section analysis
moments

The comparison between the estimates for the plastic flexural displacement and numerical results
is done for each loading position with respect to the wall length (Figure 6.30), shear span
(Figure 6.29), axial load ratio (Figure 6.31) and shear stress demand (Figure 6.32). From these
comparisons the following observations can be made:

e The plastic displacement is typically underestimated for most loading positions, which is
in line with the purpose of the L, estimate by [BA11] that are intended as a lower bound.
At position F, the plastic displacement is however significantly overestimated especially
for walls with low axial load ratio and long webs. The overestimation of the plastic hinge
length at position F was also observed when comparing the equations by [BA11] with the
experimental data (Section 4.5.3).

The trend of the plastic hinge length with the axial load ratio is not well captured by the
estimates by [BA11]. Increasing axial load results in more pronounced inelastic curvature
spikes at the storey levels and hence larger plastic zone heights L,,. [BA11] had found that
increased axial load reduces the spread of inelastic curvatures over the wall height. The
difference between the two cases lies in the application of the axial loads: distributed at
each storey level in the study presented herein and concentrated at the top of the wall in the
study by [BA11].

The variation of the plastic displacement with the shear stress demand is also not well
captured (Figure 6.32). [BA11] argued that for planar walls, it is not necessary to account
for the shear stress demand in the expression of L, as long as the shear span and the
wall length are accounted for. However for non-planar walls, varying wall dimensions
other than [,,,;; or H can modify the shear stress demand, which in turn affects the tension
shift effects due to diagonal cracking and hence the plastic hinge length. For example,
at position C, increasing the length of the web /., increases the shear stress demand on
the flanges while the wall length does not modify. Hence the increase in shear stress is
not accounted for in the expression of L,,. Overall L, values corresponding to large
shear stresses are underestimated while the values corresponding to low shear stresses are
overestimated.
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Figure 6.29: Comparison between the numerically determined plastic displacement at ultimate limit state
and the predicted displacements using plastic hinge length estimates by [BA11] with respect to the wall
shear span H;.
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Figure 6.30: Comparison between the numerically determined plastic displacement at ultimate limit state
and the predicted displacements using plastic hinge length estimates by [BA11] with respect to the wall
length 1,4
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Figure 6.31: Comparison between the numerically determined plastic displacement at ultimate limit state
and the predicted displacements using plastic hinge length estimates by [BA11] with respect to the axial
load ratio n = N /(f.A,).
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Figure 6.32: Comparison between the numerically determined plastic displacement at ultimate limit state
and the predicted displacements using plastic hinge length estimates by [BA11] with respect to the shear
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Chapter 6. Yield and ultimate displacement of U-shaped walls

6.6.3 Plastic hinge length

Based on the observations from the comparison of the plastic displacements with the estimates,
results from the shell element model are used in this section to propose new estimates for the
plastic hinge length L,;,. The plastic hinge length was derived from the shell element model by
back-calculating its value from the numerical ultimate displacement (Equation 6.23). In this
equation, it is assumed that the center of rotation of the plastic hinge is located at 2 /3L, from
the wall base.

6A
Lyy=15H—|2.25H? — (T” (6.22)

p

6.6.3.1 Trends with wall length, shear span, axial load ratio and shear stress

The trends of the obtained L, values with respect to shear span, wall length, axial load ratio
and shear stress are shown in Figures 6.33 to 6.36 for the different loading positions. The main
observations from these figures are summarised in the following:

e Plastic hinge length increases with the wall shear span due to moment gradient and with
the wall length due to tension shift effects caused by the diagonal cracking. These trends
are confirmed by the Figures 6.33 and 6.32. The wall length corresponding to positions C
and D is the length of the flanges /;; which was not varied during the parametric study.

e Increasing the axial load ratio increases the plastic hinge length due the development of
inelastic curvature spikes at the storey level for the larger axial load ratios as previously
discussed.

e Plastic hinge length increases with increasing shear stress demand as it contributes to the
tension shift effects. Walls with large shear spans H have high slenderness ratios H /l,q1;
and hence low shear stress demands but can have large plastic hinge lengths due to the
shear span contribution (see Figure 6.36). As already mentioned, the shear stress demand
should be accounted for in the expression of the plastic hinge length since for non-planar
walls, modifications of different wall dimensions other than /,,,; and H can modify the
shear stress demand and hence the plastic hinge length due to the tension shift effects
caused by diagonal cracking (e.g., position C in Figure 6.36¢).

6.6.3.2 New estimates for plastic hinge lengths

The L, values obtained from the shell element model are used in this section to derive new
estimates for plastic hinge lengths of U-shaped walls. The objective is to obtain a general
expression for all the loading positions. The variation of the plastic hinge length with the loading
position is to be accounted for through the wall length and the shear stress demand.
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Figure 6.33: Trends of the plastic hinge length values determined from the shell element model with

respect to the shear span H;.
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Figure 6.35: Trends of the plastic hinge length values determined from the shell element model with
respect to the axial load ratio n = N/(f.Ag).
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Figure 6.36: Trends of the plastic hinge length values determined from the shell element model with

respect to the shear stress demand 7.

240




6.6. Plastic hinge lengths

In the following, in order to evaluate the importance of the different variables in predicting the
plastic hinge length, these variables are introduced consecutively in the general expression of the
plastic hinge length which is fitted to the L, values from the numerical model. The data fitting
was performed using a nonlinear least square solver as implemented in Matlab [Mat13] software
(@lsqgnlin function) which minimises the sum of squares of the residuals.

The general form of the equation that is first considered is L,, = a1H + azl,,q is the simplest
plastic hinge equation for walls, accounting only for the shear span and the wall length. The
obtained coefficients of the data fitting, the mean of the ratio between predicted and numerical
L, value and the coefficient of variation are given in Figure 6.37a. This figure shows that the
equation does not capture at least one trend, as predicted values display rather constant value
bands for the same shear span value.

Next, the average shear stress is added into the general form of to the equation under the form of a
ratio of demand to capacity, i.e., of shear stress demand on the wall to the shear stress at diagonal
cracking (taken as 0.17,/f. [ACI11] with the coefficient of 0.17 included in the coefficient of

lwall)-

Considering the influence of the average shear stress, improves the fit of the equation with the
numerical data (Figure 6.37b), except for the slender walls (large shear span - black markers)
where shear stresses are small and hence do not influence the tension shift effects due to diagonal
cracking. If in addition to the average shear stress, the axial load ratio is included in the general
equation, the trends are now well captured (Figure 6.37¢). The final form of the proposed Ly,
estimate is given in Equation 6.23. The final mean error of the predicted to numerical L, value
is 0.98 and a coefficient of variation of COV = 18% is obtained.

Lpyn = (0.05H +0.050,411 )(1+44n) (6.23)

T
0.17\/7,

In the above equation, at position A and E, the wall length was taken as the length of the web
and the shear stress 7 as the average shear stress corresponding to the web and determined using
section analysis. At positions C and D, the length of the flanges and the shear stress on the flanges
was considered, with the shear force in the direction of the flanges equally distributed between
the flanges.

Initially at position F, the same wall length and average shear stress as for positions A and E
were considered. However, after examining the strain profiles for these loading position (Figure
6.38) as discussed in the following, it was decided to take the wall length and the average shear
stress on the section as the mean between the web and the flange, i.e., Ly = (Iyer +171)/2 and
T = (Tye» + T1) /2. It was observed that the tensile strains that control the curvature profile for
this loading position (SW corner in Figure 6.38) and hence the plastic hinge length are influenced
by both the web and the flange characteristics. Considering /,,4;; = .., Would best describe the
tensile strain distribution at the NW corner (Figure 6.38¢) while considering /,,,;; = I; would not
account in any way for the influence of the web which carries a significantly larger shear force
than the flanges at this loading position. It was assumed that at position F, the entire shear force
in the direction of the flanges is carried by one flange only.
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6.7. Conclusions

The obtained scatter of predicted to observed plastic hinge length results from predicting the
plastic hinge length for all loading directions with a single equation. Only at positions C and
D, the coefficient corresponding to the wall length /,,,;; are about twice as those obtained for
positions A, E and F. However, the estimate of this coefficient is not very robust since the flange
length was not varied within the parametric study. For positions C and D, one has therefore only
one /4 value. The web length, on the other hand, which was considered as wall length for the
other positions, was varied between [,,,, = 4.5 —9.0 m. Having flange lengths that are larger than
the web length would lead to wall geometries not commonly encountered in practice and hence
their variation was not consider in the design of the parametric study.

A previous study on the plastic hinge length of columns has differentiated between the plastic
hinge length associated to tension failure and the one associated to compression failure, to
account for the different spread of plasticity on the tensioned and on the compressed side of the
wall[GF"15]. For the walls in the parametric study presented herein, from 135 analyses results,
89 were tension controlled failures and the rest were compression controlled. The confined
concrete crushing limit state was determining for all walls at position C and to walls with large
axial load ratios at position E. However, it was found that the failure type (tension or compression
controlled) does not influence the value of the plastic hinge length when ultimate limit strains of
0.5&g, and 1/ 3€.4,mppss) are used for the steel limit strain and concrete limit strain respectively
(Section 4.6).

Table 6.2: Coefficients for the general form of the plastic hinge length equation L, = (a1H +
aglwauﬁ)(l + asn) when fitting the individual loading positions.

Mean
POS' ai an as Lph.pralicled COV(%)
Lph.numeric )
A 0.055 0.056 2.5 1.02 12
C 0.040 0.099 3.6 1.01 15
D 0.059 0.129 3.6 1.00 9
E 0.049 0.063 2.8 0.99 9
F 0.058 0.058 2.7 1.01 16

6.7 Conclusions

Yield curvature, yield displacements, effective stiffness ratios and plastic hinge lengths were
derived from monotonic analyses of a detailed shell element model for U-shaped walls validated
against experimental data. The numerical results obtained from the model were compared to
several existing estimates as well as to the newly developed estimates. For each of the quantities,
the following conclusions were drawn:

Yield curvature : New estimates for the yield curvature of U-shaped walls under any loading
direction were proposed. Yield curvatures obtained from section analyses were compared
to the yield curvatures obtained from the shell element model analyses and were found to
match well for all analysed wall geometries.
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Yield displacement :A new equation of the yield displacement proposed in Chapter 4 was

expressed as the sum of the displacement components at yield, i.e., flexural displacements
due to wall deformation and shear displacements. The new feature of the model is that
it accounts for the partially cracked wall over the height at yield through an assumed bi-
linear curvature profile. The new equation was verified for walls with a broad slenderness
ratio 2.6 < H/l,,,; < 12.8. By comparison, yield displacement estimate based on the
assumption of a linear curvature profile at yield led to rather high estimates of the yield
displacement for the more slender walls (H /I,,,;; > 4) since it overcompensated for the
shear deformations, which are reduced for very slender walls.

Effective stiffness : Effective stiffness ratios obtained from the shell element model varied with

wall geometry and loading direction were well captured by the prediction based on the new
yield displacement estimate. Existing estimate by [PP92] also matched well on average the
shell element model results but did not capture the influence of diagonal cracking on the
cracked height and hence on the flexural flexibility. Modifying this estimate to account
for the cracked height improved the match between the effective stiffness ratio estimates
and the numerically obtained ones. The prediction based on the yield displacement
estimate assuming a linear curvature profile led to high stiffness estimate for the walls with
low slenderness (2.56 < H /l,,,;; < 4) and to low stiffness estimate for the slender walls
(H/lwall > 4)

Plastic hinge lengths : These lengths were found to increase with increasing axial load ratio.
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Unlike previous studies on the plastic hinge lengths of walls which considered that the
axial load ratio is entirely applied at the top of the wall, in this study the axial load was
considered to be applied at the storey levels. This modelling assumption led to spikes of
inelastic curvatures just above the storey level where the axial loads were introduced, as
the ratio of moment demand to moment capacity was largest above the storey level. In
addition, the shear stress was found to be important in the prediction of the plastic hinge
length for non-planar. For such walls, changing a wall dimension other than the shear span
or the wall length in the direction of loading can modify the shear stress and hence plastic
hinge length due to tension shift effects. Therefore, a new expression for the plastic hinge
length was proposed for all the loading directions and it accounts for the shear stress on
the wall in addition to the wall length, shear span and axial load ratio. It was found that the
same plastic hinge lengths can be used for tension or the compression controlled failures as
long as suitable concrete limit strains are used in section analysis to determine the ultimate
curvature.



7. Summary, conclusions and outlook

7.1 Summary and conclusions

Reinforced concrete (RC) core walls are widely used as the main lateral load resisting element in
mid- to high-rise buildings. Despite its popularity, studies on the seismic response of RC core
walls remain scarce and their inelastic behaviour has only relatively recently been investigated
through few experimental and numerical studies [RF01], [BDP08b] and [LL"13]. This study
complements the previous ones by highlighting the importance of the diagonal loading direction
in the analysis and design of U-shaped walls and by adapting quantities of the plastic hinge
model for the analysis of U-shaped walls. The main contributions of this study are: (1) provide
experimental data on the behaviour of U-shaped walls under diagonal loading, (2) evaluate the
limits of applicability of plane section analysis for determining the strength and displacement
capacity of U-shaped walls and (3) adapt equations for the deformation quantities of the plastic
hinge model for the analysis of U-shaped walls. New or modified equations were proposed for
the following quantities: yield curvatures, yield displacements, plastic hinge lengths and ultimate
strain limits for section analysis for compression controlled failure. The most important findings
and conclusions are discussed in the following.

Behaviour of U-shaped walls under diagonal loading

An experimental campaign on two U-shaped walls (TUC and TUD) was presented in terms of
test set-up, loading history and experimental findings in Chapter 3. The walls were tested under
quasi-static cyclic loading in the directions of the geometric diagonals of the U-shaped section.
The experimental results provided insights into the behaviour of U-shaped walls under diagonal
loading.

Failure modes

It was found that the flange ends are subjected to a significant longitudinal strain gradient across
the flange width, which promotes out-of-plane buckling of the flange ends (failure mode of TUC).

In addition, when loading with the flange end in compression, the compression zone is very
deep and extends over almost the entire flange length. Therefore, the wall is prone to brittle
compressive failures over a significant part of the flange length (failure mode of TUC).
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Influence of longitudinal reinforcement distribution

The influence of the distribution of the longitudinal reinforcement within the section on the wall
behaviour was experimentally evaluated. Distributing the reinforcement uniformly within the
section was found to reduce the crack widths and as a consequence also the shear deformations.
In addition, the longitudinal reinforcement distribution was found to influence the failure modes.
The larger the longitudinal reinforcement content of the boundary element, i.e., the more the
longitudinal reinforcement is concentrated in the boundary elements, the more susceptible the
boundary element is to failure due to out-of-plane bending. The distributed reinforcement layout,
on the other hand, leads to larger compression zone depths, which increases the susceptibility to
concrete crushing.

Plane section assumption

Finally, the experimentally determined longitudinal strain profiles along the wall perimeter
confirmed the invalidity of the assumption that plane sections remain plane. This manifested itself
in particular in non-linear strain profiles and additional compression zones at the intersections of
web and flange .

Limits of application of the plane section analysis to U-shaped walls

Despite the invalidity of the plane section assumption, it remains an analysis that simplifies
analyses considerably and therefore its limitations in predicting the strength and displacement
capacity of U-shaped walls were investigated. Monotonic plane section analysis was used to
model a set of four U-shaped walls that were tested under bi-directional loading.

Strength prediction

Plane section analysis was found to yield reasonable estimates of the wall strength for bending in
the principal directions but significantly overestimated the experimentally attained wall strength
for bending in the diagonal direction. The causes of this overestimation were identified by means
of a shell element model validated against the experimental data and analysed for different loading
histories and directions: monotonic, cyclic unidirectional and cyclic bidirectional.

The difference in strength between the monotonic and the cyclic uni-directional analyses was
relatively small and was assigned to shear lag effects. For cyclic loading, the crack widths tend
to be larger and upon load reversal open along the entire length of the wall. As a result, the
shear deformations tend to be larger under cyclic than under monotonic loading. However, the
difference between the cyclic unidirectional and cyclic bidirectional loading was more significant
and indicated that capturing the loading history of the reinforcement bars was critical in predicting
accurately the wall strength.

The loading history of the bars could be incorporated in a cyclic plane section analysis by
including unloading and reloading rules for steel models while shear lag effects can be accounted
for through effective flange widths.
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7.1. Summary and conclusions

Curvature prediction

Monotonic plane section analyses predicted well the yield and ultimate curvatures for U-shaped
walls. Despite the invalidity of the assumption thatplane sections remain plane, the experimentally
determined ultimate curvatures were well predicted by section analysis as long as suitable ultimate
strain limits were used. To this purpose ultimate limit strains for confined concrete crushing
were adapted for use with section analysis based on comparison with experimental results. For
limit states controlled by reinforcement bars (buckling and rupture after buckling) limit strains
reported in the literature yielded good results.

Application of plastic hinge model to U-shaped walls

The plastic hinge model is very popular with design engineers because it is relatively simple to
apply and it yields—if properly calibrated- robust predictions of the displacement capacity of
RC members undergoing inelastic deformations. These predictions are simple to obtain and are
particularly useful during early phases of the design process. Up to today, equations for yield
curvatures and plastic hinge lengths have been proposed for walls with rectangular, barbelled
or box-shaped cross sections. This study extends the application of the plastic hinge model to
U-shaped walls by: (1) providing new yield curvatures for any loading direction because these
were previously available only for the principal loading directions, (2) by modifying the yield
displacement equation to account for the partially cracked height because the previous equation,
which assumed a fully cracked wall at yield, was found to be too simplifying, (3) by adapting the
ultimate limit strain for compression controlled failure for use with section analysis, and (4) by
adapting the plastic hinge length equation to include the influence of the average shear stress on
the section.

Yield displacement

From the observation of the experimentally obtained curvature profiles at yield, a new equation
for the yield displacement was proposed. The yield displacement is computed as the sum of
contributions of the flexural displacement due to wall deformation and shear displacements.
The novelty lies in assuming a bi-linear curvature profile at yield to account for the partially
cracked height of the wall. The new equation captures well the yield displacement for walls
with a wide range of slenderness ratios (2.6 < H /l,,,;; < 12.8). The simplifying assumption of a
linear curvature profile at yield results in overestimations of the yield displacements for rather
slender walls (H /1,,4; > 4). The newly proposed approach, which is based on a bilinear curvature
profile, can be extended to any wall geometry as long as yield curvatures, cracked heights, shear
displacements and strain penetration lengths are well predicted.

Ultimate displacement

The displacement capacity can be estimated using plastic hinge lengths that vary for the different
loading directions combined with ultimate curvatures from section analyses. Shear displacements
should be included when predicting the wall displacement capacity, since their contribution was
found to be significant even for slender U-shaped walls.
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Chapter 7. Summary, conclusions and outlook

The results of a parametric study using the validated shell element model showed that the plastic
hinge lengths of U-shaped walls depend on the wall length, the shear span, the axial load ratio
and the average shear stress on the section. The influence of the loading direction was included
through the wall length and through the average shear stress, which differs for the different
loading positions. The inclusion of the average shear stress is novel and was found necessary in
order to account for the influence of changes in the core wall geometry not accounted for through
the wall length. Contrary to previous plastic hinge length equations that include the influence
of the axial load on the spread of plasticity, the plastic hinge length was found to increase with
increasing axial load ratio. The difference comes from the assumption on the distribution of the
axial load ratio over the wall height: distributed at each storey level in this study and applied at
the top of the wall in previous studies.

Importance of considering the diagonal loading direction

When analysing U-shaped walls, the designer should consider besides the loading cases in
principal directions of the section also the loading in the direction of the geometric diagonal of
the section. The diagonal loading case is the critical one for designing the shear reinforcement in
the flanges. In addition, the diagonal loading position leads to the largest compression depths for
the flange ends in the experiments performed within this study and is therefore determinant when
designing the confining reinforcement of the flanges.

Numerical and experimental investigations have shown that from all the investigated directions,
the displacement capacity in diagonal direction is the lowest if the limit states bar fracture after
buckling and crushing of the confined concrete are controlling the displacement capacity. The
displacement capacity in diagonal direction can be further reduced by out-of-plane buckling of
the flange end, which is promoted by a strain gradient across the flange width. This new complex
failure mode experimentally observed is however difficult to capture numerically and was outside
the scope of this thesis (see “Outlook” below). The diagonal direction is also determinant for the
shear design of the flanges. The only failure mode that is not controlled by the diagonal loading
direction is the shear failure of the web. The shear design of the web should be based on the
loading direction parallel to the web, for which the shear force demand on the web is largest.

Recommendation for the distribution of the longitudinal reinforcement

From the findings of the experimental campaign it is recommended to detail the walls with
longitudinal reinforcement uniformly distributed in the section. While this may increase the
compression depth on the flanges and therefore the susceptibility to concrete crushing failures, the
shear deformations and the shear lag effects are reduced. This reduction is especially appealing
for non-planar walls where shear deformations and shear lag can significantly reduce the wall
strength and stiffness in flexure and shear. Distributing the longitudinal reinforcement uniformly
along the wall section can also prevent sliding shear failures.
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7.2. Outlook

7.2 QOutlook

This study addressed the response of isolated U-shaped walls when subjected to displacements in
different loading directions and following different loading histories. Future work should address
in particular open questions with regard to the torsional response of core walls, the response of
core walls as elements within a structural system and with regard to the design of core walls.

Influence of torsion on the U-shaped wall behaviour: All U-shaped walls investigated in this
study were isolated walls, for which the rotation was restrained at the wall top. The
influence of a rotation at the wall head on the wall behaviour was therefore not considered
within this study. Future studies should investigate (1) the effect of flexural deformations
on the torsional stiffness and strength, (2) the influence of torsional response on failure
modes, in particular also on the out-of-plane stability of flanges.

Analysis of buildings with U-shaped walls: This study focused on isolated U-shaped walls. In
reality, core walls will be part of a structural system and connected to horizontal structural
members such as slabs and coupling beams. The interaction with these structural members
should be investigated and modelling approaches developed that are suitable for capturing
this interaction.

Design guidelines for U-shaped walls: The design of U-shaped walls was only briefly discussed
when designing the walls of the parametric study. The main issues that require further
investigation are: (1) the confinement of the flange ends, (2) the shear design of the
flanges and (3) consideration of out-of-plane bending when assessing the stability of the
flange ends. The experimental tests have shown that diagonal loading with one flange
end in compression leads to the largest compression zone depth in the flange ends and
that compressive strains are non-linearly distributed along this flange. Due to the latter
observation section analysis cannot capture the flange response and other simple analysis
tools that allow to predict the required confinement lengths for the flanges need to be
developed. Furthermore, it is at present not clear whether such elongated cross sections
can be effectively confined. The out-of-plane bending of the flanges influences the stability
of the flange ends but at present stability models that account for the out-of-plane bending
are missing. Research on this topic is currently ongoing within the scope of the follow-up
project.
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Appendix

A.1 Introduction

This appendix provides additional information on the experimental tests carried out at structural
testing laboratory at EPFL on two half-scale U-shaped walls: TUC and TUD (Figure A.1). The
test objectives, test set-up, applied loading history and the interpretation of the test results have
been presented in Chapter 3. The data from these two tests has been made publicly available and
has been assigned DOI 10.6084/m9.figshare.3507749. The data can be downloaded using the
following link:

https://figshare.com/articles/Quasi-static_cyclic_tests_of two_U-shaped_RC _walls_under_diagonal
_loading/3507749

This appendix presents how the data is organized and how it can be reused. When using any of
the data, please cite the following reference:

R. Constantin and K. Beyer. Behaviour of U-shaped RC walls under quasi-static cyclic diagonal
loading. Engineering Structures, 106(1):36-52, 2016. DOI:10.1016/j.engstruct.2015.10.018

A.2 Instrumentation of the test units

The two test units were each instrumented with two different measurement systems: one composed
of conventional measurement devices and one optical measurement system. Both measurement
systems are described in the following.

The conventional measurement system was composed of the following conventional measurement
devices that recorded continuously at a frequency of 1 Hz:

e Joad cells of the force actuators measuring the applied horizontal forces (Figure A.1)

e load cells measuring the applied axial force (Figure A.1)

e linear variable differential transducers (LVDTs) measuring the relative horizontal displace-
ment of the top of the wall at # =2.95 m and /2 = 3.35 m (Figures A.2 and A.3)

e LVDTs measuring the vertical shortening and elongation at four outer vertical edges of the
wall (Figures A.2 and A.3)
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e LVDTs measuring the vertical shortening and elongation at two inner vertical edges of the
wall near the flange ends

The optical measurement system Optotrack from NDI (Optotrack Certus HD [NDI10]) was
composed of the following devices that recorded continuously at a frequency of 2 Hz:

e ~ 500 light emitting diodes (LEDs) glued on the outer surface of the wall (Figures A.4
and A.5)

e three position sensors each comprising three digital cameras that recorded the x, y and z
coordinates of the LEDs (Figure A.1)
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Figure A.1: Sketch of the test set-up
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A.2. Instrumentation of the test units
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Figure A.2: Sketch of the measurement systems: top view (left) and 3D view (right)
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Figure A.3: TUC and TUD: Sketch of the LVDT chains mounted on the outer wall edges of the flanges
and on the inner edge at the flange ends. In addition the positions of the LVDTs measuring the global wall
top displacements are shown. All dimensions are in mm.
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Figure A.4: TUC: Sketch of the positions of the LEDs glued on the outer faces of the wall, the local
coordinate axes with respect to which the processed optical data is given and the numbering of the LEDs
after data post-processing. Grey colour marks LEDs that are obsolete, i.e., that were not visible to the
position sensors during testing.
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Figure A.5: TUD: Sketch of the positions of the LEDs glued on the outer faces of the wall, the local
coordinate axes with respect to which the processed optical data is given and the numbering of the LEDs
after data post-processing. Grey colour marks LEDs that are obsolete, i.e., that were not visible to the
position sensors during testing.
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A.3 Loading history

The main loading cycles were applied along the two geometric diagonals of the U-shaped section:
directions E-F and H-G (Figure A.6). Cycles along the principal directions were also added at
small drift levels in order to check the strength capacity of the wall in these directions. The load
step numbers, their corresponding loading position and the target drifts at each load step are
summarised for both test units in Figure A.7. The loading for TUD was stopped at LS80.
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Figure A.6: Nomenclature of wall parts, cardinal orientation and loading positions

A.4 Test data

A.4.1 Organisation of data

The data is organised as in Figure A.8. The data was divided into two large folders: the
‘01_Documents_and_data’ and the ‘02_Photos’ folders and they have been archive in a total of
eight zip files. The first folder comprises a subfolder ‘01_Documents_and_paper’ which contains
all the relevant documents to understanding and reusing the experimental data. Three other
subfolders were included in the first folder: a subfolder containing processed and unprocessed
measurements from the conventional instruments for both test units, a subfolder containing
processed and unprocessed measurements from the optical system and a subfolder containing
processed and unprocessed data from the material tests. A ‘Metadata_conventional_channels.xIsx’
file that provides sign conventions and information on the conventional measurement instruments
used was included in the conventional measurements for each test unit.

A.4.2 Unprocessed data
The unprocessed data contains the original files as recorded by the measurement systems during

the testing of the walls. The type of files recorded will depend on the type of measurement
systems used.
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A.4. Test data

Target drift
LS number | Loading position | @h=2.95m
[%]

LSO zero measurement 0
LS1 axial load 0
LS2 C (NS) -0.1
LS3 D (NS) 0.1
LS4 (0} 0
LS5 A (EW) -0.1
LS6 B (EW) 0.1
LS7 (0} 0
LS8 C (NS) -0.2
LS9 D (NS) 0.2
LS10 [0) 0
LSI11 A (EW) -0.2
LS12 B (EW) 0.2
LS13 (0} 0
LS14 E (Diagl) -0.2
LS15 F (Diagl) 0.2
LS16 [0} 0
LS17 H (Diag2) 0.2
LS18 G (Diag2) -0.2
LS19 [0) 0
LS20 E (Diagl) -0.3
LS21 F (Diagl) 0.3
LS22 (0} 0
LS23 H (Diag2) 0.3
LS24 G (Diag2) -0.3
LS25 [0} 0
LS26 C(NS) -0.3
LS27 D (NS) 0.3
LS28 (0] 0
LS29 A (EW) -0.3
LS30 B (EW) 0.3
LS31 (0} 0
LS32 E (Diagl) -0.4
LS33 F (Diagl) 0.4
LS34 [0} 0
LS35 H (Diag2) 0.4
LS36 G (Diag2) -0.4
LS37 (6] 0
LS38 C (NS) -0.4
LS39 D (NS) 0.4
LS40 (0} 0
LS41 A (EW) -0.4
LS42 B (EW) 0.4
LS43 [0) 0
LS44 E (Diagl) -0.6
1.S45 F (Diagl) 0.6
LS46 (0} 0
LS47 H (Diag2) 0.6
LS48 G (Diag2) -0.6
LS49 (0} 0
LS50 C (NS) -0.6
LS51 D (NS) 0.6
LS52 [0} 0
LS53 A (EW) -0.6
LS54 B (EW) 0.6
LS55 (0} 0
LS56 C (NS) -0.8
LS57 D (NS) 0.8
LS58 C (NS) -0.8
LS59 D (NS) 0.8
LS60 (0} 0
LS61 A (EW) -0.8
LS62 B (EW) 0.8
LS63 A (EW) -0.8
LS64 B (EW) 0.8

Loadi Target drift
LS number oacing @h=2.95m
position [%]
LS65 [0) 0
LS66 E (Diagl) -1
LS67 F (Diagl) 1
LS68 E (Diagl) -1
LS69 F (Diagl) 1
LS70 0 0
LS71 H (Diag2) 1
LS72 G (Diag2) -1
LS73 H (Diag2) 1
LS74 G (Diag2) -1
LS75 o 0
LS76 H (Diag2) 1.5
LS77 G (Diag2) -1.5
LS79 G (Diag2) -1.5
LS80 o 0
LS81 E (Diagl) -1.5
LS82 F (Diagl) 1.5
LS83 E (Diagl) -1.5
LS84 F (Diagl) 1.5
LS85 o 0
LS86 E (Diagl) -2
LS87 F (Diagl) 2
LS88 E (Diagl) -2
LS89 F (Diagl) 2
LS90 o 0
LS91 H (Diag2) 2
LS92 G (Diag2) -2
LS93 H (Diag2) 2
LS94 G (Diag2) -2
LS95 o 0
LS96 H (Diag2) 2.5
LS97 G (Diag2) -2.5
LS98 o 0
LS99 E (Diagl) -2.5
LS100 F (Diagl) 2.5
LS101 [0} 0
LS102 E (Diagl)
LS103 o 0
LS104 H (Diag2)
LS105 o 0

|:| failure of TUC for the two diagonal directions

_ failure of TUD

Figure A.7: Load step number, corresponding loading position and target drifts. The last loadstep for
TUD is LS80.
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Data

—| 0 17D00umentsfand7data|

—| 01 _Documents and paper |

— 00_Master_document
01_2015_Constantin_Beyer U_shaped_walls_under_diagonal loading_EngStruct.pdf

—| 02_Data_conventional measurements |

—Metadata_conventional channels.xIsx

unprocessed LS0.txt

LSO0_to_LSl.txt
LSl.txt

processed TUC_conventional processed.xlsx

—Metadata_conventional channels.xlsx

—| 03 _Data_optical measurements |

—|TUC|——|unprocessed I—— LS0_001.nco

LS0_001_3d.xIsx

LSO to_ LS1_001.nco
LS0_to_LS1_001_3d.xlsx
LS1_001.nco

processed — TUC _optical_processed_Xcoordinate.csv

TUC_optical_processed_Y coordinate.csv
TUC_optical_processed_Zcoordinate.csv

—|TUDI——| unprocessed }—E LS0_001.nco

—| 04 Material tests data |

—funprocessed concrete_tests|——...

steel tests

processed conc_compression_fc_cyl 28days.xlsx

conc_compression_fc_E_modulus_DoT.xIsx
conc_tensile_strength_double_punch.xlsx
steel_tests_summary.xlsx

—| 02_Photos I—

Figure A.8: Sketch of the data organisation.
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A.4. Test data

A.4.2.1 Conventional measurement data

The conventional measurements were recorded using the CATMAN software [HBMOO]. This
software outputs ascii files that contain the unmodified measurements as recorded by the system.
A channel is assigned to each instrument of the system. The type of recorded measurements and
the corresponding channel names are listed below:

e Measurement of forces and displacements of the horizontal actuators: ACTU_FORCE_EW,
ACTU_FORCE_NSW, ACTU_FORCE_NSE, ACTU_DISP_EW, ACTU_DISP_NSW and
ACTU_DISP_NSE

e Measurement of the applied axial forces from the two load cells placed between the top
steel beam and the wall collar: F_ AX_W, F_AX_E (TUC) or measurements of axial force
load cell placed on the pre-stressed axial tendon: F_AX_1 and of pressure applied in the
hollow core jack: PRESS_AX (TUD)

e Measurements of relative horizontal displacements at the top of the wall using LVDTs:
DISP_EWh295, DISP_EWh335, DISP_NSW, DISP_NSE

e Measurements of shortening and elongation of the wall edges using six LVDT chains:
SWil to SWi4, SW1 to SW8, NW1 to NWS, NE1 to NES, SEI to SE8 and SFil to SEi4

e Voltage measurement exported from the NDI system to indicate when the optical system
was recording: LED. The conventional system recording was always started before and
stopped after the NDI recording. This voltage measurement was used to synchronise the
conventional and the optical measurement system.

e Additional measurements to check the safety of the test set-up during loading. One LVDT
fixed below the strong floor of the testing laboratory to record the vertical displacement of
the strong floor during loading: DISP_SLAB. Inclinometers fixed on the wall collar and
on the top steel beam and measuring their inclination with respect to the wall vertical axis
during loading: INCLIN_WALL, INCLIN_LBEAM (only for TUC).

The files are labelled as ‘LSxx_to_LSxx+1.txt’ to indicate measurement during loading from one
load step to the next and ‘LSxx.txt’ to indicate measurement at load step (i.e., while holding the
wall position at the target displacement).

A.4.2.2 Optical measurement data

The data recorded from the NDI measurement system was placed in the subfolder named
‘03_Data_optical_measurements’. For each separate recording the NDI system exports the mea-
surement data to an Excel file. In addition an ascii file with extension ‘nco’ is created carrying
data on the settings of the NDI system. The files are named ‘LSxx_to_LSxx+1_001" for measure-
ments when loading from one load step to the next and ‘LSxx’ for measurements while holding
the position at one load step. The Excel files are named as the ‘nco’ files are, plus the suffix
‘3d.xls’: ‘LSxx_to_LSxx+1-001_3d.xls’” and ‘LSxx_001_3d_xls’.
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Each Excel file has three header lines. These lines indicate the number of frames included in the
file (i.e., number of measurements values for one coordinate of a LED), the recording frequency
in Hz (2 Hz for both TUC and TUD) and the units of the coordinate measurements (mm). A
blank line follows the header lines, then comes the actual measurement data that is organised
in columns. The first column stores the frame index that always starts from one. From the
second column on, the coordinate measurements of the LEDs follow. These measurement are
organised by LED number and by x, y and z coordinate. For example the second, third and fourth
column which correspond to LED number 1 are labelled Marker_1x, Marker_ly and Marker_1z
respectively. In the unprocessed data, the numbering of the LEDs is random. If a LED was not
visible to the position sensors during loading, the columns corresponding to this LED are blank.

A.4.2.3 Measurement irregularities

Several measurement irregularities occurred during the testing of TUC and TUD. These irregular-
ities are listed below:

e During the testing of TUC, due to a malfunction of the actuator system, loading from
position H to G (LS35 to LS36) was done in steps and data files were stitched together for
post-processing. In addition, when reaching LS36 one of the three actuators continued to
load slightly above the target drift but at a high speed. It applied a small torsion on the wall
but no important additional cracks were observed after this.

e For both TUC and TUD, the LEDs glued on the foundation originally followed a regular
grid consistent with the grid of the LEDs on the wall surface. However several LEDs on the
foundation were removed prior to commencing the tests as their visibility to the position
sensors was obstructed by the pre-tensioning bar ends and plates. Additional LEDs were
not visible during the entire testing procedure but were left in place and marked as obsolete.

A.4.3 Processed data

Both the conventional and the optical measurement data were processed in order to reduce the
amount of data and to make it easy to use. The processing consisted of: synchronising the optical
and the conventional measurement data, removing any bias in the measurements not related to
the actual wall behaviour (e.g., accidental touching of measurement instruments or LEDs that
had fallen off but were still recording) and organising the data in one set of measurements during
loading between load steps. The measurements during loading (i.e., files of type LSxx_to_LSxx+1)
were assembled together resulting in one single continuous vector of 57110 data points for TUC
and 19146 data points for TUD.

A.4.3.1 Conventional measurement data

The measurements of the conventional instruments have been offset so that the deformations and
displacements at initial load step LSO are zero. The measurements of the actuator forces, time
channel and voltage channel were not offset.
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A.4. Test data

The signs of some of the top displacement measurements and actuator forces were inverted so that
they match the sign convention for the wall as described in ‘Metadata_conventional_channels.xlsx’.
In addition, the processed top displacements were modified to remove the contribution of the
foundation flexibility (foundation uplift and sliding with respect to the strong floor) recorded by
means of the LEDs glued on the steel plates on the foundation.

A.4.3.2 Optical measurement data

Several processing steps were performed for the optical measurement data:

e The data was smoothed over a range of 20 data points in order to remove measurement
noise. Smoothing was done using the Matlab function ‘smooth’ [Mat13].

e For each flange and the web, the coordinate system was rotated and shifted so that it is
aligned with the local xyz coordinate system of each wall part, i.e., web or flanges. For any
of the three wall parts, the local x axis is always aligned with the length of the wall part,
the local y axis is aligned with the wall height and local z axis is perpendicular on the wall
surface and oriented from the wall towards the position sensor (Figures A.4 and A.5). The
origin of the local coordinate system is always: at mid-length of each wall part (x axis), at
the base of the wall specimen (y axis) and at the outer wall surface (z axis).

e The optical measurement data was synchronised with the processed conventional measure-
ment data. In order to have the same number of measurement values for both systems, the
measurement frequency of the optical system (2 Hz) was reduced to the frequency of the
conventional system (1 Hz).

e LEDs that fell off during testing were identified and the corresponding entries were replaced
by NaN (Not a Number) entries.

e LEDs were renumbered starting from the base of the East flange, from left to right on
the outer wall surface. Obsolete LEDs, i.e., LEDs that were not visible during testing are
numbered at the end for each wall part and are shown in grey in Figures A.4 and A.5.

The processed optical measurements for all LEDs are stored in three separate csv files, one for
each x, y and z coordinate. The three files are named: “TUC _optical_processed_Xcoordinate.csv’,
‘TUC _optical_processed_Y coordinate.csv’ and ‘“TUC_optical_processed_Zcoordinate.csv’, for the
case of TUC and similarly for TUD. The processed x, y and z coordinates are expressed with
respect to the local axes of each of the wall parts (Figures A.4 and A.S).
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Appendix

A.4.4 Photos

All the photos documenting the construction, test set-up and the damage during testing of the
two specimens were saved in the second main folder ‘02_Photos’. The photos documenting the
damage of the walls were taken at load steps while holding the wall position at the target peak
displacement. These photos are found in the ‘02_TUC _testing’ and ‘04_TUD_testing’ and are
organised in folders ‘LSxx’ created for each load step numbered xx. Each ‘LSxx’ folder contains
global photos of the wall specimen taken from the front (view of the inner wall faces), back (view
perpendicular on the web), and the two sides (views perpendicular on the two flanges). These
global photos are saved in ‘Overview’ subfolder. In addition, when damage became significant
detailed photos at the damage locations were taken. These are photos were saved in the subfolder
‘Detailed’.

At each load step, the cracks were traced using blue, red, black and green pens in order to
render the cracks visible on photos. Each color corresponded to different loading positions: red -
positions A and F, blue - positions B and and E, black - positions C and H, green - positions D
and G (see also Figure A.6).
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Notations and abbreviations

Notations and abbreviations

Capital Latin Letters
Ag Gross concrete area of a section
A, Gross cross section area of wall parts (web or flange) resisting a common lateral
force
Acw Gross cross section area of one wall part resisting all the lateral force
E Elastic modulus
E. Elastic modulus of concrete
E, Elastic modulus of steel reinforcement
El., Cracked (effective) flexural stiffness
EI, Uncracked gross flexural stiffness
Frw Force in EW direction
Fys Force in NS direction
F Shear force at first yield
F, Shear force at nominal
H Effective height of a building or the height of a wall subjected to a point load at H
H,., Height of the wall over which cracking extends
H,a Height of the wall
Kerr Effective wall stiffness
K Elastic flexural wall stiffness
K, Dimensionless yield curvature
K, 11 Dimensionless yield curvature for loading in the flange direction
Ky vveb Dimensionless yield curvature for loading in the web direction
Ly Plastic hinge length
Ly, Height of the plastic zone (i.e., where plasticity spreads)
Lgp Strain penetration length
L;, p Strain penetration length at first yield
M Bending moment at the wall base
Mgw Moment at the wall base due to Fgy
Mys Moment at the wall base due to Fyg
Msgss SRSS moment at the wall base computed from Fgy and Fys
M., Moment at the wall base at flexural cracking
M, Moment at the wall base at first yield
M, Moment at the wall base at nominal
M, Moment at the wall base at ultimate
N Axial load
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Notations and abbreviations

Nytories Number of stories the building braced by the U-shaped wall
Viec Shear force demand
Ve Shear force demand accounting for the dynamic amplification factor
Vi Diagonal tension capacity
Vive Web crushing capacity
Small Latin Letters
c Compression depth of a section
dp Gross concrete area of a section
fe Gross cross section area of the wall section
5 Yield strength of the longitudinal reinforcement
Sfon Yield strength of the transversal reinforcement
fi Tensile strength of concrete
Ju Ultimate strength of the reinforcement
h Height of one or several measuring instruments
Rstorey Storey height
hew Height of load application in the EW direction
hys Height of load application in the NS direction
ker Factor accounting for the partially cracked wall height at yield
kg Ratio between the modulus of elasticity of steel and concrete
Ly Length of the flanges of the U-shaped wall
Ldiag Length of the diagonal of the U-shaped section
Lyvall Length of the wall perpendicular to the neutral axis
Liveb Length of the web of the U-shaped wall
Liens, f1 Tensioned length of the web at yield when loading in an arbitrary direction
Liens web Tensioned length of the flange at yield when loading in an arbitrary direction

Tensioned length of the flange at yield when loading in the direction of the flanges

l’ye"svf I (bending about the web)

P Tensioned length of the web at yield when loading in the direction of the web
tens,web (bending about the flanges)

n Axial load ratio

twall Thickness of the flanges and of the web of the U-shaped wall
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Notations and abbreviations

Capital Greek Letters
Apw Displacement in EW direction
Ans Displacement in NS direction
Asrss SRSS displacement at h=2.95 m of the test units
Ay Flexural displacement
A Shear displacement
Apy Plastic flexural displacement
A,y Nominal yield displacement
Avir Yield displacement estimate assuming a linear curvature profile
Ayor Yield displacement estimate assuming a bi-linear curvature profile
A, First yield displacement
A;_y P Flexural displacement at first yield
A& s Shear displacement at first yield
A§ sp Flexural displacement at first yield due to strain penetration into the foundation
¢ Curvature of a wall section
oy Curvature at the base of the wall determined from the curvatures above
Ocr Curvature at cracking of the concrete section
0y Nominal yield curvature of a wall section
)’, First yield curvature of a wall section
0p Plastic curvature of a wall section
oy Ultimate curvature of a wall section
Nominal yield curvature for loading in the web direction (bending about the
Prweb flanges)
Nominal yield curvature for loading in the flange direction (bending about the
Oy web)
y’web First yield curvature for loading in the web direction (bending about the flanges)
¢}’ 71 First yield curvature for loading in the flange direction (bending about the web)
Small Greek Letters
o Bending angle measured between the neutral axis of the current loading position
and neutral axis at position C (see Figure 6.12)
o Ratio of cracked to uncracked flexural stiffness a = El.../EI,
o Drift at the effective height
Oy Yield drift at the effective
& Maximum compressive strain of a section at the location of the reinforcement bar
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Notations and abbreviations

€y Ultimate compressive strain capacity of concrete
£y Concrete compressive strain at first yield
& Maximum tensile strain of a section at the location of the reinforcement bar
& Strain at the end of the strain hardening plateau
&y Yield strain of the longitudinal reinforcement
Eu Tensile strain capacity of a reinforcement bar
0 Rotation at the wall base
0 Crack angle with the vertical axis of the wall
6;, Rotation at the wall base due to strain penetration into the foundation
0,; Rotation from curvature integration over the height of the plastic zone
Ua Displacement ductility
Pn Transversal reinforcement content
o] Longitudinal reinforcement content
prot Total longitudinal reinforcement content
T Average shear stress on the section
Tyeb Average shear stress on the web
Tyl Average shear stress on the flanges
0} Dynamic amplification factor
Abbreviations
Dwf2.5 Distributed reinforcement, web to flange length ratio [/l = 2.5
LED Light Emitting Diode
LVDT Linear Variable Differential Transducer
NA Neutral axis
PH Plastic Hinge
RC Reinforced Concrete
SRSS Square Root of Sum of Squares
TUC Test Unit C
TUD Test Unit D
VT4 VecTor4 software

Remark: Notations that were introduced in the only in the literature review sections are defined
when introduced and are not included in this notation list.
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