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Abstract

In the present thesis we study the geometry of the moduli spaces of Bradlow-Higgs
triples on a smooth projective curve C. (E, φ, s) is a Bradlow-Higgs triple if (E, φ) is
a Higgs bundle and s is a non-zero global section of E. There is a family of stability
conditions for triples that depends on a positive real parameter σ. The moduli spaces
Mr,d

σ of σ-semistable triples of rank r and degree d vary with σ. The phenomenon arising
from this is known as wall-crossing.

In the first half of the thesis we will examine how the moduli spaces Mr,d
σ and their

universal additive invariants change as σ varies, for the case r = 2. In particular we will
study the case of σ very close to 0, for which Mr,d

σ relates to the moduli space of stable
Higgs bundles, and σ very large, for which Mr,d

σ is a relative Hilbert scheme of points for
the family of spectral curves. Some of these results will be generalized to Bradlow-Higgs
triples with poles.

In the second half we will prove a formula relating the cohomology of M2,d
σ for small

σ and d odd and the perverse filtration on the cohomology of the moduli space of stable
Higgs bundles. The formula is not far from the generalized Macdonald formulas found in
[34], [31] and [35]. We will also partially generalize this result to the case of rank greater
than 2.

Keywords: Moduli spaces, wall-crossing, Bradlow-Higgs triples, Macdonald formula,
Hilbert scheme.
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Résumé

Dans la présente thèse, nous étudions la géométrie des espaces de modules de triplets
de Bradlow-Higgs sur une courbe lisse projective C. (E, φ, s) est un triplet de Bradlow-
Higgs si (E, φ) est un fibré de Higgs et s est une section globale de E non-nulle. Il y a
une famille de conditions de stabilité pour les triplets qui dépend d’un paramètre positif
réel σ. Les espaces de modules Mr,d

σ de triplets σ-semistable de rang r et degré d varient
avec σ. Le phénomène résultant est connu comme wall-crossing.

Dans la première moitié de la thèse, nous examinerons comment les espaces de mod-
ules Mr,d

σ et leurs invariants additifs universels changent en fonction de σ, pour le cas
r = 2. En particulier, nous allons étudier le cas de σ très proche de 0, pour lequel Mr,d

σ

est relié à l’espace des modules de fibrés de Higgs stables, et σ très grand, pour lequel
Mr,d

σ est un schéma de Hilbert de points relatif pour la famille de courbes spectrales.
Certains de ces résultats seront généralisés aux triplets de Bradlow-Higgs avec des pôles.

Dans la seconde moitié, nous allons prouver une formule concernant la cohomologie de
M2,d

σ pour σ petit et d impair et la filtration perverse sur la cohomologie de l’espace des
modules de fibrés de Higgs stables de degré impair. La formule est proche des formules
de Macdonald généralisées trouvées dans [34], [31] et [35]. Nous allons aussi partiellement
généraliser ce résultat au cas du rang supérieur à 2.

Mots-clé: Espaces de modules, wall-crossing, triplets de Bradlow-Higgs, formule de
Macdonald, schéma de Hilbert.
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Introduction

Description of the project
The main goal of the thesis is to understand the geometry of the moduli spaces of

Bradlow-Higgs triples on a smooth projective curve C, with particular focus on the case
of rank 2. These objects consist of a vector bundle E on C, a morphism φ : E → E ⊗K
and a non-zero global section of E. Since there is a Higgs field φ and a section s, Bradlow-
Higgs triples relate to both Higgs bundles and Bradlow pairs. See [40] and [50] for an
introduction on the two moduli problems. Features from both original moduli problems
are then inherited by the moduli problem of Bradlow-Higgs triples.

As for Bradlow pairs, there exists a family of stability conditions that depends on a
positive real parameter σ. This will allow to vary the stability and hence produce several
moduli spaces Mr,d

σ of σ-semistable triples of rank r and degree d. For fixed r and d,
the set of positive real numbers is then partitioned into a finite number of intervals, the
last one of which is unbounded. The defining property of these intervals is that varying
σ in the interior of each one of these intervals will yield the same moduli space Mr,d

σ ,
but different intervals have non-isomorphic associated moduli spaces. The endpoints of
these intervals are called critical values and Mr,d

σ will change whenever σ crosses one.
This phenomenon is well known as wall-crossing.

The moduli spaces Mr,d
σ will inherit properties from the moduli problem of Higgs

bundles as well. On the other hand they are not all smooth, and this makes their geometry
richer but more complicated. As we will see, each of them admits a proper Hitchin map

χr,d
σ : Mr,d

σ → Ar

whose target, the Hitchin base, is an affine space. Furthermore, C∗ acts on each of the
Mr,d

σ by scaling the Higgs field and there is an action of C∗ on Ar for which the Hitchin
map is equivariant. In particular we will prove that for every (E, φ, s) ∈ Mr,d

σ there exists
the limit

lim
λ→0

λ · (E, φ, s)
and this has important consequences on the geometry of our moduli spaces.

When σ crosses one of the critical values, the geometry of the moduli space will
change, in the sense that some triples will become unstable and they will be erased from
Mr,d

σ , while some others will become stable and hence will be added to Mr,d
σ . The loci

that are added and removed are often known as flip loci. Furthermore there are two
distinguished stability conditions. Namely, for σ = ε smaller than the least critical value,
the stability of the triple will imply the semistability of the underlying Higgs bundle and
so we have a forgetful map, also known as Abel-Jacobi map,

Mr,d
ε → Mr,d

whose target is the moduli space of semistable Higgs bundles of rank r and degree d. If r,
d are coprime and d is very large compared to r then the Abel-Jacobi map is a projective
bundle, providing a direct relation between Mr,d

ε and Mr,d.
Instead, when σ is large enough to be bigger than the last critical value then the

stability condition is equivalent to requiring that the section s is a cyclic vector for φ.
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In this case, the map χr,d
σ can be proved to be a relative Hilbert scheme of points. It

is also related to moduli spaces of stable pairs studied by Pandharipande and Thomas
in [43]. The connection between Bradlow-Higgs triples and Hilbert schemes of points is
also an important part of the project and a consequence of the study of the geometry of
Bradlow-Higgs triples.

Content of the thesis and main results

In chapter 1 we collect some known results from the literature about the main topics
that are needed to understand the thesis. First we introduce the invariants that we
will compute throughout the work i.e. the Grothendieck motives. We recall some results
about Higgs bundles and Bradlow pairs that will set the starting point for the definition
of Bradlow-Higgs triples. We will also recollect some classical results about non-abelian
Hodge theory and the relation between moduli spaces of Higgs bundles and character
varieties. Some attention will be given to the wall-crossing for the moduli problem of
Bradlow pairs, which is a good starting point for the understanding of the wall-crossing for
Bradlow-Higgs triples. Finally we give some insight about the notion of Hilbert scheme,
especially in the case of curves, since moduli spaces of Bradlow-Higgs triples are connected
to relative Hilbert schemes.

Chapter 2 will contain the basic definition of Bradlow-Higgs triples and their σ-
stabilty. We also outline the construction of the moduli spaces Mr,d

σ as open subsets of
moduli spaces of coherent systems on the surface P(OC ⊕K) that were originally studied
in [30]. This approach will also lead to the proof of the properness of the Hitchin maps
χr,d
σ . There will be a study of the deformation theory of Bradlow-Higgs triples, in order

to understand if the moduli spaces are singular. We will prove that after the first critical
value is crossed the moduli spaces are in fact singular. The C∗-action on the moduli
spaces of Bradlow-Higgs triples is understood and for rank 2 we provide a decomposition
of the moduli spaces in terms of the connected components of the fixed point loci. For
some combinations of σ, r and d we can prove that Mr,d

σ is smooth and this will allow
to compute its cohomology from the motives. Here is the main outcome of the chapter:

Theorem. Bradlow-Higgs triples (E, φ, s) on C correspond to pairs (F , s) where F is
a rank one pure one dimensional sheaf on the surface P(OC ⊕ K) whose support does
not intersect the divisor at infinity and s is a non-zero global section of F . Under this
identification the Hitchin base Ar is a family curves in P(OC ⊕K) whose support does
not intersect the divisor at infinity. Furthermore the Hitchin maps χr,d

σ : Mr,d
σ → Ar

correspond to taking the scheme theoretic support of the sheaves F .
For σ → 0 there is an Abel-Jacobi map

AJ : Mr,d
σ → Mr,d

forgetting the section and whose target is therefore the moduli space of semistable Higgs
bundles.

For σ → ∞, Mr,d
σ → Ar is a relative Hilbert scheme of points for the family of curves

parametrized by Ar.
For r = 2, σ → 0 and either d < 0 or d > 4g − 4 odd, Mr,d

σ is smooth. In all other
cases it is singular.

Mr,d
σ can be decomposed into attracting sets for a C∗-action, explicitly for r = 2:

M2,d
σ = F

(d),1+
(2),σ �

⊔
I1

F
(d1,d2),1+
(1,1),σ �

⊔
I2

F
(d1,d2),2+
(1,1),σ .

Each of the F+ contains a connected component F of the fixed point locus of M2,d
σ

and is characterized by the property that the limit as λ → 0 of C∗ acting on points in
F+ will belong to F .
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In chapter 3 we compute the motivic invariants of the Mr,d
σ for r = 2. There are three

main parts. First, we examine the flip loci and we understand what triples are added and
erased from Mr,d

σ as a critical value σ̄ is crossed. We can prove that the two flip loci
Wd,+

σ̄ and Wd,−
σ̄ admit maps:

πd,+
σ̄ : Wd,+

σ̄ → Xd
σ̄

and
πd,−
σ̄ : Wd,−

σ̄ → Xd
σ̄

where Xd
σ̄ is the cartesian product of a symmetric power of the curve C, of its Jacobian

and of two copies of an affine space. The flip loci themselves contain triples that can be
described as extensions of Higgs bundles for which the canonical subobject and quotient
have prescribed degrees. The fibers of the maps πd,+

σ̄ and πd,−
σ̄ are projective spaces,

although not of constant dimension, and this suffices to compute the motive of the flip
loci. We will also point out how the flip loci interact with a decomposition of the M2,d

σ

that is obtained by exploiting the C∗-action. Second we compute [M2,d
ε ] for small ε. The

strategy relies once again on the C∗-action. Last, we will point out a strategy to compute
[M2,d

σ ] for σ bigger than the last critical value. The main results of the chapter can be
formulated as follows:

Theorem. There are maps:
πd,+
σ̄ : Wd,+

σ̄ → Xd
σ̄

and
πd,−
σ̄ : Wd,−

σ̄ → Xd
σ̄

whose fibers are projective spaces. This allows to compute motives:

[Wd,+
σ̄ ] = L2g · [CP2g−3] · [S(d−σ̄)/2(C)] · [J(C)] + L3g−2 · [S(d−σ̄)/2(C)] · [Sσ̄(C)],

[Wd,−
σ̄ ] = L2g · [S(d−σ̄)/2(C)] · [J (d+σ̄)/2(C)] · [CP(d+σ̄)/2+g−2].

The motive of M2,d
ε for 0 < ε < 1 and d > 0 odd can be computed from the

decomposition into attracting sets:

[M2,d
ε ] =L1+4(g−1)[M2,d

ε ] +
∑

(d1,d2)∈Io
1 (d)

L1+3(g−1)+d2 [Sd1(C)][Sd1−d2+2g−2]+

+
∑

(d1,d2)∈Io
2 (d)

L1+4(g−1)[Sd2(C)][Sd1−d2+2g−2(C)]+

+
∑

(d1,d2)∈Io
1 (d)

(L4g−2 − L4g−3)[Sd1(C)]

(
[Sd2(C)]− [J(C)]

Ld2+1−g − 1

L− 1

)
.

A similar formula also holds for d ≥ 0 even.

[M2,d
ε ] = L1+4(g−1)[M2,d

ε ] +
∑

(d1,d2)∈Ie
1 (d)

L1+3(g−1)+d2 [Sd1(C)][Sd1−d2+2g−2(C)]+

+
∑

(d1,d2)∈Ie
2 (d)

L1+4(g−1)[Sd2(C)][Sd1−d2+2g−2(C)]+

+ (L− 1)L1+4(g−1)[Sym2(Sd/2(C))] + L1+4(g−1)[Sd/2(C)][Jd/2(C)][CPg−2]+

+ [Sd/2(C)]L3g−2
(
Ld/2+g−1 + L2g−2 − 1

)
+

+
∑

(d1,d2)∈Ie
1 (d)

(L4g−2 − L4g−3)[Sd1(C)]

(
[Sd2(C)]− [J(C)]

Ld2+1−g − 1

L− 1

)
.

For σ > d, [M2,d
∞ ] can be computed either by combining the above formulas and the

motive of the flip loci or directly.
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Chapter 4 contains some comments about the generalization of the results of the
previous chapters to the case of Bradlow-Higgs triples with poles. Fixed an integer γ ≥ 1
and a point P ∈ C, a Bradlow-Higgs γ-triple is the datum (E, φ, s) where E is a vector
bundle on C, s is a non-zero global section of E and φ : E → E ⊗K(γP ) is a Higgs field
that is allowed to have poles at P . Most of the properties of the M2,d

σ are still valid for
their analogues with poles M2,d

σ (γ). We also prove that when γ is chosen large enough,
M2,d

σ (γ) are smooth, the flip loci in the wall crossing are actually projective bundles and
their motive can be computed in an easier way. The two main results are:

Theorem. M2,d
ε (γ) is smooth for all γ ≥ 1. In particular M2,d

ε (γ) is always semiprojec-
tive.

If γ > d then M2,d
σ (γ) is smooth regardless of σ as long as it is different from a critical

value. In this case then M2,d
σ (γ) is semiprojective.

We have:

lim
γ→∞P (M2,d

ε (γ), t) = lim
γ→∞P (M2,d

∞ (γ), t) =

=
(1 + t3)2g(1 + t)2g

(1− t2)2(1− t4)
= P (CP∞, t)P (BG, t)

where BG is the classifying space of the group G mentioned in [21, section 7.2].

In chapter 5 we explore the relation between the moduli spaces of Bradlow-Higgs
triples and relative Hilbert schemes of points on curves. We already mentioned that for
very large σ, χ2,d

σ is a Hilbert scheme relative to the family of locally planar curves
parametrized by the Hitchin base A2. A lot of recent work by several authors, see [34],
[31] and [35], relates the cohomology of the Hilbert scheme of points on a curve to the
cohomology of the compactified Jacobian of the same curve. The key assumption is that
the curve has to be locally planar and at least reduced. Note that these formulas are
valid for certain families of curves and their relative Hilbert scheme. In the chapter we
exploit the connection between Bradlow-Higgs triples and relative Hilbert schemes of
points on curves to prove a partial formula relating the cohomology of M2,d

ε for d odd
to the perverse filtration on the cohomology of M2,1. The main formula is as follows:

Theorem. Setting

F sh(q) =
∑

n≥1−g

R(χ2,2n+1
ε )∗(ICM2,2n+1

ε
)q2n+2g−1,

F vir(q, t) =
∑

n≥1−g

P vir(M2,2n+1
ε , t)q2n+2g−1

and

G(q, t) = oddq

(
PH(M2,1, q, t)

(1− q)(1− qt2)

)
,

Gsh(q) = oddq

⎛⎝ ⊕8g−6
i=0 IC

(∧i
R1
)

(1− qQ)(1− qQ[−2](−1))

⎞⎠
we can prove that F sh and Gsh coincide for deg q ≤ 2g−3. P (F sh(q), t) and G coincide for
deg q ≤ 2g− 3 and for deg q ≥ 6g− 5. Furthermore P (F sh(q), t)−G(q, t) is a polynomial
with non-negative coefficients.

In the last chapter we will discuss the issues that arise when trying to generalize the
content of the thesis to Bradlow-Higgs triples of rank bigger than 2. In the first part,
we focus on the fact that while there exists an approach to understand the wall-crossing
of Bradlow pairs for arbitrary rank and degree, see [36], this will fail for Bradlow-Higgs
triples and we point out why. In the second part we will partly generalize the content of
chapter 5 to higher rank.
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Chapter 1

General facts and background
results

1.1 Grothendieck ring of varieties over C and motivic
invariants

In the rest of the thesis we will use a ring containing universal additive invariants of
varieties over C. Good references for this are [2, Section 2] and [11, Section 1].

Definition 1.1. Define K0(VarC) to be the ring with the following presentation:

– the generators are the isomorphism classes [X] of varieties over C

– the relations are generated by [X]− [Y ]− [X \Y ] whenever Y is a closed subvariety
of X

– the product is defined by [X] · [Y ] = [X × Y ] where × is the product of C-schemes
over Spec(C) (or in this case the Cartesian product of varieties).

K0(VarC) is called Grothendieck ring of varieties over C.

A few remarks are necessary. The relations extend to [X] = [Y ] + [X \ Y ] when Y is
a locally closed subvariety of X. The unit of this ring is the class of a point [pt], while
the 0 is the class of the empty variety. The class of the affine line A1 is denoted by L.

Here we mention some relevant examples of relations in K0(VarC) some of which will
be used in the rest of the work.

– If X → Y is a Zariski locally trivial fibration with fiber F , then [X] = [Y ][F ].

– If X → Y is bijective on closed points then [X] = [Y ] and this is also true under the
more general condition that X and Y can be written as disjoint unions X = �Xi,
Y = �Yj with a bijection between the index sets such that [Xi] = [Yi]. An example
of this occurs if there are isomorphisms Xi → Yi that do not extend to maps with
larger domain than the Xi.

– We could have defined the Grothendieck ring using isomorphism classes of schemes
of finite type. However this is not important for our purposes and also, using this
last definition it is easy to see that [X] = [Xred].

– Pick a smooth projective curve C of genus g ≥ 2. We can consider the symmetric
powers of C, Sn(C) with the Abel-Jacobi map:

AJn : Sn(C) → Jn(C)

D 
→ O(D).

1



It is a well known fact that the fibers of AJn are projective spaces, not necessarily
of constant dimension. More precisely AJ−1

n ({L}) = PH0(L). It is also known that
Jn(C) can be stratified in such a way that AJn is a projective bundle on each of
the strata. We can be more precise. Define the Brill-Noether locus:

V n
i = {L ∈ Jn(C) : dimH0(L) = i}

which are locally closed subvarieties of Jn(C). Then we have the motivic relations:

[Sn(C)] =

n+1∑
i=1

[V n
i ][CPi−1]

and

[Jn(C)] =
n+1∑
i=0

[V n
i ].

Note that, in general, the strata V n
i are very complicated, maybe singular, and they

depend on the complex structure of C, i.e. on the specific curve and not only on the
genus. The sum of their motives, as well as the sum of the motives weighted with
the appropriate projective space, can be expressed nicely as we have seen above.
For n > 2g − 2, AJn is a CPn−g bundle since H1 will vanish for line bundles of
degree bigger than 2g − 2 and hence the dimension on H0 is constant.

K0(VarC) is often completed to the ring ̂K0(VarC) in the following way. First invert
L in K0(VarC). Then inside the ring K0(VarC)L = K0(VarC)[L−1] consider the filtration
F • defined by imposing that Fm is generated by the elements:

[X]

Ln

with dimX−n ≤ −m. Then ̂K0(VarC) is obtained by completing K0(VarC)[L−1] with re-
spect to this filtration. We omit most of the details, but we just remark that in ̂K0(VarC),
Ln − 1 is invertible for all n since:

1

Ln − 1
= L−n(1 + L−n + . . . ).

Also [GLn] is invertible for all n since:

[GLn] = (Ln − 1)(Ln − L) . . . (Ln − Ln−1).

The idea behind this completion is that we would like to be able to define the motive
of a certain class of stacks. Namely Artin stacks, locally of finite type, whose geometric
stabilizers are linear algebraic groups. A result by Kresch [29] states that all of these
stacks admit a stratification whose strata are quotients of varieties by GLn for different
n. Note that even though the stratification is not necessarily finite, the properties of these
stacks imply that the motive is well defined in the completion.

As we said in the beginning, K0(VarC) is the ring of universal additive invariants
associated to varieties. Recall that an additive invariant θ with values in a ring R is a
function K0(VarC) that associates to the isomorphism class of a variety X the invariant
θ(X) ∈ R. θ must also satisfy the scissor relations, i.e. θ(X) = θ(X \Y )+θ(Y ) whenever
Y is a closed subvariety of X, and the product rule, i.e. θ(X × Y ) = θ(X) · θ(Y ). This is
equivalent to asking that θ is a ring homomorphism K0(VarC) → R.

Some examples are:

– the Euler characteristic χ : K0(VarC) → Z
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– the E-polynomial defined as:

E(X,x, y) =
∑
p,q,j

(−1)jhp,q,jc (X)xpyq

where hp,q,jc (X) = dim
(
GrFp Gr

W
p+qH

j
c (X)
)

are the compactly supported Hodge
numbers of X. The additive nature of the E-polynomial follows from the exact
sequence in compactly supported cohomology arising from the decomposition X =
U ∪X \ U of a variety into an open subset and its complement. For more details
see [23, Section 2]. Here E takes values in R = Z[x, y].

As a last remark, we recall that if the cohomology of a variety X is pure, meaning
that the weight filtration on Hi(X) is limited to the i-th weight, then the E polynomial
(which is additive) will determine both the Hodge polynomial:

H(X,x, y, t) =
∑
p,q,j

hp,q,j(X)xpyqtj

by the substitution:

H(X,x, y, t) = (xyt)2 dim(X)E

(
X,− 1

xt
,− 1

yt

)
and the Poincaré polynomial by the substitution:

P (X, t) = t2 dim(X)E

(
X,−1

t
,−1

t

)
.

1.2 Moduli spaces of Higgs bundles
Let us fix a smooth projective curve C over C of genus g ≥ 2. Denote by K the

canonical bundle of C.

Definition 1.2 (Higgs bundles and stability). A Higgs bundle on C is a pair (E, φ)
consisting of a vector bundle E and a twisted endomorphism φ : E → E ⊗K. φ is also
referred to as the Higgs field.

The slope of a Higgs bundle (E, φ) is defined to be the slope of E, i.e. μ(E) =
degE/ rkE.
We say that a Higgs bundle is (semi)stable if for every F ⊂ E proper φ-invariant sub-
bundle of E we have:

μ(F ) <
(=)

μ(E).

After fixing the rank r and the degree d, we can define the moduli space Mr,d of S-
equivalence classes of (semi)stable Higgs bundles. We summarize here the main properties
of Mr,d. Good references for this section are [27], [40] among many others. For a nice
summary of the case r = 2 see [21].

Mr,d is a complex variety of dimension 2+2r2(g−1) and it is smooth when (r, d) = 1.
The Zariski tangent space to a point (E, φ) ∈ Mr,d is given by the hypercohomology of
the following two step complex:

EndE → EndE ⊗K

f 
→ [f, φ].

Note that the complex is invariant under Serre’s duality and this is responsible, in
the smooth case, for Mr,d being a symplectic variety.

There are several useful maps between these moduli spaces, as d varies. Here we
outline just a few that will be used in the following chapters.
Tensoring with a line bundle L:

Mr,d → Mr,d+r degL
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(E, φ) 
→ (E ⊗ L, φ)

via the identification EndE ∼= End(E⊗L). This is an isomorphism with inverse given by
tensoring with L∗. In particular Mr,d is isomorphic to Mr,d′

when d− d′ is divisible by
r. This for example implies that in rank 2, up to isomorphism, there are only two moduli
spaces of (semi)stable Higgs bundles, namely M2,0 which is singular and M2,1 which is
smooth.

There is also a form of Serre’s duality for Higgs bundles:

Mr,d → Mr,2r(g−1)−d

(E, φ) 
→ (E∗ ⊗K,φ)

using the identification EndE ∼= End(E∗ ⊗K). This is also an isomorphism since it is
an involution. As an example, for rank 3, this implies that M3,1 and M3,2 are smooth
and isomorphic, while M3,0 is singular.

Mr,d always contains a copy of the moduli space of S-equivalence classes of rank
r degree d (semi)stable vector bundles over C, denoted by Nr,d, embedded as Higgs
bundles with zero Higgs field. More precisely, let (r, d) = 1 so that both Nr,d and Mr,d

are smooth. Then the fiber of the cotangent bundle T ∗Nr,d over E ∈ Nr,d is canonically
identified with H1(EndE)∗ which, in turn, is canonically identified with H0(EndE⊗K).

Observe that if E ∈ Nr,d is a stable vector bundle, then certainly (E, φ) is a stable
Higgs bundle regardless of φ. This means that the embedding:

Nr,d → Mr,d

E 
→ (E, 0)

extends to an embedding:

T ∗Nr,d → Mr,d

whose image is an open dense symplectic subset of Mr,d.
Mr,d is not proper but admits a proper map to an affine space. The map is known as

Hitchin morphism and is defined as follows. Let Ar = H0(K)⊕H0(K2)⊕ · · · ⊕H0(Kr)
be the so called Hitchin base. Define:

hr,d : Mr,d → Ar

(E, φ) 
→ char poly(φ).

The dimension of Ar is 1 + r2(g − 1) which is exactly half of dimMr,d. The map hr is
proper complete integrable system whose generic fibers, as we will see later, are (torsors
over) Abelian varieties. The proof of the properness can be found in [40], while the proof
of second assertion can be found in [26]. Beauville, Narasimhan, Ramanan (and many
others extended their initial results) proved in [1] that Mr,d can be identified with a
moduli space of stable sheaves on the cotangent bundle T ∗C = Tot(K) of C. Indeed we
have the following equivalence:⎧⎪⎪⎨⎪⎪⎩

F pure one dimensional
sheaves of rank one on T ∗C

whose support does not
intersect the divisor at infinity

⎫⎪⎪⎬⎪⎪⎭←→ { (E, φ) Higgs bundles on C
}

given by the pushforward π∗ with respect to the projection map π : T ∗C → C. More
precisely, given a sheaf F as above we can see that, since π is affine, suppF does not
intersect the divisor at infinity and F is pure dimensional, E = π∗F is a torsion free
sheaf on C and therefore a vector bundle. With the hypotheses above, suppF must be
an r to 1 cover of the zero section in T ∗C and the rank of E is equal to r. Since E = π∗F
it also carries an action of the sheaf of algebras π∗OT∗C = Sym∗K∗. This is the same as
a morphism K∗ ⊗ E → E which can be identified with a Higgs field φ : E → E ⊗K.
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Observe that Ar is the parameter space of a flat family of curves in T ∗C given by
their equations. Namely the point (ψ1, . . . , ψr) ∈ Ar corresponds to the curve of equation
yr + ψr(x)y

r−1 + · · ·+ ψ1(x) = 0 where x is the coordinate on the curve C and y is the
coordinate on the fibers of the cotangent bundle of C. These curves are all r to 1 covers of
the zero section of T ∗C and are generically smooth projective curves of genus 1+r2(g−1).
The curves parametrized by Ar are called spectral curves. The family however contains
curves that are not irreducible and even non-reduced. Under the identification of Higgs
bundles on C with one dimensional sheaves on T ∗C, the Hitchin morphism will send
a sheaf F to supp(F) which is a curve in T ∗C. Therefore the statement of the BNR
correspondence can be slightly improved by adding that if (E, φ) = π∗F then supp(F)
is the curve whose equation is given by hr,d(E, φ). It is also important to note that the
generic curve in the Hitchin base is integral and that if (E, φ) has a φ-invariant proper
subbundle F , then the characteristic polynomial of φ will factor and will be divisible
by the characteristic polynomial of φ|F . These two facts together imply that the generic
Higgs bundle in Mr,d will have no φ-invariant subbundles and therefore will be trivially
stable.

Let X be a spectral curve. The fiber of hr,d over X is easily seen to be (a torsor
over) the Jacobian of X if X is smooth. If X is singular but integral, then the Jacobian
is replaced by the compactified Jacobian of X which parametrizes torsion free sheaves
on X. When X is only reduced, meaning it could be singular and have more than one
irreducible component, then the fiber of hr,d is a fine compactified Jacobian of X for a
specific choice of the stability condition.

There is an action of C∗ on Mr,d defined by:

C∗ ×Mr,d → Mr,d

(λ, (E, φ)) 
→ (E, λφ).

After we endow the Hitchin base with the action:

C∗ ×Ar → Ar

(λ, (ψ1, . . . , ψr)) 
→ (λψ1, λ
2ψ2, . . . , λ

rψr),

we can see that the Hitchin map has the property that hr,d(λ · (E, φ) = λ · hr,d(E, φ).
This, together with the fact that hr,d is proper, implies that for all (E, φ) ∈ Mr,d:

lim
λ→0

λ · (E, φ)

exists and lies in Mr,d. Clearly, the limit points for the C∗-action are the fixed points for
the action. In general the fixed points have the following form:

Proposition 1.3. Suppose that (E, φ) is a semistable Higgs bundle of rank r such that
λ · (E, φ) ∼= (E, φ) for some λ ∈ C∗ that is not a root of unity, then E = E1 ⊕ · · · ⊕ Em,
for some m ≤ r,

∑
rkEi = r and

∑
degEi = degE. Furthermore, φ has the property

that φ(Ei) ⊆ Ei−1 ⊗K, φ(E1) = 0.

Proof. See for example [47, Lemma 4.1].

For example, if m = 1 in the proposition above, then E is (semi)stable as a vector
bundle and φ = 0 so that we find the moduli space of semistable vector bundles as one
of the fixed point components for the C∗-action. For a discussion about the cohomology
of Mr,d see section 1.3.

1.3 Semiprojective varieties and their cohomology
The moduli space of Higgs bundles, as well as some of the moduli spaces of Bradlow-

Higgs triples satisfy some properties that have strong implications on their cohomology.
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In this section we give a short overview of semiprojective variety. All the material can be
found in greater detail in [24].

Definition 1.4. Let X be a quasi-projective complex variety with an action of C∗. We
call X semiprojective if the following two properties are satisfied:

(i) the fixed point set XC
∗

is proper

(ii) for all x ∈ X, the limit limλ→0 λ · x for λ ∈ C∗ exists in X.

Let XC
∗
=
⊔

i Fi be the decomposition of the fixed point locus of X into connected
components, where i ranges in some index set I. Define Ui to be the set of points x ∈ X
for which limλ→0 λ · x lies in Fi. Define also Di to be the set of points x ∈ X for which
limλ→∞ λ · x lies in Fi.

The Ui are often referred to as attracting sets (or cells, or loci) and the Di are referred
to as downward flows. Both the Ui and the Di are locally closed subsets of X.
Note that if X is semiprojective then condition (ii) implies the decomposition:

X =
⊔
i

Ui.

The decomposition of X into attracting sets is referred to as Białynicki-Birula de-
composition, after [3, Theorem 4.1].
We also give an important definition.

Definition 1.5. Let X be a semiprojective variety. The core of X is:

C := ∪iDi.

According to [24, Corollary 1.2.2], if X is semiprojective then the core C is a proper
subvariety of X. Moreover, according to [24, Theorem 1.3.1] the embedding C → X
induces an isomorphism H∗(C,Z) ∼= H∗(X,Z) when X is smooth.

If we assume thatX is smooth, in addition to being semiprojective, then [24, Corollary
1.3.2] states that X has pure cohomology. In fact, on one hand, H∗(X) = H∗(C) is the
cohomology of a proper variety so the weight filtration W• on H∗(X) has the property
that WrH

i(X) = WiH
i(X) = Hi(X) for r ≥ i. On the other hand, since X is smooth

we have WrH
i(X) = 0 for r < i and therefore Hi(X) is pure of weight i. If X is smooth,

according to [24, Corollary 1.3.6] the core C is a deformation retract ofX. The smoothness
of X also implies, see [3, Theorem 4.1], that both the Ui and the Di are Zariski locally
trivial affine fibrations over the Fi.

Thanks to the purity of H∗(X) we see that the E-polynomial of X will determine
the Poincaré polynomial and hence we can deduce the Betti numbers from the motive,
if we are able to compute it.

Let us now apply the previous discussion to Mr,d. As we already observed, the limits
as λ→ 0 of the C∗ action applied to any point of Mr,d exist. This is a consequence of the
equivariance and properness of the Hitchin map. Also, since the fixed point components
of the C∗-action are closed subvarieties of the fiber (hr,d)−1({0}) which is proper, the
fixed point locus is proper. Finally, if r and d are coprime, then Mr,d is smooth.
Given an ordered partition r of r and an ordered partition d of d, we can denote by F d

r

the component of the fixed point locus in Mr,d whose points split as in proposition 1.3.
Furthermore we can denote by F

d,+
r and by F

d,−
r the loci of Mr,d of those (E, φ) for

which limλ→0 λ · (E, φ) ∈ F
d
r and limλ→∞ λ · (E, φ) ∈ F

d
r respectively. The notations

given here are consistent with [25].
The previous discussion on smooth semiprojective varieties then implies the following.

Proposition 1.6. Let (r, d) = 1. Then:

– The fixed point components of the C∗-action on Mr,d are the F d
r (when they are

non-empty), which are all contained in the fiber (hr,d)−1({0}) of the Hitchin map.
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– The limit maps F d,+
r → F

d
r and F

d,+
r → F

d
r are Zariski locally trivial fibrations

whose fibers are isomorphic to affine spaces.

– Mr,d =
⋃
F

d,+
r and (hr,d)−1({0}) = ⋃F d,−

r . In particular the closure of the F d,−
r

are the irreducible components of (hr,d)−1({0}) and (hr,d)−1({0}) is the core of
Mr,d.

– The dimension of the fibers of F d,+
r → F

d
r is constant and equal to 1 + r2(g − 1).

– There is a motivic equality
[Mr,d
]
= L1+r2(g−1) ·∑[F d

r

]
.

Proof. Follows from the previous discussion. A proof of this is also found in [11, Propo-
sition 2.1].

Let us briefly recall how to derive the structure of the attracting sets F d,+
r in Mr,d.

Fix r, d coprime. Let us consider a fixed point (E, φ) ∈ F
d
r . If r = (r) then φ = 0 and E is

a stable vector bundle. Since dimH0(K EndE) = 1/2 dimMr,d then we know that the
tangent space at (E, φ) decomposes into two parts of the same dimension, one of which
is acted on with weight 0 by C∗ and the other one with positive weight.

In all other cases, when E = E1 ⊕ · · · ⊕ Em is split and has the form above. By the
definition of hypercohomology we see that T(E,φ)Mr,d is generated by the kernel of the
map:

C1(EndE)⊕ C0(K EndE) → C1(K EndE)

(τ, ν) 
→ [τ, φ] + dν.

The action of C∗ induced on T(E,φ)Mr,d is then given by the pullback with respect
to f , where f : E → E is the (one of the) automorphism of E giving the isomorphism
(E, λφ) ∼= (E, φ). More explicitly if E = E1 ⊕ · · · ⊕Em and φ(Ei) ⊆ Ei−1 ⊗K then f is
diagonal and defined by fEi

= λiIEi
. Therefore we see that:

λ(τ, 0) = λj−i(τ, 0) if τ ∈ C1(E∗
i Ej)

λ(0, ν) = λj−i+1(0, ν) if ν ∈ C0(E∗
i EjK).

An easy way to remember the exponents above is to imagine that C∗ acts with weight
i on Ei and with weight 1 on K. We can then split the deformation complex:

EndE → K EndE

into parts of positive, zero and negative weights according to the exponents above.
The splitting is as follows:

m⊕
i=1

Hom(Ei, Ei) →
m⊕
i=2

Hom(Ei, Ei−1 ⊗K)

gives the 0 weight part,⊕
i<j

Hom(Ei, Ej) →
⊕
i≤j

Hom(Ei, Ej ⊗K)

gives the positive weight part and
m⊕
i>j

Hom(Ei, Ej) →
m⊕

i>j+1

Hom(Ei, Ej ⊗K)

gives the negative weight part. We can, for example, compute the positive weight part of
the tangent space at (E, φ) by writing the long exact sequence associated to the positive
weight complex:

0 →
⊕
i<j

Hom(Ei, Ej) →
⊕
i≤j

Hom(Ei, Ej ⊗K) → T+
(E,φ)Mr,d →
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→
⊕
i<j

Ext1(Ei, Ej) →
⊕
i≤j

Ext1(Ei, Ej ⊗K) → C → 0.

From this we can compute the dimension of the positive weight part using the formula:

dimT+
(E,φ)Mr,d = 1 +

∑
i≤j

χ(Hom(Ei, Ej ⊗K))−
∑
i<j

χ(Hom(Ei, Ej)) = 1 + (g − 1)r2.

Here we see that, as it should be, the dimension of the positive weight part is constant,
i.e. it does not depend on r and d, and is always half of the dimension of the moduli
space.

Since Mr,d is smooth, [3, Theorem 4.1] implies that F d,+
r → F

d
r is a Zariski locally

trivial affine fibration whose fibers have dimension equal to the dimension of the positive
weight part of the C∗ induced on the tangent space at one of the fixed points, which is
what we computed with the above complexes.

1.4 Character varieties and P = W
For all details in the forthcoming discussion we refer to [7] and [23]. Define the fol-

lowing variety.

Definition 1.7. Let C be a smooth projective curve of genus g ≥ 2. Let M2
B be the

variety defined by the following GIT quotient:

M2
B = {A1, . . . , Ag, B1, . . . , Bg ∈ GL2(C) : [A1, B1] . . . [Ag, Bg] = −I} //GL2(C)

where GL2(C) acts by conjugation. Such a variety is known as (rank 2) twisted character
variety.

Note that M2
B parametrizes isomorphism classes of representations of the fundamen-

tal group of C into GL2(C) and is a purely topological invariant of C, i.e. it does not
depend on the complex structure on the curve but only the genus. Also, M2

B is a smooth
affine variety since it is obtained from a GIT quotient of an affine space.

From the non-Abelian Hodge theorem (see for example [46, proposition 10]) follows
that M2,1 is canonically diffeomorphic to M2

B .
The cohomology of M2

B is not pure and carries a nontrivial weight filtration. Let Y
be a complex variety. Recall that, if we denote by F • the decreasing Hodge filtration on
H∗(Y ) and by W• the increasing weight filtration on H∗(Y ), we can define the mixed
Hodge numbers:

hp,q,j(Y ) = dim(GrFp Gr
W
p+qH

j(Y ))

and the Hodge polynomial:

H(Y, x, y, t) =
∑
p,q,j

hp,q,j(Y )xpyqtj .

From [23, corollary 4.1.11] we see that M2
B has the property that hp,q,j(M2

B) = 0 if
p �= q. In particular GrW2i+1H

∗(M2
B) = 0. We can define a variant of the mixed Hodge

polynomial:
H(M2

B , q, t) = H(M2
B ,

√
q,
√
q, t).

On the other hand M2,1 has pure cohomology, so carries trivial weight filtration, but
the Hitchin map h2,1 : M2,1 → A2 allows to define a perverse filtration (see [7, section
1.4]).

Consider the object Rh2,1∗ Q ∈ Db
c(A2). Similarly to the case of the perverse filtra-

tion on the cohomology of the compactified Jacobian, Rh2,1∗ Q is filtered by its perverse
truncations pτ≤i Rh2,1∗ Q and the perverse filtration consists of the images:

PiH
∗(M2,1) = Im

(
H∗ (pτ≤i Rh2,1∗ Q

)→ H∗ (Rh2,1∗ Q
))
.

The following theorem is central:
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Theorem 1.8 ([7, theorem 1.1.1]). The diffeomorphism given by non-abelian Hodge
theory M2,1 → M2

B induces an isomorphism in cohomology H∗(M2,1) → H∗(M2
B)

with the property that:

W2kH
∗(M2

B) =W2k+1H
∗(M2

B) = PkH
∗(M2,1).

The previous result is also known as "P = W", from the name of the filtrations
involved. As of now, it is proved only for rank 2, while for higher rank it remains a
conjecture. If we define the perverse Hodge polynomial by:

PH(M2,1, q, t) =
∑
k,j

dimPkH
j(M2,1)qktj

then the P = W result implies:

Corollary 1.9.
H(M2

B , q, t) = PH(M2,1, q, t).

In [23, Theorem 1.1.3] we find the computation of the mixed Hodge polynomial of
M2

B :

H(M2
B , q, t) = (1 + qt)2g

(
(1 + q2t3)2g

(1− q2t2)(1− q2t4)
+
q2g−2t4g−4(1 + q2t)2g

(1− q2)(1− q2t2)

)
+

− 1

2
q2g−2t4g−4(1 + qt)2g

(
(1 + qt)2g

(1− qt2)(1− q)
+

(1− qt)2g

(1 + qt2)(1 + q)

)
.

which, in turn, is equal to PH(M2,1, q, t).

1.5 Higgs bundles with poles
There is a variant of Higgs bundles that is also of interest for us. Choose once and

for all a point P ∈ C.

Definition 1.10. A pair (E, φ) is a Higgs γ-bundle for some integer γ ≥ 0 if E is a
vector bundle on C and φ : E → E ⊗K(γP ) is a twisted endomorphism of E.

The definition is very similar to that of a Higgs bundle, and actually is the same when
γ = 0. Stability is the defined in the same way as for Higgs bundles and we denote by
Mr,d(γ) the moduli space of S-equivalence classes of semistable Higgs γ-bundles of rank
r and degree d. Higgs γ-bundles can be thought as Higgs bundles whose Higgs field is
allowed to have a pole of order at most γ at P . The choice of putting γ in parentheses
instead of at the subscript will be apparent when we introduce Bradlow-Higgs triples.
The construction of Higgs γ-bundles (and more general twists) can be found in [40].

Most of the properties of the moduli space of Higgs bundles carry over to Higgs γ-
bundles. In particular we have semiprojectivity, smoothness for r and d coprime, the
fixed points of the C∗-action have the same form. There is a slight difference in the
BNR correspondence, since Higgs γ-bundles will now correspond to sheaves on the total
space of K(γP ). This difference also carries to the Hitchin base Ar,d(γ) = H0(K(γP ))⊕
H0(K2(2γP ))⊕ · · · ⊕H0(Kr(rγP )) and to the Hitchin map hr,dγ .

It is worth observing that since we have a canonical map O → O(P ) we also have
embeddings Mr,d(γ) → Mr,d(γ + 1). This approach for r = 2 is pushed forward in [21,
Chapter 7]. There we find the definition of M2,d(∞) as the direct limit of the increasing
embeddings M2,d(γ) → M2,d(γ + 1).

The Poincaré polynomial of M2,d(∞) is then computed in [21, Section 7.2]:

P (M2,d(∞), t) = lim
γ→∞P (M2,d(γ), t) =

(1 + t)2g(1 + t3)2g

(1− t2)(1− t4)
= P (BG, t)

where BG is the classifying space of a gauge group G modulo scalars. In the same section
it is also proved that M2,d(∞) and BG are homotopically equivalent, but we will not
attempt the same with Bradlow-Higgs triples.

9



1.6 Moduli spaces of Bradlow pairs and wall crossing
Let us first define Bradlow pairs on a smooth projective curve C over C. The main

reference for rank 2 Bradlow pairs will be [50]. In [36] it is possible to find the computation
of the motives of the moduli spaces of Bradlow pairs for arbitrary rank and degree.
Further comments on this approach will be made in the last chapter.

Definition 1.11 (Bradlow pairs and stability). A Bradlow pair (E, s) is a pair consisting
of a vector bundle E on C and a nonzero section s ∈ H0(C,E).

Let σ > 0 be a real number. We say (E, s) is σ-(semi)stable if for every F ⊂ E proper
subbundle we have:

deg(F ) + σ

rk(F )
<
(=)

deg(E) + σ

rk(E)
if s ∈ H0(F )

deg(F )

rk(F )
<
(=)

deg(E) + σ

rk(E)
if s /∈ H0(F ).

There are several other equivalent notions of Bradlow pairs and stability. Here we
outline some:

– we say (E, s) is τ -(semi)stable if for all F ⊆ E subbundles we have:

μ(F ) <
(=)

τ

μ(E/F ) >
(=)

τ if s ∈ H0(F ).

This is an equivalent notion of stability (τ = (d+ σ)/r) mentioned in [36].

– A Bradlow pair can be equivalently defined as the datum of a map s : O → E. This
interpretation falls into a more general framework of triples E = (f : E0 → E1).
There is a notion of γ-slope for this kind of triples:

μγ(E) = degE0 + degE1 + γ rkE0

rkE0 + rkE1

and E is called γ-(semi)stable if for all subtriples F ⊂ E we have

μγ(F) <
(=)

μγ(E).

This notion of stability is equivalent to the original one via γ = σ+(d+σ)/r. This
stability is mentioned in [36].

If we fix a σ > 0, a rank r and a degree d we can define the moduli space of S-equivalence
classes of σ-(semi)stable Bradlow pairs Mr,d

σ .
Note that for d < 0 or for σ > d/(r−1) the moduli space is empty since the line bundle

generated by the section s is destabilizing. In the interval [0, d/(r − 1)] there is a finite
set of values of σ for which the stability inequalities can possibly become equalities. We
call these values critical values. For σ different from the critical values, semistability and
stability coincide and Mr,d

σ is a smooth projective variety of dimension d+(r2−r)(g−1).
See e.g. [50] for the deformation theory of the rank 2 case.

It is also clear that, for σ lying in the interval between two consecutive critical values,
the inequalities for σ-stability will all be equivalent and therefore Mr,d

σ only depends on
the interval and not on the specific value of σ.

As we already noticed for σ > d/(r − 1) the moduli space of Bradlow pairs is empty.
Near the other extremal value, meaning for σ very close to 0, σ-stability of a Bradlow
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pair (E, s) implies semistability of the underlying vector bundle E. Therefore we have
an Abel-Jacobi map:

AJ :Mr,d
σ → Nr,d

(E, s) 
→ E

In this notation we avoid as much as possible putting too many decorations on AJ
and it should be clear from the context what ranks and degrees we are referring to.
Note that if r and d are coprime and σ is small, then σ-stability implies stability of
E and AJ−1(E) = PH0(E). In particular, in this case, AJ is a projective bundle for
d > r(2g − 2).

For small σ and r, d not coprime the fibers of AJ are more complicated. This is
due to the fact that if (E, s) is σ-stable, then it is possible that E is strictly semistable
and therefore AJ will not only forget about the section, but will lose extra extension
information about E keeping only its S-equivalence class.

Let us discuss the role of critical values. First we introduce a notation that will be
used throughout the whole thesis.

Definition 1.12. Fix a critical value σ̄. Denote by σ̄+ any value of σ bigger than σ̄ but
smaller than the consecutive critical value. Similarly σ̄− will denote a value of σ that is
smaller than σ̄ but bigger than the previous critical value.

If σ crosses σ̄ and is increasing, then the first inequality for the stability becomes
stronger, while the second one will become weaker. This means that as σ crosses σ̄, some
pairs that were σ̄−-stable will become σ̄+-unstable and viceversa.

Let us see the rank 2 case, which is also the most relevant for the present thesis. The
main reference here is of course [50] even though some of the notations might vary. For
rank 2 it is easy to see that the critical values are all the integers in [0, d] with the same
parity as d. Let us pick one of the critical values σ̄.

There are two families PW d,+
σ̄ and PW d,−

σ̄ that parametrize the so called flip loci, i.e.
where M2,d

σ̄− and M2,d
σ̄+

differ. More precisely, PW d,+
σ̄ parametrizes pairs (E, s) that are

σ̄−-stable but not σ̄+-stable. This is equivalent to say that E is a nonsplit extension

0 → L→ E →M → 0

with L and M two line bundles satisfying degL = (d − σ̄)/2 and degM = (d + σ̄)/2.
Furthermore, s ∈ H0(L). Here L is the canonical σ̄+-destabilizing subbundle of (E, s).
The condition of the extension being non-split is equivalent to the pair being σ̄−-stable.
There is a map:

PW d,+
σ̄ → S(d−σ̄)/2(C)× J (d+σ̄)/2(C)

(E, s) 
→ (L, s,M)

sending (E, s) to the divisor of s ∈ H0(L) (which also retrieves L itself) and to M , the
quotient of E by L. The fibers of the previous map are the projectivized extension spaces
Ext1(M,L). It is easy to check that the previous map is actually a projective bundle of
rank σ̄ + g − 2. In particular if we want to compute the motive of PW d,+

σ̄ we get:

[PW d,+
σ̄ ] = [S(d−σ̄)/2(C)][J (d+σ̄)/2(C)][CPσ̄+g−2].

PW d,−
σ̄ instead parametrizes pairs (E, s) that are σ̄+-stable but not σ̄−-stable. This is

equivalent to say that E is an extension

0 →M → E → L→ 0

where L and M are two line bundles with degL = (d + σ̄)/2, degM = (d − σ̄)/2 and
s /∈ H0(M). Note that, in this case, s /∈ H0(M) is equivalent to p(s) = s̄ ∈ H0(L) being
nonzero, where p : E → L is the projection. Once again, there is a map:

PW d,−
σ̄ → S(d−σ̄)/2(C)× J (d+σ̄)/2(C)
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(E, s) 
→ (L, s̄,M)

but this time M is the canonical σ̄−-destabilizing subobject of (E, s) and the divisor
in S(d−σ̄)/2(C) is the divisor D of the projection of s on the canonical quotient E/M .
The fibers of this map are the projectivization of the vector spaces H0(MOD) that
parametrize extensions as above plus a lift of the section s̄ ∈ H0(L) to s ∈ H0(E).
Again, this map is a projective bundle of rank (d − σ̄)/2 − 1. From this follows the
relation:

[PW d,−
σ̄ ] = [S(d−σ̄)/2(C)][J (d+σ̄)/2(C)][CP(d−σ̄)/2−1].

Observe that we have the motivic relation

[M2,d
σ̄− ]− [PW d,+

σ̄ ] = [M2,d
σ̄+

]− [PW d,−
σ̄ ]

since outside the two flip loci, the two moduli spaces are isomorphic.
The previous phenomenon, involving a varying stability condition together with sets

of critical values whose crossing makes the moduli problem change geometry, is known
as wall crossing.

1.7 Hilbert schemes of points
Here we introduce a geometric object that will be of interest in the last chapter of the

thesis, namely the Hilbert scheme of points. A general introduction can be found in [14]
and [18], for more specific results about Hilbert schemes of points on a surface we refer
to [39], while for a recollection on the properties of Hilbert schemes of singular curves
and their relative version we refer to [34], [31] and [35].

The most general definition of the Hilbert scheme, due to Grothendieck, passes
through the functor of points. Since we don’t need this much generality we just quickly
sketch it. Let X be a scheme and P a polynomial with integer coefficients. HilbP (X) is a
scheme (note that the existence of such a scheme is already a theorem by Grothendieck)
such that maps U → HilbP (X) from another scheme U are canonically identified with
closed subschemes Z ⊂ X × U that are flat over U and such that for every u ∈ U the
fiber Zu has Hilbert polynomial equal to P . In other words HilbP (X) is the moduli space
of subschemes of X whose Hilbert polynomial is P .

For the purpose of some of the work in this thesis we just need to outline some of
the properties of HilbP (X) when P is a constant polynomial and X is either a smooth
surface or a projective curve over C.

When P = n is a constant, HilbP (X) is also commonly denoted by X [n]. In this case
the Hilbert scheme parametrizes subschemes of X which are 0 dimensional and whose
space of global sections has dimension n. We can think of these subschemes as n-tuples
of points and the Hilbert scheme in this case is called Hilbert scheme of points.

For the case of X a smooth surface we refer to [39] for the proof of the main results
and to the many works of Göttsche [13, 15, 14] and Göttsche, Soergel [16] for the results
on the cohomology.

When X is a smooth surface then X [n] is a smooth variety of dimension 2n and is
projective if X itself is projective. Let X(n) or SymnX denote the n-fold product Xn

divided by the action of the symmetric group of the set of cardinality n permuting the
factors. There exists a map, called Hilbert-Chow morphism:

πn
X : X [n] → X(n)

sending a subscheme of length n in X to its support. This map is an isomorphism over
the locus of X(n) where the points are all distinct, but has more complicated fibers when
some points coincide. The fiber (πn

X)−1{(P, . . . , P )} for P ∈ X is called the punctual
Hilbert scheme of n-points and denoted by X [n]

P or Hilbnp (X), among the most common.
It parametrizes subschemes of length n whose support lies entirely in P . In other words
it parametrizes the possible structures of subscheme of length n that can be given to the
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point P ∈ X. The fibers of the Hilbert-Chow map are in general products of punctual
Hilbert schemes. The fundamental property of the Hilbert-Chow morphism is that it is
actually a resolution of the singular space X(n).

For the case of a projective curve we refer to [34, 31] for the integral case and to [35]
for the reduced case.

If X is a projective locally planar curve then X [n] is a projective scheme over C. The
locally planar property for X insures that it can be locally embedded in a surface and
this implies some regularity for X [n]. In general Hilbert schemes of points of varieties of
dimension at least 3 can be extremely complicated.

For the case of a curve X we still have the Hilbert-Chow morphism πn
X : X

[n]
red →

X(n), that is only defined on the reduction of X [n] which might be non-reduced if X is
non-reduced. If X is smooth, then the Hilbert scheme of n-points is isomorphic to the
symmetric power X(n) and the Hilbert-Chow morphism is an isomorphism.

If X is integral then X [n] is integral of dimension d and locally complete intersection.
If we have a flat family of projective integral curves f : X → B then there exists a variety
X [n] together with a proper map f [n] : X [n] → B such that (f [n])−1(b) = (f−1(b))[n] for
all b ∈ B. X [n] is called the Hilbert scheme of n-points relative to B. If X is singular,
in general X [n] can be singular as well and the Hilbert-Chow morphism could have very
complicated fibers. In [44], for example, it is proved that for the simplest possible planar
singularity, i.e. the simple node xy = 0, the punctual Hilbert scheme is a chain of CP1’s
touching at a point.

For reduced curves X the Hilbert scheme behaves similarly to the case of integral
curves but certainly has more than one component if the curve X does. Not much is
known about the Hilbert scheme of points of a non-reduced curve.

1.8 The CKS complex

A more precise reference for this section is [35, section 3.4]. Let us assume that
π : C → B is a locally versal family of curves whose central fiber is the curve Cb which
is nodal and reduced. We are not interested in the definition of locally versal family, as
will become clear soon, just assume that it is a nice enough family.

The goal of this section is to introduce a tool to compute the stalk of

IC(
i∧
R1 πsm∗Q)

where πsm is the restriction of π to the locus of B where the curves are smooth.
To the nodal curve Cb we can associate some combinatorial data, according to [35,

section 3]. Denote by Γ the graph of the curve, i.e. the set of vertices V is determined by
the components of Cb and the set of edges E is formed by adding an edge between two
vertices (not necessarily distinct) if the corresponding components intersect in a node.
We will also denote by V and E the vector spaces spanned by the vertices and edges
respectively.

Let us denote by Cη the versal deformation of our nodal curve. Then on H1(Cη,Q) is
defined a monodromy weight filtration W with the following identifications:

GrW0 H1(Cη,Q) = H1(Γ)

GrW1 H1(Cη,Q) = H1(Cν
b )

GrW2 H1(Cη,Q) = H1(Γ)⊗ L

where H1(Γ) and H1(Γ) are the cohomology and homology of the graph Γ, Cν
b is the

normalization of our nodal curve and L = Q[−2](−1) as a Hodge structure. Note that
the name L is no accident because it is in fact the image of L ∈ K0(V arC) under
the additive invariant taking a variety to its class in the Grothendieck ring of Hodge
structures.

13



For each edge e ∈ E we define a linear map:

Ne : H
1(Cη,Q) → H1(Cη,Q)⊗ L.

It is defined as the composition:

H1(Cη,Q) → GrW2 H1(Cη,Q) → GrW0 H1(Cη,Q)⊗ L → H1(Cη,Q)⊗ L

where the first map is the canonical projection, the last map is the canonical inclusion.
The middle map instead is defined by knowing that GrW2 H1(Cη,Q) = H1(Γ)⊗ L and it
will embed into E, while GrW0 H1(Cη,Q) = H1(Γ) and it is a quotient of the dual vector
space E∗. Therefore the middle map is defined by the composition:

H1(Γ) → E → E∗ → H1(Γ)

where E → E∗ is the natural duality map t 
→ 〈t, e∗〉e∗. Here e∗ is the dual element of
the edge e.

The operators Ne extend to operators N (i)
e in a natural way:

N (i)
e :

i∧
H1(Cη,Q) →

i∧
H1(Cη,Q)⊗ L

c1 ∧ · · · ∧ ci 
→
i∑

k=1

c1 ∧ · · · ∧Ne(ck) ∧ · · · ∧ ci.

For a subset of edges I ⊆ E we write N (i)
I to denote the iterated composition of the

N
(i)
e for e ∈ I. Note that this composition does depend on the order (in terms of a sign)

but the image ImN
(i)
I ⊂ H1(Cη,Q)⊗ L|I| does not.

We are now finally ready to define the Cattani-Kaplan-Schmid complex associated to
Cb.
Definition 1.13. For a fixed i define the following complex CKSi:

0 →
i∧
H1(Cη,Q) →

⊕
I⊆E
|I|=1

ImN
(i)
I →
⊕
I⊆E
|I|=2

ImN
(i)
I → . . .

the maps are defined by considering an ordering e1, e2, . . . of the edges and then for
J ⊆ E with |J | = j:

ImN
(i)
J →

⊕
I⊆E

|I|=j+1

ImN
(i)
I

c 
→ (cI)|I|=j+1

where cI = 0 if J � I and if I = J ∪ {e} then cI = (−1)aN
(i)
e (c). Here the sign is

determined by ordering J according to the order of E, then appending e at the end of J
and counting the number of swaps necessary to order J ∪ {e}.

We have the following proposition.

Proposition 1.14. The i-th CKS complex for the curve Cb is quasi isomorphic to the
stalk of IC(

∧i
R1 πsm∗Q) at Cb.

Proof. See [35, section 3.4].

As is also explained in [35, section 3.4] one might want to compute the weight poly-
nomial of the CKS complexes, instead of trying to compute their cohomology. In this
case it is enough to know the dimension of the ImN

(i)
I . Here we prove a lemma that we

will use in one of the next chapters.
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Lemma 1.15. Denote by Σ a curve with two rational components meeting in 2g − 2
simple nodes and by Σ an integral curve with 2g − 2 simple nodes whose normalization
is isomorphic to CP1. Define:

U(Σ) =

2g−3∑
n=0

qn[CKSn[−n]]

and

U(Σ) =

2g−3∑
n=0

qn[CKS
n
[−n]]

where [CKSn] is the weight polynomial of the n-th CKS complex associated to Σ and
[CKS

n
] is the analogous object for Σ. Then:

U(Σ) = (1− qQ)(1− qL)U(Σ) mod q2g−2.

Proof. The dual graph Γ of Σ consists of two vertices and 2g− 2 edges connecting them,
while the dual graph Γ of Σ consists of one vertex and 2g − 2 loops. For the rest of the
proof we will crucially use the fact that n is at most 2g− 3 and therefore there is no way
we can disconnect the graphs of Σ and Σ by removing n edges. Choose 0 ≤ n ≤ 2g − 3,
then:

[CKSn[−n]] = (−1)n
n∑

i=0

(−1)i
∑

I⊆e(Γ)
|I|=i

[
n−i∧ (

H1(Γ \ I)⊕H1(Γ \ I)⊗ L
)]

and

[CKS
n
[−n]] = (−1)n

n∑
i=0

(−1)i
∑

I⊆e(Γ)
|I|=i

[
n−i∧ (

H1(Γ \ I)⊕H1(Γ \ I)⊗ L
)]
.

Note that H1(Γ\I) = H1(Γ\I)⊕Q and H1(Γ\I)⊗L = H1(Γ\I)⊗L⊕L. Therefore:

[CKS
n
[−n]] = (−1)n

n∑
i=0

(−1)i
∑

I⊆e(Γ)
|I|=i

[
n−i∧ (

H1(Γ \ I)⊕H1(Γ \ I)⊗ L
)]

=

= (−1)n
n∑

i=0

(−1)i
∑

I⊆e(Γ)
|I|=i

[
n−i∧ (

H1(Γ \ I)⊕H1(Γ \ I)⊗ L⊕Q⊕ L
)]

=

= (−1)n
n∑

i=0

(−1)i
∑

I⊆e(Γ)
|I|=i

[
n−i∧ (

H1(Γ \ I)⊕H1(Γ \ I)⊗ L
)]

+

+ (−1)n
n∑

i=0

(−1)i
∑

I⊆e(Γ)
|I|=i

[
n−i−1∧ (

H1(Γ \ I)⊕H1(Γ \ I)⊗ L
)⊗ (Q⊕ L)

]
+

+ (−1)n
n∑

i=0

(−1)i
∑

I⊆e(Γ)
|I|=i

[
n−i−2∧ (

H1(Γ \ I)⊕H1(Γ \ I)⊗ L
)⊗ L

]
=

= [CKSn[−n]]− [CKSn−1[−n+ 1]] · (Q+ L) + [CKSn−2[−n+ 2]] · L.
From this follows:

U(Σ) = (1− qQ)(1− qL)U(Σ) mod q2g−2.
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Chapter 2

Bradlow-Higgs triples

2.1 Definitions, properties and basic results
Consider a smooth projective curve C over C of genus g ≥ 2 and the total space

X = T ∗C of K, the canonical bundle of C. Let us also denote by PX the projectivization
of X obtained by adding the divisor at infinity i.e. PX = P(O ⊕K).

We want to study moduli spaces of objects that are a variant of both Higgs bundles
and Bradlow pairs.

Definition 2.1 (Bradlow-Higgs triples and σ-stability). A triple (E, φ, s) is said to be
a Bradlow-Higgs triple if (E, φ) is a Higgs bundle and s ∈ H0(C,E) is a nonzero section
of the underlying vector bundle E.

Let σ be a positive real number. We say (E, φ, s) is σ-(semi)stable if, for all proper
φ-invariant subbundles F ⊂ E, we have:

deg(F )

rk(F )
<
(=)

deg(E) + σ

rk(E)
if s /∈ H0(C,F )

deg(F ) + σ

rk(F )
<
(=)

deg(E) + σ

rk(E)
if s ∈ H0(C,F )

A morphism of Bradlow-Higgs triples is a morphism of the underlying Higgs bundles
that sends the section of the source to a scalar multiple of the section of the target.

The idea is to introduce a section of the underlying vector bundle so that the stability
condition is allowed to vary together with the positive real parameter σ. This will produce
more complicated moduli spaces but will also allow to study the relation among them
as σ varies. As we will see later (and as already seen about Bradlow pairs) there are
two interesting extremal stability conditions, one of which relates the moduli space of
Bradlow-Higgs triples with the moduli space of semistable Higgs bundles, and the other
one relates the moduli space of Bradlow-Higgs triples with a relative Hilbert scheme of
points.

Here is a basic but fundamental result on Bradlow-Higgs triples.

Proposition 2.2. Let σ > 0 and (E, φ, s) be a σ-stable triple. Let f ∈ H0(EndE) such
that [f, φ] = 0 and f · s = 0. Then f = 0.
In particular, the only endomorphisms of a σ-stable triple (E, φ, s) are scalar multiples
of the identity.

Proof. Let L denote the kernel of f and suppose that L �= E. Note that L �= 0 because
s ∈ H0(L). Then L has rank r′ < r = rkE and is φ-invariant containing the section s,
therefore we have deg(L) ≤ d/r+σ(1/r− 1/r′). In particular f induces an injective map
E/L → E so that E/L can be thought as a sub sheaf of E. Since it is φ invariant, its
saturation will be φ invariant as well and degE/L ≥ d/r + σ/r. This means that the
saturation of E/L will be σ-destabilizing unless f = 0.
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The second part follows by noting that if f is an endomorphism of (E, φ, s) and
f(s) = αs then f − αIE satisfies the hypotheses of the first part of the proposition and
therefore is 0.

2.1.1 BNR correspondence and moduli space of coherent sys-
tems on a surface

Recall from section 1.2 that due to the BNR correspondence, pure one dimensional
sheaves on X that do not intersect the divisor at infinity correspond to Higgs bundles on
C through the pushforward along the projection map π : T ∗C → C. The pushforward also
canonically identifies the sections of such sheaves with the sections of their pushforward,
i.e. the underlying vector bundle of the Higgs bundle obtained by applying π∗. We can
therefore alternatively work with pairs (F , s) on X, where F is a rank one pure one
dimensional sheaf of degree d′ whose support supp(F) does not intersect the divisor at
infinity and s is a non-zero section in H0(X,F).

These objects are known as a particular case (one dimensional) coherent systems on
the surface PX. The moduli spaces of these objects were defined and studied in [30] (and
in a slightly different context in [43]). It is worth recollecting some of the results we need.

First we recall the definition of the stability condition [30, définition 4.4] and [43,
section 1.1].

Definition 2.3. Fix a polarization L on PX and denote by F(k) = F ⊗ Lk for sheaves
on PX. Let σ be a positive real number, we say (F , s) is σ-(semi)stable if:

χ(G(k))
a(G) <

(=)

χ(F(k)) + σ

a(F)
if s /∈ H0(PX,G)

χ(G(k)) + σ

a(G) <
(=)

χ(F(k)) + σ

a(F)
if s ∈ H0(PX,G)

for all proper subsheaves G ⊂ F . Both conditions on the Hilbert polynomials are meant
to hold for big values of k. Note that, since F is pure one dimensional, both Hilbert
polynomials of F and G have degree 1. Here we denote by a(·) the corresponding leading
terms and by b(·) the constant terms.

Observe that, as explained in [43, section 1.1], χ(F(k)) = a(F)k + b(F) with:

a(F) =

∫
β

c1(L)

b(F) = χ(F)

with β ∈ H2(PX) the class of the support of F .
After this we can define moduli spaces of σ-(semi)stable coherent systems:

Definition 2.4. Fix m an integer and the homology class β = n[C] ∈ H2(PX) of the
support for our sheaves (here C embeds in PX as the zero section of T ∗C).
We denote by SystPX,σ(β,m, 1) the moduli space of σ-(semi)stable pure one dimensional
rank one degree d′ pairs (F , s) with χ(F) = m and support in class β (compare with [30,
théorème 4.11]).

The 1 in the definition of SystPX,σ(β,m, 1) denotes that we only have one section s
of the underlying sheaf.
From [30, théorème 4.11] we deduce that the SystPX,σ(β,m, 1) are projective varieties,
since PX is projective.

In order to obtain Bradlow-Higgs triples from pairs on PX we need the extra condition
that the support of the underlying sheaf does not intersect the divisor at infinity. Once
we identify the stability condition for coherent systems with the stability condition for
Bradlow-Higgs triples we can identify the moduli spaces of σ-(semi)stable Bradlow-Higgs
triples with the open subset of SystPX,σ(β,m, 1) of coherent systems whose support does
not intersect the divisor at infinity of PX.
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Proposition 2.5. Let (F , s) be a coherent system (with one section) such that supp(F)
does not intersect the divisor at infinity. Assume χ(F) = m and the class of the support of
F is β = n[C], where C is the zero section of PX. Denote by (E, φ, s) the Bradlow-Higgs
triple obtained by pushing forward (F , s) along PX → C. Then degE = m + n(g − 1)
and rkE = n. Furthermore, the stability condition for (F , s) is the same as the stability
condition for (E, φ, s), in particular this means that the stability condition does not
depend on the polarization on PX as long as the hypotheses on the support are satisfied.

Proof. Since supp(F) does not intersect the divisor at infinity it is a branched n to 1
cover of C embedded as the zero section of PX. More precisely there exists an affine
open subset U = SpecA of C over which T ∗C trivializes and T ∗C|U = SpecA[t]. Then
supp(F) ∩ T ∗C|U is defined by a degree n polynomial in A[t]. Therefore if F restricts
to the rank one A[t]-module M on SpecA[t], its pushforward is M seen as an A-module
and therefore it will be isomorphic to M ⊕Mt⊕ · · ·⊕Mtn−1 so that it will have rank n.
Under our hypotheses:

a(F) =

∫
β

c1(L) = n

∫
β

c1(L) > 0

b(F) = χ(F) = m

therefore degE + n(1− g) = χ(E) = χ(F) = m. Let A =
∫
β
c1(L) > 0.

For the stability condition let G be a subsheaf of F and call G its pushforward, which is
a φ-invariant subbundle of rank 0 < rkG < n. Note that the class of the support of G is
then rkG ·A. Therefore we have:

χ(G(k))
a(G) = k +

degG

rkG ·A + (1− g),

χ(G(k)) + σ

a(G) = k +
degG+ σ

rkG ·A + (1− g),

χ(F(k))

a(F)
= k +

degE

rkE ·A + (1− g) and

χ(F(k)) + σ

a(F)
= k +

degE + σ

rkE ·A + (1− g).

Thus we see that the inequalities for stability are equivalent.

Therefore we can give the following definition, using the identification above we know
that such a moduli space actually exists and is also a quasi-projective variety.

Definition 2.6. Fix integers r ≥ 1 and d. We denote by Mr,d
σ the moduli space of

S-equivalence classes of σ-(semi)stable Bradlow Higgs triples of degree d and rank r.

As we saw Mr,d
σ corresponds to an open subset of SystPX,σ(r[C], d+ r(1− g), 1). We

conclude with an

Observation 2.7. The sheaves in SystPX,σ(r[C], d+ r(1− g), 1) can also be regarded as
sheaves that are rank one and degree d′ on their support. So if their support is a smooth
projective curve of genus g′ we have d + r(1 − g) = χ(E) = χ(FsuppF ) = d′ + 1 − g′. If
we further observe that for the curves above the genus is g′ = 1 + r2(g − 1) (section 1.2
of the introductory chapter) we have that d′ = d+ (r2 − r)(g − 1).

2.1.2 Hitchin maps

An analogy with the moduli space of stable Higgs bundles is the existence, for every
σ, of a Hitchin map, defined in the analogous way as for Higgs bundles.
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Definition 2.8. Let Ar be the Hitchin base. Then for every σ > 0 we can define the
Hitchin map:

χr,d
σ : Mr,d

σ → Ar

(E, φ, s) 
→ char poly(φ).

As we already observed for Higgs bundles, the Hitchin map is the analogue, through
the BNR correspondence, of the map taking (F , s) to the equation of supp(F). Let us
first make the following observation.

Proposition 2.9. Let Ar
int ⊂ Ar be the locus of integral spectral curves. Then the open

subset (χr,d
σ )−1(Ar

int) does not depend on σ.

Proof. This follows from what we already observed for Higgs bundles. If (E, φ, s) ∈ Mr,d
σ

and E has a φ-invariant subbundle, then the characteristic polynomial of φ will factor,
and hence χr,d

σ (E, φ, s) ∈ Ar \ Ar
int. It follows that (χr,d

σ )−1(Ar
int) will consist of triples

for which the Higgs bundle does not have any subobject and therefore are automatically
σ-stable for all σ.

2.1.3 Extremal stability conditions
We are interested in the stability for extremal values of σ and for which combinations

of r, d, σ the moduli spaces are non-empty.
Let us first define a filtration that will be useful in the following chapters.

Theorem 2.10. Let (E, φ, s) be a Bradlow-Higgs triple. Then there exists a filtration
0 ⊂ U1 ⊂ · · · ⊂ Ul ⊆ E with l ≤ r and Ur = E in case equality holds. The filtration
satisfies the following conditions:

(i) rkUi = i,

(ii) φ(Ui) ⊆ Ui+1 ⊗K for 1 ≤ i < l,

(iii) for 1 ≤ i < l, φ induces a nonzero map Ui/Ui−1 → Ui+1/Ui ⊗K,

(iv) Ul is the smallest subbundle of E that is φ-invariant and contains the section s.

Furthermore, we have a bound degUi ≥ i(i− 1)(1− g).

Proof. We define the filtration with an inductive process. In the following we will denote
by 〈·〉 the saturation of a subsheaf of a vector bundle.

First define U1 to be the line subbundle of E generated by the section s, then clearly
degU1 ≥ 0 so the bound is satisfied and also if φ(U1) ⊆ U1 ⊗ K then we can stop the
construction and the filtration 0 ⊂ U1 ⊂ E satisfies the properties.

If φ(U1) � U1 ⊗K, φ induces a nonzero map U1 → E/U1 ⊗K. Take:

S2 = 〈Im(φ : U1 → E/U1 ⊗K)〉 ⊗K−1.

Then S2 is a subbundle of E/U1 and hence there exists a unique subbundle U2 of
E containing U1 and such that S2 is the image of U2 with respect to the projection
E → E/U1. By construction we have a bound degU2 ≥ degU1 + 2 − 2g ≥ 2 − 2g and
also if φ(U2) ⊆ U2 ⊗K then the filtration 0 ⊂ U1 ⊂ U2 ⊂ E satisfies the properties.

The construction can be carried through inductively. Assume that we have con-
structed 0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Up satisfying rkUi = i, degUi ≥ i(i − 1)(1 − g)
and that there are nonzero maps Ui/Ui−1 → Ui+1/Ui ⊗ K for 1 ≤ i < p. Then we
claim that φ(Up) � Up ⊗K if and only if φp(s) /∈ Up ⊗Kp. To prove this observe that
φ(Up) ⊆ Up⊗K if and only if φ induces the zero map Up → E/Up⊗K. Since by construc-
tion φ(Up−1) ⊆ Up⊗K then Up → E/Up⊗K is zero if and only if Up/Up−1 → E/Up⊗K.
Consider the iterated applications of φ:

U1 → U2/U1 ⊗K → · · · → Up/Up−1 ⊗Kp−1 → E/Up ⊗Kp.
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From this we see that since the composition of the first p− 1 applications is nonzero
and all the quotients are rank one except for the last, then Up/Up−1⊗Kp−1 → E/Up⊗Kp

is zero if and only if U1 → E/Up ⊗Kp is zero and this is equivalent to φp(s) ∈ Up ⊗Kp.
Now that we proved the claim, assume φ(Up) � Up ⊗K. Then this is equivalent to

φp(s) /∈ Up ⊗Kp and hence consider:

Sp+1 = 〈Im(φp : U1 → E/Up ⊗K)〉 ⊗K−p

which is a subbundle of E/Up. Then there exists a unique subbundle Up+1 of E containing
Up and such that Sp+1 is the image of Up+1 with respect to the projection E → E/Up.
Then Up+1 also satisfies the recursive hypotheses and the construction can proceed.

Note that this sequence of steps will terminate either when we get Ur that has rank
r and hence Ur = E or when we reach a φ-invariant subbundle of E.

The statement about the minimality of Ul is clear because it is generically generated
by s, φ(s), . . . , φp−1(s).

Remark 2.11. Note that, by construction, the filtration above is unique for each triple
(E, φ, s).

Definition 2.12 (U -filtration). Let (E, φ, s) be a triple. We will call U -filtration the
filtration whose existence was proved in the above theorem.

Theorem 2.13. (i) Assume that σ is very close to 0 (i.e. smaller than the first critical
value), then σ-stability for a triple (E, φ, s) implies the semistability of (E, φ) and
so we have an Abel-Jacobi map:

AJ : Mr,d
σ → Mr,d.

For d large enough (e.g. d > r(2g − 1) + (r− 1)2(2g − 2)) for any semistable Higgs
bundle (E, φ) we have H1(E) = 0 and therefore AJ is a projective bundle over the
stable part of Mr,d.

(ii) For σ > (r−1)d+r(r−1)(r−2)(g−1) and a σ-stable triple (E, φ, s) corresponding
to a pair (F , s) the following three equivalent conditions are realized:

– there are no φ-invariant subbundles of E which contain the section

– s, φ(s), . . . , φr−1(s) generically generate E

– s as a map OPX → F has zero dimensional cokernel.

Proof. For (i) it is proved in [40, corollary 3.4] that if d > r(2g − 1) + (r − 1)2(2g − 2)
then any semistable Higgs bundle of degree d and rank r has vanishing H1. Therefore
on the stable locus of Mr,d the fibers of AJ are projective spaces of constant dimension
and so AJ is a projective bundle.

For (ii) let us first show that the three conditions are equivalent. The first and second
are equivalent because the minimal φ-invariant subbundle of E that contains s is Ul

constructed above and it is generated by s, φ(s), . . . , φl−1(s). The second and the third
are equivalent since the subsheaf of E generated by s, φ(s), . . . , φr−1(s) is the pushforward
of the image of OX → F .

To prove that the three conditions hold for σ > (r − 1)d + r(r − 1)(r − 2)(g − 1)
we use the U -filtration of the triple. Saying that the three conditions are satisfied is the
same as saying that the U -filtration is of full length r = rkE. Therefore assume that the
filtration stops at the step l < r. We have the bound degUl ≥ l(l− 1)(1− g). Therefore:

(l − 1)(1− g) +
σ

l
≤ degUl + σ

l
≤ d+ σ

r
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where the first inequality follows from the bound on degUl, while the second follows from
assuming that the triple is σ-(semi)stable. Rearranging we get:

σ ≤ d
l

r − l
+ r(g − 1)

l(l − 1)

r − l
≤ d(r − 1) + r(r − 1)(r − 2)(g − 1),

where the second inequality follows from l < r. This contradicts the bound on σ.

Definition 2.14. We will refer to σ-stability as ε-stability, when σ is very close to
zero, and as ∞-stability, when σ is very large (i.e. larger than the bound in the last
proposition).

From the previous proposition we see that ∞-stability implies that the section s is a
cyclic vector for φ. Observe that, as opposed to Bradlow pairs, crossing the last critical
value for triples will not cause the moduli space to be empty. Rather, the moduli space is
constant (and non-empty) after σ = (r−1)d+ r(r− 1)(r−2)(g−1). The cyclic property
of s and φ will have important consequences later, when we study the fixed points of a
C∗-action on the moduli space of triples.

For the moment we conclude by observing that the condition of s : OX → F having
zero dimensional cokernel is the one mentioned by R. Pandharipande and R. Thomas in
[43]. The only difference is that our ambient variety is a surface, namely X and in [43]
the ambient variety is a Calabi-Yau threefold and the pairs are used for curve counting
purposes.
In the case of surfaces however, the moduli space of ∞-stable triples satisfies a nice
property, following from [42, Proposition B.8] using the BNR correspondence.

Theorem 2.15. The Hitchin map:

χr,d
∞ : Mr,d

∞ → Ar

is the relative Hilbert scheme of d + r(r − 1)(g − 1) points over the family of spectral
curves Ar.

Proof. Follows from [42, Proposition B.8], the BNR correspondence and the relation
between d′ and d we found in observation 2.7.

2.2 Deformation theory of Bradlow-Higgs triples
Using Čech cohomology we can compute the tangent space to Mr,d

σ at (E, φ, s). Note
that a similar analysis has been carried out in [30, proposition 4.12], under the point of
view of coherent systems of PX.

Theorem 2.16. Let (E, φ, s) be a σ-stable Bradlow-Higgs triple, then the tangent space
at (E, φ, s) is given by the first cohomology H1(E, φ, s) of the complex:

C0(EndE) → C1(EndE)⊕ C0(K EndE)⊕ C0(E) → C1(E)⊕ C1(K EndE)

where the first map is
p(k) = (dk, [k, φ], k · s)

and the second one is
q(τ, ν, γ) = (τ · s+ dγ, [τ, φ] + dν).

Furthermore, H0(E, φ, s) = 0.
The same result can be obtained from the hypercohomology of the complex:

EndE → K EndE ⊕ E

f 
→ ([f, φ], f(s))

from which we can also deduce the long exact sequence

0 → H0(EndE) → H0(K EndE ⊕ E) → T(E,φ,s) → (2.1)

→ H1(EndE) → H1(K EndE ⊕ E) → H2 → 0
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Proof. If we want to understand maps SpecC[ε]/(ε2) → Mr,d
σ such that the image of the

closed point is (E, φ, s) then we can choose an open cover {Uα} over which E trivializes. So
the open sets SpecC[ε]/(ε2)×Uα constitute a trivializing open cover for any deformation
(Ẽ, φ̃, s̃) of our triple.

We can write the transition functions for E as 1+ εταβ for some τ ∈ C1(EndE), the
section can be expressed as s+ εγα for γ ∈ C0(E) and finally the Higgs field as φ+ ενα
for ν ∈ C0(K ⊗ EndE).

If we write the compatibility conditions necessary to obtain a deformation we get:

(1 + εταβ)(s+ εγβ) = s+ εγα

(1 + εταβ)(φ+ ενβ)(1 + εταβ)
−1 = φ+ ενα.

The equations then yield τ ·s+dγ = 0 and [τ, φ]+dν = 0 which is precisely the condition
q(τ, ν, γ) = 0.

Since σ-stable triples have no automorphisms we can assume that isomorphic defor-
mations only come from the change of trivializations on the open cover Uα. In other
words we obtain isomorphic deformations (whose cocycles will be distinguished by an
apex) if and only if there exists a k ∈ C0(EndE) such that

(1 + εkα)(1 + ετ ′αβ)(1− εkα) = 1 + εταβ

(1 + εkα)(s+ εγ′α) = s+ εγα

(1 + εkα)(φ+ εν′α)(1− εkα) = φ+ ενα.

These three equations are equivalent to requiring that (τ ′ − τ, ν′ − ν, γ′ − γ) lies in
the image of p.

Our complex fits into an exact sequence of complexes:

0 C0(EndE) C0(EndE)

C0(E) C1(EndE)⊕ C0(K EndE)⊕ C0(E) C1(EndE)⊕ C0(K EndE)

C1(E) C1(E)⊕ C1(K EndE) C1(K EndE)

=

p

incl

d

proj

q

incl proj

The right column is the complex associated with the deformations of the Higgs bundle
(E, φ) and its cohomology will be denoted by Hi([·, φ]).

The cohomology of the deformation complex for our moduli problem will be denoted
by Hi(E, φ, s) or simply Hi when no confusion can arise.

This yields an exact sequence of cohomology groups:

0 → H0(E, φ, s) → H0([·, φ]) → H0(E) → T(E,φ,s) → (2.2)

→ H1([·, φ]) → H1(E) → H2(E, φ, s) → H2([·, φ]) → 0.

Note that, of course, we obtain the same result by considering the long exact sequence
of hypercohomologies associated to the exact sequence of complexes:

0 0 EndE EndE 0

0 E K EndE ⊕ E K EndE 0

The right vertical arrow is the commutator with φ, while the central vertical arrow is the
map f 
→ ([f, φ], f(s)).

The map H0([·, φ]) → H0(E) is evaluation of an endomorphism of E on the section.
H0(E, φ, s) is therefore the kernel of such map, i.e. H0(E, φ, s) consists of the endomor-
phisms of E that commute with φ and that annihilate the section s and we already know
that, by σ-stability, these are zero. From this we deduce that H0(E, φ, s) = 0.
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Recall that the deformation complex for a Higgs bundle is self dual and in particular

dimH2([·, φ]) = dimH0([·, φ]) ≥ 1.

Since H2 surjects onto H2([·, φ]), we also have dimH2 ≥ 1.
This allows to get

dimT(E,φ,s)Mr,d
σ = d+ (2r2 − r)(g − 1) + dimH0([·, φ]).

Note that stability of the underlying Higgs bundle is an open condition and therefore
we know that dimH0([·, φ]) is 1 on an open subset of Mr,d

σ , as we already noted in
proposition 2.9.

We can make a further step in the understanding of the deformations.

Proposition 2.17. Let (E, φ, s) be a σ-stable triple and let us denote by H2 the hyper-
cohomology group in 2.16. Then (H2)∗ is the kernel of the following map:

H0(EndE)⊕H0(KE∗) → H0(K EndE)

(α, β) 
→ [α, φ] + β ⊗ s.

In particular, dimH2 ≥ dimH2([·, φ]).
Proof. It is enough to note that, by Serre’s duality, (H2)∗ is the zeroth hypercohomology
group of the dual of the deformation complex for (E, φ, s), i.e.:

EndE ⊕KE∗ → K EndE

(α, β) 
→ [α, φ] + β ⊗ s

and therefore (H2)∗ is the kernel of the previous map applied to the global sections.
It is worth noting that by β ⊗ s we mean the map E → E ⊗K obtained by tensoring
β : E → K with s : O → E.
The last statement follows, for example, from the exact sequence 2.2. It can also be
deduced directly from the characterization of (H2)∗ which clearly contains all pairs (α, β)
with α commuting with φ and β = 0.

Remark 2.18. From [9, definition 2.1] we see that the data (E, φ, s, α, β) with (E, φ, s)
a Bradlow-Higgs triple, α ∈ H0(EndE), β ∈ H0(KE∗) such that:

[α, φ] + β ⊗ s = 0

define an ADHM sheaf on the curve C. If (E, φ, s) ∈ Mr,d
σ is a singular point, then there

exist α and β not both zero for which (E, φ, s, α, β) is an ADHM sheaf.
For a triple (E, φ, s) we can deduce from [9, lemma 2.5] that if dimH2 > dimH2([·, φ])

then there exists a subbundle of E which is proper, φ-invariant and contains s. Therefore
the following holds:

– the triples (E, φ, s) for which the spectral curve is integral are always smooth points

– if there are no φ-invariant subbundles that contain the section then H2(E, φ, s)∗

has the same dimension as the space of endomorphisms of (E, φ).

We can prove more precise results once we concentrate on specific combinations of
r, d and σ. Let us first state a technical lemma.

Lemma 2.19. Let E be a rank two vector bundle that is given by an extension:

0 → E2 → E → E1 → 0

with degE2 > degE1. Denote by i the inclusion E2 → E and by p the projection E → E1.
If the extension is nonsplit, we have an isomorphism:

C⊕H0(E∗
1E2) → H0(EndE)
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(λ, g) 
→ λ · IE + igp.

If, instead, the extension is split, then there is an isomorphism:

C⊕ C⊕H0(E∗
1E2) → H0(EndE)

(λ1, λ2, g) 
→
(
λ1 0
0 λ2

)
+ igp.

Proof. Let us first assume the extension is nonsplit. Then we have an exact sequence:

0 → O → E∗
2E → E∗

2E1 → 0

and since H0(E∗
2E1) = 0 we get H0(E∗

2E) = C. Consider then the exact sequence:

0 → E∗
1E2 → E∗

1E → O → 0

where the second map is defined by taking f : E1 → E and sending it to pf : E1 → E1.
Note that the induced map on the global sections H0(E∗

1E) → H0(O) has to be zero
because if not, we would have a map f : E1 → E such that pf = IE1 and this implies
that the sequence is split. Therefore H0(E∗

1E2) ∼= H0(E∗
1E).

Lastly, consider the exact sequence:

0 → E∗
1E → EndE → E∗

2E → 0

where the second map is defined by sending f : E → E to fi : E2 → E. Note that the
map H0(EndE) → H0(E∗

2E) ∼= C is surjective because clearly it does not send f = IE
to zero. If we trace back the identifications we made we get the statement.
The proof for the split case is easier because H0(EndE) = H0(O⊕O⊕E∗

1E2⊕E∗
2E1) =

C⊕ C⊕H0(E∗
1E2) and the statement follows immediately.

Corollary 2.20. Assume that r = 2 and that (E, φ, s) is a triple whose underlying Higgs
bundle is stable and of degree d. Then:

(i) if d < 0 then (E, φ, s) is a smooth point in M2,d
ε ,

(ii) if d > 4g − 4 is odd then (E, φ, s) is a smooth point in M2,d
ε .

In particular M2,d
ε is smooth for d < 0 and for d > 4g − 4 odd.

Proof. Here we use the characterization in proposition 2.17. Assume that E is itself stable.
Then H0(EndE) consists only of scalar multiples of the identity. Therefore [α, φ] = 0 =
β ⊗ s and so β = 0. So we deduce that dimH2 = 1 which implies (E, φ, s) is a smooth
point.

Assume that E is unstable of rank 2. We have an extension:

0 → E2 → E → E1 → 0

with degE2 > degE1 and denote by i the inclusion and p the projection. Here we are
in the hypotheses of lemma 2.19. Since E2 is destabilizing but (E, φ) is stable, then pφi
cannot be zero. Suppose that the above extension is nonsplit. Pick (α, β) ∈ (H2)∗. If
α ∈ H0(EndE) we know that α = λ · IE + igp for g ∈ H0(E∗

1E
∗
2 ). Therefore

[α, φ] = igpφ− φigp.

Since
p[α, φ]i = pigpφi− pφigpi = 0,

we know that
0 = p(β ⊗ s) = βi⊗ p(s)
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and so either βi = 0 or p(s) = 0. In the first case:

igpφi = [α, φ]i = (β ⊗ s)i = βi⊗ s = 0

and since pφi �= 0 we get ig = 0 and hence g = 0. In particular [α, φ] = 0 = β ⊗ s and
hence α is scalar multiple of the identity while β = 0. This implies dimH2 = 1 and the
triple is a smooth point.

If instead p(s) = 0 then from

−pφigp = p[α, φ] = β ⊗ p(s) = 0

and since pφi �= 0 we have gp = 0 and hence g = 0. So once again α is a multiple of the
identity and β = 0 so dimH2 = 1 and we get again a smooth point.

We are therefore left with the case of the split extension. Write s = s1 + s2 with
si ∈ H0(Ei) and

φ =

(
φ11 φ21
φ12 φ22

)
.

In this case we must have φ21 �= 0 for the stability. Pick (α, β) ∈ (H2)∗ and write

α =

(
a 0
c d

)
,

β = β1 + β2. By expanding [α, φ] + β ⊗ s we get the following relations:

− φ21c = β1 ⊗ s1

(d− a)φ21 = β2 ⊗ s1

cφ11 − φ22c+ (d− a)φ12 + cφ21 = −β1 ⊗ s2

− cφ21 = β2 ⊗ s2

Note that if d < 0 then degE1 < 0 and so s1 = 0 so we deduce that c = 0 and a = d and
hence α is a scalar multiple of the identity and β = 0 so dimH2 = 1.

If instead d > 4g − 4 then d2 > 2g − 2 and so β2 : E2 → K has to be zero. From
the above relations we deduce once again that α is a scalar multiple of the identity and
β = 0 so that dimH2 = 1.

Assertions (i) and (ii) as well as the last statement follow from the previous remarks.

Let us conclude the section with some remarks. From theorem 2.13 part (i) it follows
that the Abel-Jacobi map Mr,d

ε → Mr,d is a projective bundle when d and r are coprime
and d > r(2g−1)+(r−1)2(2g−2). In particular, under these hypotheses Mr,d

ε is smooth.
For rank 2 it easy to find a singular point in M2,d

ε even when d is odd and 0 ≤
d ≤ 4g − 4. We can build it as follows. Pick d1 and d2 integers satisfying d1 ≥ 0 and
d2 ≤ 2g − 2. Pick a divisors S and B on C of degrees d1 and 2g − 2 − d2 respectively.
Define D = S +B.

With these data we define a Bradlow-Higgs triple. Let E1 be the line bundle associated
to S and s1 a section of E1 (unique up to scaling by a constant) whose divisor is S. Let
E2 be defined by K(−B). Then degE1 = d1 and degE2 = d2. Define E = E1 ⊕ E2 and
φ : E2 → E1 ⊗K be the map associated to the divisor D. Lastly let β2 : E2 → K be the
map associated to the divisor B. Clearly we will have β2⊗s1 = λφ as maps E2 → E1⊗K
for some constant λ �= 0. Then we define α ∈ H0(EndE) and β : E → K as:

α =

(
λ 0
0 0

)
β =
(
0 β2
)
.

It is immediate to check that (E, φ) is stable and [α, φ] = β⊗ s and since α and β are
both nonzero we see that dimH2 > dimH2([·, φ]). It is also easy to verify that for this
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particular triple dimH2 = 2. We can also produce singular points for the other moduli
spaces Mr,d

σ .
The idea is to produce a split Higgs bundle such that the two summands are not too

distant in degree and have both a nonzero section so that the resulting triple will be
stable.

Let us build an example for r = 2, d odd and σ > 1. Consider E = L ⊕M with
degM = degL+1, φ = diag(α, β) with α, β ∈ H0(K) distinct and nonzero. Finally take
s = u⊕ v with u and v nonzero sections of L and M respectively. Assume that v �= c(u)
for all maps c : L→M . Then L and M are clearly the only φ-invariant sub bundles of E
and none of them contains the section s. If we have degE = d = 2k + 1 then degL = k
and degM = k + 1 so we have:

degL <
degE + σ

2
and degM <

degE + σ

2

provided that σ > 1. This proves that under our assumption this triple is stable. Moreover
any diagonal endomorphism of E will commute with φ so that we have dimH2([·, φ]) =
dimH0([·, φ]) ≥ 2 and so dimH2 ≥ 2 and the triple is a singular point for our moduli
space.

Later, we will also construct explicitly fixed points for the C∗-action that are singular
in Mr,d

σ for σ after the first wall.

2.3 Properness of the Hitchin map
In this brief section we will prove the following theorem.

Theorem 2.21. The Hitchin maps

χr,d
σ : Mr,d

σ → Ar

are all proper.

In the subsequent sections we will see some consequences of this.
Recall from section 2.1.1 that Mr,d

σ is an open subset of SystPX,σ(r[C], d+r(1−g), 1)
where PX is the smooth projective surface obtained by adding a divisor at infinity to
T ∗C. We also have a map:

Sr,d
σ : SystPX,σ(r[C], d+ r(1− g), 1) → Hr

(F , s) 
→ suppF

where Hr is a Hilbert scheme of curves in PX whose is Hilbert polynomial is de-
termined by r. Observe that, even though we don’t include it in the notation, both
SystPX,σ(r[C], d + r(1 − g), 1) and Sr,d

σ depend on the choice of some polarization L on
PX, as explained in section 2.1.1.

It is clear that Sr,d
σ is a proper map. In fact, according to [30, théorème 4.11],

SystPX,σ(r[C], d + r(1 − g), 1) is a projective variety and, according to [14, theorem
1.1.2], Hr is also projective. Using [20, theorem 4.9] we see that projective morphisms
are proper therefore the composition

SystPX,σ(r[C], d+ r(1− g), 1) → Hr → {pt}
is proper and Hr → {pt} is proper and hence separated. According to [20, corollary 4.8],
Sr,d
σ is then proper.

Recall that Mr,d
σ is the locus of SystPX,σ(r[C], d + r(1 − g), 1) where the support of

the sheaves does not intersect the divisor at infinity of PX. As we observed in 2.1.1, if
we restrict to such a locus then the stability condition on SystPX,σ(r[C], d+ r(1− g), 1)
does not actually depend on the choice of the polarization L on PX. Since the condition
defining Mr,d

σ relies exclusively on the support of the underlying sheaves we see that the
Hitchin map χr,d

σ is given by the following base change diagram:
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Mr,d
σ Ar

Syst Hr

χr,d
σ

Sr,d
σ

and, according to [20, corollary 4.8], χr,d
σ is then a proper map.

2.4 The C∗-action
As in the case of the moduli space of stable Higgs bundles, the moduli spaces Mr,d

σ

admit a C∗-action that scales the Higgs field.

Definition 2.22. We define an action:

C∗ ×Mr,d
σ → Mr,d

σ

(λ, (E, φ, s)) 
→ λ · (E, φ, s) = (E, λφ, s).

As with the moduli space of Higgs bundles we can use the C∗-action and the proper-
ness of the Hitchin map to decompose the Mr,d

σ into attracting sets. We will also examine
the fixed point loci as σ varies. Special attention is dedicated to the case of rank 2.

We also have the following theorem.

Theorem 2.23. For all (E, φ, s) ∈ Mr,d
σ the limit

lim
λ→0

λ · (E, φ, s)

exists in Mr,d
σ .

Proof. We have proper maps
χr,d
σ : Mr,d

σ → Ar

that are also equivariant with respect to the action of C∗ on Ar we described in 1.2. The
claimed existence of the limits follows from the valuative criterion for properness and the
fact that C∗ acts with positive weights on Ar.

2.4.1 The fixed point locus

Let us first understand which points in Mr,d
σ are fixed by the action. The proof of the

following is completely analogous to the characterizations of the fixed points in Mr,d

Proposition 2.24. Suppose that (E, φ, s) is a σ-(semi)stable pair in Mr,d
σ such that

λ·(E, φ, s) ∼= (E, φ, s) for some λ ∈ C∗ that is not a root of unity, then E = E1⊕· · ·⊕Em,
φ(Ei) ⊆ Ei−1 ⊗K, φ(E1) = 0 and s ∈ Ei for some 1 ≤ i ≤ m.

Proof. If we don’t have the section the proof is the same as in [47, Lemma 4.1].
λ · (E, φ, s) ∼= (E, φ, s) implies that there is an automorphism f of E such that f(s) is
a multiple of s and fφ = λφf . Since the coefficients of the characteristic polynomial are
sections of OC , we know that they are constants. Therefore also the eigenvalues of f are
constant and we have the decomposition of E according to the generalized eigenspaces
E = ⊕μEμ where Eμ = ker(f − μ)n. Now, (f − λμ)nφ = λnφ(f − μ)n so, in particular,
φ(Eμ) ⊂ Eλμ. Ordering the eigenvalues of f and assuming that λ is not a root of unity, we
get the statement about φ. Furthermore, by definition of the Ei, we know that f =

∑
i fi

with fi ∈ Aut(Ei). This implies that, if f(s) = k · s for some k ∈ C∗ then whenever we
can write s =

∑
i si with si ∈ H0(Ei) then each of the fi scales si by a different constant.

This clearly implies that only one of the si can be nonzero.

Therefore we have
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Corollary 2.25. The fixed points of the C∗-action on Mr,d
σ are exactly the points of

the form above.

Proof. We simply need to check that every such point is fixed. But this is clear because,
if (E, φ, s) is in the form above, then f defined by f|Ei

= λi−1IEi
is an isomorphism

between (E, λφ, s) and (E, φ, s).

2.4.2 Structure of the attracting sets
The results by Białynicki-Birula can only be applied for the few Mr,d

σ that are smooth.
For example from proposition 2.20 we know that when r = 2 and σ is small, we should
have d < 0 or d odd and > 4g − 4 in order to have smooth moduli spaces. In the other
cases in fact the moduli spaces are not smooth. Nevertheless, since we still have a proper
Hitchin map, we have the decomposition of Mr,d

σ into attracting loci.

Definition 2.26. Given a partition r = (r1, . . . , rm) of r, a partition d = (d1, . . . , dm)
and 1 ≤ k ≤ m we denote by

F d,k
r,σ =

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) ∈ Mr,d

σ such that E = E1 ⊕ · · · ⊕ Em

with degEi = di, rkEi = ri
φ(Ei) ⊆ Ei−1 ⊗K,φ(E1) = 0

s ∈ H0(Ek)

⎫⎪⎪⎬⎪⎪⎭
Definition 2.27. Let us fix F d,k

r,σ . We define two locally closed subsets by:

F d,k+
r,σ = {(E, φ, s) ∈ Mr,d

σ such that lim
λ→0

(E, φ, s) ∈ F d,k
r,σ }

F d,k−
r,σ = {(E, φ, s) ∈ Mr,d

σ such that lim
λ→∞

(E, φ, s) ∈ F d,k
r,σ }

Then, similar to the situation for Mr,d described in section 1.3, we have:

Proposition 2.28. Let (E, φ, s) be a point in F d,k
r,σ , for σ not a critical value. With the

previous notations, the weight 0 part of the C∗-action on T(E,φ,s)Mr,d
σ is given by the

first hypercohomology of the complex:

m⊕
i=1

Hom(Ei, Ei) →
m⊕
i=2

Hom(Ei, Ei−1 ⊗K)⊕ Ek,

the positive weight part is the first hypercohomology of:⊕
i<j

Hom(Ei, Ej) →
⊕
i≤j

Hom(Ei, Ej ⊗K)⊕
⊕
i>k

Ei

while the negative part is the first hypercohomology of:

m⊕
i>j

Hom(Ei, Ej) →
m⊕

i>j+1

Hom(Ei, Ej ⊗K)⊕
⊕
i<k

Ei

Proof. Since (E, φ, s) is σ-stable, it only has scalar automorphisms. In particular the
group of isomorphisms between (E, λφ, s) and (E, φ, s) is also C∗. Among these auto-
morphisms, there is a unique one that preserves the section, which is exactly the one that
acts with weight 0 on Ek.

In other words, suppose we have a fixed point E = E1 ⊕ · · · ⊕ Em, φ as usual and
s ∈ H0(Ek). Then the canonical automorphism that we want is f : E → E such that
f|Ei

= λi−kIEi . Recall that the Zariski tangent space to (E, φ, s) is generated by the
kernel of the map

C1(EndE)⊕ C0(K EndE)⊕ C0(E) → C1(E)⊕ C1(K EndE)
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(τ, ν, γ) 
→ (τ · s+ dγ, [τ, φ] + dν).

The C∗-action induced on the Zariski tangent space is given by:

λ(τ, 0, 0) = λj−i(τ, 0, 0) if τ ∈ C1(E∗
i Ej)

λ(0, ν, 0) = λj−i+1(0, ν, 0) if ν ∈ C0(E∗
i EjK)

λ(0, 0, γ) = λi−k(0, 0, γ) if γ ∈ C0(Ei).

In order to decompose the tangent complex for (E, φ, s) we can therefore consider
E∗

i Ej acted on with weight i − j (observe that this does not depend on k), Ei with
weight i− k and K with weight 1 and we obtain the above complexes.

Later we will use the complexes to compute the dimension of the positive weight part
of the C∗-action on the tangent space at the fixed points.

Remark 2.29. An important remark is that, even though [3, Theorem 4.1] does not
apply to the singular Mr,d

σ , it is still possible to apply them to the subvarieties that
contain the smooth fixed points and all the points whose limit as λ → 0 is one of the
smooth fixed points. Note that these subvarieties are clearly smooth, since the dimension
of the Zariski tangent space can only go up in dimension with specialization and it is
already minimal at the smooth fixed points. As we will see later, some of the attracting
sets lie entirely in these smooth subvarieties.

If the fixed point is smooth then we get the dimension of the affine fiber of F d,k+
r,σ →

F
d,k
r,σ at that point, by the previous remark.

2.4.3 The rank 2 case
We now specialize on the case r = 2. First of all, we remark that the set of critical

values for σ, when r = 2 is, as for Bradlow pairs, the set of positive integers with the
same parity as d.

First let us comment on the case of d < 0.

Proposition 2.30. Let d < 0. Then M2,d
∞ = M2,d

ε and both are non-empty iff d ≥ 2−2g.

Proof. Let (E, φ, s) ∈ M2,d
ε and consider the subbundle S = 〈s〉 generated by the section

s. Then certainly degS ≥ 0 > d so that S is stricly destabilizing for E and cannot be
fixed by φ. This implies s is cyclic for φ as we are in rank 2.
Viceversa, assume (E, φ, s) ∈ M2,d

∞ . Suppose there exists a rank one Higgs subbundle
(L,ψ) of (E, φ) such that degL ≥ d/2. Since s is cyclic for φ, we know that s /∈ H0(L).
If we denote again by S the subbundle generated by s, we would get a nonzero map
S → E/L. This would imply that 0 ≤ degS ≤ d− degL ≤ d/2 but this is impossible.

We now prove the statement about non-emptiness. If d ≥ 0 then we know there exist
σ-stable pairs and so both moduli spaces are non-empty (but they are not equal).
For d < 0 the two moduli spaces coincide and if we have at least a stable triple (E, φ, s)
there is a nonzero map S → E/S ⊗ K, since s is cyclic for φ. But then 0 ≤ degS ≤
d− degS + 2g − 2 which implies 0 ≤ 2 degS ≤ d+ 2g − 2 or d ≥ 2− 2g.
Viceversa, note that for any point P ∈ C there is an embedding

M2,d
∞ → M2,d+2

∞
(E, φ, s) 
→ (E(P ), φ, s(P ))

so that it is enough to prove that M2,d
∞ is non-empty for d = 2− 2g and d = 3− 2g.

For d = 2− 2g take E = O ⊕K∗, s a constant section of O and φ annihilating K∗ and
restricting to the constant map O → K∗ ⊗K = O. This is a triple in M2,2−2g

∞ .
For d = 3− 2g pick P ∈ C and define E = O ⊕K∗(P ), s a constant section of O and φ
annihilating K∗(P ) and restricting to the only nonzero map O → K∗ ⊗K(P ) = O(P ).
This is instead a triple in M2,3−2g

∞ .

30



Note that this proposition also implies that if (E, φ, s) ∈ M2,d
ε for d < 0 then (E, φ)

is strictly stable.
We also prove a more precise version of [40, corollary 3.4] for rank 2.

Proposition 2.31. Let (E, φ) be a semistable Higgs bundle of rank 2 and degree d. If
d ≥ 6g − 5 then H1(E) = 0.

Proof. If E is semistable itself then there are no non-zero maps E → K since μ(E) >
3g − 2 > 2g − 2 = μ(K), therefore H1(E) = H0(KE∗)∗ = 0. Otherwise assume that
L ⊂ E is the maximal destabilizing line subbundle of E. Then degL > d/2 but since
(E, φ) is stable there is also a non-zero map L→ E/L⊗K and so degL ≤ d/2 + g − 1.
In particular we also get 1 − g + d/2 ≤ degE/L < d/2. If d ≥ 6g − 4 then we have
degL > d/2 > 3g − 2 > 2g − 2 and degE/L > 3g − 3 + 1 − g = 2g − 2 and therefore
H1(L) = H1(E/L) = 0 which implies H1(E) = 0.

Remark 2.32. Note that the estimate in [40, corollary 3.4] would say that H1(E) = 0
for d > 4g− 2+ 2g− 2 = 6g− 4 i.e. d ≥ 6g− 3 which leaves out a value of d that we will
need in the following chapters. It is also reasonable to think that the gap between the
sharp estimate and the estimate in [40, corollary 3.4] will widen as the rank increases.

We can prove the following.

Theorem 2.33. Let d ≥ 2− 2g be an integer and σ > 0 different from a critical value.
Then we can classify the components of the fixed point locus of M2,d

σ as follows:

(i) if d ≥ 0 and σ < d then one of the components of the fixed points for the C∗-
action is F (d),1

(2),σ = M2,d
σ , i.e. the moduli space of σ-stable Bradlow pairs embedded

as triples with zero Higgs field. If d < 0 then there are no σ-stable Bradlow pairs
and so this component is empty.

(ii) if there exists and integer m such that max{0, d/2+ 1− g} ≤ m < d−σ
2 , then there

exist components:

F
(d1,d2),1
(1,1),σ =

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) ∈ M2,d

σ such that E = E1 ⊕ E2

with degEi = di, rkEi = 1
φ(E2) ⊆ E1 ⊗K,φ(E1) = 0

s ∈ H0(E1)

⎫⎪⎪⎬⎪⎪⎭ ∼=

∼= Sd1(C)× Sd1−d2+2g−2(C).

Here d1 and d2 are integers satisfying d1+d2 = d and one of the following equivalent
inequalities:

max{0, d/2 + 1− g} ≤ d1 <
d− σ

2
d+ σ

2
< d2 ≤ min{d, d/2 + g − 1}

max{0, 2g − 2− d} ≤ d1 − d2 + 2g − 2 < 2g − 2− σ same parity as d.

(iii) There exist components:

F
(d1,d2),2
(1,1),σ =

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) ∈ M2,d

σ such that E = E1 ⊕ E2

with degEi = di, rkEi = 1
φ(E2) ⊆ E1 ⊗K,φ(E1) = 0

s ∈ H0(E2)

⎫⎪⎪⎬⎪⎪⎭ ∼=

∼= Sd2(C)× Sd1−d2+2g−2(C).

Here d1 and d2 are integers satisfying d1+d2 = d and one of the following equivalent
inequalities:

d/2 + 1− g ≤ d1 < min

{
d+ σ

2
, d+ 1

}
31



max

{
−1,

d− σ

2

}
< d2 ≤ d/2 + g − 1

0 ≤ d1 − d2 + 2g − 2 < 2g − 2 + min{σ, d+ 1} same parity as d.

Proof. Point (i) simply follows by noting that M2,d is nonempty if and only if d ≥ 0 and
σ < d and (E, s) ∈ M2,d if and only if (E, 0, s) ∈ M2,d

σ . Clearly, every σ-stable triple
whose Higgs field vanishes is fixed by the C∗-action.

For (ii), recall from proposition 2.24 that for the partition (1, 1) we must have fixed
points of the form above with s ∈ H0(E1) if k = 1. Furthermore, note that E1 is the
only φ-invariant subbundle in this case. s ∈ H0(E1) implies d1 ≥ 0, σ-stability implies
d1 < (d−σ)/2 and the existence of a nonzero map E2 → E1⊗K implies d1−d2+2g−2 ≥ 0.
Putting all together and using d1 + d2 = d we get the claimed set of inequalities.

For (iii) we know that s ∈ E2 when k = 2. Here s ∈ H0(E2) forces d2 ≥ 0, σ-stability
implies d1 < (d+ σ)/2 and as before d1 − d2 + 2g − 2 ≥ 0. Using d1 + d2 = d we get the
claimed set of inequalities.

From now on we will call non-split points the points in F (d),1
(2),σ , split type 1 the points

in F (d1,d2),1
(1,1),σ and split type 2 the points in F (d1,d2),2

(1,1),σ .
Note that split type 2 points always exist for all combinations of d ≥ 2 − 2g and

σ > 0 and nonsplit fixed points exist only for 0 < σ < d. Split type 1 points are more
complicated, in fact they exist only if σ < d and σ < 2g − 3 for d odd or σ < 2g − 2 for
d even. In particular, for d > 2g − 2 this implies that there is a critical value for σ after
which the type 1 split points cease to exist.

We can briefly analyze the dimension of H2 for the deformations of the fixed points.
Recall the characterization of (H2)∗ we gave in proposition 2.17.

For a nonsplit point (E, 0, s), clearly [α, φ] = 0 and so β = 0. Therefore dimH2 =
dimH0(EndE) and so (E, 0, s) is smooth if and only if E is simple, which happens for
example if E is stable.

For the split fixed points instead, we interpret φ as a matrix(
0 φ
0 0

)
and an endomorphism of E1 ⊕ E2 has the form(

a b
c d

)
with a ∈ C and c ∈ Hom(E1, E2), b ∈ Hom(E2, E1). We have β = β1+β2 with βi : Ei →
K and s = s1 + s2 with si ∈ H0(Ei). Then:

[α, φ] =

(−φc (a− d)φ
0 cφ

)
and

β ⊗ s =

(
β1s1 β2s1
β1s2 β2s2

)
.

If s2 = 0, i.e. for a type 1 fixed point, we get c = 0, β1 = 0 and β2s1 = (a− d)φ. Note
that since d2 − d1 > 0 for a type 1 fixed point, we will always have b = 0. In particular

dimH2 = 1 +

{
1 if divs1 + divβ2 = divφ
0 otherwise

note that in the second case H2 ∼= H2([·, φ]) and in the first dimH2 = dimH2([·, φ]) + 1.
If s1 = 0, i.e. for a type 2 fixed point, we always get c = 0 and a = d, therefore

[α, φ] = 0 and β = 0 so dimH2 = dimH2([·, φ]).
We can summarize the discussion in the following proposition.
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Proposition 2.34. A nonsplit fixed point is smooth if and only if the underlying vector
bundle is simple.

A split type 1 fixed point (E1 ⊕ E2, φ : E2 → E1 ⊗ K, s1) is smooth if and only if
divφ−divs1 is not an effective divisor. In other words the singular points in the component
Sd1(C)× Sd1−d2+2g−2(C) are those in the image of the map:

Sd1(C)× S−d2+2g−2(C) → Sd1(C)× Sd1−d2+2g−2(C)

(D1, D2) 
→ (D1, D1 +D2)

which of course is empty when d2 > 2g − 2.
A split type 2 fixed point is smooth if and only if the underlying Higgs bundle is

simple.

We can also say something about the structure of the attracting sets, even though it
is not always possible to conclude that they are affine fibrations over the fixed point loci
since we are not inside smooth ambient varieties.

The fiber of the limit map F
(d),1+
(2),σ → F

(d),1
(2),σ over (E, 0, s) is clearly H0(K ⊗ EndE).

Observe that they are still affine spaces but not of constant dimension as

dimH0(K ⊗ EndE) = dimH1(EndE) = 4g − 4 + dimH0(EndE)

and this can vary if E is not simple. Note that over the locus of M2,d
σ

∼= F
(d),1
(2),σ where E

is stable, we have an affine fibration of dimension 4g − 3.
For fixed points of split type 1 we can compute the dimension of the fibers of

F
(d1,d2),1+
(1,1),σ → F

(d1,d2),1
(1,1),σ over the smooth fixed points. We can decompose the deformation

complex into weighted parts:

Hom(E2, E2)⊕Hom(E1, E1) → Hom(E2, E1 ⊗K)⊕ E1

for the weight 0 part,
Hom(E2, E1) → 0

for the negative weight part and

Hom(E1, E2) → Hom(E1, E1 ⊗K)⊕Hom(E2, E2 ⊗K)⊕Hom(E1, E2 ⊗K)⊕ E2

for the positive weight part. The dimension of the weight 0 part, which clearly corresponds
to the tangent space to the component of the fixed points, is 2d1 − d2 + 2g − 2 equal to
the dimension of Sd1(C)×Sd1−d2+2g−2(C). The dimension of the negative weight part is
d2−d1+g−1 and finally the dimension of the positive weight part is 1+4(g−1)+d2+1−g.

For fixed points of split type 2 we can still decompose the deformation complex into
weighted parts:

Hom(E2, E2)⊕Hom(E1, E1) → Hom(E2, E1 ⊗K)⊕ E2

for the weight 0 part,
Hom(E2, E1) → E1

for the negative weight part and

Hom(E1, E2) → Hom(E1, E1 ⊗K)⊕Hom(E2, E2 ⊗K)⊕Hom(E1, E2 ⊗K)

for the positive weight part. Here type 2 split fixed points can be singular and it is
actually easy to see that the positive part of the tangent space contains entirely the part
that gives the extra dimension at the singular points. More specifically, the dimension
of the weight 0 part is d1 + 2g − 2 equal to the dimension of Sd2(C)× Sd1−d2+2g−2(C).
The dimension of the negative weight part is d2 and finally the dimension of the positive
weight part is 1+4(g−1)+dimHom(E2, E1). As we already said, this gives the dimension
of the fibers of F (d1,d2),2+

(1,1),σ → F
(d1,d2),2
(1,1),σ over the smooth fixed points.
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As for rank 2 Higgs bundles we can prove that the decomposition of M2,d
σ into at-

tracting sets is the same as the decomposition according to the Harder-Narasimhan type
of the Bradlow pair underlying the triple. We will call Hitchin stratification the strat-
ification of M2,d

σ into attracting sets and Shatz stratification the stratification of M2,d
σ

according to the Harder-Narasimhan type of the underlying pair.

Theorem 2.35. Let σ be different from a critical value.
We have:

F
(d),1+
(2),σ =

{
(E, φ, s) such that (E, s) is σ-stable

}
and the limit map F (d),1+

(2),σ → F
(d),1
(2),σ takes (E, φ, s) to (E, 0, s).

Otherwise, the underlying Bradlow pair is σ-unstable and:

F
(d1,d2),1+
(1,1),σ =

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) where E is defined by

0 → E2 → E → E1 → 0
s /∈ H0(E2), degEi = di, d2 > (d+ σ)/2

and φ does not preserve E2

⎫⎪⎪⎬⎪⎪⎭
and the limit map F

(d1,d2),1+
(1,1),σ → F

(d1,d2),1
(1,1),σ sends (E, φ, s), described as above, to (E2 ⊕

E1, pE1φiE2 , pE1(s)) where iE2 and pE1 are the inclusions and projections in the descrip-
tion of E as an extension.

The other possibility is:

F
(d1,d2),2+
(1,1),σ =

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) where E is defined by

0 → E2 → E → E1 → 0
s ∈ H0(E2), degEi = di, d2 > (d− σ)/2

and φ does not preserve E2

⎫⎪⎪⎬⎪⎪⎭
and the limit map F

(d1,d2),2+
(1,1),σ → F

(d1,d2),2
(1,1),σ sends (E, φ, s), described as above, to (E2 ⊕

E1, pE1φiE2 , s) where iE2 and pE1 are the inclusions and projections in the description
of E as an extension.

Proof. The statement about F (d),1+
(2),σ is clear because, if (E, s) is a σ-stable Bradlow pair,

then (E, φ, s) will be a σ-stable triple for every φ ∈ H0(K EndE). Furthermore, the
entire family λ 
→ (E, λφ, s) consists of σ-stable triples, even for λ = 0. Therefore the
limit of λ · (E, φ, s) as λ→ 0 is (E, 0, s) in this case.

For the other two types of cells we can use a Čech cohomology description of the
triple to understand what the C∗-action does. We spell all the details for F (d1,d2),1+

(1,1),σ and
for the other cells the proof is analogous.

Let (E, φ, s) be defined by an extension:

0 → E2 → E → E1 → 0,

call iE2
and pE1

the inclusions and projections and assume d2 > (d+ σ)/2, s /∈ H0(E2)
and φ(E2) � E2 ⊗K.

Then (E, s) is not σ-stable and E2 is the maximal destabilizing of (E, s). If there were
an L ⊂ E that is φ-invariant and contains the section, then clearly the map L→ E → E1

is nonzero and so degL ≤ degE1 < (d − σ)/2. This implies that every such triple is
actually σ-stable.

Choose a fine enough affine cover Uα of C such that E, E2 and E1 all trivialize.
Suppose that (E, φ, s) is given by the Čech cohomology data (Uα, gαβ , φα, sα) relative to
the open cover Uα, where:

gαβ =

(
e1αβ 0
ταβ e2αβ

)
are the transition functions of E, where ei are the transition functions for Ei and τ ∈
C1(E∗

1E2),

φα =

(
aα bα
cα dα

)
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for the Higgs field,

sα =

(
s1α
s2α

)
for s where si is the part of the section lying in Ei.

Since these data define a triples, we have the compatibility relations:

gαβ = g−1
βα

gαβgβγ = gαγ

sα = gαβsβ

gαβφβ = φαgαβ .

Now consider the triple (E, λφ, s) for λ ∈ C∗, which is represented by the data
(Uα, gαβ , λφα, sα). We want to show that (E, λφ, s) is also represented by the data
(Uα, g

λ
αβ , φ

λ
α, s

λ
α) where:

gλαβ =

(
e1αβ 0
λταβ e2αβ

)
,

φλα =

(
λaα bα
λ2cα λdα

)
and

sλα =

(
s1α
λs2α

)
.

First of all the compatibility relations for (Uα, gαβ , λφα, sα) imply the compatibility
relations for (Uα, g

λ
αβ , φ

λ
α, s

λ
α) so that the second set of data actually defines a triple.

Using the change of trivialization (independent of α):

γα =

(
λ 0
0 1

)
∈ C0(GL2)

we can see that (Uα, gαβ , λφα, sα) and (Uα, g
λ
αβ , φ

λ
α, s

λ
α) are equivalent set of data and so

they define the same triple (E, λφ, s). What we need to verify explicitly are the relations:

γ−1
α gαβγβ = gλαβ

γ−1
α λφαγα = φλα

γ−1
α λsα = sλα

which are an immediate check. Note that in the last relation we are allowed to change
sα by λsα because two triples which are identical except for the sections which differ by
multiplication by a constant are always isomorphic.

The data (Uα, g
λ
αβ , φ

λ
α, s

λ
α) produce a C∗-family of σ-stable triples whose limit as

λ→ 0 is given by the data: (
e1αβ 0
0 e2αβ

)
,(

0 bα
0 0

)
,

and (
s1α
0

)
that correspond to the triple (E1 ⊕ E2, pE1

φiE2
, pE1

(s)) which lies in F (d1,d2),1
(1,1),σ .

Observe also that:

F
(d1,d2),1
(1,1),σ ⊂

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) where E is defined by

0 → E2 → E → E1 → 0
s /∈ H0(E2), degEi = di, d2 > (d+ σ)/2

and φ does not preserve E2

⎫⎪⎪⎬⎪⎪⎭
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as is immediately checked by definition. This proves that

F
(d1,d2),1+
(1,1),σ ⊃

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) where E is defined by

0 → E2 → E → E1 → 0
s /∈ H0(E2), degEi = di, d2 > (d+ σ)/2

and φ does not preserve E2

⎫⎪⎪⎬⎪⎪⎭ .
The same kind of argument allows to prove

F
(d1,d2),2+
(1,1),σ ⊃

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) where E is defined by

0 → E2 → E → E1 → 0
s ∈ H0(E2), degEi = di, d1 > (d− σ)/2

and φ does not preserve E2

⎫⎪⎪⎬⎪⎪⎭
and that the limit map has the claimed form.

To conclude we observe that both the decomposition into attracting set and the sug-
gested decomposition cover M2,d

σ . The first one because limits for the C∗-action as λ→ 0
always exists, the second one because it exhausts all the possible Harder-Narasimhan
types of the underlying Bradlow pair of a triple in M2,d

σ . Therefore we can conclude that
all the inclusions we proved are actually equalities.
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Chapter 3

Motivic invariants and
wall-crossing

3.1 Wall crossing for rank 2

In this section we examine what happens when the stability parameter for rank 2
Bradlow-Higgs triples is modified. First we examine the geometry of the loci that change
when crossing a critical value, the so called flip loci. Second, we compute their class in
the Grothendieck ring of varieties.

3.1.1 The flip loci
First of all note that, in the rank 2 case, the possible critical values for σ are the

integers greater than or equal to 1, with the same parity as the degree d.
As we discussed in section 1.6, the moduli spaces will be modified by adding and

subtracting objects that are defined using extensions of Higgs bundles. Fix a critical
value σ̄. Let us start with a definition.

Definition 3.1 (Flip loci). Let σ̄ be a critical value. We denote by Wd,+
σ̄ the locally

closed subvariety of M2,d
σ̄− consisting of those triples that are σ̄−-stable but not σ̄+-stable.

Analogously we denote by Wd,−
σ̄ the locally closed subvariety of M2,d

σ̄+
consisting of

those triples that are σ̄+-stable but not σ̄−-stable.

Before going into the details let us give some useful definitions.

Definition 3.2. Given a degree d ≥ 1 and σ̄ a critical value for d we define:

pdσ̄ : S(d−σ̄)/2(C) → J (d−σ̄)/2(C)

D 
→O(D),

and
Xd

σ̄ := pd∗σ̄ T
∗J (d−σ̄)/2(C)× T ∗J (d+σ̄)/2(C).

Finally, we denote by:
qdσ̄ : Xσ̄ × C → Xσ̄

the proper projection on the first factor.

The variety Xd
σ̄ has a cumbersome definition but is actually simple to understand. In

fact it is a product of the total spaces of two vector bundles but they are both trivial,
therefore

Xd
σ̄
∼= S(d−σ̄)/2(C)× J (d+σ̄)/2(C)×H0(K)×H0(K).

It is also clear from the definition of Xd
σ̄ that it is the moduli space of pairs of rank one

Higgs bundles, plus a section of the first one.
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First we treat the case of wall crossing occurring when the parameter is increasing,
i.e. for the flip locus Wd,+

σ̄ . Looking at definition 2.1, we see that the inequality involving
the section becomes stronger while the other one becomes weaker.

We are looking for triples (E, φ, s) that are σ̄−-stable but not σ̄+-stable. These two
conditions together impose the existence of a subobject that is preserved by φ and is
just barely σ̄+-destabilizing. More precisely, we want triples (E, φ, s) such that there is
a φ-invariant subbundle L ⊂ E, s ∈ H0(L) and degL = (d − σ̄)/2. In other words, we
need to have an extension of Higgs bundles:

0 → (L,ψ1) → (E, φ) → (M,ψ2) → 0

such that s ∈ H0(L). This, in particular, implies that L = O(D) where D is the effective
divisor associated to the section s.

Let us first establish a result about extensions of Higgs bundles of rank 1.

Lemma 3.3. Let (L,ψ1) and (M,ψ2) be two rank one Higgs bundles. Then there exists
a vector space, that we denote by H1((M,ψ2), (L,ψ1)) that parametrizes all extensions
of Higgs bundles starting with (L,ψ1) and ending with (M,ψ2). Such a vector space is
the first hypercohomology of the complex:

M∗L→M∗LK
f 
→ fψ2 − ψ1f

and therefore fits into the long exact sequence:

0 → H0((M,ψ2), (L,ψ1)) → H0(M∗L) → H0(M∗LK) → H1((M,ψ2), (L,ψ1)) →
→ H1(M∗L) → H1(M∗LK) → H2((M,ψ2), (L,ψ1)) → 0. (3.1)

The zero class in H1((M,ψ2), (L,ψ1)) corresponds to a split extension of Higgs bundles
and if two classes differ by the multiplication by a nonzero scalar, then they define
isomorphic Higgs bundles.

Proof. Choose an open cover {Uα} of C on which L, M and K are all trivial. Let us
denote by τ ∈ C1(M∗L) the off diagonal portion of the transition matrix for our vector
bundle E. If lαβ and mαβ are the transition functions for L and M respectively then the
transition functions for E can be written as(

lαβ ταβ
0 mαβ

)
.

Let then ν ∈ C0(M∗LK) be the off diagonal part of the Higgs field. So that the
restriction of the Higgs field to the open subset Uα will be:(

ψ1α να
0 ψ2α

)
.

After the notation is fixed, we can write the compatibility relation between τ and ν:(
lαβ ταβ
0 mαβ

)(
ψ1β νβ
0 ψ2β

)
=

(
ψ1α να
0 ψ2α

)(
lαβ ταβ
0 mαβ

)
which, after taking into account the trivializations of the bundles, becomes dν = ψ1τ −
τψ2, i.e. the kernel of the following map:

C0(M∗LK)⊕ C1(M∗L) → C1(M∗LK)

(ν, τ) 
→ dν − τψ2 + ψ1τ.

Note that with this procedure we produce two isomorphic Higgs bundles (E,ψ) and
(E′, ψ′) (that of course still have (L,ψ1) as a subobject and (M,ψ2) as a quotient) if
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and only if there is γ ∈ C0(M∗L) that yields an equivalence between the Čech data
representing E and E′. The matrices of such an equivalence will look like:(

1 γα
0 1

)
.

The compatibility relation with the respective transition matrices of E and E′ there-
fore becomes (

1 γα
0 1

)(
lαβ τ ′αβ
0 mαβ

)
=

(
lαβ ταβ
0 mαβ

)(
1 γβ
0 1

)
while for the Higgs fields we get:(

1 γα
0 1

)(
ψ1α ν′α
0 ψ2α

)
=

(
ψ1α να
0 ψ2α

)(
1 γα
0 1

)
.

The relations can be written in a compact form as τ ′−τ = dγ and ν′−ν = ψ1γ−γψ2.
These relations can also be expressed as the image of the map

C0(M∗L) → C0(M∗LK)⊕ C1(M∗L)
γ 
→ (ψ1γ − γψ2, dγ).

This clearly completes the assertion about the hypercohomology, from which also follows
the statement about the long exact sequence.

The zero class corresponds to the data(
lαβ 0
0 mαβ

)
,

(
ψ1α 0
0 ψ2α

)
which clearly represent the Higgs bundle (L,ψ1)⊕ (M,ψ2). Changing {ταβ} and να with
{λταβ} and λνα, for some λ �= 0, corresponds to acting with the change of trivialization:

θα =

(
λ 0
0 1

)
and therefore does not change (E, φ).

We have the following:

Proposition 3.4. Fix a degree d and a critical value σ̄. The locus Wd,+
σ̄ consists of those

triples (E, φ, s) for which (E, φ) fits into a non-split extension:

0 → (L,ψ1) → (E, φ) → (M,ψ2) → 0

where degL = (d− σ̄)/2, degM = (d+ σ̄)/2 and s ∈ H0(L).
Furthermore, there is a projective map πd,+

σ̄ : Wd,+
σ̄ → Xd

σ̄ whose fibers are projective
spaces (but not of constant dimension).

Proof. Consider a triple (E, φ, s) that fits in the non-split extension:

0 → (L,ψ1) → (E, φ) → (M,ψ2) → 0

with s ∈ H0(L), degL = (d− σ̄)/2 and degM = (d+ σ̄)/2. Assume there is a φ-invariant
subbundle L′. Then if s ∈ H0(L′) we get L = L′ and hence degL′ = (d − σ̄)/2 <
(d− σ̄−)/2. Otherwise assume s /∈ H0(L′). This implies there is a nonzero map L′ →M
and hence degL′ ≤ (d+ σ̄)/2. The equality can never occur because otherwise the map
would be an isomorphism and the sequence would be split. This implies that all such
triples are σ̄−-stable. It is clear by construction that they are not σ̄+-stable.

Viceversa, every triple in Wd,+
σ̄ must be σ̄−-stable and σ̄+-unstable so it must have a

φ-invariant subbundle containing the section of degree (d− σ̄)/2.
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The map

πd,+
σ̄ : Wd,+

σ̄ → Xd
σ̄

(E, φ, s) 
→ (L, s,M,ψ1, ψ2)

is defined by sending a triple (E, φ, s) to the canonical subbundle L containing the section
(which has degree (d − σ̄)/2 and is φ-invariant) and to the canonical quotient M , both
of which inherit a Higgs field from (E, φ). The fibers of such a map are, by lemma 3.3,
projectivized extension spaces and their dimension can vary, as we will see.

In lemma 3.3 we gave an interpretation only for the first hypercohomology of the
complex as a space of extensions of Higgs bundles. We can give an interpretation for the
0th and the 2nd hypercohomology as well. In fact we can think of H0((M,ψ2), (L,ψ1))
the subspace of H0(M∗L) of morphisms f : M → L that satisfy fψ2 = ψ1f , i.e. the
morphisms of Higgs bundles (M,ψ2) → (L,ψ1). Furthermore, by using Serre duality on
the starting complex we get the dual complex:

L∗M → L∗MK

f 
→ fψ2 − ψ1f

which is the same complex but with L and M interchanged. So we see that

H2((M,ψ2), (L,ψ1))

is dual to
H0((L,ψ1), (M,ψ2)).

Finally from the long exact sequence we get

χ((M,ψ2), (L,ψ1)) = χ(M∗L)− χ(M∗LK) = 2− 2g.

Since for Wd,+
σ̄ we always have degL < degM , we also have H0(M∗L) = 0 and

also H0((M,ψ2), (L,ψ1)) = 0 because of the injection H0((M,ψ2), (L,ψ1)) → H0(M∗L).
However H2((M,ψ2), (L,ψ1)) might very well jump. This, as we mentioned, means that
the fibers of πd,+

σ̄ can vary in dimension.
Since the final goal will be to compute the motives of our moduli spaces, let us now

examine the stratification of Xd
σ̄ that is induced by the dimension of the fibers of πd,+

σ̄ .

Definition 3.5. Let σ̄ be a critical value, then we define locally closed subsets:

Sd,+
σ̄,i := {(L, s, ψ1,M, ψ2) ∈ Xd

σ̄| dimH2((M,ψ2), (L,ψ1)) ≥ i}.

Note that Sd,+
σ̄,i+1 ⊂ Sd,+

σ̄,i and Sd,+
σ̄,0 = Xd

σ̄. Let us fix a point (L, s, ψ1,M, ψ2) ∈ Xd
σ̄.

First of all, since dimPH1((M,ψ2), (L,ψ1)) = 2g−2+dimH2((M,ψ2), (L,ψ1))−1, we see
that Sd,+

σ̄,i is exactly the stratification that agrees with the dimension of the fibers of πd,+
σ̄ ,

after shifting the indices. In other words, the fiber of πd,+
σ̄ over each point of Sd,+

σ̄,i \Sd,+
σ̄,i+1

is exactly CP2g−3+i. Furthermore, H2((M,ψ2), (L,ψ1)) is dual to H0((L,ψ1), (M,ψ2))
and we can easily compute the dimension of the latter. In fact L and M are both line
bundles and so if ψ1 �= ψ2 there are certainly no maps L → M that commute with the
Higgs fields.

On the other hand, if ψ1 = ψ2, then H0((L,ψ1), (M,ψ2)) = H0(L∗M). From this we
can deduce that Sd,+

σ̄,1 is contained in the locus of Xd
σ̄ where the Higgs fields agree, fur-

thermore, when ψ1 = ψ2, dimH0((L,ψ1), (M,ψ2)) = dimH0(L∗M) and this is positive
if and only if L∗M = O(D′); therefore M = L(D′). We will soon use these considerations
to compute the motive of Wd,+

σ̄ .
We can now examine the second family involved in the wall crossing, which is the one

appearing for decreasing parameter. Fix again a critical value σ̄. From the definition of
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stabilty 2.1 we see that we should look for those triples (E, φ, s) such that there exists
a φ-invariant line subbundle M ⊂ E with s /∈ H0(M) and degM = (d + σ̄)/2 so that
the triple will be barely σ̄−-unstable. The fact that M does not contain the section is
equivalent to the section s projecting on a nonzero section s̄ of the quotient L = E/M .

Here we invert the notations for the subobject and the quotient, both for consistency
with the degrees and for the fact that, for us, L is the line bundle that comes with a
section.
We will need a lemma about extensions as in the previous case.

Lemma 3.6. Let (L,ψ1) and (M,ψ2) be two rank one Higgs bundles such that s̄ ∈ H0(L)
is a nonzero section. Then there exists a vector space, that we denote by

H̃1((L, s̄, ψ1), (M,ψ2))

that parametrizes all extensions

0 → (M,ψ2) → (E, φ) → (L,ψ1) → 0

together with a section s ∈ H0(E) that projects onto s̄. This vector space is the first
hypercohomology of the complex:

L∗M → L∗MK ⊕M

f 
→ (fψ1 − ψ2f, f(s̄)).

The zero class corresponds to the split extension of Higgs bundles together with a trivial
lift of the section, meaning that the section is the given one in the quotient. Again, if two
classes in H̃1((L, s̄, ψ1), (M,ψ2)) differ by the multiplication by a nonzero scalar, then
they define isomorphic triples.

Proof. The proof is similar to the Čech cohomology proof that we outlined in lemma 3.3,
however a bit of care is needed because now subobject and quotient are inverted.

Let us denote by τ ∈ C1(L∗M) the off diagonal portion of the transition matrix for
our vector bundle E. If lαβ and mαβ are the transition functions for L and M respectively
then the transition functions for E can be written as(

mαβ ταβ
0 lαβ

)
.

Let then ν ∈ C0(L∗MK) be the off diagonal part of the Higgs field. So that the
restriction of the Higgs field to the open subset Uα will be:(

ψ2α να
0 ψ1α

)
.

Let also θ ∈ C0(M) be the lift of s̄ restricted to M so that on the open set Uα the
section is written: (

θα
s̄α

)
.

We can write the compatibility relation between τ and ν that becomes dν = ψ2τ−τψ1.
Also, the compatibility between θ and τ becomes dθ = τ s̄. The two relations together
are the kernel of the following map:

C0(L∗MK)⊕ C0(M)⊕ C1(L∗M) → C1(L∗MK)⊕ C1(M)

(ν, θ, τ) 
→ (dν − τψ1 + ψ2τ, dθ − τ s̄).

We produce two isomorphic extensions if and only if there is γ ∈ C0(L∗M) that
produces an equivalence between the Čech data representing them. The matrices of such
an equivalence will look like: (

1 γα
0 1

)
.
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The compatibility relation with the respective transition matrices of E and E′ there-
fore becomes τ ′ − τ = dγ while for the Higgs fields is ν′ − ν = ψ2γ − γψ1 and for the
sections is θ′ − θ = γs̄. These relations can also be expressed as the image of the map

C0(L∗M) → C0(L∗MK)⊕ C0(M)⊕ C1(L∗M)

γ 
→ (ψ2γ − γψ1, dγ, γs̄).

This completes the assertion about the hypercohomology. The last statement is ob-
tained in the same way as in the proof of lemma 3.3.

We have the following.

Proposition 3.7. Fix a degree d and a critical value σ̄. The locus Wd,−
σ̄ consists of those

triples (E, φ, s) for which (E, φ) fits into an extension:

0 → (M,ψ2) → (E, φ) → (L,ψ1) → 0

where degL = (d − σ̄)/2, degM = (d + σ̄)/2 and s ∈ H0(E) projects to a nonzero
s̄ ∈ H0(L). The condition on (E, φ, s) is that either the extension is nonsplit or it is split
but s �= s̄.

Furthermore, there is a projective map πd,−
σ̄ : Wd,−

σ̄ → Xd
σ̄ whose fibers are projective

spaces.

Proof. Consider a triple (E, φ, s) that fits in the extension:

0 → (M,ψ2) → (E, φ) → (L,ψ1) → 0

with s /∈ H0(M), degL = (d− σ̄)/2 and degM = (d+ σ̄)/2. Call s̄ the projection of s on
L and assume that either the extension is nonsplit or that it is split and s̄ �= s. Take a
φ-invariant line subbundle L′ of E. Then, if s ∈ H0(L′) then certainly L′ is not contained
in M so there is a nonzero map L′ → L and therefore degL′ ≤ degL = (d− σ̄)/2.

Observe that if degL′ = degL then L = L′ and the extension has to be split. In this
case however the section is contained entirely in L which is a contradiction. Therefore
it has to be degL′ < degL and hence degL′ < (d − σ̄+)/2. In any case degL′ is either
contained in M , and then degL′ ≤ degM < (d+ σ̄)/2 or it has a nonzero map L′ → L
so again degL′ < (d+ σ̄+)/2. This proves that (E, φ, s) is σ̄+-stable. Clearly (E, φ, s) is
also σ̄−-unstable because of M .

Vice versa, every triple in Wd,−
σ̄ has to be σ̄−-unstable and σ̄+-stable so it has to be

of the above form.
The map

πd,−
σ̄ : Wd,−

σ̄ → Xd
σ̄

(E, φ, s) 
→ (L, s̄,M, ψ1, ψ2)

is defined by sending a triple (E, φ, s) to the canonical σ̄−-destabilizing subbundle M
and to the pair (L, s̄) consisting of the quotient E/M and the projection of s onto the
quotient. Both L and M are endowed with Higgs fields because M is φ-invariant.

The fibers of πd,−
σ̄ are the projectivized hypercohomology spaces of lemma 3.6.

In order to compute dim H̃1((L, s̄, ψ1), (M,ψ2)) we can use the following exact se-
quence of complexes:

0 0 L∗M L∗M 0

0 KL∗M KL∗M ⊕M M 0.
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The 0th hypercohomology of the first complex of course vanishes, furthermore the
same is true for the 0th hypercohomology of the last complex because the map L∗M →M
is injective on the global sections. This in particular implies that the 0th hypercohomology
of the middle complex also vanishes because it is between two zeroes in the long exact
sequence of hypercohomologies associated to the exact sequence of complexes we wrote.

The rest of the sequence is:

0 →H0(KL∗M) → H̃1(M, s̄, ψ2, L, ψ1) → H0(MOD) →
→H1(KL∗M) → H̃2(M, s̄, ψ2, L, ψ1) → 0.

where D is the divisor associated to s̄. Since H1(KL∗M) ∼= H0(M∗L)∗ and, in our
situation, degM > degL, we see that H1(KL∗M) = 0. Therefore H̃2(M, s̄, ψ2, L, ψ1) = 0
as well and we can compute

dim H̃1(M, s̄, ψ2, L, ψ1) = dimH0(KL∗M) + dimH0(MOD) = g − 1 + (d+ σ̄)/2.

For the map πd,−
σ̄ : Wd,−

σ̄ → Xd
σ̄ we find that the fibers are actually of constant

dimension so that Wd,−
σ̄ is a projective bundle over → Xd

σ̄. To sum up, both families
have a map to Xd

σ̄. However, in the context of the first family, the divisor yields a line
bundle that is the subobject L of the extension we produce, while the Jacobian part
yields the quotient M . For the second family the roles are exchanged, meaning that the
quotient comes with a section, while the subobject is parametrized by the Jacobian part.

Another difference is that, while the fibers of the map πd,+
σ̄ : Wd,+

σ̄ → Xd
σ̄ can vary in

dimension, the fibers of π−
σ̄ : Wd,−

σ̄ → Xd
σ̄ are of constant dimension.

3.1.2 Motives of the flip loci
We can start by handling the computation of [Wd,+

σ̄ ].

Proposition 3.8. We have the following motivic equality:

[Wd,+
σ̄ ] = L2g · [CP2g−3] · [S(d−σ̄)/2(C)] · [J(C)] + L3g−2 · [S(d−σ̄)/2(C)] · [Sσ̄(C)].

Proof. We have a map πd,+
σ̄ : Wd,+

σ̄ → Xd
σ̄ and we can stratify Xd

σ̄ according to the
dimension of the fibers of this map. The strata Sd,+

σ̄,i appear in definition 3.5. We get a
preliminary formula

[Wd,+
σ̄ ] =

σ̄∑
i=0

[Sd,+
σ̄,i \ Sd,+

σ̄,i+1] · [CP2g−3+i].

For i > 0, we can identify Sd,+
σ̄,i with the locus of points (L, s, ψ1,M, ψ2) of Xd

σ̄ such
that ψ1 = ψ2 and M = L(D′) with dimH0(O(D′)) ≥ i. For i = 0 the same holds but
there is an extra disjoint part coming from the open locus of Xd

σ̄ where ψ1 �= ψ2.
Let us consider the maps:

S(d−σ̄)/2(C)× Sσ̄(C)×H0(K) → S(d−σ̄)/2(C)× J σ̄(C)×H0(K)

(L, s,D′, ψ) 
→ (L, s, L(D′), ψ)

S(d−σ̄)/2(C)× J σ̄(C)×H0(K) → Xd
σ̄

(L, s,A, ψ) 
→ (L, s, , ψ, L⊗A,ψ).

Clearly the composition of the two is the map (L, s,D′, ψ) 
→ (L, s, ψ, L(D′), ψ) and
the second one is injective. Since we have an alternative description of Sd,+

σ̄,i for i > 0 we
can compute:

[Sd,+
σ̄,i \ Sd,+

σ̄,i+1] = [S(d−σ̄)/2(C)] · [V σ̄
i ] · [H0(K)].

where V k
i = {A ∈ Jk(C)| dimH0(A) = i}.
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For i = 0, there is an extra contribution to Sd,+
σ̄,0 \ Sd,+

σ̄,1 coming from the locus of Xd
σ̄

where ψ1 �= ψ2. Therefore:

[Sd,+
σ̄,0 \ Sd,+

σ̄,1 ] = [S(d−σ̄)/2(C)] · [V σ̄
0 ] · [H0(K)]+

[S(d−σ̄)/2(C)] · [J (d+σ̄)/2(C)] · ([H0(K)]2 − [H0(K)]
)
.

Putting all together we get:

[Wd,+
σ̄ ] = [CP2g−3] · [S(d−σ̄)/2(C)] · [J (d+σ̄)/2(C)] · ([H0(K)]2 − [H0(K)]

)
+

+ [S(d−σ̄)/2(C)] · [H0(K)] ·
σ̄∑

i=0

[V σ̄
i ] · [CP2g−3+i].

First, we try to evaluate the second part of the sum. With a simple algebraic trick
we get:

σ̄∑
i=0

[V σ̄
i ] · [CP2g−3+i] = [V σ̄

0 ] · [CP2g−3]+

+

σ̄∑
i=1

[V σ̄
i ] · ([CP2g−3+i]− [CPi−1]) +

σ̄∑
i=1

[V σ̄
i ] · [CPi−1].

Now, clearly

[CP2g−3+i]− [CPi−1] = Li(1 + · · ·+ L2g−3) = Li · [CP2g−3].

Recall that the canonical map:

Sσ̄(C) → J σ̄(C)

D 
→ O(D)

has V σ̄
1 as image and the fiber over L ∈ J σ̄(C) is PH0(L). This implies that:

σ̄∑
i=1

[V σ̄
i ] · [CPi−1] = [Sσ̄(C)].

Putting everything in the formula we get:

σ̄∑
i=0

[V σ̄
i ] · [CP2g−3+i] = [Sσ̄(C)] +

σ̄∑
i=0

[V σ̄
i ] · [CP2g−3] · Li.

With tricks similar to the ones we already used we find:

σ̄∑
i=0

[V σ̄
i ] · Li =

σ̄∑
i=1

[V σ̄
i ] · (Li − 1) +

σ̄∑
i=0

[V σ̄
i ] =

=

σ̄∑
i=1

[V σ̄
i ] · (Li − 1) + J σ̄(C)

and
σ̄∑

i=1

[V σ̄
i ] · (Li − 1) = (L− 1) ·

σ̄∑
i=1

[V σ̄
i ] · [CPi−1] = (L− 1) · [Sσ̄(C)].

Recalling that [H0(K)] = Lg and that the Jacobian varieties of any degree of the
curve are all isomorphic we can find a final formula for:

[Wd,+
σ̄ ] = [CP2g−3] · [S(d−σ̄)/2(C)] · [J (d+σ̄)/2(C)] · ([H0(K)]2 − [H0(K)]

)
+
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+ [S(d−σ̄)/2(C)] · [H0(K)] ·
σ̄∑

i=0

[V σ̄
i ] · [CP2g−3+i] =

= Lg · (Lg − 1) · [CP2g−3] · [S(d−σ̄)/2(C)] · [Jd(C)]+

+ Lg · [S(d−σ̄)/2(C)] · ([Sσ̄(C)] + (L− 1) · [CP2g−3] · [Sσ̄(C)] + [CP2g−3] · [J σ̄(C)]
)
=

= L2g · [CP2g−3] · [S(d−σ̄)/2(C)] · [J(C)] + L3g−2 · [S(d−σ̄)/2(C)] · [Sσ̄(C)].

As for Wd,−
σ̄ , we can easily compute the motive because the fibers of the map πd,−

σ

are projective spaces of constant dimension. Therefore we get:

Proposition 3.9. We have the motivic equality:

[Wd,−
σ̄ ] = L2g · [S(d−σ̄)/2(C)] · [J (d+σ̄)/2(C)] · [CP(d+σ̄)/2+g−2].

3.1.3 Interaction between the flip loci and the attracting sets

One of the nice features of the moduli spaces of Bradlow-Higgs triples is that they
combine the wall-crossing with the presence of the C∗-action. In this section we study
how the flip loci intersect the various attracting sets.

Definition 3.10. We will denote by SWd,+
σ̄ the subvariety of Wd,+

σ̄ containing those
triples in M2,d

σ̄− whose underlying Bradlow pair is σ̄−-stable. NSWd,+
σ̄ will instead denote

the subvariety of SWd,+
σ̄ containing the triples whose underlying Bradlow pair is not σ̄−-

stable. Analogously for SWd,−
σ̄ and NSWd,−

σ̄ but in relation to σ̄+-stability.
We define Bd,+

σ̄ to be the locally closed subvariety containing those triples in F (d),1+
(2),σ̄−

such that the underlying Bradlow pair is contained in PW d,+
σ̄ . We also define Bd,−

σ̄ as
the locally closed subvariety containing those triples in F (d),1+

(2),σ̄+
such that the underlying

Bradlow pair is contained in PW d,−
σ̄ .

Let us first remark that when d < 0 there are no σ-stable Bradlow pairs, for any σ.
Therefore many of the subvarieties we examine in the following are empty for d < 0. We
can prove two propositions summarizing the relations and properties of the loci defined
above.

Proposition 3.11. Let σ̄ be a critical value. Then:

(i) Wd,+
σ̄ = SWd,+

σ̄ �NSWd,+
σ̄ .

(ii) SWd,+
σ̄ = F

(d),1+
(2),σ̄−

∩Wd,+
σ̄ and in particular SWd,+

σ̄ ⊂ F
(d),1+
(2),σ̄−

.

(iii) The canonical map Wd,+
σ̄ → Xd

σ̄ restricts to a map NSWd,+
σ̄ → Xd

σ̄ whose fiber
over (L, s,M,ψ1, ψ2) is PH0(M∗LK).

(iv) Wd,−
σ̄ = SWd,−

σ̄ �NSWd,−
σ̄ .

(v) SWd,−
σ̄ = F

(d),1+
(2),σ̄+

∩Wd,−
σ̄ and in particular SWd−

σ̄ ⊂ F
(d),1+
(2),σ̄+

.

(vi) The canonical map Wd,−
σ̄ → Xd

σ̄ restricts to a map NSWd,−
σ̄ → Xd

σ̄ whose fiber
over (L, s̄,M, ψ1, ψ2) is PH0(L∗MK).

(vii) NSWd,+
σ̄ ⊂ F

((d−σ̄)/2,(d+σ̄)/2),1+
(1,1),σ̄−

.

(viii) NSWd,−
σ̄ ⊂ F

((d+σ̄)/2,(d−σ̄)/2),2+
(1,1),σ̄+

.

45



Proof. (i) follows from the fact that if (E, φ, s) ∈ Wd,+
σ̄ then it is σ̄−-stable. Obviously,

this can happen either because the underlying Bradlow pair is already σ̄−-stable or
because the underlying Bradlow pair is unstable but the triple is σ̄−-stable anyway.

For (ii) it is enough to recall that F (d),1+
(2),σ̄−

contains all the triples in M2,d
σ̄− for which

the underlying Bradlow pair is itself σ̄−-stable.
To prove (iii) consider a triple in (E, φ, s) ∈ Wd,+

σ̄ whose subobject is (L,ψ1), with
s ∈ H0(L) and whose quotient is (M,ψ2). From lemma 3.3 we know that there is an
exact sequence:

H0((M,ψ2), (L,ψ1)) → H0(M∗ ⊗ L) → H0(M∗ ⊗ L⊗K) → H1((M,ψ2), (L,ψ1)) →
→ H1(M∗ ⊗ L) → H1(M∗ ⊗ L⊗K) → H2((M,ψ2), (L,ψ1)) → 0

and the triple is represented, up to isomorphism, by a class in PH1((M,ψ2), (L,ψ1)).
Also, the underlying Bradlow pair is σ̄−-stable if and only if the class representing

the triple does not lie in

ker(H1((M,ψ2), (L,ψ1)) → H1(M∗ ⊗ L)).

Since degM > degL we know that H0(M∗L) = 0 so that

H0(M∗LK) = ker(H1((M,ψ2), (L,ψ1)) → H1(M∗L)).

From this we deduce that the projectivization of the previous kernel is the fiber of
NSWd,+

σ̄ → Xd
σ̄.

Statements (iv) and (v) follow as (i) and (ii). As for (vi), let (E, φ, s) ∈ Wd,−
σ̄ and

(M,ψ2) be the subobject, while (L,ψ1) be the quotient and s /∈ H0(M) projects to
s̄ ∈ H0(M). From lemma 3.6 we know there is a different exact sequence:

0 → H0(KL∗M) → H̃1((L, s̄, ψ1), (M,ψ2)) → H0(MOD) → 0

where D is the divisor associated to s̄. The underlying Bradlow pair, (E, s) is σ̄+-stable
if and only if the class representing (E, φ, s) in PH̃1((L, s̄, ψ1), (M,ψ2)) is not in

ker(H̃1((L, s̄, ψ1), (M,ψ2)) → H0(MOD)) = H0(KL∗M).

Therefore the canonical map Wd,−
σ̄ → Xd

σ̄ also restricts to a canonical map

NSWd,−
σ̄ → Xd

σ̄

whose fiber over (L, s̄,M, ψ1, ψ2) is PH0(KL∗M).
For (vii) consider a triple in NSW+

σ̄ . The underlying Bradlow pair is split, the maximal
σ̄−-destabilizing subbundle does not contain the section and is of degree (d + σ̄)/2. So
the Harder-Narasimhan type of the underlying pair matches with F ((d−σ̄)/2,(d+σ̄)/2),1+

(1,1),σ̄−
.

Statement (viii) is proved as (vii).

Proposition 3.12. Let σ̄ be a critical value. Then:

(i) Bd,+
σ̄ is the inverse image of PW d,+

σ̄ with respect to the limit map F
(d),1+
(2),σ̄−

→
F

(d),1
(2),σ̄−

∼=M2,d
σ̄− .

(ii) SWd,+
σ̄ ⊂ Bd,+

σ̄ and Bd,+
σ̄ \SWd,+

σ̄ ⊂ F
((d+σ̄)/2,(d−σ̄)/2),2+
(1,1),σ̄+

. The complement can be
described as:⎧⎪⎪⎨⎪⎪⎩

(E, φ, s) such that
E = L⊕M

s ∈ H0(L), degL = (d− σ̄)/2, degM = (d+ σ̄)/2
and φ does not preserve L

⎫⎪⎪⎬⎪⎪⎭ .
and therefore contains NSWd,−

σ̄ . Furthermore, if σ̄ > 2g−2 then the locally closed
subvariety we just described is equal to NSWd,−

σ̄ .
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(iii) Bd,−
σ̄ is the inverse image of PW d,−

σ̄ with respect to the limit map F
(d),1+
(2),σ̄+

→
F

(d),1
(2),σ̄+

∼=M2,d
σ̄+

.

(iv) SWd,−
σ̄ ⊂ Bd,−

σ̄ and Bd,−
σ̄ \SWd,−

σ̄ ⊂ F
((d−σ̄)/2,(d+σ̄)/2),1+
(1,1),σ̄−

. The complement can be
described as:⎧⎪⎪⎨⎪⎪⎩

(E, φ, s) such that
E =M ⊕ L

s ∈ H0(L), degL = (d− σ̄)/2, degM = (d+ σ̄)/2
and φ does not preserve M

⎫⎪⎪⎬⎪⎪⎭ .
and therefore contains NSWd,+

σ̄ . Furthermore, if σ̄ > 2g−2 then the locally closed
subvariety we just described is empty and therefore NSWd,+

σ̄ is empty as well.

Proof. (i) follows by the identification F (d),1
(2),σ̄−

∼=M2,d
σ̄− .

For (ii), the first inclusion follows from the definitions. Note that Bd,+
σ̄ \ SWd,+

σ̄

consists of triples that are σ̄−-stable and whose underlying pair is also σ̄−-stable. However
those triples in Bd,+

σ̄ that are σ̄+-unstable are contained in SWd,+
σ̄ and by definition the

triples in Bd,+
σ̄ whose underlying Bradlow pair is σ̄+-stable are also contained in SWd,+

σ̄ .
Therefore Bd,+

σ̄ \SWd,+
σ̄ consists of triples that are both σ̄− and σ̄+-stable. The underlying

Bradlow pairs are however σ̄−-stable but σ̄+-unstable. Since the maximal destabilizing
has degree (d− σ̄)/2 and contains the section, it will fit the Harder-Narasimhan type of
F

((d+σ̄)/2,(d−σ̄)/2),2+
(1,1),σ̄+

. For the second part we see immediately that the complement has
to consist of triples whose underlying pair is both σ̄+-unstable and σ̄−-unstable and so
has to be split and all triples in NSWd,−

σ̄ are of this form. The statement about the case
σ̄ > 2g − 2 follows because, since degM∗LK < 0 then any Higgs field assigned to such
a split pair has to preserve the subobject not containing the section (denoted M) and
therefore any triple in

F
((d+σ̄)/2,(d−σ̄)/2),2+
(1,1),σ̄+

\ (Bd,+
σ̄ \ SWd,+

σ̄ )

will also lie in NSWd,−
σ̄ proving the converse inclusion.

Statement (iii) is proved by using the identification F
(d),1
(2),σ̄+

∼= M2,d
σ̄+

and statement
(iv) has an analogous proof to (ii).

We conclude the section by giving a more intuitive idea of the previous proposi-
tion. Let us examine the flip locus Wd,+

σ̄ for instance. Then it can be decomposed as
Wd,+

σ̄ = SWd,+
σ̄ �NSWd,+

σ̄ . SWd,+
σ̄ is the intersection of the flip locus with the attract-

ing set F (d),1+
(2),σ̄−

while NSWd,+
σ̄ is the intersection of the flip locus with the attracting set

F
((d−σ̄)/2,(d+σ̄)/2),1+
(1,1),σ̄−

. After Wd,+
σ̄ has been removed from the moduli space some of the

limit points are also removed, but then the limits for the triples in Bd,+
σ̄ \ SWd,+

σ̄ are
replaced by new limit points after the critical value is passed and in fact, for example,
Bd,+

σ̄ \SWd,+
σ̄ ⊂ F

((d+σ̄)/2,(d−σ̄)/2),2+
(1,1),σ̄+

indicating that the limit is in a different attracting
set.

3.2 The case of low stability parameter

3.2.1 Odd degree

As we saw in corollary 2.20, M2,d
ε is smooth for d < 0 and for d odd bigger than 4g−4.

In particular in this case M2,d
ε is semiprojective and we can use the Białynicki-Birula

stratification to compute the motive. We start by introducing a notation:
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Definition 3.13. Let d be an odd integer. Denote by Io1 (d) the set of pairs of integers
(d1, d2) for which F (d1,d2),1

(1,1),ε is a nonempty fixed point component of M2,d
ε . Analogously,

let Io2 (d) denote the set of pairs of integers (d1, d2) for which F
(d1,d2),2
(1,1),ε is a nonempty

fixed point component of M2,d
ε .

From theorem 2.33, we see that Io1 (d) is empty if d < 1 and if d ≥ 1 consists of the
pairs (d1, d2) satisfying d1+d2 = d and the following three equivalent sets of inequalities:

max

{
0,
d+ 1

2
+ 1− g

}
≤ d1 ≤ d− 1

2

d+ 1

2
≤ d2 ≤ min

{
d− 1

2
+ g − 1, d

}
max{1, 2g − 2− d} ≤ d1 − d2 + 2g − 2 ≤ 2g − 3 only odd values.

Io2 (d) instead consists of the pairs of integers (d1, d2) satisfying d1 + d2 = d and the
following three equivalent sets of inequalities:

d+ 1

2
+ 1− g ≤ d1 ≤ min

{
d,
d− 1

2

}
max

{
0,
d+ 1

2

}
≤ d2 ≤ d− 1

2
+ g − 1

1 ≤ d1 − d2 + 2g − 2 ≤ min{d+ 2g − 2, 2g − 3} only odd values.

From proposition 2.34 we know that every nonsplit fixed point is smooth. Since the
dimension of the Zariski tangent space can only increase by specialization, we see that
F

(d),1+
(2),ε always lies in the smooth part of M2,d

ε . The same is true for split type 2 fixed
points and their corresponding attracting sets. In order to compute the motive of those
type 1 attracting sets containing singular points we need to work a bit more. Recall from
theorem 2.33 that we have the following description of the type 1 attracting loci:

F
(d1,d2),1+
(1,1),ε =

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) where E is defined by

0 → E2 → E → E1 → 0
s /∈ H0(E2), degEi = di

and φ does not preserve E2

⎫⎪⎪⎬⎪⎪⎭
for (d1, d2) ∈ Io1 (d). We will make use of the following definition.

Definition 3.14. Let (d1, d2) ∈ Io1 (d). Let us denote by NSPF
(d1,d2),1+
(1,1),ε the locus of

F
(d1,d2),1+
(1,1),ε where the underlying Bradlow pair lies in PW d,−

d2−d1
and by SPF (d1,d2),1+

(1,1),ε the
complement, i.e. the locus where the pair is split.

With the above definition we clearly have:

NSPF
(d1,d2),1+
(1,1),ε = Bd,−

d2−d1
∩ F (d1,d2),1+

(1,1),ε

and also:
F

(d1,d2),1+
(1,1),ε = Bd,−

d2−d1
∩ F (d1,d2),1+

(1,1),ε � SPF (d1,d2),1+
(1,1),ε .

In order to compute the motives we need the following.

Proposition 3.15.

Bd,−
d2−d1

= NSPF
(d1,d2),1+
(1,1),ε � SWd,−

d2−d1
= Bd,−

d2−d1
∩ F (d1,d2),1+

(1,1),ε � SWd,−
d2−d1

.

Proof. The second equality is immediate from the previous observation. From part (iv)
of proposition 3.12 we see that SWd,−

d2−d1
= Bd,−

d2−d1
, also by definition if (E, φ, s) ∈
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NSPF
(d1,d2),1+
(1,1),ε then (E, s) ∈ PW d,−

d2−d1
and so by definition 3.10 (E, φ, s) ∈ Bd,−

d2−d1
. This

proves one of the inclusions.
For the reverse inclusion, again from definition 3.10 we have (E, φ, s) ∈ Bd,−

d2−d1
if and

only if (E, s) ∈ PW d,−
d2−d1

. If this is the case, then either φ preserves the subobject of
degree d2 that does not contain the section, and then (E, φ, s) ∈ SWd,−

d2−d1
or φ does not

preserve such subobject and then (E, φ, s) ∈ NSPF
(d1,d2),1+
(1,1),ε . This proves the second

inclusion and also the fact that the union is disjoint.

Now we can write the motivic identity:

[F
(d1,d2),1+
(1,1),ε ] = [Bd,−

d2−d1
]− [SWd,−

d2−d1
] + [SPF

(d1,d2),1+
(1,1),ε ].

Therefore it suffices to compute the previous three motives. Since we will use [Bd,−
σ̄ ] in

other sections, we can compute it now.

Proposition 3.16. Let σ̄ be a critical value. Then we have:

[Bd,−
σ̄ ] = L1+4(g−1)[S(d−σ̄)/2(C)]

(
(L− 1)[S(d+σ̄)/2(C)] + [J (d+σ̄)/2(C)]

)
+

+ L1+4(g−1)L
(d−σ̄)/2 − L
L− 1

[S(d−σ̄)/2(C)]
(
(L− 1)[Sσ̄(C)] + [J σ̄(C)]

)
.

Proof. Recall that (E, φ, s) ∈ Bd,−
σ̄ if and only if (E, s) ∈ PW d,−

σ̄ . Therefore consider the
composition of maps:

Bd,−
σ̄ → PW d,−

σ̄ → S(d−σ̄)/2(C)× J (d+σ̄)/2(C)

(E, φ, s) 
→ (E, s) 
→ (L, s̄,M)

where the second map is defined by using the fact that, if (E, s) ∈ PW d,−
σ̄ , then E is an

extension:
0 →M → E → L→ 0

with s /∈ H0(M) projecting to s̄ ∈ H0(L) and degM = (d+ σ̄)/2, degL = (d− σ̄)/2.
As explained in [50, proposition 3.3], over (L, s̄,M) the fiber of

PW d,−
σ̄ → S(d−σ̄)/2(C)× J (d+σ̄)/2(C)

is PH0(MOD) where D is the divisor associated to s̄ i.e. CP(d−σ̄)/2−1. Inside PH0(MOD)
there is the locus corresponding to those pairs whose underlying vector bundle is split.
Such a locus is the projectivization of

ker
(
H0(MOD) → H1(L∗M)

) ∼= H0(M)
/
H0(L∗M).

Over the points of such a kernel the vector bundle will be a split sum and so the
fiber of Bd,−

σ̄ → PW−
σ̄ is H0(K EndE) whose dimension, according to lemma 2.19, is

2+4(g− 1)+dimH0(L∗M), over the complement instead the fiber is still H0(K EndE)
but the dimension is now 1 + 4(g − 1) + dimH0(L∗M).

We introduce the stratification:

Zd,σ̄
i,j := {(L, s̄,M) ∈ S(d−σ̄)/2(C)× J (d+σ̄)/2(C) : dimH0(L∗M) = i, dimH0(M) = j}.

With this definition and the previous observations we can compute the motive of
Bd,−

σ̄ :

[Bd,−
σ̄ ] =
∑
i,j

[Zd,σ̄
i,j ]
(
[CPj−i−1]L2+4(g−1)+i + ([CP(d−σ̄)/2−1]− [CPj−i−1])L1+4(g−1)+i

)
=
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=
L1+4(g−1)

L− 1

∑
i,j

[Zd,σ̄
i,j ]
(
Lj+1 − Li+1 + L(d−σ̄)/2+i − Lj

)
Now observe that:∑

i,j

[Zd,σ̄
i,j ]Lj = [S(d−σ̄)/2(C)]

∑
j

[V
(d+σ̄)/2
j ]Lj =

= [S(d−σ̄)/2(C)]
(
(L− 1)[S(d+σ̄)/2(C)] + [J (d+σ̄)/2(C)]

)
.

In order to compute ∑
i,j

[Zd,σ̄
i,j ]Li

we can argue as follows. Consider the isomorphism:

S(d−σ̄)/2(C)× J (d+σ̄)/2(C) → S(d−σ̄)/2(C)× J σ̄(C)

(L, s̄,M) 
→ (L, s̄, L∗M).

The stratum ∪jZ
d,σ̄
i,j in S(d−σ̄)/2(C)×J (d+σ̄)/2(C) is then isomorphic to S(d−σ̄)/2(C)×

V σ̄
i in S(d−σ̄)/2(C)× J σ̄(C). Therefore:∑

i,j

[Zd,σ̄
i,j ]Li = [S(d−σ̄)/2(C)]

∑
i

[V σ̄
i ]Li = [S(d−σ̄)/2(C)]

(
(L− 1)[Sσ̄(C)] + [J σ̄(C)]

)
.

Putting all together, we get

[Bd,−
σ̄ ] = L1+4(g−1)[S(d−σ̄)/2(C)]

(
(L− 1)[S(d+σ̄)/2(C)] + [J (d+σ̄)/2(C)]

)
+

+ L1+4(g−1)L
(d−σ̄)/2 − L
L− 1

[S(d−σ̄)/2(C)]
(
(L− 1)[Sσ̄(C)] + [J σ̄(C)]

)
.

Proposition 3.17. We have the identity:

[SPF
(d1,d2),1+
(1,1),ε ] = L3g−1+d2−d1 [Sd1(C)][Sd1−d2+2g−2(C)].

Proof. Recall that SPF (d1,d2),1+
(1,1),ε consists of those pairs in the form (E1⊕E2, s, φ) where

degEi = di, s ∈ H0(E1) and φ does not preserve E2. First of all, note that the moduli
space of such split pairs is

Sd1(C)× Jd2(C).

Second, we can always write the Higgs field into matrix form:

φ =

(
φ11 φ21
φ12 φ22

)
where

φ21 : E2 → E1 ⊗K

has to be nonzero, and
φ12 : E1 → E2 ⊗K.

Since the endomorphisms of the underlying pair are just diagonal (possibly non scalar)
then we can see that (E1 ⊕ E2, s, φ) and (E1 ⊕ E2, s, φ

′) are isomorphic if and only if
there exists λ ∈ C∗ such that:

φ′ =
(
φ′11 φ′21
φ′12 φ′22

)
=

(
φ11 λφ21

λ−1φ12 φ22

)
.
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Let’s consider the map:

SPF
(d1,d2),1+
(1,1),ε → Sd1(C)× Jd2(C)×H0(K)2

forgetting the off-diagonal parts of the Higgs field. Then, by what we said, the fiber of
such a map over (E1, s, E2) will be:(

H0(KE1E
∗
2 ) \ {0}

)×H0(KE2E
∗
1 )
/
C∗.

This allows us to compute the motive of SPF (d1,d2),1+
(1,1),σ by stratifying Sd1(C) ×

Jd2(C) according to the dimension of H0(KE1E
∗
2 ). Note in fact that the dimension

of H0(KE2E
∗
1 ) is constantly equal to g − 1 + d2 − d1. Call V d1−d2+2g−2

i the stratum of
Jd1−d2+2g−2 where the dimension of the global sections of the line bundle is equal to i.
Then we have:

[SPF
(d1,d2),1+
(1,1),ε ] =

∑
i

(
L2g[Sd1(C)][V d1−d2+2g−2

i ]Ld2−d1+g−1[CPi−1]
)
=

=L3g−1+d2−d1 [Sd1(C)][Sd1−d2+2g−2(C)].

Lastly, we have the following.

Proposition 3.18. Let σ̄ be a critical value. The following motivic equalities hold:

[NSWd,−
σ̄ ] = L2g[S(d−σ̄)/2(C)][J(C)][CPg−2+σ̄]

[SWd,−
σ̄ ] = L2g[S(d−σ̄)/2(C)][J(C)] · ([CP(d+σ̄)/2+g−2]− [CPg−2+σ̄]).

Proof. From part (vi) of proposition 3.11 we know that there exists a map NSWd,−
σ̄ →

Xd
σ̄ whose fiber over (L, s̄,M, ψ1, ψ2) is PH0(KL∗M). Note that the dimension of the

fibers is constant and is always g − 2 + σ̄. Therefore:

[NSWd,−
σ̄ ] = L2g[S(d−σ̄)/2(C)][J(C)][CPg−2+σ̄]

and

[SWd,−
σ̄ ] = [Wd,−

σ̄ ]−[NSWd,−
σ̄ ] = L2g[S(d−σ̄)/2(C)][J(C)]·([CP(d+σ̄)/2+g−2]−[CPg−2+σ̄]).

We can now have a formula for the type 1 attracting sets.

Proposition 3.19.

[F
(d1,d2),1+
(1,1),ε ] = L3g−2+d2 [Sd1(C)][Sd1−d2+2g−2(C)]+

+ (L4g−2 − L4g−3)[Sd1(C)]

(
[Sd2(C)]− [J(C)]

Ld2+1−g − 1

L− 1

)
.

Proof. We can compute:

[F
(d1,d2),1+
(1,1),ε ] = [Bd,−

d2−d1
]− [SWd,−

d2−d1
] + [SPF

(d1,d2),1+
(1,1),ε ] =

= L1+4(g−1)[Sd1(C)]
(
(L− 1)[Sd2(C)] + [J(C)]

)
+

+ L1+4(g−1)L
d1 − L
L− 1

[Sd1(C)]
(
(L− 1)[Sd2−d1(C)] + [J(C)]

)
+

− L2g[Sd1(C)][J(C)] · ([CPd2+g−2]− [CPg−2+d2−d1 ])+

+ L3g−1+d2−d1 [Sd1(C)][Sd1−d2+2g−2(C)] =
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= (L4g−2 − L4g−3)[Sd1(C)][Sd2(C)] + L4g−3[Sd1(C)][J(C)]+

+ (L4g−3+d1 − L4g−2)[Sd1(C)][Sd2−d1(C)] + L4g−3L
d1 − L
L− 1

[Sd1(C)][J(C)]+

− L3g−1+d2−d1
Ld1 − 1

L− 1
[Sd1(C)][J(C)]+

+ L3g−1+d2−d1 [Sd1(C)][Sd1−d2+2g−2(C)] =

= (L4g−2 − L4g−3)[Sd1(C)][Sd2(C)]+

+ (L4g−3 − L3g−1+d2−d1)
Ld1 − 1

L− 1
[Sd1(C)][J(C)]+

+ [Sd1(C)]
(
(L4g−3+d1 − L4g−2)[Sd2−d1(C)] + L3g−1+d2−d1 [Sd1−d2+2g−2(C)]

)
.

From Serre’s duality we have the identity:

[Sd2−d1(C)] = Ld2−d1−g+1[Sd1−d2+2g−2(C)] +
Ld2−d1−g − 1

L− 1
[J(C)]

for 0 ≤ d2 − d1 ≤ 2g − 2. Using this we can proceed in the computation:

[F
(d1,d2),1+
(1,1),ε ] = (L4g−2 − L4g−3)[Sd1(C)][Sd2(C)]+

+ (L4g−3 − L3g−1+d2−d1)
Ld1 − 1

L− 1
[Sd1(C)][J(C)]+

+ (L4g−3+d1 − L4g−2)
Ld2−d1+1−g − 1

L− 1
[Sd1(C)][J(C)]+

+ (L4g−3+d1 − L4g−2)Ld2−d1+1−g[Sd1(C)][Sd1−d2+2g−2(C)]+

+ L3g−1+d2−d1 [Sd1(C)][Sd1−d2+2g−2(C)] =

= (L4g−2 − L4g−3)[Sd1(C)][Sd2(C)]+

− (L4g−2 − L4g−3)
Ld2+1−g − 1

L− 1
[Sd1(C)][J(C)]+

+ L3g−2+d2 [Sd1(C)][Sd1−d2+2g−2(C)] =

= L3g−2+d2 [Sd1(C)][Sd1−d2+2g−2(C)]+

+ (L4g−2 − L4g−3)[Sd1(C)]

(
[Sd2(C)]− [J(C)]

Ld2+1−g − 1

L− 1

)
.

Remark 3.20. Observe that, according to proposition 2.34, the attracting set F (d1,d2),1+
(1,1),ε

lies in the smooth part if and only if d2 > 2g− 2. In that case we can apply [3, Theorem
4.1] and deduce that F (d1,d2),1+

(1,1),ε → F
(d1,d2),1
(1,1),ε is a smooth affine fibration of rank 3g−2+d2

(see section 2.4.3). In this case we have [Sd2(C)] = [J(C)][CPd2−g] and hence:

[F
(d1,d2),1+
(1,1),ε ] = L3g−2+d2 [Sd1(C)][Sd1−d2+2g−2(C)]

which is the same as computing F (d1,d2),1+
(1,1),ε as an affine fibration.

We can summarize the section in the following.

Theorem 3.21. For d ≥ 0 odd and 0 < ε < 1 we have:

[M2,d
ε ] =L1+4(g−1)[M2,d

ε ] +
∑

(d1,d2)∈Io
1 (d)

L1+3(g−1)+d2 [Sd1(C)][Sd1−d2+2g−2]+

+
∑

(d1,d2)∈Io
2 (d)

L1+4(g−1)[Sd2(C)][Sd1−d2+2g−2(C)]+

+
∑

(d1,d2)∈Io
1 (d)

(L4g−2 − L4g−3)[Sd1(C)]

(
[Sd2(C)]− [J(C)]

Ld2+1−g − 1

L− 1

)
.
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3.2.2 The moduli spaces for even degree
For even degree d, the situation is quite different due to the presence of strictly

semistable Higgs bundles. In fact, for 0 < ε < 2 and even d, it is clear that for every
ε-stable triple (E, φ, s) the underlying Higgs bundle (E, φ) is semistable. Therefore, there
is still an Abel-Jacobi map M2,d

ε → M2,d.
We can say something a bit more precise for ε-stability for even degree. It is easy to

see that (E, φ, s) is ε-stable if and only if (E, φ) is semistable and if L ⊂ E is a φ-invariant
line subbundle of E with degL = degE/2, then s /∈ H0(L).

Furthermore, the fibers of the Abel-Jacobi map are more complicated than just pro-
jectivized spaces of global sections because of the fact that the equivalence relation for
the moduli spaces is isomorphism for triples and S-equivalence for Higgs bundles.
However, it is still true that above the stable locus of M2,d the Abel-Jacobi map behaves
exactly as in the case of odd degree.

Let us outline the strategy for the computation of [M2,d
ε ].

Definition 3.22. Let 0 < ε < 2 and d be an even integer. We define two locally closed
subvarieties of M2,d

ε by:

X d
1 =

⎧⎨⎩
(E, φ, s) ∈ M2,d

ε such that
(E, s) is ε-stable and
E is strictly semistable

⎫⎬⎭
and

X d
2 =

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) such that E fits into an exact sequence

0 → L→ E →M → 0
with degL = degM , s ∈ H0(L) and

φ does not preserve L

⎫⎪⎪⎬⎪⎪⎭ .
First we examine the attracting sets of M2,d

ε more closely. For the following, refer to
theorem 2.33 and 2.4.3.

The attracting set corresponding to nonsplit fixed points is F (d),1+
(2),ε and is nonempty

if and only if d ≥ 0. There is a limit map F (d),1+
(2),ε → M2,d

ε whose fiber over a pair (E, s)

is H0(K EndE). We can write:

M2,d
ε =M2,d

ε,st �M2,d
ε,ss

where the first subvariety corresponds to the locus of pairs having underlying stable
vector bundle, while the second one corresponds to the locus of pairs having strictly
semistable vector bundle. Then F

(d),1+
(2),ε → M2,d

ε is an affine fibration over M2,d
ε,st with

fibers of dimension 4g − 3. The inverse image of F (d),1+
(2),ε → M2,d

ε over M2,d
ε,ss is instead

precisely X d
1 defined above.

For the split cells we can introduce a notation as for the odd degree case.

Definition 3.23. Let d ≥ 0 be an even integer. Denote by Ie1(d) the set of pairs of integers
(d1, d2) for which F (d1,d2),1

(1,1),ε is a nonempty fixed point component of M2,d
ε . Analogously,

let Ie2(d) denote the set of pairs of integers (d1, d2) for which F
(d1,d2),2
(1,1),ε is a nonempty

fixed point component of M2,d
ε

From theorem 2.33, we see that Ie1(d) is nonempty if and only if d ≥ 2 and consists
of pairs of integers (d1, d2) satisfying d1 + d2 = d and the following three equivalent sets
of inequalities:

max {0, d/2 + 1− g} ≤ d1 ≤ d/2− 1

d/2 + 1 ≤ d2 ≤ min {d, d/2 + g − 1}
max{0, 2g − 2− d} ≤ d1 − d2 + 2g − 2 ≤ 2g − 4 only even values
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and Ie2(d) is the set of pairs of integers (d1, d2) satisfying d1 + d2 = d and the following
three equivalent sets of inequalities:

d/2 + 1− g ≤ d1 ≤ min{d/2, d}
max{0, d/2} ≤ d2 ≤ d/2 + g − 1

0 ≤ d1 − d2 + 2g − 2 ≤ min{2g − 2, 2g − 2 + d} only even values.

As we proved in theorem 2.35, the decomposition into attracting cells coincides with
the decomposition according to the Harder-Narasimhan type of the underlying Bradlow
pair. From this we see that F (d/2,d/2),2+

(1,1),ε corresponds to the Harder-Narasimhan type
(d/2, d/2) i.e. the destabilizing subobject of the pair (E, s) is a line bundle of degree d/2
that contains the section s. Therefore F (d/2,d/2),2+

(1,1),ε = X d
2 .

If we denote by Ĩe2(d) = Ie2(d) \ {(d/2, d/2)} then the previous discussion allows us to
write the following preliminary formula for d ≥ 0. Note that the computation of the type
1 attracting set is exactly the same as in section 3.2.1.

[M2,d
ε ] = L1+4(g−1)[M2,d

ε,st] +
∑

(d1,d2)∈Ie
1 (d)

L1+3(g−1)+d2 [Sd1(C)][Sd1−d2+2g−2(C)]+

+
∑

(d1,d2)∈Ĩe
2 (d)

L1+4(g−1)[Sd2(C)][Sd1−d2+2g−2(C)]+

+ [X d
1 ] + [X d

2 ]+

+
∑

(d1,d2)∈Ie
1 (d)

(L4g−2 − L4g−3)[Sd1(C)]([Sd2(C)]− [J(C)][CPd2−g]).

In order to complete the above formula, we are left with computing [M2,d
ε,st], [M2,d

ε,ss],
[X d

1 ] and [X d
2 ]. Let us first state some technical lemmas that we will need in the com-

putation.

Lemma 3.24. Let E be a rank 2 vector bundle over C fitting in the following exact
sequence:

0 → L→ E →M → 0

with L and M line bundles of the same degree.
Then:

dimH0(EndE) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if L �=M and the extension is nonsplit
2 if L �=M and the extension is split
2 if L =M and the extension is nonsplit
4 if L =M and the extension is split

Proof. The statement is clear in the last case, where EndE = O4 and in the second case
where EndE = O2 ⊕L∗M ⊕M∗L since M∗L and L∗M have global sections if and only
if L =M .

Suppose now that the extension is nonsplit and that L �= M . Consider the exact
sequence:

0 → O → EL∗ →ML∗ → 0.

Since H0(L∗M) = 0, the long exact sequence obtained by applying H0 to the above
short exact sequence will yield H0(EL∗) = H0(O) = C. Consider now:

0 → LM∗ → EM∗ → O → 0.

Again, H0(LM∗) = 0 therefore we get an injection H0(EM∗) → H0(O). Such a map
however sends γ :M → E to pγ where p : E →M is the projection in the exact sequence
for E.
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If H0(EM∗) �= 0 then there would be a map γ : M → E such that pγ �= 0 i.e. a
splitting of the sequence which is a contradiction. Therefore H0(EM∗) = 0.
We can conclude this case by observing that there is a further exact sequence:

0 → EM∗ → EndE → EL∗ → 0

yielding the long exact sequence:

0 → H0(EM∗) → H0(EndE) → H0(EL∗) → . . .

Note that the map H0(EndE) → H0(EL∗) sends f : E → E to fi : L → E where
i : L→ E is the inclusion map in the exact sequence for E. Since IE is sent to i : L→ E
we conclude that the map is surjective and therefore H0(EndE) = C.

When the sequence is nonsplit and L =M , from the sequence:

0 → LM∗ → EM∗ → O → 0,

arguing as before, we deduce that H0(EM∗) = C. However this also implies that
H0(EL∗) = C and therefore from the sequence

0 → EM∗ → EndE → EL∗ → 0

we can deduce that H0(EndE) = C2 because H0(EndE) → H0(EL∗) is still surjective.

Lemma 3.25. Let n ≥ 0 be an integer and let Gr(2, n + 2) denote the Grassmannian
variety of vector spaces of dimension two inside Cn+2. Then:

[Sym2(CPn)] = [Gr(2, n+ 2)] =
(Ln+2 − 1)(Ln+1 − 1)

(L2 − 1)(L− 1)
.

Proof. From [15, Lemma 4.4] we deduce, by putting X = {pt}, that Symn(Lm) = Lmn

in the ring of motives. Therefore:

[Sym2(CPn)] =
∑

0≤i<j≤n

Li+j +
n∑

j=0

L2j =
n∑

j=1

Lj

(
Lj − 1

L− 1

)
+

L2n+2 − 1

L2 − 1
=

=
n∑

j=0

L2j

L− 1
−

n∑
j=0

Lj

L− 1
+

L2n+2 − 1

L2 − 1
=

=
L2n+2 − 1

(L2 − 1)(L− 1)
− Ln+1 − 1

(L− 1)2
+

L2n+2 − 1

L2 − 1
=

=
L2n+2 − 1− Ln+2 + L− Ln+1 + 1 + L2n+3 − L2n+2 − L+ 1

(L2 − 1)(L− 1)
=

=
(Ln+2 − 1)(Ln+1 − 1)

(L2 − 1)(L− 1)
.

To compute the motive of Gr(2, n+ 2) we can view it as a global quotient of:

{(u, v) ∈ Cn+2 : u �= v, u �= 0 �= v}

by GL2. Therefore:

[Gr(2, n+ 2)] =
(Ln+2 − 1)(Ln+2 − L)

(L2 − 1)(L2 − L)
=

(Ln+2 − 1)(Ln+1 − 1)

(L2 − 1)(L− 1)

and the result follows.
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Lemma 3.26. Let E be a rank two vector bundle fitting in the nonsplit exact sequence:

0 → L→ E →M → 0

with L and M line bundles and degL = degM .
Then, the locus ofH0(K EndE) consisting of the Higgs fields preserving the subobject

L is a vector subspace of H0(K EndE) of dimension 3g − 1.

Proof. Let us call i and p the inclusion and projection in the exact sequence defining E.
First observe that φ ∈ H0(K EndE) preserves L if and only if pφi = 0. This means that
the locus we are looking for is the kernel of the map:

H0(K EndE) → H0(KL∗M)

φ 
→ pφi.

Furthermore, such a map factors as:

H0(K EndE) → H0(KE∗M)

φ 
→ pφ

followed by

H0(KE∗M) → H0(KL∗M)

γ 
→ γi.

Suppose that L �= M . As we computed in 3.24, dimH0(K EndE) = 1 + 4(g − 1),
dimH0(KE∗L) = 2g − 1, dimH0(KE∗M) = 2g − 2. From the exact sequence:

0 → H0(KE∗L) → H0(K EndE) → H0(KE∗M) → . . .

we see that dim Im(H0(K EndE) → H0(KE∗M)) = 2g − 2 = dimH0(KE∗M). There-
fore H0(K EndE) → H0(KE∗M) is surjective and this implies:

dim Im(H0(K EndE) → H0(KL∗M)) = dim Im(H0(KE∗M) → H0(KL∗M)).

Furthermore, from the sequence:

0 → H0(K) → H0(KE∗M) → H0(KL∗M) → . . .

we deduce that dim Im(H0(KE∗M) → H0(KL∗M)) = g − 2.
To conclude, we have:

dimker(H0(K EndE) → H0(KL∗M)) =

= 1 + 4(g − 1)− dim Im(H0(KE∗M) → H0(KL∗M)) = 3g − 1.

In the case when L = M the proof works in the same way but dimH0(K EndE) =
2+ 4(g− 1), dimH0(KE∗L) = 2g− 1, dimH0(KE∗M) = 2g− 1. Here H0(K EndE) →
H0(KE∗M) is still surjective and dim Im(H0(KE∗M) → H0(KL∗M)) = g − 1 from
which we deduce that the dimension of our kernel is again 3g − 1.

Let us start by defining a decomposition of X d
1 and M2,d

ε,ss that we will use in the
computation of the motive.

Definition 3.27. Let (E, φ, s) be a triple in X d
1 . Then there are three possibilities for

E: it is a nonsplit extension of two line bundles of the same degree, it is a split extension
of two different line bundles of the same degree or it is a split extension of two copies of
the same line bundle. Accordingly we define:

U d
1 =

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) such that E fits into a nonsplit exact sequence

0 → L→ E →M → 0
with degL = degM , s /∈ H0(L) and

φ ∈ H0(K EndE) arbitrary

⎫⎪⎪⎬⎪⎪⎭
56



covering the first case,

V d
1 =

⎧⎨⎩
(E, φ, s) such that E = L⊕M

with degL = degM , s /∈ H0(L) and s /∈ H0(M), L �=M and
φ ∈ H0(K EndE) arbitrary

⎫⎬⎭
covering the second and finally

W d
1 =

⎧⎨⎩
(E, φ, s) such that E = L⊕ L

s = u⊕ v with u, v linearly independent and
φ ∈ H0(K EndE) arbitrary

⎫⎬⎭
covering the third.

Similarly for M2,d
ε,ss we define:

Ũ d
1 =

⎧⎨⎩
(E, φ, s) such that E fits into a nonsplit exact sequence

0 → L→ E →M → 0
with degL = degM , s /∈ H0(L)

⎫⎬⎭
covering the first case,

Ṽ d
1 =

{
(E, φ, s) such that E = L⊕M

with degL = degM , L �=M , s /∈ H0(L) and s /∈ H0(M)

}
covering the second and finally

W̃ d
1 =

{
(E, φ, s) such that E = L⊕ L

s = u⊕ v with u, v linearly independent

}
covering the third.

Remark 3.28. A few comments are in order for the previous definitions. Suppose that
0 < ε < 2. For a nonsplit exact sequence:

0 → L→ E →M → 0

with degL = degM it is clear that (E, s) is ε-stable if and only if s /∈ L. For E = L⊕M
with L �= M instead, since AutE = (C∗)2, we see that (E, s) is ε-stable if and only
if s is not concentrated in L nor M , which is the same as saying that s = u ⊕ v with
0 �= u ∈ H0(L) and 0 �= v ∈ H0(M). Finally, when E = L ⊕ L then AutE = GL4(C)
so (E, s) is ε-stable if and only if s = u⊕ v with u, v ∈ H0(L) generating a dimension 2
subspace.

Proposition 3.29. We have the following motivic equalities:

[U d
1 ] = L2+4(g−1)

∑
j≥1

[V
d/2
j ]

(
Lj − 1

L− 1

)(
Ld/2 − 1

L− 1
− Lj−1 − 1

L− 1

)
+

+ L1+4(g−1)
∑
j≥0

[V
d/2
j ]

(
[Sd/2(C)]− Lj − 1

L− 1

)(
Ld/2 − 1

L− 1
− Lj − 1

L− 1

)
.

and

[Ũ d
1 ] =
∑
j≥1

[V
d/2
j ]

(
Lj − 1

L− 1

)(
Ld/2 − 1

L− 1
− Lj−1 − 1

L− 1

)
+

+
∑
j≥0

[V
d/2
j ]

(
[Sd/2(C)]− Lj − 1

L− 1

)(
Ld/2 − 1

L− 1
− Lj − 1

L− 1

)
.
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Proof. Let (E, s) ∈ Ũ d
1 and E be defined by a nonsplit exact sequence:

0 → L→ E →M → 0.

Then, by Lemma 3.24, we know that dimH0(EndE) = 1 if L �= M and 2 if L = M .
Note that in both cases, if p : E → M is the projection map in the exact sequence
defining E, p(s) ∈ H0(M) is preserved by the action of invertible global endomorphisms
of E. In particular this implies that we have a well defined map:

Ũ d
1 → Sd/2(C)× Jd/2(C)

(E, s) 
→ (M,p(s), L).

As we can deduce easily from the exact sequence:

0 → H0(M∗L) → H0(L) → H0(LOD) → H1(M∗L) → H1(L) → 0

where D is the divisor of p(s), the fiber of the previous map above (M,p(s), L) is

CPd/2−1 \ CPdimH0(L)−dimH0(M∗L)−1.

Recall that in this case PH0(LOD) parametrizes isomorphism classes of pairs (E, s)
that have L as a subobject, M as a quotient and the section s projects to the one fixed
for M .

We stratify Sd/2(C)×Jd/2(C) according to the two dimensions appearing in the fibers
of the above map. Define:

Zd
ij := {(M,p(s), L) ∈ Sd/2(C)× Jd/2(C) : dimH0(M∗L) = i, dimH0(L) = j}.

Note that dimH0(M∗L) can only be 1 if L =M and 0 if L �=M . In particular:

Zd
0j := {(M,p(s), L) ∈ Sd/2(C)× Jd/2(C) : L �=M, dimH0(L) = j}

and
Zd
1j := {(M,p(s), L) ∈ Sd/2(C)× Jd/2(C) : L =M, dimH0(L) = j}.

Furthermore it is clear that:

[Zd
0j ] + [Zd

1j ] = [Sd/2(C)][V
d/2
j ]

and
[Zd

1j ] = [V
d/2
j ][CPj−1].

From these considerations we can deduce that:

[Ũ d
1 ] =
∑
j≥2

[Zd
1j ]
(
[CPd/2−1]− [CPj−2]

)
+ [Zd

11][CP
d/2−1]+

+
∑
j≥1

[Zd
0j ]
(
[CPd/2−1]− [CPj−1]

)
+ [Zd

00][CP
d/2−1] =

=
∑
j≥1

[V
d/2
j ]

(
Lj − 1

L− 1

)(
Ld/2 − 1

L− 1
− Lj−1 − 1

L− 1

)
+

+
∑
j≥0

[V
d/2
j ]

(
[Sd/2(C)]− Lj − 1

L− 1

)(
Ld/2 − 1

L− 1
− Lj − 1

L− 1

)
.

Instead, since dimH0(K EndE) = 1 + 4(g − 1) if L �=M and 2 + 4(g − 1) if L =M
we can look at the following map as well:

U d
1 → Ũ d

1

(E, φ, s) 
→ (E, s)
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and deduce

[U d
1 ] = L2+4(g−1)

∑
j≥2

[Zd
1j ]
(
[CPd/2−1]− [CPj−2]

)
+ L2+4(g−1)[Zd

11][CP
d/2−1]+

+ L1+4(g−1)
∑
j≥1

[Zd
0j ]
(
[CPd/2−1]− [CPj−1]

)
+ L1+4(g−1)[Zd

00][CP
d/2−1] =

= L2+4(g−1)
∑
j≥1

[V
d/2
j ]

(
Lj − 1

L− 1

)(
Ld/2 − 1

L− 1
− Lj−1 − 1

L− 1

)
+

+ L1+4(g−1)
∑
j≥0

[V
d/2
j ]

(
[Sd/2(C)]− Lj − 1

L− 1

)(
Ld/2 − 1

L− 1
− Lj − 1

L− 1

)
.

Remark 3.30. Note the similarities in the computation of [U d
1 ] and [Bd,−

σ̄ ] in proposition
3.16.

Proposition 3.31. We have the following motivic equalities:

[V d
1 ] = L2+4(g−1)

⎛⎝[Sym2(Sd/2(C))]−
∑
j≥1

[V
d/2
j ][Sym2(CPj−1)]

⎞⎠ .
and

[Ṽ d
1 ] = [Sym2(Sd/2(C))]−

∑
j≥1

[V
d/2
j ][Sym2(CPj−1)].

Proof. Note that for all (E, s) ∈ Ṽ d
1 we have dimH0(K EndE) = 2 + 4(g − 1) therefore

[V d
1 ] = L2+4(g−1)[Ṽ d

1 ]. Second, by the description of Ṽ d
1 it is easy to see that it is isomor-

phic to Sym2(Sd/2(C)) \ Γ where Γ is the locus of divisors (D1, D2) ∈ Sym2(Sd/2(C))
such that O(D1) ∼= O(D2). To understand Γ, we look at the map

Sym2(Sd/2(C)) → Sym2(Jd/2(C))

(D1, D2) 
→ (O(D1),O(D2)).

Γ is the inverse image of the diagonal in Sym2(Jd/2(C)) with respect to the previous
map. In particular there is a map:

Γ → Jd/2(C)

(D1, D2) 
→ O(D1) = O(D2).

whose fiber over L ∈ Jd/2(C) is Sym2(PH0(L)). Therefore we get:

[Ṽ d
1 ] = [Sym2(Sd/2(C))]−

∑
j≥1

[V
d/2
j ][Sym2(CPj−1)].

Proposition 3.32. We have the following motivic equalities:

[W d
1 ] = L4g

∑
j≥2

[V
d/2
j ][Gr(2, j)]

and

[W̃ d
1 ] =
∑
j≥2

[V
d/2
j ][Gr(2, j)].
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Proof. Since for all (E, s) ∈ W̃ d
1 we have dimH0(K EndE) = 4g then we have [W d

1 ] =

L4g[W̃ d
1 ].

Furthermore, by the definition of W̃ d
1 we have a map:

W̃ d
1 → Jd/2

(L⊕ L, s) 
→ L

and, since s = u ⊕ v with u, v ∈ H0(L) linearly independent, the fiber of such a map
above L is Gr(2, H0(L)), the Grassmannian of two dimensional subspaces of H0(L). The
result follows.

Proposition 3.33. We have the following motivic equalities:

[X d
1 ] = L2+4(g−1)[Sd/2(C)](Ld/2−1 − 1) + L1+4(g−1)[Jd/2(C)][Sd/2(C)][CPd/2−1]+

− L1+4(g−1)[Sd/2(C)]2 + L2+4(g−1)[Sym2(Sd/2(C))]

and

[M2,d
ε,ss] = [Jd/2(C)][Sd/2(C)][CPd/2−1]− [Sd/2(C)]2 + [Sym2(Sd/2(C))].

Proof. We use propositions 3.29, 3.31 and 3.32 to compute directly:

[X d
1 ] = [U d

1 ] + [V d
1 ] + [W d

1 ] =

= L2+4(g−1)
∑
j≥1

[V
d/2
j ]

(
Lj − 1

L− 1

)(
Ld/2 − 1

L− 1
− Lj−1 − 1

L− 1

)
+

+ L1+4(g−1)
∑
j≥0

[V
d/2
j ]

(
[Sd/2(C)]− Lj − 1

L− 1

)(
Ld/2 − 1

L− 1
− Lj − 1

L− 1

)
+

+ L2+4(g−1)

⎛⎝[Sym2(Sd/2(C))]−
∑
j≥1

[V
d/2
j ][Sym2(CPj−1]

⎞⎠+

+ L4g
∑
j≥2

[V
d/2
j ][Gr(2, j)] =

= L2+4(g−1)[CPd/2−1]
∑
j≥1

[V
d/2
j ][CPj−1]− L2+4(g−1)

∑
j≥1

[V
d/2
j ]

(
Lj − 1

L− 1

)(
Lj−1 − 1

L− 1

)
+

+ L1+4(g−1)
∑
j≥0

[V
d/2
j ][Sd/2(C)][CPd/2−1]− L1+4(g−1)

∑
j≥0

[V
d/2
j ][Sd/2(C)][CPj−1]+

− L1+4(g−1)
∑
j≥0

[V
d/2
j ][CPd/2−1][CPj−1] + L1+4(g−1)

∑
j≥0

[V
d/2
j ]

(
Lj − 1

L− 1

)2
+

+ L2+4(g−1)[Sym2(Sd/2(C))]− L2+4(g−1)
∑
j≥1

[V
d/2
j ][Gr(2, j + 1)]+

+ L4g
∑
j≥2

[V
d/2
j ][Gr(2, j)] =

= L2+4(g−1)[CPd/2−1][Sd/2(C)] + L1+4(g−1)[Jd/2(C)][Sd/2(C)][CPd/2−1]+

− L1+4(g−1)[Sd/2(C)]2 − L1+4(g−1)[Sd/2(C)][CPd/2−1] + L2+4(g−1)[Sym2(Sd/2(C))]+

+ L1+4(g−1)
∑
j≥1

[V
d/2
j ]

(
− L
(
Lj − 1

L− 1

)(
Lj−1 − 1

L− 1

)
+

(
Lj − 1

L− 1

)2
+

− L
(Lj+1 − 1)(Lj − 1)

(L2 − 1)(L− 1)
+ L3 (L

j − 1)(Lj−1 − 1)

(L2 − 1)(L− 1)

)
=

= L1+4(g−1)[CPd/2−1][Sd/2(C)](L− 1) + L1+4(g−1)[Jd/2(C)][Sd/2(C)][CPd/2−1]+
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− L1+4(g−1)[Sd/2(C)]2 + L2+4(g−1)[Sym2(Sd/2(C))]+

+ L1+4(g−1)
∑
j≥1

[V
d/2
j ][CPj−1](1− L) =

= L2+4(g−1)[Sd/2(C)](Ld/2−1 − 1) + L1+4(g−1)[Jd/2(C)][Sd/2(C)][CPd/2−1]+

− L1+4(g−1)[Sd/2(C)]2 + L2+4(g−1)[Sym2(Sd/2(C))].

Furthermore:

[X̃ d
1 ] = [Ũ d

1 ] + [Ṽ d
1 ] + [W̃ d

1 ] =

= [CPd/2−1]
∑
j≥1

[V
d/2
j ][CPj−1]−

∑
j≥1

[V
d/2
j ]

(
Lj − 1

L− 1

)(
Lj−1 − 1

L− 1

)
+

+
∑
j≥0

[V
d/2
j ][Sd/2(C)][CPd/2−1]−

∑
j≥0

[V
d/2
j ][Sd/2(C)][CPj−1]+

−
∑
j≥0

[V
d/2
j ][CPd/2−1][CPj−1] +

∑
j≥0

[V
d/2
j ]

(
Lj − 1

L− 1

)2
+

+ [Sym2(Sd/2(C))]−
∑
j≥1

[V
d/2
j ][Gr(2, j + 1)] +

∑
j≥2

[V
d/2
j ][Gr(2, j)] =

= [Sd/2(C)][CPd/2−1] + [Jd/2(C)][Sd/2(C)][CPd/2−1]+

− [Sd/2(C)][CPd/2−1]− [Sd/2(C)]2 + [Sym2(Sd/2(C))]+

+
∑
j≥1

[V
d/2
j ](Lj − 1)

(L2 − 1)(L− 1)

(
(Lj − Lj−1)(L+ 1)− (Lj+1 − 1) + (Lj−1 − 1)

)
=

= [Jd/2(C)][Sd/2(C)][CPd/2−1]− [Sd/2(C)]2 + [Sym2(Sd/2(C))].

Proposition 3.34. We have the following motivic equality:

[X d
2 ] = [Sd/2(C)][Jd/2(C)][CPg−2]L1+4(g−1) + [Sd/2(C)]L3g−2(L2g−2 + Lg − 1).

Proof. Recall the description:

X d
2 =

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) such that E fits into an exact sequence

0 → L→ E →M → 0
with degL = degM , s ∈ H0(L) and

φ does not preserve L

⎫⎪⎪⎬⎪⎪⎭ .
We can divide the computation of the motive according to whether or not the vector

bundle underlying the triple is split. In both cases it is relevant to distinguish when the
quotient and the subobject are the same or different.

More precisely:

X d
2 =

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) such that E = L⊕ L
s = u⊕ 0 with u ∈ H0(L)

φ does not preserve
the copy of L containing s

⎫⎪⎪⎬⎪⎪⎭ �
⎧⎨⎩

(E, φ, s) such that E = L⊕M
L �=M, s ∈ H0(L), degL = degM

φ does not preserve L

⎫⎬⎭�

�

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(E, φ, s) with E fitting

in a nonsplit exact sequence
0 → L→ E → L→ 0

s ∈ H0(L) and
φ does not preserve the subobject

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(E, φ, s) with E fitting

in a nonsplit exact sequence
0 → L→ E →M → 0
L �=M , s ∈ H0(L) and
φ does not preserve L

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
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Let us name the four strata Y d
i for i = 1, . . . , 4, in the order they appear. We have a

map:

Y d
1 → Sd/2(C)

(L⊕ L, φ, u⊕ 0) 
→ (L, u⊕ 0).

The datum of L and u essentially recovers the pair but then (E, s) will have automor-
phisms. More precisely Aut(E, s) = (C∗)2 × C given by the invertible upper triangular
matrices. These automorphisms act by conjugation on the set of possible Higgs fields:

φ =

(
ψ1 ϑ
γ ψ2

)
where the entries of the matrix are in H0(K) and γ �= 0. A quick computation shows
that the stabilizers of the action are only the scalar multiples of the identity. Therefore
the motive of the fibers of:

Y d
1 → Sd/2(C)

is: [
H0(K)3 × (H0(K) \ {0})

C∗ × C

]
=

L3g(Lg − 1)

L(L− 1)

and

[Y d
1 ] = [Sd/2(C)]

L3g(Lg − 1)

L(L− 1)
.

For the computation of [Y d
2 ] let us first note that the locus of:

Sd/2(C)× Jd/2(C)

defined by the triples (L, s,M) where L =M is the graph Γd of the map:

Sd/2(C) → Jd/2(C)

(L, s) 
→ L

and in particular it is isomorphic to Sd/2(C).
We have a map

Y d
2 → Sd/2(C)× Jd/2(C) \ Γd

(L⊕M,φ, s) 
→ (L, s,M).

As before, the datum of (L, s,M) determines the pair (E, s) but Aut(E, s) = (C∗)2.
The set of Higgs fields not preserving L is H0(K)2 ×H0(KM∗L)× (H0(KL∗M) \ {0})
and the action of Aut(E, s) again has only scalar multiples of the identity as stabilizers.
Therefore the motive of the fibers of

Y d
2 → Sd/2(C)× Jd/2(C) \ Γd

is [
H0(K)2 ×H0(KM∗L)× (H0(KL∗M) \ {0})

C∗

]
=

L3g−1(Lg−1 − 1)

L− 1

and so [
Y d

2

]
=
(
[Sd/2(C)][Jd/2(C)]− [Sd/2(C)]

) L3g−1(Lg−1 − 1)

L− 1
.

For Y d
3 we have a map:

Y d
3 → Sd/2(C)× PExt1(O,O)

(E, φ, s) 
→ (L, s, [E])
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remembering (L, s) and the class of the extension. Note that the target is a trivial pro-
jective bundle of rank g− 1 because it is the pullback to Sd/2(C) of the constant bundle
PExt1(O,O) → {pt}. As we already observed earlier, Aut(E, s) = C∗ × C generated by
nonzero multiples of the identity and multiples of i ◦ p where i and p are the inclusion
and the projection in the exact sequence defining E. The locus of possible Higgs fields
is isomorphic to C2+4(g−1) \ C3g−1 and the conjugation action of Aut(E, s) has scalar
multiples of the identity as stabilizers. Therefore:

[Y d
3 ] = [Sd/2(C)][CPg−1]

(
L1+4(g−1) − L3g−2

)
.

Finally, for Y d
4 , there is a map:

Y d
4 → Bd

(E, φ, s) 
→ (L, s,M, [E])

where Bd is the projective bundle on Sd/2(C)× Jd/2(C) \Γd defined by the pulling back
the projective bundle on J0(C) whose fiber over A is PH1(A), with respect to the map:

Sd/2(C)× Jd/2(C) \ Γd → J0(C)

(L, s,M) 
→M∗L.

Once again, Bd will remember the pair (E, s). In this case the automorphisms of the
pairs are just scalar multiples of the identity and therefore we get:

[Y d
4 ] =
(
[Sd/2(C)][Jd/2(C)]− [Sd/2(C)]

)
[CPg−2]

(
L1+4(g−1) − L3g−1

)
.

Putting everything together we get:

[X d
2 ] = [Sd/2(C)]

L3g(Lg − 1)

L(L− 1)
+
(
[Sd/2(C)][Jd/2(C)]− [Sd/2(C)]

) L3g−1(Lg−1 − 1)

L− 1

+ [Sd/2(C)][CPg−1]
(
L1+4(g−1) − L3g−2

)
+

+
(
[Sd/2(C)][Jd/2(C)]− [Sd/2(C)]

)
[CPg−2]

(
L1+4(g−1) − L3g−1

)
=

= [Sd/2(C)][CPg−1]
(
L1+4(g−1) + L3g−1 − L3g−2

)
+

+
(
[Sd/2(C)][Jd/2(C)]− [Sd/2(C)]

)
[CPg−2]L1+4(g−1) =

= [Sd/2(C)][Jd/2(C)][CPg−2]L1+4(g−1) + [Sd/2(C)]L3g−2(L2g−2 + Lg − 1).

We can summarize the results of this section as follows.

Theorem 3.35. Let d ≥ 0 be an even integer and 0 < ε < 2. Then:

[M2,d
ε ] = L1+4(g−1)[M2,d

ε ] +
∑

(d1,d2)∈Ie
1 (d)

L1+3(g−1)+d2 [Sd1(C)][Sd1−d2+2g−2(C)]+

+
∑

(d1,d2)∈Ie
2 (d)

L1+4(g−1)[Sd2(C)][Sd1−d2+2g−2(C)]+

+ (L− 1)L1+4(g−1)[Sym2(Sd/2(C))] + L1+4(g−1)[Sd/2(C)][Jd/2(C)][CPg−2]+

+ [Sd/2(C)]L3g−2
(
Ld/2+g−1 + L2g−2 − 1

)
+

+
∑

(d1,d2)∈Ie
1 (d)

(L4g−2 − L4g−3)[Sd1(C)]

(
[Sd2(C)]− [J(C)]

Ld2+1−g − 1

L− 1

)
.
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3.3 Direct computation of the motive of M2,d
∞

Using the content of the previous sections, we can compute the motive of M2,d
∞ by

simply starting from the motive of M2,d
ε and then add and subtract the motive of the

flip loci. In other words we have all the ingredients to compute [M2,d
∞ ].

It is interesting to note that it is possible to proceed in the reverse direction, i.e.
first compute [M2,d

∞ ] directly, then add the motives of the flip loci and ultimately deduce
[M2,d

ε ]. Here we outline the strategy for the computation of [M2,d
∞ ].

Recall that [M2,d
∞ ] contains only split type 2 attracting sets. These have the form:

F
(d1,d2),2+
(1,1),∞ =

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) σ-stable where E is defined by

0 → L→ E →M → 0
s ∈ H0(L), degL = d2, degM = d1

and φ does not preserve L

⎫⎪⎪⎬⎪⎪⎭
with d1 and d2 satisfying:

d/2 + 1− g ≤ d1 ≤ d

0 ≤ d2 ≤ d/2 + g − 1

0 ≤ d1 − d2 + 2g − 2 ≤ 2g − 2 + d same parity as d.

Observe that for d2 > d1, which is equivalent to d1 < d/2, F (d1,d2),2+
(1,1),∞ = F

(d1,d2),2+
(1,1),ε

lies entirely in the smooth part of the moduli space (see proposition 2.34) and therefore
the motive can be computed using [3, Theorem 4.1]. If d is even and d1 = d2 = d/2 we
know that F (d/2,d/2),2+

(1,1),∞ = X d
2 .

To compute the remaining motives we assume that d1 > d2. Similar to the computa-
tion of the motive of the type 1 attracting sets, we can further decompose an attracting
set according to the properties of the underlying pair. In fact, we know that for pairs of
the form:

0 → L→ E →M → 0

with degM − degL = k > 0, being in PW d,+
k is equivalent to the extension being

non-split. Therefore we can distinguish between the cases where the underlying pair is
non-split and when E = L⊕M .

Definition 3.36. Let (d1, d2) satisfy d1 + d2 = d, the three inequalities above and
d1 > d2. Let us denote by NSPF (d1,d2),2+

(1,1),∞ the locus of F (d1,d2),2+
(1,1),∞ where the underlying

pair lies in PW d,+
d1−d2

and by SPF (d1,d2),2+
(1,1),∞ the locus where the pair is split.

It is clear from the definitions that we have:

NSPF
(d1,d2),2+
(1,1),∞ = Bd,+

d1−d2
∩ F (d1,d2),2+

(1,1),∞

and:
F

(d1,d2),2+
(1,1),∞ = Bd,+

d1−d2
∩ F (d1,d2),2+

(1,1),∞ � SPF (d1,d2),2+
(1,1),∞ .

We can also prove the following:

Proposition 3.37.

Bd,+
d1−d2

= NSPF
(d1,d2),2+
(1,1),∞ � SWd,+

d1−d2
= Bd,+

d1−d2
∩ F (d1,d2),2+

(1,1),∞ � SWd,+
d1−d2

.

Proof. The second equality follows from the previous remarks. Recall that (E, φ, s) ∈
Bd,+

d1−d2
if and only if (E, s) ∈ PW d,+

d1−d2
. Since by definition (E, φ, s) ∈ NSPF

(d1,d2),2+
(1,1),∞ if

and only if (E, s) ∈ F
(d1,d2),2+
(1,1),∞ and the extension for (E, s) is nonsplit we immediately

get that if (E, φ, s) ∈ NSPF
(d1,d2),2+
(1,1),∞ then (E, s) ∈ PW d,+

d1−d2
and so (E, φ, s) ∈ Bd,+

d1−d2
.
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This proves NSPF (d1,d2),2+
(1,1),∞ ⊂ Bd,+

d1−d2
. We already observed in proposition 3.11 that

SWd,+
d1−d2

⊂ Bd,+
d1−d2

. To conclude it is enough to observe that if (E, φ, s) ∈ NSPF
(d1,d2),2+
(1,1),∞

or (E, φ, s) ∈ SWd,+
d1−d2

then (E, s) ∈ PW d,+
d1−d2

but in the first case the subobject contain-
ing the section is not preserved by φ, since NSPF (d1,d2),2+

(1,1),∞ ⊂ F
(d1,d2),2+
(1,1),∞ , while in the sec-

ond case the subobject containing the section is preserved by φ, since SWd,+
d1−d2

⊂ Wd,+
d1−d2

.
This proves both the reverse inclusion and the fact that the union is disjoint.

Therefore we can write the relation:

[F
(d1,d2),2+
(1,1),σ ] = [Bd,+

d1−d2
]− [SWd,+

d1−d2
] + [SPF

(d1,d2),2+
(1,1),σ ].

Remark 3.38. Note that it is particularly hard to attempt the computation of [Bd,+
d1−d2

]

because for (E, φ, s) ∈ Bd,+
d1−d2

we get a presentation of the pair (E, s) as an extension
of line bundles for which the subobject is not destabilizing. This makes the problem
particularly hard because we need to know the dimension of H0(K EndE) for these
triples and for that we need to know whether or not E is stable and if not who is the
maximal destabilizing subbundle, all of which is not clear from the given presentation.

There is however a way around this. In fact the Bd,+
d1−d2

and Bd,−
d1−d2

are closely related
to the wall-crossing of Bradlow pairs. In fact we have the following relations:

0 = [F
(d),1+
(2),ε ] +

(d−1)/2∑
k=0

(
[Bd,−

2k+1]− [Bd,+
2k+1]
)

for odd d, and

0 = [F
(d),1+
(2),ε ] +

d/2∑
k=0

(
[Bd,−

2k ]− [Bd,+
2k ]
)

for even d. Both these relations imply that if we only wish to compute the sum of all
of the [Bd,+

d1−d2
] then it suffices to [F

(d),1+
(2),ε ], which we computed in the previous sections,

and the sum of the [Bd,−
d1−d2

] which can be computed using proposition 3.16.

In the following propositions we compute the remaining motives.

Proposition 3.39. Let σ̄ be a critical value. The following motivic equalities hold:

[NSWd,+
σ̄ ] = L2g[S(d−σ̄)/2(C)][S2g−2−σ̄(C)] if σ̄ < 2g − 2 or 0 otherwise

[SWd,+
σ̄ ] = L2g · [CP2g−3] · [S(d−σ̄)/2(C)] · [J(C)] + L3g−2 · [S(d−σ̄)/2(C)] · [Sσ̄(C)]+

− L2g[S(d−σ̄)/2(C)][S2g−2−σ̄(C)].

Proof. We already proved that there is a map

NSWd,+
σ̄ → Xσ̄

whose fiber over (L, s,M,ψ1, ψ2) is PH0(KLM∗). Let us define the strata

U+
σ̄,i := {(L, s,M) ∈ S(d−σ̄)/2(C)× J (d+σ̄)/2(C)| dimH0(KLM∗) = i}.

Consider also the map:

S(d−σ̄)/2(C)× J (d+σ̄)/2(C) → S(d−σ̄)/2(C)× J2g−2−σ̄(C)

(L, s,M) 
→ (L, s,KLM∗)

which is clearly an isomorphism. Under this isomorphism U+
σ̄,i corresponds to

V 2g−2−σ̄
i × S(d−σ̄)/2(C).
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Therefore we deduce that:

[U+
σ̄,i] = [V 2g−2−σ̄

i ] · [S(d−σ̄)/2(C)].

So we can compute:

[NSWd,+
σ̄ ] = L2g[S(d−σ̄)/2(C)]

2g−2−σ̄∑
i=0

[V 2g−2−σ̄
i ] · [CPi−1] =

= L2g[S(d−σ̄)/2(C)][S2g−2−σ̄(C)].

Since Wd,+
σ̄ = SWd,+

σ̄ �NSWd,+
σ̄ we also deduce:

[SWd,+
σ̄ ] = [Wd,+

σ̄ ]−[NSWd,+
σ̄ ] = L2g · [CP2g−3] · [S(d−σ̄)/2(C)] · [J(C)]+

+ L3g−2 · [S(d−σ̄)/2(C)] · [Sσ̄(C)]− L2g[S(d−σ̄)/2(C)][S2g−2−σ̄(C)].

Remark 3.40. Note that in the previous proposition we used the motive of Wd,+
σ̄ to

compute [SWd,+
σ̄ ]. Observe that it not strictly necessary and we can compute [SWd,+

σ̄ ]

directly by observing that the restriction of Wd,+
σ̄ → Xd

σ̄ to SWd,+
σ̄ has fibers that

can be well understood. Namely the fiber over (L, s,M,ψ1, ψ2) is PH1((M,ψ2), (L,ψ1))\
PH0(KLM∗) the dimension of which can be computed by considerations similar to those
in proposition 3.8.

Proposition 3.41. We have the identity:

[SPF
(d1,d2),2+
(1,1),σ ] = L2g[Sd2(C)][CPd1−d2+g−2]

(
(L− 1)[Sd2−d1+2g−2(C)] + [J(C)]

)
.

Proof. Recall that SPF (d1,d2),2+
(1,1),σ consists of those pairs in the form (L⊕M, s, φ) where

degL = d2 and degM = d1 have the appropriate degrees, s ∈ H0(L) and φ does not
preserve L. First of all, note that the moduli space of such split pairs is

Sd2(C)× Jd1(C).

Second, we can always write the Higgs field into matrix form:

φ =

(
ψ1 ξ
θ ψ2

)
where

θ : L→M ⊗K

has to be nonzero, and
ξ :M → L⊗K.

Since the endomorphisms of the underlying pair are just diagonal (possibly non scalar)
then we can see that (L⊕M, s, φ) and (L⊕M, s, φ′) are isomorphic if and only if there
exists λ ∈ C∗ such that:

φ′ =
(
ψ′
1 ξ′

θ′ ψ′
2

)
=

(
ψ1 λξ
λ−1θ ψ2

)
.

Let’s consider the map:

SPF
(d1,d2),2+
(1,1),σ → Sd2(C)× Jd1(C)×H0(K)2

forgetting the off-diagonal parts of the Higgs field. Then, by what we said, the fiber of
such a map over (L, s,M) will be:(

H0(KML∗) \ {0})×H0(KLM∗)
/
C∗.
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This allows us to compute the motive of SPF (d1,d2),2+
(1,1),σ in a familiar way by stratify-

ing Sd2(C) × Jd1(C) according to the dimension of H0(KLM∗). Note in fact that the
dimension of H0(KML∗) is constantly equal to g − 1 + d1 − d2. Call Vi the stratum of
Jd1−d2+2g−2 where the dimension of the global sections of the line bundle is equal to i.

Then we have:

[SPF
(d1,d2),2+
(1,1),σ ] =

∑
i

(
L2g[Sd2(C)][Vi]LiL

d1−d2+g−1 − 1

L− 1

)
=

=L2g[Sd2(C)][CPd1−d2+g−2]

(
(L− 1)

∑
i

[Vi][CPi−1] +
∑
i

[Vi]

)
=

=L2g[Sd2(C)][CPd1−d2+g−2]
(
(L− 1)[Sd2−d1+2g−2(C)] + [J(C)]

)
.
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Chapter 4

Bradlow-Higgs triples with poles

In this chapter we will introduce a variation to Bradlow-Higgs triples that is the
analogue to the one in section 1.5 for Higgs bundles. We will see that the results of the
thesis about Bradlow-Higgs triples carry over with almost no modifications.

Let’s start with a definition.

Definition 4.1 (Bradlow-Higgs triples with poles and σ-stability). Let γ > 0 be an
integer and P a point on the smooth projective curve C. A triple (E, φ, s) is said to
be a Bradlow-Higgs γ-triple if (E, φ) is a Higgs γ-bundle (as in definition 1.10) and
s ∈ H0(C,E) is a nonzero section of the underlying vector bundle E.

Let σ be a positive real number. We say (E, φ, s) is σ-(semi)stable if, for all proper
φ-invariant subbundles F ⊂ E, we have:

deg(F )

rk(F )
<
(=)

deg(E) + σ

rk(E)
if s /∈ H0(C,F )

deg(F ) + σ

rk(F )
<
(=)

deg(E) + σ

rk(E)
if s ∈ H0(C,F )

We denote by Mr,d
σ (γ) the corresponding moduli spaces.

Many of the results from the previous chapters are still valid with no or small changes.
We will discuss the differences in the following.

The BNR correspondence explained in section 2.1.1 relates Bradlow-Higgs γ-triples to
coherent systems on the surface PX(γ) = P(OC ⊕K(γP )) which is the compactification
of the total space of K(γP ).

We define a γ-Hitchin base

Ar(γ) = ⊕r
i=0H

0(K(γP )i)

which parametrizes spectral curves in PX(γ) and has dimension r2(g− 1)+ γr(r+1)/2.
Accordingly, there are also modified Hitchin maps:

χr,d
σ (γ) : Mr,d

σ (γ) → Ar(γ)

(E, φ, s) 
→ char poly(φ).

We can also define a C∗-action on the Mr,d
σ (γ) by scaling the Higgs field in the usual

way. Also, the γ-Hitchin maps satisfy the same properties as the original one, namely
they are equivariant with respect to the C∗-action and they are proper.

The fixed point loci and attracting sets have a similar structure and it is possible to
compute the dimension of the positive, negative and zero weight part of the C∗-action
restricted to the Zariski tangent space of a fixed point.
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Definition 4.2. Given a partition r = (r1, . . . , rm) of r, a partition d = (d1, . . . , dm)
and 1 ≤ k ≤ m we denote by

F d,k
r,σ (γ) =

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) ∈ Mr,d

σ (γ) such that E = E1 ⊕ · · · ⊕ Em

with degEi = di, rkEi = ri
φ(Ei) ⊆ Ei−1 ⊗K(γP ), φ(E1) = 0

s ∈ H0(Ek)

⎫⎪⎪⎬⎪⎪⎭
Definition 4.3. Let us fix F d,k

r,σ (γ). We define two locally closed subsets by:

F d,k+
r,σ (γ) = {(E, φ, s) ∈ Mr,d

σ (γ) such that lim
λ→0

(E, φ, s) ∈ F d,k
r,σ (γ)}

F d,k−
r,σ (γ) = {(E, φ, s) ∈ Mr,d

σ (γ) such that lim
λ→∞

(E, φ, s) ∈ F d,k
r,σ (γ)}

Then, similar to the situation for Mr,d described in section 1.3, we have:

Proposition 4.4. Let (E, φ, s) be a point in F
d,k
r,σ (γ), for σ not a critical value. With

the previous notations, the weight 0 part of the C∗-action on T(E,φ,s)Mr,d
σ (γ) is given by

the first hypercohomology of the complex:

m⊕
i=1

Hom(Ei, Ei) →
m⊕
i=2

Hom(Ei, Ei−1 ⊗K(γ))⊕ Ek,

the positive weight part is the first hypercohomology of:⊕
i<j

Hom(Ei, Ej) →
⊕
i≤j

Hom(Ei, Ej ⊗K(γ))⊕
⊕
i>k

Ei

while the negative part is the first hypercohomology of:

m⊕
i>j

Hom(Ei, Ej) →
m⊕

i>j+1

Hom(Ei, Ej ⊗K(γ))⊕
⊕
i<k

Ei

The remarks about extremal values of σ and the U -filtration are still valid once
we change K with K(γP ). There are new estimates on the degrees of the U -filtration.
Namely

degUi ≥ i(i− 1)(1− g)− γ
i(i− 1)

2
.

In particular theorem 2.13 is modified as follows:

Theorem 4.5. (i) Assume that σ is very close to 0, then σ-stability for a triple
(E, φ, s) implies the semistability of (E, φ) and so we have an Abel-Jacobi map:

AJ(γ) : Mr,d
σ (γ) → Mr,d(γ).

For d large enough (e.g. d > r(2g − 1) + (r − 1)2(2g − 2 + γ)) for any semistable
Higgs γ-bundle (E, φ) we have H1(E) = 0 and therefore AJ(γ) is a projective
bundle over the stable part of Mr,d(γ).

(ii) For σ > (r− 1)d+ r(r− 1)(r− 2)(g− 1) + γr(r− 1)(r− 2)/2 and a σ-stable triple
(E, φ, s) corresponding to a pair (F , s) the following three equivalent conditions are
realized:

– there are no φ-invariant subbundles of E which contain the section

– s, φ(s), . . . , φr−1(s) generically generate E

– s as a map OPX(γ) → F has zero dimensional cokernel.
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Also, theorem 2.15 modifies as follows.

Theorem 4.6. The Hitchin map:

χr,d
∞ (γ) : Mr,d

∞ (γ) → Ar(γ)

is the relative Hilbert scheme of d+ r(r− 1)(g − 1) + γr(r− 1)/2 points over the family
of spectral curves Ar(γ).

Deformation theory deserves a special discussion, as increasing γ will make it easier
for a Bradlow-Higgs γ-triple to be a smooth point of the corresponding moduli space.

We still have a complex that computes the dimension of the Zariski tangent space.

Theorem 4.7. Let (E, φ, s) be a σ-stable Bradlow-Higgs γ-triple, then the tangent space
at (E, φ, s) is given by the first cohomology H1(E, φ, s) of the complex:

C0(EndE) → C1(EndE)⊕ C0(K(γP ) EndE)⊕ C0(E) → C1(E)⊕ C1(K(γP ) EndE)

where the first map is
p(k) = (dk, [k, φ], k · s)

and the second one is
q(τ, ν, γ) = (τ · s+ dγ, [τ, φ] + dν).

Furthermore, H0(E, φ, s) = 0.
The same result can be obtained from the hypercohomology of the complex:

EndE → K(γP ) EndE ⊕ E

f 
→ ([f, φ], f(s))

from which we can also deduce the long exact sequence

0 → H0(EndE) → H0(K(γP ) EndE ⊕ E) → T(E,φ,s) →
→ H1(EndE) → H1(K(γP ) EndE ⊕ E) → H2 → 0

The proof of the proposition is completely analogous to proposition 2.2. This also
allows us to compute the dimension by noting that

dimT(E,φ,s) = d+ 2r2(g − 1) + r(1− g) + r2γ + dimH2(E, φ, s).

As in the case of Higgs bundles, we generically have H2(E, φ, s) = H2([·, φ]) = 0.
Note that specializing to γ = 0 does not give the formula for the dimension of the moduli
space of Bradlow-Higgs triples (compare with [40, proposition 7.1]).

Here H2(E, φ, s) is characterized in a slightly different way.

Proposition 4.8. Let (E, φ, s) be a σ-stable γ-triple. Then (H2(E, φ, s))∗ is the kernel
of the following map:

H0(EndE(−γP ))⊕H0(KE∗) → H0(K EndE)

(α, β) 
→ [α, φ] + β ⊗ s.

In particular, dimH2(E, φ, s) ≥ dimH2([·, φ]).
This is particularly important to observe because in general H0(EndE(−γP )) is

smaller than H0(EndE).
Let us discuss the case of rank 2 more in detail. We have the analogue of proposition

2.30, with the same proof.

Proposition 4.9. Let d < 0. Then M2,d
∞ (γ) = M2,d

ε (γ) and both are non-empty iff
d ≥ 2− 2g − γ.
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We can classify the fixed points as in theorem 2.33.

Theorem 4.10. Let d ≥ 2 − 2g − γ be an integer and σ > 0 different from a critical
value. Then we can classify the components of the fixed point locus of M2,d

σ (γ) as follows:

(i) if d ≥ 0 and σ < d then one of the components of the fixed points for the C∗-action
is F (d),1

(2),σ (γ) = M2,d
σ , i.e. the moduli space of σ-stable Bradlow pairs embedded as

triples with zero Higgs field. If d < 0 then there are no σ-stable Bradlow pairs and
so this component is empty.

(ii) if there exists and integer m such that max{0, (d− γ)/2+ 1− g} ≤ m < d−σ
2 , then

there exist components:

F
(d1,d2),1
(1,1),σ (γ) =

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) ∈ M2,d

σ (γ) such that E = E1 ⊕ E2

with degEi = di, rkEi = 1
φ(E2) ⊆ E1 ⊗K,φ(E1) = 0

s ∈ H0(E1)

⎫⎪⎪⎬⎪⎪⎭ ∼=

∼= Sd1(C)× Sd1−d2+2g−2+γ(C).

Here d1 and d2 are integers satisfying d1+d2 = d and one of the following equivalent
inequalities:

max{0, (d− γ)/2 + 1− g} ≤ d1 <
d− σ

2
d+ σ

2
< d2 ≤ min{d, (d+ γ)/2 + g − 1}

max{0, 2g − 2 + γ − d} ≤ d1 − d2 + 2g − 2 + γ < 2g − 2 + γ − σ same parity as d.

(iii) There exist components:

F
(d1,d2),2
(1,1),σ (γ) =

⎧⎪⎪⎨⎪⎪⎩
(E, φ, s) ∈ M2,d

σ (γ) such that E = E1 ⊕ E2

with degEi = di, rkEi = 1
φ(E2) ⊆ E1 ⊗K,φ(E1) = 0

s ∈ H0(E2)

⎫⎪⎪⎬⎪⎪⎭ ∼=

∼= Sd2(C)× Sd1−d2+2g−2+γ(C).

Here d1 and d2 are integers satisfying d1+d2 = d and one of the following equivalent
inequalities:

(d− γ)/2 + 1− g ≤ d1 < min

{
d+ σ

2
, d+ 1

}
max

{
−1,

d− σ

2

}
< d2 ≤ (d+ γ)/2 + g − 1

0 ≤ d1 − d2 + 2g − 2 + γ < 2g − 2 + γ +min{σ, d+ 1} same parity as d.

We can now discuss the dimension of the Zariski tangent space at the fixed point.
Recall that, since limits as λ → 0 for C∗ acting on any γ-triple always exist, if the
dimension of the Zariski tangent space at a fixed point (E, φ, s) is already minimal, i.e.
the fixed point is smooth, then all the triples whose limit as λ → 0 is (E, φ, s) will also
be smooth points. In the following always assume that σ is different from a critical value.

Consider a non-split fixed point (E, 0, s) ∈ M2,d
σ (γ). Pick α ∈ H0(EndE(−γP )) and

β ∈ H0(KE∗). Certainly if (α, β) ∈ H2(E, φ, s)∗ then β = 0. In particular H2(E, φ, s)∗ =
H0(EndE(−γP )). Since (E, s) ∈ M2,d

σ is a σ-stable Bradlow pair, either E is already
semistable and then H0(EndE(−γP )) = 0 or E fits into an extension:

0 →M → E → L→ 0
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where degM > degL and degM < (d+ σ)/2. In this case

H0(EndE(−γP )) = H0(L∗M(−γP ))
regardless of whether or not the extension is split (see proof of lemma 2.19). Since
degL∗M(−γP ) = σ − γ, if γ > σ then all these points are smooth.

A type 1 split fixed point is of the form E = E1 ⊕ E2 with φ : E2 → E1K(γP ) and
s ∈ H0(E1). For these points we always have degE2 > degE1 and so

H0(EndE(−γP )) = H0(E∗
1E2(−γP )).

Pick α ∈ H0(EndE(−γP )) and β ∈ H0(KE∗) then:

[α, φ] =

(−φc 0
0 cφ

)
for c ∈ H0(E∗

1E2(−γP )) and

β ⊗ s =

(
β1s β2s
0 0

)
for βi ∈ H0(KE∗

i ). If (α, β) ∈ H2(E, φ, s)∗ then β = 0 and α = 0 and so every type 1
split fixed point is smooth, regardless of σ.

Finally, a type 2 split fixed point is of the form E = E1⊕E2 with φ : E2 → E1K(γP )
and s ∈ H0(E2). Here H0(EndE(−γP )) = H0(E∗

1E2(−γP )) ⊕ H0(E∗
2E1(−γP )). Pick

α ∈ H0(EndE(−γP )) and β ∈ H0(KE∗) then:

[α, φ] =

(−φc 0
0 cφ

)
for c ∈ H0(E∗

1E2(−γP )), b ∈ H0(E∗
2E1(−γP )) and

β ⊗ s =

(
0 0
β1s β2s

)
for βi ∈ H0(KE∗

i ). If (α, β) ∈ H2(E, φ, s)∗ then β = 0 and

H2(E, φ, s)∗ = H0(E∗
2E1(−γP )).

Since degE∗
2E1(−γP ) = degE1−degE2−γ < −γ+min{σ, d+1}, if γ ≥ min{σ, d+1}

then the fixed point is certainly smooth.
We can summarize the main consequences of the above discussion in the following

proposition.

Corollary 4.11. M2,d
ε (γ) is smooth for all γ ≥ 1. In particular M2,d

ε (γ) is always
semiprojective.

If γ > d then M2,d
σ (γ) is smooth regardless of σ as long as it is different from a critical

value. In this case then M2,d
σ (γ) is semiprojective.

A further consequence of this is the following theorem.

Theorem 4.12. Let γ ≥ 1 be an integer. Then if d < 0 we have:

[M2,d
ε (γ)] =

∑
(d1,d2)∈I2,ε(d,γ)

L4g−4+3γ [Sd2(C)][Sd1−d2+2g−2+γ(C)]

and if d ≥ 0:

[M2,d
ε (γ)] = L4g−4+4γ [M2,d

ε ] +
∑

(d1,d2)∈I1,ε(d,γ)

L3g−3+3γ+d2 [Sd1(C)][Sd1−d2+2g−2+γ(C)]+

+
∑

(d1,d2)∈I2,ε(d,γ)

L4g−4+3γ [Sd2(C)][Sd1−d2+2g−2+γ(C)]
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where I1,ε(d, γ) is the set of pairs of integers (d1, d2) satisfying d1 + d2 = d and:

max{0, (d− γ)/2 + 1− g} ≤ d1 <
d

2
d

2
< d2 ≤ min{d, (d+ γ)/2 + g − 1}

max{0, 2g − 2 + γ − d} ≤ d1 − d2 + 2g − 2 + γ < 2g − 2 + γ same parity as d

while I2,ε(d, γ) is the set of pairs of integers (d1, d2) satisfying d1 + d2 = d and:

(d− γ)/2 + 1− g ≤ d1 < min

{
d+ 1

2
, d+ 1

}
max

{
−1,

d− 1

2

}
< d2 ≤ (d+ γ)/2 + g − 1

0 ≤ d1 − d2 + 2g − 2 + γ < 2g − 2 + γ +min{1, d+ 1} same parity as d.

Furthermore, if γ > d:

[M2,d
∞ (γ)] =

∑
(d1,d2)∈I2,∞(d,γ)

L4g−4+3γ [Sd2(C)][Sd1−d2+2g−2+γ(C)]

where I2,∞(d, γ) is the set of pairs of integers (d1, d2) satisfying d1 + d2 = d and:

(d− γ)/2 + 1− g ≤ d1 ≤ d

0 ≤ d2 ≤ (d+ γ)/2 + g − 1

0 ≤ d1 − d2 + 2g − 2 + γ ≤ 2g − 2 + γ + d same parity as d.

In particular, as done in [21, section 7.2] we can consider the embeddings:

M2,d
σ (γ) → M2,d

σ (γ + 1)

and compute, for σ = ∞ and σ = ε

lim
γ→∞P (M2,d

σ (γ), t).

Theorem 4.13. We have:

lim
γ→∞P (M2,d

ε (γ), t) = lim
γ→∞P (M2,d

∞ (γ), t) =

=
(1 + t3)2g(1 + t)2g

(1− t2)2(1− t4)
= P (CP∞, t)P (BG, t)

where BG is the classifying space of the group G mentioned in [21, section 7.2].

Proof. Recall that dimM2,d
ε (γ) = dimM2,d

∞ (γ) = d+ 6g − 6 + 4γ. We can also directly
compute the Poincaré polynomial of M2,d

ε (γ) since it is semiprojective. Assuming d ≥ 0,
we have:

P (M2,d
ε (γ), t) = P (M2,d

ε , t)+

+
∑

(d1,d2)∈I1,ε(d,γ)

t2g−2+2d−4d1P (Sd1(C), t)P (Sd1−d2+2g−2+γ(C), t)+

+
∑

(d1,d2)∈I2,ε(d,γ)

t2d2P (Sd2(C), t)P (Sd1−d2+2g−2+γ(C), t).

Therefore:

lim
γ→∞P (M2,d

ε (γ), t) = P (M2,d
ε , t) + t2g−2P (S∞(C), t)


d/2�∑
i=0

t2d−4iP (Si(C), t)+
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+ P (S∞(C), t)
∑
i>d/2

t2iP (Si(C), t) =

= P (M2,d
ε , t) + P (S∞(C), t)

∑
i≥0

t2iP (Si(C), t)+

+ P (S∞(C), t)

⎛⎝
d/2�∑
i=0

(t2g−2+2d−4i − t2i)P (Si(C), t)

⎞⎠ .
From [36, remark 6.3] it is immediate to deduce that:

P (M2,d
ε , t) = P (S∞(C), t)

⎛⎝
d/2�∑
i=0

(t2i − t2g−2+2d−4i)P (Si(C), t)

⎞⎠
and hence:

lim
γ→∞P (M2,d

ε (γ), t) = P (S∞(C), t)
∑
i≥0

t2iP (Si(C), t) =

=
(1 + t3)2g(1 + t)2g

(1− t2)2(1− t4)

as we wanted.
For d < 0, M2,d

ε (γ) = M2,d
∞ (γ). Otherwise:

P (M2,d
∞ (γ), t) =

∑
(d1,d2)∈I2,∞(d,γ)

t2d2P (Sd2(C), t)P (Sd1−d2+2g−2+γ(C), t)

and so:

lim
γ→∞P (M2,d

∞ (γ), t) = P (S∞(C), t)
∑
i≥0

t2iP (Si(C), t) =

=
(1 + t3)2g(1 + t)2g

(1− t2)2(1− t4)

as claimed.

We conclude the chapter by examining what happens during the wall-crossing, i.e.
what is the structure of the flip loci.

As in the case of Bradlow-Higgs triples we have two flip loci coming with canonical
maps:

πd,+
σ̄ (γ) : Wd,+

σ̄ (γ) → Xd
σ̄(γ),

πd,−
σ̄ (γ) : Wd,−

σ̄ (γ) → Xd
σ̄(γ)

where
Xd

σ̄(γ) = S(d−σ̄)/2(C)× J (d−σ̄)/2(C)×H0(K(γP ))2.

Triples (E, φ, s) ∈ Wd,+
σ̄ (γ) are characterized as non-split extensions

0 → (L,ψ1) → (E, φ) → (M,ψ2) → 0

where degL = (d− σ̄)/2, degM = (d+ σ̄)/2 and s ∈ H0(L). Here ψi ∈ H0(K(γP )). For
such a triple πd,+

σ̄ (γ)(E, φ, s) = (L, s,M,ψ1, ψ2).
If we fix a point (L, s,M,ψ1, ψ2) ∈ Xd

σ̄(γ) then the fiber of πd,+
σ̄ (γ) over such a point

can be once again characterized using a hypercohomology group H1((M,ψ2), (L,ψ1))
whose dimension is:

dimH1((M,ψ2), (L,ψ1)) =

{
2g − 2 + γ if ψ1 �= ψ2

2g − 2 + γ + dimH0(L∗M(−γP )) if ψ1 = ψ2.
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In particular, if γ > d, Wd,+
σ̄ (γ) is a CP2g−3+γ-bundle over Xd

σ̄(γ) regardless of σ̄.
Triples (E, φ, s) ∈ Wd,−

σ̄ (γ) are characterized as extensions

0 → (M,ψ2) → (E, φ) → (L,ψ1) → 0

where degL = (d − σ̄)/2, degM = (d + σ̄)/2 and s ∈ H0(E) projects to a nonzero
s̄ ∈ H0(L). We must have that either the extension is non-split or it is split but s �= s̄.

If we fix a point (L, s,M,ψ1, ψ2) ∈ Xd
σ̄(γ) then the fiber of πd,−

σ̄ (γ) over such a point
can be once again characterized using a hypercohomology group H̃1((L, s̄, ψ1), (M,ψ2))
whose dimension is:

dim H̃1((L, s̄, ψ1), (M,ψ2)) = (d+ σ̄)/2 + g − 1 + γ

In particular, Wd,−
σ̄ (γ) is always a CP(d+σ̄)/2+g−2+γ-bundle over Xd

σ̄(γ).
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Chapter 5

Hilbert schemes and compactified
Jacobians

5.1 Maulik-Yun and Migliorini-Shende-Viviani formu-
las

Recently there has been a lot of steady progress in relating the cohomology of the
Hilbert scheme of points of a locally planar curve and the cohomology of compactified
Jacobians of the same curve.

In [34], [31] and [45] we find three different approaches to generalize the well known
formula by Macdonald relating the cohomology of the symmetric powers of a smooth
projective curve and the cohomology of the Jacobian. The last progress made in this
direction is [35].

Let X be a complex projective and locally planar curve. If X is smooth of genus
g, denote by Sn(X) its n-th symmetric power and by J(X) its Jacobian. The classical
Macdonald formula states that:∑

n≥0

P (Sn(X), t)qn =
(1 + qt)2g

(1− q)(1− qt2)
=

P (J(X), qt)

(1− q)(1− qt2)
.

If X is integral then the Macdonald formula has been generalized to this case inde-
pendently in [34] and [31], later reproved in [45]. Denote by X [n] the Hilbert scheme of
n points on X and by J(X) the compactified Jacobian parametrizing degree zero rank
one torsion free sheaves on X. A version of the generalized Macdonald formula can be
stated as follows (see for example [31, formula 1.4]):⊕

n≥0

H∗(X [n])qn =
⊕2ga

i=0 GrPi H
∗(J(X))qi

(1−Qq)(1−Q[−2](−1)q)
.

The equality is meant to be of (cohomologically) graded vector spaces. Also, GrPi
refers to the i-th graded piece with respect to the perverse filtration. This particular
filtration on the cohomology of J(X) can be defined by deforming X in a flat family of
curves π : X → B with the following properties (see [31, section 2.1]):

– B is irreducible.

– The fibers of π are integral and locally planar.

– Let π[n] : X [n] → B denote the Hilbert scheme of n points relative to the family π.
Then we assume the total space X [n] is smooth for all n ≥ 0.

– If b ∈ B we denote by δ(b) the delta invariant of π−1(b). Then we assume that
codimB({b}) ≥ δ(b) where {b} is the Zariski closure of the point b ∈ B.
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After we have any of these families π : X → B we also get the relative compactified
Jacobian πJ : J → B whose total space is smooth as a consequence of the previous
axioms. The map πJ is proper and the object RπJ

∗QJ is filtered by its perverse trun-
cations pτ≤i RπJ

∗QJ . The perverse filtration is thus defined by restricting the images of
the natural maps:

H∗ (pτ≤i RπJ
∗QJ
)→ H∗ (RπJ

∗QJ
)
.

to the fiber of π corresponding to the starting curve X. In the papers is also explained
why the perverse filtration does not depend on the choice of the particular family. Fur-
thermore, a similar version of the formula holds for the cohomology of the total spaces
X [n] and J with the perverse filtration. In fact in both [34] and [31] the formula is ob-
tained from a stronger sheaf theoretic statement, i.e. an equality in Db

c(B)[[q]] (see [34,
formula 4]): ⊕

n≥0

qn Rπ
[n]
∗ Q =

⊕
i q

i · Ri πJ
∗Q[−i]

(1− q)(1− qQ[−2](−1))
.

To deduce the statements for a single curve or for the entire family of curves it is
then enough to take the stalks or the global cohomology.

For us, the most relevant example of such a family comes from the Hitchin fibration.
Regard the Hitchin base Ar as the base parametrizing the family of spectral curves
C → Ar. Then in [31, proposition 3.3] is proved that the restriction of this family to the
locus where the spectral curves are integral Cint → Ar

int satisfies the properties that are
necessary for the generalized Macdonald formula to hold.

Note that the fibers of the Hitchin map h : Mn,d → Ar are indeed (torsors over)
compactified Jacobians over Ar

int. Also, as we already noted in proposition 2.15, the
fibers of any of the χn,d

σ : Mn,d
σ → Ar over integral spectral curves are Hilbert schemes

and we also proved that the smooth locus of the Mn,d
σ is contained in the integral locus.

Therefore in the case of Ar
int we know what the analogues of the relative compactified

Jacobian and relative Hilbert schemes are. In the family of spectral curves, however, also
appear curves that are reducible and even non-reduced.

There has been a recent and even broader generalization of the Macdonald formula
to reduced locally planar curves in [35], even though the assumptions on the family of
curves that is allowed are more restrictive. Let us give a brief overview for reduced curves,
details can be found in [35].

Consider a flat family C → B of reduced locally planar curves containing at least a
reducible curve. To generalize the Macdonald formula, several technical assumptions are
needed and we highlight the most important ones here:

– The family has to be independently broken [35, definition 1.10] meaning that we
should have a finite set of flat families CS → BS indexed by subsets S of a fixed
finite set V satisfying some compatibility properties. The idea behind this definition
is that we should be able to distinguish the irreducible components of our curves
in families.

– The family has to be H-smooth [35, definition 1.12], i.e. the relative Hilbert schemes
C[n] should have smooth total space for all n ≥ 0 and also the families of irreducible
components CS → BS should have smooth relative Hilbert schemes.

In the case of reduced curves it is also necessary to modify the notion of Jacobian (see
[35, section 2.3]). In fact if a curve has more than one irreducible component, the moduli
problem of torsion free sheaves will not be of finite type and then one has to impose a
further stability condition. We only mention the main existence result [35, theorem 2.8],
originally [10, theorems A and B].

Theorem 5.1. Let X be a geometrically connected projective locally planar reduced
curve and m a general polarization on X. Then there exists a projective scheme JX(m)
which is a fine moduli space for rank one pure one dimensional sheaves that are semistable
with respect to m.
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It is also crucial to note that given a flat family π : C → B of reduced geometrically
connected and locally planar curves, we can always construct, up to an étale cover of B,
a relative fine compactified Jacobian πJ : JC → B. A more detailed discussion on the
properties of fine compactified Jacobians can be found in [32] and [10].

The formula proved in [35, theorem 1.16] compares once again
⊕∞

n=0 q
n Rπ

[n]
∗ Q and⊕

i q
i · p Ri πJ

∗Q[−i].
However, contrary to what happened for integral curves,

⊕∞
n=0 q

n Rπ
[n]
∗ Q has extra

summands that are not supported on the full base of the family, but rather on proper
closed subvarieties. These extra summands come from partial normalizations of the curves
in the family that can be disconnected and therefore clearly cannot appear for integral
curves.

Another fundamental difference is that, in the case of integral curves, the Hilbert
scheme of points can be characterized as a moduli space of torsion free sheaves with the
extra datum of a section. There is then a forgetful map that will send such a pair to the
underlying sheaf which is then a torsion free sheaf and so an element of the compactified
Jacobian. When the curve is smooth this is the classical Abel-Jacobi map, sending a
divisor on the curve to the associated line bundle. For a sufficiently high number of
points such a map is even a projective bundle. In particular this implies that for an
integral locally planar curve (or a family of such curves) it is equivalent to require that:

(i) the relative Hilbert schemes have smooth total space for all n

(ii) the relative Hilbert schemes have smooth total space up to n = 2g − 1

(iii) the relative compactified Jacobian has smooth total space.

When the curve instead is reduced, due to stability issues, we do not have a map
from the Hilbert scheme of points to the fine compactified Jacobian. It is still true that if
the family of curves is H-smooth then the relative fine compactified Jacobian has smooth
total space but the converse implication is not true. For more details about the previous
remarks see [35, section 1].

Let us discuss briefly what happens for our current example: the family of spectral
curves. The first difference we see is that in the family there are non reduced curves. This
is possibly the biggest issue because, at the moment, it is not clear what the analogue of
the Jacobian should be for such curves. The Hilbert scheme of points for a non reduced
curve is defined but it is harder to understand.

For the relative Hilbert scheme of points instead the situation is more complicated.
We already proved that the moduli spaces Mr,d

σ , together with the Hitchin maps χr,d
σ :

Mr,d
σ → Ar provide different extensions of the relative Hilbert schemes of points for the

family Cint → Ar
int of integral spectral curves to Ar \Ar

int. Only one of these extensions,
namely Mr,d

∞ will be a relative Hilbert scheme, but we proved that it is not smooth and
the singular locus will intersect the locus where the spectral curves are reduced. If we
want some kind of H-smoothness property to be satisfied, then the Mr,d

ε provide smooth
extensions but unfortunately not for all combinations of r and d.

Another interesting property that the Mr,d
ε satisfy is the existence of an Abel-Jacobi

map Mr,d
ε → Mr,d that forgets the section of the triple. The fibers of this map are

projective spaces for all d, not necessarily of the same dimension. For large d however,
the map is a projective bundle.

5.2 A formula for rank 2 Bradlow-Higgs triples

At this point the natural question is whether or not we can compare⊕
n≥0

R(χr,n+θ(r)
ε )∗ICMr,n+θ(r)

ε
· qn
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and ⊕
i
p Ri hr,d∗ Q[−i] · qi
(1− q)(1− qL)

or some variant of the two expressions.
Here θ is a shift function that only depends on the rank r. Recall from proposition

2.7 that for a rank on pure one dimensional sheaf F on T ∗C not intersecting the divisor
at infinity and E = π∗F we have the relation degE = degF − r(r− 1)(g− 1). Therefore
θ(r) = −r(r−1)(g−1) in the formula above will allow us to relate Mr,d

ε with the relative
Hilbert scheme of d+ r(r − 1)(g − 1) points.

From theorems 3.21 and 3.35 we have the motive of M2,d
ε . However, the motive will

allow to compute the Poincaré polynomial only when M2,d
ε is smooth, which happens

only when either d < 0 or for d ≥ 4g − 5 odd. Since in general computing intersection
cohomology is a very hard task, we will concentrate mainly on the previous degrees.

For the following, denote by P the Poincaré polynomial and by E the E-polynomial.
We will also use P vir to denote the following specialization of E. For a variety X:

P vir(X, t) = t2 dimXE(X,−1/t,−1/t).

Note that P vir(X, t) = P (X, t) when the cohomology of X is pure.
Let us also define the following generating functions:

Definition 5.2.

F sh(q) =
∑

n≥1−g

R(χ2,2n+1
ε )∗(ICM2,2n+1

ε
)q2n+2g−1,

Fmot(q) =
∑

n≥1−g

[M2,2n+1
ε ]q2n+2g−1,

F vir(q, t) =
∑

n≥1−g

P vir(M2,2n+1
ε , t)q2n+2g−1

We note immediately that F vir is equal to the generating function of the Poincaré
polynomials for deg q ≤ 2g−3 and deg q ≥ 6g−5. Also for 2n+1 < 0 and 2n+1 ≥ 4g−3
the smoothness of M2,2n+1

ε implies that

ICM2,2n+1
ε

= QM2,2n+1
ε

.

Using the motives it is possible to compute Fmot and F vir explicitly.

Theorem 5.3. We have:

Fmot(q) = L4g−3q2g−1

(
Lg[J(C)]Z(C, q2)

(L− 1)(1− L2q2)
− [J(C)]Z(C,Lq2)

(L− 1)(1− q2)

)
+

+ L5g−4q4g−4Z(C,Lq2)Γ(L−1q−1) + L4g−3Z(C, q2)Γ(q)+

+ Θ(q)

where

Γ(q) =

g−2∑
j=0

[S2j+1(C)]q2j+1

and

Θ(q) =

2g−3∑
n=0

n∑
i=0

(L4g−2 − L4g−3)[Si(C)]·

·
(
[S2n+1−i(C)]− [J(C)]

L2n+2−i−g − 1

L− 1

)
q2n+2g−1.
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Also:

F vir(q, t) =
q2g−1(1 + t)2g(1 + q2t3)2g

(1− t2)(1− q2)(1− q2t2)(1− q2t4)
− q2g−1t2g(1 + t)2g(1 + q2t)2g

(1− t2)(1− q2)(1− q2t2)(1− q2t4)
+

+
1

2
q2g−2t4g−4

(
(1 + q2t)2g

(1− q2)(1− q2t2)

)(
(1 + qt)2g

(1− qt2)(1− q)
− (1− qt)2g

(1 + qt2)(1 + q)

)
+

+
1

2
q2g−2t4g−4

(
(1 + q2t)2g

(1− q2)(1− q2t2)

)(
(1 + t)2g

1− t2

(
qt4−2g

1− q2t4
− q

1− q2

))
+

+
1

2

(
(1 + q2t3)2g

(1− q2t2)(1− q2t4)

)(
(1 + qt)2g

(1− qt2)(1− q)
− (1− qt)2g

(1 + qt2)(1 + q)

)
+

− q2g−1(1 + t)2g

1− t2

(
(1 + q2t3)2g

(1− q2t2)(1− q2t4)

)(
1

1− q2
− t2g

1− q2t4

)
+

+ t8g−6E(Θ(u),−1/t,−1/t)|u=qt2 .

Proof. Recall from theorem 3.21 that if d > 0 odd then:

[M2,d
ε ] =L1+4(g−1)[M2,d

ε ] +
∑

(d1,d2)∈Io
1 (d)

L1+3(g−1)+d2 [Sd1(C)][Sd1−d2+2g−2]+

+
∑

(d1,d2)∈Io
2 (d)

L1+4(g−1)[Sd2(C)][Sd1−d2+2g−2(C)]+

+
∑

(d1,d2)∈Io
1 (d)

(L4g−2 − L4g−3)[Sd1(C)]([Sd2(C)]− [J(C)][CPd2−g])

and if d < 0 odd then:

[M2,d
ε ] =

∑
(d1,d2)∈Io

2 (d)

L1+4(g−1)[Sd2(C)][Sd1−d2+2g−2(C)].

We can therefore split the computation into 4 main terms:

Fmot(q) =
∑
n≥0

L4g−3[M2,2n+1
ε ]q2n+2g−1+

+
∑
n≥0

q2n+2g−1

⎛⎝ ∑
(d1,d2)∈Io

1 (2n+1)

L1+3(g−1)+d2 [Sd1(C)][Sd1−d2+2g−2]

⎞⎠+

+
∑

n≥1−g

q2n+2g−1

⎛⎝ ∑
(d1,d2)∈Io

2 (d)

L1+4(g−1)[Sd2(C)][Sd1−d2+2g−2(C)]

⎞⎠+

+
∑
n≥0

∑
(d1,d2)∈Io

1 (2n+1)

(L4g−2 − L4g−3)[Sd1(C)]·

·
(
[Sd2(C)]− [J(C)]

Ld2+1−g − 1

L− 1

)
q2n+2g−1.

From [36, Remark 6.3], we deduce:∑
n≥0

[M2,2n+1
ε ]un =

Lg[J(C)]Z(C, u)

(L− 1)(1− L2u)
− [J(C)]Z(C,Lu)

(L− 1)(1− u)

where
Z(C, u) =

∑
n≥0

[Sn(C)]un

is the motivic zeta function of C. Therefore:∑
n≥0

L4g−3[M2,2n+1
ε ]q2n+2g−1 = L4g−3q2g−1

∑
n≥0

[M2,2n+1
ε ]q2n =
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= L4g−3q2g−1

(
Lg[J(C)]Z(C, q2)

(L− 1)(1− L2q2)
− [J(C)]Z(C,Lq2)

(L− 1)(1− q2)

)
.

We also have:

∑
n≥0

⎛⎝ ∑
(d1,d2)∈Io

1 (2n+1)

L1+3(g−1)+d2 [Sd1(C)][Sd1−d2+2g−2]

⎞⎠ q2n+2g−1 =

= L3g−2q2g−1

g−2∑
n=0

g−2∑
j=g−2−n

[Sj+n+2−g(C)][S2j+1]Ln−j+g−1q2n+

+ L3g−2q2g−1
∑

n≥g−1

g−2∑
j=0

[Sj+n+2−g(C)][S2j+1]Ln−j+g−1q2n =

= L3g−2q2g−1

g−2∑
n=0

g−2∑
j=g−2−n

[Sj+n+2−g(C)][S2j+1]Ln−j+g−1q2n+

+ L3g−2q2g−1

g−2∑
j=0

∑
i≥j+1

[Si(C)][S2j+1]Li−2j+2g−3q2i−2j+2g−4 =

= L3g−2q2g−1

g−2∑
n=0

g−2∑
j=g−2−n

[Sj+n+2−g(C)][S2j+1]Ln−j+g−1q2n+

+ L3g−2q2g−1

g−2∑
j=0

[S2j+1]L−2j+2g−3q−2j+2g−4
∑

i≥j+1

[Si(C)]Liq2i =

= L3g−2q2g−1

g−2∑
n=0

g−2∑
j=g−2−n

[Sj+n+2−g(C)][S2j+1]Ln−j+g−1q2n+

+ L3g−2q2g−1

g−2∑
j=0

[S2j+1]L−2j+2g−3q−2j+2g−4

(
Z(C,Lq2)−

j∑
i=0

[Si(C)]Liq2i

)
=

= L5g−4q4g−4Z(C,Lq2)Γ(L−1q−1).

For the other type of split fixed points we get:∑
n≥1−g

∑
(d1,d2)∈Io

2 (d)

L1+4(g−1)[Sd2(C)][Sd1−d2+2g−2(C)]q2n+2g−1 =

= L4g−3q2g−1
−1∑

n=1−g

n−1+g∑
j=0

[S2j+1(C)][Sn−1+g−j(C)]q2n+

+ L4g−3q2g−1
∑
n≥0

g−2∑
j=0

[S2j+1(C)][Sn−1+g−j(C)]q2n =

= L4g−3q2g−1
−1∑

n=1−g

n−1+g∑
j=0

[S2j+1(C)][Sn−1+g−j(C)]q2n+

+ L4g−3q2g−1

g−2∑
j=0

∑
i≥g−1−j

[S2j+1(C)][Si(C)]q2i+2j+2−2g =

= L4g−3q2g−1
−1∑

n=1−g

n−1+g∑
j=0

[S2j+1(C)][Sn−1+g−j(C)]q2n+

+ L4g−3q2g−1

g−2∑
j=0

[S2j+1(C)]q2j+2−2g
∑

i≥g−1−j

[Si(C)]q2i =
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= L4g−3q2g−1
−1∑

n=1−g

n−1+g∑
j=0

[S2j+1(C)][Sn−1+g−j(C)]q2n+

+ L4g−3q2g−1

g−2∑
j=0

[S2j+1(C)]q2j+2−2g

(
Z(C, q2)−

g−2−j∑
i=0

[Si(C)]q2i

)
=

= L4g−3Z(C, q2)Γ(q).

For the last term we have:∑
n≥0

∑
(d1,d2)∈Io

1 (d)

(L4g−2 − L4g−3)[Sd1(C)]

(
[Sd2(C)]− [J(C)]

Ld2+1−g − 1

L− 1

)
q2n+2g−1 =

=

g−2∑
n=0

n∑
i=0

(L4g−2 − L4g−3)[Si(C)]

(
[S2n+1−i(C)]− [J(C)]

L2n+2−i−g − 1

L− 1

)
q2n+2g−1+

+

2g−3∑
n=g−1

n∑
i=2n−2g+3

(L4g−2 − L4g−3)[Si(C)]·

·
(
[S2n+1−i(C)]− [J(C)]

L2n+2−i−g − 1

L− 1

)
q2n+2g−1

since for d2 ≥ 2g − 1,

[Sd2(C)]− [J(C)]
Ld2+1−g − 1

L− 1
= 0.

For the same reason,

2g−3∑
n=g−1

n∑
i=2n−2g+3

(L4g−2 − L4g−3)[Si(C)]·

·
(
[S2n+1−i(C)]− [J(C)]

L2n+2−i−g − 1

L− 1

)
q2n+2g−1 =

=

2g−3∑
n=g−1

n∑
i=0

(L4g−2 − L4g−3)[Si(C)]

(
[S2n+1−i(C)]− [J(C)]

L2n+2−i−g − 1

L− 1

)
q2n+2g−1

and therefore∑
n≥0

∑
(d1,d2)∈Io

1 (d)

(L4g−2 − L4g−3)[Sd1(C)]

(
[Sd2(C)]− [J(C)]

Ld2+1−g − 1

L− 1

)
q2n+2g−1 =

=

2g−3∑
n=0

n∑
i=0

(L4g−2 − L4g−3)[Si(C)]

(
[S2n+1−i(C)]− [J(C)]

L2n+2−i−g − 1

L− 1

)
q2n+2g−1.

In order to get the expression for F vir(q, t) we can argue as follows. Since

P vir(M2,2n+1
ε , t) = t2 dimM2,2n+1

ε E(M2,2n+1
ε ,−1/t,−1/t)

and dimM2,2n+1
ε = 2n+ 1 + 1 + 6g − 6 = 2n+ 2 + 6(g − 1) we have:

F vir(q, t) = t8g−6E(Fmot(u),−1/t,−1/t)|u=qt2 .

Recall that:

E(L) = xy

E(Z(C, u)) =
(1− xu)g(1− yu)g

(1− u)(1− uxy)
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E(J(C)) = (1− x)g(1− y)g.

Also, since:

2g−2∑
n=0

[Sn(C)]un = Z(C, u)− Lg[J(C)]u2g−1

(L− 1)(1− Lu)
+

[J(C)]u2g−1

(L− 1)(1− u)
,

we get:

Γ(u) =
1

2
(Z(C, u)− Z(C,−u))− 1

2

(
Lg[J(C)]u2g−1

(L− 1)(1− Lu)
+

Lg[J(C)]u2g−1

(L− 1)(1 + Lu)

)
+

+
1

2

(
[J(C)]u2g−1

(L− 1)(1− u)
+

[J(C)]u2g−1

(L− 1)(1 + u)

)
.

The last ingredient we need to compute F vir is:

E(Γ(u),−1/t,−1/t) =
1

2

(
(1 + u/t)2g

(1− u)(1− u/t2)
− (1− u/t)2g

(1 + u)(1 + u/t2)

)
+

− 1

2

(1 + t)2g

t4g−2(1− t2)

(
u2g−1

(1− u/t2)
+

u2g−1

(1 + u/t2)

)
+

+
1

2

(1 + t)2g

t2g−2(1− t2)

(
u2g−1

(1− u)
+

u2g−1

(1 + u)

)
Therefore:

F vir(q, t) =
q2g−1(1 + t)2g(1 + q2t3)2g

(1− t2)(1− q2)(1− q2t2)(1− q2t4)
− q2g−1t2g(1 + t)2g(1 + q2t)2g

(1− t2)(1− q2)(1− q2t2)(1− q2t4)
+

+
1

2
q2g−2t4g−4

(
(1 + q2t)2g

(1− q2)(1− q2t2)

)(
(1 + qt)2g

(1− qt2)(1− q)
− (1− qt)2g

(1 + qt2)(1 + q)

)
+

+
1

2
q2g−2t4g−4

(
(1 + q2t)2g

(1− q2)(1− q2t2)

)(
(1 + t)2g

1− t2

(
qt4−2g

1− q2t4
− q

1− q2

))
+

+
1

2

(
(1 + q2t3)2g

(1− q2t2)(1− q2t4)

)(
(1 + qt)2g

(1− qt2)(1− q)
− (1− qt)2g

(1 + qt2)(1 + q)

)
+

− q2g−1(1 + t)2g

1− t2

(
(1 + q2t3)2g

(1− q2t2)(1− q2t4)

)(
1

1− q2
− t2g

1− q2t4

)
+

+ t8g−6E(Θ(u),−1/t,−1/t)|u=qt2 .

We can also prove some properties of Fmot and F vir. Note that, since we have an
explicit formula, the proof of these properties is straightforward. However, they can be
deduced a priori from the geometry of the M2,d

ε .

Proposition 5.4. The following holds for Fmot and F vir:

(i) There exists a polynomial Qmot(q) such that

Fmot(q) =
Qmot(q)

(1− q2)(1− q2L2)

and a polynomial Qvir(q, t) such that

F vir(q, t) =
Qvir(q, t)

(1− q2)(1− q2t4)

(ii) Qmot(1) = (1 + L)[M2,1] and Qvir(1, t) = (1 + t2)P (M2,1, t)
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(iii) Qvir(q, t) satisfies
Qvir(q, t) = (qt)8g−4Qvir(q−1t−2, t)

and F vir satisfies
F vir(q, t) = (qt)8g−8F vir(q−1t−2, t).

Proof. (i) First of all observe that for n ≥ 3g − 3 the Abel-Jacobi map M2,2n+1
ε →

M2,2n+1 is a projective bundle of rank 2n + 2 − 2g. Also, M2,2n+1 is always iso-
morphic to M2,1. In particular, for n ≥ 3g − 1 we have:

[M2,2n+1
ε ]− (1 + L2)[M2,2n−1

ε ] + L2[M2,2n−3
ε )] = 0

and
P (M2,2n+1

ε , t)− (1 + t4)P (M2,2n−1
ε , t) + t4P (M2,2n−3

ε ) = 0.

Now the property for Fmot can be deduced from the fact that:

(1− q2)(1− q2L2)Fmot(q) = Qmot(q)+

+
∑

n≥3g−1

q2n+1+2g−2([M2,2n+1
ε ]− (1 + L2)[M2,2n−1

ε ] + L2[M2,2n−3
ε ]) =

= Qmot(q)

for some polynomial Qmot. And for F vir:

(1− q2)(1− q2t4)F vir(q, t) = Qvir(q, t)+

+
∑

n≥3g−1

q2n+1+2g−2(P (M2,2n+1
ε , t)− (1 + t4)P (M2,2n−1

ε , t) + t4P (M2,2n−3
ε , t)) =

= Qvir(q, t)

for some polynomial Qvir. We can retrieve an explicit expression for Qvir by ob-
serving that:

(1− q2)(1− q2t4)F (q, t) =

= qP (M2,3−2g
ε , t) + q3P (M2,5−2g

ε , t)− q3(1 + t4)P (M2,3−2g
ε , t)+

+

3g−2∑
n=3−g

q2n+1+2g−2(P (M2,2n+1
ε , t)− (1 + t4)P (M2,2n−1

ε , t) + t4P (M2,2n−3
ε , t)).

(ii) For Qmot we have:

Fmot(q) =

3g−4∑
n=1−g

q2n+1+2g−2[M2,2n+1
ε ] +

∑
n≥3g−3

q2n+1+2g−2[M2,2n+1
ε ] =

=

3g−4∑
n=1−g

q2n+1+2g−2[M2,2n+1
ε ] +

[M2,1]

L− 1

(
L4g−3q8g−7

1− L2q2
− q8g−7

1− q2

)
.

Therefore:

Qmot(1) =
(
(1− q2)(1− L2q2)Fmot(q)

)
|q=1

= (1 + L)[M2,1].

For Qvir, similarly:

F vir(q, t) =

3g−4∑
n=1−g

q2n+1+2g−2P vir(M2,2n+1
ε , t) +

∑
n≥3g−3

q2n+1+2g−2P (M2,2n+1
ε , t) =

=

3g−4∑
n=1−g

q2n+1+2g−2P vir(M2,2n+1
ε , t) +

∑
n≥3g−3

q2n+1+2g−2P (M2,1, t)P (CP2n+2−2g) =
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=

3g−4∑
n=1−g

q2n+1+2g−2P vir(M2,2n+1
ε , t) +

q2g−1P (M2,1, t)

1− t2

∑
n≥3g−3

q2n(1− t4n+4−4g) =

=

3g−4∑
n=1−g

q2n+1+2g−2P vir(M2,2n+1
ε , t) +

q2g−1P (M2,1, t)

1− t2

(
q6g−6

1− q2
− q6g−6t8g−8

1− q2t4

)
.

Therefore:

Qvir(1, t) =
(
(1− q2)(1− q2t4)F vir(q, t)

)
|q=1

= (1 + t2)P (M2,1, t).

(iii) The functional equation for F vir follows from the one for Qvir. First of all we prove
the following motivic identity, valid for all n ≥ g − 1:

[M2,2n+1
ε ]− L2n−2g+3[M2,4g−4−2n−1

ε ] = [M2,1][CP2n−2g+2].

We start by defining:

Y 2n+1
k = {(E, φ) ∈ M2,2n+1 : dimH0(E) = k}.

Recall that we have a Serre duality isomorphism:

M2,2n+1 → M2,4g−4−2n−1

(E, φ) 
→ (KE∗, φ).

Since dimH0(E)− dimH0(KE∗) = 2n+ 1 + 2− 2g we see that:

[Y 2n+1
k ] = [Y 4g−4−2n−1

k+2g−3−2n ].

This relation in turn implies that:

[M2,2n+1
ε ]− L2n−2g+3[M2,4g−4−2n−1

ε ] =

=
∑
i

[Y 2n+1
i ][CPi−1]− L2n−2g+3

∑
j

[Y 4g−4−2n−1
j ][CPj−1] =

=
∑
i

[Y 2n+1
i ][CPi−1 − L2n−2g+3]

∑
j

[Y 2n+1
j+2n+3−2g][CP

j−1] =

=
∑
i

[Y 2n+1
i ][CPi−1]− L2n−2g+3

∑
i

[Y 2n+1
i ][CPi+2g−4−2n] =

=
∑
i

[Y 2n+1
i ]

Li − 1− Li + L2n−2g+3

L− 1
= [M2,1][CP2n−2g+2].

The motivic relation, in turn, implies the following relation between the virtual
Poincaré polynomials:

P vir(M2,2n+1
ε , t)− t4n+6−4gP vir(M2,4g−5−2n

ε , t) = P vir(M2,1, t)P (CP2n−2g+2, t).

To prove the identity for Qvir, let us first write:

Qvir(q, t) =

4g−3∑
l=0

al(t)q
2l+1

for:

al(t) = P vir(M2,2l+3−2g
ε , t)− (1 + t4)P vir(M2,2l+1−2g

ε , t) + t4P vir(M2,2l−1−2g
ε , t).

Note that some of the coefficients of Qvir do not include three terms, but the
previous formula holds for those coefficients as well since for the appropriate choice
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of l some of the three moduli spaces appearing in the formula can be empty.
The identity Qvir(q, t) = (qt)8g−4Qvir(q−1t−2, t) is equivalent to:

al(t) = t4l+6−8ga4g−3−l(t).

Also note that it is enough to check the previous equation for l ≥ 2g − 1. In fact
assume it holds for all l ≥ 2g − 1 and choose k ≤ 2g − 2. Then 4g − 3− k ≥ 2g − 1
and so:

a4g−3−k(t) = t8g−6−4kak(t)

which is just the equation for k.
We can compute:

al(t)−t4l+6−8ga4g−3−l(t) =
(
P vir(M2,2l+3−2g

ε , t)− t4l+10−8gP vir(M2,6g−7−2l
ε , t)

)
+

− (1 + t4)
(
P vir(M2,2l+1−2g

ε , t)− t4l+6−8gP vir(M2,6g−5−2l
ε , t)

)
+

+ t4
(
P vir(M2,2l−1−2g

ε , t)− t4l+2−8gP vir(M2,6g−3−2l
ε , t)

)
.

For 2l − 1 − 2g ≥ 2g − 1, i.e. for l ≥ 2g we can use the identity we proved above,
obtaining:

al(t)−t4l+6−8ga4g−3−l(t) = P vir(M2,1, t)P (CP2l−4g+4, t)+

− (1 + t4)P vir(M2,1, t)P (CP2l−4g+2, t) + t4P vir(M2,1, t)P (CP2l−4g, t) =

=
P vir(M2,1, t)

1− t2
(1− t4l−8g+10 − (1 + t4)(1− t4l−8g+6) + t4(1− t4l−8g+2)) = 0.

Using the same techniques, with a bit of care, we can check the last case l = 2g−1:

a2g−1(t)−t2a2g−2(t) =
(
P vir(M2,2g+1

ε , t)− t6P vir(M2,2g−5
ε , t)

)
+

− (1 + t4)
(
P vir(M2,2g−1

ε , t)− t2P (M2,2g−3
ε , t)

)
+

+ t4P vir(M2,2g−3
ε , t)− t2P vir(M2,2g−1

ε , t) =

= P vir(M2,1, t)
(
P (CP2, t)− (1 + t4)− t2

)
= 0.

This completes the proof.

We now define the second kind of generating functions involved in the formula.

Definition 5.5. Denote by oddq the operator that acts on f ∈ R[[q]] (for some ring R)
by deleting the even powers of q in f . Define:

G(q, t) = oddq

(
PH(M2,1, q, t)

(1− q)(1− qt2)

)
and

Gsh(q) = oddq

⎛⎝ ⊕8g−6
i=0 IC

(∧i
R1
)

(1− qQ)(1− qQ[−2](−1))

⎞⎠
where R1 is the local system R1(h2,1sm)∗Q obtained by first restricting h2,1 : M2,1 → A2

to the locus of smooth spectral curves and then pushing forward the constant sheaf.

Remark 5.6. Let us make a couple comments about the previous definition. First of
all, the reason we take the odd powers in G and Gsh is that we want to compare them
with F vir and F sh respectively and they only contains odd powers.

Second, it follows from [7, theorem 1.1.2] and [7, lemma 1.3.5] that:

Rh2,1∗ Q =

8g−6⊕
i=0

p Ri h2,1∗ Q[−i]⊕ L =

8g−6⊕
i=0

IC

(
i∧
R1

)
⊕ L
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where L is a complex supported on the locus of reduced curves in A2. In other words,
the summands of Rh2,1∗ Q that are supported on the whole A2 are exactly the middle
extensions of the external powers of R1, while L is an extra summand with proper
support. Another important remark is that the perversity is actually determined by the
index of the external power of R1. Furthermore, L will have no global cohomology, as
I learned from private communication ([8]). These facts together imply that taking the
global cohomology of the object:

8g−6⊕
i=0

p Ri h2,1∗ Q[−i]qi ∈ Db
c(A2)[[q]]

will compute PH(M2,1, q, t).
Last, note that from the results summarized in section 1.4, we can actually explicitly

compute G.

Observe that G satisfies properties that are similar to the ones of F vir.

Proposition 5.7. The following holds for G:

(i) There exists a polynomial V (q, t) such that

G(q, t) =
V (q, t)

(1− q2)(1− q2t4)

(ii) V (1, t) = (1 + t2)P (M2,1, t)

(iii) V (q, t) satisfies
V (q, t) = (qt)8g−4V (q−1t−2, t)

and G satisfies
G(q, t) = (qt)8g−8G(q−1t−2, t)

Proof. (i) Note that, if U(q, t) ∈ Z[t][[q]], then

oddqU(q, t) =
1

2
(U(q, t)− U(−q, t)) .

Therefore

G(q, t) =
1

2

(
PH(M2,1, q, t)

(1− q)(1− qt2)
− PH(M2,1,−q, t)

(1 + q)(1 + qt2)

)
=

=
1

2

(
(1 + q)(1 + qt2)PH(M2,1, q, t)− (1− q)(1− qt2)PH(M2,1,−q, t)

(1− q2)(1− q2t4)

)
so

V (q, t) =
1

2

(
(1 + q)(1 + qt2)PH(M2,1, q, t)− (1− q)(1− qt2)PH(M2,1,−q, t)) .

(ii) We have:

V (1, t) =
1

2

(
2(1 + t2)PH(M2,1, 1, t)

)
= (1 + t2)P (M2,1, t).

(iii) From [23, Corollary 1.1.4] we see that

(qt)8g−6PH(M2,1, q−1t−2, t) = PH(M2,1, q, t).

Therefore:

(qt)8g−4V (q−1t−2, t) =
1

2
((qt)8g−6(1 + q)(1 + qt2)PH(M2,1, q−1t−2, t)+
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− (qt)8g−6(1− q)(1− qt2)PH(M2,1,−q−1t−2, t)) =

=
1

2

(
(1 + q)(1 + qt2)PH(M2,1, q, t)− (1− q)(1− qt2)PH(M2,1,−q, t)) =

= V (q, t).

Clearly the formula for G follows from the formula for V .

Remark 5.8. Even though for rank 2 it is possible to compute the difference explicitly,
it is quite interesting to understand an a priori reason why the two functions should
have such a relation. The idea is to compare F sh with Gsh and P (F sh(q), t) with G(q, t).
P (F sh(q), t) will be the generating function of the Poincaré polynomials of the sheaves
contained in F sh, which are the intersection cohomology sheaves of the M2,2n+1

ε . Note
that, since for 2n + 1 < 0 and for 2n + 1 > 4g − 4 M2,2n+1

ε is smooth, then F vir and
P (F sh(q), t) coincide for deg q ≤ 2g − 3 and for deg q ≥ 6g − 5.

In the next few pages we want to prove that G and P (F sh(q), t) coincide for deg q ≤
2g − 3 and for deg q ≥ 6g − 5. Let us first recall the following result. See [5, Theorem 3].

Proposition 5.9. Let f : X → Y be a proper map of smooth algebraic varieties whose
fibers have constant dimension. Denote by m the dimension of Y and by n the dimension
of X. Let S be summand of f∗QX whose support has dimension s. Then s ≥ 2m− n.

Theorem 5.10. F sh and Gsh coincide for deg q ≤ 2g−3. P (F sh(q), t) and G coincide for
deg q ≤ 2g− 3 and for deg q ≥ 6g− 5. Furthermore P (F sh(q), t)−G(q, t) is a polynomial
with non-negative coefficients.

Proof. Let us start by considering the Hitchin map h : M2,1 → A2 and the object
Rh2,1∗ Q ∈ Db

c(A2). Consider also A2
sm ⊂ A2, the locus of smooth spectral curves and call

R1 the local system R1(hsm)∗Q where hsm is the restriction of h to the inverse image of
A2

sm.
As we noted in remark 5.6, we have:

Rh2,1∗ Q =

8g−6⊕
i=0

p Ri h2,1∗ Q[−i]⊕ L =

8g−6⊕
i=0

IC

(
i∧
R1

)
⊕ L

First of all we prove that:

⊕
2−2g≤d<0

qd+2g−2 R(χ2,d
ε )∗Q =

(⊕8g−6
i=0

p Ri h2,1∗ Q[−i]qi
(1− qQ)(1− qL)

)
| deg(q)≤2g−3

.

which implies that F sh and Gsh coincide for deg q ≤ 2g− 3 and is a bit stronger because
it also says something about the even degree case. Recall from proposition 2.30 that
M2,d

ε = M2,d
∞ for d < 0.

When we restrict to the locus A2
int of integral spectral curves, the formula is true

since the restriction of χ2,d
σ to A2

int is always the Hilbert scheme of d + 2g − 2 points
relative to the family of integral spectral curves, independently of σ. The formula then
descends from the results in [34]. This means that if the left hand side and the right hand
side differ then, since the p Ri h2,1∗ Q[−i] are supported on the whole A2, there must be
summands of the left hand side that are supported inside A2 \ A2

int.
For the second step, let us restrict the formula to the locus A2

red ⊂ A2, i.e. the locus
of reduced (but possibly reducible) spectral curves. Note that we cannot immediately
conclude that the formula holds using the results from [35] because the family of reduced
spectral curves does not satisfy the conditions in the paper. However we can argue as
follows. Assume that there is a summand with support contained in the closure of A2

red

and denote by s its dimension. Using proposition 5.9, we get:

s ≥ 8g − 6− 4g + 3− d− 2g + 2 = 2g − 1− d.
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and for d ≤ −1 we get s ≥ 2g. Since A2
red is irreducible, this implies that the support is

actually the closure of A2
red.

Note that the generic reduced and reducible curve is nodal, since A2
red is the image

of the following map:

Sym2
(
H0(K)

) \Δ → A2

(ψ1, ψ2) 
→ (−ψ1 − ψ2, ψ1ψ2)

and two generic sections of H0(K) intersect in 2g − 2 points.
Using [35, Lemma 2.13], we can deduce that if the stalks of⊕

2−2g≤d<0

qd+2g−2 R(χ2,d
ε )∗Q

and (⊕8g−6
i=0

p Ri h2,1∗ Q[−i]qi
(1− qQ)(1− qL)

)
| deg(q)≤2g−3

were to be different at a generic nodal curve of A2
red then their weight polynomial would

be different. Since we know that the potential support could only be the closure of A2
red,

if we verify that the weight polynomials of the stalks at the generic nodal curves are the
same, we can conclude that there is no such support. More details about the strategy
outlined here can be found in [35].

Let C be a generic nodal curve in A2
red and let D be an integral nodal curve in A2

int.
Define:

Z(C) =
∑
n≥0

qn[C[n]]

the zeta function of the weight polynomials of the Hilbert schemes of points of C, and
Z(D) analogously. Recall that if we have a disjoint union of varieties X �Y , then Z(X �
Y ) = Z(X) · Z(Y ). Define:

Z(N) =
∑
n≥0

qn[Hilbn
pt(node)]

to be the zeta function of the weight polynomials of the punctual Hilbert schemes of
points of the curve {xy = 0} ⊂ C2 supported at the origin. Since both C and D can be
decomposed as the union of their smooth part (here denoted with a subscript sm) and
their nodes, and they both have 2g − 2 nodes, we get:

Z(C)
Z(D)

=
Z(Csm) · Z(N)2g−2

Z(Dsm) · Z(N)2g−2
=
Z(Csm)

Z(Dsm)
.

If we denote by Cν and Dν the normalization of the two curves, then we get:

Z(Cν) = Z(Csm) · Z(pt)4g−4

and analogously for Dν . Putting all together and using the fact that Cν is the disjoint
union of two copies of C we get:

Z(C)
Z(D)

=
Z(Csm)

Z(Dsm)
=
Z(C)2

Z(Dν)
.

In order to compute the (weight polynomial of the) stalk of IC
(∧i

R1
)

at the generic
nodal curve in A2

red we can use the content of section 1.8. We can also avoid the direct
computation of the full weight polynomial by using the following idea.

Whenever we write the CKS complexes for curves whose irreducible components have
positive genus, we will have H1 of the normalization of the curve appearing only in degree
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0 and all the elements of the external powers of the degree 0 term in which appear some
classes of the H1 of the normalization lie in the kernel of the first map. In our case this
implies:⎛⎝∑

i≥0

[
IC(

i∧
R1)|C [−i]

]
qi

⎞⎠ = U(Σ)

⎛⎝∑
i≥0

[
i∧
H1(C)[−i]

]
qi

⎞⎠2

mod q2g−2

and⎛⎝∑
i≥0

[
IC(

i∧
R1)|D[−i]

]
qi

⎞⎠ = U(Σ)

⎛⎝∑
i≥0

[
i∧
H1(Dν)[−i]

]
qi

⎞⎠ mod q2g−2

where U(Σ) and U(Σ) are defined and examined in 1.15.
Putting all together we have, mod q2g−2:

Z(Dν)

⎛⎝∑
i≥0

[
IC(

i∧
R1)|C [−i]

]
qi

⎞⎠ = U(Σ)Z(C)2Z(Dν)(1− qQ)2(1− qL)2 =

= U(Σ)Z(C)2Z(Dν)(1− qQ)(1− qL) = Z(C)2

⎛⎝∑
i≥0

[
IC(

i∧
R1)|D[−i]

]
qi

⎞⎠ =

= Z(C)2Z(D)(1− qQ)(1− qL) = Z(C)Z(Dν)(1− qQ)(1− qL)

and therefore:⎛⎝∑
i≥0

[
IC(

i∧
R1)|C [−i]

]
qi

⎞⎠ = Z(C)(1− qQ)(1− qL) mod q2g−2.

To summarize, we wanted to prove that weight polynomials of the stalks at C of⊕
2−2g≤d<0

qd+2g−2 R(χ2,d
ε )∗Q

and (⊕8g−6
i=0

p Ri h2,1∗ Q[−i]qi
(1− qQ)(1− qL)

)
| deg(q)≤2g−3

are the same. In order to do that we related both polynomials to the weight polynomials
of the stalks at D that we know coincide because D lies in A2

int where we know the
equality holds.

Let us now prove that P (F sh(q), t) and G coincide for high enough degree. Recall
that for odd d ≥ 6g − 5 the map M2,d

ε → M2,d is a CPd+1−2g-bundle. This implies:

R(χ2,d
ε )∗Q = Rh2,1∗ Q⊗H∗(CPd+1−2g)

here H∗(CPd+1−2g) denotes the constant local system Q⊕Q[−2]⊕· · ·⊕Q[−2(d+1−2g)].
Let us compare the coefficients of the left hand side⊕

n≥1−g

q2n+1+2g−2 R(χ2,2n+1
ε )∗ICM2,2n+1

ε

and of the right hand side

oddq

(⊕8g−6
i=0

p Ri h2,1∗ Q[−i]qi
(1− qQ)(1− qL)

)
.
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for the powers qd+2g−2 with odd d ≥ 6g − 5.
The coefficient of qd+2g−2 in the first expression is, as we said:

Rh2,1∗ Q⊗H∗(CPd+1−2g) =

(
8g−6⊕
i=0

IC

(
i∧
R1

)
[−i]⊕ L

)
⊗

⊗ (Q⊕Q[−2]⊕ · · · ⊕Q[−2(d+ 1− 2g)]) .

For the coefficient of qd+2g−2 in the second expression we have instead:

8g−6∑
i=0

IC

(
i∧
R1

)
[−i]⊗ (Q⊕ . . .Q[−2(d+ 2g − 2− i)]) =

=

4g−3∑
i=0

IC

(
i∧
R1

)
[−i]⊗ (Q⊕ . . .Q[−2(d+ 1− 2g)])+

+

4g−4∑
i=0

IC

(
i∧
R1

)
[−i]⊗ (Q[−2(d+ 2− 2g)]⊕ . . .Q[−2(d+ 2g − 2− i)])+

+

8g−6∑
j=4g−2

IC

(
j∧
R1

)
[−j]⊗ (Q⊕ . . .Q[−2(d+ 2g − 2− j)]) .

Using the fact that (see [7, equation 1.4.7]):

IC

(
j∧
R1

)
∼= IC

(
8g−6−j∧

R1

)
and the substitution j = 8g − 6− i, we can compute:

4g−4∑
i=0

IC

(
i∧
R1

)
[−i]⊗ (Q[−2(d+ 2− 2g)]⊕ . . .Q[−2(d+ 2g − 2− i)]) =

=

8g−6∑
j=4g−2

IC

(
j∧
R1

)
[6 + j − 8g]⊗ (Q[−2(d+ 2− 2g)]⊕ . . .Q[−2(d− 6g + 4 + j)]) =

=

8g−6∑
j=4g−2

IC

(
j∧
R1

)
[−j]⊗ (Q[−2(d+ 2g − 1− j)]⊕ . . .Q[−2(d+ 1− 2g)]) .

Putting all together we get:

8g−6∑
i=0

IC

(
i∧
R1

)
[−i]⊗ (Q⊕ . . .Q[−2(d+ 2g − 2− i)]) =

=

4g−3∑
i=0

IC

(
i∧
R1

)
[−i]⊗ (Q⊕ . . .Q[−2(d+ 1− 2g)])+

+

8g−6∑
j=4g−2

IC

(
j∧
R1

)
[−j]⊗ (Q[−2(d+ 2g − 1− j)]⊕ . . .Q[−2(d+ 1− 2g)])+

+

8g−6∑
j=4g−2

IC

(
j∧
R1

)
[−j]⊗ (Q⊕ . . .Q[−2(d+ 2g − 2− j)]) =

=

4g−3∑
i=0

IC

(
i∧
R1

)
[−i]⊗ (Q⊕ . . .Q[−2(d+ 1− 2g)])+

+

8g−6∑
j=4g−2

IC

(
j∧
R1

)
[−j]⊗ (Q⊕ . . .Q[−2(d+ 1− 2g)]) =
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=

8g−6∑
i=0

IC

(
i∧
R1

)
[−i]⊗ (Q⊕ . . .Q[−2(d+ 1− 2g)]) .

Note that this expression only differs from the first by the presence of the factor:

L ⊗H∗(CPd+1−2g)

which, however, does not have any global cohomology and therefore this proves the
equality of the coefficients of P (F sh(q), t) and G for the powers qd+2g−2 with odd d ≥
6g − 5.

Recall also that F vir −G satisfies:

F vir(q, t)−G(q, t) = (qt)8g−8
(
F vir(q−1t−2, t)−G(q−1t−2, t)

)
.

In particular, if F vir and G agree for deg q odd in the range 1, . . . , 2g − 3, then they
will agree for deg q odd in the range 6g− 5, . . . , 8g− 9. Since F vir and P (F sh(q), t) agree
in the previous ranges we can conclude that P (F sh(q), t) and G agree for deg q ≤ 2g− 3
and deg q ≥ 6g − 5 as we wanted.

For the last statement about non-negativity recall that P (F sh(q), t) is the global
cohomology of: ⊕

n≥1−g

q2n+1+2g−2 R(χ2,2n+1
ε )∗ICM2,2n+1

ε

and G is the global cohomology of Gsh.
Since these two expressions coincide when restricted to A2

int and the second one only
has summands that are supported on the full A2, we can conclude that P (F sh(q), t)−G
is the global cohomology of the summands of F sh(q) that have proper support in A2 and
do not come from L (if there are any).
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Chapter 6

Remarks on higher rank

Some of the results of the previous section can be generalized for all ranks. In this
chapter we will comment about the behavior of Bradlow-Higgs pairs for higher rank.
Namely we will point out several difficulties that arise when trying to compute the motive
of the Mr,d

σ , both with similar methods to those we used in this thesis or with methods
available for other moduli problems with wall-crossing.

We will also comment on how it could be possible to generalize the results of chapter
5.

6.1 Higher rank motives

In the case of Bradlow pairs it is still possible, for lower rank, to understand the
flip loci explicitly. For rank 3 this has been done in [38]. It becomes clear soon, though,
that a direct approach would not work for Bradlow pairs and so a different approach to
the wall-crossing problem was used in [36]. The case of Bradlow-Higgs triples is more
complicated and arguably a direct approach will fail for this problem as well.

It is worth commenting about the approach in [36] and explain why it will not apply
to the case of Bradlow-Higgs triples. We will try to highlight the main points of the
strategy, but a fully detailed survey would require a separate thesis, therefore we refer
directly to [36] for all the details.

First of all denote by A0 the category of coherent sheaves on the smooth projective
curve C and by A the category of triples (E0, E1, s) where E1 ∈ A0, E0 is a direct sum
of a certain number of copies of OC and s : E0 → E1. Both categories admit Chern
characters, namely group morphisms from the Grothendieck group K(A0) to Z2 and
from K(A) to Z3 sending a coherent sheaf to its rank and degree and a triple (E0, E1, s)
to (rkE1, degE1, rkE0) respectively. There are also skew symmetric bilinear forms 〈·, ·〉
on Z2 and Z3 defined in terms of simple formulas on the Chern characters (see [36, section
4]).

For each of A0 and A we define the respective motivic Hall algebras which are C-
algebras generated by indicator functions of locally closed substacks of the stacks of
objects of A0 and A respectively. We denote these two algebras as H(A0) and H(A) (see
[36, section 5]). Note that we have an embedding A0 ⊂ A and accordingly an inclusion of
C-algebras. The product of two indicators functions IX and IY is the indicator function
IZ of objects that have a subobject in Y and the quotient by such a subobject lies in X.

There is an integration map I : H(A) → A where A is a certain completion of the
ring R[x1, x±1

2 , x3] and R is the Grothendieck ring of stacks over C. The product on A is
defined as

xαxβ = (−L1/2)〈α,β〉xα+β .

The map I is defined on the set of indicator functions IX where X is a locally closed
substack of the stack of objects of A for which the Chern character is constantly equal
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to α ∈ Z3. We have
I(IX) = (−L1/2)〈α,α〉xα[X]

and then it is extended by linearity on the whole Hall algebra. It is clearly a linear map
and under the hypothesis that Ext2 groups vanish between the objects in the indicator
functions IX and IY then I(IXIY ) = I(IX)I(IY ) (see [36, remark 5.1]).

Define some distinguished elements in H0(A). Let uh(α) be the indicator function
of semistable vector bundles with character (α, 0) and fhτ (α) be the indicator function
of τ -semistable triples (E0, E1, s) with character (α, 1). Let also u(α) and fτ (α) be the
integration of uh(α) and fhτ (α) respectively (both up to a factor). Observe that they are
essentially the motives of the moduli spaces that we would like to compute. Define

uhτ = 1 +
∑

μ(α)=τ

uh(α) fhτ =
∑
α

fhτ (α)

in the Hall algebra and

uτ = 1 +
∑

μ(α)=τ

u(α)xα fτ =
∑
α

fτ (α)x
(α,1)

to be the corresponding generating series in A.
Using the geometry of Bradlow pairs it is proven (see [36, lemmas 4.11 and 4.13])

that every τ -semistable triple (E0, E1, s) has a canonical τ+ filtration whose quotient
is a semistable vector bundle of slope τ and the subobject is a τ+-stable triple. Also,
every τ -semistable triple (E0, E1, s) has a canonical τ− filtration whose subobject is a
semistable vector bundle of slope τ and the subobject is a τ−-stable triple. This implies
the following relations in the motivic hall algebra:

fhτ = fhτ+u
h
τ and fhτ |μ<τ = uhτ f

h
τ−

where |μ < τ denotes the truncation of the series to the term for which the slope is less
than τ (see [36, theorem 5.6]).

A very important observation at this point is that for τ = ∞ the only τ -semistable
triples are those for which rkE1 = 1. These correspond to rank 1 Bradlow pairs that in
turn can be identified with divisors on the curve. Therefore

f∞ = x1x3
∑
d≥0

[Sd(C)]xd2.

Also, we have fhτ (α) = 0 if μ(α) > τ which geometrically amounts to say that the
moduli spaces of Bradlow pairs are empty if the stability parameter exceeds a prescribed
threshold.

Combining all these results it is possible to find a formula (see [36, theorem 5.6]):

fτ = (u−1
>τf∞u≥τ )|μ≤τ

where
u≥τ =

∏
τ ′≥τ

uτ ′

and the product is taken in decreasing order of τ ′. The formula can then be inverted
using the fact that we know the generating functions uτ . At the end the motive of the
moduli spaces of Bradlow pairs is computed in [36, theorem 6.2].

The same approach for Bradlow-Higgs triples will not work as some essential hypothe-
ses are not satisfied. The main issue is that the use of the integration map is conditional
to the fact that for the objects we need in the wall-crossing of Bradlow pairs, the Ext2

will all vanish. This is far from being true in the case of Bradlow-Higgs triples and in
lemma 3.3 we saw an example of the presence of nonzero Ext2. In terms of the flip loci
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this will imply that they are not bundles in general. A positive fact is that for Higgs
bundles, Ext2 is dual to Hom by Serre’s duality.

The second issue is that the moduli spaces of σ-stable Bradlow-Higgs triples are not
empty after a certain value of σ. This will imply that the analogue of the generating
function f∞ will not be as simple as in the case of Bradlow pairs. Note also that we gave
an approach to compute M2,d

∞ directly but it is not at all trivial already in rank 2.
In conclusion, the analogues of the formulas

fhτ = fhτ+u
h
τ and fhτ |μ<τ = uhτ f

h
τ−

in the motivic Hall algebra are probably still valid but, even if they can be proved, it
will then not be possible to apply an easy integration map to get information about the
motives.

6.2 Partial Hilbert scheme formula for higher rank
In this section we will discuss how to possibly generalize the result in theorem 5.10

to higher rank. Consider the following higher rank generating functions.

Definition 6.1. Let r ≥ 2 be an integer and 1 ≤ m ≤ r − 1 be an integer coprime with
r.

F sh
r,m(q) =

∑
d≥r(r−1)(1−g)
d mod r=m

R(χr,d
ε )∗(ICMr,d

ε
)qd+r(r−1)(g−1),

Fmot
r,m (q) =

∑
d≥r(r−1)(1−g)
d mod r=m

[Mr,d
ε ]qd+r(r−1)(g−1),

F vir
r,m(q, t) =

∑
d≥r(r−1)(1−g)
d mod r=m

P vir(M2,2n+1
ε , t)qd+r(r−1)(g−1).

These are clearly the generating functions in theorem 5.10 extended for higher rank.
Let us introduce the following notation.

Definition 6.2. Let r ≥ 2 be an integer and 0 ≤ m ≤ r − 1 be an integer. We define
delq,r,m be the operator acting on R[[q]] by deleting from power series all terms whose
degree d does not have remainder m modulo r.

Let hr,d : Mr,d → Ar denote the usual Hitchin map and PH(Mr,d, q, t) denote
the perverse hodge polynomial of Mr,d. Then we define the second class of generating
functions we need.

Definition 6.3. Let r ≥ 2 be an integer and 1 ≤ m ≤ r − 1 be an integer coprime with
r. Define:

Gr,m(q, t) = delq,r,m
(
PH(Mr,m, q, t)

(1− q)(1− qt2)

)
and

Gsh
r,m(q) = delq,r,m

(
Rhr,m∗ Q

(1− qQ)(1− qQ[−2](−1))

)
In this section we will prove a variant of theorem 5.10 for higher rank.

Theorem 6.4. Let r ≥ 2 be an integer and 1 ≤ m ≤ r − 1 be an integer coprime with
r. Then F sh

r,m and Gsh
r,m coincide for deg q ≤ (r − 1)(2g − 2)− 1. P (F sh

r,m(q), t) and Gr,m

coincide for deg q ≤ (r− 1)(2g− 2)− 1 and for deg q > r(2g− 1) + (3r2 − 5r+2)(g− 1).
If the following conditions are satisfied:

– for d > r(r + 1)(g − 1) then a stable Higgs bundle (E, φ) of rank r and degree d
satisfies H1(E) = 0
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– for d > r2(g − 1) coprime with r, Mr,d
ε is smooth

then P (F sh
r,m(q), t) and Gr,m coincide for deg q ≤ (r − 1)(2g − 2)− 1 and for deg q >

(2r2 − r)(2g − 2).

Recall that the strategy of the proof for rank 2 was to compare the cohomology of
M2,d

ε for d < 0 and for d > 4g − 4 odd to the perverse filtration on the cohomology of
M2,1. Let us summarize what was needed in order to prove the result.

First we saw in proposition 2.30 that M2,d
∞ = M2,d

ε if 2− 2g ≤ d < 0 and that in this
case they are both smooth. To prove theorem 5.10 in this range we then used proposition
5.9 to get information about the possible supports in the decomposition theorem and
concluded by studying the case of a generic nodal curve in A2

red.
For the range d > 4g − 4 odd, we used again smoothness of M2,d

ε and the fact that
for d ≥ 6g − 5 odd the Abel-Jacobi map M2,d

ε → M2,d is a projective bundle (see
proposition 2.31). In the range d ≥ 6g − 5 odd theorem 5.10 was then easy to prove.
For the range 4g − 3 ≤ d ≤ 6g − 7 odd, we then used smoothness of M2,d

ε plus Serre’s
duality to conclude that if the cohomological formula holds for odd values in the range
3− 2g, . . . ,−1 then it must also hold for odd values in the range 4g − 3, . . . , 6g − 7.

We also used the fact that the extra summand L in the decomposition theorem for
the Hitchin map M2,1 → A2 has no cohomology. A closer look to the argument though
will show that we don’t need this to show the formula in the ranges d ≥ 6g−5 and d < 0.

It is worth discussing which of the previous properties can be generalized to the case
of higher rank. Let us first give a brief remark.

Remark 6.5. Note that since σ-stability is an open condition, the flip loci are closed in
each of the Mr,d

σ . In particular, due to the fact that the Hitchin maps are proper, the
restriction of the Hitchin maps to the flip loci is proper as well. It follows that if (E, φ, s)
belongs to a flip locus, then

lim
λ→0

λ · (E, φ, s)
also belongs to the same flip locus.

We can generalize proposition 2.30 as follows.

Proposition 6.6. Let d < r(r − 2)(1 − g), then Mr,d
ε = Mr,d

∞ . Both are non-empty if
and only if d ≥ r(r − 1)(1− g).

Proof. The statement about non-emptiness follows from the U -filtration for Mr,d
∞ and

for Mr,d
ε follows from the previous statement.

Let us first prove that if d < r(r − 2)(1 − g) then Mr,d
ε ⊆ Mr,d

∞ . Suppose (E, φ, s)
has stable underlying Higgs bundle and assume by contradiction that the U -filtration of
the triple has length l < r. But then μ(Ul) ≥ (l− 1)(1− g) > (r − 2)(1− g) > μ(E) and
therefore Ul cannot be preserved by φ which, by construction, is impossible.

To conclude we use remark 6.5. From it we can deduce that it is enough to prove that
if (E, φ, s) ∈ Mr,d

∞ is a fixed point for the C∗-action, then (E, φ, s) ∈ Mr,d
ε . Recall from

proposition 2.24 and from the fact that s is cyclic for φ that (E, φ, s) has to be of the
form E = E1 ⊕ · · · ⊕ Er for line bundles Ei, s ∈ Er, φ(Ei) ⊆ Ei−1 ⊗K and φ(E1) = 0.
Note also that all the maps Ei → Ei−1 ⊗ K induced by φ have to be non-zero. This
implies that dr−i = degEr−i ≥ 2i(1− g).

Note that the only proper φ-invariant subbundles of E are of the form ⊕k
i=1Ei for

some 1 ≤ k < r. Assume by contradiction that any of those are destabilizing for (E, φ).
This means that for some 1 ≤ k < r we have:

1

k

k∑
i=1

di ≥ 1

r

r∑
i=1

di

which is equivalent to:

(r − k)

k∑
i=1

di ≥ k
r∑

i=k+1

di.
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This implies

(r − k)
r∑

i=1

di ≥ r

r∑
i=k+1

di = r

r−k−1∑
i=0

dr−i ≥ r(r − k)(r − k − 1)(1− g)

which contradicts d < r(r − 2)(1− g).

From remark 2.18 we also deduce the following.

Corollary 6.7. If d < r(r − 2)(1− g) then Mr,d
ε = Mr,d

∞ is smooth when non-empty.

Proof. It follows from the fact that in this case there are no proper φ-invariant subbundles
that contain the section and so the Zariski tangent space has minimal dimension, since
the only endomorphisms that commute with φ are scalars.

Assume d < r(r−2)(1−g). In the case r ≥ 2 proposition 5.9 applied to the Hitchin map
Mr,d

∞ → Ar allows to conclude that any properly supported summand of the pushforward
of the constant sheaf Q should have support with dimension at least:

2 + 2r2(g − 1)− 1− r2(g − 1)− d− r(r − 1)(g − 1) ≥ 2 + r(r − 1)(g − 1).

Since

dimAr
red = max

1≤k≤r−1
{dimAk + dimAr−k} = 2 + (g − 1)(r2 − 2r + 2)

and 2 + r(r − 1)(g − 1) ≥ 2 + (g − 1)(r2 − 2r + 2) we can already conclude that proper
supported summands, if there are any, should have support equal to the closure of Ar

red.
It is also immediate to check that the argument in theorem 5.10 about the comparison

of weight polynomials for nodal curves can be applied again. Just note that in this case
we should let C and D be generic nodal curves in Ar

red and Ar
int. Here lemma 1.15 should

be modified as follows and the rest of the argument is the same.

Lemma 6.8. Denote by Σ a curve with two rational components meeting in (r−1)(2g−
2) simple nodes and by Σ an integral curve with (r − 1)(2g − 2) simple nodes whose
normalization is isomorphic to CP1. Define:

U(Σ) =

(r−1)(2g−2)−1∑
n=0

qn[CKSn[−n]]

and

U(Σ) =

(r−1)(2g−2)−1∑
n=0

qn[CKS
n
[−n]]

where [CKSn] is the weight polynomial of the n-th CKS complex associated to Σ and
[CKS

n
] is the analogous object for Σ. Then:

U(Σ) = (1− qQ)(1− qL)U(Σ) mod q(r−1)(2g−2).

This concludes the generalization of theorem 5.10 from the range d < 0 for rank 2 to
the range d < r(r − 2)(1− g) for rank r.

Now, using [40, corollary 3.4] we can immediately deduce the same result for d >
r(2g − 1) + (r − 1)2(2g − 2) coprime with r since we know that in this case the Abel-
Jacobi map is a projective bundle and the argument in theorem 5.10 carries through. As
we already pointed out, the presence of extra summands (even with non-trivial global
cohomology) in the decomposition theorem for the Hitchin map Mr,d → Ar would not
cause problems at this point.

Serre’s duality would allow to deduce the cohomological statement from theorem 5.10
for d coprime with r in the range r2(g − 1) < d ≤ r(r+ 1)(g − 1) from the statement we
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already proved for r(r − 1)(1− g) ≤ d < r(r − 2)(1− g), provided Mr,d
ε is smooth for r,

d coprime and d > r2(g − 1).
Ultimately, we would be left with d coprime with r in the range r(r − 2)(1 − g) <

d < r(2g− 1)+ (r− 1)2(2g− 2). It would be reasonable to guess that the sharp estimate
for d for which H1 of a semistable Higgs bundle of degree d and rank r vanishes is
d > r(r − 2)(1− g) rather than the one in [40, corollary 3.4], but we do not attempt to
prove it here.
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