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Abstract

In light of the acknowledged need for a transition toward sustainable cities, neighborhoods and
buildings, urban planners, architects and engineers have to comply with evermore demanding
energy regulations. These decision-makers must be supported early-on in their process by
adequate methods and tools. Indeed, early-design decisions, which concern parameters
linked to the building form and urban layout, strongly dictate the solar exposure levels of
buildings, in turn influencing their energy need (e.g. for heating and cooling) and production
potential (e.g. through on-site active solar systems). Despite the spread of existing digitalized
performance assessment methods, limitations remain, withholding their integration into the
early design process. These considerations lay down the context within which this doctoral
research was carried out.

The main objective of this thesis is the development of a performance-based workflow to
support decision-making in early-design neighborhood projects. The performance is here
defined through three criteria: (i) the daylight potential, quantified by the spatial daylight
autonomy achieved on the ground-floor level (likely to represent a conservative value), (ii) the
passive solar potential, quantified by the annual energy need for space heating and cooling
(given certain assumptions e.g. on the insulation level), and (iii) the active solar potential,
quantified by the annual thermal and photovoltaic energy production on site.

The research process consisted of two main phases. First, the development of a performance
assessment engine allowing real-time evaluation of an ensemble of buildings. Second, the
integration of this method into a decision-support workflow, taking the form of a digital
prototype that was tested among practitioners. The work particularly focused on the Swiss
context in terms of design practices and climate, although its extension to other locations is
considered straightforward.

For the first phase, a metamodeling approach was adopted to circumvent the limitations
associated to simulations involving solving physics-based equations. Mathematical functions
were obtained to predict the daylight and energy performance of a neighborhood, from a
series of geometry- and irradiation-based parameters, easily computable at the early-design
phase. To derive these functions (or metamodels), a neighborhood modeling and simulation
procedure was executed to acquire a dataset of reference cases, from which the metamodels
were trained and tested. The resulting multiple-linear regression functions, combined to
an algorithm for quantifying the active solar potential from the irradiation levels, formed
our performance assessment engine. This core and novel part of the research also brought
forward some knowledge on precautions to take when using certain performance indicators
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Abstract

or analyzing and interpreting simulation data.

To assess its usability and relevance, the workflow was implemented as a prototype, supported
by existing 3D modeling and scripting tools. Inspired by the emerging performance-driven
and non-linear design paradigms, a multi-variant approach was adopted for this implemen-
tation; from the space of possible designs defined by a small set of user-inputs, a series of
neighborhood variants are generated through a random sampling algorithm. Results of their
evaluation by the core engine are displayed to allow a comparative assessment of the variants
in terms of their morphology and solar potential. Having been tested among practitioners
during workshops, the prototype appears promising for providing design decision-support.
Direct feedback gathered from participants support the relevance of the approach and re-
veals multiple avenues for further improvement. Results collected during the workshops also
allowed probing the validity boundaries of the metamodels, by applying them on the profes-
sionals’ designs and comparing the predictions to the simulation outputs, taken as reference.
The prediction accuracy achieved attests the potential of the approach as an alternative to
more complex methods, less adequate for exploring early-phase design alternatives.

Key words: early-phase neighborhood design, passive and active solar potential, design

decision-support, predictive mathematical model, multi-criteria performance assessment,
parametric modeling, energy and daylight simulation
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Résumé

De par la nécessité d’'une transition vers la durabilité des villes, quartiers et batiments, les
urbanistes, architectes et ingénieurs font face a des normes énergétiques de plus en plus exi-
geantes. Ces décideurs doivent étre supportés tot dans leur processus par outils adéquats. En
effet, les décisions prises en phase initiale de conception, qui concernent des parametres liés
ala forme et disposition des batiments, affectent fortement I’exposition solaire des batiments,
qui a son tour influence leur demande et potentiel de production énergétique. Malgré un
développement accru d’outils informatisés, des limitations demeurent particulierement au
niveau de leur intégration au sein du processus de design. Ces considérations définissent le
contexte a I'intérieur duquel cette recherche doctorale a été développée.

Lobjectif principal de cette these est le développement d'une méthode d’aide a la décision
en phase initiale de conception de projets de quartiers axée sur la performance. Cette per-
formance est ici définie selon trois criteres : (i) le potentiel en éclairage naturel, quantifié par
I'autonomie au niveau du rez-de-chaussée (correspondant a une estimation prudente), (ii) le
potentiel solaire passif, lié a la demande en chauffage et refroidissement des espaces (selon
certaines hypotheses e.g. sur I'isolation thermique), et (iii) le potentiel solaire actif, quantifié
par la production in-situ d’énergie thermique et photovoltaique.

La recherche s’est réalisée en deux principale phases. Un systeme d’évaluation en temps réel
de la performance d'un ensemble de batiments a d’abord été développé, suivi de sa mise
en oeuvre sous forme de prototype informatisé d’aide a la décision, qui a été testé par des
praticiens. Le travail s’est focalisé sur le contexte Suisse en terme de pratiques de design et du
climat. Lextension a d’autres contextes est toutefois directement envisageable.

Dans la premiéere phase, une approche basée sur la métamodélisation a été adoptée afin d’évi-
ter les limitations associées aux simulations impliquant la résolution d’équations physiques.
Des fonctions mathématiques ont été obtenues pour prédire la performance énergétique et
en éclairage naturel d'un quartier a partir d'une série de parametres liés a la géométrie et au
niveau d’exposition solaire des batiments. Ces fonctions (ou métamodeles) ont été dérivées
depuis une base de données de référence, acquise suivant une procédure de modélisation et
simulation. Les fonctions de régression linéaire multiples ainsi obtenues ont été complétées
par un algorithme pour quantifier le potentiel solaire actif. Cette partie centrale et novatrice
de la recherche a également fourni de I'information sur les précautions a prendre lors de I'uti-
lisation de certains indicateurs de performance ou de I'analyse et I'interprétation de données
de simulation.

Pour évaluer son utilisabilité et pertinence, ce moteur d’évaluation a été intégrée dans une



Résumé

méthode d’aide a la décision. Inspiré par la vision émergeante du processus non-linéaire guidé
par la performance, une approche multi-variante a été adoptée pour la mise en oeuvre ; a partir
de I'espace de solutions possibles définie par quelques données en entrée de I'utilisateur, une
série de variantes de quartiers sont générées aléatoirement. Les résultats de leur évaluation
par le moteur permettent une comparaison des variantes au niveau de leur morphologie et
potentiel solaire. Les tests menés par des praticiens lors de workshops ont révélé le potentiel
et la pertinence du prototype comme outil d’aide a la décision. Les données recueillies ont
permis d’identifier de multiples pistes d’améliorations futures et de sonder les limites de
validité des métamodeles en les applicant sue les designs des professionels. Le niveau atteint
de précision des prédictions approuve le potentiel de 'approche comme alternative aux
méthodes plus complexes, moins adaptées a '’exploration d’alternatives de design initial.

Mots clefs : phase initiale de conception de quartiers, potentiel solaire passif et actif, aide

a la décision et au design, modéle mathématique prédictif, évaluation multicriteres de la
performance, modélisation paramétrique, simulation énergétique et d’éclairage naturel
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|} Introduction

“Nous menons une guerre contre la nature. Si nous la gagnons, nous sommes perdus.”

Hubert Reeves
(astrophysicist, popularizer of
science and environmentalist)

1.1 Energy and the built environment

In light of the current and critical issues related to climate change, resource scarcity, and energy
efficiency, multiple initiatives and regulations have been launched by various governmental
bodies across the world. At the European Union (EU) level, targets have been fixed for 2020,
2030 and 2050; the 2020 Energy Strategy aims at 20% reduction in greenhouse gases (GHG),
20% energy efficiency improvement, and a share of renewable energy meeting at least 20%
of the consumption, while the 2050 strategy aims at achieving a reduction of 80-95% in GHG
(with respect to 1990)!.

Following the Fukushima nuclear disaster of 2011, Switzerland has developed its own Energy
Strategy 2050 to plan the required restructuring of its energy system, which will include decom-
missioning the existing five nuclear power plants as well as increasing the share of renewables
and promoting energy efficiency?. Assuming the adoption of a new energy policy, the con-
federation has defined similar targets as the EU, with the goal of reaching GHG reductions
ranging between 60-80% depending on the sector (see Fig. 1.1) [OFEN and DETEC, 2013].
These targets are reflected in the modified version of the Swiss Energy Law (Loi sur I'énergie,
2014), which includes reduction objectives in terms of average annual energy and electricity
consumption per person [Confédération Suisse, 1998].

On the same grounds, non-legislative initiatives are also being launched. As an attempt to
promote sustainability in a broader sense with a worldwide vision, the 2000 Watts Society
concept was developed in Switzerland based on the idea that each human being ‘has the right’

Thttps://ec.europa.eu/ energy/en/topics/energy-strategy (last accessed on January 25, 2016)
2http:/ /www.bfe.admin.ch/themen/00526/00527/index.html?2lang=en# (last accessed on January 25, 2016)
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to 2000 watts in terms of primary energy and 1 ton/year of CO, emissions [SuisseEnergie,
2014]. To achieve these goals, a decrease of over 50% with respect to 2013 will be required in
Switzerland, and a much larger drop in other developed countries, as shown in Fig. 1.2.

Due to the importance of buildings in the composition of the global energy consumption
and GHG emissions (Fig. 1.3), the above-mentioned regulations, laws and initiatives also
target specifically the built environment sector. For example, the 2000 Watts Society fixes
target values in terms of primary energy consumption for new and renovated buildings. These
values, along with a method to verify code-compliance, are contained in the SIA3 norm 2040
[SIA, 2011].

In term of legal prescriptions, the general objectives laid out at the Swiss federal level are given
amore tangible form through the cantonal and municipal regulations. For instance, the Energy
Law has led to the energy regulations model (Modeéle de prescriptions énergétiques des cantons
- MoPEC), to be implemented in the cantons’ legislations by 2018 [EnDK and EnFK, 2014]. This
model contains prescriptive objectives, defined with reference to various SIA norms which set
limit and target values, for example regarding building insulation requirements and energy
consumption for heating and electricity.

Along with energy consumption reduction objectives, an increase in the share of renewable
energy is also sought by various Swiss directives. These include cantonal-level laws such as, in
the Canton of Vaud, the Law on Energy (LVLEne, [Canton de Vaud, 2014]), the Cantonal Master
Plan (PDCn, [Canton de Vaud, 2015]) and the Regulations of the Planning and Construction
Law (RLATC, [Conseil d’Etat du Canton de Vaud, 2014]). The objectives are to cover respectively
30%, 20% and 30% of the domestic hot water, electricity and final consumption of all new
buildings with renewable energy sources by 2050. Financial incentives are also provided and
an eased implementation process for small solar installations is granted.

This non-exhaustive overview illustrates the increasing spread and level of energy standards
and regulations in the built environment. To achieve these European objectives and their
national and local equivalents across western countries, a transition towards sustainable
cities, neighborhoods and buildings is essential. In this sense, decision-makers, including
policy-makers, urban planners, designers, architects, and engineers, have a key role to play,
from the early stages of the strategic urban planning to the detailed building design level.

To better understand how they can fulfill this influential role, we must examine the process
from the macro scale of urban planning to the architectural design level.

3The Société Suisse des ingénieurs et architectes (SIA) is a professional association for construction, technol-
ogy and environmental specialists, which aims at promoting sustainable and high-quality design in the built
environment in Switzerland (http://www.sia.ch/en/the-sia/the-sia/, last accessed on February 24, 2016).
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1.2 Urban planning and design process

Urban planning can be defined as “a dynamic profession that works to improve the welfare of
people and their communities by creating more convenient, equitable, healthful, efficient, and
attractive places for present and future generations™

technical and political process’, “design of the urban environment’, “scientific, aesthetic, and
orderly disposition of land, resources, facilities and services™.

. Other definitions mention the terms ‘a

These definitions highlight the complexity and multidisciplinary nature of urban planning,
which leads to the need for supporting and guiding instruments. In Switzerland, cantons
and communities have the task to implement and further define their planning instruments,
based on the general guidelines established by the confederation®. In the Canton of Vaud, two
main types of planning documents exist, with their respective subjacent variants based on the
targeted political level and spatial scale: master plans (Plans directeurs) and land use plans
(Plans d'affectation). Documents of the former type allow political authorities to coordinate
among each other, with no link to the landowners. They contain the main objectives and
priorities. Based on these guidelines, the second type of documents, land use plans, are
produced. These represent legally binding documents which define for a given territory
the land use conditions (e.g. development purpose and size). For both types, the general
procedure involves various actors and steps, as illustrated in Fig. 1.4.

At some point in the evolution of a project, a transition from planning to design will occur.
Although the distinction between urban planning and urban design is not always clear, an
attempt at distinguishing them was made by Reid Ewing, professor at the University of Utah:

“Urban design differs from planning in scale, orientation, and treatment of space.
Its scale is primarily that of the street, park, or transit stop, as opposed to the larger
region, community, or activity center, which are foremost in planning. [...] The
treatment of space in urban design is three-dimensional, with vertical elements as
important as horizontal ones. Urban planning, on the other hand, is customarily a
two-dimensional activity, with most plans visually represented in plan view, not
model, section, or elevation.” [Ewing, 2011, p.43]

In the case of the Canton of Vaud, the transition begins to occur through some of the above-
mentioned planning instruments, such as the localized master plan (Plan Directeur Localisé
(PDL)) or the district land use plan (Plan de Quartier (PQ)). These documents, drafted by
the assigned agent, often an urban planning or design firm, contain objectives in terms
of built and human density, program, energy efficiency and production goals, as well as
morphological guidelines to a varying level of detail (e.g. from maximum allowed height
only to building typology and layout). They set up the basis framework to be respected in

4https://www.planning.org/aboutplanning/whatisplanning.htm (last accessed on January 26, 2016)

Shttps:/ /www.mcgill.ca/urbanplanning/planning, http://www.cip-icu.ca/Becoming-a-Planner (last accessed
on January 26, 2016)

6 http://www.vd.ch/themes/territoire/amenagement/guides-et-manuels/ (last accessed on January 27, 2016)
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Figure 1.4 - The land planning procedure - Example for the Canton of Vaud, Switzerland’. SAT: Service
de I'aménagement du territoire (planning service), CE: Conseil d’état (state council), TA: Tribunal
administratif (administrative court).

subsequent, more detailed plans. They usually contain objectives based on norms, standards
and/or labels, such as the SIA norms and Minergie label®. For example, the basic Minergie
standard, linked to the SIA 380/1:2009 norm, requires a final energy consumption for space
and water heating, electrical ventilation and air conditioning lower than 38 kWh/m?year
for new collective housing and 40 kWh/m?year for new administrative buildings [Kesser,
2012]. For the latter, a reduction in the annual artificial lighting demand from the actual 19
kWh/m?year to a target value of 5 kWh/m?year is required by the SIA 2024:2015 norm [SIA,
2015].

Similar certification schemes such as DGNB in Germany [German Sustainable Building Coun-
cil, 2013], BREEAM [BRE, 2013] in the United Kingdom (UK) and LEED [Welch et al., 2011] in
the United States (US) are now extending to the urban level. Initially conceived for individual
buildings, a neighborhood-scale version of the latter was launched in 2010 called LEED for

“Adapted from the “Schéma simplifié d'une procédure d'aménagement du territoire”, accessible at http:/ /www.
vd.ch/themes/territoire/amenagement/guides-et-manuels/ (last accessed on January 27, 2016).

8Minergie is a label for (new and existing) sustainable buildings which aims at ensuring occupant comfort with
minimum energy consumption (http://www.minergie.ch/basics.html, (last accessed on January 25, 2016)). The
label has grown in popularity in recent years and has evolved to include a set of labels with increasing requirements:
Minergie, Minergie-P, Minergie-A, Minergie P-Eco and Minergie A-Eco.
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Figure 1.5 - Urban project for the district of Les Plaines du Loup: (a) example timeline (non-exhaustive)
[Ville de Lausanne, 2013] and (b) master plan of the PDL?.

Neighborhood Development. Yet, it does not address the impact of urban and building mor-
phology on energy performance [Eicker et al., 2015] and assigns a generally low weight to such
considerations. Labels in themselves are still limited in terms of support brought to planners,
decision-makers and designers.

To illustrate how an urban-scale project unfolds itself with reference to the above mentioned
planning instruments, the timeline of an example project is shown in Fig. 1.5a. The master
plan of this district-scale project for the city-owned area of Les Plaines du Loup in Lausanne,
depicted in Fig. 1.5b, was introduced along with multiple guidelines and objectives in the PDL
initiated in 2010 [Ville de Lausanne, 2013]. The plan proposes a dominant courtyard-based
urban design, with a maximum height of six levels (with some exceptions). It aims at reducing
the heating need to a minimum to reach the energy class A as defined in the SIA 2031 technical
document [SIA, 2009a]. To do so, it recommends limiting the form factor to allow an optimal

usage of solar gains.

9Adapted from http:/ /www.lausanne.ch/lausanne-en-bref/lausanne-demain/ projet-metamorphose/sites/les-
plaines-du-loup.html, (last accessed on January 26, 2016).
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These planning instruments thus define not only the general sustainability objectives (e.g.
social mix, energy consumption), but also some early-design information (e.g. building shape)
that can have a significant impact on the energy performance of the project. As illustrated
in Fig. 1.6, early decisions, made particularly on building form, can lead to energy savings
reaching up to 80% [Lechner, 2009]. Not only should the building form be determined based
on performance considerations, but so should the urban form, which can be defined at differ-
ent resolution levels (building/lot, street/block, city and region) [LSE Cities and EIFER, 2014;
Moudon, 1997]. This change of scale is essential to take into account buildings interdepen-
dencies, which can have impacts as important as individual buildings on energy performance
[Rickaby, 1987]. Decisions made on building and urban form strongly dictate the thermal
exchanges of buildings with the environment and their level of solar exposure, which in turn
influence the heating, cooling, and lighting required to ensure a thermally and visually com-
fortable environment for the occupants. These needs are major contributors in the energy
consumption within residential and non-residential buildings, as shown in Fig. 1.7.

The early design stage is also the moment in the process when designers possess the greatest
decisional freedom [Zeiler et al., 2007]. Decisions are made at each level, successively more
detailed and specific than the previous, as we go from the early to the advanced design stages.
Design problems are often characterized as ill-defined rather than well-defined [Andersen
et al., 2008; Siret, 1997; Yezioro, 2009]. The problem statement and its solution evolve jointly
throughout the process, during which alternative solutions are sought and weighted [Kalay,
1985; Marin et al., 2008]. This often translates into a cyclical ‘generate and test’ procedure,
where form is given priority over performance [Oxman, 2009]. Despite the importance of early
decisions and energy objectives contained in plans as stated above, it is at the later design
stages, and thus detailed building-level, that performance assessment is typically conducted
[Hensen and Lamberts, 2011]. After reviewing the design process through various case studies,
Weytjens and Verbeeck [2009] noted that “energy related issues are often more seen as ‘add-on’
components, which can be fixed in a later stage of the design”. This is also highlighted by Kiel
Moe, architect:

“During this period [second half of the twentieth centuryl], buildings became
hermetically sealed, relied upon an increasingly layered approach to construction,
and used increasing amounts of energy to serve their occupants. This approach
was once understandable given its, now-distant, context of seemingly endless and
relatively cheap energy sources. However, this is not a viable strategy for architecture
in our current professional, economical, social, and ecological context.” [Moe, 2008,
p.71

Recognizing this situation, the research and design community have come up with several
design concepts, often sharing the same ideas and goals, sometimes differing by subtleties,
and given different names such as ‘sustainable design/architecture’, ‘integrated design’, and
‘environmental design’. In addition to this surge in energy-conscious design, the important
technological advances have led to the development and adoption of a large number of digital
design-support tools in the past recent years, causing a shift from traditional to computer-

7
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oriented architecture [Boeykens and Neuckermans, 2003]. This phenomenon allowed the
accelerated examination of designs, facilitating and increasing the ability for drafting, mod-
eling and elaborating forms, and providing means to rapidly generate and evaluate design
alternatives [Grobman et al., 2010]. It also became possible to probe the macro scale, an area
in perpetual evolution.

1.3 Motivation and targeted gap

Despite this increasingly favorable context, we are witnessing a low level of uptake of digital
tools, particularly in the crucial early design phases of meso-scale projects.

“The attention of research into energy-related aspects of the built environment has hitherto been
focused at the scale of the individual building, or of the city as a whole.” [Rickaby, 1987, p.43]

This remains a reality in the current context which is characterized, on one side, by extensively
available detailed energy performance tools for assessing individual buildings, and on the
other side, by models and methods for representing and analyzing the building stock at the
macro level [Reinhart and Cerezo Davila, 2016]. There continues to be a need for additional
developments addressed at the meso scale of the neighborhood, which is considered as
particularly relevant and interesting nowadays regarding policies, scope and impact of design
decisions, flexibility in the design, and the increasing number of urban renewal projects
[Hachem et al., 2013; Peronato, 2014; Riera Pérez, 2016].

Moreover, the evaluation and comparison of design alternatives is still typically done in a
manual and linear way [Grobman et al., 2010] and at the advanced building design stages
as mentioned earlier [Hensen and Lamberts, 2011], with most existing tools conceived for
analysis rather than design. Consequently, emerging design paradigms have been proposed,
such as the ‘performance-based’ [Kalay, 1999], ‘performative’ [Oxman, 2009], and ‘non-linear’
[Grobman et al., 2010] design, respectively advancing multi-disciplinary and multi-criteria
performance evaluation, intending to reverse the traditional design order by using perfor-
mance goals as the form generation mechanism, and promoting simultaneous generation and
evaluation of multiple design alternatives.

The emanating requirements are therefore shifting, not only temporally and spatially with
respect to the design process, but also in terms of the priorities and fundamental approach to
the design task. What appears to be lacking is a method that can provide performance feedback
to practitioners in a non-disruptive yet novel way during the exploratory process of defining
the buildings’ form and layout. This research seeks to address this gap, by providing the means
for simultaneously evaluating multiple performance aspects of a whole neighborhood project,
taking into consideration the impact of individual building-level design variables. The research
focus is placed on the solar performance, defined in terms of the passive (heating, overheating
mitigation, and daylight) and active (energy production) potential of new neighborhood
developments in the Swiss context. However, the application and relevance of this work to
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other cases, e.g. renewal and densification projects, and to other performance aspects, e.g.
CO, emissions, is not excluded and is further discussed in the thesis.

1.4 Thesis structure and research approach

The research approach consists in a gradual investigatory and development process, culmi-
nating in a proposed decision-support workflow to provide guidance in early neighborhood
design, with a focus on solar energy utilization. We are specifically concerned with the follow-
ing questions:

1. How should we define the (energy/solar) performance of a (virtual) neighborhood and
what metrics should be used to quantify each performance aspect, in a way that captures
the interdependencies between buildings?

2. How can we efficiently evaluate these metrics considering the available (low) amount
of early-design information, in the context of a real-time interactive computer-based
workflow?

3. What are the essential features of a design decision-support system, built around the
performance assessment engine (defined through the previous questions), that will
make it in line with the ill-defined nature of the design process?

The workflow adopted to answer these questions is illustrated in the flowchart of Fig. 1.8,
with reference to each chapter of the thesis, where the related main scientific challenges are
identified.

We begin in chapter 2 by exploring existing DDS methods and tools, revealing that novel
approaches are needed in the development of digital tools to provoke a temporal spread of
their use to the earlier design phases. The review underlines a gap to fill to provide adequate
support to practitioners and push the shift towards performance-based design.

Chapter 3 investigates the research literature to look at how the performance of a design is
assessed. A selection of methods are tested by applying them to case studies. This preliminary
study serves to define the performance criteria and associated metrics (performance outputs)
of interest in this thesis. Limitations in current evaluation methods, linked e.g. to the lack of
integration into the design process and high computational cost, lead us towards our proposed
performance assessment method, based on predictive models'°.

Developed in chapter 4, this core part of the thesis includes defining the set of inputs to the
predictive model, consisting of parameters capturing design features that have an impact on
the performance outputs. This link is exploited to develop multiple linear regression functions
allowing a time-efficient estimation of the solar potential.

10The term predictive model refers to an equation-based model used to predict (or estimate) a certain value
from a set of input parameters through the use of mathematical methods (http://www.mathworks.com/discovery/
predictive-modeling.html, last accessed on April 18, 2016).

10
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In chapter 5, these pieces are assembled and complemented by additional components to cre-

ate a workflow that is implemented as a computer-based tool and tested among practitioners

through workshops. Influenced by the emerging paradigms mentioned earlier, the work-

flow follows a non-linear, performance-based design approach by generating and evaluating

multiple design variants.

Chapter 6 presents the results from the workshops and the appraisal (i) of the prototype in
terms of its potential as a DDS tool and (ii) of the underlying performance assessment engine

in terms of its predictive accuracy.

Chapter 7 provides a discussion on limitations and foreseen improvements.

We conclude the thesis in chapter 8 by highlighting the outcomes of the research along with

their application potential and by providing an outlook.
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Figure 1.8 — Flowchart representation of the research approach with reference to the thesis structure
and including the main components in the design decision-support workflow.
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y4 State-of-the-art in decision-support
methods applied to design

“At the scale of modern urban life, the ultimate constraints upon the system lie in nature.”
Ralph L. Knowles

(Professor of Architecture)

In this chapter, we look at the literature that has aimed at getting a better understanding of the
interplay between urban to building morphology, climatic context and various performance
aspects, with the objective of informing decision-makers by providing them with tools, in
the form of simple guidelines and rules-of-thumb as well as more advanced computer-based
programs.

We begin in section 2.1 with a general overview of design decision-support (DDS) methods
and tools and how/when they are used along the design process. Studies including surveys
and interviews among practitioners are summarized, bringing to light current barriers as well
as requirements for overcoming them.

In the following sections, the key elements that compose DDS methods and tools and reflect
the current research and development status are introduced. In section 2.2, detailed examples
of performance assessment methods are presented according to the scale at which they are
typically employed, from urban planning to building design. In section 2.3, we go over what
we have termed analysis support concepts that can further guide decision-making.

We conclude by highlighting the most relevant elements, to our research context, from the
literature review and on which we will build in the subsequent chapters.

2.1 Overview and current use in practice

The general domain of DDS methods and tools in the field of urban planning, urban design,
and architectural design is practically unbounded and in continuous development. In the
literature, reviews have been conducted to identify and sometimes categorize them, as well as
highlight the barriers to their use in practice, through surveys among practitioners. Since the

13
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uptake of methods and tools is strongly linked to the design phases [Goodman-Deane et al.,
2010], studies typically include this connection to the temporal evolution of the process (see
Fig. 1.6).

Through a triangulated approach involving a literature review, case studies, interviews with
experts, and surveys, Goodman-Deane et al. [2010] came up with a list of commonly used
design methods in a general sense (i.e. with no reference to a specific design field), with
an approximate indication of when they are used along the design process. Among others,
methods based on observation, information search, and brainstorming were identified as
often used at the early phase, while modeling, getting feedback from others, and testing
occurred later. Visualization and sketching were noted as used throughout the design process.
Time and cost were identified as two constraints significantly impacting design practice.

Similarly, but with a focus on architectural design, Verdonck et al. [2011] conducted a thorough
review of a wide range of design support tools including various types of documentation -
technical, standards, checklists, books - and methods for drawing - sketches, 2D-3D computer-
aided (architectural) design/drafting (CA(A)D) software - simulation, evaluation, and analysis,
as well as recourse to specialists. They defined the following roles of design support tools:
evaluation/analysis, communication, knowledge-based, presentation, and modeling. Through
a survey conducted among Flemish architects, they found that design decisions were mostly
made based on practitioners’ experience, clients’ demands, and regulations, with design
support tools used by only 22% of respondents, as shown in Fig. 2.1a. With respect to the
design phases, they identified for which role additional support was requested in design
support tools (Fig. 2.1b); at the early design phases, the need for better evaluation and analysis
was predominant. When asked the reasons for not using energy evaluation tools, a majority of
respondents answered that this was out of their competence domain and too time-consuming
(Fig. 2.1c). Based on these observations, the authors defined an extensive list of requirements
for “architect-friendly” building performance simulation (BPS) tools (here adapted from
[Weytjens and Verbeeck, 2010]):

Usability in the design process: minimally interrupt the design process with in tune data-
input; simplicity; minimal time required to operate the tool; adapted for use in early
design; quickly obtain solutions and easily create, test and compare alternatives; real-
time feedback on design decisions and changes; provide guidelines

Interface: visual communication of graphical user interface (GUI); clear, intuitive, and flexi-
ble navigation; clearly structured with a restrained set of functions (simplicity)

Data-input: limited; quick to provide (time to create model < 1h); input in the language
of the architect; use of defaults to limit and facilitate data-entry; simple and intuitive
input process; easy data review/change and creation of alternative designs/options;
extensive library/database of building components; inputs consistent with early design
phase (basic information); from general to detailed; graphical representation of building
geometry; 3D modeler in simulation tool; possibility to import 3D CA(A)D files; input
via drawing software (e.g. SketchUp)

14
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Output: easy interpretation (language of architects); graphical representation of output; con-
formance with building codes and regulations; impact of decisions/parameters (uncer-
tainty/sensitivity); simple but supportive information for design decisions; convincing
output to communicate with clients; clearly indicate problem area(s); benchmarking;
output displayed in 3D building model; generate reports for alternative designs/options;
reliability of the output; adapted for different design phases

General: adaptable default values; highly visual; transparency of the tool; easy and intuitive
to learn and use; short calculation time; adequate for local usage (units/materials/...);
easy to use after long time of non-use

As will be seen in section 2.4 and ensuing chapters, we aim to comply with a large majority of
these necessities through our proposed approach. Many of them are recurrently highlighted
in other reviews and studies, as shown below.

In the context of the International Energy Agency (IEA) Annex 31 [IEA, 2004], the following
classification of environmental tools was proposed: (i) interactive software including life cycle
analysis (LCA) tools and energy and ventilation modeling software, and (ii) passive tools in-
cluding guidelines, checklists, case-studies, labels, regulations and more. Within another IEA
project of the Solar Heating & Cooling programme (SHC), Task 41 “Solar Energy and Architec-
ture”, 56 computer-based tools were reviewed from the perspective of their potential to support
solar-oriented architecture from the early design phase. The software were classified as either
(i) CA(A)D, e.g. ArchiCAD, Revit, Allplan, AutoCAD, SketchUp, Rhinoceros (ii) visualization,
e.g. Flamingo, LuxRender, RenderWorks or (iii) simulation tools, e.g. DesignBuilder, Ecotect,
Radiance, Daysim, PVSyst [Horvat and Dubois, 2012; IEA SHC Task 41, 2010]. It was observed
that most CA(A)D tools allow photovoltaic (PV) and/or solar thermal (ST) system sizing, pro-
vide passive solar assessment - often through an integrated engine or plug-in conducting
whole building energy simulation - and (day)lighting assessment, through visualization and
(physically accurate) light rendering. The visualization tools were found to offer advanced
(day)light simulation for high quality, post-design renderings. Software falling in the third
category, simulation tools, were shown to provide passive solar gains and daylight availability
estimation, as well as PV and ST sizing features.

What came out of the review is that most tools, regardless of the above classification, are
more suited for the detailed rather than early design phase. Moreover, many are specialized
in one of the performance criteria, for instance PV sizing only, as opposed to offering a
more comprehensive assessment allowing to find balance between passive and active solar
measures. Limitations in the outputs were also noted; most tools offer visualization of sunlight,
shadow or incident irradiation on buildings, but lack in terms of numerical and informative
feedback.

15
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The work conducted within this IEA Task 41 also included a survey and interviews with
practitioners [Horvat and Dubois, 2012; Kanters et al., 2014a]. Results allowed identifying
factors that influence the choice of software: user-friendliness of the interface, cost and
interoperability with other software were the most selected (see Fig. 2.2a). Concurring results
were obtained regarding the main barriers to the use of existing tool, where complexity and cost
prevailed, followed by time-consumption and lack of integration both into CA(A)D software
and within the design workflow (Fig. 2.2b). These findings led the researchers to identify
requirements for future BPS tools. The implementation of these tools into CA(A)D software
is promoted as a way to make them function as design tools that could support comparisons
between alternatives with respect to the energy need and production, in a way that can help
architects. They state that appropriate early design phase (solar) tools should embrace the
intuitive and iterative features intrinsic to this stage in the process, by allowing variations in
building geometry and providing explicit feedback on solar-related performance aspects. The
importance of communication-supporting features is also highlighted, e.g. to show to the
client the consequences of design decisions on the building’s energy performance.

This lack of design-oriented tools was also brought up by Attia et al. [2012] who found that
out of the 392 BPS tools listed as of 2011 on the US Department of Energy (DOE) website,
less than 40 were targeting the early architectural design phases. The others were mainly
identified as post-design and engineer-oriented evaluation tools. In that same study, barriers
to the integration of BPS tools in the context of decision-making at the early design phases
of Net Zero-Energy Building (NZEB) were identified: geometry representation, filling the
inputs, providing informative support for decision-making, results interpretation, evaluative
performance comparisons, and informed iteration.

The limited use of BPS tools as a general design decision-support is in fact recurrently high-
lighted in the literature [Alsaadani and De Souza, 2012; Hensen and Lamberts, 2011]. Based
on research involving visits to architecture and engineering offices, Smith et al. [2011] affirm
that whole building energy analysis tools are too complex and time-consuming to be used
at the early design phase. These restrictions, combined with model exportation problems
and detailed data requirements, discourage architects to use such tools who instead prefer
hiring an expert, at a higher cost, to perform the energy analysis. Architects want tools better
suited to their modeling applications that can quickly generate energy models while allowing
comparison of various design alternatives. As such, relative values (between options) are
considered more important than accurate figures. The missing tool is seen as complementary
to the engineering consultant, providing energy-related knowledge to the architect who can
then better communicate with the expert, which is likely to appear later in the process [Smith
etal., 2011].
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(a) Factors identified as the ones most influencing the choice of software to use, accord-
ing to answers (3 selected factors max per respondent) by 826 respondents.
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(b) Barriers to the use of available tools related to architectural integration of solar design,
according to answers (multiple selections possible) by 685 respondents.

Figure 2.2 — Results from an online survey among building professionals across 14 countries [Kanters
etal., 2014a].
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The possibility of comparing design alternatives is a need further emphasized by Branko [2003]
who defines an “active design space exploration”, where a defined building typology would be
“subjected to dynamic, metamorphic transformation”, stemming from an optimizer. He also
mentions that intuitive ‘low-resolution’ BPS tools are necessary for a more effective use in the
conceptual design phase.

The studies cited above seem to all eventually converge
to computer-based software designed for evaluating
the performance of buildings. The use of this subset of
DDS tools is not spread among practitioners despite its
great potential, already envisioned by Milne [1991] in
the early 90’s when he stated that the (desired) design
tool should be “a piece of software that is easy and nat-
ural for architects to use, that easily accommodates 3D

. ‘ o representations of the building, and that predicts some-
gfs;;i'it_a;r};:eiu;;lﬁiir;l[glg ; E ’ thing useful about building’s performance.”[p.485]. He
composed of four components. defined the following five categories of requirements

Building
performance
models

for ‘future design environment’ consisting of the four
components shown in Fig. 2.3: (i) establishment of initial design conditions, (ii) simplified 3D
data input, (iii) building performance prediction models, (iv) techniques for communicating
complex data, and (v) automatic data conversion routines.

Despite the evolution of the field since then, the above review demonstrates that emphasis
has remained on analytical and engineering tools as opposed to methods supporting design.
There is thus still a need for improvement, particularly in the early phases when practitioners
wish to explore the design solution space. As Beckers and Rodriguez [2009] put it:

“l...] most programs are oriented to analysis and not to design. Thus, they are
mainly used at the final step of the project, when the principal ideas are already
defined, and all their possibilities are not apprehended.” [p.475]

Clearly there is a general consensus on what are, on one side, the issues of existing DDS tools
and on the other side, the requirements or features these should have. To summarize, the
main shortcomings recurrently pointed out among existing tools regarding their use at the
early design stage are [Branko, 2003; Horvat and Dubois, 2012; IEA SHC Task 41, 2010; Smith
etal., 2011; Zhao and Magoules, 2012]:

e too complex; out of competence domain; conceived for expert-users
* requiring detailed/high-resolution inputs
* time-consuming to learn and use

* specialized, which prevents a holistic performance assessment and creates the need for
tool-specific model (remodeling for each evaluation done in a different environment)

e lacking in user and decision-making guidance
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These challenges contribute to the motivation behind this thesis, as further detailed later on,
and are the mirror of many of the requirements highlighted earlier.

Figure 2.4 provides an overview in terms of the main DDS methods and tools encounter-
ing in this section. Their approximate position along the process from urban planning to
architectural design intrinsically reflect the barriers unveiled; only a few, e.g. CA(A)D and
guidelines, are used throughout, while simulation-based methods are commonly reserved for
building-scale assessment at the detailed phase. Moreover, we observe that an ensemble of
methods is usually required to fulfill all roles.

This section has inquired into the practitioners’ stance in regard to the available supporting
instruments. In the next section, we present a deeper investigation of methods and tools,
providing concrete examples for each category found in Fig. 2.4.
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Figure 2.4 — Synthetic overview of main DDS methods and tools typically used from urban planning
to architectural design for various purposes. This matrix was developed by intersecting and merging
elements found in the reviewed literature.
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2.2 Assessment methods

As highlighted in chapter 1, the design process is increasingly embracing the concept of
performance, which has become a guiding design principle with the uptake of digital decision-
support tools and emergence of sustainability objectives [Branko, 2003; Kalay, 1999; Oxman,
2009]. In the following, we loosely delimit the space of DDS methods and tools to examine
more closely the computer-based and solar and energy performance assessment subset.
Zooming in on the above-mentioned categories, we gradually unveil instances for each type
of approach. Following the temporal and spatial timeline illustrated, we start from urban
planning instruments to finish with building-scale tools.

2.2.1 Planning instruments for solar access in urban settings

While a historical account on the evolution of theories related to the perception of the sun
with respect to urban planning, design and architecture is out of the scope of this thesis, it
is worth mentioning a few key elements of the past, before fast-forwarding to more recent
developments. Thoughts on natural light in relation with urban form emerged in the 19th
century, when light from the sky was perceived as a purifying fluid, stemming particularly
from the hygienist movement (Siret [2013] and Harzallah [2007] as cited in Montavon [2010]).
Divergent theories on facade exposure, orientation and building height were eventually pro-
posed, motivated by different reasons linked for instance to health, psychological, cultural,
social and thermal considerations [Montavon, 2010]. This diversity of motives has persisted,
despite an increasing emphasis placed on solar exposure for daylight and thermal heat gains
and avoidance, affecting comfort and health.

Solar envelopes and associated concepts

Geometrical methods were historically and are still employed to look at solar access and
daylight availability in urban environment, often with density considerations. Focusing on the
right of individual buildings to solar exposure, the Solar Envelope (SE) concept, first developed
in the late 1970’s [Knowles, 1999, 2003], consists in defining some geographical boundaries
(around a hypothetical building) to ensure urban solar access to the space of interest and
its surroundings. This concept was adapted by (and inspired) many to contribute to the
development of zoning and planning regulations. Raboudi and Saci [2013] introduced the
Solar Bounding Box, a spatially delimiting volume that respects urban rules (e.g. set backs,
alignment, distance between buildings) and includes the SE. Pereira et al. [2001] applied the SE
to ensure desirable insolation (in terms of thermal comfort) and skylight availability in Brazil.
Obstruction angles for the city of Florianopolis were found based on the satisfaction of at least
two out of three criteria based on the exclusion/acceptance of undesirable/desirable radiation
(e.g. 1.5-2 hrs of insolation during winter). A stereographic obstruction mask and pondered
radiation method were used to obtain the criteria-related values. A computer code called
MascaraW was developed for visualization. SEs were derived from the obstruction angles and
showed the potential use of this concept as a regulation and guideline-generating tool.
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Figure 2.5 — Solar Envelope [Knowles,
2003] example for a parcel located in a
built context, ensuring solar access to sur-
rounding buildings between 1lam and
1pm throughout the year at a latitude of
46°N. Image generated using the SE com-
ponent of DIVA-for-Grasshopper [Jakubiec
and Reinhart, 2011].

The SE concept has been implemented also in CityZoom, an urban planning decision support
tool combining computer-aided (architectural) design/drafting (CA(A)D) with geographic
information system (GIS), which generates buildings based on inputed master plan parameters
(e.g. building height) and allows environmental assessments using SEs [Grazziotin et al.,
2004; Turkienicz et al., 2008]. The DIVA-for-Grasshopper plug-in also allows generating and
visualizing SEs (see Fig. 2.5) [Jakubiec and Reinhart, 2011].

Similarly, Faucher and Nivet [2000] proposed incorporating in a CA(A)D tool urban regula-
tions and the design intents of the user, linked to sunlight and visibility, both considered as
constraints on 3D volumes. This approach, termed ‘declarative modeling’, was also adopted
by Gallas et al. [2011a,b], where users must declare their intentions in terms of the desired
daylighting atmosphere.

Based on the SE, Capeluto and Shaviv [2001] introduced new envelopes: the solar rights and
collection envelopes which respectively represent the maximum building heights that can be
achieved without violating solar rights and the lowest point where window/solar collectors
are not shaded by the surroundings. From those envelopes, a Solar Volume (SV) is defined,
containing the building heights allowing solar access to all nearby buildings. All of those
parameters are determined for a given period of time. Using the SV to ensure maximum solar
insolation, an investigation was done to determine the urban fabric (street orientation, dis-
tance between buildings) that allowed the densest urban setting, for the city of Tel Aviv (Israel)
[Capeluto and Shaviv, 1999]. The simplified section lines, which define the SE respecting the
required exposition hours in each direction, are also presented as an easier tool to be used by
planning authorities, although more geometrically limiting [Capeluto et al., 2005, 2006].

The Solar Envelope and Solar Volume approaches allow freedom in building design and
flexibility in criteria selection. Although they address the urban scale, Littlefair [1998] stated
they may be too strict for dense urban areas and that their use requires the collaboration
between urban designers and experts. The value of the SE concept has also recently been
questioned through a study based on typical buildings in the US and focused on energy use
and plot density [Niemasz et al., 2011]. The results suggest that direct solar exposure may affect
energy performance in a significantly different way according to the climate and construction.
The SE concept as a zoning tool had some negative impact on both energy use and achievable
density for the building type considered in the study. The authors argue that “there is obviously
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a need for more climate-specific guidelines and standards that holistically integrate the concerns
of solar access and developable density” [Niemasz et al., 2011].

Addressing the need for a year-round approach focusing both on winter and summer seasons,
Okeil [2010] proposed a specific residential urban shape, the Residential Solar Block, maximiz-
ing (respectively minimizing) solar energy on facades (resp. roofs and ground). In response to
the SE’s lack of energy considerations, Morello and Ratti [2009] introduced iso-solar surfaces,
3D envelopes receiving equal amounts of solar energy. Similar to the envelopes introduced
earlier, iso-solar rights and collection surfaces were defined, respectively representing the max-
imum height for buildable volumes preserving a certain amount of irradiation on surrounding
sites, and the lowest possible surface for collecting a given amount of solar radiation. The
same authors also addressed the computational limitations of applying the SE on extensive
and irregular areas by proposing an approach using digital elevation models (DEMs) and
image processing techniques.

Sky opening factors

The abstract nature of early urban designs, proper to their ill-defined problem solving charac-
teristic introduced in chapter 1.2, fosters the use of simple assessment methods. In addition
to the volume-based approaches listed above, metrics are also derived from geometrical ana-
lyzes to quantify solar availability. As an indicator of urban daylight potential and radiation
exchanges, the sky view factor (SVF) is often used, either defined as the proportion of visible
sky from a point to the overall sky dome (geometrical definition) or the ratio between the
radiation received by a planar surface and by the entire hemisphere (cosine-weighted defini-
tion, associated to the urban heat island (UHI) effect) [Zhang et al., 2012a]. Ratti et al. [2003]
computed average SVFs at different facade heights, taking these values as a measure of the
daylight condition inside buildings. Looking at different urban squares of London using DEMs,
Chatzipoulka et al. [2015] found a negative correlation between density and mean facades
SVF. Zhang et al. [2012a] adapted the SVF by computing the facade area falling within a SVF
range and normalizing it by the floor area, using this metric as an environmental performance
indicator. Compagnon [2004] presented a visualization technique displaying the facade area
per orientation weighted by its corresponding SVF, forming an orientation rose useful as a
planning tool allowing to compare various hypothetical urban forms. Robinson [2006] tested
the validity of the SVF as well as two other related urban geometrical parameters: street canyon
height-to-width ratio and urban horizon angle (mean elevation of the skyline from a facade).
He found that the validity of such indicators is actually limited and that raw irradiation data
are preferred.

Another daylight availability indicator is the Preferable Sky Window, representing the sky zone
with the greatest daylight potential with respect to a horizontal indoor plane [Pereira et al.,
2009]. Through a case study in Brazil, Pereira et al. [2009] applied this metric to establish
guidelines (e.g. in terms of building height and spacing) ensuring urban daylight access on the
winter solstice. A correlation was found with the illuminance values in aroom model simulated

23



Chapter 2. State-of-the-art in decision-support methods applied to design

with the Apolux software [Claro et al., 2005]. Seong et al. [2006] addressed the question of solar
rights standardization in the Korean context with the development of a tool (HELIOS), based
on the WALDRAM diagram method that calculates the sunshine duration in each housing unit
of a building then declared satisfactory or not. Yezioro et al. [2006] proposed a methodology
for deriving design recommendations and guidelines allowing proper insolation of urban
squares (courtyards), based on the ratio between the exposed and total surface area, termed
the Geometrical Insolated Coefficient.

Appraisal

The above-mentioned concepts have been used in case-studies to demonstrate their relevance
for urban planning as they allow defining - SE and derivatives - and assessing - indicators
such as the SVF - the urban fabric with regards to ‘proper’ (varying definition) solar exposition.
The case-specific nature of many of those methods, with assumptions and criteria to be
pre-defined according to the objectives, make them challenging to implement and use by
decision-makers. While they remain early-phase friendly due to the low level of detail of the
required design information, for the same reason they offer little assurance as to global energy
outcome, with the focus placed mainly on insolation duration and sky view. Many are by
default spatially and temporally static; their evaluation is done for a specific moment and land
parcel/point. Moreover, it is difficult to find any validation studies correlating the outcome
of these methods to actual energy consumption or interior daylight levels, restraining our
conviction about their value in the context of this thesis’ objectives.

In the following section, we pursue our review with studies that have taken a closer look at
urban form, captured through different parameters that have been linked to performance
criteria.

2.2.2 Morphological parameters as performance indicators

Due to the time and knowledge required to evaluate performance through modeling and
simulation, as well as the need to make educated guesses regarding unknown design infor-
mation at the early phase (factors which are amplified with the size of the project), multiple
investigations have attempted to link morphological parameters, e.g. density and shape, to
various performance aspects in order to identify potential indicators of the latter, more easily
computable.

Density and compactness

A prevailing parameter is the urban density, defined in terms built volumes (e.g. Floor Area
Ratio (FAR): total floor area over site area) [Cheng, 2010]. Studies conducted have however
come to divergent conclusions [LSE Cities and EIFER, 2014], challenging the often accepted
notion that increasing density leads to energy efficiency [Laétitia et al., 2011; Rodriguez-
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Alvarez, 2016]. Careful case-specific analyzes are instead advocated [Mindali et al., 2004],
adopting a more holistic point of view to include for instance daylight and transport-related
energy consumption [Steemers, 2003]. Similar debates have been on-going regarding the
compactness of cities - as an inverse of the urban sprawl - in relation with their sustainability
[Burton et al., 2003].

A stronger consensus has been reached on the compactness parameter measured at the build-
ing scale, the rule-of-thumb being its maximization for increasing the thermal performance in
winter. Compactness is quantified by slightly different metrics such as the surface-to-volume
ratio [Knowles, 1974], also known as the shape parameter (exposed envelope surface / enclosed
volume), and the relative compactness (6*volume?/3 / exposed envelope area) introduced by
Mahdavi and Gurtekin [2002]. Assuming a fixed volume, the most compact shape is the one
with the least exposed surface area. Knowles [1974] demonstrated the correlation between
the surface-to-volume ratio, which was referred to in that early study as the coefficient of
susceptibility of a built arrangement, and the stress expressed as a function of variation of
the environmental forces acting on this built domain. Based on certain assumptions related
e.g. to thermal transmittance of facades, Martin and March [1972] concluded that the shape
minimizing heat losses was that of a half cube [Ratti et al., 2005]. The value of the shape
factor has been questioned in various studies where its correlation to energy consumption
was shown to vary significantly for different climates and design features (e.g. glazing ratio)
[Danielski, 2011; Depecker et al., 2001; Laétitia et al., 2011; Pessenlehner and Mahdavi, 2003].
Referring to the relative compactness as a potential indicator of overheating, Pessenlehner
and Mahdavi [2003] concluded that it does “not appear to capture the geometry of a building to
the extent necessary for the predictive assessment of the overheating risk”.

Although computed at the building level, compactness metrics are also applied in macro-scale
studies [Taleghani et al., 2013]. Questioning the value of compactness as an indicator of the
global energy performance (as opposed to the heating energy only), Ratti et al. [2005] con-
ducted a study comparing the surface-to-volume ratio to the energy consumption for heating,
cooling, ventilation and lighting, computed using the same default assumptions (including
same London climate) for areas in London, Berlin and Toulouse. They tested another metric,
derived from the passive zone concept initially proposed by Baker and Steemers [2000]: the
passive to non-passive zone ratio, where a passive zone is defined as the area within twice the
floor to ceiling distance (approximately 5.5-6 m) from an exposed facade. Illustrated in Fig.
2.64a, this concept is based on the fact that spaces closer to a facade can better benefit from day-
light, natural ventilation and solar gains. The proportion of passive zones is thus considered
an energy performance indicator. The outcome of Ratti et al. [2005]’s study showed that the
ratio of passive to non-passive zones is a better indicator of urban energy consumption than
the surface-to-volume ratio. The LT method was employed to predict the annual energy use for
heating, cooling, lighting and ventilation. Originally developed by Baker and Steemers [2000],
the aim of this method is to offer a simplified approach to energy performance assessment.
It is based on a mathematical model - the LT model - derived from simulations over a room
module, taking into consideration the energy flows illustrated in Fig. 2.6b. It consists in curves
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Figure 2.6 — The (a) passive zone concept, applied in the (b) LT method, both proposed by Baker and
Steemers [2000].

displaying the monthly net heating and cooling load for different glazing ratios. Multiple
assumptions are made for deriving these curves by fixing default values to the LT model (e.g.
insulation, lighting). Its application in practice consists in (i) identifying the passive and
non-passive zones in a building, (ii) extracting the annual primary energy consumptions
(heating, cooling and lighting) per floor area from the LT curves for the relevant glazing ratio,
(iii) applying the correction factor for shading, and (iv) multiplying the resulting energy values
by the corresponding building zones (passive/non-passive). Many LT models exist for various
climates and building types: 1.2 for office buildings in Europe [Baker, 1992], 3.0 for southern
Europe [Baker and Steemers, 1996] and the urban version [Ratti et al., 2000]. The latter couples
the LT method with DEMs, used to extract the required information (e.g. urban horizon angle).
However, the effect of the built context on the solar exposure (i.e. shading effect) is not taken
into account through this method.

In a study exploring the link between various high-density urban forms and their level of solar
radiation in the context of Singapore, Leung and Steemers [2009] put in question common
conceptions and concluded that “the application of broad-brush design concepts do not always
guarantee real effect. Simplified computer-aided design methods that provide real-time feed-
backs on solar irradiance on building facades are therefore desirable for the conceptual design
stage” [p.438].

The use of heuristics also becomes problematic when conflicting criteria are considered. In an
investigation of the impact of block typologies of varying density on their solar gain, energy and
daylight performance, Sattrup and Stremann-Andersen [2013] identified an optimal region of
density demonstrating the need for a trade-off between the performance criteria. Their results,
illustrated in Fig. 2.7, show the conflict between energy and daylight. They moreover found
differences of 16% and 48% in terms of total energy use and daylight autonomy respectively
between the designs, emphasizing the importance of incorporating such considerations into
the decision-making process early-on.
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Figure 2.7 — Results from a study investigating the impact of urban typology on energy and daylight
performance and the correlation between (a) density, energy use (light gray line) and compactness
(dark gray line), and (b) density, daylight autonomy (dark gray line) and solar gain (light gray line).
Figures reprinted from Sattrup and Stremann-Andersen [2013], used with the permission of Peter
Sattrup and Locke Science Publishing Company, Inc.
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Additional geometry-based heuristics

At the building or room level, simple geometrical rules-of-thumb are applied with the aim of
ensuring proper daylight levels. Despite a lack of standardized and validated rules [Galasiu
and Reinhart, 2008; Reinhart and LoVerso, 2010], a commonly used example is based on the
height of the window top and the room depth [Reinhart, 2005]. The daylit area is estimated as
extending from the window facade to a certain factor of the window height, as illustrated in Fig.
2.8. Following a simulation-based experiment, Reinhart [2005] asserted the validity of such
heuristics, however stating that daylight simulations should be conducted in specific cases
such as for taking into account the potential obstructing impact of the surrounding context.
Focusing on diffuse daylight, Reinhart and LoVerso [2010] proposed a rule-of-thumb design
workflow for deriving the window-to-wall ratio and room dimensions from a defined perfor-
mance target expressed in terms of the Daylight Factor (DF). The DF is a static metric defined
as the ratio between the internal illuminance measure at a point inside a building and the ex-
ternal horizontal illuminance obtained assuming an overcast sky (Moon and Spencer [1942] as
cited in Reinhart et al. [2006]). The simple workflow bypasses the need for calculating the DF.
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Simple geometry-based guidelines are also used to assess the energy production potential,
notably the optimal tilt and the orientation of surfaces on which active solar systems are to
be installed. This allows bypassing the need for full radiation simulations. However, multiple
values can be found in the literature, e.g. setting the tilt equal to or 10 degrees below the latitude
[Cronemberger et al., 2012]. In a study conducted over 78 cities in Brazil, Cronemberger et al.
[2012] have shown that these various recommendations are not valid for such low latitudes,
highlighting the need for climate-based indicators.

Appraisal

From this review arises the need for methods finely balanced between case-specificity and
generalizability. While many studies target the same fundamental question of finding the
optimal building or urban form, slight differences in the objective function(s) they are aiming
at maximizing/minimizing and the context they are looking at (e.g. climate, building function)
lead to divergent results. This situation casts doubt on the applicability of simple geometrical
parameters as proxies of performance metrics. In line with this concern, more comprehensive
methods have been developed exploiting computational tools, in some cases resulting in
indicators similar to the geometry-based ones, but derived from simulation outputs such as
irradiation levels.

2.2.3 Physics-based simulation
Solar exposure

The technological advances brought about new possibilities for approaching performance
evaluation through visualization techniques and simulation of incident solar radiation. A
large majority of the methods involving simulation of solar exposure rely on the extensively
validated and highly trusted Radiance engine, an open-source ray tracing' software used for
lighting analysis and visualization [Larson and Shakespeare, 1998]. While a detailed software
review is not the focus of this chapter, this particular program is worth mentioning since it is
used in many of the studies and applications listed below.

Various CA(A)D tools are nowadays used for modeling, visualization and renderings (e.g.
AutoCAD?, SketchUp?, Rhinoceros?). Many directly integrate or are linked to, e.g. via plug-
ins, performance assessment engines, for which examples are given further. More recently,
geographic information systems (GISs) are being used to visualize the solar exposure levels
of building roofs, in the form of solar maps or cadasters [Kanters et al., 2014c]. These allow

I Radiance’s lighting simulation engine employs a hybrid approach consisting in a Monte Carlo and deterministic
ray tracing, starting from a measurement point from which light rays are traced backwards to the sources (http:
//radsite.lbl.gov/radiance/framew.html, last accessed on April 18, 2016).

Zhttp:/ /www.autodesk.com/products/autocad/overview (last accessed on March 9, 2016)

Shttp://www.sketchup.com/ (last accessed on March 20, 2016)

4https:/ /www.rhino3d.com/ (last accessed on March 20, 2016)
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obtaining an estimate of the solar potential for ST and PV systems. Such maps are continuously
being developed for specific regions, such as the city of Cambridge in the US® and some zones
of Switzerland®.

As seen earlier with geometry-based parameters, illuminance- or irradiation-based metrics
are also used as performance indicators. Irradiation thresholds are often applied to quantify
the active solar potential. These diverge between countries and sources, often influenced by
financial parameters. For example, Cronemberger et al. [2012] found that the ratio of available
to maximum irradiation considered as acceptable - for an optimally inclined and oriented
surface - ranges from 55% to 80%.

Compagnon [2004] defined irradiation- and illuminance-based thresholds to assess the per-
formance in a more holistic way. A value was defined for the passive thermal, daylight and
active (PV and ST) potential, and the exposed surface areas with a level exceeding the respec-
tive threshold was identified. This method was adopted in other studies [Cheng et al., 2006;
Montavon et al., 2004b] including Swiss [Robinson et al., 2005] and European [Compagnon,
2000] projects.

As an indicator of the daylight conditions inside a building, the vertical Daylight Factor (DF)
is used, measured on external facades and equivalent to the typical DF measured inside a
building (introduced earlier). When computed for dense urban arrays of 25 buildings varying
in terms of height, Ng [2005] concluded that larger building height differences could increase
the vertical DF. The same author proposed a simplified method to evaluate the vertical DF,
exploiting its correlation with the Unobstructed Vision Area, a geometrical parameter easier
to compute [Ng and Cheng, 2004]. Requirements in terms of building height were defined.
This method is used by the Government of Hong Kong for regulatory control of daylight
performance. Concerned with linking external daylight levels with the interior building spaces,
Zhang et al. [2012b] proposed a facade vertical DF per unit floor area, measuring the average
amount of daylight on the facade that could affect the usable floor space.

In addition to indicators, some methods also produce specific types of images. The irradiation
mapping for complex urban environment (ICUE) developed by Mardaljevic and Rylatt [2003]
produces maps of annual/monthly sun and sky irradiation incident on building facades, taking
into account shading and reflection by/between buildings. The creation of the 3D irradiation
images, done in Radiance, is however very time-consuming.

Developed and exposed through case studies in [Samimi and Nasrollahi, 2014], SOLARCHVI-
SION is an analysis tool aiming at helping planners integrate climatic and solar considerations
in their decision-making process. Focusing on both active and passive solar strategies, it allows
visualizing sun path diagrams of different metrics such as the ‘degree of need to shade/shine,
computed from the difference between the hourly outdoor temperature and a fixed indoor
comfort temperature, and the ‘positive/negative effects of the sun’, depending on the amount

Shttp://www.mapdwell.com/en/cambridge (last accessed on March 30, 2016)
6http:/ /www.bfe-gis.admin.ch/sonnendach/?lang=fr (last accessed on March 30, 2016)
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of solar radiation and the need to shade/shine degree. An example of each image for the
climate of Montreal and an indoor temperature of 18°C are illustrated in Fig. 2.9.

Compagnon et al. [2015] developed a climate- and site-specific tool for guiding designers
and policy makers, aiming to ensure sufficient day/sunlight access to both open spaces
and buildings. The tool produces two types of stereographic images, starting from a simple
3D model (master planning type) and using Radiance: a multishading mask indicating the
percentage unobstructed area toward each direction of the sky vault, and an effective envelope
area picture displaying the total projected envelope area seen from the sky vault [Compagnon
et al., 2015]. A series of daylight and sunlight availability indicators for open spaces and
buildings’ envelope can then be computed from these images: sky view factor (SVF), partial
sunlight exposure, mean irradiation and others.

Similarly, various types of images (e.g. stereographic, isochronal) along with solar access
metrics (e.g. solar flux, sky opening) are produced by many urban-adapted software including
TownScope [Teller and Azar, 2001], Heliodon [Beckers and Rodriguez, 2009], SOLENE [Miguet,
2007] and Apolux (building-scale) [Claro et al., 2005] which have their own background sky
modeling algorithm often based on the radiosity’ method.

Leidi and Schliiter [2013] developed new analytical and visualization methods for urban con-
ceptual design. The Volumetric Insolation and Visibility Analysis (VIA and VVA) methodologies
were proposed and combined with computational fluid dynamics (CFD) to offer various rep-
resentations over an unoccupied volume located in an urban environment, as shown in Fig.
2.10 (upper row). Additional constraints can be applied on the volume such as setbacks and
occupation targets, as seen in the second row of Fig. 2.10.

Until now, we have seen methods that produce images and evaluate geometry-, irradiation-
and illuminance-based indicators while remaining at the exterior surfaces of buildings. In
the following, we go over approaches and tools that require more detailed building models to
assess the performance from within. With this shift we see that indicators used to substitute
established performance metrics are abandoned, as the goal of the following methods is to
directly evaluate these more accurate metrics.

Building behavior

In this section we will see that while an extensive amount of building-scale tools have been
developed, many of them represent front-ends to a much smaller set of performance assess-
ment engines. Some of these main underlying programs are Radiance (previously introduced)
and Daysim®, a Radiance-based program, for annual irradiation and illuminance simulation,
and EnergyPlus [Crawley et al., 2000] and DOE-2 [Birdsall et al., 1990] for dynamic thermal

“Radiosity-based algorithms involve subdividing surfaces in a scene into patches for which radiosity values are
computed iteratively until sufficient illumination is obtained within the scene [Miiller et al., 1995].
8http://daysim.ning.com/ (last accessed on March 20, 2016)
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(a) Degree of need to shade/shine (b) Positive and negative effects of the sun

Figure 2.9 — Example products based on the SOLARCHVISION method [Samimi and Nasrollahi, 2014]
post-processed from Environment Canada’s long-term climate data at Montreal station (reprinted with
the kind permission of Mojtaba Samimi).
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Figure 2.10 - Visualization methods developed by Leidi and Schliiter [2013]. Red represents higher
values; [0y] refers to the actual situation (a future case is also shown in the paper from which these
graphs were directly taken [Leidi and Schliiter, 2013]).

simulations. The goal of the front-end software are to embed these engines into a more user-
friendly format complemented with a 3D modeler/visualizer, an interface for user-inputs and
outputs, etc. The 3D modeler is either based on CA(A)D or building information modeling
(BIM), fundamentally different in their approach. The former concept represents a digital
version of the traditional pencil-sketched drawing, while the latter, more recent, consists in a
parametric model embedding the physical and logical characteristics of the building elements
[Graphisoft, 2016]. However, according to Hermund [2009], the use of BIM prompts a linear
workflow that restricts the typical creative iterations of architects, and it currently concerns
more the construction than architecture domain. Many programs are plug-ins for existing
CA(A)D/BIM software such as Rhino and SketchUp, or they extend the modeling capacities of
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an integrated CA(A)D/BIM tool to incorporate a performance assessment engine. Instead of
attempting to review individual existing tools, which is out of the scope of this thesis, we here
identify features and general approaches of interest.

Since the 3D model and building information required are different between a daylighting
and a thermal simulation, these two performance aspects are sometimes separated. Daylight
metrics such as illuminance levels, the Daylight Factor (DF) and the climate-based DA are
calculated inside a room or building by many tools such as Apolux [Claro et al., 2005], Daylight
1-2-3 [Reinhart et al., 2007], Daylighting Dashboard [Reinhart and Wienold, 2011] and DIVA-
for-Rhino [Jakubiec and Reinhart, 2011]. The latter, a plug-in for the 3D modeler Rhino,
continues to be developed and is increasingly used particularly in education and research
[Elghazi et al., 2014; Sherif et al., 2013]. In addition to its daylighting and glare assessment
features, based on Radiance and Daysim, it also allows a thermal simulation using EnergyPlus,
but with an adapted building model slightly different than the daylighting model®. The DIVA
package also includes a plug-in for Grasshopper'?, a Rhino-based graphical algorithm editor.
The latest version of DIVA (4.0) contains a multi-zone energy simulation component for
Grasshopper called Archsim!!, based on EnergyPlus, which combines seamlessly with the
daylighting assessment model requirements.

Multiple other plug-ins exist for both Rhino and Grasshopper, documented on the Food4Rhino
webpage!?. Examples for Grasshopper are Mr. Comfy, allowing visualization of thermal/-
daylight simulation results (provided by an EnergyPlus-/Daysim-based program) [Doelling,
2014] and Ladybug+Honeybee for weather data analysis and simulation based on EnergyPlus,
Radiance, Daysim and OpenStudio [Roudsari et al., 2013].

Other comprehensive stand-alone, plug-in or web-based tools allow evaluating both day-
lighting and thermal performance metrics, varying from simple to more complex in term of
interface and assessment engine, e.g. Ecotect!? [Roberts and Marsh, 2001]; Sefaira'*, a plug-in
for Revit and SketchUp based on EnergyPlus, Radiance and Daysim; DIAL+ [Paule et al., 2011]
for lighting, natural ventilation and cooling, based on Radiance and the ISO 13791 dynamic
thermal calculation; OpenStudiol5, a plug-in for SketchUp, and DesignBuilderlG, both based
on EnergyPlus and Radiance.

9In DIVA-2.0: http://diva4rhino.com/user-guide/simulation-types/thermal-analysis (last accessed on March

11, 2016)

O0http:/ /www.grasshopperdd.com/ (last accessed on March 20, 2016)

11http:/ /archsim.com/ (last accessed on March 20, 2016)

12http:/ ;www.food4rhino.com/ (last accessed on March 3, 2016)

13 Although no longer available, some of Ecotect’s features will be integrated into Revit products (http://usa.
autodesk.com/ecotect-analysis/, last accessed on March 18, 2016).

Vhttp://sefaira.com/ (last accessed on February 29, 2016)

https:/ iwww.openstudio.net/ (last accessed on February 29, 2016)

8http:/ /www.designbuilder.co.uk/ (last accessed on February 29, 2016)
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A drastically small yet increasing amount of more comprehensive tools are conceived for
meso- to macro-scale assessment. Notable examples are introduced below and illustrated
in Fig. 2.11.

The master-planning analytical tool CityCAD'” allows visualizing a sketched or imported city
model along with extracted and computed values from user-inputs such as electricity and
land and water use indicators (see Fig. 2.11a).

The urban modeling interface (UMI, Fig. 2.11b) is a Rhino plug-in conceived for neighbor-
hood to city level assessment of energy use (embodied and operational) through EnergyPlus,
walkability and daylight potential through Daysim [Reinhart et al., 2013]. Its main advantages
lie in the simple workflow, user-friendly interface and semi-automated modeling features
(e.g. windows automatically modeled from a given window-to-wall ratio). An effort was also
made to accelerate the simulation time, by implementing simplified methods. For instance
the daylight evaluation is done through the Urban Daylight program, which simulates hourly
solar radiation levels on all facades via Daysim, that get converted into interior illuminance
distributions with a generalized impulse response [Dogan et al., 2012].

The ArchiWIZARD'® software offers a thermal, solar and lighting (based on ray-tracing) eval-
uation of an imported 3D (CA(A)D or BIM) model, with comparison to the French RT 2012
(thermal regulations). Results can be viewed in many tabular and graphical forms, such as the
example illustrated in Fig. 2.11c.

CitySim (Fig. 2.11d), successor of SUNtool [Robinson et al., 2007], simulates urban energy
flows with four core models: thermal, radiation, behavioral and plant/equipment [Robinson
et al., 2009]. It was employed in the context of an energy concept for a master plan [Ville de
Lausanne, 2010], but has however mainly remained in research until now [Thomas et al., 2014;
Vermeulen et al., 2013].

Asseeninsection 2.1, the uptake of such tools is hampered notably by a lack of user-friendliness
and guidance and a level of complexity judged too high. Some features attempted to mitigate
one or many of these shortcomings are highlighted in the following.

To facilitate the simulation procedure, some tools such as the MIT Design Advisor [Urban and
Glicksman, 2006] have an implemented editable database of default values that is used to
reduce the amount of inputs demanded to the user. An important feature of those tools is that
they offer a gradual exposure to details and can therefore be used at various stages throughout
the design process. To support interpretation of results, code-compliance checks are offered
by some tools, typically created for a specific climatic and political context, e.g. Lesosai'®
for Europe/Switzerland (EN ISO 13790 and SIA 380/1 norms as well as different labels) and

ArchiWIZARD for France (RT 2012 regulation).

https:/ /'www.holisticcity.co.uk/index.php/citycad (last accessed on February 26, 2016)
Bhttp:/ /www.graitec.com/fr/archiwizard.asp (last accessed on March 20, 2016)
Bhttp:/ /www.lesosai.com/en/ (last accessed on March 20, 2016)
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==

(a) CityCAD: urban design software tool for (b) Umi [Reinhart et al., 2013]: Rhino-based design

conceptual 3D master-planning. Source of im- environment for modeling the environmental per-

age: https://www.holisticcity.co.uk/index.php/ formance of neighborhoods and cities. Source of

citycad (last accessed on February 26, 2016). image: http://urbanmodellinginterface.ning.com/
(last accessed on April 14, 2016).

(c) ArchiWIZARD: 3D thermal simulation soft- (d) CitySim [Robinson et al., 2009]: simulation
ware. Source of image: http://www.graitec.com/fr/ and optimization of energy fluxes of urban dis-
archiwizard.asp (last accessed on April 11, 2016). tricts. Source of image: http://www.kaemco.
ch/download.php (last accessed on April 14,
2016).

Figure 2.11 - Interface of various existing urban-scale tools.

Other features of interest are linked to support in the 3D model generation and interpretation.
Developed by a team at Autodesk, Revit’'s Conceptual Energy Analysis tool automatically
generates an energy model from the massing model of the architect, while also ensuring that
both are in sync if modifications are made by the user to the massing model [Smith et al.,
2011]. Automatic zoning, glazing and shading as well as surface determination are done
based on assumptions, editable default values, metrics and mapping logic. For example, the
window-to-wall percentage metric is used as a control method, with defaults for the target
percentage. This allows the definition of all surfaces, thermal zones and shading objects.
Conceptual constructions characteristics are then assigned as well as ‘intelligent’ defaults for
occupancy and internal gains based on documents and studies from the American Society
of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) and codes for California.
Comparison between alternatives can also be done. While the energy model is automatically
generated, it remains the task of the user to manually modify the massing to create a design
variant to be compared.
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Similarly, focusing on facilitating the modeling particularly for urban-scale assessment, Dogan
et al. [2015] developed Autozoner, an algorithm that automates the separation of buildings
into thermal zones in preparation for an energy simulation [Dogan et al., 2015].

A large majority of the simulation tools introduced in this chapter are based on physical
methods that solve equations describing the behavior of buildings or radiation from the sky.
This makes them intrinsically accurate to some degree depending on the complexity of the
engine and information provided and taken into account. In our context of interest of early
neighborhood design, information is scarce and simulation is computationally expensive.

Attempting to address these issues, Rodriguez-Alvarez [2016] recently proposed the Urban
Energy Index for Buildings (UEIB), a thermal and lighting model for facilitating energy con-
siderations at the planning stage. Existing in both a spreadsheet and GIS-integrated format,
the method incorporates a procedure for simplifying an urban morphology to a notional grid
of repeated buildings as illustrated in Fig. 2.12. The heating, cooling and lighting loads are
estimated through a simplified method, based on default values that can be edited by the
user (e.g. materials’ characteristics). Similar to the notional grid concept is the parametric
street network generation and block subdivision method by Schneider et al. [2011], which
is built from existing and custom-developed Grasshopper components. CitySim’s thermal
model, analogous to an electrical circuit, is another example of an alternative representation
of buildings and of their behavior for reducing simulation time [Robinson et al., 2009].

EEEEEEEEE EEEEEE EEE
EEEEENENEEEE e
Figure 2.12 — Urban morphology (left) and its corresponding notional grid (right), which is evaluated in
the UEIB method of Rodriguez-Alvarez [2016]. Images reprinted with the permission of Elsevier.

An alternative path to physics-based methods is to resort to techniques coming from the fields
of computer science, artificial intelligence and statistics. The LT method introduced earlier
was developed using such techniques, resulting in a mathematical model used to cheaply
predict, from simple inputs, the energy performance. Multiple other examples can be found,
mainly focused on the building scale [Ekici and Aksoy, 2009; Foucquier et al., 2013; Tsanas and
Xifara, 2012]. As will be seen in chapters 3 and 4, this topic will become central to this thesis
and will be further discussed in chapter 4 along with more examples found in the literature.
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Appraisal

Most simulation-based tools are often referred to in the literature as ‘generate-and-test’ or ‘trial-
and-error’ and often criticized for being poorly integrated into the design process [Oxman,
2009; Petersen and Svendsen, 2010]. Despite the variety of graphical outputs offered by most
tools, additional guidance is required for interpreting the results. As Prazeres and Clarke [2003]
state: “Copious amounts of data are generated by contemporary building simulation programs
and the translation of these data to information that may be acted upon is problematic.” These
issues can be mitigated by allowing comparing design alternatives (e.g. SOLENE [Miguet, 2007],
MIT Design Advisor [Urban and Glicksman, 2006], Building Design Advisor [Papamichael et al.,
1997], Home Energy Efficient Design (HEED) [Milne et al., 2001]) or conducting sensitivity
analyzes (e.g. iDbuild [Petersen and Svendsen, 2010]), therefore reducing the need for repeated
manual evaluation while increasing the knowledge gained by users.

Such approaches bring us toward emerging design paradigms that promote a restructuring of
the traditional linear process. As introduced in chapter 1, adopting a ‘non-linear’ flow involving
the simultaneous generation and multi-criteria evaluation of multiple design alternatives can
provide more guidance to the user [Grobman et al., 2010]. Example approaches that follow
this notion are presented in the next section.

2.3 Analysis support

As seen in the above review, what we have termed assessment methods are at the core of any
performance-based DDS. They vary in complexity and in the characteristics of the framework
within which they must be embedded to be used by practitioners. In this section, we take a
closer look at different or additional features these frameworks can have to further support
users in making informed decisions. We use the term analysis support to convey this extra
step toward producing and facilitating the interpretation of results from pure evaluation tools.

2.3.1 Generative design

Grobman et al. [2008] proposed a non-linear, performance-based tool, Generative Perfor-
mance Oriented Design (GenPOD), allowing to generate and evaluate multiple design alter-
natives. Based on a morphing algorithm, building forms are generated to populate a design
solution space, based on different performance aspects (e.g. sun shading/exposure, visibility).

Similarly, Mahdavi and Gurtekin [2002] observed that BPS tools, despite being able to provide
significant amounts of data, do not effectively support the exploration of this data, or the
navigation into the ‘design-performance space’. To address this shortcoming, they proposed a
workflow involving the generation of alternatives through parametric variations of variables
from an initial design, conducting a performance simulation on these design variants to be
represented as a performance space landscape that can be interactively explored to identify
the preferred alternatives.
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Lagios et al. [2010] developed an Animated Building Performance Simulation (ABPS) design
workflow combining Rhino, Grasshopper and Radiance/Daysim. Allowing the evaluation
of various performance indicators including solar radiation maps and daylight metrics, two
simulation approaches are offered: the single versus multiple variant analysis. In the latter,
design variables such as window size can be varied automatically using Grasshopper’s para-
metric modeling features and slider component allowing to iteratively go through a range of
numerical values. An animation is then generated by compiling the result images captured for
each design variant.

Along the same line and also based on parametric modeling using Rhino, Grasshopper and
simulation plug-ins, Peronato et al. [2015] developed a design-based method for assessing and
visualizing various building performance criteria at the neighborhood scale. In this approach,
elaborated in the context of a master’s thesis conducted in part at LIPID [Peronato, 2014],
parameters such as building set-back and height are varied one at a time, generating a series
of design alternatives that are evaluated. Results are displayed through various graphs and
images allowing to visualize the effect of specific parameters on a given performance output
(e.g. energy need and active solar suitability of building surfaces). Optimal solutions can be
identified by plotting the values associated to two criteria in addition to specific constraints,
as illustrated in Fig. 2.13.

Populating this type of graph can be done through a formal mathematical method, optimiza-
tion, used to identify highly performing design alternatives. Before addressing this field, we
introduce a technique that is often adopted to identify the most influential parameters prior
to or in combination with developing a parametric or optimization framework.
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2.3.2 Sensitivity analysis

Considering a set of input parameters whose exact value is uncertain, sensitivity analysis
can serve to identify which of these inputs most determine the uncertainty in a given out-
put [Saltelli et al., 2004].

Martins et al. [2014] investigated the impact of varying urban and building parameters, e.g.
the height, glazing U-value and plot ratio, on the irradiation and illuminance levels on the
envelope. They then used the results to define the constants (less significant factors, e.g.
U-value and glazing ratio) and variables (highly significant, e.g. albedo and aspect ratio) for an
urban design optimization problem. Other studies, mainly at the building scale, have adopted
a similar approach, often in combination with regression techniques [Capozzoli et al., 2009;
Eisenhower et al., 2012; Hygh et al., 2012], or for investigating the sensitivity of a building to
different climates based on its properties e.g. U-value and thermal mass [Rastogi, 2016].

Kavgic et al. [2013] identified the following four most influential factors out of 14 on the
space heating energy consumption of a dwelling: mean indoor temperature, efficiency of
heating system, external air temperature, and window U-value. They concluded that “if
there is a large error/uncertainty associated with these parameters, it is very likely that model
predictions will be inaccurate”. They however also stated that knowing the exact value for
those inputs was still insufficient for obtaining accurate results, since the sensitivity analysis
showed differences in the relative influence of parameters based on the examined building’s
form and construction year.

Results that can be retrieved from a sensitivity analysis are dependent upon the context under
study (e.g. climate, scale), the defined range for each variable, as well as the number and
type of performance output(s) considered. This limits any generalization of the outcomes
and highlights the need for robust methods that can be applied to different cases rather than
specific studies.
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2.3.3 Design optimization frameworks

Where other methods leave the search for the most satisfying solution and at least part of the
interpretation of the results in the hands of the user, optimization explicitly directs the latter
toward optimal conditions [Papalambros and Wilde, 2000]. To optimize a design means to
find the settings, e.g. in terms of design parameters, that lead to minimizing or maximizing a
certain criterion. For instance, in the simple case where one would like to maximize the daylit
surface inside a room (objective function), the optimal solution would consist in the values of
the design variables (e.g. whatever can be modified such as room and/or window dimensions)
leading to the highest achievable daylit area.

Formally, the optimization of a design o Pareto solutions
consists in defining a vector from the
design variables: x = (x1, x2, ..., X;;) and \
the objective as a function of these vari- \
ables: f(x), with some potential con- » >«
straints being described by functional re-
lations such as h(x) = 0 [Papalambros
and Wilde, 2000]. Multi-criteria or multi-

objective optimization is when more F1(A) <F1(B) & Toms
F2(A) > F2(B) 69
Q®

Criterion F2
®-
14

than one objective function is defined
or when constraints are present in addi- o
tion to the objective(s) function(s). In AN

such cases, a Pareto set of solutions can »
be obtained, consisting of Pareto opti- Criterion F1
mal solutions in the form of x vectors.

_ Figure 2.14 — Pareto front of the solution space in
This concept is illustrated in Fig. 2.14 for a multi-criteria optimization problem where two
a minimization problem with two objec- functions are to be minimized.

tive functions. A point A is considered a Pareto optimum if and only if there is no other point
that equals or minimizes all functions (F;(A) < F;Vi) and A minimizes at least one function
(Fi(A) < F;) [Papalambros and Wilde, 2000]. All points beyond the Pareto front are dominated
by the Pareto set [Forrester et al., 2008].

While optimization-based approaches are commonly criticized for their ‘black-box’ nature
and low user-interaction [Gagne, 2011], exploiting the Pareto solutions can mitigate these
issues by providing multiple design alternatives to the user as opposed to a unique optimal
solution. The latter case is likely to be not well embraced by practitioners.

Optimization algorithms broadly fall into two categories: local optimizers (or hill-climbers)
and global searches [Forrester et al., 2008]. Methods in the former group include gradient-
based optimizers and direct search methods. In the second group we find for instance genetic
algorithms (GA) and simulated annealing. While a detailed explanation of optimization meth-
ods is out of the scope of this review, it is worth mentioning that in the field of sustainable
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building design, genetic algorithms (GA) and direct search methods are the most common
[Evins, 2013]. While optimization, in particular multi-objective optimization, is increasingly
applied in this field, it is still mostly found in research, academia and engineering practices [At-
tia et al., 2013b; Evins, 2013]. We here give some examples focused on supporting performative
design.

Oliveira Pando et al. [2008] employed a powerful optimization technique, GA, to search for
the building shapes maximizing (respectively minimizing) the absorptance in winter (resp.
summer), a parameter influenced by the solar irradiation on facades. In a case-study limited
to a uniform urban layout - i.e. all buildings and street of same dimensions - optimal urban
forms, as defined by the fitness function, for a specific latitude were identified. Similarly,
Martins et al. [2014] applied multi-objective optimization to minimize (resp. maximizing)
irradiation on facades (resp. roofs), with constraints linked to density and facade illuminance
levels.

Bruno et al. [2011] combined the program Catia, used for parametric modeling, with Mode
Frontier, an evolutionary computational software, to conceive a workflow for urban district
optimization. A Multi-Objective Genetic Algorithm (MOGA-II) scheduler designed for rapid
Pareto convergence is used to optimize different functions based on building program, location
and density. Abstract cylindrical building shapes are modeled. Example solutions found for
individual objective functions in a case study in Masdar are presented in figure 2.15.

Similarly, Mashood et al. [2007]’s GALOP system combines a knowledge base (concept intro-
duced in the next section) with a GA optimization method, to be applied at the building layout
planning stage. Focusing on three objectives - maximizing rental area, maximizing circulation
grade and minimizing heat gain - and incorporating constraints both from the user and the
knowledge base, the system searches the solution space for Pareto optimal configurations (e.g.
orientation, shape), which are presented to the user. A decision-maker module also aids the
designer in selecting a final design, by considering a priori knowledge and user preferences.

\igaant =

MIN Urban Circulation MIN Retail MAX Commercial MAX Residential
Space at Grade Proximity Disperse Proximity Cluster Ground Floor Area

Figure 2.15 — Solutions proposed by Bruno et al. [2011]’s workflow, corresponding to four different
optimization functions. Image reprinted with the kind permission of Michele Bruno.
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Caldas [2006] developed an Evolutionary-based Generative Design System (GENE-ARCH),
combining a GA with the DOE2.1E engine to optimize buildings thermal and lighting perfor-
mance. Various case-studies have been published [Caldas, 2008; Caldas and Norford, 2002],
including one conducted at the urban scale incorporating a shape grammar of the patio house
typology in Marrakech [Caldas, 2011]. In this study, the methodology is applied with the goal
of varying dimensional parameters, while respecting the typology of the patio houses, in order
to minimize the energy consumption. Highly influencing geometrical factors on the energy
consumption are also identified. The authors argue that through its goal-oriented generative
design approach involving constraints and rules, the generation of non-intuitive optimal
solutions can contribute to the user’s creativity.

Marin et al. [2008] proposed an evolutionary design tool that evaluates the solar passive quality
of evolving shapes through the Unified Day Degree method. Taking into account the subjective
preferences of the designer, its aim is to explore the solution space of shapes for optimality
regarding heating needs in winter.

Another optimization framework was recently proposed by Zemella et al. [2011]: the Evolu-
tionary Neural Networks Design (ENN-Design) applied to building facades. Two approaches
are presented: a single-objective optimization for minimizing the CO, emissions and a multi-
objective optimization for minimizing both cooling and lighting energy consumptions. In
the latter, a Pareto front illustrating the trade-off curve between both objectives is derived.
Assumptions are made for the internal environment (temperature, gains, etc.) and facade
thermal transmittances, while the glazing ratio, and window and solar protection type are
taken as variables.

An example software, previously introduced, that integrates an optimizer is CitySim [Robinson
et al., 2009], which relies on a hybrid evolutionary algorithm (CMA-ES/HDE) [Kdmpf and
Robinson, 2009, 2010]. Another software is GenOpt [Wetter, 2001], which includes a library of
optimization algorithms that it links to various simulation software (e.g. EnergyPlus, DOE-2)
to determine the parameter settings leading to the minimization of a thermal energy objective
function. New input parameters are iteratively defined and sent to the program until the
function’s minimum has been found. Similarly, Opt-E Plus, developed at the National Renew-
able Energy Laboratory (NREL) as an in-house tool, uses multivariate and multi-objective
optimization to identify the Pareto front related to total cost and energy savings (objective
functions) using EnergyPlus [Long et al., 2010].

The main limitations of such optimization tools are their computational cost and detailed
information required, as a large amount of design configurations must be fully simulated in
often many runs to achieve convergence. However, the multi-objective approach is promising
due to the possibility of generating a Pareto front from which multiple design options can be
presented to the user, making it better suited and thus more seamlessly integrated into the
design process.

Most optimization-based methods are somewhat disconnected from the field in which they
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are applied and can sometimes act as a black-box with limited explanation brought to - and
involvement of - the user [Gagne, 2011]. A more transparent approach for supporting the
decision-making process consists in embedding expert knowledge into the performance
assessment framework.

2.3.4 Guidance through expert systems

A typical expert system is structured as illustrated in Fig. 2.16. At its core is a knowledge-
based problem solver containing general and case-specific knowledge about the domain of
interest [Luger, 2005]. It can for instance be rule-based in the form of if...then... rules. This
knowledge is applied to solve problems through the inference engine and information about
the reasoning of the system is provided to the user by the explanation subsystem.

’ | Knowledge-
Userinterface [* | base editor
may employ: ; 7'
question-and- I
: answer, v 3 General
NOn—eXpert 3 . Inference 3 knowledge base
<«—— menu-driven, «—> - — —
user } engine 3 Case-specific
' A '
natural data
r s
language, or
graphics v
interface styles || Explanation |,
subsystem

Figure 2.16 — Typical expert system structure. The shell of the system (within the dashed border)
represents the generic, non-domain specific components. Image adapted from Luger [2005] with
modifications.

A distinction must be made between databases of system-related data and the knowledge
base containing the problem solving information. Knowledge is defined as “facts, information,
and skills acquired by a person through experience or education; the theoretical or practical
understanding of a subject” while data are “facts and statistics collected together for reference
or analysis”?°. For instance, material properties found in a software database does not rep-
resent a knowledge base in the sense of an expert system, which could contain rules such as
if room overheating and material thickness is over code-compliance then decrease material
thickness still respecting code-compliance.

Integrating an expert system allows generating and proposing advices to the user for improving
their design, as done for instance in DIAL+ (based on a fuzzy-logic rule-based inference engine)
[De Groot et al., 2003] and Lightsolve [Gagne, 2011]. More examples can be found in research,
many of which were developed for Israel.

20Definitions taken from the Apple Mac OS New Oxford American Dictionary.
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Shaviv et al. [1996] proposed combining a knowledge base and procedural simulation to be
used with any CA(A)D tool and containing an energy (thermal performance) and a shading
module. The knowledge base contains heuristic rules that were defined through case studies
in Israel related to the design of passive solar buildings. An early example of a building
design knowledge-based system, BEADS, was proposed by Fazio et al. [1989]. From the
user inputs (location, building/wall/roof types, fenestration area and wall/roof thicknesses),
feasible alternatives are proposed, respecting the performance requirements contained in
a knowledge base, related to thickness, R-value, condensation and energy consumption,
which also contains building code constraints. An additional database of material properties
is implemented and design alternatives are produced and checked against the constraints.
In this program, the knowledge is implemented in the form of schema rather than rules,
containing attributes and values for the specification of performance characteristics.

Kalay also contributed to the development of rule-based expert systems early on for appli-
cation to performance-based building-scale design [Kalay, 1985, 1998, 1999, 2001]. Yezioro
[2009] developed a two-fold approach for passive solar architecture called PASYS. The first part
addresses the pre-conceptual stage to help users determine the best combination of climatic
design strategies. The resulting scenario is used as an input to the second (conceptual) stage
during which the passive systems are selected and sized using a knowledge base.

NewFacades offers alternative design parameters (e.g. U-value, shading controls) following
the input of a simple building description in the form of design intentions rather than a 3D
model [Ochoa and Capeluto, 2009]. Explanations regarding the selection of the alternatives
can be viewed. The program integrates the EnergyPlus engine for which a library of default
values for component characteristics is used. The user is gradually exposed to details of the
design and can eventually edit those values. The expert rule-based system is built from Israel’s
prescriptive directive, therefore ensuring the code-compliance of the designs.

The use of expert systems at the building, room or facade level appears promising, as proven
by the above examples. However, envisioning their application at larger scales is not straight-
forward. Indeed, expert systems are for a reason typically used in specialized domains with
clear solutions [Luger, 2005]. The fact that they are manually encoded requires an extensive
amount of work and knowledge, in turn linked to a large quantity of data. For instance, coming
back to our room optimization example (section 2.3.3), it is conceivable that a rule-based
expert system be developed to guide the search for the optimal design with rules such as if
daylit area is below target and window area is below max allowed then increase window area by
x%. Acquiring the data to code such a knowledge base seems feasible. However, if we extend
the room to a neighborhood, the jump in scale is matched with a surge in complexity.
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2.4 Synthesis - The need for a new approach

In this chapter we have reviewed how the performance of a design is defined and evaluated,
and how this information can be conveyed to and used by decision-makers. We have looked
at the research and development side as well as the practitioners’ perspective.

In Fig. 2.17, we have attempted to summarize how building performance is typically measured
along the design process, according to our review. We here define performance metrics as
quantitative measures of one or more performance criteria that are obtained using specific
evaluation methods. For instance, wind flow is a quantity computed through CFD simulation
and typically used to measure outdoor and internal thermal comfort and air quality.

This synthetic view allows us to better see which metric is mostly used at the early urban
design phase: geometrical parameters and rules-of-thumb, Solar Envelopes (SEs) and similar
concepts based on angles and volumes, and to a certain extent (but mostly in research) wind
analysis, irradiation levels and derived metrics. There does not appear to be any established
metric or set of metrics used to assess a specific performance criterion. At the detailed building
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Figure 2.17 - Commonly used metrics (center) typically used as quantifiers for various performance
criteria (bottom) along the design process (top), and evaluated through different methods and tools
(left). The schema loosely summarizes the detailed review of section 2.2. The numbered metrics are
further investigated in chapter 3.
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scale, more complex methods associated to more accurate quantities are employed. However,
their application in early urban design is not straightforward: the information required and
computational complexity engendered make them inadequate, leading to the shortcomings
highlighted in section 2.1.

What is not apparent in the schema of Fig. 2.17, although highlighted previously, is the often
partial view of building performance. That is, multiple studies as well as developed methods
and tools focus or allow evaluating only one criterion at a time, preventing a holistic view of
the performance. This is however important, especially since optimizing for one criterion -
e.g. heating need - may be detrimental to another valuable aspect - e.g. daylight.

«

[...] two conflicting exigencies for energy conservation appear: reducing the build-
ing envelope, which is beneficial to heat losses, and increasing it, which is favorable
to the availability of daylight and natural ventilation. Which of the two phenom-
ena prevails in the global budget of buildings? The above question is not likely to
have an absolute answer.” [Ratti et al., 2005, p.768]

This issue naturally leads to adopting a multi-objective, climate-based approach. Looking at
only one performance criterion may be valid when assessing an existing environment, e.g.
when a city wants to identify surfaces appropriate for installing solar systems. However, when
dealing with the design of new buildings, which is the focus of this thesis, we argue that a
more comprehensive view is of order, since passive measures are exploitable; the morphology
and layout of buildings are yet to be defined and can lead to significant differences in terms
of energy and daylight performance, as previously highlighted in studies such as the one
presented in Fig. 2.7. This comprehensive view also means considering the interdependencies
between buildings, a need also highlighted by Ratti et al. [2005]:

“l...] they [current energy models and techniques] tend to consider buildings as
self-defined entities, neglecting the importance of phenomena that occur at the
urban scale. In particular, the effect of urban geometry on energy consumption still
remains understudied and controversial. [...] Even software developed to simulate
energy consumption at the city scale tend to neglect the effects of urban geometry.”
[p.762]

This situation is likely caused in part by the complexity induced by incorporating considera-
tions extending beyond a building. Yet, the effect of urban morphology, and its consequences
on solar exposure levels, on various performance criteria has been acknowledged, as brought
out in section 2.2.

The question now is: can we address this issue by coming up with a performance assessment
method satisfying the needs for its integration into a DDS workflow, addressing the challenges
exposed in section 2.1? To answer this question, we begin in the next chapter with a test on a
selected set of methods, by applying them on neighborhood case studies. The idea behind
this first step is to deepen our understanding of the implications associated with evaluating
a neighborhood design, while simultaneously probing the validity of existing performance
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metrics chosen from the literature. These fall into the categories that have been numbered
in Fig. 2.17 and range from parameters computed on a simple geometrical model, often
used as rules-of-thumb (e.g. compactness), to values obtained by simulating a more detailed
building geometry (e.g. energy need). In line with the goal of having a more comprehensive
solar/energy-performance assessment, we will focus on criteria related to both the passive
and active solar potential of a neighborhood design.

This preliminary study, described in chapter 3, will guide us toward developing our perfor-
mance assessment method, a process which is described in chapter 4. As foresight, our
proposed workflow employs a technique at which we have glimpsed in this chapter: mathe-
matical modeling, which allows predicting the performance without the need for a full thermal
or daylight simulation.

Forming the core contribution of this research, this method will then have to be integrated
into a framework allowing it to be tested by practitioners. This transformation into a DDS
prototype occurs in chapter 5, where we continue to build upon findings from this review.

As previously emphasized, we observe that a large majority of the tools publicly available
induce a generate-and-test process, leaving the interpretation of results to the user. This linear
process, depicted in Fig. 2.18a, also involves the translation of the initial design idea into
a format that can be evaluated, e.g. by one or more specific performance assessment tools.
This task can represent an important barrier from the practitioner’s side. So does the need for
manual repetitions when a comparative exploration of design alternatives is sought.

Addressing some of these issues are features offering more guidance to users as exposed
in section 2.3, for instance by providing means to compare alternative designs or optimize
specific parameters. The alternative assessment process induced by such features is illustrated
in Fig. 2.18b. In this workflow, the initial design idea is expanded to a realm of possible
solutions, by parameterizing design variables that practitioners typically wish to explore at
a given moment in the design process, and that are likely to influence performance. User-
defined ranges and objectives can then be used by an automated system to sample the solution
space, generating and evaluating design variants in a way that supports decision-making.

In this research, we adopt this generative performance-driven approach when developing our
DDS workflow, supported by existing tools, with the aim of fulfilling the requirements for a
seamless integration into the early-design of neighborhood projects. Further motivated and
detailed in chapter 5, the application potential of our approach is explored in chapter 6.
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(a) Linear ‘generate-and-test’ workflow induced by many of the existing performance assessment
methods and tools. The initial design idea must be translated into a model understood by the evaluation
engine, after which an interpretation of the result must be made by the practitioner. This process is
often manually repeated for evaluating different performance aspects (possibly using different tools), to
enable comparing design variations, and until a satisfying solution is found.
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(b) Non-linear ‘generative’ workflow. The translation of the initial design is replaced by a parametriza-
tion, where design variables and their corresponding range are defined by the user to depict a solution
space from which an automated procedure samples to generate design variants. Once evaluated, in-
terpretation of the results is supported by a (multi-criteria) performance-based representation of the
solution space and/or suggestions on modifications with information on the effect of specific changes.

Figure 2.18 — Main steps and tasks (a) in a traditional, linear design assessment process versus (b) an
alternative, generation-based approach.
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8] Validity assessment of existing metrics
through neighborhood case studies

Following the review of chapter 2, we here investigate if we can build on existing approaches
to develop a performance assessment method addressing the challenges unveiled in section
2.1. Through case studies, a test is conducted on a selected set of existing methods. This
preliminary investigation serves to define the performance criteria and associated metrics of
interest in this thesis'. The outcomes lead us toward our proposed performance assessment
method, based on predictive models.

3.1 Experimental method

3.1.1 Selected metrics

The selected metrics, abstractly introduced in section 2.4, are explicitly listed in Table 3.1 and
further detailed in the following sections. They fall into the following categories:

(i) Geometry-based: metrics computed from the morphology of the buildings, based uniquely
on the 3D model. These are simple and early-design phase friendly, requiring a low
level of modeling detail. They include the glazing ratio [Danielski, 2011; Pessenlehner
and Mahdavi, 2003], the passive zone [Ratti et al., 2005], the plot ratio (a measure of
density also known as Floor Area Ratio (FAR)) [Martins et al., 2014] and the compactness
measure [Martins et al., 2014; Miguet and Groleau, 2007; Pessenlehner and Mahdavi,
2003; Ratti et al., 2003].

(ii) External solar- and geometry-based: metrics computed from the level of solar exposure
of external surfaces expressed in terms of irradiation (kWh/m?) or illuminance (lux),
thus taking into account the interaction of buildings and their geometry. These require
an irradiation simulation on a simple model and are commonly used [Otis, 2012; van
Esch et al., 2012], sometimes including threshold values, identified by an ‘I’ in Table
3.1 [Cheng et al., 2006; Compagnon, 2000, 2004; Kanters et al., 2014b; Martins et al.,
2014]. From now on, we adopt the abridged name of irradiation-based metrics to refer
to this category.

1A large portion of this chapter has been summarized in Nault et al. [2015b, 2013].
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(iii) Full climate- and geometry-based: metrics which are obtained through a more complex
and computationally expensive yet conventional simulation, accounting for the climate
and geometry in more detail (e.g. thermal zoning). These are established metrics such
as the simulated energy need, and are here taken as the reference (ground truth).

The goal of this preliminary experiment is to investigate the validity of the early-phase-friendly
metrics in categories (i) and (ii) as performance indicators of neighborhood designs. To infer
their validity as ‘true’ indicators, we make the assumption that the full climate- and geometry-
based metrics (category (iii)) are to be considered as the reference values. For conciseness, we
refer to this set as the reference metrics.

Thus, results obtained by applying metrics from the first two categories should reflect the
results obtained for the reference metrics. These were selected so as to cover the following
performance criteria:

Passive solar potential: related to the passive performance of buildings, i.e. the potential to
benefit from passive solar heating and from natural daylight while mitigating the risk of
overheating.

Active solar potential: expressing the potential energy production by active solar systems
(PV and ST).

The chosen reference metrics are, in the case of the passive criteria, more accurate, conven-
tional and well-acknowledged performance indicators obtained through either daylight or
thermal simulations. The dynamic climate-based sDA metric is used for quantifying the
daylight potential [IESNA, 2012], while the space heating and cooling needs are obtained as
ameasure of the passive thermal potential. As seen in chapter 1, such metrics are the target
of many regulations and labels due to the major share of the need for heating, cooling and
artificial lighting in both non-residential (administrative, commercial, etc.) and residential
buildings. Although an air conditioning system for cooling is not always present, the then
hypothetical need for cooling still reflects the distance to a comfortable temperature range.
For the active solar criterion, additional calculations from the irradiation data (cat. (ii)) provide
an estimated energy production by active solar systems. All metrics are described in detail in
sections 3.1.3 and 3.1.4.

While the sDA and energy need are not adequate metrics for early-design phase assessments
due to the factors introduced earlier (e.g. computational cost, required information not yet
known), they are valuable for proving or disproving the validity of alternative metrics, which
are simpler and easier to calculate. This approach is based on the thinking that if we are to
trust any one metric as being a performance indicator, it should effectively ‘indicate’ following
the same trend as (i.e. go hand in hand with) the performance itself, which is quantified
here by more transparent metrics closely tied to the physical thermal and radiation processes.
These metrics are evaluated for a series of neighborhood designs presented in the next section.
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Table 3.1 - Selected metrics to be compared for each performance criterion. Sources are listed in the
text. PV: photovoltaic; ST: solar thermal; F: facades; R: roofs.

Performance (1) Geometry- (i1) External solar- and geometry- (iii) Full climate- and

criteria based metrics based metrics geometry-based metrics
. Solar heat Envelope area with Annual heating need per
< gains irrad. > Tneat gains (%0) Anm.laI. floor area (kWh/m?ra)
ol Overheating Envelope area with 123(21;&32 . Annual cooling need per
2| avoidance irrad. < Iheat avoid (%) p VEIOPC 1 floor area (KWh/m?pa)
g Facade area with oli ﬂ?l?r ezlrea Spatial daylight
A i Densit Wh/m

Daylight Y illumin. > Liagiigh: (%) ( ) autonomy (%)

PV_F Compactness  ["acade area with
Passive zone irrad. > Ipv.r (%) U
= : nnua
S ST-F Glazing ratio | ¥ acade area “;lth roof/facade | Annual energy
2 irrad. > Ist.r (%) irradiation production on
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Q - .
< 1rradf. > Ipyr (;A) (KWh/m?r») area (KWh/m?ga)
Roof area wit
ST-R irrad. > Istx (%)
3.1.2 Case studies

The research presented in this chapter originated from different analyzes conducted in the

context of four projects. The work done for these projects provided us with an opportunity

to further exploit the data, by looking at it from another angle for the purpose of the current

study. A series of 3D models used as case studies were the outcomes of each project:

EPFL studios?, 2010-2012: bachelor-level architecture studios and summer workshops
that resulted in six student visions that were analyzed and presented in the Green
Density album [Andersen and Nault, 2013; Rey, 2013]. The schematic master plans of
the projects, elaborated for the Waldstadt district in the city of Bern, Switzerland, are
shown in Fig. 3.1. We will refer to this study by the acronym BE which stands for its
location.

EPFL studios®, 2012-2014: similarly, eight student designs developed in the same studio,
but for the Gare-Lac area of Yverdon-les-Bains (Switzerland), were analyzed in the
context of the Urban Recovery album [Nault et al., 2015a; Rey, 2015]. Their master plan
is illustrated in Fig. 3.2. This study will be referred to by the acronym YLB.

Master thesis [Peronato, 2014], 2013-2014: during a joint master’s thesis between EPFL
and [UAV conducted by Giuseppe Peronato whom we co-supervised in our laboratory
(LIPID), multiple design variants were generated based on the master plan of the Gare-
Lac sector in Yverdon-les-Bains [Bauart Architectes et Urbanistes SA et al., 2010]. Figure

2DENSE AGAIN (Yearbook 2010-2011) and URBAN MIX (Yearbook 2011-2012). Du projet urbain au détail
constructif. Studio of Prof. Emmanuel Rey (EPFL, LAST).

3URBAN LAKESIDE (Yearbook 2012-2013) and URBAN REGENERATION (Yearbook 2013-2014). Du projet
urbain au détail constructif. Studio of Prof. Emmanuel Rey (EPFL, LAST).
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3.3 shows a schematic shadow plan of the master plan (base case design) along with
two example variants (irradiation maps) [Peronato, 2014]. The acronym YLB-PDL*,
standing for the location and master plan type (Plan Directeur Localisé (PDL)) will serve
to distinguish this study from the previous one conducted on the same area.

« Comparative study, 2014: through collaboration with a Swiss urban design firm®, a
study was conducted to compare design variants during the elaboration of a master
plan document (Plan Directeur Localisé Intercommunal [Urbaplan, 2015]) for an area
in the north of Lausanne (Switzerland), illustrated in Fig. 3.4 along with the base case
designs (M1, M2) from which the variants were generated. Six specific designs (M3 A-F)
provided by the firm were also analyzed. We assign to this project the acronym LN-PDL
standing for its general location (Lausanne-Nord) and master plan context.

For all cases, the experimental approach for obtaining the data that allow us to compare the
selected metrics is illustrated in Fig. 3.5 and further detailed in the following sections. The
first step is to model the geometry at a Level of Detail (LoD)® 1 to extract the geometry-based
metrics. The Level of Detail (LoD) 1 model corresponds to buildings modeled as blocks with
a flat roof. An irradiation simulation, executed on the same model, allows us to compute
the second category of metrics. The reference metrics are obtained either through further
processing of results from the second phase (active solar) or full simulations on slightly more
detailed models that include thermal zones and windows.

Most of the outputs associated with each phase of this workflow were obtained in the course of
the four individual projects. In some cases, further work was done to complete the data for the
purposes of the current analysis. We here make use of this data by looking at the correlation
degree between specific pairs of metrics. Different tools (or versions of) were used between
studies, as well as distinct modeling and simulation assumptions or settings. This is due to the
fact that the four projects occurred consecutively and in distinct contexts. These discrepancies
are not considered an issue here, as the intention of this chapter is not to compare absolute
results between the studies, but rather investigate the outcome of applying the selected set of
metrics to different neighborhood designs. The diversity of cases and simulation assumptions
can rather be seen as an advantage. In the first two studies, BE and YLB, we have a small
number of designs, quite different in terms of building typology and layout. The third study,
YLB-PDL, includes a much larger number of designs created from small variations applied to
a base case. LN-PDL is an in-between case, containing both multiple variants generated by
applying moderate variations to two base case designs (M1 and M2), as well as six specific and
distinct designs (M3 A-F).

4To avoid any confusion, it should be noted that this study has been presented in a previous publication using
the acronym YLB [Nault et al., 2015b], here assigned instead to the Urban Recovery project.

SUrbaplan: http:/ /www.urbaplan.ch/ (last accessed on March 20, 2016)

6The Level of Detail (LoD) is a concept defined by the City Geography Markup Language (CityGML) to classify
building models on a scale from 0 to 4 [Kolbe et al., 2005].
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1 Interface 2 Transition

Figure 3.1 — Schematic master plan of the six urban visions (delimited by a green border), and the
existing built context (outside of the delimitation) in the BE case study. The sample surrounded by
a dashed red line represents the simulated portion of each design. The shade of gray of the unbuilt
buildings gives an indication of their height: darker = higher. Location: Waldstadt district, Bern,
Switzerland. Images adapted from Rey [2013], in which the designs are referred to by their name here
displayed.
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Figure 3.2 — Schematic master plan of the eight urban visions (black) and the existing immediate (gray)
and surrounding (light gray) built context in the YLB study. Location: Gare-Lac sector, Yverdon-les-
Bains, Switzerland. Images adapted from Rey [2015], in which the designs are referred to by their name
here displayed.
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Figure 3.3 — Left: Schematic shadow plan of the YLB-PDL base case. Due to practical considerations,
only buildings G, H and I were simulated (red), taking into account their surroundings. Right: Annual
irradiation map of two example variants. Source of images: Peronato [2014].
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Figure 3.4 - Illustrative master plan of the LN-PDL study, with example plots (framed in red) on which
the design variants created from M1 and M2 or the specific designs of M3 (top) could be located. Plan
adapted from Urbaplan [2015].
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Figure 3.5 — Experimental approach and tools used for acquiring the data necessary to compare the
selected metrics. Results obtained for the simpler metrics of categories (i) and (ii) are compared with
the full climate- and geometry-based metrics (iii) taken as reference values. The level of complexity
and of detail of the obtained output increases along with the computational cost from top to bottom.

The interest of having this diversity of cases lies in the fact that these represent various
situations that could be found in practice. For instance, the student visions of BE and YLB
could emanate from a design exploration phase or from an urban design competition, while
the extensive series of variants in the YLB-PDL study would come up at a subsequent phase,
after fixing the building typology. The fourth project occurred (in reality) in the context of a
master plan elaboration. All of these situations moreover correspond to the applications and
audience at which our proposed DDS workflow, developed in the next chapters, is addressed.

55



Chapter 3. Validity assessment of existing metrics through neighborhood case studies

3.1.3 Modeling
Tools and LoDs

Table 3.2 summarizes the tools used in the 3D modeling of the designs for each study. Rhino’was
used as the base 3D modeler and for visualization. The first version of UMI [Reinhart et al.,
2013], a plug-in for Rhino, was used to facilitate the translation of the BE designs into thermal
models. The window-to-wall ratio was fixed to 0.5 and 0.45 for BE and YLB respectively, with
values falling within that range for the other two studies. Each story was defined as a thermal
zone, except for YLB-PDL, where each bar (or block) composing the courtyards was modeled as
a thermal zone without internal floors, due to limitations of Viper, the DIVA-for-Grasshopper
component allowing an EnergyPlus simulation (described later).

As mentioned earlier, the modeling was done at different Level of Details (LoDs); buildings
were first modeled as simple boxes for extracting all geometry-based metrics (except the
window-to-floor ratio) and running the irradiation simulation. An example can be seen in
Fig. 3.7. For computing the window-to-floor ratio and executing the thermal and daylight
simulations, thermal zones were defined and windows were added, in a different layout
according to the tool used, as illustrated in Fig. 3.6 and detailed further on.

Table 3.2 — Tools used in the modeling process in each project. Sources are mentioned in the text.

Tool Role BE YLB YLB-PDL LN-PDL

Rhino 3D modeler X X X X

UMI Thermal modeling support X

Grasshopper Parametric modeling X X X

Matlab Script for defining design vari- X
able values

gHowl Import/export of data between X X
Excel, Grasshopper and Matlab

Total number of variants 6 8 768 1008

Parametric modeling

For YLB-PDL and LN-PDL, a parametric modeling approach was adopted. Parametric model-
ing means generating a series of design variants that are linked through one or more math-
ematical relationship(s), forming a space that contains multiple related yet distinct shapes
[Lagios et al., 2010]. The parametric modeling was done using Grasshopper®, a graphical
scripting program for Rhino that allows automating, in an iterative sequence, the application
of changes to a design. A screenshot is shown in Fig. 3.7. The added-value of this program also
lies in the multitude of plug-ins continuously developed for it. One of them is gHowl1?, used

“https:/ /www.rhino3d.com/ (last accessed on March 20, 2016)
8http:/ /www.grasshopper3d.com/ (last accessed on March 20, 2016)
9http:/ /www.grasshopper3d.com/group/ghowl (last accessed on March 20, 2016)

56



3.1. Experimental method

P 2

(a) Example design (1-Interface) in BE, modeled (b) Example design from the M2A series of LN-
in Rhino-UMI-UD. PDL, modeled in Grasshopper for simulation in
DIVA.

Figure 3.6 — Example models used for the thermal and daylight simulation using different tools.
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Figure 3.7 — Rhino and Grasshopper (partial) set-up for the parametric modeling of variants and
computation and simulation of metrics. Example for the M2A case in the LN-PDL study.

here to exchange data between the software in the form of Excel files. Finally, Matlab'® was
used in the LN-PDL study, for which a script was developed to randomly assign values to each
design variable and building for the series of M1 and M2 variants. Validity checks were also
performed to ensure that models were realistic (e.g. no overlapping buildings) and respected
the constraints (e.g. minimum density).

Parameters that were varied, kept constant or taken as constraints for YLB-PDL and LN-PDL
are listed in Tables 3.3 and 3.4 respectively. In the former, geometrical modifications were
done by varying the height of buildings within the range of values prescribed by the master
plan [Bauart Architectes et Urbanistes SA et al., 2010], and by setting their depth and setback

1Ohttp:/ /www.mathworks.com/products/matlab/ (last accessed on March 20, 2016)

57



Chapter 3. Validity assessment of existing metrics through neighborhood case studies

to values expected to be representative of possible design choices. These variations, illustrated
in Fig. 3.8 were simultaneously and iteratively applied on each courtyard block, leading
to 768 design variants covering all possible combinations of parameter settings. To reduce
simulation time, only buildings G, H and I in Fig. 3.3 were simulated, taking into account
their surrounding context (terrain and buildings’ reflectance/shading effect). The variations
were applied equally on all three buildings, i.e. within each variant all buildings have the
same depth, setback, and height value, with the exception of additional stories located on the
northern facade of buildings G and H. Despite these uniform parameter values, we obtain
three distinct building sizes due to the initial outer perimeter being different for each block.
This can be better understood by looking at the annual irradiation map of the two example
variants in Fig. 3.3.

In LN-PDL, the design variables and their range were specified by the urban design firm who
provided the base case models. As mentioned, a random sampling algorithm was used to select
building dimensions from the ranges. M2 was eventually split into M2A and M2B, to explore
two different spans of (partially overlapping) building heights, the other settings being equal.
A total of 144 (M1), 190 (M2A) and 164 (M2B) variants were generated and simulated for two
orientations (N-S and E-W alignments), resulting in 1008 variants altogether, including M3.

In both projects, the window modeling was based on fixed values, e.g. the distance between
the window base and the floor and the window height. This generated similar window-to-wall
ratios among design variants, specified in Tables 3.3 and 3.4 in the constants’ section.

Table 3.3 — Design variables and constants for generating variants in the YLB-PDL study, based on
the PDL [Bauart Architectes et Urbanistes SA et al., 2010]. *Window-to-wall ratio was dictated by the
window modeling done using constant intervals (e.g. between window bottom and floor).

Variable Min:Step:Max

Setbacks (N-S/E-W) 0:1:3m

Block width 10:1:17 m

Number of stories 2:1:3

Additional stories on N side 0:1:2

Constant Value

Window-to-wall ratio* ~0.48

Story height ground floor 3.95m

Story height other floors 2.95m
height horizontal layout
{stories }extra stories = width = setback
= 7 =2 H

Figure 3.8 — Illustration of design variations in the YLB-PDL study. Source of image: Peronato [2014].
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Table 3.4 — Design variables and constraints for generating variants in the LN-PDL study. *Window-to-
wall ratio was dictated by the window modeling done using constant intervals (e.g. between window
bottom and floor). bldg(s): building(s); cst: constant; var: variable. See Fig. 3.4 for a visual description
ofx,y,zand d.

M1 M2A M2B
Variable Min:Step:Max Min:Step:Max Min:Step:Max
X 8:1:15m 10:2:20 m 10:2:20 m
y 6:1:24 m 12:2:24 m 12:2:24 m
Z 6:3:12 m 9:3:18 m 12:3:24 m
d (cst) 6:1:20 m 6:1:20 m
Number of bldgs per side  8:1:14 (cst) (cst)
Orientation 0° (N-S alignment) and 90° (E-W alignment)
Constant/Constraint Condition/Value  Condition/Value Condition/Value
d 0m (var) (var)
Number of bldgs per side  (var) 4 4
Window-to-wall ratio* 0.44-0.46 ~0.46 ~0.46
Plot ratio >0.9 >0.9 >0.9
Total floor area per bldg > 50 m? > 200 m? > 200 m?

Distance between neigh- (0 m by default) 6m<dist<20m 6m<dist<20m
bor bldgs

Computation of (i) geometry-based metrics

Once we have achieved a simple LoD 1 modeling of the designs, the geometry-based metrics
are computed, either manually via Rhino and Excel (for BE) or via automated operations
directly scripted in Grasshopper (all other studies), as noticeable in Fig. 3.7. The exact
definition of each metric is as follows:

Plot ratio: Density measure also known as the FAR and computed as the ratio between the
total floor area and the plot area (constructible parcel of land). Common urban morpho-
logical parameter [Martins et al., 2014], linked to energy consumption and production
[Steemers, 2003].

Surface-to-volume: Compactness measure computed as the ratio between the total exposed
envelope area and the total enclosed volume. Indicative of heat losses; the smaller the
surface-to-volume, the more compact the building, and the lower the heat losses due to
a smaller exposed surface area [Ratti et al., 2003]. In northern climates, this ratio should
generally be minimized to avoid heat losses which dominate over heat gains in winter,
and to limit heat gains by having a smaller collecting surface in summer [Miguet and
Groleau, 2007].

Passive zone: Ratio between the total area of passive zones (within 6 m of an exposed facade)
and the total floor area [Steemers, 2003]. Quantifies the potential of a space to use
daylight, sunlight and natural ventilation, and was found to be a better indicator than
the surface-to-volume ratio for total energy consumption (heating, cooling, ventilation
and lighting) [Ratti et al., 2005].
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Window-to-floor: Measure of the glazing ratio, computed as the total window area divided
by the total floor area. Used instead of the more common window-to-wall ratio which
was kept approximately constant in the case studies. Glazing proportion characterizes
heat gains and losses, natural ventilation, daylight, as well as other aspects not treated
in this study such as glare [Ochoa et al., 2012].

These values are computed over the whole neighborhood, i.e. for an ensemble of buildings,
leading to one value per design variant.

3.1.4 Simulation

Due to practical reasons linked to modeling and simulation time and resources, in the BE
study only a sample of each design judged representative of the whole was simulated. These
samples are highlighted in Fig. 3.1. Similarly for YLB-PDL, where the analysis was limited to
the three courtyard buildings identified in Fig. 3.3. In all cases, the surrounding context is
taken into account in the simulations, in terms of shading and reflectance of both existing and
designed buildings.

All simulations are climate-based, that is, they all make use of the provided weather file from
which some data (e.g. dry-bulb temperature) is extracted and used in the simulation. The
weather files are the one for Bern for the BE study [Meteotest, 2012], Yverdon-les-Bains for both
YLB and YLB-PDL [Meteotest, 2012] and Geneva for the nearby LN-PDL project [EnergyPlus,
2014].

Computation of (ii) external solar- and geometry-based metrics

Running an irradiation simulation on the same LoD 1 models as in the previous step allows us
to compute the second category of metrics (see also Table 3.1):

Annual average irradiation: Total annual irradiation received on a certain exposed surfaced
divided by the area of that surface. Direct measure of solar availability.

Floor-area-normalized annual irradiation: Total annual irradiation received on a certain
exposed surface divided by the total floor area. Direct measure of solar availability.

Threshold-based daylight/passive/active solar potential: Percentage envelope or facade area
receiving an irradiation or illuminance level above (or below for heat avoidance cri-
terion) the corresponding threshold, as listed in Table 3.5. Adapted from a method
developed by [Compagnon, 2000].

The tools used, displayed in Fig. 3.5, as well as the settings applied when conducting the
irradiation simulation are listed in Table 3.5. The values of the irradiation and illuminance
thresholds for the calculation of the threshold-based metrics are also included the table.

In the four studies, the irradiation simulation is done via the DIVA plug-in for both Rhino
and Grasshopper [Jakubiec and Reinhart, 2011], which relies on the Radiance [Larson and
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Shakespeare, 1998] and Daysim!!

simulation engines. DIVA uses in particular a cumulative
sky method based on the GenCumulativeSky Radiance module [Robinson and Stone, 2004] to
obtain annual direct and diffuse irradiation levels on a grid of nodes (or sensor points) located
on the exposed building envelope areas and oriented outwards with respect to the enclosed
volume. An example grid is shown in Fig. 3.9a, for a 1 m resolution (distance between points).

Results can be visualized through a false-color irradiation map, as shown in Fig. 3.9b.

The node-specific values are exploited in the calculation of the threshold-based metrics, which
come from a method developed by Raphaél Compagnon in the context of a European project
called PRECis [Compagnon, 2000] and further applied in subsequent studies [Compagnon,
2004; Montavon et al., 2004a]. Distinct threshold values are defined for assessing the passive
heating, daylight and active solar potential. We have added to this list the heat avoidance
threshold, for assessing the risk of overheating. These metrics have been computed in the BE
and YLB-PDL studies only, the latter not including the added heat avoidance threshold. The
origin of the threshold values, listed in Table 3.5, is explained below.

The passive heating threshold represents the amount of solar energy (kWh/m?) collected
over the heating period - defined as September 15 to May 14 for the Swiss climatic context!? -
required to compensate the heat losses through glazing [Compagnon, 2000]:

Iheat gains = 24-bb-U 3.1

1000-g-n

where
DD: heating degree days for Bern and Yverdon-les-Bains (DD g = 2906K-day [Meteotest, 2012],
DDy g =2874K-day [MétéoSuisse 2000-2013 average])
U: thermal transmission coefficient for a typical double glazing (1.3 W/m?K)
g: solar energy transmission coefficient for a typical double glazing (0.75)
7n: utilization factor taking into account occupants and building’s dynamic behavior (0.7)

The heat avoidance threshold is defined in a simpler manner based on the fact that to mitigate
the risk of overheating, the solar exposure in summer should be minimized. To allow a
comparison among the BE designs to which this metric is applied, an upper limit has been set
based on the energy received on average on all surfaces of all designs over the non-heating
period (May 16 to September 14). This value does not represent the amount of energy that will
lead to an overheating of the buildings, which would have required many assumptions and
full energy analyzes to be determined. However, it still represents a case-specific approach
worth investigating.

Whttp://daysim.ning.com/ (last accessed on March 20, 2016)
12http:/ /www.hausinfo.ch/home/fr/droit/droit- bail /utilisation/chauffage.html (last accessed on March 11, 2016)
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3.1. Experimental method

The active solar system thresholds are split per surface orientation - roofs versus facades
- and technology - photovoltaic (PV) panels and solar thermal (ST) collectors. They repre-
sent the amount of energy collected throughout the year, considered as ‘reasonable’ levels,
based on economic and technical factors for existing systems and the Swiss climatic context
[Compagnon, 2004].

The daylight threshold is computed from the following equation [Compagnon, 2000]:

Ei
I daylight = ﬁ (3.2)

where

E;: mean indoor illuminance on workplace, typically fixed at 500 lux for the working hours
(8am-6pm)

CU: coefficient of utilization taking into account construction details (e.g. glazing ratio),
typically of about 0.05 for vertical openings

For each threshold, a performance metric is computed, expressed as the percentage of exposed
surface respecting the criteria-specific threshold condition:

" oa; 1 if(I; = Iy ) >0 (<0 for heat avoidance)
Potential.yj; = 100 x (Ll) [%] with a; = boent
n 0 otherwise (1 for heatavoidance)

(3.3)

where I; is the annual irradiation (or illuminance) value at node i € [1,n] and I is the
criterion-specific threshold as defined above.

Computation of (iii) full climate- and geometry-based metrics

Through additional mathematical operations and simulations on a more detailed model, the
final category of metrics, our reference values, are obtained:

Energy production: Estimate of the energy produced by facade- and roof-mounted PV pan-
els and ST collectors, computed by further processing the irradiation data previously
acquired.

Energy need: Annual heating and cooling need of the entire neighborhood, normalized by
its total floor area, representative of the energy required to maintain comfort.

Spatial daylight autonomy: Measure of the interior space that receives a specified amount
of daylight over a given period of time over the year.

Each metric is further detailed below.
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Chapter 3. Validity assessment of existing metrics through neighborhood case studies

Energy production

For BE and YLB-PDL, the energy production is computed by differentiating between each
system and surface. A value is obtained for PV and ST on roofs and on facades. This metric
builds upon the results from the irradiation-threshold metrics by making use of the surfaces
(nodes) identified as adequate for each system, based on the same threshold value given
in Table 3.5. As such, this metric does not require any additional simulation. However, we
consider that it provides more trustworthy or realistic results, as the efficiency of each system
is considered as well as the actual amount of irradiation of each node which exceeds the
relevant threshold. It is computed through the following equation:

Z:’:{S Ii x Ap X Nsys
FA

Esys = [(kWh/mZ, ] (3.4)
where

sys: combination of active system and installation surface (PV-E PV-R, ST-E ST-R)

Msys: nodes for which the irradiation threshold is achieved for surface and system sys

I;: annual irradiation of node i € [1, mgys] [kWh]

A, average node area [m?]

Nsys: efficiency of system (0.15 for PV-F/R, 0.70 for ST-F/R)'3

FA: total floor area [m?]

In the YLB study, a different method is used to compute the energy production, developed
by Giuseppe Peronato, PhD student at LIPID. The production metric corresponds to the
electricity generated by PV panels installed on available roof surfaces, where areas reserved to
ST collectors have been discarded. The algorithm is as follows.

First, the energy required to cover 50% of the annual Domestic Hot Water (DHW) needs,
brought back to a period of 8 months corresponding to the heating season (September 15 to
May 14), is computed:

8
DHW = 0.5 x FA x (rres x Qhwl + (1 —rres) x Qhwb5) x ' (3.5)

where

FA: the total floor area [m?]

Qhw1 and Qhwb5: annual energy need per floor area for DHW for multi-family housing (75
MJ/m?) and commercial buildings (25 MJ/ m?) respectively [SIA, 2009b], converted to kWh/ m?
rres: ratio of residential surface, ranging between 0.5 and 0.9 among the YLB projects, with the

remaining areas assigned to a commercial usage.

13These values respectively correspond to standard polycrystalline-based panels and flat-plate collectors (http:
/ lwww.swissolar.ch/fr/lenergie-solaire/photovoltaique/technologie/, http://www.minergie.ch/tl_files/download_
fr/ad_cs.pdf, last accessed on April 18, 2016).
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The energy production from each node is computed for both ST and PV systems:
Egst,i = Iw,i X Ap X Nst Epy,i = Iy,i x Ay x npy (3.6)

where

I,,;: total irradiation over winter season for node i
I, ;: total irradiation over year for node i

Ay average node area [mz]

Nsys: efficiency of system (0.15 for PV, 0.70 for ST)

The production by PV is then sorted from highest to lowest, and the same order is applied to
the series of ST production values. The latter are summed until the DHW need is achieved.
The nodes thus ‘used’ for covering the DHW are removed from the PV series. Among the
remaining nodes, the production is computed as:

Y Epv,i
FA

E= [kWh/m§,] (3.7)
where m nodes achieve the irradiation threshold for PV systems (set to 1000 kWh/m? in this
thesis as in [Compagnon, 2004]), excluding the ones reserved for covering the estimated DHW
demand.

Energy need

The tools and settings used in the thermal simulation to obtain the heating and cooling needs
are listed in Table 3.6. In all studies, a front-end for the EnergyPlus engine [Crawley et al., 2000]
is used, where an ideal loads air system is assumed. This ZoneHVAC:IdealLoadsAirSystem
object is modeled as an ideal Heating, Ventilation and Air Conditioning (HVAC) system that
supplies conditioned air to the defined zone to meet all requirements (e.g. setpoint tempera-
ture) while consuming no energy in itself'*. That is, no additional energy is required to meet
the demand, as the ideal HVAC has an efficiency of 100%.

The outputs recorded, the total (sensible and latent) heating and cooling energy added to
each zone, are summed over all zones and buildings within a design and divided by the
total floor area. Figure 3.10a illustrates, for an example design of the YLB study, the annual
heating need per floor area on average in each story, considered a thermal zone. Simulated via
Archsim/EnergyPlus, the total needs per zone are summed over the whole design and divided
by its total floor area. The same is done for cooling (when recorded). We refer to this metric as
the energy, heating or cooling need, which is here equivalent to the consumption or the Energy
Use Intensity (EUI), which is the total energy consumed by one (or a group of) building(s) in
one year divided by the total gross floor area.

The main differences in the settings between the studies are found in the building function (or

Yhttp:// nrel.github.io/EnergyPlus/InputOutputReference/02-HVACTemplates/ (last accessed on March 11,
2016)
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program), either defined as office or residential, the infiltration rate and loads, as well as the
materials heat transfer coefficient. Sources consulted are noted in the table for the relevant
studies. In some cases, default values provided by the tool were used, despite their inadequacy
for the study’s climate and context. For instance, the Archsim plug-in, then still in its early
development status, was used for the first time in the LN-PDL study. A residential function
was assigned, with a very high occupancy ratio, internal loads and U-values. This combination
of parameters, obtained by overlooking default values in the plug-in, does not represent a
realistic situation. In that same study, the Zone Ideal Loads Zone Total Heating Energy output,
extracted from the .csv file generated by EnergyPlus, was the one used to compute the heating
need metric. However it was later found that this value does not include the energy required
to warm up the outdoor (fresh) air (Zone Ideal Loads Outdoor Air Total Heating Energy) 15

Learning from this early experiment, more realistic settings were used in the thermal simu-
lation for other studies in which Archsim was employed, by processing the .idf it generated
in Matlab to adjust settings before running the simulation in EnergyPlus. The total amount
of heating including the proportion required for the outdoor air was used for computing the
energy need, by extracting the District Heating output provided in EnergyPlus’ Table file. As
we will see in the next section, the mixed settings in LN-PDL and the exclusion of the outdoor
air energy, which is conditioned by the function, occupancy and internal loads, somehow
compensate each other to a certain degree, e.g. through the combined and opposite effect of
high internal loads and low insulation.

Although some values are outside their typical range or do not represent best practice construc-
tion materials, the comparative nature of the study attenuates the importance of the settings
accuracy, as we do not aim at obtaining accurate absolute energy need values. As mentioned
earlier, it is rather interesting to investigate the effect on the results of these discrepancies in
the settings among studies.
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Figure 3.10 — False-color map of the (a) heating need (average per zone) and (b) DA for design 1-LYN in
the YLB study.

15More information on the definitions of all output values can be found at http:/ /bigladdersoftware.com/epx/
docs/8-0/input-output-reference/page-032.html (last accessed on March 17, 2016).
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Chapter 3. Validity assessment of existing metrics through neighborhood case studies

Spatial daylight autonomy

The sDA, detailed in [IESNA, 2012], is a climate-based metric that describes the annual suf-
ficiency of daylight levels inside a building. It is quantified by the percentage of an interior
horizontal area that meets a minimum illuminance target ¢ over a certain fraction x of the
occupied hours of the year. The sDA is thus a spatially ‘condensed’ version of the temporal
Daylight Autonomy (DA) metric. The recommended parameter values are ¢ = 300 lux and
x =50%, denoted by sDA30/50% [IESNA, 2012]. The analysis grid is set at 30” (76.2 cm) above
the floor with a resolution of 24” (61 cm between nodes), the period from 8am - 6pm, with
blinds operated hourly to block direct sunlight according to a procedure described in the
aforementioned reference. While these are the official settings for measuring the sDA, we
partly deviate from them in the four studies, in particular regarding the blinds modeling for
which we met technical limitations linked to the tools used.

In all studies, the analysis grid is placed at 0.8 m above the floor, with a node resolution of 2 m.
This distance, larger than the specified 61 cm, is to reduce computational time, significant at
the scale of our studies (~hours for multiple buildings). The occupancy hours are extended
to 8am - 10pm in three of the studies, to cover a larger range of possible daylight hours while
detaching ourselves from a fixed building function. As mentioned for the energy simulation,
these settings do not prevent us from comparing designs within a same study.

The tools and full list of settings for the daylight simulation are given in Table 3.7. The
background engines common to all tools are Radiance and Daysim. Results for the BE study

were obtained directly from Urban Daylight!®

, which produced the binary DA maps shown
in Fig. 3.11 and provided the overall sDA through its interface. The maps display the daylit
(white) versus non-daylit (black) areas, where daylit is defined as zones achieving a DAsgg/50%,
i.e. with an illuminance level above the 300 lux threshold over 50% of the occupied hours. Only
in this study was the sDA computed on all floors. For reasons linked to computational time, in
the other three projects only the ground floor was considered, as a worst-case situation (most

potentially shaded out of all floors).

The format of the simulation outputs is different for the other studies for which Grasshopper
was used as an intermediary, to facilitate the modeling, between Rhino and the simulation
plug-ins. Figure 3.10b shows the raw results obtained via DIVA-for-Grasshopper, plotted as a
false-color DA map, for an example design of YLB. The sDA is computed by processing this
data in Matlab to obtain the percentage space achieving a DA3gg/50%. The same procedure
was followed for the parametric studies. In YLB-PDL, only 32 variants out of the 768 were
simulated, due to the high computational cost of the daylight simulation.

16yrban Daylight converts hourly solar radiation levels on all facades simulated via Daysim into interior illumi-
nance distributions through a generalized impulse response [Dogan et al., 2012].
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Figure 3.11 — Map of the DA results produced by Urban Daylight [Dogan et al., 2012] for all designs in
the BE study.

3.2 Results

We here present the results through scatter plots showing the computed reference values
(y-axis) against, on the x-axis, each (i) geometry-based metric in section 3.2.1 and (ii) external
solar- and geometry- (or irradiation-) based metric in section 3.2.2. In each section, a sub-
division is made to look at the three performance criteria: energy production, energy need
and spatial daylight autonomy. Results for the first two smaller sized studies, BE and YLB,
are often merged an presented together in the graphs, followed by YLB-PDL and LN-PDL.
This sequence is repeated for each pair of metrics compared, with studies excluded in parts
where no results were measured, e.g. LN-PDL for the energy production, not computed in that
project. As motivated earlier, we want to investigate whether metrics (i) and (ii) are correlated
to the reference values (iii), in order to judge of the ability of the former to establish a ranking
among design alternatives with respect to a specific performance criterion.

The relationship between each pair of metrics is quantified by the linear coefficient of de-
termination (R?), displayed only in graphs where it was found to be higher than 0.70. In the
results for YLB-PDL, we have identified an example cluster through colored points, matching
across all graphs for this study. Each cluster consists of variants with identical block depth, i.e.
equivalent surface-to-volume and passive zone ratio, but distinct setbacks, window-to-floor
and plot ratio. This allows visualizing where the same data points fall in the different graphs
and will be used throughout this section to facilitate highlighting certain behaviors.

3.2.1 Geometry-based versus reference metrics

Energy production

Figures 3.12, 3.13 and 3.14 present the comparison between the energy production (reference
metric) and the geometry-based metrics respectively for the BE, YLB and YLB-PDL studies.
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Chapter 3. Validity assessment of existing metrics through neighborhood case studies

The abstract trends decipherable in the graphs of BE and YLB are more clearly seen for the
much larger dataset of YLB-PDL (Fig. 3.14), showing patterns particularly for facade-mounted
systems (PV-F and ST-F). In those cases, a linear relationship is found across all metrics,
strongest for the window-to-floor ratio. This is explained by the fact that larger ratios mean
more facade (i.e. collecting) surfaces for a certain enclosed floor area, the latter being the same
normalization basis as the energy production value (kWh/mZ,). For systems on roofs (PV-R,
ST-R), we observe a spread with higher values associated to designs with 2-story buildings. The
irradiation on roofs is likely to be very similar between designs with 2- and 3-story buildings,
as this change affects all buildings so there is no increased shading. Thus, the floor area
normalized irradiation level is higher for lower buildings, due to their smaller total floor area.
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Figure 3.12 — Energy production by (a) PV and (b) ST systems on facades and roofs against each
geometry-based metric for BE.
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Figure 3.13 — Energy production against each geometry-based metric for YLB.
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Figure 3.14 — Energy production by (a) PV and (b) ST systems on facades (E top) and roofs (R, bottom)
against each geometry-based metric for the YLB-PDL designs.

Energy need

Figure 3.15 shows the heating need (top) and the energy need (including heating and cooling;
bottom) against each of the four geometry-based metrics, for studies BE and YLB. Results
for the cooling need are not separately shown as they were found to be very small for the BE
case and displaying no trend for both BE and YLB. While the heating need is about twice as
high for BE than YLB mainly due to the simulation settings, e.g. differences in infiltration rate
and U-values, the total energy values are similar due to the cooling need contributions. Yet,
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only BE displays high correlations for the surface-to-volume and window-to-floor ratios. The
positive direction of the correlations are to be expected for this heating-dominated climate,
with higher heat losses associated to both a larger window-to-floor ratio and a lower level of
compactness (higher surface-to-volume). We speculate that the lack of trends for the YLB
dataset may be caused by the combined effect of low U-values and the diversity of building
orientations - and in some cases typologies - in the designs. In this study, a higher number
of buildings spread over a larger surface area was included in the simulation (see Fig. 3.2)
compared to the other studies. This may have led to an averaging effect limiting the differences
in energy need and simultaneously fading out the influence of geometry-based metrics.

The same comparison is shown in Fig. 3.16 for the heating (top) and cooling (bottom) need
of YLB-PDL. Designs with 2 versus 3 stories are separated particularly in the plot ratio and
surface-to-volume graphs. For a same surface-to-volume ratio, 2-story designs perform better
than the ones with 3 stories. Strong patterns are found across all geometry-based metrics for
this larger dataset, with an R? consistently above 0.70 except for the cooling versus plot ratio.
These correlations are likely due to the way variants were generated through the parametric
modeling, causing a dependency between the four geometry-based metrics. For example,
when increasing the building depth design variable, all metrics are affected: the surface-to-
volume, passive zone and window-to-floor augment while the plot ratio diminishes. Figure
3.17a shows an analysis of these four metrics through a correlation matrix, including the
histogram of each parameter, displaying the Pearson correlation coefficient!” between each
pair. The correlation is strongest between the plot ratio (PR) and surface-to-volume (SV).
The consequence of this interdependency is that if any one of the geometry-based metrics
correlates with the heating need (positively or negatively), as expectedly occurs for the surface-
to-volume ratio for instance, all other metrics will correlate as well. This observation puts us
on guard regarding ‘indirect’ correlations, which are difficult to detect. Caution must also be
used when drawing conclusions on the cause of the observed trend, as in the famous saying
correlation does not imply causation.

The slope of each relationship indicates whether the metric should be minimized or maximized
to achieve a better performance. The same directionality between heating and cooling means
that both outputs can be minimized through the same geometrical features out of the ones
considered. The positive slope for the passive zone is contradictory to the concept being it,
where non-passive zones should theoretically potentially consume more than passive ones.

Indeed, in our case, variants with values of 1, for which 100% of the space is passive, show the
highest heating and cooling need. However, it must be noted that total energy consumption
for heating, cooling, ventilation and lighting is used in the passive zone concept [Ratti et al.,
2005; Steemers, 2003]. Include these contributions and converting to primary energy values
would allow a better comparison with the sources cited above.

17http:/ /www.mathworks.com/help/matlab/ref/ corrcoef.html (last accessed on March 20, 2016)
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Figure 3.15 — Heating (top) and energy (including heating and cooling; bottom) need against each
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Figure 3.16 — Heating (top) and cooling (bottom) need against each geometry-based metric for the
YLB-PDL designs.

When looking beyond the overall pattern of each graph, we observe that clusters are showing
different or no trends, e.g. the group of colored dots. The overall positive correlation with the
window-to-floor ratio is not observed within this group; the highest heating need is associated
with a window-to-floor ratio of about 0.32, which is not the maximum value for this parameter.

At constant surface-to-volume, the influencing factor appears to be the higher heat gains
provided by larger glazed area, as opposed to the general trend in the window-to-floor ratio
graph. Any one parameter is not sufficient to clearly rank the design alternatives, as we still
observe clusters of points with identical values but different heating and cooling needs. This
observation highlights the importance of considering multiple parameters in parallel.
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Results obtained in the LN-PDL study for the heating need versus the geometry-based metrics
(except the passive zone which was not computed) are shown in Fig. 3.18. Separations between
the design series are observed, with 0° and 90° cases closely located. M1 designs present higher
heating needs while M2A and M2B partly overlap. The overall trends are similar to the ones
observed for YLB-PDL, particularly for the plot ratio and surface-to-volume. As for YLB-PDL,
these two metrics are here also correlated, as shown in the correlation matrix of Fig. 3.17b
where a Pearson coefficient of -0.92 is obtained.

Despite the differences in the simulation settings between YLB-PDL and LN-PDL as explained
earlier (see also Table 3.6), it is interesting to compare these two studies. The heating need
values are generally higher for LN-PDL, although these include only a part of the full amount
of energy required, which is the value used in YLB-PDL, as explained in section 3.1.4. However,
the cumulative effect of the LN-PDL settings - higher U-value, presence of blinds, etc. com-
pared to the YLB-PDL settings - make the heating needs higher for this study. The LN-PDL
values also span a wider range, from approximately 15 to over 55 kWh/ mf: ' likely due to the
larger diversity in the designs in terms of building typology and layout, but also dimension
variations in the parametric modeling set-up. Yet, the ranges spanned by the geometry-based
metrics - x-axes - in both studies are very similar. One hypothesis for explaining the larger
differences seen in LN-PDL, as well as the weaker trend with the window-to-floor, is that by
excluding the energy needed for providing and heating up the outdoor fresh air, the effect of
morphological parameters on the heating need may be enhanced. What would be interesting
to investigate is if the relative positioning or ranking of the design alternatives is changed
when different simulation settings are used and the full energy need is taken as the reference
metric. This is a question to which we will come back in the next chapter (section 4.7.3).
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Figure 3.18 — Heating need against geometry-based metrics (except passive zone) for the LN-PDL
designs.

Spatial daylight autonomy

Trends are also observed between the sDA and the geometry-based metrics for some datasets.
Figure 3.19 presents the graphs for the BE and YLB studies, the former showing a linear
correlation for the surface-to-volume and window-to-floor metrics.

Results for YLB-PDL, shown in Fig. 3.20, also display such positive trends, despite the disparity
in the data caused by reducing the simulated designs to 32 variants. As mentioned earlier,
the sDA was obtained only for a sample of the 768 variants due to the computational cost of
daylight simulations. This sample was chosen so as to capture extremes in terms of design
variables, reflected in the results with the gap between high and low sDA values. The passive
zone and window-to-floor show the highest positive correlation levels.

The same general effects are found for the larger dataset of LN-PDL, shown in Fig. 3.21.
Designs that are denser, less compact, with larger window-to-floor ratios are linked to higher
sDA values. However, the strength of the overall relationship between each pair is weaker as
in no case have we reached an R? of 0.70. When looking at individual design series, we do
however obtain high correlation coefficients: 0.75-0.72 (M3 0°-90°) for the plot ratio, from 0.72
(M3 90°) to 0.86 (M2B) for the surface-to-volume and from 0.75 (M3 90°) to 0.90 (M2A-B) for
the window-to-floor.

While results show patterns similar to the energy need, the actual indicative trend should be
interpreted inversely: higher sDA values are indicative of a better performance (not accounting
for possible glare issues), as opposed to the energy need which is to be minimized. This means
that the passive zone here presents an overall behavior in accordance with its definition.
Designs for which buildings are fully passive (value of 1) present a higher output. This result is
in line with the various rules-of-thumb defining the ratio between window-head-height and
daylit zone depth. The general statement behind such rules is that “the depth of the daylit area
usually lies between 1 and 2 times the size of the window-head-height” [Reinhart, 2005]. Where
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this rule becomes weaker is when the inter-building shading effect is noticeable. In the case of
YLB-PDL, this does not seem to be the case, since height variations are small and applied to all
three assessed buildings and thus the shading is relatively constant between design variants
(if present at all). However, the shading may explain the weaker relationship with the passive
zone observed for BE and YLB, considering the diversity in these designs (see Fig. 3.1 and 3.2).
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Figure 3.19 - sDA against each geometry-based metric for both the BE and YLB studies.
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Figure 3.21 — sDA against geometry-based metrics for the LN-PDL designs.
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3.2.2 Irradiation-based versus reference metrics

We now look at the correlation results for the second category of metrics, compared to the
same reference values.

Energy production

Figures 3.22, 3.23 and 3.24 show, for BE, YLB and YLB-PDL respectively, the energy production
against the threshold-based irradiation metric (left) and the annual irradiation averaged over
the collecting surface (middle) and total floor area (right). As explained in section 3.1.4, a
different threshold is applied for each system and surface, denoted as PV-F/R and ST-F/R
where F stands for facade and R for roof. The same notation is used for the average irradiation
metrics, which are computed for the corresponding surface (F/R) as opposed to the overall
envelope. For YLB, only the average irradiation metrics are shown, computed over the roof
to account only for the surfaces that contribute to the production (see eq. 3.7). Despite the
discontinuous spread of data, a correlation is found for the mean roof irradiation.

For BE and YLB-PDL, the annual irradiation per floor area is the best indicator with R? values
close to 1 for both systems installed on the roof. This is not surprising considering the calcula-
tion of the energy production (see eq. 3.4). The only difference between the compared metrics
in the right-most graph is a multiplication factor (efficiency of system) and the exclusion of
eventual shaded roof areas (nodes not achieving threshold). The floor area irradiation metric
also shows the best correlation for facade-mounted systems except in the case of PV for BE,
where we observe a higher correlation for the surface percentage and annual irradiation per
envelope area.

Energy need

The threshold-based metric does not show a clear pattern with respect to the heating need,
as seen in the left graph of Fig. 3.25 and 3.26 for the BE and YLB-PDL datasets respectively.
In fact, the overall trend for YLB-PDL is opposite to what it ought to be considering that a
higher surface percentage (x-axis) should correspond to a better performance, but is instead
associated here with a higher heating need (lower performance). However, the trend within
variants of equal surface-to-volume ratio illustrates the ‘correct’ correlation, highlighting the
adequacy and validity of the metric for evaluating existing built environments, where the
building shape cannot be changed, rather than for comparing hypothetical designs where
more freedom exists.

In Fig. 3.26, the overall relationships between heating and cooling are the same for both
averaged irradiation metrics. For instance, larger floor-area-normalized irradiation values are
associated to both higher heating and cooling needs. If this metric was to be used to select
a design, one would normally aim at maximizing its value, assuming it would decrease the
heating need. In the current context, that would lead to the opposite.
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Figure 3.22 — Energy production by (a) PV and (b) ST systems on facades and roofs against each
irradiation-based metric for BE.
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Figure 3.24 — Energy production by (a) PV and (b) ST systems on facades and roofs against each
irradiation-based metric for the YLB-PDL designs.
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Figure 3.27 — Heating need against irradiation-based metrics for the LN-PDL designs.

Stronger correlations are found for the average irradiation metrics, particularly for the floor
area normalized irradiation in the YLB-PDL study (R? =0.82), and similarly for LN-PDL (Fig.
3.27, R? = 0.87). The mean envelope irradiation graph for YLB-PDL shows a double behavior
with respect to the heating need: a negative versus positive trend for the overall versus clustered
data. More irradiation per envelope area leads to a lower heating need as one would expect,
except at constant surface-to-volume ratio, where lower exposure levels are preferred, likely
due to the effect of the window-to-floor ratio as seen previously. For LN-PDL, a general positive
curvature is observed for that metric, with clouds of points for each design series with a slight
shift between 0° and 90° cases. This shift is more important for M1 and M3, less symmetrical
than the M2 series.

The right-most graph for YLB-PDL shows more consistency, with the heating need increasing
with the annual irradiation per floor area within and across clusters. However, this trend
is opposite what one would expect, as observed for the BE case study as well. This can be
explained by the fact that more irradiation per floor area means more exposed surface area
and less compact buildings: heat losses dominate over solar gains for this climate.

Spatial daylight autonomy

Results are less clear for the sDA; Fig. 3.28 to 3.30 show dispersed data points, the latter hinting
at a positive relationship between the output and the facade irradiation per floor area, stronger
for the M2 design series of LN-PDL. The orientation difference is more noticeable than in
previous graphs, particularly for M1 and M3 due to their asymmetric layout.
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3.2. Results

3.2.3 Correlation between geometry- and irradiation-based metrics and relative
influence

In light of the trends observed for the irradiation-based metrics, it is of interest to verify the
correlation level between the two categories of metrics tested. For example, we would like to
see if the positive correlation between the heating need and the envelope irradiation per floor
area for YLB-PDL (Fig. 3.26) could be linked to the effect of a dominating geometry-based
parameter. This can be investigated through a correlation analysis, as done earlier for the
geometry-based metrics, this time on both categories together. Results are shown in Fig. 3.31
through a partial correlation matrix, where the top part corresponding to results presented
earlier (Fig. 3.17a) has been cut-off to avoid redundancy. A high R? value is found between the
irradiation per floor area and the plot ratio (negative) and surface-to-volume (positive) metrics.
For the latter, this means that less compact designs have (logically) more solar exposure levels
per floor area, yet these additional gains do not compensate the heat losses, as pointed out in
section 3.2.2.
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Figure 3.31 — Correlation matrix and Pearson coefficient between each pair of geometry- and irradiation-
based metrics evaluated over the YLB-PDL designs. PR: plot ratio, SV: surface-to-volume, PZ: passive
zone, WF: window-to-floor, Meanlrrad: mean envelope irradiation, IrradPerFA: envelope irradiation
per floor area.

A natural continuation to the above correlation studies is to simultaneously consider multiple
parameters to assess their relative influence on the performance metrics. This influence can be
quantified by applying a linear regression fit on the set of parameters, previously standardized
to eliminate the effect of units and differences in their order of magnitude. This analysis was
done for the geometry-based metrics (cat. (i)) for the larger datasets of YLB-PDL and LN-PDL.
The set of metrics were scaled (standardized) to have a mean of 0 and a standard deviation of
1 using the Matlab zscore function'®. A linear fit was applied through Matlab’s fitlm function'?,
providing the plotted coefficients including an intercept term (constant) representing the
mean of each output.

18http:/ /www.mathworks.com/help/stats/zscore.html (last accessed on March 20, 2016)
http://www.mathworks.com/help/stats/fitlm.html (last accessed on April 18, 2016)
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Results are shown in Fig. 3.32. For YLB-PDL, the fit was first done over the four metrics (Fig.
3.32a), and without the passive zone (Fig. 3.32c) to allow comparing the results with the
LN-PDL study (Fig. 3.32b) for which the passive zone was not computed.

Not only does the influence of each parameter differ between the two outputs, it also differs
from the trends we previously observed. For instance, the surface-to-volume has a negative
vs positive effect over the heating vs sDA for YLB-PDL, although a positive correlation was
found for both outputs in Fig. 3.16 and 3.20. When removing the passive zone, the effect
of the surface-to-volume is negative for both outputs. Differences are also found between
the two projects. In fact, all coefficients are opposite (bars below vs above 0) except for the
window-to-floor influence over the sDA, however showing a much lower value for LN-PDL
than YLB-PDL.

The coefficients of determination obtained through these fits are given in Fig. 3.32d. All are
very close to 1 except for the sDA of LN-PDL (0.70). By considering and merging multiple
metrics, we thus hypothesize that it is possible to ‘create’ a better performance indicator. Yet,
the construct of this indicator is very sensitive to the underlying data. We will come back to
this topic in the next chapter.

3.2.4 Conflicting performance criteria

An additional analysis of interest consists in plotting the simulation outputs (reference metrics)
against each other to demonstrate the conflicting multi-objective situation that arises. This is
done in Fig. 3.33 for the sDA versus heating need for the two largest datasets. Designs with
the highest sDA are the ones with the worst heating performance. Non-dominated solutions
defining the Pareto front are identified in red.

A point is considered a Pareto optimum if there is no other point that optimizes one criterion
without worsening the other [Papalambros and Wilde, 2000]. If we focus on the first top-
left red point in Fig. 3.33a and trace a line from this point to the next red one, the heating
need increases (performance worsens) and so does the sDA (performance improves; note the
reversed y-axis). This trade-off occurs across the Pareto front.

This visualization is in line with the opposite trends seen through the correlation graphs. The
conflicting nature of certain performance criteria, despite being hard to address, should be
captured and brought to light by a DDS tool for instance through such plots where partially
optimal designs can be identified. The choice on which criterion to prioritize should remain
in the hands of the decision-maker and be based for example on the project-specific goals
and context.
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3.3 Discussion and limitations

We here present a synthesis of the different analyzes conducted in this chapter by highlight-
ing the main observations. We discuss limitations of the tested metrics as well as of our
experimental approach.

In this study, we considered that an increase in the passive solar potential, as quantified by
any metric such as the ones tested here, should go hand in hand with energy consumption
reductions. Similarly, an increase in the active solar potential should go together with higher
production levels by PV and ST systems on roofs and facades. These correlations should
be respected for both contexts of study: when different typologies are compared, as for the
smaller datasets of BE and YLB, and when comparing variants generated from a base case
design, as in the other two projects.

From the pairwise correlation analyzes, some metrics emerge as stronger indicators of the dif-
ferent performance criteria. However, results are not consistent over all projects, for instance
in terms of strength of the relationship expressed through the R? value, e.g. for the heating need
vs window-to-floor between YLB-PDL and LN-PDL. According to our study, adopting a unique
geometry- or irradiation-based metric as a performance indicator to support decision-making
when comparing design alternatives could be misleading due to:

¢ Partial consideration of influential parameters;
* No consideration of how variants are generated;

* Use of metric can be based on ‘false’ correlation level and/or direction, caused by other
dominating parameters correlated to the metric.

Combining the information brought by multiple complementary metrics can serve to ad-
dress these issues. However, the possible interdependence between metrics can impede the
interpretation of a multi-metric analysis, as highlighted in section 3.2.3.

It is important to note that it is practically impossible to detect causal relationships or even
direct correlations. For example, although we observe a strong correlation between energy
production by PV-F and the window-to-floor ratio, this relationship is caused by a non-direct
effect linked to the parametric modeling method. To be able to more confidently evaluate the
direct impact of a metric, it would have to be directly controlled keeping other parameters
constant. Considering the nature of the metrics assessed in this chapter, this would not have
been easily possible, as their values were derived from the 3D models and not used as design
variables.

While we cannot generalize the results obtained, the fact that they differ stresses the need for
more robust and flexible performance assessment methods, that can adapt to the specificity
of the context proper to a project. Although specific design guidelines are typically sought by
practitioners, it is very difficult in practice to provide this sort of information with confidence.
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As Oke [1988] stated:

“These [vast range of possibilities and special cases] are associated with the almost
infinite combination of different climatic contexts, urban geometries, climate vari-
ables and design objectives. Obviously there is no single solution, i.e., there is no
universally optimum geometry. However, this should not stop us seeking general
guidelines as long as they are flexible enough to cater to special needs and situations.
We certainly do not want a rigid ‘solution’ whose blind application leads to further
problems.” [p.103]

We emphasize that the results presented in this chapter and the following ones should not be
interpreted as proof of a clear cause-and-effect relationship between the parameters assessed.
Our study does not aim at advocating specific designs, e.g. in terms of building typology.
The data acquired through simulation is subject to the intrinsic limitations of the software
used, especially since some tools were still in development. However, this issue is mitigated
by the comparative nature of the study, which makes relative values more important than
absolute ones. The small number of data points for BE and YLB restricts the depth of the
analysis that can be conducted on these datasets, and the conclusions that can be drawn from
it. While the YLB-PDL case study offers a much larger dataset, it must be recalled that the
variations between the variants are smaller. Results between all datasets differ significantly
due to distinct simulation settings, tools used, climate files and built context. The study could
benefit from further work regarding the simulation details (e.g. natural ventilation) and the
output metrics measures (e.g. energy for artificial lighting). Finally, the nature and amount
of geometrical parameters considered were defined by the targeted (i.e. early) design phase
and limited by the parametric modeling workflow; simple parameters were preferred and
additional influential ones such as the location and proportion of windows with respect to
each orientation were kept constant.

3.4 Towards a novel performance assessment method

The investigation presented in this chapter has brought out the difficulty in ascertaining trends
that can be translated into valid performance indicators, independent from the problem under
study. However, the preliminary work towards multiple linear regression presented in section
3.2.3 pushes us to investigate this path further. Building upon the metrics tested in this chapter
and the various analyzes conducted, we propose to inquire into the feasibility of constructing
a predictive’® mathematical function as a performance assessment engine. Our goal is to
address the main requirements highlighted throughout the previous chapters:

Information required to be limited to early-design knowledge, by imposing this restriction
to the data needed by the predictive functions;

2011 the context of this thesis, the term predictive is associated to a process that approximates the result from a
full simulation, taken here as the ground truth.
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way between simple rule-of-

thumb like and simulation-
based methods parameters into ‘becoming’ performance indicators

Using established metrics to ‘inform’ simpler

Simulation time to be minimized to allow real-time interaction, to be achieved by the predic-
tive approach intrinsically designed for that purpose;

Specificity to be mitigated by adopting a multi-criteria approach, covering relevant solar
performance aspects;

Design scale taking into consideration the interdependence of buildings, both by evaluat-
ing the performance at the meso scale and incorporating parameters capturing the
influence of the surrounding context on individual buildings.

Design decision-support in the form of heuristics such as the morphological parameters
tested in this chapter, practitioner knowledge, and many of the existing digital tools are
difficultly applicable at the more abstract early design phase and complex neighborhood
scale, where intuition, rules-of-thumb and detailed simulation lose in relevance, validity and
appropriateness. However, we do not aim at discarding such methods, but instead try to adapt
and exploit them in a way that can render them adequate for our targeted purpose. Detailed
in the next chapter, the proposed approach can be seen as an in-between, hybrid method,
exploiting the advantages of simple metrics and using more complex methods to ‘inform’ the
former into becoming performance indicators. This vision is illustrated in Fig. 3.34.
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“Essentially, all models are wrong, but some are useful.”

George Box
(mathematician, statistics professor)

This chapter describes the development process of our performance assessment engine,
representing a core part of this research!. We begin in section 4.1 by laying down the basic
theory of mathematical modeling (or metamodeling®), stemming from the statistics and
machine learning domains. A brief review of the state-of-the-art regarding the use of such
methods in the field of building performance is presented, followed by an overview of our
workflow. The process for building a reference dataset and the choice of the model to derive
from this data are detailed in sections 4.2 and 4.3. The dataset is analyzed in section 4.4 before
proceeding with the function fitting in section 4.5.

From this work emerge predictive functions for rapidly estimating the passive solar and
daylight potential from simple design parameters. The assessment of a third performance
criterion - the active solar potential - is done through an algorithm detailed in section 4.6. The
combination of these methods form the central piece of our DDS workflow, introduced in
chapter 5. We conclude in section 4.7 with the limitations and foreseen work.

4.1 Theoretical framework and overview of approach

As seen in chapter 2, most existing performance assessment methods are based on solving
equations that simulate the thermal behavior or the (day)light conditions of a building. This
intrinsically makes it difficult to fulfill the requirements, identified throughout the previous
chapters, to provide adequate early-design support. Evaluation methods based on machine
learning techniques represent a promising alternative. Foucquier et al. [2013] and Zhao and

IDr. Carlos Becker, computer scientist, contributed to sparking the main ideas behind this chapter, while also
providing support and advice in the development of the research method.
2Different terms, introduced later on, can be used to refer to a predictive mathematical function.
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Magoules [2012] conducted detailed reviews to compare different building energy assessment
approaches, including the more common physics-based (or engineering), the alternative
statistical and machine learning methods, and hybrids of the two. Table 4.1 presents a blend of
their comparative analysis, including the main advantages and shortcomings of each method.
To better understand the distinction between these approaches and their pros and cons, an
explanation of machine learning methods is of order.

As illustrated in Fig. 4.1, machine learning is a multidisciplinary field: it employs techniques
from analogous domains to build algorithms that can learn from data with minimal human
intervention [Hall et al., 2014]. Our metamodeling approach, later detailed, stems from the
specific branch of supervised machine learning, which consists of algorithms obtained by
training an equation from a set of data. Such equations, known as metamodels, surrogate
models or emulators, can then be used for prediction. The term metamodel is used in this
thesis, sometimes replaced by (predictive) function or simply model to alleviate the text, the
latter not to be confused with a 3D model (the sentence’s context should prevent any mix-up).

Metamodels are used to “replace the actual expensive computer analyses, facilitating multi-
disciplinary, multi-objective optimization and concept exploration” [Simpson et al., 2014]. As
noted in Table 4.1, they are typically not as accurate as what they are meant to replace, i.e.
thermal and daylight simulations in the present case. However, they are easier to apply in
practice and provide fast estimates of the desired output. At the early design phase, when
little is known about the design and accuracy is not a priority, such models are thus useful for
facilitating rapid design space exploration.

The general metamodeling concept is presented in Fig. 4.2. First, in the development phase, a
dataset linking a series of inputs (or predictors, x)3 and outputs (or responses, y) is acquired by
sampling the design decision space, through the available yet expensive simulation [Forrester
et al., 2008]. A choice of model form is then selected and fitted to the data. The concept of
fitting means that we attempt to learn a mapping y = f(x) that emulates the black box which is
the simulation, but that veils its physics [Forrester et al., 2008]. The dataset of samples is thus
used to construct an approximation f of the simulation. Through this supervised (machine)
learning or instance-based learning process, an approximate function is obtained that can
then be used to cheaply predict the output for a given set of new inputs (application phase).

The use of such techniques in the field of building performance is fairly recent. A non-
exhaustive list of studies employing statistical and machine learning methods is presented
in Table 4.2. The type of technique, model and design space sampling method, as well as the
context in which it is applied - base case building, inputs and outputs - are presented.

While metamodeling techniques are often used for building energy forecasting [Asadi et al.,
2014; Ekici and Aksoy, 2009; Foucquier et al., 2013; Hygh et al., 2012; Tsanas and Xifara, 2012],
machine learning methods can more generally be useful also for performance optimiza-

3Note on mathematical notation: scalars are italicized (y), vectors are italicized and bold (x), and matrices are
denoted by a bold capital letter (X).
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Figure 4.1 — Machine learning at the intersection of multiple domains. Figure adapted from Hall et al.
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Figure adapted from Couckuyt and Dhaene [2016]; The MathWorks [2014].

tion [Caldas, 2008; Evins, 2013; Evins et al., 2012; Kimpf and Robinson, 2010; Magnier and
Haghighat, 2010; Nguyen et al., 2014; Wang et al., 2005; Yi and Malkawi, 2009] and sensitivity
analyzes [Eisenhower et al., 2012; Hemsath and Alagheband Bandhosseini, 2015; Martins et al.,
2014].

A large majority of studies have focused on a unique and isolated building, employing multiple
linear regression, artificial neural networks (ANN), genetic algorithms (GA) or support vector
machines (SVM). Different sets of parameters related e.g. to the building material, orientation
and glazing area are typically used as inputs to the predictive function [Asadi et al., 2014; Ekici
and Aksoy, 2009; Hygh et al., 2012; Tsanas and Xifara, 2012].

A much smaller number of studies have looked at the macro scale, either by exploiting city-
wide data for predicting the distribution of energy consumption per building through a
probabilistic approach [Kolter and Ferreira Jr, 2011], or for predicting the end-use energy
consumption of existing districts, as done by Howard et al. [2012] for the city of New York.

For optimization purposes, the most common methods fall in the category of evolutionary
algorithms, which have been used mainly at the building scale [Caldas, 2008; Magnier and

91



Chapter 4. Metamodel development

Haghighat, 2010; Wang et al., 2005; Yi and Malkawi, 2009] and somewhat at the urban scale
[Kampf and Robinson, 2010; Martins et al., 2014].

Sensitivity analyzes, to assess the influence of certain parameters on a performance metric,
can be done prior to optimization [Martins et al., 2014] and model fitting [Eisenhower et al.,
2012] to decrease the dimension of the problem by removing parameters of low influence.

The demonstrated feasibility of applying machine learning methods at the building level for
allowing a real-time performance assessment leads us to question its potential applicability to
the meso scale. According to our knowledge, the work by Howard et al. [2012] represents one
of the closest to this question. As detailed below, our approach however distinguishes itself by
its specific scale and purpose of application, as well as by both the methods employed, e.g. for
acquiring the data, and the information exploited for - and resulting from - the prediction. As
such, this core thesis chapter details a novel contribution to the research field.

We therefore propose to investigate the feasibility of emulating thermal energy and daylight
simulations at the neighborhood scale by developing a metamodel for each of these two
performance criteria. The challenge consists in limiting the amount and, more importantly,
the level of complexity and detail of the information required by the metamodels, while
still achieving reasonable accuracy in the prediction. This shall ensure that the predictive
performance assessment engine thus developed can be applied in the context of early-phase
neighborhood design.

The main phases of our approach and their underlying steps are illustrated in Fig. 4.3 and
further detailed in the next sections. To develop the metamodels, a reference dataset rep-
resenting a sample of a delimited neighborhood design space is first acquired (section 4.2).
Our choice of model form, multiple linear regression, is motivated and detailed in section
4.3. From the dataset, an analysis is conducted in section 4.4 prior to the metamodel fitting
procedure, presented in section 4.5.

4.2 Data collection

The dataset, from which the metamodels are to be learned, should provide a good repre-
sentation of the design space that we would like to be able to assess, once the functions are
generated. In the current context of neighborhood-scale designs, this space is practically
infinite. Designs can vary in terms of building typology, layout, program, construction and
many more design parameters. It is thus necessary to define a bounded sub-space on which
to focus to ensure the completion of the proposed approach as a proof-of-concept. These
boundaries are exposed in the following sections.

The modeling and simulation approach including tools and some of the 3D designs used in
this chapter have already been introduced in chapter 3. As such, we will regularly refer the
reader to previous sections, in parallel with repeating some important phases and details.
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Figure 4.3 — Overview of metamodeling procedure including data collection and analysis, model
selection and training and testing. The main tools used at each phase are annotated: ML: Matlab,
Rhino, GH: Grasshopper, DIVA, Archsim. For a description of each program, we refer the reader to

chapter 3. References are provided in the text.

4.2.1 Base case neighborhood designs

To construct our dataset we begin from base case designs, each consisting of a replicated
building typology (or shape) according to a certain urban layout. An example variant for each
base case is illustrated in the upper left corner of Fig. 4.3. The base case designs come from
two earlier studies which were presented in chapter 3. M0 to M2 correspond to the series from
the LN-PDL collaborative study with the urban design firm (Urbaplan, Fig. 3.4), here renamed
so that what was previously M1-M2A-M2B become M0-M1-M2. M3 to M5 were inspired by
three student projects from the BE study: 2-Transition, 3-Damier and 6-Hyperdensité in Fig.

3.1 (Green Density album [Rey, 2013]).
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4.2. Data collection

These designs were selected for their diversity yet simplicity of building shape, allowing us
to cover common typologies: adjacent buildings and isolated, linear, L-shaped and closed
(courtyard) blocks. M6 was later added to cover the tower typology, with the same layout as
MO0-M2. In what follows, we will refer to each base case as case Mi, as a term inclusive of both
the building typology and the urban layout. Since these characteristics are fixed, the cases only
encompass a small portion of the theoretically unbounded space of possible neighborhood
designs. However, they do capture some of the main typologies recurrently encountered in
early-stage projects. The following examples serve to support this point.

Figures 4.4 and 4.5 illustrate example neighborhood-scale designs from urban design compe-
titions and master plan reports (Plan Directeur Localisés (PDLs)) [SDOL and Gauthier, 2012;
Urbaplan, 2015]. By examining such design alternatives we can extract the Level of Detail
(LoD) typically encountered at this early project stage, as well as the variations in terms of
design features. For instance, we note that the building typology (shape) ranges from simple
cubic volumes to courtyards, while the layout varies in terms of building replication, alignment
and spacing. The dimensions also differ in height, width, length and depth in the case of
L-shaped and courtyard buildings.

Multiple urban-scale studies have also focused on similar building typologies (using varying
terminology), often with a regular replication pattern [Cheng et al., 2006; Kanters and Wall,
2014; Kristl and Krainer, 2001; Okeil, 2010; Pereira et al., 2009; Ratti et al., 2003; Tereci et al.,
2010]. Examples are shown in Fig. 4.6 - 4.8.

In our approach, an irregular layout is preferred to the more commonly encountered regular
grid of buildings. While the latter offers a simpler, more systematic generation of designs and
analysis of results due to its repeated features, allowing more variations in the design brings
us closer to real projects [Ratti et al., 2003].

4.2.2 Parametric modeling of design variants
Design variables, constants and constraints

To increase the design space sampling, a parametric modeling workflow was developed, as
was done for the YLB-PDL and LN-PDL studies in chapter 3. Starting from the seven base
cases portraying a diversity in terms of building typology and layout, specific design variables
were varied in an iterative sequence. To define which parameters to vary versus keep constant,
the following requirements were considered:

1. The design variables should represent parameters with which designers normally play
at the early-design phase of neighborhood-scale projects,
2. have a significant impact on the solar access / energy performance of buildings,

3. be reasonably easy to vary parametrically and compute over a whole neighborhood
design.
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Chapter 4. Metamodel development

A \

N

Y
Y

Y

Hypothetical designs proposed in the PDL for an area of Lausanne (Vernand) with a mixed
program, highlighting the envisioned variations of building typology and layout for this mixed-used

district. Source of images: Urbaplan [2015].

Figure 4.4 -

distances). Source of images: SDOL and

(Malley) with a mixed program. Designs vary in terms of replicated versus mixed building typology (e.g.
L-shape, cubic shape) and layout (e.g. different alignments,

Figure 4.5 — Six example plans submitted to an urban design competition for an area of Lausanne
Gauthier [2012].
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Figure 4.6 — Digital elevation models (DEMs) of the generic urban forms studied by Ratti et al. [2003]
based on Martin and March [1972]. The shade of gray is indicative of the height (darker=higher). Top
left to bottom right: pavilions, slabs, terraces, terrace-courts, pavilion-courts and courts. Source of
image: Ratti et al. [2003].

Closed
80x60

Closed
50x50

Figure 4.7 — Four typical building block designs identified and assessed by Kanters and Wall [2014].
Adapted from the original image found in the aforementioned source, licensed under CC BY 3.0.
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Figure 4.8 - Examples of models evaluated in Cheng et al. [2006] (source of the image).
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Chapter 4. Metamodel development

Relevant design parameters which did not conform to these criteria were considered either as
fixed or as constraints to respect. Parameters related to point 1 were extracted from master plan
documents including the ones cited above [SDOL and Gauthier, 2012; Urbaplan, 2015] and
presented in chapter 3 (YLB-PDL study) [Bauart Architectes et Urbanistes SA et al., 2010], as
well as through communication with the urban design firm that provided M0-M2 (Urbaplan).

Parameters most likely to affect building performance were identified through the outcome
of our study presented in the previous chapter and by looking at multiple papers on the
subject. From the main references listed in Table 4.3, we observe that building shape and
layout - expressed by different measure such as the distance between buildings - were found
to considerably affect the performance. To account for this impact both at the individual
building scale and the neighborhood level, we judged that values quantifying the effect of the
shading between buildings should be considered in addition to morphological parameters
simultaneously capturing building and urban features.

When analyzing the highlighted parameters in the context of the third requirement above, a
decision was made to separate design variables used for generating variants from the ones used
as potential inputs to the metamodel. This distinction was necessary to ease the parametric
modeling of variants while ensuring a relevant dataset for the metamodel training. For the 3D
modeling, we needed one value per building, while in our metamodeling approach we wanted
to use aggregated neighborhood values, as opposed to having a repetition of building-specific
values. For example, if building height were to be used as an input to the metamodel, we
would require one value per building, which would restrict the number of buildings to a fixed
amount and increase the dimensionality of the inputs dataset. Instead, parameters considered
as inputs, introduced in the next section, were chosen such that one value can be extracted for
a set of buildings.

Modeling workflow

In light of the above considerations, the height, depth and width of individual buildings were
taken as variables for the 3D modeling, as well as the grid orientation. The ranges of design
variables covered are presented in Table 4.4. The definition of each variable x, y, z and a can be
seen in Fig. 4.9, with some example variants for each base case. For M0-M2, each variable’s
interval was specified by the urban design firm who provided the base designs (see also section
3.1.3). Similar values were used for M3-M5, for which only two dimensions were varied: height
and length for the linear blocks and height and depth for the L-shaped and courtyard buildings.
Values for M6 were set to generate 10- to 20-story high buildings.

Confining the design variables was necessary to bound the degrees of freedom in the paramet-
ric modeling. For this reason, the absolute position of each building was kept constant, except
for the MO case, where the number of buildings on each side and their length was randomly
defined from the ranges specified in Table 4.4. Despite this condition, the relative layout of the
buildings varies as a consequence of their dimension variations.
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Figure 4.9 - Top view of base case Rhino design (left) from which variants are generated (examples on
the righ) for each case Mi.
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With these combinations of parameters, a generated building can theoretically have a total
floor area between 96 and 21 472 m?. For comparison, Table 4.5 lists common values found
in the Commercial Reference Building Models of the National Building Stock of the U.S.
Department of Energy [Deru et al., 2011] and the SIA 2024 document Données d'utilisation des
locaux pour 'énergie et les installations du batiment [SIA, 2015]. These dimensions correspond
to small and medium to large office buildings, which is the program defined in our simulation
as detailed later in section 4.2.4.

A parametric modeling workflow was set-up using Rhino*and Grasshopper?, in the same way
as explained in section 3.1.3, and starting from the base case Rhino designs illustrated in Fig.
4.9. Windows were modeled equally on each facade, using constant distances (e.g. between
window side and building edge) and sizes (e.g. window height), producing window-to-wall
ratios ranging from 44% to 48%.

The 3D models were generated through an iterative sequence by reading the value of each
variable to be applied to each building from an Excel file previously generated. The method
for defining these values is explained below. At every iteration, i.e. for each design, a series of
automated actions took place to extract all the information necessary to populate our database
of inputs and outputs, needed for the metamodeling phase. This procedure is detailed in the
next sections.

Solution space sampling

From the ranges of design variables in Table 4.4 for each case Mj, a series of values had to be
selected for each building to generate the design variants. For M0-M2 and MBS, this selection
was done via a random sampling algorithm as explained in section 3.1.3, which included a con-
straints verification to ensure all generated variants respected the specified minimum plot ratio
and building footprint. For
M3 to M5, we followed the De-
sign of Experiment (DoE) ap-
proach and used a 3-level Box-
Behnken design® to generate
the variants. Illustrated in Fig.
4.10, the Box-Behnken design
treats the minimum, median

,,,,,,,,,,,,,,,,,,,,

and maximum value, coded as
Figure 4.10 — Sampling technique for M3-M5: 3-level Box-

) ) Behnken Design of Experiment, visually directly translatable
able as possible options. It falls to ourx, y, z design variables (Table 4.4).

under the category of response

-1, 0 and +1, of each design vari-

surface designs, whose purpose is to allow estimating the interaction and eventual quadratic

4https:/ /'www.rhino3d.com/ (last accessed on March 20, 2016)
Shttp:// www.grasshopper3d.com/ (last accessed on March 20, 2016)
Shttp:/ /www.itl.nist.gov/div898/handbook/pri/section3/pri3362.htm (last accessed on March 19, 2016)
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effects between factors, while covering the design space in a more efficient way than by vary-
ing one factor at a time (referred to as a full factorial design). In our case, two Box-Behnken
designs with a shifted range were used to increase the number of sampled points. All variants
generated were duplicated with a 90° grid rotation with respect to their initial alignment.

Both the random sampling and DoE-based approaches for acquiring data are valid experi-
mental methods found among multiple others [Simpson et al., 2014]. Although they ensure
some level of coverage of the possible solution space, this is not explicitly exploited through
our approach, since we are making a distinction between the parametric design variables
and the input parameters to be used for predicting the performance, as aforementioned.
The experimental methods for sampling the solution space apply only to the former, while
the latter are subsequently derived instead of being directly controlled. Irrespective of this
situation, some techniques exist to refine the selection of designs in order to improve the
information gain, a topic that is addressed later on.

4.2.3 Computation of predictors (inputs)

We will interchangeably use the words inputs, predictors or parameters to refer to the set of
potential inputs (x) to the predictive functions developed in upcoming sections.

The design variations prompted by the parametric modeling procedure affect multiple other
parameters at the neighborhood scale such as the street width, density, and solar exposure
levels of the buildings. To capture these changes and keeping in mind the design variable
requirements exposed earlier, an extensive amount of geometry- and irradiation-based pa-
rameters were computed at the neighborhood scale and used to populate the inputs dataset.
Table 4.6 lists the complete set, which includes most of the metrics tested in chapter 3, along
with complementary parameters identified as relevant from the literature (see Table 4.3).

The process for extracting the predictors is similar to what was presented in section 3.1.3
and 3.1.4. All geometry-based parameters were computed via a Grasshopper script. The
raw irradiation data was obtained through an annual simulation using GenCumulativeSky
in DIVA-for-Grasshopper [Jakubiec and Reinhart, 2011; Robinson and Stone, 2004]. A grid of
nodes with a resolution of 1 meter was used, and the number of ambient bounces’ was set to
2. The EnergyPlus weather data file for Geneva, Switzerland [EnergyPlus, 2014] was used.

Both the geometrical information and the irradiation simulation output were exported to
Excel using gHowl®and further processed in Matlab, where the irradiation-based parameters
were computed.

“The number of ambient bounces (-ab) corresponds to the maximum number of diffuse bounces computed by
the indirect radiation calculation. Other Radiance parameters were kept at their default values: number of ambient
divisions -ad = 1000, number of ambient super-samples -as = 20, ambient resolution -ar = 300, and ambient
accuracy -aa = 0.1 Full descriptions can be found at http://www.siggraph.org/education/materials/HyperGraph/
raytrace/radiance/man_html/rpict.1.html (last accessed on April 8, 2016).

8http://www.grasshopper3d.com/group/ghowl (last accessed on March 20, 2016)
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4.2. Data collection

Table 4.6 — List of geometry- and irradiation-based parameters representing potential performance
predictors (inputs to the metamodels). Envelope includes all exposed facades and roof. TFA: total floor
area; TEEA: total exposed envelope area

Abbreviation

Description

Geometry-based

-]

PlotRatio

SiteCoverage

FormFactor
RoofRatio
NorthFacRatio
EastFacRatio
SouthFacRatio
WestFacRatio
WWRatio

WEFRatio

MeanHeight

Density indicator: ratio between TFA and constructible land area

Density indicator: ratio between footprint area and constructible
land area

Compactness indicator: ratio between TFA and TEEA
Total roof area divided by total exposed envelope area
Total exposed north-facing facade area divided by TEEA
Total exposed east-facing facade area divided by TEEA
Total exposed south-facing facade area divided by TEEA
Total exposed west-facing facade area divided by TEEA

Glazing ratio indicator of level of opening: ratio between total win-
dow area and total exposed facade area

Glazing ratio indicator of level of opening: ratio between total win-
dow area and TFA

Average building height [meters]

Irradiation-based

[kWh/m? ]

surface area or floor area

MeanEnvelopelrrad
MeanRooflrrad
MeanFaclrrad
MeanNorthFaclrrad
MeanEastFaclrrad
MeanSouthFaclrrad
MeanWestFaclrrad
EnvelopelrradPerFA

RoofIrradPerFA
FaclrradPerFA
NorthFaclrradPerFA
EastFaclrradPerFA
SouthFaclrradPerFA
WestFaclrradPerFA

Average irradiation on all exposed envelope surfaces
Average irradiation on all exposed roofs

Average irradiation on all exposed facades

Average irradiation on north-facing facades

Average irradiation on east-facing facades

Average irradiation on south-facing facades

Average irradiation on west-facing facades

Total irradiation on all exposed envelope surfaces divided by total
floor area

Total irradiation on all exposed roofs divided by total floor area
Total irradiation on exposed facades divided by total floor area
Total irradiation on north-facing facades divided by total floor area
Total irradiation on east-facing facades divided by total floor area
Total irradiation on south-facing facades divided by total floor area
Total irradiation on west-facing facades divided by total floor area
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4.2.4 Simulation of responses (outputs)

The outputs, or values to be predicted by the metamodels, correspond to the reference metrics
measured in chapter 3 falling under the passive solar performance criteria. However, from
now on, we use the term passive solar potential as referring only to the energy need for heating
and cooling, while the daylight potential is considered as a separate criterion. Using the
EnergyPlus weather file for Geneva, these metrics are obtained through full climate-based
simulations as detailed below. The algorithm for quantifying the third performance criterion
considered, the active solar potential, is described in section 4.6.

Passive solar potential: energy need

As seen in chapter 1, the energy consumption distribution in buildings is dominated by the
heating need in a climate like Switzerland’s. To reduce this need and achieve the targets
established by various regulations and labels, it is essential to prioritize passive measures
related to the built form, in addition to complying with the imposed values regarding for
instance the thermal envelope (e.g. U-value). The energy need for both heating and cooling is
an indicator of how far we are from comfortable thermal conditions. Although the cooling
need is sometimes absent if no systems are (allowed to be) installed, in highly insulated and
glazed modern buildings, maintaining a comfortable indoor temperature in summer is often
an important issue. As such, the cooling need quantifies the energy that would be needed to
achieve these comfortable conditions. When settings related to internal gains and systems are
maintained constant, one of the main influences® on the heating and cooling needs comes
from solar heat gains and shading from the sun caused by surrounding buildings.

To obtain the floor-area-normalized energy need, the initial EnergyPlus input files (.idf) were
generated via the Grasshopper plug-in Archsim!°. They were then processed in Matlab before
executing the simulation to obtain the annual energy need based on an ideal loads air system,
as explained in section 3.1.4. Each building floor, of 3 meter high, was modeled as a thermal
zone. The simulation results were summed over all zones and buildings and normalized by
the total floor area for each design variant. In the following sections, we simply use the term
energy to refer to this metric. Additional energy simulation settings are listed in Table 4.7,
along with comparison values extracted from various standards.

It is to note that simulation batches were run in collaboration with a colleague!! for different
simulation settings, including three levels of U-values (low, medium, high). Since investigating
interactions with such detailed parameters is out of the scope of this work, we have limited
our study to a unique set of simulation settings. The moderate U-value case was retained, so
as to ensure some level of variation in the energy need to facilitate the metamodel fitting. This

9Natural ventilation is also an important passive measure, which requires CFD simulations and falls outside the
scope of this thesis.
O0http://archsim.com/ (last accessed on March 20, 2016)
Hparag Rastogi, doctoral assistant at LIPID, contributed in defining the simulation settings and managing the
computational resources for executing the simulation tasks.
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topic is further discussed in section 4.7.3 and chapter 7, where we also show that low U-values
attenuate the differences in the heating need across the design variants, diluting the effect of
their diversity of features captured through urban morphological parameters. The U-values
corresponding to the dataset used in this chapter are higher than the target from the SIA, yet
closer to what can currently be encountered in other studies (e.g. 1.15 W/m?K for walls in
[LSE Cities and EIFER, 2014]) and contexts (e.g. climate- and construction period-referenced
databases [Deru et al., 2011]). Moreover, considering that a larger amount of material with
an associated higher cost and embodied energy are required for achieving low U-values, it
is of interest to see the performance level that can be reached only through morphological
changes. In any case and as mentioned in chapter 3, we emphasize that the purpose of the
study is not to derive concrete design guidelines, which are dependent upon the simulation
assumptions as further demonstrated in section 7.2.

An office function and associated occupancy schedule was defined. There was no specific
motivation behind that choice except that it was considered a better match to the relatively
high window-to-wall ratio, closer to an office than a residential building.

Future work, addressed in section 4.7 and chapter 7, includes looking at the additional data
acquired. Along the same lines, work was initiated to define fully residential neighborhoods as
well as mixed-used scenarios (including both office and residential units). Regardless of the
source and underlying assumptions of the dataset, the main steps in the workflow described
in the next section are applicable.

Daylight potential: spatial Daylight Autonomy

The artificial lighting demand also weights heavily in the energy consumption, particularly in
administrative buildings as seen in chapter 1. This need can be partly substituted through day-
lighting whose potential is here quantified by the sDA as defined in section 3.1.4. This metric
was computed from illuminance data obtained through a DIVA-for-Grasshopper simulation,
with the settings shown in Table 4.8. The occupancy schedule was defined to cover most
daylight hours as opposed to representing a clear building function (e.g. office). This allows
comparing between design variants without assuming any fixed function. To reduce com-
putational time, simulation is done at the ground floor level only, representing a worst-case
scenario with respect to upper building levels. No blinds were simulated due to limitations in
the tool. Both the terms daylight and sDA are used to refer to this metric in this chapter.
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Table 4.7 — Settings for the energy need simulations with reference values for comparison. *[SIA, 2015],
**[SIA, 2009b], ***[Deru et al., 2011].

Parameter Setting Comparison values
Building function Office (values below for offices as well)
Heating/cooling 20/26°C 21/26°C*;
set point 20°C ambient temperature **
Loads
Equipment 12 W/m? 7-10 W/m? *
Lighting 3 W/m? (300 lux set point)  12.5-15.9 W/m?
(500 lux set point) *
Occupancy 0.05 people/m? idem **/***; 0,07-0.1 *
8.75 h/week-day 7.2 h/week-day *
Ventilation 0.0125 m®/s person 0.01 m3/s person *
Infiltration 0.1 ach 0.15-0.3 ach (target-existing) *;
0.62 ach ***
Conductivity
Wall U=13W/m?K 0.2 W/m?K limit **;
0.8 W/m?K (existing) *
Roof U =1.84 W/m?K 0.2 W/m?K limit **;
0.8 W/m?K (existing) *
Floor U=1.25W/m?K 0.2 W/m?K limit **;
0.8 W/m?K (existing) *
Windows U =1.5W/m?K 1.3 W/m?K limit **;

(double low e argon)

= 44-48% glazing ratio

1.5 W/m?K (existing)*
50% for west-oriented facades*

Solar protections

Venetian blinds

Activated when Incident irradiation = 180 W/m?

Table 4.8 — Settings for the daylight simulation.
Parameter Setting
Windows double-argon
Occupancy 8am - 10pm
[Mluminance target 300 lux
Sensor grid resolution 2m
Sensor grid height above ground floor 0.8m
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4.3 Selection of metamodel form

The reference dataset of inputs and outputs is thus populated following the above-mentioned
steps of modeling and simulation. A model function must be selected to guide the following
steps of data analysis and metamodel development. While options from which to choose
from are theoretically infinite, many of them would not perform well when applied to new,
unseen data [Forrester et al., 2008], i.e. to predict the performance of a new neighborhood
design. Our approach follows Occam’s Razor: ‘all things being equal, the simplest solution
tends to be the best one”. That is, minimizing the complexity of a model tends to improve its
generalization to unseen data [Forrester et al., 2008]. As such, a multiple linear regression
model form is selected as a starting point. In section 4.5, trials are made with different settings
e.g. to investigate the effect of including interaction terms.

As seen in Table 4.1, multiple linear regression assumes a linear relation between inputs and
the output and is relatively easy to use and interpret. It takes the form of the following equation
[Hastie et al., 2009]:

p
y=fx)+e=Po+ ) Pixi+e 4.1)
i=1
where f(x) is the predictive function we want to define to estimate the real output y, which
is in our case the simulated reference values. ¢ is the prediction error. f is a constant (or
intercept) term and f; the coefficient for input parameter x;.

It is important to note that there are potential issues associated to the use of multiple linear

regression. Some of the main ones, placed in the context of our study, are':

 Strong dependency of the input coefficients and contribution to error reduction on
the presence/absence of other parameters present in the model function. Linked to
the possibility of having multi-collinearity among the inputs. If some parameters are
strongly correlated, it is no longer possible to interpret outcomes during the metamodel-
ing process. Considering our starting set of potential inputs, this is particularly relevant
and further addressed in section 4.5.5.

 Extrapolation beyond the scope of the metamodel, occurring when the function is ap-
plied on new data whose input values are out of the range ‘seen’ by the metamodel. In
such unknown regions, the prediction may be far from the expected output. This issue
is investigated in chapter 6.

* Over-fitting: the § parameters are fitted too closely to the sample data, and capture more
than the underlying relationships among the inputs and outputs [Forrester et al., 2008].
This extra information represents artifacts that we would like to avoid being included in
the model, which we hope to be able to apply with confidence on new neighborhood
designs for predicting their performance. We return on this risk of over-fitting in the
next sections.

12https://onlinecourses.science.psu.edu/stat501/node/343 (last accessed on April 2, 2016).
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4.4 Data analysis

Before proceeding with fitting the metamodel, the data must be examined for potential
anomalies/outliers. An analysis is also conducted to identify any correlation between inputs
and outputs, as well as among inputs. These checks respectively help identify the relevant and
redundant parameters prior to fitting the metamodel. The significance of this information is
further addressed in section 4.5.

It is to note that although both the energy and daylight simulations were automated from
within the same modeling and simulation workflow via Grasshopper, the total number of
design variants for which outputs were collected differs between the two performance metrics.
Due to the simulation set-up, available computational resources, as well as the removal of
some data due to errors detected, the energy dataset contains only a fraction of the designs
present in the daylight dataset. In total, 624 variants (or data points) are included in the energy
dataset, against 2060 in the daylight dataset. M2 is altogether absent in the former, due to
errors detected in the simulated geometry. However, considering that this case falls between
M1 and M6 in terms of morphology, layout and dimension ranges, its loss is considered as
minor. In the following, we distinguish between the two datasets both in the text and figures.

4.4.1 Distributions

Figures 4.11 and 4.12 show the distribution of each input for the energy and daylight datasets
respectively, distinguishing between the seven case series. The histograms produced by
merging all cases can be seen in appendix A.1.

As the geometry- and irradiation-based parameters were not directly controlled when generat-
ing the design variants, as explained earlier, non-uniform distributions like the ones observed
for most inputs were to be expected. However, the ranges spanned are good representations
of what can be found in real, constructed neighborhoods. Table 4.9 gives some comparison
values from various sources for some of the geometry-based parameters.

Although higher frequencies are observed for the daylight dataset due to its larger size, the
range spanned by each parameter and the shape of the histograms are similar to the ones
observed for the energy dataset. When looking at individual case series, we observe clusters,
for instance for the PlotRatio parameter where the tower typology of M6 pushes this series
towards higher values, creating a gap around a plot ratio of 5. The higher values are above
what is commonly found based on Table 4.9. In the current context of deriving a predictive
function from a dataset, we are more concerned with covering a wide range than closely
sticking to commonly encountered values. Our narrow WWRatio is caused by the window
modeling method as previously explained. The latter parameter was explicitly kept close to a
constant to reduce the number of variables and ease the parametric modeling. Transforming
this parameter into a variable should be addressed in future work, as discussed in section 4.7.
The WFRatiois instead used to capture the diversity in glazing ratio.
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Figure 4.11 — Parameters distribution for each case series (Mi) for the energy [kWh/ mI%A] dataset.
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Figure 4.12 — Parameters distribution for each case series (Mi) for the daylight [%] dataset.
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Table 4.9 — Comparison values for some geometry-based parameters. Sources: (1) [LSE Cities and
EIFER, 2014], (2) [Zhang et al., 2012a], (3) [Knowles, 2003], (4) [SIA, 2015], (5) [Steemers, 2003], (6)
[Laétitia et al., 2011].

Parameter Range/Value Context Source
PlotRatio 1.7-3.3 regular urban block
1-5 compact urban block W
0.2-1.7 slab/terraced/detached housing
1 minimum recommended
12753 range for studied zones in the cities of Amster- (2)
dam, Barcelona and Paris
SiteCoverage  30-50% regular urban block
30-65% compact urban block (1)
5-35% slab/terraced/detached housing
120-75% range for studied zones in the cities of Amster- (2)
dam, Barcelona and Paris
FormFactor 1.7 regular urban block
1-3.3 compact urban block M
0.7-2.2 slab/terraced/detached housing
1.7 minimum recommended
103-53 range for city of LosAngeles ~ (3)
WWRatio 50% west-oriented facades of office buildings 4)
40% modeling assumption in comparative study (1)
25-38% range of optimal ratios (min. energy consump- (5)
tion) according to height for London case study
WFRatio 17% French policy for optimal daylight and comfort  (6)

The histograms of the simulated responses are shown in Fig. 4.13 and 4.14 for each case series
as well as for the whole dataset. The majority of cases in the energy dataset fall near the 40
and 50 kWh/m? regions. For comparison, we have plotted the range of heating energy for
existing small to large office buildings (hatched rectangle) [SIA, 2015], as well as the histogram
of the SIA heating limits (Qp, jim), corresponding to new administrative (office) buildings and
computed based on the formula and default values given in SIA [2009b]:

Qnlim = Qnlimo + AQp lim X At/ Ag 4.2)

where Qj, limo and AQy, 1im are limit values depending on the type of building (here 65 MJ/ m?
and 85 MJ/m?), Ay, is the surface of the thermal envelope and Ag the energy reference area
(total floor area in our case). The limit is computed for each case by inserting its (inverted) form
factor, one of the parameters already computed, in the formula and applying a conversion
factor of 0.278 kWh/M]J to obtain kWh/m?.

The distribution associated to the limit values falls below our simulated energy needs, which
is to be expected since the latter contain the cooling need in addition to the heating need.
Moreover, as mentioned in section 4.2.4, our simulation settings do not exactly match the SIA
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assumptions. Nevertheless, this comparisons serves to demonstrate that our range covers a
domain of realistic values and that it may be possible to fall below the SIA limit despite the
unfavorable thermal envelope.

The sDA distributions shown in Fig. 4.14 vary between case series from narrow - e.g. M1, M6 -
to wider - e.g. M4, M5 - ranges. In the graph holding all cases, dashed lines have been added
for reference: the nominally accepted daylight sufficiency of 55% and the preferred daylight
sufficiency of 75%, as recommended by IESNA [2012]. It must be remembered however that
the official method for computing the sDA has not been exactly applied, as explained in section
3.1.4. Moreover, the values obtained are only for the ground floor level and are thus likely to
be more conservative. For our purpose of learning a metamodel, it is of interest to have a wide
span over the possible performance values, which correspond to [0, 100] in the case of the
sDA. This is achieved through the combined M cases.

4.4.2 Correlations

It is important to look at the possible correlations, both between pairs of input parameters
as well as between each input and output. This analysis can provide support in tuning and
interpreting results in the metamodeling process detailed in the next section. The correlation
level is here quantified using Pearson’s linear correlation coefficient obtained via the corr
Matlab function'3.

Figure 4.15 shows a matrix view of the correlation level between each pair of inputs in the
two datasets. White, gray and black squares respectively represent a perfect positive (+1), the
absence of (0), and a perfect negative (-1) correlation. It is to note that, as observed in chapter
3, these correlation results stem from the parametric modeling, i.e. the way variants were
generated and the fact that they were duplicated with a 90° rotation. As such, we observe
some correlation among the North-East-South-West parameters and between the plot ratio,
roof ratio and mean height. The presence of both white and dark zones highlights the need to
take care of collinearity between the inputs when interpreting results from the model fitting.
This is addressed in section 4.5.5.

To avoid redundancy there is thus a need to reduce the dimensionality of the inputs sets. Yet,
we don’t want to ignore parameters strongly linked to the output we are trying to predict. This
link is shown in Fig. 4.16 and 4.17 for each dataset, with distinction between the different case
series. The pairwise linear correlation coefficient, computed over all cases taken together, is
displayed for combinations for which it was found to exceed (+)0.70. This is the case for the
FormFactor, EnvelopelrradPerFA and FaclrradPerFA in the daylight dataset, and for the same
three parameters with the addition of the RoofIrradPerFA in the energy dataset. The same
graphs plotted without distinction between the cases can be found in appendix A.1.

B3http://www.mathworks.com/help/stats/corr.html (last accessed on April 2, 2016)
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We see that the relationship differs between the seven cases. For example, M6 distinguishes
itself from the other cases, showing a more clustered and localized group of points, with
an often flatter slope such as for the PlotRatio and MeanHeight parameters. Despite these
differences, in the following section we attempt to train the metamodels on all M-cases taken
together, without any variable accounting explicitly for their difference in typology/layout.
The advantages and drawbacks of this approach are discussed in section 4.7.

When selecting the list of ‘final’ inputs, that will effectively become the predictors in the energy
and daylight functions, both types of correlations - i.e. between inputs and among inputs and
outputs - are taken into account. We want to avoid redundant parameters while retaining
influential ones. This is further addressed in the next section. The quasi-constant WWRatio,
although it has until now been included in the figures, is removed from both datasets for the
upcoming metamodeling training and testing phases.

It is important to highlight that the observed trends are strongly conditioned by the simulation
assumptions, e.g. the U-values and building function in the case of the energy dataset. The
results of the current correlation analysis are therefore not to be taken as design guidelines. In
chapter 7, we demonstrate that, given different simulation settings, the observed trends differ
to some extent.
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Figure 4.15 — Matrix of pairwise linear correlation coefficient between each combination of input
parameters in the two datasets. From black (-1) to gray (0) to white (+1): negative to none to positive

correlation.
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4.5 Metamodel training and testing

4.5.1 Overview of fitting procedure

This section details the procedure for fitting the metamodels to the energy and daylight
datasets. This procedure is illustrated in an abstract way in Fig. 4.18. In the following subsec-

tions, we expose the content of the dark boxes, each consisting of a distinct iterative fitting

process that allows us to progress in identifying, with some level of confidence, an adequate

model form (e.g. linear, quadratic) and subset of inputs to be used when fitting the final

predictive model.

A [x) [y]
Stepwise

G

v [

| Identify main coefficients }

Selected
predictors

Final predictive
model

Figure 4.18 — Flowchart of the
procedure for defining the pre-
dictors to use in the final pre-
dictive model fitting. Each
block (top to bottom) is respec-
tively detailed in sections 4.5.3
and 4.5.4.
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As mentioned in section 4.3, a multiple linear regression
model form is selected as a starting point. In steps A and B
(section 4.5.3), a stepwise selection algorithm is used, first
to compare model variations to see the effect of allowing
interaction and quadratic terms, and secondly, to reduce
the dimensionality of the inputs. Instead of randomly or
manually searching for the best subset of the 25 possible
predictors (listed in Table 4.6), we undertake a gradual elim-
ination process using the information gathered through
the distribution and correlation analysis of 4.4, combined
with results from the stepwise selection. In phases C and
D (section 4.5.4), a different algorithm, ridge regression, is
used. The set of inputs is further reduced and fed to the
final predictive function fitting algorithm. The final func-
tions represent the metamodels to be implemented and
subsequently used for predicting the performance of new,
unseen neighborhood designs. This application phase is
addressed in chapters 5 and 6.

Since each phase of the flowchart informs its successor, in
the next sections we expose both the theory behind each
algorithm and method as well as their respective results.

4.5.2 Particularities of deterministic simulations
and consequences on metamodeling

Results from each fitting phase are analyzed using the statis-
tical metrics listed in Table 4.10, indicators of the goodness-
of-fit, i.e. how well the fitted model performs as a predictor
of the response y. It is important at this point to highlight
the precautions that must be taken when applying statis-
tical techniques in our context, due to the deterministic
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nature of the simulations we are attempting to emulate. Indeed, the thermal simulation in
EnergyPlus is deterministic, meaning that re-running the simulation for an identical set of
inputs will give the exact same output. In the case of daylight simulations, Radiance uses a
hybrid deterministic-stochastic'* (Monte Carlo) approach. However, the difference in the
outputs for two simulation runs of the same design is small and gets reduced even more when
computing the sDA over the whole neighborhood design.

The particularity of deterministic simulations with respect to stochastic experiments is that
the concept of random error does not apply [Simpson et al., 2014]. That means that the
error term ¢ in equation 4.3 only represents the approximation error and does not include
a random component. The consequence is that many statistical measures, which rely on
an assumed presence of a random error, loose their meaning. According to Simpson et al.
[2014], the only values that can be used to verify the performance of a metamodel used to
replace a deterministic computer experiment are the Coefficient of Determination (R?), which
indicates the level of correlation between two sets of data, and its adjusted version, which
takes into account the number of parameters. These should be combined with residuals
plots to identify trends and outliers, where a residual is simply the difference between a
simulated (reference) and predicted value. Moreover, validation using additional data points
is indispensable. Maximum and mean absolute error and Root Mean Square Error (RMSE)
can then be used to assess the metamodel’s accuracy [Simpson et al., 2014]. We have retained
the RMSE and added the Percentage Error (PercErr) as listed in Table 4.10. While the former
quantifies the overall difference between the simulated and fitted values in the units of the
response, the PercErr provides a relative reference to the order of magnitude of the output
values. In some cases we will directly take the difference instead of the absolute value of the
nominator in the PercErr equation, to preserve the sign which is an indicator of over (-) and
under (+) prediction.

4.5.3 Model selection and inputs reduction - Stepwise linear regression

In phases A and B, a stepwise selection algorithm is employed, first to compare different levels
of model complexity, and second to search for the inputs with the most statistical significance
in explaining the output. We use the stepwiselm Matlab function '°, whose algorithm proceeds
by adding and removing terms in an iterative fitting process, comparing the explanatory power
of each combination. There are two mechanisms possible for searching for the best model:
forward-stepwise selection, which starts with an intercept term and adds the predictors that
most improve the fit, and backward-stepwise selection, which begins with the full model and
removes inputs that have the least impact on the fit [Hastie et al., 2009].

The Matlab function uses both techniques to determine the best fit, judged using the adjusted
R? as the performance criterion. Running the code results in a Matlab linear model object

4http:/ /radsite.lbl.gov/radiance/framew.html (last accessed on April 20, 2016)
5http:/ /www.mathworks.com/help/stats/stepwiselm.html (last accessed on April 6, 2016)

123



Chapter 4. Metamodel development

Table 4.10 — Goodness-of-fit and error statistics used to compare and analyze results across the different
fitting phases of Fig. 4.18. N: number of data points; P: number of input terms; y: simulated (reference)
value; j: predicted (fitted) value; u: mean.

Name (acronym) [units] Equation Aim

Coefficient of Determination (R?) [-] RP=1-%F -1

Adjusted Coefficient of Determination (R?) [-] Ridj =1- (%) % -1

Residuals [units of y] A=yi—Ji -0
N ~\2

Root Mean Square Error (RMSE) [units of yI  paisE = Yisi (vi-3) -0

Percentage Error (PercErr) [%] (+ when with- Zﬁ\i 1 lyi = yil 0

out the |absolute|) PercErr = 100 x Tyl -

Where

Sum of Squared Error (SSE) [units of y] SSE = Z;lzl (yi — j/i)z

Total Sum of Squares (SST) [units of y] SST=YN, |yi- 'u|2

with multiple properties, including the model’s formula and its characteristics (e.g. number of
inputs, coefficients), and error and fit measures (e.g. RMSE, R?).

A - Model form

We first use the stepwise approach to

compare different model forms (Fig. @ 10,

4.19), distinct in terms of their com- ;Ifl‘(‘ilfcﬂoel é?nvfs ’%%
plexity. The largest allowed model type, ¥

specified by the ‘upper’ argument in the ’ Stepwiselm (A settings) ‘
stepwiselm function, is iteratively set M

to: ‘constant’, ‘linear’, ‘interactions’ and

‘quadratic’. Each setting representsa cer- | { Select model form} rrrrrrrrrrrrrrrrrrrrrrrr
tain model complexity level, described

in Table 4.11. An example of the Mat- Figure 4.19 - Flowchart of the procedure for selected

the model form using the Matlab stepwiselm func-
tion with different settings. ‘Fit stats’ corresponds
to the metrics described in Table 4.10.

lab output associated to each model type
can be found in appendix A.2.

It is to note that the stepwise method is

locally rather than globally optimal; the final model built may differ according to the terms
in the initial model and the order in which inputs are added and removed. To address this
potential variability, the columns and rows of X (and by association the rows of y) are shuffled
in a sequence of 10 iterations, in addition to varying the model settings as described above.

Results for both metrics are shown in Fig. 4.20. Figure 4.20a illustrates the histogram of the
residuals, which are the differences between the simulated and the fitted (predicted) responses,
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Table 4.11 — Model forms tested using the stepwiselm function with different settings. y: simulated
(reference) value; By: constant term (bias, intercept); §;; coefficient of input x;; €: error term.

Constant: containing only a constant y=fp+¢
term (intercept, no predictor
terms)
Linear: containing an interceptand y = fo+ B1x1+ Poxo + ...+ €

linear terms

Interactions: containing an intercept, lin- y= o+ f1x1+...+Bpx1X2+ ...+ €
ear terms, and products of
pairs of distinct inputs

<. . . . _ 2
Quadratic: containing an intercept y=fo+pf1x1+...+PuX1X2+ ...t PmX]+...FE
and linear, interactions and
squared terms

associated to one of the 10 iterations for each model form tested. The shape of the distribution
can allow discovering outliers - i.e. instances further from the symmetric, Gaussian-like shape
- and systematic over or under estimations - i.e. shift of the peak towards negative or positive
values. In our case, the shape of the histograms were found to be the same across the 10
iterations, meaning that there was no effect of shuffling the data. This is the reason why only
one example is here displayed.

The constant model type is, not surprisingly, the worst with a wide spread in the residuals
going up to a 20 kWh/m? and 25% error respectively for the energy and daylight metric. This
range is greatly reduced for the other three models, with the linear type showing a more
dispersed histogram than the interactions and quadratic models.

The predictive performance of each model is also reflected in Fig. 4.20b, showing the Coef-
ficient of Determination (R?) and Root Mean Square Error (RMSE) corresponding to each
type, averaged over the 10 iterations. Although values for the linear (L), interactions (I) and
quadratic (Q) forms are similar, their structure is significantly different. That is, their level of
complexity expressed through the number of terms present in each equation varies consider-
ably, as seen in Fig. 4.20c. The linear form contains on average 20 terms, while this number
jumps to nearly (resp. above) 100 terms for the quadratic energy (resp. daylight) model. An
example output for each model type can be seen in appendix A.2.

In light of the above results and analyzes, the linear model form is selected to pursue the fitting
process for both metrics. The small loss in prediction performance compared to the I and
Q options is counterbalanced by the simpler equation form. An important reason for this
choice comes from the risk of over-fitting, which increases with the number of terms. This
intermediate result leads us on to the next phase.
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Figure 4.20 — Results from the stepwise selection for each type of model for the energy (left) and daylight
(right) metric. C: constant, L: linear, I: interactions, Q: quadratic.
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B - Main coefficients

With the model form set to a regression
with linear terms only, we now use a sim-
ilar iterative stepwise approach to iden-
tify the inputs that appear the most over
50 iterations (Fig. 4.21). At each run,
the initial dataset is randomly split into
a training and testing subset. A model
is fitted on the training data and applied
on the test data. The resulting predic-
tions are compared to the responses in
the test set. The iteration-specific inputs
selected by the algorithm are analyzed
along with the associated fit statistics.

The number of times each input ap-
peared in a fitted model over the 50 it-

Select model form

Train Test

‘ Stepwiselm

Inputs

- Frequency of occurrence
- Values

‘ Identify main coefficients ‘

Figure 4.21 — Flowchart of the iterative process for
identifying influential inputs using stepwiselm on
different training data subsets.

erations for the energy dataset is plotted in Fig. 4.22a. The value of each input’s coefficient at
each iteration is shown in Fig. 4.22b. The same two graphs for the daylight dataset are shown

in Fig. 4.23.

In the coefficients’ value graph, plots showing a straight line at the zero on the y-axis indicate

that the corresponding input is not significant in explaining the response since its coefficient is

always null. Inputs with a few non-zero values are linked to the random split at these instances

and are thus not predominant. Conversely, we can be more confident that inputs consistently

showing a non-null value, e.g. PlotRatio, FormFactor, are significant. Less clear are the inputs

that appear about half the time such as the RoofIrradPerFA in the energy models. The number

of inputs that appear in all 50 iterations is of 10 and 12 for the energy and daylight respectively.

Using the frequency of appearance information acquired in this phase, we proceed to the next

step to further test the impact of including or not certain inputs.
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Figure 4.22 — Occurrence and coefficient value for each input over 50 iterations of the energy model.
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Figure 4.23 — Occurrence and coefficient value for each input over 50 iterations of the daylight model.
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4.5.4 Fitting the predictive functions - Ridge regression

In the next two phases C and D, we conduct additional tests this time using a different algo-
rithm: ridge regression [Hastie et al., 2009], which we apply using the Matlab ridge function'®.
Ridge regression is a shrinkage method; it enforces a penalty on the coefficients to mitigate
the consequences of potential multicollinearity between inputs. This is particularly relevant
to our problem since some of the inputs are likely to be correlated, as highlighted in the data
analysis phase of section 4.4.2. In such cases, a large positive coefficient on one input can be
canceled out by an equally large negative coefficient on a correlated input [Hastie et al., 2009].
This issue is linked to the risk of over-fitting to our dataset, which decreases the generalization
potential of the metamodel.

Considering our model equation:

P
y=f®)+e=y+e=Po+) Pixi+e 4.3)
i=1
where x € R? contains the P input values, y is a reference (simulated) value, y the model
output (prediction), § the unknown coefficients and ¢ the experiment error. To estimate the
model coefficients, we minimize:

N
Y (F®) —yi)* + MBI (4.4)
i=1

where N is the number of training samples and A the regularization parameter which penalizes
large coefficient values. The f minimizing equation 4.4 can be obtained as:

B=x"x+1) "Xy (4.5)

where X € RV*P_ Starting with 1000 values of A between 0 and 1'7, we use a technique called
k-fold cross-validation to find the best A [Hastie et al., 2009]. We split the data in k(=10)
sets, take k-1 sets for training, then test the fitted model on the remaining set. The best A
corresponds to the value yielding a minimum RMSE averaged over the k-fold iterations. We
then fit a model over the entire training set using Aps;, within a two-fold cross-validation to
estimate the prediction error over the test set [Hastie et al., 2009]. The ridge function internally
scales the inputs to have a mean of 0 and a Standard Deviation (std) of 1. The computed
coefficients are then restored to match the scale of the original inputs.

16http:/ /www.mathworks.com/help/stats/ridge-regression.html (last accessed on February 23, 2016)
17 Tests were conducted, starting from a larger range, to define these boundary values.
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C - Final predictors

Using the information about the main in- .

puts identified in the previous phase, we | Identify main coefficients |
proceed with another iterative fitting se-
quence to further assess the fit obtained
with different input subsets. As illus-

trated in Fig. 4.24, the X matrix is re- <
a-test y[ESI
cursively reduced to the inputs that ap-

: _ k-fold cross validation
peared in a = 25, 50, 75 and 100% of the with Ridge to find ...
50 iterations in the previous phase (see i
p p ( ‘Ridge with )\'bcsl}—/ Mle predict ‘

Fig. 4.22a and 4.23a). For example, the a

=100% case for the energy metric corre- /Tl g @

sponds to fitting the model using the 10 Coefficient values

7
lnputs ShOWlng a full bar ln Flg. 4.228.. TO Co[npa]’a[ive ana]ysis }47
the four a values is thus associated a P

number of inputs. A ‘manual’ selection

Selected
predictors

is also added, for which a smaller subset

of inputs are retained, corresponding to ) ) .
Figure 4.24 — Flowchart of the iterative process for

testing different input combinations using the Mat-
ence the fit based on manual iterations. lab ridge function and leading to the final predic-

Starting from the a = 100% case, values tors’ selection.
corresponding to each input present were removed and the training/testing algorithm was
repeated. By comparing the fit and error metrics obtained at each trial, a reduced set of main

the ones that were found to most influ-

contributors was identified.

In addition to the variations in the number of inputs, the sequence of Fig. 4.24 is first executed
using all designs (d=100%) and then repeated using only half (d=50%). This test is done to see
the effect of fitting using a smaller amount of reference data points.

To clarify both reductions, let us consider our matrix:

X111 X122 X113 ... Xip

X21  Xz2  X23 ... X2p
X_ =

XN1 XN2 XN3 XNP

where x;; is the value of input parameter j = 1,..., P (e.g. plot ratio) for design i = 1,..., N (e.g.
variant 20 in M1 series). Reducing the number of designs consists in randomly cutting rows of
X, while removing some inputs means eliminating specific columns.

The train-test process described earlier is again executed, this time using the ridge function
detailed above. For comparative purposes, the same random split is applied at each of the
four a runs.
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Results are shown in Fig. 4.25 and 4.26 for the energy and daylight metrics respectively. For
each a, the predicted versus simulated values over the 25 fitting runs are plotted along with
the corresponding residuals histogram, for both the full series (d=100%) and half (d=50%) of
the designs. Fit and residuals statistics are displayed as well as the number of terms associated
to each a value.

For the energy metric, results are very similar across « = 25 to 75% and between the full and
half datasets. For a = 100%, the prediction accuracy slightly decreases as indicated by the
lower R? and wider spread in the residuals. From the scatter plots, we observe that values
located at the extremities (e.g. energy need > 55 kWh/ ml%A) are over-predicted. This situation
is exacerbated in the bottom graphs showing the results for the manual reduction, which has
the highest standard deviation of the residuals.

For the daylight metric, results are similar across all graphs, with a slight decrease in the
prediction accuracy for the manual selection case (bottom graphs), as seen from the residuals’
histograms. In all cases, we observe in the scatter plots both over- and under-predictions
around simulated values of 75 to 85%.

For both metrics, we should as further work take a closer look at the extremes to identify
potential outliers and eventually acquire new data points in those regions to improve the
results.

The effect of reducing the dataset to half its original size - comparing d=100% to d=50% - is
small. While the number of terms corresponding to each « is slightly different and the number
of data points present in the plots is lower (due to the smaller X), the fit and error statistics
are only slightly worse. Considering the similarity between the different runs, we choose to
retain the @ = 100% and the manual reduction, both for d = 50%, for proceeding with the
next phase. Although the RMSE is higher for those settings, this choice is made to mitigate
the risk of over-fitting to our reference dataset. It may seem contradictory to hypothesize
that the risk of over-fitting can be reduced by removing some data. However, we believe that
the high similarity between some design variants may cause the model to fit too closely to
these specific characteristics, decreasing its accuracy when applied to distinct designs. Indeed,
considering for example case M3 which has the most number of variants (see Fig. 4.13 and
4.14), it is possible that two or more of these variants have identical buildings in terms of
dimensions, but with an inverted (or mirrored) layout, due to the sampling technique detailed
in section 4.2.2. This would mean that all geometry-based parameters are equal between the
two designs, with variations (possibly small) only in their irradiation-based parameters and
outputs. As such, we are ready to sacrifice in accuracy based on the current results, in the
hope of a better future generalization potential of the metamodel when applied to unseen
designs. This test, essential to further probe the metamodels, is conducted in chapter 6.
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Figure 4.25 — Predicted versus simulated energy need values (left) with associated residuals histogram
(right) over all 25 iterations for each a (different subset of inputs included in each model), when
training-testing using (a) the entire and (b) half of the dataset. The constant (intercept) is not counted
in the displayed number of terms. Predicted, simulated and residual values are expressed in kWh/ mf: A
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Figure 4.26 — Predicted versus simulated spatial daylight autonomy values (left) with associated residu-
als histogram (right) over all 25 iterations for each a (different subset of inputs included in each model),
when training-testing using (a) the entire and (b) half of the dataset. The constant (intercept) is not
counted in the displayed number of terms. Predicted, simulated and residual values are expressed in %.
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D - Final energy and daylight metamodels
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Figure 4.27 — Flowchart of the final metamodel

selected cases of a = 100% and the manual fitti . . .
tting procedure using ridge regression.

reduction, both with d = 50%. They are listed

in Table 4.12, along with their level of correlation with each output metric. Values range
from a low (+)0.25 to a high of (-)0.91. The fact that some inputs are included despite their
low correlation to the output may be caused by an interaction with another input present.
Although the chosen model form does not allow explicit interaction terms (see Table 4.11),
the inclusion of specific parameters in the model is a process that depends upon the other
available input parameters. For instance, the MeanRoofIrrad in the daylight model may not be
useful in predicting the output when considered on its own: j = ¢y + 1 x1. However, its effect
may be enhanced when accompanied by other inputs even though interactions terms (e.g.
B12x1x72) are notincluded: j = Bo + B1x1 + Box2 + ... + BrXn.

The predictive functions obtained are described in Table 4.13. f(x) corresponds to what we will
refer to as the ‘full’ metamodel version (a = 100%), while f;,4(x) contains the reduced subset of
inputs defined through the manual procedure previously explained. The reason for having two
metamodel versions for each output metric comes from our hypothesis that simpler models
may generalize better to new designs distinct from the ones used to construct the reference
dataset. This hypothesis will be tested in section 6.2.2.

Table 4.12 — Correlation level between the output metric and each input selected for fitting the corre-
sponding full and reduced (bold) final predictive models.

Energy metric Daylight metric
Input Correlation Input Correlation
PlotRatio -0.62 PlotRatio -0.67
FormPFactor -0.91 SiteCoverage -0.59
RoofRatio 0.58 FormFactor -0.78
MeanEnvelopelrrad 0.69 WEFRatio 0.62
MeanFaclrrad 0.64 MeanHeight -0.68
MeanNorthFaclrrad 0.57 MeanRooflrrad 0.25
MeanSouthFaclrrad 0.58 MeanFaclrrad 0.36
MeanWestFaclrrad 0.63 MeanNorthFaclrrad 0.66
NorthFaclrradPerFA 0.43 EnvelopelrradPerFA 0.85
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Table 4.13 — Full and reduced final fitted equations to be used for predicting the performance of new
designs.

Energy metamodel [kWh/ m%A]

fx) = 105.30-0.45- PlotRatio— 25.16 - FormFactor+ 87.65 - RoofRatio
—0.13 - MeanEnvelopelrrad+ 0.12 - MeanFaclrrad
+0.021 - MeanNorthFaclrrad — 0.028 - MeanSouthFaclrrad
—0.021 - MeanWestFaclrrad+ 0.011 - NorthFaclrradPerFA

frea(®x) = 72.76+0.19- PlotRatio—22.75- FormFactor+ 0.0024 - MeanEnvelopelrrad
Daylight metamodel [%]
fx) = 105.24 +10.49 - PlotRatio— 137.00 - SiteCoverage— 16.43 - FormFactor

+28.66 - WFRatio— 1.23 - MeanHeight— 0.031 - MeanRoofIrrad
+0.076 - MeanFaclrrad+ 0.013 - MeanNorthFaclrrad

+0.011 - EnvelopelrradPerFA

74.44 +16.41 - PlotRatio— 179.89 - SiteCoverage + 58.47 - WERatio
—2.55- MeanHeight+ 0.083 - MeanFaclrrad

fred (x)

4.5.5 Interpretation

At first view, it may seem like the metamodeling approach could allow investigating the
relationship between the inputs and outputs. For instance, it is possible to apply the same
fitting algorithm on a standardized version of the dataset to obtain the relative influence of
each input present. Standardizing consists in scaling each series of input values, equivalent to
each column of X, so that they are centered with a mean of 0 and a std of 1. Using the Matlab
function zscore'®, this transformation is done to remove the effect of different units between
the inputs and hence allow comparing their coefficient.

Figures 4.28 and 4.29 show the importance of each input respectively in the energy and daylight
metamodel (full final version). In the bar plots of Fig. 4.28a and 4.29a, the position above
versus below zero indicates the direction of the effect on the output. These coefficients are also
found in the slope of each line in the Partial Dependence Plots (PDPs) of Fig. 4.28b and 4.29b,
where the corresponding input histogram is also plotted to help interpretation by showing the
range spanned by the data. A Partial Dependence Plot (PDP) describes the contribution of a
predictor to the metamodel [Hastie et al., 2009]. It shows by how much, in average, the output
varies in function of a unique input, when averaging the other parameters. For linear models
like ours, a PDP also portrays a linear relation.

These results are intrinsic to the metamodels structure (f(x) in Table 4.13). That is, the infor-
mation they portray is an artifact of the fitting process rather than a reflection of the trends
observed in the raw data in section 4.4.2. Let us consider for example the MeanEnvelopelrrad
parameter in the energy metamodel. A negative effect is seen in Fig. 4.28b, where higher

18http:/ /www.mathworks.com/help/stats/zscore.html (last accessed on April 4, 2016)
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values are linked to a lower energy need. Yet, a positive correlation was previously observed in
Table 4.12 and Fig. A.2a.

Other such inversions can be found, e.g. for the PlotRatio in the daylight metamodel. In-
terpreting the coefficients for instance for design-guidance is not a valid application of the
metamodeling results. When the metamodels are fitted, there is no guarantee that the actual
correlations are respected, as the algorithm only finds what works best for predicting the
desired value, without accounting for the underlying relationships. What we observe from
the above steps is that the structure of a metamodel is strongly dependent on the data from
which it learns. Coefficients obtained for the set of included inputs are affected if one or more
parameters are dismissed. This statement is further reinforced by the graphs presented in
appendix A.3, showing the estimated main effect of each input for different fitting settings, i.e.
different subsets of inputs based on the a values in section 4.5.

In the context of this thesis, the metamodels are used for predicting the performance, to
some level of accuracy which is further quantified in chapter 6. The functions can be seen
as in constant evolution, a structure that feeds itself off the data it is given. Based on our
experimental methods for the data acquisition, processing, and model fitting, it is not possible
to extrapolate the application of the metamodels to investigate the relative importance of the
parameters.

137



Chapter 4. Metamodel development

@ 10
>
Q.
£
=
$)
[0}
[&]
C
)
=
=
£
)
=
©
0]
X 45 ! ! ! ! ! ! ! ! !
o $ o O O O O O v~
Qj’\\ {b(}o Q—'S’\\ \4\@ \«@ (}é’b (}é’b \\{o @g
& > ¢ & & & &S
< <« N & & & & & N
<& NS = P <§ &
L ) N > X
@ & 2 @ S
A\ A\ S ) I
(a) Normalized coefficients
80 200 80 120 80 120
100 100
60 150 60 60
80 80
40 100 40 60 40 60
40 40
20 50 20 HH H HH o 2 H HH "
0 H!‘\ el 0 o1 HH HHH HH [ne 0 0 o H HHHH m
= 0 5 10 0.5 1 1.5 2 0 0.2 0.4 0.6
“‘E“- PlotRatio FormFactor RoofRatio
£ 80 100 80 150 80 150 §
< c
=, o
g 60 60 60 5
= 100 100 8
> (]
° 40 50 40 40 G
2 >
2 50 50 2
o 20 20 20 )
5 H [t 1] H :
o oLl M n ), Mmiflin o LIl Ao |, ¢
g 400 600 800 200 300 400 500 600 700 100 200 300 400
z MeanEnvelopelrrad MeanFaclrrad MeanNorthFaclrrad
80 80 100 80 - 100
60 60 80 e |
\ 60 -
40 100 40 40 50
40
i (1M S HHH H > ° WH
o il il o oLl N o lhesine I |,
400 600 800 200 300 400 500 600 700 0 50 100
MeanSouthFaclrrad MeanWestFaclrrad NorthFaclrradPerFA

(b) Partial dependence plot (dark line) overlaid on corresponding input histogram (light gray)

Figure 4.28 — Relative importance and effect of each input according to the energy f(x) metamodel
structure.
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(b) Partial dependence plot (dark line) overlaid on corresponding input histogram (light gray)

Figure 4.29 — Relative importance and effect of each input according to the daylight f(x) metamodel
structure.
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4.5.6 Additional metamodel version

A third metamodel version is shown in Table 4.14, f,im (x), corresponding to preliminary
functions fitted earlier in the course of this doctoral research, in view of the workshops
described in chapter 5. These metamodels are the ones that were implemented in the DDS
workflow also introduced in the next chapter. They were obtained from a slightly different
dataset. Specifically, the total number of cases in the energy and daylight datasets were of 508
and 2263, respectively lower and higher than the current 624 and 2060 data points as noted
in Fig. 4.13 and 4.14. In the initial energy dataset, the M0 case was absent, while the daylight
dataset contained erroneous cases that were later identified and removed from the initial
version. Moreover, the fitting procedure followed to derive these preliminary metamodels did
not include all the steps presented in this chapter (e.g. the initial comparison of settings in the
stepwise function in section 4.5.3).

In section 6.2, we bring back all metamodel versions when testing them on a new set of
neighborhood designs, acquired through workshops conducted with professionals, as detailed
in section 5.2.

Table 4.14 - Preliminary version of the predictive functions.

Energy metamodels [kWh/ m% Al

Jpretim(x) = 78.83 —0.667 - PlotRatio—2.73 - SiteCoverage— 8.15 - FormFactor
+39.68 - RoofRatio— 0.043 - MeanEnvelopelrrad
—0.073 - MeanNorthFaclrrad— 0.025 - MeanEastFaclrrad
+0.014 - FaclrradperFA + 0.169 - NorthFaclrradperFA
+0.115- EastFaclrradperFA

Daylight metamodels [%]

Jprelim(x) = 47.67 +4.78 - PlotRatio —97.98 - SiteCoverage— 10.31 - FormFactor
+69.21 - RoofRatio + 63.60 - WFRatio— 0.008 - MeanEnvelopelrrad
—0.027- MeanRoofIrrad+0.021- MeanFaclrrad+0.013- MeanEastFaclrrad
+0.017 - MeanSouthFaclrrad+ 0.009 - MeanWestFaclrrad
+0.049 - FaclrradperFA
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4.5.7 Further investigation
Training and testing by case series

Until now, we have treated the dataset as a whole without distinguishing between the different
case series of which it is composed. In the above steps, whenever a random split of the data was
present, it was applied without controlling for the M-cases falling in the training and testing
sets. It is of interest to verify what happens when we specifically use one or more case(s) for
training and the remaining ones for testing. This sort of investigation can provide information
on which type of design(s) contributes most to the metamodeling process. Specific cases may
yield features that capture more explanatory information with respect to the output we are
trying to predict.

Figure 4.30 shows the R2, RMSE and Percentage Error (PercErr) statistics obtained when
applying the stepwise algorithm on a unique case Mi (x-axis) and testing on each other case
Mj (y-axis). As expected, the combinations where i = j lead to good results, since the training
and testing datasets are the same. For combinations where Mi and Mj are further apart in
terms of building typology such as M0-M6, the prediction error is higher. In that example
case, the PercErr jumps to nearly 300%. However, for the opposite order where M6 is used for
training and the resultant model is tested on MO, results are better (e.g. PercErr < 20%).

Based on our results, we observe that the energy model trained on M1 performs generally
better across all other variants. For the daylight metric, the M4 and M6 models have the
lowest prediction errors. This information could be exploited in future work to sample the
solution space more efficiently, by adding designs characterized by features contributing most
to improving the fit.

Although a higher prediction accuracy could be achieved by fitting a series of case-specific
metamodels, their application range would be limited to similar typologies. We therefore
consider a combined treatment, as done in the previous section, preferable to a separation by
case series.
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Figure 4.30 — Fit and error metrics for each combination of data subsets, where a model trained on case
Mi (x-axis) is tested on case Mj (color-coded bar).
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Gaussian Processes

The choice of multiple linear regression applied in the previous sections conditions the
function f(x) to be linear. A different supervised machine learning technique called Gaussian
Processes (GP) regression detaches itself from the need to assume a fixed model form. GPs are
probabilistic regression methods that can easily model non linear functions [Rasmussen and
Williams, 2006].

To use a GP for prediction we must first define a prior distribution over functions, which is
done by choosing an appropriate kernel (or covariance) function. This kernel function defines
a ‘family’ of possible shapes or forms of the regression function we are trying to estimate. A
popular and widely-used non-linear kernel function is the Radial Basis Function (RBF), also
known as the squared exponential covariance function [Ebden, 2008; Rasmussen and Williams,
2006]:

1
cov (f (), f(x))) = k(x;,xj) = a?exp (_ﬁ E7 —xj|2) (4.6)

where x; and x; are a pair of inputs and ¢ and [ parameters through which the level of
smoothness of the function can be controlled.

Through a collaboration with Prof. Peter Moonen!’

, work was initiated to investigate the
application of this method to our context. A technique further detailed in [Moonen and
Allegrini, 2015] and based on the above kernel function was applied, leading to a metamodel
employing the five inputs listed in Table 4.15, which were identified as most improving the
fit for each model. The correlation coefficients, found through the analysis of section 4.4.2,
have been included in the table in the same way as done in Table 4.12. Only two parameters,
appearing in bold, are also found in the linear regression models presented earlier (see Table
4.13). This points again to the impossibility of drawing conclusions on the direct effect of
specific inputs on the performance metrics just by judging from their presence/absence in the
metamodels. Values such as the mean irradiation received on roof surfaces is not expected to
affect the daylight conditions inside a building, yet this parameter is present in both the GP

and linear models for that metric.

Results from the training-testing process of each metamodel containing the five respective
inputs are shown in Fig. 4.31. The prediction accuracy achieved for both metrics is very similar
to the results from our approach, previously shown in Fig. 4.25 and 4.26. However, the GP
metamodels only contain about half the minimum number of terms we have considered
(@=100% case).

In section 6.2.2 we present the prediction results obtained by applying the GP metamodels on
anew test set, to further assess the potential of this powerful yet more complex technique.

19Collaboration leading up to a joint publication (in preparation) is ongoing with Prof. Peter Moonen from the
Université de Pau et des Pays de ’Adour. All results presented here reflect his contribution.
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Table 4.15 — Predictors found in the GP models along with their correlation level to the output metric.
Bold terms denote predictors also contained in the final metamodels presented in section 4.5.4 (Table
4.13).

Energy metric Daylight metric
Input Correlation Input Correlation
FormFactor -0.91 SiteCoverage -0.59
NorthFacRatio -0.29 EastFacRatio -0.15
WEFRatio 0.66 WestFacRatio -0.15
MeanWestFaclrrad 0.63 MeanRoofIrrad 0.25
EnvelopelrradPerFA 0.90 RoofTrradPerFA 0.65
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Figure 4.31 — Performance of the metamodels obtained by GP regression. For each metric: predicted
versus simulated values (left) and residuals histogram (right). Each model contains the five input terms
listed in Table 4.15.
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4.6. Complementary algorithm: active solar criterion

4.6 Complementary algorithm: active solar criterion

The third performance criterion we want to include in our DDS workflow relates to the active
solar potential of a neighborhood. Since we already have access to irradiation data, required
to compute the irradiation-based predictors in the above metamodels, the exploitation of this
information suffices to estimate the energy production by PV panels and ST collectors. Instead
of a metamodel, an algorithm is therefore used, corresponding to a slightly modified version
of the one presented in section 3.1.4.

Assuming an office function of all buildings and a DHW coverage of 50% over the year, equation
3.5 becomes simply:

DHW = 0.5 x FA x Qhw5 = 3.47 x FA 4.7)

where FA is the total floor area and Qhwb5 the annual demand per floor area for commercial
buildings (25 MJ/m? converted to kWh/m?) [SIA, 2009b].

The remaining steps are the same, except that we take the annual instead of the winter
irradiation value I,,, i in equations 3.6. This is done to avoid the need for a second irradiation
simulation with a different period of time in DIVA, in view of the desired real-time calculation
as explained in the next chapter.

In future work, this algorithm could be refined to include facades, by removing or lowering
the irradiation threshold that is currently set to 1000 kWh/m?, and discarding glazed surfaces.
Different assumptions, editable by the user, could be used for the each system’s efficiency and
relative coverage ratio, according to the building function and project-specific priorities.

4.7 Summary - Achievements, limitations and future work

This chapter has described the process of developing a novel multi-criteria method for rapidly
predicting the solar performance of a neighborhood design in its early phase. The method
combines predictive functions to estimate the energy need for heating and cooling and the
spatial Daylight Autonomy, along with an algorithm for computing the potential energy
production from active solar systems.

Trained on a series of design alternatives incorporating morphological variations, the meta-
models perform well although they do not explicitly include parameters linked to the building
typology (or shape). This is an advantage considering that there is no need to identify and
categorize the typology when applying the metamodels. Their validity boundaries over neigh-
borhood designs incorporating a mix of shapes is further assessed in chapter 6.
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4.7.1 Reduction of computational cost

Inputs to the predictive functions consist of a mix of parameters capturing the essential
features of a 3D model in terms of geometry and solar exposure levels. The computational
cost of applying the metamodels is dictated by the irradiation simulation needed to obtain
the irradiation-based predictors. Table 4.16 lists the time required to run a full simulation
versus the metamodel for each metric. Depending on the size and complexity of the design,
e.g. number of buildings, an energy and daylight simulation can respectively take up to
(approximately) 10 and 180 times longer than applying the metamodel. In addition to time
savings, our approach requires a simpler 3D model, i.e. empty boxes as opposed to the facade
and internal (e.g. zoning) required for an energy and daylight simulations.

Table 4.16 — Comparison of computational cost of evaluating the performance through a simulation
versus the metamodel. These times were recorded for simulations run on an Intel i7-4820K (4 cores)
3.70GHz computer with 16 GB of RAM. Ranges correspond to the min-max value measured across the
seven M cases that were simulated to generate the dataset. Daylight simulation on ground floor level
only.

Evaluation Time per design variant
Energy simulation with EnergyPlus ~1 to 5 minutes

Energy metamodel ~ seconds, max 1 minute
Daylight simulation with DIVA ~30 minutes to over 1.5 hour
Daylight metamodel ~ seconds, max 1 minute

4.7.2 Solution space sampling

Although an effort was made to obtain a large amount of data through the parametric modeling
and different sampling techniques (DoE and random), we may have missed some important
zones in terms of design features. This has an impact on the defined list of potential pre-
dictors as well as on the landscape of output values recorded, which may both be lacking
some information. Complementary or alternative predictors could tested in the future. The
possibility of adopting an experimental design providing more control over the covered ranges
of the input values should be investigated. Along the same lines, an infill strategy could be
used to identify at which point additional simulations should be done to improve the dataset.
The acquisition of so called infill or update points would allow improving the accuracy of the
predictive function [Forrester et al., 2008].

Moreover, basing the data collection process on a thorough examination of contemporary
urban developments would allow achieving a wider and more realistic coverage of the hypo-
thetical design space in terms of building typology and layout.
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4.7.3 Effect of simulation settings

As promised in section 3.2.1, we here come back to the question of the energy simulation
settings. Considering that the metamodels are to be applied for quickly comparing design
alternatives, what we want to investigate is whether or not these variants are ranked in the
same order, according to their energy performance, when different simulation settings are
applied in EnergyPlus.

Figure 4.32 shows the simulated heating need values for the same subset of designs, corre-
sponding to the current MO series, previously termed M1 in chapter 3 (LN-PDL study). For
each orientation, the data corresponding to the LN-PDL study has been sorted from the lowest
to highest value. The same order was applied on the current data. Looking at orientation 0°
(light gray), we see that the heating need is lower for the current dataset and that the overall
trend is slightly different. This means that the ranking in terms of heating need is not exactly
the same between the two datasets. This difference is more important for the 90° orientation,
corresponding to an East-West street alignment and hence dominant North- and South-facing
building facades (see Fig. 4.9a). The two dark gray lines representing this orientation are closer
in terms of order of magnitude, but show divergent rankings among designs. Not only do the
distinct simulation settings have an effect on each design’s heating need, but this effect is
not the same across variants. Moreover, for larger North- and South-facing facade ratios, this
difference in the effect is amplified.

50 T
LN-PDL 0°
—_ Current 0°
o 45 || —*LN-PDL 90" 4
~"*=Current 90°

Simulated heating need [kWh/m

25 1 1 1 1 1
0 10 20 30 40 50 60

Design variants

Figure 4.32 — Comparison of simulated floor-area-normalized heating need [kWh/ mf:A] between the
current dataset and the LN-PDL results presented in chapter 3 for the adjacent M0 design series, in
both orientations.
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Chapter 4. Metamodel development

To increase the scope of applicability of the metamodels, additional data should be analyzed
and exploited, obtained through simulations with different underlying assumptions related to
the climate and building function, materials, occupancy, etc. This has been initiated through
preliminary work [Nault et al., 2015c].

Multiple versions of the metamodels should then be defined, generating a library of functions
from which the adequate version could be retrieved based on the context. Another option
would be to include predictors to account for the added variables linked to the climate,
function, etc., assuming a robust metamodel could be derived. This topic is further discussed
in chapter 7, where an additional analysis is presented to compare two datasets with different
U-value settings.

4.7.4 Error sources

As for any computational experiments, results presented throughout the chapter are subject to
deterministic experimental errors of both human nature - e.g. bugs in the Grasshopper scripts
and Matlab code - and systematic type that can cause consistent under- or over-estimation of
the measured values [Forrester et al., 2008].

Fitting results are conditioned by the choice of a linear regression and by the reference dataset.
In future work, it would be of interest to investigate other types of models (e.g. non-linear) and
techniques, such as the one presented in section 4.5.7 - Gaussian Processes - and ensemble
methods, e.g. random forests based on decision trees, which were shown to be promising for
predicting housing electricity energy consumption [Tso and Yau, 2007].

Further thoughts on the possible limitations and improvement and application prospects
of the metamodels are presented in chapters 7 and 8. In the next chapter, we describe how
the performance assessment engine consisting of the energy and daylight metamodels and
the active solar potential algorithm are integrated into a DDS workflow to be tested among
practitioners.
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“We cannot solve our problems with the same thinking we used when we created them.”

Albert Einstein
(physicist)

The performance assessment method developed in the previous chapter offers the means to
quickly and simply estimate the multi-criteria performance of a set of buildings. To further
inquire into its accuracy as well as its usefulness and adequacy in the context of early neigh-
borhood design, the assessment engine is integrated into a design decision-support (DDS)
workflow. Described in this chapter, the workflow adopts a generative approach with the aim
of providing user-guidance for exploring a space of design solutions from the perspective of
their performance.

The implementation of the workflow as a computer-based prototype is detailed, as well as the
approach adopted to test the prototype among practitioners through workshops!. Results of
these workshops are presented in the next chapter.

5.1 Implementation as a design decision-support workflow

5.1.1 Related work and objectives

As mentioned in chapter 2, specific features built around a performance assessment engine
can enhance the design-support aspect of a tool. We here briefly survey related work before
presenting our implementation approach in the next section.

In the field of architectural design of structural elements with a focus on early-phase design,
Mueller and Ochsendorf [2013] developed structureFIT?, an interactive web-based tool for
exploring a solution space of planar trusses, linking geometrical variables to structural per-

1Some elements of this chapter have been presented in Nault et al. [2016a,b].
2http://digitalstructures.mit.edu/page/tools#structurefit (last accessed on April 5, 2016)
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formance. A surrogate model is used to compute the performance, while an evolutionary
algorithm allows exploring the solution space and identifying optimal designs.

Focusing on room-level wind flows, Malkawi et al. [2005] developed an ‘evolution model’ using
genetic algorithms (GA) and computational fluid dynamics (CFD). Conceived to minimize the
deviation from a specified mean velocity inside a room, the optimization algorithm is used to
make the design evolve by playing with relevant variables (e.g. position and length of supply
duct).

Closer to our field are the Parametric Urban Design components developed by Schneider
et al. [2011] for automating the generation of a street network, and the Animated Building
Performance Simulation of Lagios et al. [2010] allowing the solar performance evaluation
of multiple building-scale design variants. Both make use of the Grasshopper®graphical
algorithm editor, linked to the Rhino*3D modeler.

Ritter et al. [2015] recently developed a design space exploration assistance method (DSEAM)
that relies on a metamodel for predicting the energy use for heating and cooling and the maxi-
mum correspond loads for a building. From user-defined inputs consisting in a initial building
design along with ranges for parameters such as the glazing ratio and envelope properties,
the system automatically generates the design space and corresponding metamodel. Once
this phase is completed, results are displayed in the form of graphs showing the impact of the
different parameters on the outputs.

The approach we propose embraces the same vision of a semi-automated and interactive
process for populating a solution space of design alternatives, supporting a visual comparison
of their performance.

5.1.2 Implementation process and structure of workflow

The workflow is composed of the performance assessment engine, consisting of the passive
solar and daylight metamodels and the active solar algorithm developed in chapter 4, com-
plemented by additional elements as illustrated in the flowchart of Fig. 5.1. These elements,
further detailed in the following sections, concern the acquisition of inputs from the user,
the automatic generation of design alternatives (or variants), and the outputs visualization.
It is important to note that we here use the term inputs to refer to both the data entered by
users and the data passed to the performance assessment engine, i.e. the predictors x in the
functions f(x) as described in chapter 4. In the same way, the term outputs represents the
performance values as well as the different formats in which these are presented to the user.
The exact meaning of the words should be clear from the context.

Shttp:/ /www.grasshopper3d.com/ (last accessed on March 20, 2016)
4https:/ /www.rhino3d.com/ (last accessed on March 20, 2016)

150



5.1. Implementation as a design decision-support workflow

The structure of the workflow was conceived based on the outcome of our review presented in
chapter 2, including the identified requirements that helped us configure the interface, the
interaction with the user, and the multi-design-variants approach. This latter aspect was also
inspired by the parametric modeling procedure developed for gathering data in section 4.2.
Factors of technical nature linked to the implementation, which was done in collaboration
with a student assistant® who provided coding support, also played a major role in shaping
the workflow.

To transform this workflow into a CA(A)D-integrated digital prototype easily understood
and directly usable by the concerned decision-makers (i.e. architects, urban designers), the
implementation relied on the 3D modeler Rhino. Other existing tools, referred to in Fig.
5.1, were exploited and linked as illustrated in Fig. 5.2. Grasshopper became the central
background program in which all elements of the workflow are linked. However, since this
program quickly leads to complex graphical scripts (see Fig. 3.7) and is limited in terms of GUI,
it was decided to transform parts of the workflow into a ‘hidden’ code and generate a custom
interface to facilitate communication with the user. As such, the core of the prototype was
coded in C# [Microsoft, 2013] and packaged as a Grasshopper plug-in for Rhino. This plug-in
consists of three custom Grasshopper components illustrated in Fig. 5.3. The custom interface
conceived for gathering user-inputs, shown in Fig. 5.4, is opened by double-clicking on the
Parameters’ component. The performance assessment engine is coded into the Evaluation
component. Additional Grasshopper plug-ins are also used in the implementation: DIVA-
for-Grasshopper [Jakubiec and Reinhart, 2011] for running the irradiation simulation and
LunchBox® for exporting design variants as Rhino .3dm models and the performance data as
an Excel file. The diagram in Fig. B.1 of appendix B.1 illustrates the internal functioning of the
prototype and links between its constituents.

The DDS prototype thus produced was named Urban SOLar Visual Explorer (UrbanSOLve).
The prototype is installed like any other Grasshopper plug-in, i.e. by placing it (a .gha file) in
Grasshopper’s Components folder. In its current status, the prototype requires some manual
settings (e.g. components linking) in Grasshopper before it can be used. This is further
explained in section 5.2.3. For now, we will assume these settings have been done to pursue
below with detailing the workflow of Fig. 5.1. A screenshot-based demonstration of the
workflow can also be found in appendix B.2.

It is to note that the text contained in most images referred to in this section - placed either
herein or in the appendix - is in French, since the prototype was developed in view of the
workshops presented in section 5.2 and in which local architects and urban designers (all
French-speaking) participated. An effort is made in the description of the images and workflow
to clarify/translate the important terms.

5The contribution of Mélanie Huck, architect and computer scientist, has been crucial in transforming the
workflow into a usable prototype.
6https:/ /provingground.io/tools/lunchbox/ (last accessed on April 22, 2016)
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Figure 5.1 - Implementation flowchart. The developed performance assessment engine (dashed boxes),
detailed in chapter 4, is integrated with additional components to complete the workflow. Tools used,
indicated by their logo, are presented in Fig. 5.2.
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User-inputs

The acquisition of user-inputs is made both through the custom interface developed (Fig.
5.4) and the Rhino window. First, users must draw the parcel of land on which they want to
design, and on a distinct Rhino layer, the existing context i.e. surrounding buildings as simple
volumes (optional). The name of each layer must be entered in the corresponding boxes in
the UrbanSOLve interface (Calques).

The next step consists in defining an abstracted neighborhood base design by positioning
building-specific reference points on the empty parcel. To do so, users must, for each building:
(i) select the desired typology among the three options given in the UrbanSOLve interface:
simple volume, courtyard or L—shaped7, and (ii) position a reference point (either corner or
center)® on the empty parcel.

Once all points have been positioned, users must adjust the remaining parameters in the
UrbanSOLve interface, which define the acceptable range (min/max) of values for each vari-
able and constraint. Variables consist in the dimension X, Y and Z (in number of stories) of
the buildings, as well as the depth (D) in the case of the courtyard and L-shaped typologies.
These apply to all buildings as opposed to each individual one, in order to simplify the sub-
sequent process detailed in the next section. Constraints to respect are linked to the density,
expressed through the plot ratio (I1US: indice d’utilisation du sol) and site coverage (TOS: taux
d’occupation du sol), and the minimum distance between buildings. Other items appearing
in the UrbanSOLve window, currently grayed-out and fixed to a certain value, could become
additional variables or constraints (e.g. glazing ratio and story height). These currently corre-
spond to the assumptions made in chapter 4, when modeling and simulating our dataset from
which the metamodels were derived.

The user-inputs phase is illustrated in Fig. 5.5: each numbered item is a schematic version
of the selected typology and positioned building. To produce this visualization of the base
design, fixed dimensions (independent from the data entered) are assigned to each item. In
this example, items 0 to 3 have been positioned using the corner alignment as the reference
point, while the center alignment was used for item 4. This distinction influences the way
variants are generated in the subsequent phase of the workflow, i.e. how buildings ‘grow’
within the variables ranges. This is further explained in the following sections.

"This typological constraint comes from both the metamodeling approach, where we also limited ourselves to
similar simple building shapes, and technical implementation limitations. However, users can mix these typologies,
something which is not found in the reference dataset. This topic is further addressed in the next chapter.

8 Additional settings can be chosen when positioning a point: the orientation (in the case of L-shaped buildings),
and the alignment and rotation. The effect of these settings is illustrated in Fig. B.2 in appendix B.1.
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Figure 5.5 — User-inputs are acquired through the custom interface (left) and the Rhino window (right,
example user-defined configuration).

Generation and evaluation of design variants

Once all input-parameters have been provided and adjusted, users are ready to launch the
simulation (Lancer la simulation), effectively the solution space population process. During
this phase, which is hidden from the user, the prototype iteratively generates a design vari-
ant (or alternative) by randomly selecting a value for each variable and building from the
user-defined ranges. It then verifies if the variant produced respects the density constraints.
Additional checks are made to avoid any non-realistic situations such as buildings overlapping
or extending beyond the defined parcel. This search process continues until 20 valid solutions
have been found, populating to some extent the hypothetical design solution space defined
by the user. Currently, this number of 20 design variants to be ‘found’, grayed-out in the
UrbanSOLve window, is fixed due to technical implementation aspects linked to the use of
DIVA. As one DIVA irradiation simulation component is required per design variant - leading
to a repeated Grasshopper script illustrated in Fig. B.3 of appendix B.1 - it was necessary to
freeze the number of variants. A value of 20 was arbitrarily defined, by considering also the
simulation execution time. If users were given the option of changing the number of variants,
amore direct communication pathway with the irradiation simulation would be necessary,
to bypass the need for using DIVA. During the implementation, one solution considered was
to directly use Radiance, an option that was then discarded due to time limitations in the
development process and complications linked to creating the grid of nodes (a DIVA feature).
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For each variant, the geometry- and irradiation-based parameters required as inputs to the
metamodels (chapter 4) are computed, the latter following the irradiation simulation. These
inputs (x) are passed to the performance assessment engine that computes an estimate,
through our predictive mathematical functions, of the energy need for heating and cooling
(indicator of the passive solar potential) and sDA (indicator of the daylight potential). The
third criterion (active solar potential) is computed using our irradiation-based algorithm also
previously described.

This generation and evaluation phase occurs over a minimum time of about two minutes,
conditioned by the irradiation simulations®. It can extend over slightly longer periods (> 5
minutes) when the user-inputs reflect strict boundaries within which it is harder to find valid
designs (e.g. narrow density range).

Outputs and visualization

Results from the generation and assessment of the design variants are shown in various
formats that are produced in part by the UrbanSOLVe plug-in (in particular the Solutions
component) and through some Grasshopper script. A .3dm Rhino model of each design is
automatically created and saved in a folder. An Excel file containing the performance outputs
of all variants is also exported to the same folder. In the Rhino window, the initial schematic
model (Fig. 5.5) is overlapped with the irradiation map of the design variant selected by the
user via a slider, as illustrated in Fig. 5.6. The slider, located at the top in the Grasshopper
Remote Control Panel (green window), allows browsing through the 20 variants, which are
numbered from 0 to 19. The information associated to the selected variant is displayed below
the slider and includes parameters such as the plot (or floor area) ratio and total floor area, as
well as the performance outputs and each building’s dimensions.

Taking advantage of the multiple viewports in Rhino, a 3D graph, having one axis per perfor-
mance criterion, can be visualized in 2D to compare the performance of the variants among
each other and with respect to two criteria, as illustrated in Fig. 5.7. The three possible criteria
combinations are displayed. The design showing the best performance in terms of active solar,
passive solar and daylight potential is respectively colored in orange, green and purple.

By combining the different outputs, users can link a 3D model to its multi-criteria performance,
while also comparing the performance of design alternatives whose morphologies are more or
less distinct according to the user-inputs. An eventual weighting of the performance aspects is
left to the user. The added-value and limitations associated to the prototype’s functioning and
GUI are further discussed in chapter 7.

9Time estimates obtained on an Intel i7-4820K (4 cores) 3.70GHz computer with 16 GB of RAM.
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Figure 5.6 — Irradiation map (left) and solution’s information (right) for two example design variants
generated and evaluated by the prototype.
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Figure 5.8 — Results from the two example runs of the prototype with a different starting base case (see
Table 5.1). Top: performance of each variant generated in the first (left) and second (right) run. Bottom:
irradiation map of example variants generated in each run, with distinct performance outputs.
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5.1.3 Example application

While a step-by-step demonstration of the prototype can be found in appendix B.2, we here
present an application example for two base case designs (i.e. two runs of the prototype)
comprising three simple volumes each, with the user-inputs given in Table 5.1.

The performance outputs are plotted in Fig. 5.8 (top) for each variant generated in run 1 and 2.
The example variants shown at the bottom of the figure (irradiation maps) present differences
in their performance, despite similar geometry and total floor area.

This example could represent an investigation of the relative performance between design
alternatives achieving a certain density level defined through a narrow plot (or floor area) ratio
interval. Comparing results within each run as well as between the two allows exploring the
effect of a larger dimension in Y versus X, which is equivalent to an orientation shift of 90°.

We observe that the range spanned by the daylight and passive solar potential is similar
between the two runs, while the active solar potential shows more variation. Between variants,
performance differences reach up to 5 kWh/ m% » anumber that can translate into a larger gap
in terms of absolute values for the total floor area. The analysis of the results serve to get some
insight on both the performance variations and similarities in relation to (sometimes small)
changes in the geometry.

Table 5.1 — User-inputs for the first and second example runs.

Run1 Run 2
Variables (min : max)
X [m] 20: 46 10:16
Y [m] 10:16 20: 46
Z [stories] 2:5 2:5
Constraints (min : max)
Floor area ratio [-] 0.6:0.8 0.6:0.8
Site coverage |[-] 0:1 0:1
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Chapter 5. Application to the design process

5.2 Preparation of workshops with practitioners

To assess our proposed design decision-support workflow, we organized sessions where
professionals were invited to test the implemented prototype. The structure of the workshops
is detailed in this section, while their outcome is presented in chapter 6.

5.2.1 Objectives and phases

Three workshop sessions were organized in October 2015, each lasting one afternoon. A first
test-run was conducted with four colleagues with professional experience as architects. The
outcome from this session, not reported in this thesis, served to identify bugs and refine the
workshop schedule and tasks. The following two more official sessions held four professionals
each and included architects, urban designers and one engineer. Recruitment was done by
contacting professionals working in the Lausanne area, whose email was obtained through
immediate colleagues at the EPFL. Registration was made on a voluntary basis by filling in an
online Doodle form.

The main objectives of the workshops were to:

1. assess the potential of the proposed workflow as a solar/energy performance-based
design decision-support method for the early-design phase of neighborhood projects;

2. verify if the workflow could bring new knowledge and help improve the performance of
a design;

3. identify bugs and improvements in the interface and workflow;

4. assess the predictive accuracy of the underlying mathematical functions.

To fulfill these goals, we devised the workshop schedule as shown in Fig. 5.9, which is briefly
introduced here and further detailed in the next section. Prior to the event, participants were
asked to fill a questionnaire that included questions on their level of experience with tools and
performance assessment methods. The workshop itself began with a brief introduction to the
tasks and performance criteria addressed by the proposed prototype (daylight and passive
and active solar potential). A design task was introduced, adapted from a real master plan, as
illustrated in Fig. 5.10. Participants were first asked to come up with their own design - Variant
A (VA) - for the identified plot, using their usual approach, methods and tools, and keeping
in mind the three performance criteria introduced without trying to optimize for them. This
design phase was followed by two ranking phases, devised to test the capacity of participants
to estimate the relative performance of a set of designs based on their intuition and experience
(‘Initial rank’), and by seeing given examples (‘Intermediate rank’).

Participants were then shown a demo of the prototype before proceeding with the test. They
were asked to re-create something similar to their VA and explore the variants generated by
the tool to see if they could improve their design. Finally, they were asked to submit a (possibly
improved) Variant B (VB), before proceeding with a last ranking phase (‘Final rank’). The
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5.2. Preparation of workshops with practitioners

workshop concluded with a questionnaire to collect the impression and suggestions from
participants. This second questionnaire can also be found in appendix C.1 (in French only).

To ensure traceability of the material collected from participants while maintaining their
anonymity, they were asked to note down the date and the number posted on their assigned
work station (computer) on everything they submitted, and retroactively add this information
on the initial questionnaire which was anonymously answered before the event.

The core part of the workshop, falling under the Design task section in Fig. 5.9, is further
detailed in section 5.2.3. Throughout the session, slides were displayed as supporting material
to explain each phase. The full presentation can be found in the Appendix in section C.2 (in
French only).

= Initial questionnaire to collect experience level (prior to workshop)
= Introduction to design problem and performance criteria

= Design task

Phase A - Design and ranking in ‘intuitive’ way
Design with usual methods and tools (VariantA)

=
Rank variants V1-V3 & VA —
Re-rank VA with respect to known V1-V3 —

* Testing of the prototype *

Phase B - Design and ranking following the test

Redesign following the prototype test —
Re-rank VA and rank VB with respect to V1-V3  —>

= Final questionnaire and discussion to collect comments

Figure 5.9 — Workshop phases and tasks.

i
Ll

Figure 5.10 — Images of the design task: the ‘empty’ plot, selected from the hypothetical plan for an
area of Vernand part of the Lausanne-Vernand - Romanel-sur-Lausanne PDLi (Plan Directeur Localisé
intercommunal) [Urbaplan, 2015], and its modified context.
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Chapter 5. Application to the design process

5.2.2 Questionnaires

Both the initial and final questionnaires were formatted using Google Forms'?, producing a
private online document that was shared to the participants. Responses were stored automati-
cally by Google in an Excel spreadsheet.

The full questionnaires can be found in appendix C.1 (in French only). Two main sources of
reference were used when defining the question content and format as well as the choices of
answers when present: similar workshop-based studies conducted by Attia et al. [2013a] and
Gagne [2011], both in the same context of a doctoral thesis in which a decision-support tool
was proposed and tested. These references also served as inspiration when defining the main
phases of the workshop.

In the initial questionnaire, participants were first asked to provide information on their
profession, years of experience and type of participation in neighborhood-scale projects
through questions 1 to 4. They were then asked to specify if they used specific modeling
and simulation tools, e.g. SketchUp, Rhino, Lesosai, and were given the option to specify
any missing tool from the listed options (questions 5 to 10). Through questions 11 to 19,
participants had to select out of the listed options or add by which means they typically assess
the performance associated to: passive solar potential (for passive heating), thermal comfort
(e.g. overheating in summer), active solar potential through PV and ST, and daylight potential.
Options were: rules-of-thumb/heuristics, visualization (e.g. sun-path diagram), simulations,
external consultant.

To get more precision on when the tools are typically used and the performance assessed,
participant had to answer to all of the above questions by selecting one of the four possible
answers: no, early phase, detailed phase, early and detailed phase. The questions were
elaborated in order to get some insight, before the workshop, into the familiarity of participants
with specific tools, including the ones part of the prototype (e.g. Rhino), as well as the
performance criteria relevant to our proposed approach.

A second questionnaire, administered at the end of the workshop session, was developed
to gather participants’ feedback on their experience with the prototype. Questions 1 to 3
were posed as a list of statements to which participants had to answer in terms of level of
agreement, based on the commonly used 5-point psychometric Likert scale [Likert, 1932;
Nemoto and Beglar, 2014]. The questionnaire concluded with three open-ended questions (4-
6) to gather any additional comments and suggestions. The exact content of this questionnaire
is presented in the next chapter when revealing the results, in section 6.1 and appendix C.4.

Ohttps:/ /www.google.com/forms/about/ (last accessed on March 28, 2016)
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5.2. Preparation of workshops with practitioners

5.2.3 Design task
Phase A

In this first design phase, participants were asked to work as ‘normally’ as possible given the
different environment to come up with their Variant A. Working at individual work stations
with one computer each as illustrated in Fig. 5.11, they were given access to typical tools:
tracing paper and drawing/sketching sheets (including the base in Fig. C.1 of appendix C.3),
material to build a scale model, and modeling software (SketchUp, Rhino and AutoCAD). A
scale model of the context, seen in Fig. 5.11, was prepared prior to the event as supporting
material for visualizing both the surroundings and variants that were built.

Participants had approximately one hour to complete this task. Designs were collected in
various formats (e.g. 3D model, sketch), always including all the dimensional information that
would later be necessary to complete a virtual 3D model for further analysis (e.g. simulation).

In addition to the fixed context and dimension of the empty parcel (9 744 m?) as illustrated in
Fig. 5.10, they were asked to design buildings respecting a north-south-east-west alignment of
their facades, with a plot ratio (total floor area / plot area) falling between 1.3 and 2, equivalent
to having a total floor area of ~12 600 - 19 500 m?. This range was defined to fall within the
major region found in the reference dataset (see Fig. 4.11 and 4.12) while also comprising the
target of 1.75 found in the master plan document [Urbaplan, 2015].

[

prk stations (4)
tall d tools
cluding te

Foam cutting
machines

Scale model
\of context

Figure 5.11 — Workshop physical set-up: four work stations (computers) with installed software, scale
model of the context (prepared prior to event) and material for making a scale model of the design.
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Chapter 5. Application to the design process

They were then asked to fill in the initial ranking sheet shown in Fig. 5.13, containing the
3D model of three example variants (V1-V3) to be ranked along with their VA in terms of the
relative performance for each criterion. More specifically, they had to order the four variants
from best to worst by writing the name (V1, V2, V3, VA) in the boxes from top to bottom for
each of the three performance criteria. In addition, they were asked to provide an explanation
for their ranking (to be written in the wider, rectangular boxes).

After completing this task in approximately 15 minutes, the second sheet shown in Fig. 5.14
was distributed, displaying the actual performance of the three example variants through
images and bar graphs. Accounting for this new knowledge, participants were given the task
to re-rank their VA, now in a more precise way by filling in the empty bars.

As will be seen in chapter 6, all Variants A were simulated after the workshops to assess the
correctness of the rankings. While the initial phase probes the intuition of participants, the
second ranking incorporates the added effect of learning from example cases which may or
may not resemble each participant’s VA.

Testing of the prototype

In preparation for the workshops, the adapted master plan (Fig. 5.10) was modeled in Rhino,
leading to a 3D model of the parcel (or plot) and context, illustrated in Fig. C.2 of appendix C.3.
As mentioned in section 5.1, the prototype currently requires some setting-up in Grasshopper,
as the custom plug-in in itself does not include all the workflow elements such as the outputs
visualization. A Grasshopper script was thus specifically developed to avoid the need for user-
intervention in setting-up the workflow. The script, illustrated in Fig. 5.12, includes the linked
UrbanSOLve components and the algorithm for visualizing the results in the Rhino viewports.
Users did not see or intervene with any part of this script except the circled component below
‘Double-click to open interface’, which allowed them to open the UrbanSOLve interface (Fig.
5.4).

After a short demo of the prototype, participants were given instruction sheets that can be
found in appendix C.3 (in French only). They were asked to begin by trying to reproduce their
Variant A through the tool’s user-inputs - not by importing or drawing the exact 3D model
as this option is not currently allowed by the prototype. Instead, the goal was to specify the
relevant building typology, location, variable ranges and constraints (see Fig. 5.5), defining a
solution space in which their VA could be found.

After launching the simulation process where 20 variants are generated and evaluated by the
tool, participants could explore the results, extract interesting information and start over with
adjusted input parameters. This testing phase lasted approximately 1.5 hour and was recorded
using Rylstim Screen Recorder!!, producing one .avi video file per participant.

Whttp:/ /www.sketchman-studio.com/rylstim-screen-recorder/ (last accessed on March 16, 2016)
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5.2. Preparation of workshops with practitioners

A screenshot-based demonstration of the workflow, representative of the participants’ experi-
ence with using the prototype, can be found in appendix B.2.

Phase B

Following or during the use of the prototype, participants were asked to design a second
variant (VB), derived from VA, incorporating in their process whatever information they would
have extracted from the trial phase. As such, there was freedom in how participants interpreted
and made use of the results. We will come back to this topic in the next chapter when analyzing
the workshop outcomes. As for VA, all VB variants were collected either in sketch or 3D format.

Participants were then asked to rank this second design using the provided sheet illustrated in
Fig. 5.15. An empty bar was also included for an optional revision of the ranking of VA, given
the insight possibly gained by using the tool. This final ranking task thus represented a means
for investigating the impact of using the tool on participants’ capacity to relatively evaluate a
design’s performance for each aspect considered.

Double-click to
open interface

Figure 5.12 — Grasshopper script prepared for the workshops. The interface for gathering the user-
inputs (see Fig. 5.4) is opened by double-clicking the circled (Parameters) component. The rest of the
script is automated and does not require user intervention.
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5.2. Preparation of workshops with practitioners
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Appraisal of developed prototype

“Usability, fundamentally, is a matter of bringing a bit of human rights into the world of
computer-human interaction.”

Joel Spolsky

(Software developer)

In this chapter, we analyze the outcomes from the workshops first, in section 6.1, to assess
the general potential, usability and current limitations of the prototype as a design decision-
support tool, and in section 6.2, to test the predictive power of its core performance assessment
engine. Each section concludes with a summary of the main outcomes and lessons learned,
including a discussion on the level of achievement respectively of first three objectives and
the fourth one introduced in section 5.2.

6.1 Workshop outcome

The first workshop session, conducted with colleagues, was considered a test-run. It led to
adjustments in the workshop schedule as well as changes to the prototype. As such, results
from this preliminary session are not presented. For the subsequent two workshops, each
conducted with four professionals, results are presented for all participants taken together.
We also highlight some observations based on the analysis of each participant’s experience
which can be found in appendix C.4. The main results of this section have been presented in
Nault et al. [2016b].

6.1.1 Initial questionnaire

Answers to the initial questionnaire, which can be found in appendix C.1, give us information
on the level of experience of the participants, both with software and approaches for assessing
different performance aspects. Within the group of eight participants, there were three archi-
tects, one engineer and four who declared themselves as both architects and urban designers,
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Chapter 6. Appraisal of developed prototype

with years of professional experience ranging from 2 to 15. All participants have some type of
experience in neighborhood-scale projects, either through participating in competitions or in
the elaboration of master or district plans, as shown in Fig. 6.1.

Answers regarding the use of various tools are
shown in Fig. 6.2. Participants have more expe-
. . . . . . PDL
rience with drawing/modeling tools, in particu-
lar SketchUp and AutoCAD which are used both

at the early and detailed design phase. The only

= PQ

. . . . = Competition
simulation software used are Lesosai (four partic-

ipants), a Swiss product, and the now obsolete

Ecotect (one participant only). Figure 6.1 - Participation in

neighborhood-scale projects. PDL:
Regarding the specific ways of approaching differ- (localized) master plan (Plan Directeur
ent performance aspects, results are summarized Localisé), PQ: district plan (Plan de

in Fig. 6.3. In cases where an assessment is done, quartier).

it generally occurs at the early phase through the application of simple methods such as rules
of thumb and visualization (e.g. sun path diagram). External consultants are solicited to some
extent both at the early and detailed phases across all performance criteria, while simulation
is conducted, here by a small portion of participants, mostly for daylight and active solar
potential assessment.

6.1.2 Performance of variants

Variants A and B submitted by the participants were collected in order to be modeled and
evaluated through full simulations using the same tools and settings as in chapter 4. Since
the metamodels are built from a dataset with underlying assumptions, these same settings
must be applied to any new case for which we wish to compare the simulation results to the
predictions from the metamodels.

While the design of all variants can be visualized in appendix C.4 for each participant, Fig. 6.4
and 6.5 illustrate examples in the form of sketches and 3D scale models.

It is to note that some participants experienced difficulties in reproducing variants similar
to their VA in the prototype, due to limitations which are further discussed in section 6.1.5.
Because of this situation, three participants did not submit a VB and final ranking.

Results from both the simulation and metamodels are presented in Fig. 6.6, where the y-axis
of the energy need graph is inverted, so that higher bars across all graphs, i.e. all performance
criteria, represent a better performance. The comparison between simulated and predicted
values for investigating the metamodels’ accuracy is conducted later in section 6.2. Unless
stated otherwise, all results presented in this section are based on the simulated values. For
the active solar criterion, there is no distinction between predicted and simulated values; this
metric is evaluated through the algorithm described in section 4.6.
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Figure 6.2 — Participants’ experience with tools.
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Figure 6.3 — Participants’ experience with assessing different performance aspects.
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Figure 6.4 - Drawings and calculations from one participant, from (a) Variant A to (b) Variant B.

Figure 6.5 — 3D models of some of the participants’ variant.
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Figure 6.6 — Performance of each participant’s VA and VB with respect to each criteria, evaluated
through simulation (left) and the predictive functions implemented in the prototype (right).
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shades of gray, for all variants A and B created by the participants.
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The difference between the highest and lowest performance is of 13 kWh/ m%A, 28.2 %pa and
29.2 kWh/ mf: , for the energy need, sDA and energy production respectively. These differences
are considerable, especially when applied to the whole set of buildings. For example, the
design corresponding to the highest energy need value (51.9 kWh/ m% ) has a total floor area
of 18 112 m?, leading to a total annual energy need of 940 000 kWh. In comparison, the case
having the lowest energy need (38.9 kWh/ mlz: ,) achieves 577 665 kWh in total considering its
slightly smaller total floor area of 14 850 m?. This means that the difference of 13 kWh/m?,
stated above translates to a 362 335 kWh gap in the annual energy need between the current
‘best’ and ‘worst’ design variant. Despite their difference in density - 1.85 versus 1.52 - these
two designs could feasibly represent alternatives considered in a real project (e.g. urban design
competition). Their distinct energy performance emphasizes the relevance and importance of

incorporating energy-related criteria early-on in the decision-making process.

When comparing between VA and VB for participants that submitted both, we observe that
the performance decreases from VA to VB in three out of five cases for the energy need and
production, and in two out of five cases for the sDA. As previously mentioned, instructions
given to the participants when designing VB were explicitly vague. No emphasis was put on
any single performance aspect and participants were simply asked to create VB as a revised
(or identical to) VA, based on their experience when exploring the solution space using the
prototype. It is thus not possible to know the intention of each participant or if an effort was
made to improve one or more performance criteria when designing VB.

Moreover, an error was detected in the energy production algorithm after the workshops,
causing participants to see erroneous values for the active solar potential. This situation may
well have induced them in error if they particularly focused on this criterion.

In any case, improving all aspects would have proven to be challenging, due to their conflicting
nature as highlighted in chapter 3, section 3.2.4. This situation is observed for the participants’
variants in Fig. 6.7, where for instance the design with the highest sDA (note the reversed
y-axis) shows a relatively high energy production, but the worst passive solar potential (highest
energy need). This sort of trade-off also appears in the output performance graph produced
by the prototype (see Fig. 5.7). In its current format, the prototype does not provide any
means for weighting the different performance aspects. However, it would be of interest to
compute an aggregated performance metric that would allow comparing the variants using
a comprehensive yet unique value. This shift would require translating the spatial daylight
autonomy metric into the amount of artificial lighting needed to compensate the lack of
daylight. A conversion into primary energy would offer a more accurate representation of the
share for heating, cooling, and lighting. A balance between energy demand and production
through PV and ST systems could also be added to the performance assessment. This topic is
further discussed in chapter 7.
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6.1.3 Ranking success rate

Computing the performance of variants A and B allows us to verify if the rankings done by the
participants were correct. Despite the low number of participants, the overall results from
each ranking task are analyzed using a statistical method, namely the Kendall rank correlation
coefficient. This value, also termed Kendall’s 7, quantifies the degree of similarity between two
sets of ranked data [Abdji, 2007]. The value computed using the Matlab function corr with the
type parameter set to Kendall corresponds to the version known as 7-b, which accounts for
possible ties in the rankings. It ranges between -1 and +1, dictated by the number of inversions
between the two sets. It is computed as follows:

K
= 6.1)

V)

with
N-— N
Z Z n (x(i) - x(j)) -sgn (y() — y())) (6.2)
i=1 j=i+

where N is the number of ranked objects, Ty and T, the number of ties in rankings x and y,
and sgn a function that performs the transformation illustrated in Fig. 6.8. Let us consider an
example to clarify these equations, were we have N = 4 design variants (V1, V2, V3, VA), which
we represent by the vector [1, 2, 3, 4]. If we have two different rankings y = (1, 2, 3, 4] (same as
original order) and y = [3, 2, 4, 1], both T and T), are null, since there are no ties (i.e. equal
values) within the ranks. Computing K, we have:

i=1 sgn(x(1) —x(2:4))-sgn(y(1) — y(2:4))
=sgn([1] -1[2,3,4]) -sgn([3] - [2,4,1])
=sgn([—-1,-2,-3])-sgn([1,-1,2])
=[-1,-1,-1]-[1,-1,1]==-14+1-1=-1

i=2 sgn(x(2) —x(3:4)) -sgn(y(2) —y(3:4))
=sgn([2] —[3,4]) - sgn([2] — [4,1])
=sgn([—1,-2])-sgn([-2,1])
=[-1,-1]-[-1,1]=1-1=0

i=3 sgn(x(3) — x(4)) -sgn(y(3) — y(4))
=sgn([3] —[4]) - sgn([4] — [1])
=sgn([—1]) -sgn([3])

—[-1]-[1]=-1=-1
Which gi ;o= 2071 4s3
ich gives: = (\/6)(\/6)_ .

Our compared sets of ranks correspond to the performance of the variants, for each criterion,
ordered according to (i) the simulation values and (ii) each participant’s ranking in the three
phases (initial, intermediate, final). This provides a Kendall coefficient for each participant,
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Figure 6.8 — Sign function where positive,
null and negative values (x-axis) are re- -1
spectively transformed to +1, 0 and -1 (y-
axis). 2 ‘
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performance criterion and ranking phase, which are presented in the next section. To obtain a
coefficient over all participants P, assuming no ties, we compute:

P
1 Zj:lKJ'

- 6.3)
PN(N-1)/2

As seenin section 5.2.3, each ranking phase was slightly different both in the format of the sheet
to fill in and the degrees of freedom in positioning the variants. These differences are however
not explicitly taken into account in the above formulas. This means that between the initial
and intermediate phases for instance, where N=4 (V1-V2-V3-VA), the denominator in equation
6.1 is the same, although V1, V2 and V3 cannot possibly be inverted in the intermediate phase
since their performance values are given. For the same reason, the numerator is likely to be
higher, since less freedom exists in rankings x and y. Indeed, the probability of them being
closer is higher, which translates to more occurrences of multiplications of identical numbers
(e.g. [-1, 1] - [-1, 1]) in turn leading to higher K values. As such, Kendall rank coefficients will
by default be higher for the intermediate phase than for the initial one. This limitation, further
discussed in section 6.1.5, is intrinsic to how the ranking exercises were formulated. The value
of N does however change between the initial/intermediate and the final phase, going from
four to five to account for VB. P, the number of participants, also varies, decreasing from eight
to five since three participants did not provide a VB and final ranking.

In light of the above considerations, the ranking success rate was evaluated through a second
method, based on the ‘distance’ between the participants’ ranking and the real one (i.e. based
on simulated values). We have termed it the level of closeness to the real rank, [. It is computed
over all participants through the following equation:

Yo EN xi-yp)
J=1- ]—1| i=1'""] ]| 6.4)
Drax x P

where P is the number of participants, N the number of ranked objects, (x;-y;) the element-
wise subtraction between the participant’s and the reference ranking (based on simulated
values), and D ax the maximum theoretical distance between the two rankings, that is, the
largest possible argument of the absolute value found in the equation. This value is proper to
each phase considering the variation in the level of freedom. In the initial phase, the maximum
error is of eight, while in the intermediate phase, it is reduced to six due to V1-V2-V3 being
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given. In the final ranking phase, it is of 10 considering the addition of VB. For example, the
calculation of [ for one participant (without the summation over P) for the initial phase would
be:

Vil V2 V3 VA

Participant’s ranking (x;) 4 1 2 3
Ranking based on simulated values (y;) 4 3 1 2
Difference (x; — y1) 0o -2 1 1
Sum absolute difference, normalize by D,y and subtract from 1 [=1-4/8=0.5

A perfect ranking would thus result in / = 1 -0 = 1, while a complete opposite ranking would
have a value of 0.

Results obtained by applying the Kendall and distance methods over all participants are shown
in Fig. 6.9, where the y-axis goes from -1 to 1 for the Kendall coefficient 7 in Fig. 6.9a and from
0 to 1 in Fig. 6.9b to illustrate the level of closeness to a perfect rank. For both graphs, taller
bars indicate higher success rate.

The overall trends are similar; there is an increase from the initial to the intermediate ranking
phases across the three performance criteria, followed by a slight drop in the final phase. It is
likely that the gap between the first and second phases are the effect of the visualization, by
the participants, of the performance of the three example variants in the intermediate phase.
Although there is a drop between the intermediate and final rankings, the latter still remains
better than the initial ranking for the passive solar and daylight criteria.

Despite being shown in the graphs, the final ranking related to the active solar potential cannot
be truthfully analyzed and interpreted, as erroneous values were shown to the participants due
to the bug in the algorithm mentioned earlier. We can speculate that this may explain to some
extent the drop in the final ranking’s success rate compared to the initial and intermediate
phases. Another potential factor blurring the results is linked to chance; luck in successfully
ranking variants is something we cannot capture.

Figure 6.10 illustrates the same 7 and [ values computed for each participant!. The ranking
success rate improves from dark blue to yellow squares, with white spaces reflecting the
absence of data corresponding to the three participants who did not submit a second variant
and complete the final ranking sheet, as mentioned earlier. The overall trend is similar
between the two methods. Considering the issues discussed earlier related to the structure of
the ranking tasks, the methods used to compute the success rate, as well as the small number
of participants (further reduced when we exclude the ones who did not complete all tasks),
the conclusions that can be drawn from these quantitative results about the influence of using
the prototype on the ability to rank are limited.

It is thus of interest to complement this quantitative analysis by looking at the qualitative
data obtained in the initial phase, where participants were asked to justify their ranking using

1A detailed view of the participant-specific results can be found in appendix C.4.
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the dedicated space (see Fig. 5.13). Table 6.1 lists the words and concepts written by the
participants with respect to each performance criterion according the terminology used in
the sheet (translated from French). Despite the divided level of experience depicted by the
questionnaire’s answers (see Fig. 6.3), the terms brought up by participants illustrate a certain
level of understanding and knowledge regarding the performance aspects. Indeed, these
capture many of the parameters considered in this thesis, e.g. the input parameters to the
metamodels. Yet, initial ranking results had the lowest success rate, supporting the need for
adequate performance-based design guidance, one of the motivating arguments behind this
thesis. We speculate that having to judge neighborhood designs, a scale intrinsically more
complex than the building level due to interaction between buildings, has challenged partic-
ipants. They may also have been confounded by the need to grasp an overall performance,
where possible extreme values of individual buildings are averaged out. This latter aspect
represents a limitation of our approach in its current status, further addressed in section 6.1.5.

Table 6.1 — Terms that appeared in the justifications provided by participants when ranking the variants
in the initial phase.

Passive energy potential Daylighting Active energy potential
(energy consumption) (energy production)

compactness, orientation (diversity in) orientation(s) shading on roof, roof to
and/or amount of exposed and/or amount of exposed floorarearatio, density, ori-
facades, shading and dis- facades, shading and distance entation, building height,
tance between buildings, between buildings, solar ex- roof surface

spreading of facades, sun posure, spreading of facades,

exposure level, density footprint, facing buildings

6.1.4 Final questionnaire

Responses to the final questionnaire, which is shown in appendix C.1, are presented in Fig. 6.11
and Table 6.2 for the multiple choice and open-ended questions respectively. These answers
bring a qualitative input, complementary to the measurements linked to the performance and
ranking results.

Participants were generally in agreement with most statements listed in Fig. 6.11, with a few
exceptions where the ‘disagree’ option was selected. This occurred for the statement on (i) the
influence of using the prototype on the final concept (VB) and (ii) the satisfaction related to
the relevance of the approach. Plausible explanations for these disagreements were identified
when reviewing the participant-specific results (detailed in appendix C.4). The participant
who did not agree with item (i) experienced difficulties in obtaining design variants similar
to their Variant A. This same participant also disagreed with statement (ii). It was found that
the second person to disagree with that statement was particularly focusing on the active
solar potential when analyzing the performance graphs and working on their Variant B. The
erroneous results displayed for that criterion likely caused some confusion to the participant.
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Figure 6.9 — Ranking success rate computed through the (a) Kendall rank and (b) distance method, over
all participants for each criterion and phase.
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Figure 6.10 — Ranking success rate displayed as the color-coded (a) Kendall coefficient and (b) level of
closeness, computed for each participant, criterion and phase. White squares correspond to no data.

A stronger consensus is found for the following points: (using the prototype) ‘influenced your
approach to the problem’ and ‘allowed you to learn new elements useful in your approach to
the problem, as well as for the satisfaction level regarding the relevance of the interface and
the information brought by the prototype. This qualitative insight demonstrates a perceived
knowledge-gain by the participants from the usage of the prototype.

Results collected through the open-ended questions (Table 6.2) also shed an optimistic light on
the overall outcome from the workshops. The main positive feedback gathered relates to the
interface and general approach of the prototype, with qualifiers such as ‘intuitive’, ‘interactive’
and ‘promising. The predominant weaknesses are linked to the current limitations in the
number and types of user-inputs and the generation of variants. More flexibility or precision
is required in the inputs to enforce specific typologies and ensure credible designs. Multiple
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suggestions were also given to overcome the current limitations and to expand the usability
and relevance of the prototype, such as by adding specific parameters (e.g. maximum distance
between buildings) and providing an automatically generated summary report.

Using the prototype...

influenced your final concept

made you more confident in your decision-making [ | |} D
I [
influenced your approach to the problem [ IT—
allowed you to learn new elements useful in your approach _
to the problem
Using the prototype allowed you to learn about the performance criteria linked to...
the active solar potential (energy production) [  yjyjjjjl ;g0
the daytight potential
the passive solar potential (heating/cooling) [T e
You are satisfied with... [when using the prototype]
the relevance of the information brought [JTTT—
the relevance of the approach ||| T I
the require ime.
the interface |
thecaseofuse

1 2 3 4 5 6 7
Number of participants

o
[s5)

Figure 6.11 - Distribution of answers to the final questionnaire, in terms of agreement level on a 5-point
Likert scale with specific statements. A strong level of agreement is observed for most statements, while
the disagreement instances are likely mainly caused by technical limitations of the tested prototype.
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Table 6.2 — Summary of feedback gathered through the open-ended questions in the final questionnaire,
re-structured according to positive and negative aspects along with suggestions regarding different
features of the prototype.

Positive aspect Negative aspects Suggestions
Interface Intuitive, interactive, Difficult to visualize and Visualize shadow on ground
and visual- easy to understand, compare variantsandto and initial model as back-
ization directly usable read graphs, slow, points  ground image, add 'restart’
position imprecise on button to start from scratch,
graphs add scale on graphs, com-

pare performance to abso-
lute value for reference
User-inputs  Does not attempt to Too restrictive, unreal- More precision and liberty

and au- impose an optimal so- istic variants generated, in inputs, ungroup typology
tomated lution hard to recreate some- 1 to have 5 typologies in to-
generation thing similar to Variant A tal whose dimensional char-
of variants acteristics can be controlled

individually, add parameter
for maximum distance be-
tween buildings, add ’en-
trance’ point option

Overall Interesting to help Possibility to import/draw

approach architects choose 3D model, integrate pro-
between 2-3 options, gram types, add possibil-
complementary to ex- ity of changing building pa-
isting tools, interesting rameters after simulation,
and useful for (ad- provide automatically gen-
dressing performance erated summary report

criteria that are rarely
part of) early-design
phase, promising
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6.1.5 Synthesis - Potential of the prototype as design decision-support

The outcomes of the workshops presented in this section allow us to go over the first three
main objectives that were introduced in section 5.2 (with the fourth one addressed in the next
section):

1. assess the potential of the proposed workflow as a solar/energy performance-based
design decision-support method for the early-design phase of neighborhood projects;

2. verify if the workflow could bring new knowledge and help improve the performance of
a design;

3. identify bugs and improvements in the interface and workflow.

Potential as a DDS tool

We observe that the objectives which we intended to fulfill in terms of prototype features,
namely: integration within the design process, relevance of approach, simplicity of user-
inputs, intuitiveness of workflow and interface, were asserted by a majority of participants
through their feedback collected in the final questionnaire. Despite a general low level of prior
experience with existing tools and in particular programs exploited by the prototype (Rhino,
Grasshopper, DIVA), users could all easily and quickly understand the workflow and use the
interface. Based on the qualitative data, the prototype appears as highly promising in terms of
the relevance and usefulness of its approach, as well as its intuitive and simple interface.

Knowledge-gain conferred by the prototype

Results from the ranking phases and comparison of VB to VA for each participant provide
quantitative data for verifying if the workflow could bring new knowledge and help improve
a design’s performance (objective 2). Yet, it remains difficult to draw clear conclusions, due
to the confluence of different factors including: the conflicting nature of the criteria, causing
one performance value to improve while another one worsens; the technical difficulties
(also detailed below) in reproducing and investigating variations of VA; the small number of
participants, limiting the application of statistical analysis such as the descriptive Kendall
rank coefficient; differences in the format and degrees of freedom between the ranking phases,
restricting their comparison on equal grounds; possible intrinsic errors in the modeling and
simulation of the variants performance, to which the ranking results are compared.

It would be desirable to obtain strong quantitative data that reflect the perceived knowledge-
gain brought to light through the qualitative feedback. We note that this goal of verifying if
the workflow can bring new knowledge and help improve a design’s performance can only
be achieved if design flexibility is increased significantly, so as to allow highly customized
building massing options. Improvements in the visualization and interaction with the user
can also contribute to enhancing the guidance feature of the prototype.
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Variable  Min  Max

X 10 12
y 10 25
z 6 30

30

Figure 6.12 — Hypothetical design to attempt to reproduce in the prototype. The three buildings must
be inputted by selecting the same ‘simple volume’. The minimum intervals of dimensions to input to
ensure covering the ranges found in the design are listed in the top right corner table.

Moreover, a second series of workshops with a revised schedule and tasks, including more
participants and an extended time-frame, would be necessary so as to enable a dedicated
focus on assessing the educational potential of the prototype. Explicit directives should be
communicated to participants to ensure they truly attempt to improve the performance of
a design using the information given by the tool. In any case, it remains difficult to judge
the level of effort made by participants in trying to understand, absorb and translate this
information into a new design.

Limitations of the prototype

Considering the early development status of the tested prototype, multiple elements were
identified regarding objective 3, including suggestions made by participants through the open-
ended questions of the final questionnaire. The main issues encountered are linked to the lack
of flexibility in the design, caused by grouped building typologies and dimensions inputs being
applied to all buildings. These two conditions have a combined effect of generating buildings
often not corresponding to what is desired by the user. To better illustrate this issue, let us
consider the example design illustrated in Fig. 6.12, hypothetically representing the initial
concept of a practitioner. Using the prototype, it is possible to investigate the effect on the
performance of varying, within certain boundaries, design parameters linked to the building
dimensions. To do so, the design must be ‘inputed’ into the program, following the approach
described in section 5.1 and using the interface of Fig. 5.4. All three buildings correspond to
the same category of ‘Volume simple’. However, to cover the range of dimensions spanned by
the buildings, large intervals must be specified for y and z, as shown in the top right corner of
Fig. 6.12. Since the generation of design variants by the prototype is done through a random
sampling of the possible variables’ values, there is no way to enforce searching in specific
areas of the solution space domain. There is thus no guarantee that the mix of a tower, low
block and bar will be obtained in the 20 generated variants. The reasons behind this way of
functioning of the prototype are linked to technical feasibility issues in the coding and limited
time in implementing the prototype in view of the workshops. Through suggestions made by
participants and continued development following the workshops, improvement paths have
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been identified and their implementation is foreseen. While we hint at some of these ideas in
this section, they are further discussed in chapter 7.

The limited flexibility in the design is also linked to the underlying performance assessment
engine. Building typologies were specifically restricted to the simple shapes present in the
dataset used for training the metamodels, presented in section 4.2. This was done to ensure
that predicted performance values, obtained when applying the functions on new, unseen
designs, would remain realistic. The assessment of the predictive performance and validity
boundaries of the metamodels is further addressed in the next section. Other design con-
straints were also the consequence of the underlying metamodels’ input parameters and/or
training dataset, e.g. the north-south-east-west alignment of facades and the climate file of
Geneva.

Outcome

In light of the qualitative information collected from the workshops, a general consensus on
the high potential of the prototype was observed, despite its early development status. Issues
encountered, mostly of technical nature, were to be expected due to the youth of the prototype
and are judged as straightforwardly solvable, as further discussed in chapter 7.

In this section, we have assessed the prototype from the perspective of its usability, relevance
and potential in becoming a DDS that can be seamlessly integrated into practitioners’ work
process. It is equally important to evaluate its level of accuracy in estimating the perfor-
mance of neighborhood designs. This is done in the next section, by applying the predictive
mathematical functions on the set of variants developed by the participants.

V;:“F o/ - V:?M
A

!
[

Figure 6.13 — Pre-workshop variants added to the participants’ designs to form the test set.

184



6.2. Testing the metamodels’ performance and boundaries

6.2 Testing the metamodels’ performance and boundaries

In this section, we focus on the performance results of the variants collected through the
workshops, to further investigate the metamodels’ predictive power. This study represents an
‘external’ test, which complements the internal training and testing procedure presented in

chapter 4 when developing the predictive functions?.

The three example variants shown to participants during the ranking phases were selected
from a set of nine test variants generated in preparation for the workshops. These are added
to the 13 designs from the participants to form the external test set, comprising 22 variants in
total. In the following, we refer to this group as the ‘test set’.

6.2.1 Computation of inputs and reference outputs for the test set

As explained in section 6.1, the modeling and simulation process following for acquiring the
reference dataset in chapter 4 was applied on the workshop variants, to compute both the
metamodels’ inputs and reference outputs to allow verifying the prediction accuracy.

The nine variants added to the participants’ variants are illustrated in Fig. 6.13. To facilitate
the comparison of the test data, the input and simulated output values are standardized and
displayed using a visualization technique called parallel coordinates [Few, 2006; Ritter et al.,
2015]. As explained in chapter 4, standardization consists in scaling a list of values so that it
is centered with a mean of 0 and a std of 1. The standardized values are plotted through the
parallel coordinates graph shown in Fig. 6.14, where one line is associated to one design. The
last parameter appearing on the x-axis corresponds to the simulated output and is preceded by
the full list of inputs introduced in chapter 4. The ones in bold and starred are the predictors
included in the full and reduced final versions of the metamodels respectively (detailed in
Table 4.13). The reference dataset is plotted in the background in light gray.

Through these graphs, the variants’ profile can be compared between the test data as well as
with respect to the reference dataset used for fitting the metamodels. Participants’ variants are
denoted in the legend by the participant’s number Px and the variant name A or B (full lines
with marker). The nine post-workshop variants are listed from V1 to V9 (dashed lines).

We observe a diversity of profiles, with extreme values located at or exceeding the boundaries
defined by the reference data. For example, variant P8-VB is out of the reference range for its
PlotRatio, MeanHeight and MeanEnvelopelrrad value. Other designs with parameter values
located out of the main range spanned are P8-VA, P6-VA and V5. In terms of the simulated
responses, most variants are closely distributed within the reference data interval, with a few
divergent designs e.g. P6-VA for both the energy and daylight metrics.

In the next section, we make use of this information for interpreting the prediction results.

2Some of the following results have been presented in Nault et al. [2016a].
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Figure 6.14 — Parallel coordinates plot showing the standardized value of the inputs and outputs

corresponding to each test variants. Inputs in bold and starred
the full and reduced final versions of the metamodels.
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6.2.2 Assessment of prediction accuracy
Multiple linear regression models

As explained in section 4.5.6, the metamodels implemented in the prototype correspond to
a preliminary version, fyim (x), detailed in Table 4.14. The second version f(x) presented in
section 4.5.4 was later obtained from a slightly different dataset following a more extensive
fitting procedure. From this second version, a ‘reduced’ variation f.;(x) was derived. Both are
detailed in Table 4.13.

Results from applying each metamodel variation to the 22 variants are presented in Fig. 6.15
for the energy (left) and daylight (right) metrics. In each figure, the left-side plot shows the
predicted versus simulated performance values along with the RMSE and R?. The right-side
plot displays the residuals across the 22 test variants, with information on the metamodel’s
number of inputs and the residuals’ mean and std.

Comparing across model versions for the energy metric, we observe that the simpler (reduced)
function that only uses three inputs (Fig. 6.15b) yields the lowest RMSE and highest R? value.
However, the residuals’ mean is further from the desired zero, demonstrating a dominant over-
prediction. Yet, due to the small dataset size, conclusions made by comparing the residuals
distribution statistics are limited since outliers strongly condition the mean and std. For
instance, residuals for the other two versions are not closer to the zero dashed line, yet the
mean is nearly null due to the averaging effect involving points further above/below zero.
Moreover, consistent under- or over-prediction may be beneficial to our purpose of comparing
design alternatives, despite the fact that such a behavior may indicate that the model is missing
a predictor®. In the current context, that would ensure that the relative ranking of the designs
based on the predicted performance is closer to the one obtained based on the simulated
(reference) values.

Some test variants may be categorized as outliers. For instance, P8-VA (over-estimated) and
V3 (under-estimated) for the final version (Fig. 6.15a). Buildings in design P8-VA, shown
in Fig. C.11a, have a larger base at the ground-floor level, a trait which is not found in the
reference dataset and could not have been reproduced in the prototype. As for V3, possible
reasons explaining the prediction error are harder to discern based on its design and inputs
profile. Removing these two variants from the test set, the RMSE and R? for the final energy
metamodel improve to 2.76 [kWh/ mf;A] and 0.63 respectively, while the mean of the residuals
stays similar with u = -0.24. Results for the reduced version f.4(x) show a slight improvement
by ignoring the outliers, mainly reflected by the R?> which increases to 0.79.

The prediction accuracy achieved for the daylight metric is lower across all metamodel ver-
sions, with no clear ‘winner’. This metric appears more challenging to predict than the energy
need, at least from the predictors we have considered. The fact that the reference dataset
used to generate the functions is over three times the size of the energy dataset may have

Shttps://onlinecourses.science.psu.edu/stat501/node/328 (last accessed on April 12, 2016)
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caused these functions to over-fit due to similarities between variants within each case series,
as explained in section 4.5.4.

Some test variants may be categorized as outliers. For instance, P6-VA, a design which was also
highlighted in previous sections for its divergent input values (Fig. 6.14) and complex layout
that could not be reproduced in the prototype (Fig. C.9a). The particularities of this design
may well explain the prediction error, which is consistent across all daylight metamodels.
Similarly for design P8-VB, which has input values bordering or exceeding the reference range
in Fig. 6.14 and whose daylight performance is over-estimated by all three model versions.

If we remove these two variants from the test set, the predictive performance of the later
metamodels improves: the RMSE decreases to 6.75 and 5.53 [%] respectively for f(x) and
[rea(x), with an associated increase in R? t0 0.52 and 0.48. The residuals mean remains close to
its current value.

We can quantify the RMSE as a percentage of the simulated values by dividing it by the range
of the corresponding test data output:
RMSE
RMSEg =100 x — (6.5)
Ymax — Ymin)
The RMSE of the final energy and daylight metamodel respectively represent 22% and 21% of
the range of each metric. For the reduced versions of the functions, these figures respectively
reduce to 16% and 19%, getting closer to the 10% threshold defined by Forrester et al. [2008] to
qualify a reasonable global model.

Preliminary Gaussian Processes regression model

Using the Gaussian Processes (GP) regression model introduced in section 4.5.7, we obtain
the results shown in Fig. 6.16. Compared to the above results (Fig. 6.15), we observe for the
energy metric a higher R? value, but a residuals’ mean further from zero, showing a consistent
over-estimation. All fit and error metrics for the daylight metric indicate a lower prediction
accuracy for that metamodel. More tests should be conducted to verify the source of these
behaviors, for instance by removing/adding one input at a time to verify the effect on the fit.

6.2.3 Synthesis - Generalization potential of metamodels

In this section, we have compared the predicted and simulated (reference) performance values
computed for each of the 22 designs developed prior to and during the workshops. Results
allow us to go over our initial goal, stated in section 5.2, of assessing the predictive accuracy of
the DDS’s underlying mathematical functions.

The predictive performance achieved by the metamodels is encouraging considering the
following observations:
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Figure 6.15 — Prediction accuracy of each energy (left) and daylight (right) metamodel version. For
each figure: predicted against simulated performance values (left) and residuals (right) across the test
variants.
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Figure 6.16 — Prediction accuracy of the (a) energy and (b) daylight GP metamodels. For each figure;
predicted against simulated performance values (left) and residuals (right) across the test variants.

Differences between reference designs and test variants. Some degree of error was to be ex-
pected due to differences between the designs used to fit the functions and the workshop
test set, specifically in terms of building layout and number as well as dimension of
the parcel of land. Another dissimilarity of importance is the fact that some workshop
variants present a mix of building typologies, a situation not found in the reference
dataset. Yet, the metamodel was still able to accurately estimate the performance of
such designs, for example P4-VA and V9, composed of both L-shaped and linear blocks.

Application to designs beyond the protoype’s generative feasibility region. As highlighted
in section 6.1.2 and in the participant-specific analysis found in appendix C.4, some of
the participants’ VA could not be reproduced in the prototype due to time and technical
issues (discussed in section 6.1.5). Some of these limitations are linked to the hypoth-
esized validity boundaries of the metamodels; the prototype was developed to allow
reproducing designs that we assumed could be evaluated by the metamodels with some
level of accuracy. As explained in section 5.1, design options were constrained to delimit
the solution space and ensure some degree of similarity to the reference dataset, e.g.
in terms of building typology and facade alignment. When applying the metamodels
on the variants that could not be handled by the prototype mainly due to this design
flexibility limitation, namely P5-VA and P6-VA, the prediction error is either low - P5-VA
energy prediction from all versions and daylight prediction from the reduced version -
or justifiably larger than average - P6-VA for preliminary energy model and all versions
of daylight model.

We conclude that the predictive modeling approach adopted for constructing our DDS perfor-
mance assessment engine is promising. To further improve the metamodels, multiple avenues
can be explored as detailed in section 4.7 and further in chapter 7, such as enlarging the design
diversity in the reference dataset and investigating other model forms and fitting techniques.
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7d Discussion

In this chapter, we go over parts of this work to expand the discussion and highlight the main
limitations and foreseen improvement possibilities, bringing complementary or additional
observations to what has been presented in previous chapters.

7.1 Prediction error and fitting technique

The topic of prediction error or uncertainty has only been indirectly addressed in chapters 4
and 6, when looking at the residuals (e.g. Fig. 4.25, 4.26 and 6.15). It would be important to
incorporate these notions particularly into the output visualization provided by the prototype.
In that case, an error bar could be drawn around each performance value, enabling users to
better distinguish significantly different variants.

Figure 7.1 presents results from a preliminary investigation where confidence intervals were
obtained around each prediction for one iteration in the training-testing process in phase C
of the metamodel development (see Fig. 4.24). The Matlab linear regression function fitlm
was applied on the training set, giving a Matlab LinearModel object that was then used to
obtain predictions and confidence intervals from the inputs in the test dataset. The intervals
correspond to prediction bounds covering the likely values for a new simulated value (or
observation y,+1) given a set of predictors (xp+1)!. The graphs show that the width of the
95% confidence interval is similar when fitting using 19 inputs (Fig. 7.1a) versus 10 inputs
(Fig. 7.1b) with a mean of 4.95. It becomes wider with a mean width of 10.63 when reducing
to three inputs (Fig. 7.1c). This means that there is a larger uncertainty in the prediction of
new simulated values using the reduced function containing only three inputs. This sort of
information could in the future be a useful complement to the other goodness-of-fit measures
employed in chapter 4.

Ihttp:/ /www.mathworks.com/help/curvefit/ confidence-and-prediction-bounds.html (last accessed on June 27,
2016)
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Obtaining an uncertainty for each prediction could moreover be achieved by resorting to
Gaussian Processes, introduced in section 4.5.7, or similar methods. Due to the probabilistic
nature of GP, its prediction is a random variable. This means that it is possible to obtain a
confidence range for each prediction, as illustrated in Fig. 7.2. The advantages conveyed by
adopting a GP regression technique also include an added knowledge about the under- and
over-sampled regions in terms of the predictor values, information that can guide the process
of improving the metamodel.
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Figure 7.1 — Simulated against predicted energy need [kWh/ m%A] with 95% confidence intervals for
predicted values, for one example iteration in the training-testing procedure (see Fig. 4.24), when
fitting using the entire dataset (d=100%) and (a) 19 inputs, (b) 10 inputs, and (c) 3 inputs (see also
section 4.5 and Fig. 4.25). These graphs were produced using the predict and fitlm functions in Matlab.
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7.2. Sensitivity to simulation settings

7.2 Sensitivity to simulation settings

Sensitivity analysis to various simulation assumptions would be beneficial to allow making
more sound conclusions on the results, e.g. in terms of metamodel validity. In addition to the
preliminary investigation presented in section 4.7.3, further work was initiated by comparing
two energy datasets distinct in terms of the U-value simulation settings for opaque surfaces:
(i) the medium U-value set from which the metamodels were developed, and (ii) a low U-value
set later acquired for a partial group of design variants (M-cases). The U-values for both
settings are given in Table 7.1. All other parameters were identical (see Table 4.7).

Figure 7.3 shows the histogram for the simulated heating, cooling, and total energy need for
each dataset, with a distinction between the five M-cases for which we had data for both
U-value settings. The maximum difference observed in each graph is displayed (Apmax). The
medium U-value dataset presents a wider and slightly narrower spread respectively for the
heating and cooling need. The heating need values for the low U-value setting are particularly
clustered, demonstrating that the effect of urban morphology is attenuated when high insu-
lation standards are applied. However, the opposite effect is observed for the cooling need.
In terms of energy for both heating and cooling, although a lower value (< 30 kWh/ m%_A) is
reached with the low U-value setting, the fact that medium and low U-value distributions
partly overlap indicate that similar performance levels can be achieved with less insulation.
These results lead us to speculate that the effect of poor insulation can potentially be coun-
terbalanced by a proper urban form. Considering the evolution of the design process, this
statement can be reformulated to: if the urban form is well planned, savings can potentially
be made on insulation materials.

It is also important to note that the relative position of the M-specific peak is altered between
the medium and low U-value histograms, e.g. the M0 and M1 designs that are switched. The
ranking is different not only between series, but also between variants of a same series, as
illustrated in Fig. 7.4, showing the difference between the medium and low U-value simulated
energy need for each design. A flat line would indicate a constant difference, i.e. ymequ =
Yiowu + constant. Such a situation would in turn signify an identical ranking between design
alternatives. However, we observe variations across the variants, particularly for the M0
and M5 cases where the mean difference u exceeds 20%. This value is computed using the
following equation:

1 N . — .
:Ex Zyl,medU YVilowU

(7.1)
N i=1 Yi,medU

U

where N is the number of designs and y; is the simulated output of variant i.

A final comparison of the medium and low U-value datasets is presented in Fig. 7.5, which
shows the input-output correlation graphs for each dataset and M-case. As in section 4.4.2,
the pairwise linear correlation coefficient, computed over all cases taken together, is displayed
when it was found to exceed (+)0.70. We observe that the spread of the points differ between
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Fig. 7.5a and 7.5b, e.g. for the PlotRatio parameter, bringing out again the attenuation effect
of the low U-value setting. This is also reflected in the reduced correlation level with the
FormkFactor. The input portraying the highest correlation with the energy metric in the low
U-value dataset is the window-to-floor ratio, due to the larger difference between the wall and
window U-values compared to the medium U-value setting (see Table 7.1).

We conclude that the underlying assumptions related to the dataset used in the metamodel
development process are a matter of importance as they condition the observed trends. The
current results indicate that a different metamodel structure, e.g. with other main inputs and
coefficients, would most likely be obtained, were we to pursue the analysis of the low U-value
dataset and apply the same metamodeling approach detailed in chapter 4. As highlighted
earlier, the ranking of the variants based on their performance is also linked to the simulation
assumptions, restraining the generalization of the results obtained with any one metamodel
version into broader design guidelines. However, this thesis has contributed a method that can
be extended/adapted to other design contexts than the one here used as a proof-of-concept. A
future research path of interest would be to investigate the relative performance improvement
achievable through early versus more detailed design variables, as well as the interaction
between these two groups of parameters, e.g. through sensitivity analysis. As a second step, a
robust and semi-automated method could be developed to allow conducting such a study
and support the interpretation of its outcomes. This method could follow a similar workflow
as developed in this thesis, starting from a user-defined base case with a range for each design
variable and some constraints. This information would then be used by the underlying engine
to generate the data required to perform a case-specific sensitivity analysis.

Further tests could be conducted, for instance on reflected light, linked to envelope material
and likely to influence the energy consumption and daylight conditions in urban settings of
a certain density [Stromann-Andersen and Sattrup, 2011]. Design characteristics for which
specific parameters become influential could be identified in the form of thresholds. For
example, density levels above which the contribution from inter-building reflection should be
taken into account in the performance assessment could be defined.

Similarly for other design variables such as the window-to-wall ratio and glazing material.
Figure 7.6 shows the effect of increasing the window-to-wall ratio on the energy demand for
heating according to various glazing U-values for the climate of Paris, in the context of a study
investigating different urban morphologies [LSE Cities and EIFER, 2014]. The heating demand
increases with the glazing ratio from a U-value of 3.2 and 2.8 for the detached housing and
compact urban block respectively.

The identification of such case-specific parameters would in turn influence the way metamod-
els are derived; according to the specificities of the project to be studied using the predictive
DDS approach, the appropriate metamodel could be retrieved or even built. This idea is
further detailed in section 8.3.
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7.2. Sensitivity to simulation settings

Table 7.1 — U-values used in the energy need simulation for the medium and low U-value energy
datasets. The medium setting corresponds to the dataset used to develop the metamodels in chapter 4.

Medium U-value Low U-value

[W/m?K] [W/m?K]
Wall 1.3 0.18
Roof 1.84 0.19
Floor 1.25 0.18
Windows (double low e argon) 1.5 1.5

[Cmo EEM1 [Im3 [COma [Cwms

30 : ‘ : 50 : : : : 30 N
' A =224 ' ' ' A =152 ' ' ' A =33.5
max : ' H max . 1 ' 1 ax

m

Frequency - Medium U-value

Frequency - Low U-value

0 ‘ ‘ ' 0 ‘ ' 0
0 10 20 30 40 50 0O 10 20 30 40 50 20 30 40 50 60 70 80

Heating need [kWh/mlzzA] Cooling need [kWh/m,z:A] Energy need [kWh/mlzzA]

Figure 7.3 — Heating, cooling, and total energy need in the medium (top) and low (bottom) U-value
datasets (see Table 7.1), with distinction between the different M-cases. The difference between the
maximum and minimum value is displayed (Amax)-
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Figure 7.6 — Variation in the annual heating energy demand (normalized per floor area) obtained when
increasing the window-to-wall ratio, for different glazing U-values, in the case of detached housing and
compact urban block in Paris. Graphs made using data from [LSE Cities and EIFER, 2014].

7.3 Averaging effect and extension to existing context

The fact that the metamodels make use of inputs computed over all buildings taken together
and output an estimated overall value blurs the individual building’s performance. For exam-
ple, two buildings with opposite energy needs - low versus high - lead to the same average
performance as two buildings with a mid-range value. However, the latter may be more desir-
able, especially if the mid-range value falls below the limit imposed by some standard or label.
Future work should look into solving this potential pitfall, by including a verification of the
individual building’s performance and avoid the possible misleading caused by the averaging
effect. A way to do so would be to define thresholds in terms of performance per building, e.g.
based on labels such as Minergie.

It would also be interesting to include an assessment of the effect of the new buildings planned
on the existing surrounding context, to ensure that all buildings retain their solar rights and
to mitigate the impact on the built environment. Along the same lines, an evaluation of the
outdoor spaces, e.g. solar exposure in parks and on sidewalks, would also enrich the method
by adding another element of importance of the conceptual design phase.

7.4 Refining the dataset

Through a random sampling approach, an extensive number of design variants were collected
for building the reference dataset used to developed our metamodels. However, this method
was used to assign values to the parameters varied in the parametric modeling, which are
different from the ones we have used for training our metamodels. Indeed, the model inputs
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7.5. Increase in design flexibility

were derived after the fact, i.e. once the design variants were modeled and their solar exposure
levels computed. This disconnect between the sampled design variables and input parameters
prevent us from controlling the distribution of the latter. Yet, it would be hard to start from
fixed input values from which to define design variants. For instance, if we were to fix the plot
ratio, form factor, window-to-floor ratio and other main parameters, it is not obvious how a
corresponding design could be modeled from such a set of values.

Still, it would be of interest to refine the sampling method and the general approach for
populating the dataset required to fit the metamodels. This is further discussed in section 8.2.

An alternative method for populating the database would consist in using available data from
recently built projects. This would likely require significant work to collect all information
needed, e.g. building plans, construction details and energy usage, including data often
unavailable for confidentiality reasons.

7.5 Increase in design flexibility

Since the workshops of October 2015, the prototype has undergone modifications. One major
change is the extended flexibility offered when defining the base case design through the
custom interface and Rhino program. The ranges defined by the user for each design variable,
defining the solution space within which the prototype searches for variants, was previously
being applied to all buildings. The upcoming version will allow specifying a building-specific
range, enabling more precision in the modeling and therefore producing variants closer to the
user’s expectations.

This extended flexibility will have to matched by the metamodels’ application range. Further
work will involve adding new data to the reference dataset, e.g. the workshop variants, to
inform and refine the predictive functions.

The current status of the forthcoming prototype’s interface is shown in Fig. 7.7. Aside from the
language change - the next workshop will be held in English - the only visible difference is the
rearrangement of the interface’s elements. However, the background code has been adjusted
to allow the above-mentioned functionality and to facilitate applying the same settings to
multiple buildings successively positioned.

7.6 Enhanced guidance and informative features of workflow

In its status as of the time of the workshops, the prototype’s GUI was still rather crude. Changes
were brought to the output performance graphs to address some of the participants’ com-
ments, in particular the difficulty in visualizing and comparing variants (see full list in Table
6.2). An example of the latest version of the graphs is illustrated in Fig. 7.8. Axes have been
fixed and a grid with a constant separation of 5 [units] was added, facilitating the visualization
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Figure 7.7 — New version of
the custom interface for user-
inputs (for comparison, see
previous version in Fig. 5.4).

Figure 7.8 — Example graph for
the new version of the perfor-
mance visualization, with fixed
axes allowing clearer comparison
between the design variants from
one run of the workflow, as well
as between iterations starting
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7.7. Revised workshop plan

Table 7.2 — Envisioned balance to compute an aggregated performance metric.

Demand Partial coverage through

Heating < Heat produced by ST collectors
Cooling <= Electricity produced by PV panels
(accounting for natural ventilation)

Artificial lighting < Electricity produced by PV panels

(exploiting daylight potential)

and comparison both across variants generated in one run of the prototype, as well as between
different iterations (starting from another base case design). The clearer visualization of the
relative difference in performance allows users to see not only which variants are better/worse,
but also which ones are not significantly different. This information can be useful when incor-
porating other performance criteria in the decision-making process, such as morphological
integration into the existing context, cost, etc.

As mentioned in section 6.1.2, potentially greater user-guidance could be achieved by provid-
ing an aggregated performance value, by merging the three criteria into an ‘autonomy’ metric
quantifying the balance between energy demand and production (see Table 7.2). This trans-
lation could ideally benefit from an hourly analysis of the different values and a conversion
into primary energy, which could allow computing additional performance metrics such as
CO, emissions. Both interventions would however lead to an increased complexity of the
whole assessment and pose new difficulties in the metamodeling approach. Alternatively,
other performance metrics could also be computed, e.g. the thermal comfort in terms of
overheating hours (replacing the cooling energy need yet preventing an aggregation) with a
detailed natural ventilation assessment through CFD simulation, and the UHI effect.

A goal-based approach with user-defined performance targets could be adopted, facilitated
by replacing the currently random population of the design space by an optimization-driven
search. Both user-guidance and interactivity could be enhanced in parallel, by incorporat-
ing the user’s preferences into the optimization process to guide the generation of design
alternatives. This is further discussed in chapter 8.

7.7 Revised workshop plan

From the lessons learned during the workshops and in parallel with the advancement of
the forthcoming prototype version, a revised plan will be devised for the next tests with
practitioners. The attention will be particularly placed on ensuring that results from each
phase, e.g. ranking tasks, can be confidently compared to draw clearer conclusions on the
added-value of using the prototype. According to the number of the participants, groups may
be formed and assigned to a different design task to allow a comparative analysis.
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Conclusion

8.1 Main outcomes and achievements

We began this thesis by highlighting the main challenges that remain in the specific field
of methods for supporting urban designers and architects incorporate energy performance
considerations early in their design process. In particular, a need was identified to facilitate
real-time assessment of neighborhood designs in relation to decisions whose impact extends
beyond the scale of the individual building.

This thesis has attempted to address this gap by proposing a design decision-support workflow
whose features were defined so as to provide multi-criteria performance-based guidance in
real-time, while respecting the ill-defined nature of early-phase meso-scale designs. Adopting
the emerging generative design approach, the integration of the workflow into a digital pro-
totype enabled us to demonstrate its accessibility among practitioners and its relevance to
the exploratory early design stage. This was made possible by the underlying performance
assessment engine, developed keeping in mind the limited available design information while
capturing its effect at the neighborhood level. At the core of this engine, and concurrently
of this thesis, are the daylight and energy neighborhood-scale metamodels, which repre-
sent a novel aspect of this research. The work was achieved by combining knowledge and
methods coming from different fields, ranging from urban design to machine learning, while
remaining cautious and attentive to the potential pitfalls or misinterpretations linked to such
a cross-disciplinary approach.

Coming back to the three main questions introduced at the beginning of this thesis in section
1.4, we can further detail the main outcomes:

1. How should we define the (energy/solar) performance of a (virtual) neighborhood and
what metrics should be used to quantify each performance aspect, in a way that captures
the interdependencies between buildings?

Through the literature review and investigation presented in chapters 2 and 3, lim-
itations associated to employing geometry- and/or irradiation-based parameters as
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204

performance indicators were highlighted. Despite their advantageous simplicity, we
observed that they lacked robustness and scope when used to compare and rank neigh-
borhood designs in terms of their energy and daylight performance. This knowledge
has led us to aim at ensuring a strong link to established performance metrics truly
capturing the solar potential: the heating and cooling needs for expressing the energy
required to maintain a comfortable indoor temperature, here associated to the (inverse
of) passive solar potential, the spatial Daylight Autonomy (sDA) as a measure of the
daylight conditions inside the buildings, and the energy production by photovoltaic
(PV) and solar thermal (ST) systems as quantifying the active solar potential.

. How can we efficiently evaluate these metrics considering the available (low) amount of

design information, in the context of a real-time interactive computer-based workflow?

The time-consuming evaluation of the energy and daylight metrics require detailed
building models and simulation assumptions, hindering their assessment at the con-
ceptual design phase. As an alternative to simulation at this exploratory early stage, we
have proposed in chapter 4 a data-driven method based on mathematical functions
that can predict to some level of accuracy the value of each metric. Building upon
the knowledge gained in chapter 3 when investigating the correlation between these
established metrics and simpler parameters, the latter were combined to obtain a set
of complementary information capturing the effect of urban morphology. As such, the
metamodels generated only require early-phase friendly design information and can
be seen as a temporary proxy of more advanced simulations that should nevertheless
be conducted later on in the process. This approach thus promotes a temporal spread
of the inclusion of energy-related considerations in design decision-making. Tested in
chapter 6, the predictive accuracy was judged as satisfying, particularly considering the
characteristics of the designs in the test set.

. What are the essential features of a design decision-support system, built around the

performance assessment engine (defined through the previous questions), that will make
it in line with the ill-defined nature of the design process?

We have identified features judged relevant and of interest in the context of this the-
sis, through reviews, surveys, as well as recent developments found in the literature.
Challenging the traditional generate-and-test workflow, we have adopted a generative
approach that allows constructing a sample of a design solution space, from simple
project-specific and user-defined inputs. These correspond to design variables that
are typically decided upon early-on, and for which an exploration of their effect on
the performance is highly desirable considering their strong influence on all criteria
here considered. Described in chapter 5, the developed workflow was implemented as
a digital tool to be tested by practitioners through workshops. This allowed distilling
the technical, metamodel-based performance assessment method into an accessible
and relevant format from the perspective of decision-makers. Results from the work-
shops, presented in chapter 6, demonstrate a solid potential of the prototype and of the
proposed design approach.



8.2. Application potential

8.2 Application potential

We have demonstrated, through the workshops outcomes, the potential of the proposed
workflow as a DDS tool that could be seamlessly integrated into the early design process of
practitioners. The focus has been placed on new neighborhood-scale projects, such as the
ones that can be found in urban design competition or in master plans (e.g. Plan Directeur
Localisé (PDL)). We argue that our method could provide support in these contexts both
beforehand and afterwards, by helping the concerned actors when defining the ‘rules’ to be
contained in urban planning instruments and competition briefs, while subsequently guiding
designers who must respect the above documents in their exploration of design alternatives,
decision-making, and communication. Moreover, the prototype could be adapted to become
a useful teaching tool addressed mainly to architecture students.

We can envision that a similar approach could be extended or modified to application in
renovation and renewal projects, considering the importance of current phenomena such as
the densification and renewal of European cities [Riera Pérez, 2016] and of brownfield areas
[Laprise et al., 2015].

Considering that 65% of the existing buildings in Switzerland were built before 1980 [OFS,
2014], it is indeed relevant to address the issues related to the renovation of the building
stock. In such cases, databases of existing buildings including renovated examples could
potentially be used to derive the metamodels. These could generate variants in the form of
renovation options at the building envelope level [Aguacil Moreno et al., 2016], complemented
by geometrical modifications through housing infill or roof raising strategies [Peronato, 2014].
The metamodels would predict the associated performance, having learned from existing
cases.

The application of the method to projects differing in terms of size, e.g. expressed through
the number/dimension of buildings, is theoretically possible. The validity of the metamodels
should however be further tested on small (one building) to large urban settings. Similarly, the
approach could be applied in other climates once the corresponding functions are developed,
unless a unique robust version (for each criterion) can be obtained by including factors captur-
ing the main climatic characteristics. This investigation was initiated through a collaborative
study [Nault et al., 2015c].

In addition to the concrete improvement avenues highlighted throughout the thesis and
in chapter 7, envisioned prospects for the future concern a revised string of actions for the
workflow and enhanced features of the prototype. Figure 8.1 depicts this future vision. In Fig.
8.1a, the workflow is modified so that the solution search, currently random, is integrated
to an optimizer such as the genetic algorithms offered by Octopus', a Grasshopper plug-in.
Accessing the background code of Radiance instead of passing through the front-end DIVA for
the irradiation simulation allows more flexibility in the number of design variants generated

Thttp:/ /www.grasshopper3d.com/group/octopus (last accessed on April 5, 2016)
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at each optimization iteration (see also section 5.1.2 and Fig. B.3 in the appendix). During
the process, users are given the chance to interact with the tool to select or discard specific
variants, guiding the optimization towards the desired solution space, based on user-specific
criteria. A similar approach was adopted by Mueller and Ochsendorf [2013] in the devel-
opment of structureFIT?, a web-based tool for incorporating structural considerations into
early architectural design, also exploiting metamodeling and optimization techniques. The
integration of an optimization-driven improvement-search mechanism could also facilitate
the inclusion of user-defined performance goals.

Figure 8.1c portrays the idea of a tool that either (i) continuously ‘learns’ by adding to its
database of neighborhood designs to cover areas in the solution space, e.g. in terms of
building typology and layout, that are currently unknown by the metamodels, or (ii) builds
case-specific metamodels by efficiently defining the designs - in terms of number and position
in the solution space - necessary to achieve a reasonable prediction accuracy. This latter
approach was adopted by Ritter et al. [2015] for building-level energy consumption prediction.

To deal with different climates, a library of metamodels could be developed, with associated
simulation settings corresponding to context-specific best practice values, e.g. in terms of
insulation levels. Another option would be to incorporate climate-based inputs into the
metamodels, as discussed earlier.

8.3 Outlook

In along-term perspective, the expansion of existing cities through the design of new neighbor-
hoods induces a need to take into account sustainability parameters to provide comfortable
housing and work places in harmony with the environment. Tools supporting the design of
such neighborhoods, based on the passive use of local resources and renewable energy, will
become key to the urban development of the future, not only making it possible to reduce
energy consumption, but offering better daylit and healthier living spaces for occupants.

This research casts a light on a wide range of development opportunities that could further
contribute toward achieving a sustainable built environment. By working at the junction
between distinct yet complementary fields, we believe it is possible to develop high-impact
methods and tools, for instance: by applying and automating powerful data generation,
analysis, treatment, and visualization techniques related to architectural modeling, energy
simulation, statistics, machine learning, and computer vision; by automating and linking
pieces of a workflow using existing tools and custom scripts to facilitate the user’s experience
and enhance user-interaction; by working on developing robust methods through the above-
mentioned actions instead of conducting case-specific studies with limited application and
generalization validity.

2http://digitalstructures.mit.edu/page/tools#structurefit (last accessed on April 5, 2016)
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current workflow.
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and predictive power of the metamodels.

Figure 8.1 — Vision for future development avenues.

We have attempted through this research to make a contribution to a specific niche, to promote
awareness and a performance-driven design approach within the process of decision-makers.
Through an interdisciplinary work, an effort was made to reach out to professionals, as a
step toward bringing our research to the practice world. Through its simple, design-oriented,
and time-efficiency functioning, the proposed workflow appears as a relevant method that
can complement other tools for incorporating crucial considerations throughout the design
process toward efficient and comfortable buildings.
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).\ Metamodels

A.1 Data analysis - Distributions and correlations

Figure A.1 shows the distribution each input in the energy and daylight datasets. Figure A.2
illustrates the relationship between each input and output for the corresponding dataset.
Reference to these graphs is made in section 4.4.
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A.2 Stepwise selection

Example output from the stepwiselm algorithm, for each type of model tested in section 4.5.3,
corresponding to an increasing level of complexity (see Table 4.11). Results are for the energy
metric.

% Constant model type

Linear regression model:
Energy ~ 1

Estimated Coefficients:
Estimate SE tStat pValue

(Intercept) 46.80 0.27 174.30 0.00
Number of observations: 624, Error degrees of freedom: 623
Root Mean Squared Error: 6.71

% Linear model type

Linear regression model:
Energy ~ [Linear formula with 21 terms in 20 predictors]

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 74.38 7.49 9.93 0.00
NorthFacRatio 6.63 3.17 2.09 0.04
FormFactor -10.62 1.29 -8.23 0.00
RooflrradPerFA 0.09 0.05 1.93 0.05
WestFaclrradPerFA 0.29 0.09 3.18 0.00
EnvelopelrradPerFA -0.08 0.05 -1.62 0.11
SiteCoverage 2.74 1.17 2.35 0.02
PlotRatio -1.09 0.22 -5.02 0.00
MeanEnvelopelrrad -0.12 0.01 —15.36 0.00
WestFacRatio 6.92 2.98 2.32 0.02
NorthFaclrradPerFA 0.50 0.05 9.13 0.00
MeanNorthFaclrrad —-0.04 0.01 -6.21 0.00
RoofRatio 84.71 6.70 12.64 0.00
MeanFaclrrad 0.14 0.02 7.47 0.00
MeanRooflrrad 0.01 0.00 1.89 0.06
SouthFaclrradPerFA 0.03 0.05 0.71 0.48
MeanWestFaclrrad —-0.04 0.01 -5.11 0.00
WEFRatio -16.79 15.87 -1.06 0.29
MeanEastFaclrrad -0.02 0.01 -2.27 0.02
MeanHeight 0.06 0.05 1.27 0.20
MeanSouthFaclrrad -0.03 0.00 -6.13 0.00

Number of observations: 624, Error degrees of freedom: 603
Root Mean Squared Error: 1.3

R-squared: 0.964, Adjusted R-Squared 0.962

F-statistic vs. constant model: 797, p-value = 0
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% Interactions model type

Linear regression model:
Energy ~ [Linear formula with 95 terms in 17 predictors]

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 321.35 130.62 2.46 0.01
FormFactor -3.34 34.49 -0.10 0.92
RooflrradPerFA —-0.08 0.75 -0.11 0.91
EnvelopelrradPerFA 0.15 0.65 0.22 0.82
SiteCoverage -130.87 37.31 -3.51 0.00
PlotRatio 11.20 3.66 3.06 0.00
MeanEnvelopelrrad -0.77 0.54 —1.44 0.15
EastFacIrradPerFA 0.26 1.05 0.25 0.80
WestFacRatio -81.19 44.13 -1.84 0.07
MeanNorthFaclrrad —-0.02 0.16 —-0.14 0.89
RoofRatio 1369.98 514.03 2.67 0.01
MeanFaclrrad -5.11 0.90 -5.67 0.00
MeanRooflrrad 0.02 0.02 0.80 0.42
SouthFaclrradPerFA 0.63 0.67 0.93 0.35
MeanWestFaclrrad 0.09 0.14 0.65 0.51
WFRatio —-214.85 313.01 -0.69 0.49
MeanEastFacIrrad 0.17 0.16 1.03 0.30
MeanSouthFaclrrad 0.09 0.16 0.56 0.57
FormFactor: RooflrradPerFA —4.20 0.94 —4.48 0.00
FormFactor: EnvelopelrradPerFA 4.40 0.95 4.64 0.00
FormFactor: SiteCoverage 14.67 14.25 1.03 0.30
FormFactor: PlotRatio -2.18 1.71 -1.27 0.20
FormFactor: MeanEnvelopelrrad 0.06 0.12 0.52 0.60
FormFactor: EastFacIrradPerFA 0.31 0.07 4.13 0.00
FormFactor: RoofRatio —311.42 119.14 -2.61 0.01
FormFactor: MeanWestFaclrrad 0.04 0.05 0.80 0.42
FormFactor : WFRatio —-542.62 204.46 —-2.65 0.01
FormFactor: MeanSouthFaclIrrad 0.05 0.04 1.24 0.21
RooflrradPerFA: EnvelopelrradPerFA —-0.00 0.00 -1.22 0.22
RooflrradPerFA: SiteCoverage -0.07 0.04 -1.70 0.09
RooflrradPerFA: MeanEnvelopelrrad -0.01 0.00 -2.71 0.01
RooflrradPerFA : EastFaclrradPerFA —-0.00 0.00 -0.41 0.68
RooflrradPerFA : WestFacRatio 0.79 0.22 3.58 0.00
RooflrradPerFA : MeanNorthFaclrrad —-0.00 0.00 —2.53 0.01
RooflrradPerFA: RoofRatio 2.96 1.48 2.00 0.05
RooflrradPerFA : MeanFaclrrad 0.01 0.00 1.72 0.09
RooflrradPerFA: SouthFaclrradPerFA 0.00 0.00 1.95 0.05
RooflrradPerFA : MeanWestFaclrrad -0.00 0.00 —-4.17 0.00
RooflrradPerFA : WFRatio 1.32 0.63 2.10 0.04
RooflrradPerFA : MeanEastFaclrrad —-0.00 0.00 -1.62 0.11
RooflIrradPerFA : MeanSouthFaclrrad 0.00 0.00 2.63 0.01
EnvelopelrradPerFA: PlotRatio -0.03 0.01 -5.32 0.00
EnvelopelrradPerFA: MeanEnvelopelrrad 0.01 0.00 2.62 0.01
EnvelopelrradPerFA: EastFaclrradPerFA 0.00 0.00 3.39 0.00
EnvelopelrradPerFA: WestFacRatio -0.53 0.21 —-2.50 0.01
EnvelopelrradPerFA: RoofRatio —-2.65 1.45 -1.83 0.07
EnvelopelrradPerFA:MeanFaclrrad —-0.00 0.00 —-1.00 0.32
EnvelopelrradPerFA: MeanWestFaclrrad 0.00 0.00 2.62 0.01
EnvelopelrradPerFA : WFRatio -1.01 0.29 —3.48 0.00
EnvelopelrradPerFA: MeanEastFaclrrad 0.00 0.00 1.29 0.20
EnvelopelrradPerFA : MeanSouthFaclrrad -0.00 0.00 -3.36 0.00
SiteCoverage: PlotRatio -1.39 1.21 -1.15 0.25
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Number of observations: 624, Error degrees of freedom: 529
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R-squared: 0.987,
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F-statistic vs. constant model: 431, p-value = 0
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A.2. Stepwise selection

% Quadratic model type

Linear regression model:

Energy ~ [Linear formula with

Estimated Coefficients:

99 terms in 18 predictors]

Estimate SE tStat  pValue
(Intercept) 491.78 110.96
NorthFacRatio 277.28 116.56
FormFactor -40.60 50.27
WestFaclrradPerFA -0.44 0.57
EnvelopelrradPerFA -0.02 0.04
SiteCoverage -173.23 29.34
PlotRatio 15.09 3.51
MeanEnvelopelrrad -0.20 0.24
EastFaclrradPerFA -0.24 0.67
NorthFaclrradPerFA 1.56 1.60
MeanNorthFaclrrad -0.10 0.06
RoofRatio 308.47 232.23
MeanFaclrrad -0.33 0.33
SouthFaclrradPerFA -1.02 0.76
MeanWestFaclrrad —-0.04 0.07
WFRatio —-108.07 440.92
MeanEastFaclrrad 0.07 0.11
MeanHeight -6.01 2.17
MeanSouthFaclrrad 0.03 0.07
NorthFacRatio : FormFactor —49.63 34.42
NorthFacRatio: WestFacIrradPerFA 1.13 0.87
NorthFacRatio: EnvelopelrradPerFA 0.43 0.06
NorthFacRatio: EastFaclrradPerFA -0.99 0.84
NorthFacRatio: RoofRatio —497.02 122.28
NorthFacRatio : WFRatio -1058.47 269.59
NorthFacRatio: MeanEastFaclrrad —-0.03 0.12
FormFactor: EnvelopelrradPerFA 0.03 0.05
FormFactor: SouthFaclrradPerFA 0.07 0.07
FormFactor : WFRatio -619.31 248.41
FormFactor: MeanEastFaclrrad 0.04 0.03
FormFactor : MeanHeight 1.91 0.63
FormFactor: MeanSouthFacIrrad 0.04 0.03
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EnvelopelrradPerFA: MeanSouthFaclrrad -0.00 0.00
SiteCoverage : MeanFaclrrad 0.39 0.05
SiteCoverage : WFRatio -21.73 40.57
PlotRatio : MeanFaclrrad —-0.02 0.01
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PlotRatio : MeanHeight

MeanEnvelopelrrad :
MeanEnvelopelrrad:
MeanEnvelopelrrad:
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NorthFaclrradPerFA:
NorthFacIrradPerFA:

NorthFaclrradPerFA

NorthFacIrradPerFA:
NorthFacIrradPerFA:
NorthFaclrradPerFA:

EastFaclrradPerFA
NorthFacIrradPerFA
RoofRatio
MeanFaclrrad
SouthFaclrradPerFA
MeanWestFaclrrad
MeanSouthFaclrrad
SouthFaclrradPerFA
MeanWestFaclrrad
MeanSouthFaclrrad
RoofRatio
MeanFaclrrad
MeanWestFaclrrad

: WFRatio
MeanEastFaclrrad
MeanHeight
MeanSouthFaclrrad

RoofRatio: MeanFaclrrad
RoofRatio: SouthFacIrradPerFA

RoofRatio : WFRatio

RoofRatio: MeanEastFaclrrad

RoofRatio : MeanSou

thFaclrrad

MeanFaclrrad: SouthFaclrradPerFA
MeanFaclrrad : MeanWestFaclrrad
MeanFaclrrad : WFRatio
MeanFaclrrad : MeanSouthFaclrrad

SouthFacIrradPerFA
SouthFaclrradPerFA

:WFRatio
:MeanHeight

SouthFaclrradPerFA : MeanSouthFaclrrad
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FormFactor/A2
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Number of observations: 624, Error degrees

Root Mean Squared
R-squared: 0.988,
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A.3. Interpretation - Main effects
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Prototype

B.1 Implementation

The following images are supporting material regarding the implementation of the prototype
described in section 5.1. The diagram of Fig. B.1 presents the internal functioning and re-
lationship between each part of the prototype. Figure B.2 illustrates the different building
configurations possible when combining the alignment, rotation and orientation specifica-
tions in the user-interface of Fig. 5.4. Figure B.3 is a screenshot of the DIVA cluster (see Fig.
B.1) holding 20 instances of the DIVA irradiation simulation component, i.e. one per design

variant generated by the prototype.

Function query

Function return

‘Hidden’
code

Graphical Parameters Building Solution DIVA Evaluation Solutions
user interface component class class cluster component component
Add building R
"§ New building |
Launch
simulation Generate N
solutions
VRS i ousspemsnia S
Irradiation
simulation
) Compute
) predictors
_________________________________ }
Query info of
solution i

>
Information
—

Figure B.1 - Implementation diagram showing the chronological communication between the different
parts composing the prototype (diagram by Mélanie Huck).
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Appendix B. Prototype
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B.1. Implementation

Figure B.3 - Irradiation cluster in Grasshopper, holding 20 instances of the DIVA irradiation simulation
component.
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Appendix B. Prototype

B.2 Static demo of prototype

The screenshots below illustrate the unfolding of the workflow through the use of the prototype,
starting from the Rhino and Grasshopper files prepared for the workshops. The numbered
items in the images represent user actions.

e Edt View Cuve Suface Soiid Meh Dimension Trnsform Tools Anshze Render Pancls Help

‘Click and drag to pan (Down Left Right Up In Out ): . . . . 1
a2 window o om (Al Dyramic Eents Facor In Out Seleced Target 1701y _Dyamic |
S Rhino file with base design (parcel + context)
- ,
‘Command: =)
‘Standerd | CPlanes | SetView ' Display = Select N-ulmVTmVun:rmVsmrmu  Solid Tools | Mesh Tools  Render Tools / Drafing  Newin V5. @

HDEEQUXDDﬂW%@DF@ﬁHﬂ‘@ <9.0.8,0,00 75,0,
| 8 Pt G oo § Smise e
H.m Y Nodes g5 Waerils, £ Wtica

T“‘- B Grasshoper | @0 Nemed Views &0 @
nE 30® ’[
Gty

[ ——

Grasshopper file with
workflow set-up

! L

—
Grasshopper - UrbenSOLve English Forthesss (3] (=)&)
Fie Edt View Display Solton Help

B = Hey@ 00

Double-click to
open interface

1. Open custom interface from |
‘Parameters’ component

e
’ ‘
4Main | 3 ActisPessit | 2_EclirageVeActit | 1_EclairogeVePassit| B 03007
Hsﬂr—@mnaﬁmnwvﬁmunnm[]m[]w
cPiane 20000 | wotors mEmmn [ 6ra Snap | Ortho | Planar | Osnap | SmartTrack | Gumball | RecoraHistory | Fier |CPUuse:0.4%

(a) Starting point: design context and parcel from the prepared Rhino file; Grasshopper file containing the
implemented workflow and custom plug-in, from which the custom interface can be opened.

] = =lel=]
File Edit View Curve Surface Sglid Mesh Dimension Iransform Tools Analyze Render Panels Help
e
w:::mmmmm Dynamic Extents Faclor In Out Selected Targat 1To1):_Dynamic CU stom inte rfa ce for q
‘Command: =}
Display  Viewport Layout | Visibility  Transform | Curve Tools ' Surface Tools  Solid Tools ' Mesh Tools  Render Tools ' Drafting ' NewinV5 | (23]
HDBHQETXDEIA“{“? S REAP e 5O 96,800 08, 1,0, "

| 8 Pt G putis s § Smisn e
H.m Y Nodes g5 Matrisls | £ Wetics

[— J [ va - ]

" 2. Select building typology, orientation | . .we = = el |
(for L-shaped), alignment for reference | [ssnen T
point (center vs corner) and rotation | | === 'l B g |, *e S of
ﬂ | :.a-m Jw
va
Okt
@y
0 ament . r
Aignement
@ ke © B Fotsion
s
wox 5 2 way [ [5]  MeDvamest 5 2
Max @ B My 0 ] MeDowkmel 8
wnzemy 0 E W0 5 E
Nzhow B MeDw &
| B

building reference point 1%

Toux doccupaton d so
708 miin oo =}
WSmaawm 20 ToSmotum B0 ]

[ ———

o
e
b diageir) [0 2]
LIPID
" 4 - =] esLirin

e LG ,

Bitmenisducortete  GH_ootete |

.0ein | 3 ActiVaPassf| 2 Ecaragelaacti | 1_EckrageVspessit | %
“Ewu«@mmeanmnmmumm[]wum
CPlane | x1506204 | y1698855 | 20000 | Welers | Empty | Grid Snap | Ortho | Planar | Osnap | Smartirack | Gumball | RecoraHistory | Fite |

(b) Start of user-input phase via the custom interface and Rhino window.
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B.2. Static demo of prototype

Fle Edt View Cuwe Suface Soid Mesh Dimension Insform Took Anslyze Render Pancls Help
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oose worldview (Top Boltom LeR Right Front Back Perspective TwoPointPerspecive )} _Perspective -
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(c) Definition of a first ‘abstracted building’ by positioning a reference point on the parcel.

=
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(Ghoose cooranate system (CPlane Word):_Wora 5
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Schematic visualization
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5. Continue user-input process TR
Zt Hauteus ditage ]
’ e
Perspective | 3_ActifVsPassit | 2_EclairageVeActf | 1 EclaiageVsPassi | 4 ‘:‘:‘ o
Hsuvumrmmmmnmmﬁm [ Kot [ Vetex () Project ] Dissble. = BT
CPlane | x1210417 | y1727730 | 20000 | Meters |EEmRY | Gria Snap | Ortho | Planar | Osnap | Smartirack | Gumoall | RecoraHistory | Fiter | FEDUAALT D LAUSANN

(d) A schematic view of each positioned building (numbered) is provided by the prototype.
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(e) Once the base case design has been completed (all reference points placed), the user must specify the
remaining inputs: the parameterization of the design (minimum and maximum design variable values).
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e
Q
2]
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(f) When the user launches the simulation, the prototype searches for valid design variants and computes the
required metamodel inputs (geometry- and irradiation-based parameters) for each one of them.
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(g) Following the performance assessment by the prototype, results can be visualized in different formats: an
irradiation map of the variant selected by the user via a slider; the relative performance in 2D graphs.
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(h) Additional outputs from the prototype are a Rhino model for each variant and an excel file containing the
performance data for all variants, all automatically exported in a folder.
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R ccnop

C.1 Questionnaires

The original French version of the pre- (initial) and post- (final) questionnaires to which
workshop participants had to answer are included in the following pages. They are introduced
in section 5.2.2, while answers are shown in section 6.1 and appendix C.4.

227



eIop
UoN 18 8|jl@ndaduod
saseyd

B1op
uoN 10 3|jlomdaouod
saseyd

PIRZIMIUOY
xnjeiq

18hSAd

(@] (@] 1esosa
OUIYY-104-YAIQ

olpmsuado
Jsep|ingubiseq

1091003

8|jenidaouod

e19p aseyd aseUd

(aane ‘jaameu abesrejod
ap (s)|nno sap/un daAe aoualiadxa | ap zaAe SNoA '9

SHIOMIOYIBA

avoony

3|jonidaouod

B19p 9seyd aseuq

anajeulp.o Jed 31SISSe UISSIP 3P (S)|1INO SIP/UN D9AE 30UBLIIAX3,| 3P ZOAE SNOA G

(s1s1] ] suep sed) zasinn snoa anb gg uonesiepouw ap (s)jno (s)aany

29||1e19p
19 a|jenidasuod

uoN
saseyd

avolyay

Wy

Jaddoyssein
dnyoievs

oulyy

9||ondaouoo
g aseyd

wLoy siy3 #p3

(enbupwe.ed
@€ uonesI[Ppow ap (S)[1IN0 Sap/un J9AR 92UDLIPAXD,| B ZOAR SNOA i

(I

$Ino2u0Y [

1a1enp ap ueld [

(9s112007) IN2Y08IQ Ueld ]

191enb np ajjay29,| e 19foad un e adionued efop zeae snop €

:]UB9YD? SBD 3] ‘99uaLIadX3,P SUUE,P NO SIOW 3P JIGWON

L JwwoO

(10j2yoeq NE3AIU (3)1UEIPNIY :X8) B]jpUUOISSB0Id 20USLIXD SUES |

inaiugbulp neaing un suep souaiedxa oaAe (3)uelpni3 ]

aws|ueqIn,p Neaing un suep souauadxa oaAe (3)uelpm3 ]

910911yo. p NEBING UN Suep 9ouaLadxe daAe (3)iueipm3 [

Bt

1uequn |
a1091yoly [

x 9]|duuoissajouid sauanpdx3g T

x ¢ (SuUIeWOp 13 NEaAIU) UOHEWLIO) 30 1S 3][aND “L

paJinbayy

[e1luUl 811BUUOIISBND

Appendix C. Workshop

228



ionnaires

C.1. Quest

sanbyoads
I poylaw ap apre,| e 440 snoa anb (s yoe (s)anny ‘L1

(2151 €| suep
sed) [a1njeu abeJiejo ua [anualod 3 JanjeA? Jnod zasi|in snoa anb (s)spoyisw (s)anny

— — — — EURNE]
@ @ @ o ueyNSuoy
suoejnuwig
~ -~ A A (Bunapusa,
= = = o 1X3) UoNesI[ensIA
—~ —~ —~ & sanbpsunay /
@) @ @) @ utew e| ap sa|bay
2alle1op 8||omdaouoo
uoN 10 9|jon1daoucd  99||Ie19p aseyd ase
saseyd Ud

[24nmeu a6 us d np 9, & Woddeu Jed aouaniadxs | ap zae snop QL

(18] e] suep sed) anbiwJayy 1ojuod ] 1anjeA? anod zasinn snoa anb (s)apoyigw (s)anny

auseIXe

ue}NSU0Y

O O O O suonenwis
(aumesgdwsy

(@) (@] (@) (@] ap anbiydesb

:X8) uones|ensin
sanblsunay /

- - - e utew ej ap sa|bay
a9le1op

uoN 19 9|)amdaouoo  99||IRI9p aseyd @ mmMMmocoo
saseyd Ud

(219 ua ayneyauns
e podde. Jed aoualiadxa | ap zaAe SNOA ‘6

4} 110ju02 Np

Q&
e| suep sed) jioe aejos [anualod 3] 1anjeA? anod zasi|in snoa anb (s)apoyigw (s)anny

aualxe
1ue}NSu0y

suonenwis

|os np 9.1}
1Xa) uonesijensin

sanbnsunay /
urew e| ap sa|bay

99||1e19p
UoN 19 9||2n)deouod e19p aseyd m__mwwmgzoo
saseyd Ud

(sanbiwiayy sinajdes ‘sanbjeyjonojoyd
xneauued) jnoe aJiejos [aRuajod np uonenjeay | e Loddes sed aouanadxa | ap zane SNoA '8

4

(a1sy
e| suep sed) yissed asejos [anuajod 3 JanjeAd Jnod zasijin snoa anb (s)apoyisw (s)anny

— — auseXa
~ ~ JUE}NSU0Y

suone|nwis

9]0S Np 9oeI)
X9) uonesijensin
— — sanbnsunaH /
w e| ap so|bay

8|]smdaouod

uoN 19 8jjomdadouod aseud

saseyd

e19p aseyd

(hissed abeyneyo

3] Jnod) yissed auiejos [anuajod np uonenjeay| e Woddes Jed aousuadxs,| ap zaAe snop *L

(a1s1) B| suep sed) zasijin snoa anb uonenuwis ap (s)no (s)anny

229



SULIBL [EUORIPPY - B0IAISG JO SWIB . - 9SNQY Hodey

1600 Aq PaSIOPUB J0U PBJEaI0 JOLIBU S! JUSIUOO SIU L Aq pasamod

‘suo4 8j6009 ybno.y) spiomssed Juqns 1oroN

« NP doys>I0M NE J)AUI 319 ZAAE SNOA Z|

Appendix C. Workshop

230



ionnaires

C.1. Quest

+ np doysxiom ne adioned zane snop

JUSWILIOD S3ANY ‘9

(019 ‘uonesij@pow ‘uonesijensia ‘aoepayul) adAjoroid ne poddes sed suonsabbng ‘g

dk

(019 ‘uonesijgpow

‘aoepi9)ul) d 9] ins b sa. 0 v

adfjojoud

9| Jed sguodde
— uonewJojul |
ap sousuled el B
adfioj01d

(@] (@] (@] (@] (@] np ayooidde |
op sousuied el B
adfioj01d

np uonesijin|

9p s10| 211ESS223U
sdway ne

np aoeB1UL|
adfioi01d

ploooep
pi0doe,q 1U PI020ES3P  PIODOE,P Sed
U3 IN

piodoep
Hejenol

pi000e,p
no} np sed

+ “"Hoddeu Jed yejsnes sa19 snop '€

piodoep
Wejeinol

piodoep
Wejeinol

wuoy sy} 1p3

(saurejos
sinayded 1@
sanbjejjonoloyd

O O @] o] xneauued)
Jnoe ale|os
|enuajod ne

- - - P [2neu

abesreoy, &

(wawassiploljal
19 abejneyo

@] (@) 9| Jnod a1biaug)
issed allejos
|snualod ne
piodoep ploooep
p1020e,q U pIOESDP  PIOITRPSE oo
us IN
x ""9l] @duewnopad

ap 2131110 np 13[ns ne aspuaidde p siwiad e snoa adAjoroad 80 ap uonesinn, 'z

uoisioap
op asud anoa
@] @] O o suep Jueljuod

sn|d npuai e snoa
Jeut} 1deouod
8110A 9oUBN|UI B
awsg|qoid

(@) (@] (@] (@] ne ayooidde
2110A 9oUBN|UI B
awsg|qoid

ne ayooidde
21104 suep
s8N sjuBWB|R
XNeaAnou

op alpuaidde p
siwiad e snoA

pioooep
pioooe,q 1U pI000BS9P  PI0dEP Sed
ua IN

pioode p
noy np sed

+ "adfjojoad 90 ap uones|nn L

palinbayx

[eul} aJieuuolnsanp

231



SWLIBL [EUORIPPY - B0IAIOG JO SWIB . - 9SNQY Hodey

1600 Aq PaSIOPUS 10U PB}EaId JOLIBU S! JUSIUOO SIU L Aq pasamod

‘suo4 9j6009 ybno.y) spiomssed Juqns 1oroN

Appendix C. Workshop

232



C.2. Slides

e ¥ )

ardiive

E <o 52193110 xne podded Jed syuawasse|) : Al 3seyd

anj05UDuN 10ddns 3] 210 JUBWSSOP

qr v er
PUEIECERY < sosodxa saiaiuo sion xne Loddes sed sjusLuasse] np uonewis3

aseyd

2NN 2191UDW 3P JUSWASSDP

saseyd 19 alleJoH

e ¥V )

airdiiee

E ¢ uoisap e g apie,p auogteld el 3p adAioi0id np uonesyAN : 1l 3seyd

) 10ddns 31 2anD ubisag

E ¢ @ouewIoIad 3p $3133140 S9P 33dWOd JueUd}

(32 ‘sj210180] ‘axanbeuw) s|2nsn $[1ANO 32 S3POYIFL JBAe USISAQ : | BSEYd

annnuy asaiuow ap ubjsaq

saseyd 19 d41eI0H

e ¥ )

ardiive

asaqwuks  0ZULT

Sa11EIUBWLIOD 13 SUOISSRIALI SIP 33021 JN0d UOISSNSIP 39 BAIBULONSAND ur

5213110 Xne Loddel Jed syuawasse|) : Al 3seyd

uoIsZP e & 3pie,p dwniojereld ef 3p adA1010.d np uone:

aseyd

anjosungi 110ddns aj 53D JuaWaSSDPD 32 UBISAQ

5950dx8 53193112 51013 XNne 1oddes Jed sUBWasSe Np UoNews3 | 1| 3seyd  OEUST R

w

asuewopad ap 313119 $3p 21dwod ueua)
(212 ‘sja1180] ‘ananbew) sjansn s|NO 12 S3poYIZW X3ne USIsaq : | 3seyd

203Nl 2191UDW 3P JUIWISSDJ) 32 UBISIA

uopdasuod ap awia|qosd 4ot

23uewIOpad 3P 52131142 19 UONaILOD AP BWIGOId NE UORINPOIIY|  OEYET

saseyd 19 aJleJoH

STOT 219010

ynen aljw3

—JaJojdx3 [bnsiy J4

Ja1enb ap uejd un,p uonndeduod ap snssad04d
9| suep uoISIIPP €| e aple,p awJosaleld saun,p 1sal

doysyiom

SIpI[S

(A

233



et ¥ WheN BW3 | §LOZ 81q00

airdiiee

(s@auuop suondo,p 31s1| uo|as)
sa|qelien usisap ap sasaweled

. . (s3uadelpe syuawieq ap sed ‘W € <)

oy SJUBLUIE] DU WNWIUIW DUEISIQ

xv

<L A .
>M\ X suolsuawiq

- 5 HEmummﬂm:Sume.

sjuBWIeq Sap suoisuawIq

’ ' . — sjuawineq ap aidojodA|

TR = i sjuaWIeq ap 2UqUION

19309dsau e sajuIesU0) 159N0-153-PNS-PION JUBWAUTY  »
ZW 00S 6T — 009 ZT :Jayoue|d ap adepns o

T—€'T :(SNI) [0S NP uones|inp 3dIpul

W pP/ 6 9||22Jed B 9p NS«

S3|qBIEA 12 SAIUIRIIUO)

1 ¥ J teN SIIWI | GLOZ 9GO0

ardiiee

135110[BA € S1IBA S308dSD XN9p 3.13u3
tonw:m‘_u 9P SOXE J3AB UOIXaUUO) «
(2u1pow) Juelsixe-a4d 21x2U0)  «

W P/ 6 3)|921ed B 3P 30BUNS

uonenys

e ¥ WeNew3 | G10Z 91010

ardiive

uonenys

m_s_.,m‘_au”“ o3 | Gi0z 04000 ;.z__w

OUIYY SUBP 3)IB) UOIESI[ENSIA

12 ‘syndui sa| Jijj19n2a4 nod (saddoysses unod ul-8nid) aoejiaiul aidold
anbiewaylew sgpow
elA (j24njeu a8euie|os 39 ‘J1poe ‘Jissed anbia8iaug) souewiopad el ap uonewnsy .
9511BLIOINE-ILISS MOJPIJOM o

anajesinn,|

Jed saiy09ds syndui,p JiJed e (solieu2ds) suoiin|os ap 20edsa un,p UoeL) .

J1210|dX3 |ENSIA J€TOS UBQGIM — BA|OSURGIN

Appendix C. Workshop

234



C.2. Slides

Difficile a reproduire dans l'outil

Facile a reproduire dans l'outil

LIPID

L

e

Volumes plus définis

L\

\

N\ \
Q\ O

LIPID

N
[

e

3 \ g
[ =
b A\ - & -
B B
= ==
W W
cTaREE || N = =it
cac 0000 g m :l
: Filagl N e )
,,,,,,,,,,,,,,,,,,,, WL /0 /e
= v gl Py B ) )
i P W g
I §§§§§ N
g @ )
£ R g
3 % & ¥
£ &

235



Appendix C. Workshop

LIPID

(Y]
e

Stratégie

Critéres de Performance

Eclairage naturel

Solaire passif

Chauffage - Refroidissement

Sur les toitures

LIPID

O =1

(V.4

\\

Stratégie

Critéres de Performance

Solaire actif

Eclairage naturel

Solaire passif

Potentiel de production
Photovoltaique et Thermique

Autor

Chauffage - Refroidissement

LIPID

9
L =0

236




C.2. Slides

et ¥
ardiive
owsea AW/YMY 7S T [2Injeu agelied3

(%06) 93Ue13UO2 3P S3|[eAIaY]
«% | ON|OSCE DIIPA SILUOD SILINSDI S| JDIPISUOD Sed U ‘I53} UOISIIN 44

« "2dAjo101d np Juswaddo|aAzp ne eianqLIU0d 32UBIPAXD DIION

[suonanJisul J10A]

*12-9||92 9P 9SIAJJ UOISIOA

aun no ‘y ajuelieA | e anbiuapl 2139 Inad Inb ‘g sjuelIEA BUN 31INSUD Z9}3BWNOS
‘[1INo,| suep ainpoidal

| ap JueABSS3 UD 3JIp-B-153,0 ‘Y @JUBLIEA 3J)OA INS JUBSE(] 3S U3 SUOIIN|OS

9p 2dedss,| zaso|dxa ‘(uo

9p e| e aple,p sw.ojale|d) adAroroud np apie,| v

(Yt uosiaua) 1 aseyd

et V)
airdiiee

anbuiiay] 12 anbie}joroloyd
uonanpoid ap [1UR10d ! - aBeyneys

Jnoe axelos joaneu a8esep3 yissed anejos

*l?

[9T Y214 J10A] JUBP2IR.d JUBWISSSE|D BJ10A

Z3SIA9J ‘S9UUOP SAJUBLIEA € SOP 9DUBWLIONAd B JUBUSIUIEW JUBSSIEUUOD UT “(

(ulwQT uouinud) || aseyd

et V)

airdiiee

anbjwiay] 32 anbeyjonojoyd
uopanpoid ap [a1U310d 1plosyay - a8eneyd

e anelos |oaneu a3 yissed auejos

|t

[eT 2yd14 J10A] "eoueWIOMRd Bp 349110

anbeyo e joddes Jed sauuop Sa1UBLIBA € S3] aNb ISUIE \f 9]UBLIBA BI10A Z3SSE|D B

(utwQt uouiAuz) || aseyd

et V)

ardiiee b=

([21ep] doysyiom Jaissop) a||224ed 19 91X23U0D d9AR 3Seq
ap 9japow 1@ (QyI0INY ‘oulyy ‘dnyaays) s|219150| SUILIdd AR SINdJRUIPIO -

ayoue|q 3|02 19 xa8es 3| Jadnod Jnod pneyd |1 e saulyIeN

weg ap sa8e19 xnap e ajus|eAinba (ww g) xabos ap sanbe|d

apanbew aJinJisuod nod [aglew 13 91xajuod np aanbely -

: uonisodsip e [aL1eN

[uondaouod ap 221219%3,| Bp S9UUOQ JI0A]

*90UeWIO0}Iad BP S2J)1ID SIP JUBW|edd
21dwod Jueua) slew ‘(3|qissod Np aInNsaw e| sUep) s|aNsn s|1IIN0 SOA 3p apie,| &

‘S|anigey $a191140 19 SIPOYIIW SOA UOJ3S — f dUelie — (d€) uSISap un J10AU0D

(Yt uoaiaua) | aseyd

237



airdiee

ardiive

asaqiuks  0ZULT

S.1JUBWILLIOD 39 SUOISSa AW S3P 23(0924 4N0d UOISSNISIP 12 uct

*(\V 91UBLIEA B| DP 91UBIDYIP 15D 3|2 IS) @ SUBLIEA S410A

A-zanole 15 ‘za11eYnos 3| SNOA Is (4T 19 BT) SIUIP2IId SIUBWISSED SOA ZISINDY

saseyd 12 alleioH (ulwoT UoJInuB) A BSeYd

Appendix C. Workshop

238



C.3. Supporting material

C.3 Supporting material

87 m

5

(il ]

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

L I P 1 D| gase de travail | Numéro de poste : ........
Feiomanesmesmes bvgn| WORKSHOP | 23 Octobre 2015 échelle: 1/1000 (A3)

Figure C.1 — Drawing base provided to participants in Phase A.

Figure C.2 — Rhino 3D model of the design task prepared for the workshops. Participants worked on the
central empty parcel.
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URBAN SOLAR VisUAL ExPLORER - URBANSOLVE . -ﬂ)ﬂ- @OLIPID

BETA VERSION] ECOLE POLYTECHNIQUE Interdisciplinary Laboratory of
FEDERALE DE LAUSANNE Performance-Integrated Design

Instructions - Inputs

1. Démarrer la capture vidéo de I'écran. | N ppe——

P —) “ 9]t g s

o T &

2. Maximiser la fenétre Rhino ‘Maquette_Workshop_Final.3dm’ o o o)

o e 5 Sk e e

P———— (=
3. Dans la fenétre Grasshopper, double cliquer sur l'icéne des Nomoe de b
Paramétres pour ouvrir l'interface UrbanSolve.

4. Création des batiments :
choississez d'abord la typologie,
I'alignement voulu (centre ou bord),

la rotation (0, 90, 180 et -90) et dans !
. L . [ Grcorlasmision | Valdores parométros
le cas de typologie en L, l'orientation. N e mbtrmioter T Vo aions
§) Mesh Tools  Render Tools  Drafing | NewinV5 | Batiments
0,0 7®,0, | [oT c
a L
|
™
q . °
centre bord P - r
(rotation 0)

Dimerons
Mox [5 ] wey [5E] MeDowel 5
Ve [0 Macy (O] MsD-vmel B F

wz WoD-os 5[]
vz B VexD-tas B[

\%—‘" (Créer plusieus bitimerts
Appuyez ensuite sur ‘Créer un batiment’ Positionnez le batiment en cliquant sur la parcelle dans la fenétre Rhino.
Répétez pour chaque batiment. Vous pouvez a tout moment (avant I'étape 6) bouger ou éliminer un point.

5. Ajuster les paramétres restants :

- Min et max pour les dimensions X, Y, Z (en nombre d'étages de 3 m) Rl I P

- Min et max pour la profondeur dans le cas de typologies en L ou en ilots . o

- Min et max pour I'lUS (déja fixé 8 1.3 et 2) @ - L '
© VokmeenlL V .

- Distance minimale a respecter entre batiments (3 m par défaut)

Afin de faciliter et accélérer le processus de recherche de solutions, bien slie= o
. MnX 15 may 15 |2
définir les paramétres par exemple a I'aide de quelques calculs. -
—
:Zz =)
el
jr— :
e
6. Appuyer sur‘Valider les paramétres’ et ensuite ‘Lancer la simulation’ Z o =2 e BRI
Vous devrez alors attendre un moment pendant que l'outil génére et jrmre OB i
évalue 20 solutions. o
- EE ¢ e
=
. ! (|

Batnerts ducotete GH_crtete
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(Plm @ ®LIPID

£COLE POLYTECHNIQUE G i vy o
FEDERALE DE LAUSANNE Perfomance-integrated Desgn

Instructions - Outputs/Visualisation

7. La visualisation des résultats se fait dans les différentes fenétres ('viewports’) de Rhino.
Pour faciliter la visualisation, minimiser la fenétre Grasshopper (double-click sur la barre du haut).

8. Les 3 graphes vous permettent de voir la performance relative
des 20 variantes (numérotées de 0 a 19). Chaque graphique

montre les résultats pour 2 des 3 critéeres de performance. 1

Pour chaque critére, le scénario avec la meilleure performance .

est identifié : . 3
Vert : meilleur potentiel énergétique passif i #
Orange : meilleur potentiel énergétique actif A % '+

Mauve : meilleur potentiel en éclairage naturel

s
- . s ) E 4
Les limites de I'axe de chaque critére sont calculées a partir | 8
A
du minimum et maximum obtenus sur I'ensemble des 20 solutions S 1%
pour ce critére en particulier. Ces limites changent donc a g 5
w
chaque exécution du programme (chaque nouvelle itération
. . Potentiel passif
‘Lancer la simulation’).
9.Vous pouvez visualiser un scénario en particulier, ainsi que
les valeurs relatives a ce scénario, a I'aide du curseur ('slider’)
‘Sélectionner une solution, qui se trouve dans
la fenétre Grasshopper intégrée a Rhino. e q
. . xS
Seyez patient e fait de-bougeriecursenr
-cause-un-temps-dattente- dansta-mise
-ajourde la solution affichée. SomeTin  mEnre

Surface de plancher 316 m2
Surface toale de terrain 974400 m2
Ratio s fenétres / tf plancher: 020

Truc : taper une commande

(ex :‘distance’) dans la fenétre Rhino
avant de bouger le curseur.

Longueur Y : 27m
HauteurZ 8 étage(s) de 3m

‘Workshop_[date]\Variantes3dm\’
Cela permet d’ouvrir un modéle .3dm pour un

) O reree Qo
JDaxavay

oy v W
B 950

scénario en particulier que l'on voudrait examiner
davantage et/ou utiliser ultérieurement.

Un fichier excel est également créé, contenant les
valeurs de performance pour chaque critére et scénario.

Attention, ces fichiers sont écrasés a chaque fois
qu'on relance la simulation (chaque fois que 20 nouvelles variantes sont créées).
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C.4. Results per participant

C.4 Results per participant

In this section, we present the results for each of the eight participants in a summary in-
cluding, in this order: responses to the initial questionnaire, simulated performance of the
variants along with ranking results for each phase, Variant A and B (when present) through
an irradiation and DA false-color map, and answers to the final questionnaire. A brief syn-
thesis concludes each part to highlight the main observations and, when relevant, issues
encountered by the participant.
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Appendix C. Workshop

Participant 1 - Architect / urban designer (15 years of experience)

Table C.1 - Participant 1’s (a) answers to the initial questionnaire and (b) results in the ranking phases
according to the simulated performance of each variant.

(a) Previous experience with tools and performance (b) Simulated performance of variants and ranking
evaluation. results.
‘ 1 ‘ iled ‘ h ‘ = Correctly ranked
Conceptual Detaile Bod I incorrectly ranked
Experience with...
. V1 V2 V3 | VA | VB T
Modeling tools| SketchUp, AutoCAD Simulated d
imulated energy nee
Simulation tools [kWE}/]mZFA] 440 | 436 | 37.1 | 39.0
Experience with evaluating... T“b Initial ranking :— 033
Passive solar  Rule-of-thumb heating R Inter. ranking 1
through:  vicalization heating Final ranking
Simulation Simulated sDA [%ya] | 63.7 | 62.6 | 57.5 | 54.4
ﬂ Ext. consultant Initial ranklng-:_ -0.33
Daylight Rule-of-thumb In.ter. ranklan 1
through:  visuatization Final ranking
. . Simulated energy
Simulation production [KWh/m?e] 61.3 | 56.4 | 60.8 | 61.9

Ext. consultant

- Initial ranking 0.67
T({Active solar Rule-of-thumb Inter. ranking 1

through: i i ation Final ranking ‘ ‘ ‘

Simulation

Ext. consultant

(a) VA - Irradiation map (b) VA - sDA map

Figure C.3 — Variant submitted by participant 1.
r- r:

Figure C.4 — Example variants produced by the prototype, showing the building dimensions issue
(screenshots of recorded session).
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C.4. Results per participant

Table C.2 — Participant 1’s answers to the final questionnaire.

neither
strongly agree nor strongly
disagree disagree disagree agree agree
The usage of this prototype...
allowed you to learn new elements useful in your approach to the problem O O O O ®
influenced your approach to the problem O O O @ O
influenced your final concept O O @ O
made you more confident in your decision-making O O O L ]
The usage of this prototype allowed you to learn about the performance criterion linked to...
the passive solar potential O ) L O
daylight O O @ O O
the active solar potential O O @ O O
You are satisfied regarding...
the facility of using the prototype O O O @ O
the prototype's interface O O O @ O
the time required when using the prototype O O O @ O
the relevance of the prototype's approach O O O @ O
the relevance of the information brought by the prototype O O O @ O

General comments
‘simple volume’ typology. The output table allows to easily identify optimal solutions.

Hard to use in practice in its current status due to difficulty in specifying realistic building dimensions for the

Suggestions Synthetic view of 20 solutions as output (pdf format). Ungroup ‘simple volume’ types for better dimension

control. Add parameter maximum distance between building. Add axis limits on graphs.

Issue This participant experienced some difficulties in re-creating something

similar to their VA when using the prototype and as such, has not pro-
vided a VB and final ranking. The source of the problem seems to lie
in the minimum and maximum y value required to cover the range of

building dimensions, from the narrow bars to the longer L-shaped (see y
dimension in Fig. C.3b). Indeed, as explained in section 5.1, the allowed
range in terms of x, y, z specified by the user is applied to all buildings. The

effect of the wide range in y caused the prototype to propose designs with

large buildings instead of the desired narrow bars. In light of these en-

countered difficulties, this participant explicitly mentioned answering the

final questionnaire based on the potential of the tool if further developed,

particularly to solve the problem of unrealistic building dimensions and

to allow reproducing with more accuracy the desired building typology

and layout.

Ranking Between the initial and intermediate ranking phases, we observe a clear

overall increase in the level of success in Table C.1b.
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Appendix C. Workshop

Participant 2 - Architect / urban designer (4 years of experience)

Table C.3 — Participant 2’s (a) answers to the initial questionnaire and (b) results in the ranking phases
according to the simulated performance of each variant.

(a) Previous experience with tools and performance

(b) Simulated performance of variants and ranking

evaluation. results.
‘ c 0 ‘D Ted ‘ Both [ Correctly ranked
onceptu ctaile ot I mcorrectly ranked
Experience with...
Modeling tools SketchUp, Vectorworks Vi V2 V3 VA | VB T
Simulation tools Simulated energyneed| ;| 436 | 371 | 409 | 307
[kWh/m?g,]
Experience with evaluating... . .
. Initial ranking 0.33
Passive solar Rule-of-thumb .
through: SR R Inter. ranking 0.67
Visualization Final ranking 0.80
ﬂ Simulation T{F Simulated sDA [%oral
Ext. consultant Initial ranking -0.33
Daylight Rule-of-thumb Inter. ranking 1
through: g tization Final ranking 1
Simulation Simulated energy
Ext. consultant production [KWh/m2ga] 61.3 | 56.4 | 60.8 | 59.3 | 58.1
Active solar Rule-of-thumb Initial ranking 0.67
T<\b hrough: ;¢ alization Inter. ranking 1
Simulation /6/ Final ranking‘ ‘ ‘ ‘ 1
Ext. consultant

Ilno
=

(b) VA - sDA map

.
IIOO
B

(d) VB - sDA map

(c) VB - Irradiation map

Figure C.5 — Variants submitted by participant 2.
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C.4. Results per participant

Table C.4 — Participant 2’s answers to the final questionnaire.

neither
strongly agree nor strongly
disagree disagree disagree agree agree

The usage of this prototype...

allowed you to learn new elements useful in your approach to the problem D, D, @ O

influenced your approach to the problem O D, D, @ O

influenced your final concept O @ O O

made you more confident in your decision-making O D D, @ O
The usage of this prototype allowed you to learn about the performance criterion linked to...

the passive solar potential O ) ) @ O

daylight O D D @ O

the active solar potential O O O @ O
You are satisfied regarding...

the facility of using the prototype O O O @ O

the prototype's interface O O O @ O

the time required when using the prototype O O O @ O

the relevance of the prototype's approach O @ D) _ O

the relevance of the information brought by the prototype O D D, @ O

The building generation is too restrictive, it was impossible to recreate my initial concept. The interface is

General comments simple to use and could be more complex if it allows modeling with more adequacy. Visualization is interesting

although a little bit slow.

Be able to distinguish between bars and more cubic volumes and to specify x, y, z for each building. Output a
Suggestions pdf to visualize all variants with a notation system with respect to an acceptable reference value. Be able to
assess the exact initial variant to compare.

Issue This participant also experienced some difficulties in re-creating some-
thing similar to their VA when using the prototype. In addition to the
issues explained earlier linked to the dimension ranges, the problem may
have been caused also by the bar being positioned ‘within’ the L-shaped
building. This participant’s VB is thus not derived from VA, but rather
from a design they were able to explore using the tool.

Ranking Between the initial and intermediate ranking phases, we observe an in-
crease in the level of success in Table C.3b, particularly for the daylight
and active solar criteria. The final ranking is as good or better than the
intermediate one.

Performance VB is similar to VA for the energy need and production criteria, while
having a higher sDA value, as can be visualized in Fig. C.5.
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Appendix C. Workshop

Participant 3 - Architect (8 years of experience)

Table C.5 — Participant 3’s (a) answers to the initial questionnaire and (b) results in the ranking phases
according to the simulated performance of each variant.

(a) Previous experience with tools and performance
evaluation.

‘ Conceptual ‘ Detailed ‘ Both ‘
Experience with...
Modeling tools Vectorworks
Simulation tools Lesosai

Experience with evaluating...

Passive solar Rule-of-thumb
through:

Visualization

1 Simulation

Ext. consultant| heating, thermal comfort

Daylight Rule-of-thumb

T&i through: Visualization
Simulation
Ext. consultant X

Active solar Rule-of-thumb

T£ {hrough: Visualization
Simulation
Ext. consultant X

(c) VB - Irradiation map

(b) Simulated performance of variants and ranking
results.

&
&

&

[ Correctly ranked
I 1ncorrectly ranked

Vl | V2 | V3 | VA | VB T
Simulated iﬂs&ﬁ’;gﬁ:j 440 | 436 | 37.1 | 408 | 447
Initial ranking -0.33
i 1 In-ter. rank%ng 1
Final ranking 0.40
Simulated sDA [%ga] | 63.7 | 62.6 | 57.5 | 62.1 | 61.4
Initial ranking 0.33
Inter. ranking 0.33
Final ranking 0.40
pro dui‘é‘;‘r‘llﬁzsgh‘jﬁ{g 61.3 | 564 | 60.8 | 723 | 593
Initial ranking 0.67
Inter. ranking 1
ﬁ’ Final ranking 0

(b) VA - sDA map

-

(d) VB - sDA map

Figure C.6 — Variants submitted by participant 3.
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C.4. Results per participant

Table C.6 — Participant 3’s answers to the final questionnaire.

neither
strongly agree nor strongly
disagree disagree disagree agree agree
The usage of this prototype...
allowed you to learn new elements useful in your approach to the problem D, D, @ O
influenced your approach to the problem O ' 7 @ O
influenced your final concept O O O @ O
made you more confident in your decision-making O D D, @ O
The usage of this prototype allowed you to learn about the performance criterion linked to...
the passive solar potential O ) ) @ O
daylight O D D @ O
the active solar potential O O O O )
You are satisfied regarding...
the facility of using the prototype O O @ O
the prototype's interface O O O @ O
the time required when using the prototype O O L O O
the relevance of the prototype's approach O @ D _ O
the relevance of the information brought by the prototype O D @ O

The interface is directly usable without much preliminary instructions. Visualization in Rhino is pleasant and

General comments directly usable. I realized that my intuition is not necessarily just and that this type of decision-support tool

the tool, which is complementary to other classical design tools.

would be very useful to me. The easy handling and intuitive interface are perfectly adapted for the purpose of

Suggestions ‘ More complementary typologies when modeling.

Ranking Between the initial and intermediate ranking phases, we observe an in-

crease in the level of success in Table C.5b, particularly for the energy need

and production criteria. The final ranking is better than the intermediate

one for the sDA and worse for the other two criteria. For the active solar

potential, the participant may have been misled by the erroneous values

displayed by the tool, due to the mistake in the algorithm as explained in

section 6.1.

Performance VB is worse than VA for the energy need and production criteria, while

very close in terms of sDA.
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Appendix C. Workshop

Participant 4 - Engineer (3 years of experience)

Table C.7 — Participant 4’s (a) answers to the initial questionnaire and (b) results in the ranking phases
according to the simulated performance of each variant.

(a) Previous experience with tools and performance (b) Simulated performance of variants and ranking

evaluation. results.
Conceptual ‘ Detailed ‘ Both ‘ E ;T;f:;gl;a:k:ki d
Experience with...
Modeling tools|  ArchiCAD, AutoCAD SketchUp . VI | V2 | V3 | VA | VB u
Simulation tools Lesosai Simulated iﬁm;‘;’e? 44.0 | 436 | 37.1 | 39.9 | 43.0
Experience with evaluating... ﬁg Initial rankil:g 0
Passive solar Rule-of-thumb| heating, thermal comfort Inter. ranking -
through: Visualization 1 Final rankin: -
1 Simulation T{ Simulated SDA [%ga]| 63.7 53.0 | 56.0
Ext. consultant Initial ranking ]

Daylight Rule-of-thumb

T£ through:

Visualization

Simulation X

Ext. consultant

Active solar Rule-of-thumb X
Visualization
Simulation

T(\b through:
Qﬁ Ext. consultant

(c) VB - Irradiation map

Inter. ranking -
Final ranking
Simulated energy
& producton kWhimy
Initial ranking
Inter. ranking -

ﬁ’ Final ranking

{1

(b) VA - sDA map

;0

(d) VB - sDA map

Figure C.7 — Variants submitted by participant 4.




C.4. Results per participant

Table C.8 — Participant 4’s answers to the final questionnaire.

neither
strongly agree nor strongly
disagree disagree disagree agree agree
The usage of this prototype...
allowed you to learn new elements useful in your approach to the problem O ®
influenced your approach to the problem O L ]
influenced your final concept O O O @
made you more confident in your decision-making O L ]
The usage of this prototype allowed you to learn about the performance criterion linked to...
the passive solar potential O ) ) @ O
daylight O @ O
the active solar potential O O O ) ®)
You are satisfied regarding...
the facility of using the prototype O O O O @
the prototype's interface O O O @ O
the time required when using the prototype O O O O L J
the relevance of the prototype's approach O ) @
the relevance of the information brought by the prototype O @ O

Interesting exercise, somewhat unsettling to ask a computer to re-create by itself a representation of what we
General comments have imagined. Very interactive process, very positive for the evolution of the typology with respect to the three
performance axes. Can be a very interesting tool to work on the first sketches taking into account the future
solar performances.

Suggestions Differentiate in the interface between parameters that are building-specific versus those that apply to the
whole design.

Ranking There is an increase in the level of success between the initial and inter-
mediate ranking phases in Table C.7b, with the final ranking similar to the
intermediate one.

Performance VB has a slightly higher daylight and active solar potential than VA.
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Appendix C. Workshop

Participant 5 - Architect (6 years of experience)

Table C.9 — Participant 5’s (a) answers to the initial questionnaire and (b) results in the ranking phases
according to the simulated performance of each variant.

(a) Previous experience with tools and performance eval-
uation.

Conceptual ‘ Detailed ‘ Both
Experience with...
Modeling tools| Rhino ‘ ‘ AutoCAD ‘
Simulation tools‘ ‘ ‘ Lesosai ‘

Experience with evaluating...
Passive solar Rule-of-thumb| heating, thermal comfort
through: Visualization heating

Simulation

ﬂ Ext. consultant heating, thermal comfort

"

Daylight Rule-of-thumb

T£ through: yisualization
Simulation
Ext. X

Active solar Rule-of-thumb
through:  vigualization

B

Simulation

(b) Simulated performance of variants and rank-
ing results.
[T Correctly ranked
[ incorrectly ranked
VI | V2 | V3 | VA | VB | 1
Simulated energy need
T{ [KWh/m?a] 44.0 | 43.6 | 37.1 | 40.6
tnital raking
ﬂ Inter. ranking 1
Final ranking
T‘{ Simulated sDA [%gal| 63.7 | 62.6 | 57.5 | 46.1

it vanking N | 0%

Inter. ranking 1
Final ranking

Simulated energy
production [(kWh/m?s]
Initial ranking 1

Inter. ranking 1

/6/ Final ranking

£ e x

e

v 4

T oz

A
I

ZW/UMY

(a) VA - Irradiation map

-

eF 0

(b) VA - sDA map

Figure C.8 — Variant submitted by participant 5.

252



C.4. Results per participant

Table C.10 — Participant 5’s answers to the final questionnaire.

neither
strongly agree nor strongly
disagree disagree disagree agree agree
The usage of this prototype...
allowed you to learn new elements useful in your approach to the problem D, D, @ O
influenced your approach to the problem O D, D, @ O
influenced your final concept O O @ O
made you more confident in your decision-making O D @ _ O
The usage of this prototype allowed you to learn about the performance criterion linked to...
the passive solar potential O ) ) L J
daylight O D D, L ]
the active solar potential O O O O )
You are satisfied regarding...
the facility of using the prototype O O O @
the prototype's interface O O O L ]
the time required when using the prototype O O O O L J
the relevance of the prototype's approach O D) D) @ O
the relevance of the information brought by the prototype O D D, @ O

General comments

Suggestions

Issue

Ranking

Pleasant interface. Results quickly and easily comparable. Pleasant visualization, except for graphs (hard to
read). Very promising and interesting tool.

Integrate program types. Increase resolution in decisions on dimensions for individual buildings. Be able to
integrate street network, green areas, facade materials. Possibility of importing 3D models,.

This participant experienced some difficulties in re-creating something
similar to their VA when using the prototype. They did not provide a
VB and final ranking. The problem is likely to have been caused by the
complexity of the design, with multiple and closely positioned buildings
of varying dimensions. Following the user-inputs, the prototype kept
searching for valid solutions and had to be forced to restart considering
the limited duration of the workshop.

There is an increase in the level of success between the initial and inter-
mediate ranking phases in Table C.9b for the passive solar and daylight
criteria, the active solar showing a perfect ranking in both phases.
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Appendix C. Workshop

Participant 6 - Architect / Urban designer (6 years of experience)

Table C.11 - Participant 6’s (a) answers to the initial questionnaire and (b) results in the ranking phases

according to the simulated performance of each variant.

(a) Previous experience with tools and performance evalu-

ation.
‘ Conceptual ‘ Detailed ‘ Both
Experience with...
Modeling tools| Rhino, Grasshopper, Vectorworks | ‘ AutoCAD
Simulation tools‘ ‘ Lesosai ‘

Experience with evaluating...

Passive solar Rule-of-thumb

heating

thermal comfort

through:  yigualization

heating

thermal comfort

Simulation

R Ext. consultant

heating, thermal comfort

Daylight Rule-of-thumb

X

T{ through:  visualization
Simulation
Ext. consultant

Active solar Rule-of-thumb

through:

Visualization

Simulation

jS’ Ext. consultant

(a) VA - Irradiation map
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(b) Simulated performance of variants and rank-

ing results.

Simulated energy need

T(F [KWh/m?p]
Initial ranking

g Inter. ranking

Final ranking

[ Correctly ranked
[ incorrectly ranked

VI | V2 | V3 | VA

44.0 | 43.6 | 37.1 | 51.9

T{ Simulated sDA [%gal
Initial ranking
Inter. ranking
Final ranking

63.7 | 62.6 | 57.5 | 73.3

/o

Simulated energy
production [kWh/m?]
Initial ranking

Inter. ranking

Final ranking

- |

(b) VA - sDA map

Figure C.9 — Variant submitted by participant 6.



C.4. Results per participant

Table C.12 — Participant 6's answers to the final questionnaire.

neither
strongly agree nor strongly
disagree disagree disagree agree agree
The usage of this prototype...
allowed you to learn new elements useful in your approach to the problem D, D, @ O
influenced your approach to the problem O D, D, @ O
influenced your final concept O O O @
made you more confident in your decision-making O D D, @ O
The usage of this prototype allowed you to learn about the performance criterion linked to...
the passive solar potential O ) ) @ O
daylight O ), D @ O
the active solar potential O O O @ O
You are satisfied regarding...
the facility of using the prototype O O O @
the prototype's interface O O O O L ]
the time required when using the prototype O O O O L ]
the relevance of the prototype's approach O D) D @
the relevance of the information brought by the prototype O D D @

General comments Easy and intuitive.

. With increased modeling capabilities, the development of unusual typologies can become very interesting with
Suggestions this tool. § cap 13 typolog ry g

Issue This participant could not re-creating something similar to their VA when
using the prototype and did not provide a VB and final ranking. Simi-
larly to participant 5, the complexity of the design with nested L-shaped
buildings could seemingly not be handled by the prototype, which kept
searching for valid solutions.

Ranking The active solar potential shows a perfect ranking for both phases, while
there is an increase in the level of success between the initial and interme-
diate rankings for the other two criteria in Table C.11b.
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Appendix C. Workshop

Participant 7 - Architect / Urban designer (7.5 years of experience)

Table C.13 - Participant 7’s (a) answers to the initial questionnaire and (b) results in the ranking phases

according to the simulated performance of each variant.

(a) Previous experience with tools and performance evalua-

tion.

Conceptual

‘ Detailed ‘ Both

Experience with...

Modeling tools| Rhino, SketchUp, ArchiCAD, Vectorworks |

[ AutocaD, ArehicaD |

Simulation muls‘

Experience with evaluating...

Passive solar Rule-of-thumb

through:  vigualization

heating

Simulation

thermal comfort

b o

thermal comfort

heating

Daylight Rule-of-thumb
Visualization
Simulation|

T£ through:
a Ext. consultant|

Active solar Rule-of-thumb

T‘F hrough:  vigatization
Simulation
s

(c) VB - Irradiation map

(b) Simulated performance of variants and rank-

ing results.

Simulated energy need

T\)\i [KWh/m?p,)
Initial ranking

1 R In'ler. rank%ng

Final ranking

T‘{ Simulated sDA [%ral
Initial ranking

Inter. ranking

Final rankin,
Simulated energy
production [kWh/m?s]
Initial ranking
Inter. ranking
ﬁ Final ranking

[ Correctly ranked
[ Incorrectly ranked

V1 V2 V3 VA VB T
44.0 | 436 | 37.1 39.3 38.9
0.67
0.33
0.60
63.7 | 626 | 57.5 57.0 | 53.6
0
0.33
0.20
61.3 | 56.4 | 60.8 | 64.7 | 60.8
1
1

(b) VA - sDA map

(d) VB - sDA map

Figure C.10 — Variants submitted by participant 7.




C.4. Results per participant

Table C.14 — Participant 7’s answers to the final questionnaire.

neither
strongly agree nor strongly
disagree disagree disagree agree agree
The usage of this prototype...
allowed you to learn new elements useful in your approach to the problem O ®
influenced your approach to the problem O @ O
influenced your final concept O O O L g O
made you more confident in your decision-making O @ g O
The usage of this prototype allowed you to learn about the performance criterion linked to...
the passive solar potential O ) ) @ O
daylight O @ O
the active solar potential O O O ] O
You are satisfied regarding...
the facility of using the prototype O O O @ O
the prototype's interface O O O @ O
the time required when using the prototype O O O @ O
the relevance of the prototype's approach O @ g O
the relevance of the information brought by the prototype O @ O

Interesting and useful tool since it allows evaluating multiple variants through criteria that are not often
present when designing an urban form at the beginning of a project. The impression I got is that the tool does
not try to impose an optimal urban form based on energy-related criteria, which are surely important for
sustainable development, but that do not necessarily generate ‘urbanity’ and quality of public spaces (which
remain priorities in the urban project). Rather, the tool wants to attract the attention of the user on elements of
thought that will anyway have to be integrated into the project. This tool allows addressing these in advance.

General comments

The tool should not propose buildings that cannot be assigned a residential or other function due to their

Suggestlons dimensions. The interface should allow more freedom in defining built forms.

Ranking Table C.13b displays no striking differences between the ranking phases.
For the active solar criterion, the participant may have been misguided
by the tool in the final ranking phase, due to the bug in the algorithm as
mentioned earlier.

Performance VB is slightly worse than VA in terms of daylight and active solar potential.
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Appendix C. Workshop

Participant 8 - Architect (2 years of experience)

Table C.15 - Participant 8’s (a) answers to the initial questionnaire and (b) results in the ranking phases
according to the simulated performance of each variant.

(a) Previous experience with tools and performance eval- (b) Simulated performance of variants and rank-
uation. ing results.

‘ [T Correctly ranked

tual Detailed Both
‘ Conceptu: ‘ etaile: ‘ 0 I Incorrectly ranked

Experience with...
Modeling tools| SketchUp, Grasshopper, Revit | [ Rhino, AutocaD | VI | V2 | V3 | VA | VB | t
Si.mulationtools‘ ‘ ‘ Ecotect ‘ Simulated energyn(zed 44.0 | 436 | 37.1 | 41.6 | 44.8
. . . [kWh/m?®g,]
Experience with evaluating... L. .
Passive solar Rule-of-thumb| heating, thermal comfort IImtlal ranﬁng
. nter. rankin
through: Visualization heating ﬂ . .g
Final ranking ]
Simulation heating
ﬂ Simulated sDA [%gal | 63.7 45.1
Ext. consultant heating thermal comfort
Daylight Rule-of-thumb x IImtnal ranl;ng 1
. nter. rankin
through:  vigualization ) 8
Final ranking
Simulation X si lated
1mulated energy
Ext. consultant N production (KWh/m’s.] 613 | 56.4 | 60.8 | 77.6 | 87.3
Active solar Rule-of-thumb X Initial ranking 1
through: isualizati
8! Visualization X Inter. ranking 1
Simuaion : 55 Final ranking R 0.0
ﬁ/ Ext. consultant x

v" > e .
P on’ a8 T
L - L

(a) VA - Irradiation map (b) VA - sDA map

v'-/.v, p & =

q, = I

I v
o : Io

(c) VB - Irradiation map (d) VB - sDA map

ZW/UMY

/UMY

Figure C.11 - Variants submitted by participant 8.
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C.4. Results per participant

Table C.16 — Participant 8’s answers to the final questionnaire.

neither
strongly agree nor strongly
disagree disagree disagree agree agree
The usage of this prototype...
allowed you to learn new elements useful in your approach to the problem D, D, @ O
influenced your approach to the problem O D, D, @ O
influenced your final concept O O O @
made you more confident in your decision-making O D D, @
The usage of this prototype allowed you to learn about the performance criterion linked to...
the passive solar potential O ) ) @ O
daylight O D D L ]
the active solar potential O O O O
You are satisfied regarding...
the facility of using the prototype O O O @ O
the prototype's interface O O O L ]
the time required when using the prototype O O O O L J
the relevance of the prototype's approach O D @ O
the relevance of the information brought by the prototype O D D, @ O
General comments The t.ool V\{OI](S very \{vell, we only have to understand the possibilities in terms of available form and the
relation with our variant A.
Directly see on the buildings a window with their dimensions. Be able to see our initial design as a background
Suggestions image. Have a middle or entrance point when positioning buildings. Be able to visualize the shadows on the
ground (open space).
Ranking There is an increase in the level of success between the initial and inter-

mediate ranking phases for the energy need and daylight criteria in Table
C.15b. The final ranking is similar to the intermediate one for the sDA,
but worse for the energy need and production, the latter possibly caused
by the erroneous values seen by the participant.

Performance VB is better in terms of daylight and active solar potential.
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Acronyms

ach air changes per hour. 110
ANN artificial neural networks. 91, 93, 95

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers. 34

BIM building information modeling. 31, 33

BPS building performance simulation. xi, 8, 14, 17, 19, 36

CA(A)D computer-aided (architectural) design/drafting. 14, 15, 17, 20, 22, 28, 31, 33, 41

CFD computational fluid dynamics. 30, 43, 109, 148

DA Daylight Autonomy. xiv, 31, 65, 67, 224

DDS design decision-support. ix, xii, 9-11, 13, 19-21, 36, 44-47, 54, 85, 87, 89, 138, 143, 146,
147, 149, 165, 175, 179, 183, 185, 187, 191-193

DEM digital elevation model. xv, 23, 26, 99
DF Daylight Factor. 27, 29, 31

DHW Domestic Hot Water. 63, 143

DOE US Department of Energy. 17

DoE Design of Experiment. xv, 95, 106, 144
EU European Union. 1
FAR Floor Area Ratio. 24, 47, 58

GA genetic algorithms. 38, 39, 91, 93, 95, 148, 193
GHG greenhouse gases. 1, 2
GIS geographic information system. 22, 28, 35, 95

GP Gaussian Processes. xvii, xviii, xxii, 95, 141, 142, 183, 185
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Acronyms

GUI graphical user interface. 14
HVAC Heating, Ventilation and Air Conditioning. 64
IEA International Energy Agency. 15, 17

LCA life cycle analysis. 15
LoD Level of Detail. 53, 54, 58, 59, 97

LT Lighting and Thermal. xii, 25, 26, 35
MIT Massachusetts Institute of Technology. 33, 36
NZEB Net Zero-Energy Building. 17

PDL Plan Directeur Localisé. xi, xv, xviii, xxi, 4, 6, 50, 57, 97, 98, 166, 193
PDP Partial Dependence Plot. 135
PercErr Percentage Error. 123, 124, 139

PV photovoltaic. xiv, xxi, 15, 28, 29, 45, 49, 60-63, 69, 70, 76-78, 85, 143, 158, 192

R? Coefficient of Determination. 123-126, 139, 182, 183

RMSE Root Mean Square Error. 123-126, 130, 132, 139, 182, 183

sDA spatial Daylight Autonomy. xiv—xvi, xviii, 48, 65, 67, 74-76, 79, 81-85, 111, 116, 121, 123,
143, 153, 169, 170, 192, 225, 227-231, 233, 235, 237, 239, 240

SE Solar Envelope. xii, 21-24, 43

SHC Solar Heating & Cooling programme. 15

SIA Société Suisse des ingénieurs et architectes. xvi, 2, 5, 33, 109, 113, 116, 117
SSE Sum of Squared Error. 124

SST Total Sum of Squares. 124

ST solar thermal. xiv, xxi, 15, 28, 29, 45, 49, 60-63, 69, 70, 77, 78, 85, 143, 158, 192
std Standard Deviation. 130, 135, 180, 182

SV Solar Volume. 22

SVF sky view factor. 23, 24, 30

SVM support vector machines. 91, 93

UHI urban heat island. 23
UK United Kingdom. 5

US United States. 5, 22, 28, 95
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