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Abstract
In light of the acknowledged need for a transition toward sustainable cities, neighborhoods and

buildings, urban planners, architects and engineers have to comply with evermore demanding

energy regulations. These decision-makers must be supported early-on in their process by

adequate methods and tools. Indeed, early-design decisions, which concern parameters

linked to the building form and urban layout, strongly dictate the solar exposure levels of

buildings, in turn influencing their energy need (e.g. for heating and cooling) and production

potential (e.g. through on-site active solar systems). Despite the spread of existing digitalized

performance assessment methods, limitations remain, withholding their integration into the

early design process. These considerations lay down the context within which this doctoral

research was carried out.

The main objective of this thesis is the development of a performance-based workflow to

support decision-making in early-design neighborhood projects. The performance is here

defined through three criteria: (i) the daylight potential, quantified by the spatial daylight

autonomy achieved on the ground-floor level (likely to represent a conservative value), (ii) the

passive solar potential, quantified by the annual energy need for space heating and cooling

(given certain assumptions e.g. on the insulation level), and (iii) the active solar potential,

quantified by the annual thermal and photovoltaic energy production on site.

The research process consisted of two main phases. First, the development of a performance

assessment engine allowing real-time evaluation of an ensemble of buildings. Second, the

integration of this method into a decision-support workflow, taking the form of a digital

prototype that was tested among practitioners. The work particularly focused on the Swiss

context in terms of design practices and climate, although its extension to other locations is

considered straightforward.

For the first phase, a metamodeling approach was adopted to circumvent the limitations

associated to simulations involving solving physics-based equations. Mathematical functions

were obtained to predict the daylight and energy performance of a neighborhood, from a

series of geometry- and irradiation-based parameters, easily computable at the early-design

phase. To derive these functions (or metamodels), a neighborhood modeling and simulation

procedure was executed to acquire a dataset of reference cases, from which the metamodels

were trained and tested. The resulting multiple-linear regression functions, combined to

an algorithm for quantifying the active solar potential from the irradiation levels, formed

our performance assessment engine. This core and novel part of the research also brought

forward some knowledge on precautions to take when using certain performance indicators
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Abstract

or analyzing and interpreting simulation data.

To assess its usability and relevance, the workflow was implemented as a prototype, supported

by existing 3D modeling and scripting tools. Inspired by the emerging performance-driven

and non-linear design paradigms, a multi-variant approach was adopted for this implemen-

tation; from the space of possible designs defined by a small set of user-inputs, a series of

neighborhood variants are generated through a random sampling algorithm. Results of their

evaluation by the core engine are displayed to allow a comparative assessment of the variants

in terms of their morphology and solar potential. Having been tested among practitioners

during workshops, the prototype appears promising for providing design decision-support.

Direct feedback gathered from participants support the relevance of the approach and re-

veals multiple avenues for further improvement. Results collected during the workshops also

allowed probing the validity boundaries of the metamodels, by applying them on the profes-

sionals’ designs and comparing the predictions to the simulation outputs, taken as reference.

The prediction accuracy achieved attests the potential of the approach as an alternative to

more complex methods, less adequate for exploring early-phase design alternatives.

Key words: early-phase neighborhood design, passive and active solar potential, design

decision-support, predictive mathematical model, multi-criteria performance assessment,

parametric modeling, energy and daylight simulation
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Résumé
De par la nécessité d’une transition vers la durabilité des villes, quartiers et bâtiments, les

urbanistes, architectes et ingénieurs font face à des normes énergétiques de plus en plus exi-

geantes. Ces décideurs doivent être supportés tôt dans leur processus par outils adéquats. En

effet, les décisions prises en phase initiale de conception, qui concernent des paramètres liés

à la forme et disposition des bâtiments, affectent fortement l’exposition solaire des bâtiments,

qui à son tour influence leur demande et potentiel de production énergétique. Malgré un

développement accru d’outils informatisés, des limitations demeurent particulièrement au

niveau de leur intégration au sein du processus de design. Ces considérations définissent le

contexte à l’intérieur duquel cette recherche doctorale a été développée.

L’objectif principal de cette thèse est le développement d’une méthode d’aide à la décision

en phase initiale de conception de projets de quartiers axée sur la performance. Cette per-

formance est ici définie selon trois critères : (i) le potentiel en éclairage naturel, quantifié par

l’autonomie au niveau du rez-de-chaussée (correspondant à une estimation prudente), (ii) le

potentiel solaire passif, lié à la demande en chauffage et refroidissement des espaces (selon

certaines hypothèses e.g. sur l’isolation thermique), et (iii) le potentiel solaire actif, quantifié

par la production in-situ d’énergie thermique et photovoltaïque.

La recherche s’est réalisée en deux principale phases. Un système d’évaluation en temps réel

de la performance d’un ensemble de bâtiments a d’abord été développé, suivi de sa mise

en oeuvre sous forme de prototype informatisé d’aide à la décision, qui a été testé par des

praticiens. Le travail s’est focalisé sur le contexte Suisse en terme de pratiques de design et du

climat. L’extension à d’autres contextes est toutefois directement envisageable.

Dans la première phase, une approche basée sur la métamodélisation a été adoptée afin d’évi-

ter les limitations associées aux simulations impliquant la résolution d’équations physiques.

Des fonctions mathématiques ont été obtenues pour prédire la performance énergétique et

en éclairage naturel d’un quartier à partir d’une série de paramètres liés à la géométrie et au

niveau d’exposition solaire des bâtiments. Ces fonctions (ou métamodèles) ont été dérivées

depuis une base de données de référence, acquise suivant une procédure de modélisation et

simulation. Les fonctions de régression linéaire multiples ainsi obtenues ont été complétées

par un algorithme pour quantifier le potentiel solaire actif. Cette partie centrale et novatrice

de la recherche a également fourni de l’information sur les précautions à prendre lors de l’uti-

lisation de certains indicateurs de performance ou de l’analyse et l’interprétation de données

de simulation.

Pour évaluer son utilisabilité et pertinence, ce moteur d’évaluation a été intégrée dans une
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Résumé

méthode d’aide à la décision. Inspiré par la vision émergeante du processus non-linéaire guidé

par la performance, une approche multi-variante a été adoptée pour la mise en oeuvre ; à partir

de l’espace de solutions possibles définie par quelques données en entrée de l’utilisateur, une

série de variantes de quartiers sont générées aléatoirement. Les résultats de leur évaluation

par le moteur permettent une comparaison des variantes au niveau de leur morphologie et

potentiel solaire. Les tests menés par des praticiens lors de workshops ont révélé le potentiel

et la pertinence du prototype comme outil d’aide à la décision. Les données recueillies ont

permis d’identifier de multiples pistes d’améliorations futures et de sonder les limites de

validité des métamodèles en les applicant sue les designs des professionels. Le niveau atteint

de précision des prédictions approuve le potentiel de l’approche comme alternative aux

méthodes plus complexes, moins adaptées à l’exploration d’alternatives de design initial.

Mots clefs : phase initiale de conception de quartiers, potentiel solaire passif et actif, aide

à la décision et au design, modèle mathématique prédictif, évaluation multicritères de la

performance, modélisation paramétrique, simulation énergétique et d’éclairage naturel
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1 Introduction

“Nous menons une guerre contre la nature. Si nous la gagnons, nous sommes perdus.”

Hubert Reeves
(astrophysicist, popularizer of
science and environmentalist)

1.1 Energy and the built environment

In light of the current and critical issues related to climate change, resource scarcity, and energy

efficiency, multiple initiatives and regulations have been launched by various governmental

bodies across the world. At the European Union (EU) level, targets have been fixed for 2020,

2030 and 2050; the 2020 Energy Strategy aims at 20% reduction in greenhouse gases (GHG),

20% energy efficiency improvement, and a share of renewable energy meeting at least 20%

of the consumption, while the 2050 strategy aims at achieving a reduction of 80-95% in GHG

(with respect to 1990)1.

Following the Fukushima nuclear disaster of 2011, Switzerland has developed its own Energy

Strategy 2050 to plan the required restructuring of its energy system, which will include decom-

missioning the existing five nuclear power plants as well as increasing the share of renewables

and promoting energy efficiency2. Assuming the adoption of a new energy policy, the con-

federation has defined similar targets as the EU, with the goal of reaching GHG reductions

ranging between 60-80% depending on the sector (see Fig. 1.1) [OFEN and DETEC, 2013].

These targets are reflected in the modified version of the Swiss Energy Law (Loi sur l’énergie,

2014), which includes reduction objectives in terms of average annual energy and electricity

consumption per person [Confédération Suisse, 1998].

On the same grounds, non-legislative initiatives are also being launched. As an attempt to

promote sustainability in a broader sense with a worldwide vision, the 2000 Watts Society

concept was developed in Switzerland based on the idea that each human being ‘has the right’

1https://ec.europa.eu/energy/en/topics/energy-strategy (last accessed on January 25, 2016)
2http://www.bfe.admin.ch/themen/00526/00527/index.html?lang=en# (last accessed on January 25, 2016)
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to 2000 watts in terms of primary energy and 1 ton/year of CO2 emissions [SuisseEnergie,

2014]. To achieve these goals, a decrease of over 50% with respect to 2013 will be required in

Switzerland, and a much larger drop in other developed countries, as shown in Fig. 1.2.

Due to the importance of buildings in the composition of the global energy consumption

and GHG emissions (Fig. 1.3), the above-mentioned regulations, laws and initiatives also

target specifically the built environment sector. For example, the 2000 Watts Society fixes

target values in terms of primary energy consumption for new and renovated buildings. These

values, along with a method to verify code-compliance, are contained in the SIA3 norm 2040

[SIA, 2011].

In term of legal prescriptions, the general objectives laid out at the Swiss federal level are given

a more tangible form through the cantonal and municipal regulations. For instance, the Energy

Law has led to the energy regulations model (Modèle de prescriptions énergétiques des cantons

- MoPEC), to be implemented in the cantons’ legislations by 2018 [EnDK and EnFK, 2014]. This

model contains prescriptive objectives, defined with reference to various SIA norms which set

limit and target values, for example regarding building insulation requirements and energy

consumption for heating and electricity.

Along with energy consumption reduction objectives, an increase in the share of renewable

energy is also sought by various Swiss directives. These include cantonal-level laws such as, in

the Canton of Vaud, the Law on Energy (LVLEne, [Canton de Vaud, 2014]), the Cantonal Master

Plan (PDCn, [Canton de Vaud, 2015]) and the Regulations of the Planning and Construction

Law (RLATC, [Conseil d’Etat du Canton de Vaud, 2014]). The objectives are to cover respectively

30%, 20% and 30% of the domestic hot water, electricity and final consumption of all new

buildings with renewable energy sources by 2050. Financial incentives are also provided and

an eased implementation process for small solar installations is granted.

This non-exhaustive overview illustrates the increasing spread and level of energy standards

and regulations in the built environment. To achieve these European objectives and their

national and local equivalents across western countries, a transition towards sustainable

cities, neighborhoods and buildings is essential. In this sense, decision-makers, including

policy-makers, urban planners, designers, architects, and engineers, have a key role to play,

from the early stages of the strategic urban planning to the detailed building design level.

To better understand how they can fulfill this influential role, we must examine the process

from the macro scale of urban planning to the architectural design level.

3The Société Suisse des ingénieurs et architectes (SIA) is a professional association for construction, technol-
ogy and environmental specialists, which aims at promoting sustainable and high-quality design in the built
environment in Switzerland (http://www.sia.ch/en/the-sia/the-sia/, last accessed on February 24, 2016).
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Figure 1.1 – Sector-specific CO2 emissions in Switzerland in 2010 and projected for 2020 and 2050
according to the Energy Strategy 2050 scenario based on a new energy policy (data from OFEN and
DETEC [2013]).
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1.2 Urban planning and design process

Urban planning can be defined as “a dynamic profession that works to improve the welfare of

people and their communities by creating more convenient, equitable, healthful, efficient, and

attractive places for present and future generations”4. Other definitions mention the terms “a

technical and political process”, “design of the urban environment”, “scientific, aesthetic, and

orderly disposition of land, resources, facilities and services”5.

These definitions highlight the complexity and multidisciplinary nature of urban planning,

which leads to the need for supporting and guiding instruments. In Switzerland, cantons

and communities have the task to implement and further define their planning instruments,

based on the general guidelines established by the confederation6. In the Canton of Vaud, two

main types of planning documents exist, with their respective subjacent variants based on the

targeted political level and spatial scale: master plans (Plans directeurs) and land use plans

(Plans d’affectation). Documents of the former type allow political authorities to coordinate

among each other, with no link to the landowners. They contain the main objectives and

priorities. Based on these guidelines, the second type of documents, land use plans, are

produced. These represent legally binding documents which define for a given territory

the land use conditions (e.g. development purpose and size). For both types, the general

procedure involves various actors and steps, as illustrated in Fig. 1.4.

At some point in the evolution of a project, a transition from planning to design will occur.

Although the distinction between urban planning and urban design is not always clear, an

attempt at distinguishing them was made by Reid Ewing, professor at the University of Utah:

“Urban design differs from planning in scale, orientation, and treatment of space.

Its scale is primarily that of the street, park, or transit stop, as opposed to the larger

region, community, or activity center, which are foremost in planning. [...] The

treatment of space in urban design is three-dimensional, with vertical elements as

important as horizontal ones. Urban planning, on the other hand, is customarily a

two-dimensional activity, with most plans visually represented in plan view, not

model, section, or elevation.” [Ewing, 2011, p.43]

In the case of the Canton of Vaud, the transition begins to occur through some of the above-

mentioned planning instruments, such as the localized master plan (Plan Directeur Localisé

(PDL)) or the district land use plan (Plan de Quartier (PQ)). These documents, drafted by

the assigned agent, often an urban planning or design firm, contain objectives in terms

of built and human density, program, energy efficiency and production goals, as well as

morphological guidelines to a varying level of detail (e.g. from maximum allowed height

only to building typology and layout). They set up the basis framework to be respected in

4https://www.planning.org/aboutplanning/whatisplanning.htm (last accessed on January 26, 2016)
5https://www.mcgill.ca/urbanplanning/planning, http://www.cip-icu.ca/Becoming-a-Planner (last accessed

on January 26, 2016)
6 http://www.vd.ch/themes/territoire/amenagement/guides-et-manuels/ (last accessed on January 27, 2016)
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Figure 1.4 – The land planning procedure - Example for the Canton of Vaud, Switzerland7. SAT: Service
de l’aménagement du territoire (planning service), CE: Conseil d’état (state council), TA: Tribunal
administratif (administrative court).

subsequent, more detailed plans. They usually contain objectives based on norms, standards

and/or labels, such as the SIA norms and Minergie label8. For example, the basic Minergie

standard, linked to the SIA 380/1:2009 norm, requires a final energy consumption for space

and water heating, electrical ventilation and air conditioning lower than 38 kWh/m2year

for new collective housing and 40 kWh/m2year for new administrative buildings [Kesser,

2012]. For the latter, a reduction in the annual artificial lighting demand from the actual 19

kWh/m2year to a target value of 5 kWh/m2year is required by the SIA 2024:2015 norm [SIA,

2015].

Similar certification schemes such as DGNB in Germany [German Sustainable Building Coun-

cil, 2013], BREEAM [BRE, 2013] in the United Kingdom (UK) and LEED [Welch et al., 2011] in

the United States (US) are now extending to the urban level. Initially conceived for individual

buildings, a neighborhood-scale version of the latter was launched in 2010 called LEED for

7Adapted from the “Schéma simplifié d’une procédure d’aménagement du territoire”, accessible at http://www.
vd.ch/themes/territoire/amenagement/guides-et-manuels/ (last accessed on January 27, 2016).

8Minergie is a label for (new and existing) sustainable buildings which aims at ensuring occupant comfort with
minimum energy consumption (http://www.minergie.ch/basics.html, (last accessed on January 25, 2016)). The
label has grown in popularity in recent years and has evolved to include a set of labels with increasing requirements:
Minergie, Minergie-P, Minergie-A, Minergie P-Eco and Minergie A-Eco.
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Figure 1.5 – Urban project for the district of Les Plaines du Loup: (a) example timeline (non-exhaustive)
[Ville de Lausanne, 2013] and (b) master plan of the PDL9.

Neighborhood Development. Yet, it does not address the impact of urban and building mor-

phology on energy performance [Eicker et al., 2015] and assigns a generally low weight to such

considerations. Labels in themselves are still limited in terms of support brought to planners,

decision-makers and designers.

To illustrate how an urban-scale project unfolds itself with reference to the above mentioned

planning instruments, the timeline of an example project is shown in Fig. 1.5a. The master

plan of this district-scale project for the city-owned area of Les Plaines du Loup in Lausanne,

depicted in Fig. 1.5b, was introduced along with multiple guidelines and objectives in the PDL

initiated in 2010 [Ville de Lausanne, 2013]. The plan proposes a dominant courtyard-based

urban design, with a maximum height of six levels (with some exceptions). It aims at reducing

the heating need to a minimum to reach the energy class A as defined in the SIA 2031 technical

document [SIA, 2009a]. To do so, it recommends limiting the form factor to allow an optimal

usage of solar gains.

9Adapted from http://www.lausanne.ch/lausanne-en-bref/lausanne-demain/projet-metamorphose/sites/les-
plaines-du-loup.html, (last accessed on January 26, 2016).
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These planning instruments thus define not only the general sustainability objectives (e.g.

social mix, energy consumption), but also some early-design information (e.g. building shape)

that can have a significant impact on the energy performance of the project. As illustrated

in Fig. 1.6, early decisions, made particularly on building form, can lead to energy savings

reaching up to 80% [Lechner, 2009]. Not only should the building form be determined based

on performance considerations, but so should the urban form, which can be defined at differ-

ent resolution levels (building/lot, street/block, city and region) [LSE Cities and EIFER, 2014;

Moudon, 1997]. This change of scale is essential to take into account buildings interdepen-

dencies, which can have impacts as important as individual buildings on energy performance

[Rickaby, 1987]. Decisions made on building and urban form strongly dictate the thermal

exchanges of buildings with the environment and their level of solar exposure, which in turn

influence the heating, cooling, and lighting required to ensure a thermally and visually com-

fortable environment for the occupants. These needs are major contributors in the energy

consumption within residential and non-residential buildings, as shown in Fig. 1.7.

The early design stage is also the moment in the process when designers possess the greatest

decisional freedom [Zeiler et al., 2007]. Decisions are made at each level, successively more

detailed and specific than the previous, as we go from the early to the advanced design stages.

Design problems are often characterized as ill-defined rather than well-defined [Andersen

et al., 2008; Siret, 1997; Yezioro, 2009]. The problem statement and its solution evolve jointly

throughout the process, during which alternative solutions are sought and weighted [Kalay,

1985; Marin et al., 2008]. This often translates into a cyclical ‘generate and test’ procedure,

where form is given priority over performance [Oxman, 2009]. Despite the importance of early

decisions and energy objectives contained in plans as stated above, it is at the later design

stages, and thus detailed building-level, that performance assessment is typically conducted

[Hensen and Lamberts, 2011]. After reviewing the design process through various case studies,

Weytjens and Verbeeck [2009] noted that “energy related issues are often more seen as ‘add-on’

components, which can be fixed in a later stage of the design”. This is also highlighted by Kiel

Moe, architect:

“During this period [second half of the twentieth century], buildings became

hermetically sealed, relied upon an increasingly layered approach to construction,

and used increasing amounts of energy to serve their occupants. This approach

was once understandable given its, now-distant, context of seemingly endless and

relatively cheap energy sources. However, this is not a viable strategy for architecture

in our current professional, economical, social, and ecological context.” [Moe, 2008,

p.7]

Recognizing this situation, the research and design community have come up with several

design concepts, often sharing the same ideas and goals, sometimes differing by subtleties,

and given different names such as ‘sustainable design/architecture’, ‘integrated design’, and

‘environmental design’. In addition to this surge in energy-conscious design, the important

technological advances have led to the development and adoption of a large number of digital

design-support tools in the past recent years, causing a shift from traditional to computer-
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savings potential. BPS typically occurs at the advanced design stage (adapted from E Source [2006];
Hensen and Lamberts [2011]; McLean et al. [2013]).
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Figure 1.7 – Distribution of primary energy consumption per sector in the United States in 2010 (data
from U.S. Department of Energy [2011]). Residential and non-residential (e.g. commercial, service)
buildings consume about 40% of the world’s energy, the main end-uses being space and water heating,
space cooling, and lighting.
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1.3. Motivation and targeted gap

oriented architecture [Boeykens and Neuckermans, 2003]. This phenomenon allowed the

accelerated examination of designs, facilitating and increasing the ability for drafting, mod-

eling and elaborating forms, and providing means to rapidly generate and evaluate design

alternatives [Grobman et al., 2010]. It also became possible to probe the macro scale, an area

in perpetual evolution.

1.3 Motivation and targeted gap

Despite this increasingly favorable context, we are witnessing a low level of uptake of digital

tools, particularly in the crucial early design phases of meso-scale projects.

“The attention of research into energy-related aspects of the built environment has hitherto been

focused at the scale of the individual building, or of the city as a whole.” [Rickaby, 1987, p.43]

This remains a reality in the current context which is characterized, on one side, by extensively

available detailed energy performance tools for assessing individual buildings, and on the

other side, by models and methods for representing and analyzing the building stock at the

macro level [Reinhart and Cerezo Davila, 2016]. There continues to be a need for additional

developments addressed at the meso scale of the neighborhood, which is considered as

particularly relevant and interesting nowadays regarding policies, scope and impact of design

decisions, flexibility in the design, and the increasing number of urban renewal projects

[Hachem et al., 2013; Peronato, 2014; Riera Pérez, 2016].

Moreover, the evaluation and comparison of design alternatives is still typically done in a

manual and linear way [Grobman et al., 2010] and at the advanced building design stages

as mentioned earlier [Hensen and Lamberts, 2011], with most existing tools conceived for

analysis rather than design. Consequently, emerging design paradigms have been proposed,

such as the ‘performance-based’ [Kalay, 1999], ‘performative’ [Oxman, 2009], and ‘non-linear’

[Grobman et al., 2010] design, respectively advancing multi-disciplinary and multi-criteria

performance evaluation, intending to reverse the traditional design order by using perfor-

mance goals as the form generation mechanism, and promoting simultaneous generation and

evaluation of multiple design alternatives.

The emanating requirements are therefore shifting, not only temporally and spatially with

respect to the design process, but also in terms of the priorities and fundamental approach to

the design task. What appears to be lacking is a method that can provide performance feedback

to practitioners in a non-disruptive yet novel way during the exploratory process of defining

the buildings’ form and layout. This research seeks to address this gap, by providing the means

for simultaneously evaluating multiple performance aspects of a whole neighborhood project,

taking into consideration the impact of individual building-level design variables. The research

focus is placed on the solar performance, defined in terms of the passive (heating, overheating

mitigation, and daylight) and active (energy production) potential of new neighborhood

developments in the Swiss context. However, the application and relevance of this work to
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other cases, e.g. renewal and densification projects, and to other performance aspects, e.g.

CO2 emissions, is not excluded and is further discussed in the thesis.

1.4 Thesis structure and research approach

The research approach consists in a gradual investigatory and development process, culmi-

nating in a proposed decision-support workflow to provide guidance in early neighborhood

design, with a focus on solar energy utilization. We are specifically concerned with the follow-

ing questions:

1. How should we define the (energy/solar) performance of a (virtual) neighborhood and

what metrics should be used to quantify each performance aspect, in a way that captures

the interdependencies between buildings?

2. How can we efficiently evaluate these metrics considering the available (low) amount

of early-design information, in the context of a real-time interactive computer-based

workflow?

3. What are the essential features of a design decision-support system, built around the

performance assessment engine (defined through the previous questions), that will

make it in line with the ill-defined nature of the design process?

The workflow adopted to answer these questions is illustrated in the flowchart of Fig. 1.8,

with reference to each chapter of the thesis, where the related main scientific challenges are

identified.

We begin in chapter 2 by exploring existing DDS methods and tools, revealing that novel

approaches are needed in the development of digital tools to provoke a temporal spread of

their use to the earlier design phases. The review underlines a gap to fill to provide adequate

support to practitioners and push the shift towards performance-based design.

Chapter 3 investigates the research literature to look at how the performance of a design is

assessed. A selection of methods are tested by applying them to case studies. This preliminary

study serves to define the performance criteria and associated metrics (performance outputs)

of interest in this thesis. Limitations in current evaluation methods, linked e.g. to the lack of

integration into the design process and high computational cost, lead us towards our proposed

performance assessment method, based on predictive models10.

Developed in chapter 4, this core part of the thesis includes defining the set of inputs to the

predictive model, consisting of parameters capturing design features that have an impact on

the performance outputs. This link is exploited to develop multiple linear regression functions

allowing a time-efficient estimation of the solar potential.

10The term predictive model refers to an equation-based model used to predict (or estimate) a certain value
from a set of input parameters through the use of mathematical methods (http://www.mathworks.com/discovery/
predictive-modeling.html, last accessed on April 18, 2016).
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1.4. Thesis structure and research approach

In chapter 5, these pieces are assembled and complemented by additional components to cre-

ate a workflow that is implemented as a computer-based tool and tested among practitioners

through workshops. Influenced by the emerging paradigms mentioned earlier, the work-

flow follows a non-linear, performance-based design approach by generating and evaluating

multiple design variants.

Chapter 6 presents the results from the workshops and the appraisal (i) of the prototype in

terms of its potential as a DDS tool and (ii) of the underlying performance assessment engine

in terms of its predictive accuracy.

Chapter 7 provides a discussion on limitations and foreseen improvements.

We conclude the thesis in chapter 8 by highlighting the outcomes of the research along with

their application potential and by providing an outlook.

Appraisal of proposed workflow and 
underlying performance assessment engine

Performance 
assessment engine

Performance 
outputs

Ch. 4

Ch. 5

Design 
variants

Input 
parameters

Visualization

User 
inputs

Ch. 3

Review of design 
decision-support

Ch. 2

Ch. 6

Figure 1.8 – Flowchart representation of the research approach with reference to the thesis structure
and including the main components in the design decision-support workflow.
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2 State-of-the-art in decision-support
methods applied to design

“At the scale of modern urban life, the ultimate constraints upon the system lie in nature.”

Ralph L. Knowles

(Professor of Architecture)

In this chapter, we look at the literature that has aimed at getting a better understanding of the

interplay between urban to building morphology, climatic context and various performance

aspects, with the objective of informing decision-makers by providing them with tools, in

the form of simple guidelines and rules-of-thumb as well as more advanced computer-based

programs.

We begin in section 2.1 with a general overview of design decision-support (DDS) methods

and tools and how/when they are used along the design process. Studies including surveys

and interviews among practitioners are summarized, bringing to light current barriers as well

as requirements for overcoming them.

In the following sections, the key elements that compose DDS methods and tools and reflect

the current research and development status are introduced. In section 2.2, detailed examples

of performance assessment methods are presented according to the scale at which they are

typically employed, from urban planning to building design. In section 2.3, we go over what

we have termed analysis support concepts that can further guide decision-making.

We conclude by highlighting the most relevant elements, to our research context, from the

literature review and on which we will build in the subsequent chapters.

2.1 Overview and current use in practice

The general domain of DDS methods and tools in the field of urban planning, urban design,

and architectural design is practically unbounded and in continuous development. In the

literature, reviews have been conducted to identify and sometimes categorize them, as well as

highlight the barriers to their use in practice, through surveys among practitioners. Since the

13



Chapter 2. State-of-the-art in decision-support methods applied to design

uptake of methods and tools is strongly linked to the design phases [Goodman-Deane et al.,

2010], studies typically include this connection to the temporal evolution of the process (see

Fig. 1.6).

Through a triangulated approach involving a literature review, case studies, interviews with

experts, and surveys, Goodman-Deane et al. [2010] came up with a list of commonly used

design methods in a general sense (i.e. with no reference to a specific design field), with

an approximate indication of when they are used along the design process. Among others,

methods based on observation, information search, and brainstorming were identified as

often used at the early phase, while modeling, getting feedback from others, and testing

occurred later. Visualization and sketching were noted as used throughout the design process.

Time and cost were identified as two constraints significantly impacting design practice.

Similarly, but with a focus on architectural design, Verdonck et al. [2011] conducted a thorough

review of a wide range of design support tools including various types of documentation -

technical, standards, checklists, books - and methods for drawing - sketches, 2D-3D computer-

aided (architectural) design/drafting (CA(A)D) software - simulation, evaluation, and analysis,

as well as recourse to specialists. They defined the following roles of design support tools:

evaluation/analysis, communication, knowledge-based, presentation, and modeling. Through

a survey conducted among Flemish architects, they found that design decisions were mostly

made based on practitioners’ experience, clients’ demands, and regulations, with design

support tools used by only 22% of respondents, as shown in Fig. 2.1a. With respect to the

design phases, they identified for which role additional support was requested in design

support tools (Fig. 2.1b); at the early design phases, the need for better evaluation and analysis

was predominant. When asked the reasons for not using energy evaluation tools, a majority of

respondents answered that this was out of their competence domain and too time-consuming

(Fig. 2.1c). Based on these observations, the authors defined an extensive list of requirements

for “architect-friendly” building performance simulation (BPS) tools (here adapted from

[Weytjens and Verbeeck, 2010]):

Usability in the design process: minimally interrupt the design process with in tune data-

input; simplicity; minimal time required to operate the tool; adapted for use in early

design; quickly obtain solutions and easily create, test and compare alternatives; real-

time feedback on design decisions and changes; provide guidelines

Interface: visual communication of graphical user interface (GUI); clear, intuitive, and flexi-

ble navigation; clearly structured with a restrained set of functions (simplicity)

Data-input: limited; quick to provide (time to create model < 1h); input in the language

of the architect; use of defaults to limit and facilitate data-entry; simple and intuitive

input process; easy data review/change and creation of alternative designs/options;

extensive library/database of building components; inputs consistent with early design

phase (basic information); from general to detailed; graphical representation of building

geometry; 3D modeler in simulation tool; possibility to import 3D CA(A)D files; input

via drawing software (e.g. SketchUp)
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Output: easy interpretation (language of architects); graphical representation of output; con-

formance with building codes and regulations; impact of decisions/parameters (uncer-

tainty/sensitivity); simple but supportive information for design decisions; convincing

output to communicate with clients; clearly indicate problem area(s); benchmarking;

output displayed in 3D building model; generate reports for alternative designs/options;

reliability of the output; adapted for different design phases

General: adaptable default values; highly visual; transparency of the tool; easy and intuitive

to learn and use; short calculation time; adequate for local usage (units/materials/...);

easy to use after long time of non-use

As will be seen in section 2.4 and ensuing chapters, we aim to comply with a large majority of

these necessities through our proposed approach. Many of them are recurrently highlighted

in other reviews and studies, as shown below.

In the context of the International Energy Agency (IEA) Annex 31 [IEA, 2004], the following

classification of environmental tools was proposed: (i) interactive software including life cycle

analysis (LCA) tools and energy and ventilation modeling software, and (ii) passive tools in-

cluding guidelines, checklists, case-studies, labels, regulations and more. Within another IEA

project of the Solar Heating & Cooling programme (SHC), Task 41 “Solar Energy and Architec-

ture”, 56 computer-based tools were reviewed from the perspective of their potential to support

solar-oriented architecture from the early design phase. The software were classified as either

(i) CA(A)D, e.g. ArchiCAD, Revit, Allplan, AutoCAD, SketchUp, Rhinoceros (ii) visualization,

e.g. Flamingo, LuxRender, RenderWorks or (iii) simulation tools, e.g. DesignBuilder, Ecotect,

Radiance, Daysim, PVSyst [Horvat and Dubois, 2012; IEA SHC Task 41, 2010]. It was observed

that most CA(A)D tools allow photovoltaic (PV) and/or solar thermal (ST) system sizing, pro-

vide passive solar assessment - often through an integrated engine or plug-in conducting

whole building energy simulation - and (day)lighting assessment, through visualization and

(physically accurate) light rendering. The visualization tools were found to offer advanced

(day)light simulation for high quality, post-design renderings. Software falling in the third

category, simulation tools, were shown to provide passive solar gains and daylight availability

estimation, as well as PV and ST sizing features.

What came out of the review is that most tools, regardless of the above classification, are

more suited for the detailed rather than early design phase. Moreover, many are specialized

in one of the performance criteria, for instance PV sizing only, as opposed to offering a

more comprehensive assessment allowing to find balance between passive and active solar

measures. Limitations in the outputs were also noted; most tools offer visualization of sunlight,

shadow or incident irradiation on buildings, but lack in terms of numerical and informative

feedback.
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Figure 2.1 – Results from a survey among Flemish architects, reflecting their selection to different
multiple choice questions [Verdonck et al., 2011; Weytjens and Verbeeck, 2010].
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The work conducted within this IEA Task 41 also included a survey and interviews with

practitioners [Horvat and Dubois, 2012; Kanters et al., 2014a]. Results allowed identifying

factors that influence the choice of software: user-friendliness of the interface, cost and

interoperability with other software were the most selected (see Fig. 2.2a). Concurring results

were obtained regarding the main barriers to the use of existing tool, where complexity and cost

prevailed, followed by time-consumption and lack of integration both into CA(A)D software

and within the design workflow (Fig. 2.2b). These findings led the researchers to identify

requirements for future BPS tools. The implementation of these tools into CA(A)D software

is promoted as a way to make them function as design tools that could support comparisons

between alternatives with respect to the energy need and production, in a way that can help

architects. They state that appropriate early design phase (solar) tools should embrace the

intuitive and iterative features intrinsic to this stage in the process, by allowing variations in

building geometry and providing explicit feedback on solar-related performance aspects. The

importance of communication-supporting features is also highlighted, e.g. to show to the

client the consequences of design decisions on the building’s energy performance.

This lack of design-oriented tools was also brought up by Attia et al. [2012] who found that

out of the 392 BPS tools listed as of 2011 on the US Department of Energy (DOE) website,

less than 40 were targeting the early architectural design phases. The others were mainly

identified as post-design and engineer-oriented evaluation tools. In that same study, barriers

to the integration of BPS tools in the context of decision-making at the early design phases

of Net Zero-Energy Building (NZEB) were identified: geometry representation, filling the

inputs, providing informative support for decision-making, results interpretation, evaluative

performance comparisons, and informed iteration.

The limited use of BPS tools as a general design decision-support is in fact recurrently high-

lighted in the literature [Alsaadani and De Souza, 2012; Hensen and Lamberts, 2011]. Based

on research involving visits to architecture and engineering offices, Smith et al. [2011] affirm

that whole building energy analysis tools are too complex and time-consuming to be used

at the early design phase. These restrictions, combined with model exportation problems

and detailed data requirements, discourage architects to use such tools who instead prefer

hiring an expert, at a higher cost, to perform the energy analysis. Architects want tools better

suited to their modeling applications that can quickly generate energy models while allowing

comparison of various design alternatives. As such, relative values (between options) are

considered more important than accurate figures. The missing tool is seen as complementary

to the engineering consultant, providing energy-related knowledge to the architect who can

then better communicate with the expert, which is likely to appear later in the process [Smith

et al., 2011].
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Figure 2.2 – Results from an online survey among building professionals across 14 countries [Kanters
et al., 2014a].
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The possibility of comparing design alternatives is a need further emphasized by Branko [2003]

who defines an “active design space exploration”, where a defined building typology would be

“subjected to dynamic, metamorphic transformation”, stemming from an optimizer. He also

mentions that intuitive ‘low-resolution’ BPS tools are necessary for a more effective use in the

conceptual design phase.

CAD system
Building 

performance 
models

Design 
tool

Architect

Figure 2.3 – The ‘future’ design en-
vironment as seen by Milne [1991],
composed of four components.

The studies cited above seem to all eventually converge

to computer-based software designed for evaluating

the performance of buildings. The use of this subset of

DDS tools is not spread among practitioners despite its

great potential, already envisioned by Milne [1991] in

the early 90’s when he stated that the (desired) design

tool should be “a piece of software that is easy and nat-

ural for architects to use, that easily accommodates 3D

representations of the building, and that predicts some-

thing useful about building’s performance.”[p.485]. He

defined the following five categories of requirements

for ‘future design environment’ consisting of the four

components shown in Fig. 2.3: (i) establishment of initial design conditions, (ii) simplified 3D

data input, (iii) building performance prediction models, (iv) techniques for communicating

complex data, and (v) automatic data conversion routines.

Despite the evolution of the field since then, the above review demonstrates that emphasis

has remained on analytical and engineering tools as opposed to methods supporting design.

There is thus still a need for improvement, particularly in the early phases when practitioners

wish to explore the design solution space. As Beckers and Rodriguez [2009] put it:

“[...] most programs are oriented to analysis and not to design. Thus, they are

mainly used at the final step of the project, when the principal ideas are already

defined, and all their possibilities are not apprehended.” [p.475]

Clearly there is a general consensus on what are, on one side, the issues of existing DDS tools

and on the other side, the requirements or features these should have. To summarize, the

main shortcomings recurrently pointed out among existing tools regarding their use at the

early design stage are [Branko, 2003; Horvat and Dubois, 2012; IEA SHC Task 41, 2010; Smith

et al., 2011; Zhao and Magoulès, 2012]:

• too complex; out of competence domain; conceived for expert-users

• requiring detailed/high-resolution inputs

• time-consuming to learn and use

• specialized, which prevents a holistic performance assessment and creates the need for

tool-specific model (remodeling for each evaluation done in a different environment)

• lacking in user and decision-making guidance
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These challenges contribute to the motivation behind this thesis, as further detailed later on,

and are the mirror of many of the requirements highlighted earlier.

Figure 2.4 provides an overview in terms of the main DDS methods and tools encounter-

ing in this section. Their approximate position along the process from urban planning to

architectural design intrinsically reflect the barriers unveiled; only a few, e.g. CA(A)D and

guidelines, are used throughout, while simulation-based methods are commonly reserved for

building-scale assessment at the detailed phase. Moreover, we observe that an ensemble of

methods is usually required to fulfill all roles.

This section has inquired into the practitioners’ stance in regard to the available supporting

instruments. In the next section, we present a deeper investigation of methods and tools,

providing concrete examples for each category found in Fig. 2.4.
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Figure 2.4 – Synthetic overview of main DDS methods and tools typically used from urban planning
to architectural design for various purposes. This matrix was developed by intersecting and merging
elements found in the reviewed literature.
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2.2 Assessment methods

As highlighted in chapter 1, the design process is increasingly embracing the concept of

performance, which has become a guiding design principle with the uptake of digital decision-

support tools and emergence of sustainability objectives [Branko, 2003; Kalay, 1999; Oxman,

2009]. In the following, we loosely delimit the space of DDS methods and tools to examine

more closely the computer-based and solar and energy performance assessment subset.

Zooming in on the above-mentioned categories, we gradually unveil instances for each type

of approach. Following the temporal and spatial timeline illustrated, we start from urban

planning instruments to finish with building-scale tools.

2.2.1 Planning instruments for solar access in urban settings

While a historical account on the evolution of theories related to the perception of the sun

with respect to urban planning, design and architecture is out of the scope of this thesis, it

is worth mentioning a few key elements of the past, before fast-forwarding to more recent

developments. Thoughts on natural light in relation with urban form emerged in the 19th

century, when light from the sky was perceived as a purifying fluid, stemming particularly

from the hygienist movement (Siret [2013] and Harzallah [2007] as cited in Montavon [2010]).

Divergent theories on facade exposure, orientation and building height were eventually pro-

posed, motivated by different reasons linked for instance to health, psychological, cultural,

social and thermal considerations [Montavon, 2010]. This diversity of motives has persisted,

despite an increasing emphasis placed on solar exposure for daylight and thermal heat gains

and avoidance, affecting comfort and health.

Solar envelopes and associated concepts

Geometrical methods were historically and are still employed to look at solar access and

daylight availability in urban environment, often with density considerations. Focusing on the

right of individual buildings to solar exposure, the Solar Envelope (SE) concept, first developed

in the late 1970’s [Knowles, 1999, 2003], consists in defining some geographical boundaries

(around a hypothetical building) to ensure urban solar access to the space of interest and

its surroundings. This concept was adapted by (and inspired) many to contribute to the

development of zoning and planning regulations. Raboudi and Saci [2013] introduced the

Solar Bounding Box, a spatially delimiting volume that respects urban rules (e.g. set backs,

alignment, distance between buildings) and includes the SE. Pereira et al. [2001] applied the SE

to ensure desirable insolation (in terms of thermal comfort) and skylight availability in Brazil.

Obstruction angles for the city of Florianopolis were found based on the satisfaction of at least

two out of three criteria based on the exclusion/acceptance of undesirable/desirable radiation

(e.g. 1.5-2 hrs of insolation during winter). A stereographic obstruction mask and pondered

radiation method were used to obtain the criteria-related values. A computer code called

MascaraW was developed for visualization. SEs were derived from the obstruction angles and

showed the potential use of this concept as a regulation and guideline-generating tool.
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Figure 2.5 – Solar Envelope [Knowles,
2003] example for a parcel located in a
built context, ensuring solar access to sur-
rounding buildings between 11am and
1pm throughout the year at a latitude of
46◦N. Image generated using the SE com-
ponent of DIVA-for-Grasshopper [Jakubiec
and Reinhart, 2011].

The SE concept has been implemented also in CityZoom, an urban planning decision support

tool combining computer-aided (architectural) design/drafting (CA(A)D) with geographic

information system (GIS), which generates buildings based on inputed master plan parameters

(e.g. building height) and allows environmental assessments using SEs [Grazziotin et al.,

2004; Turkienicz et al., 2008]. The DIVA-for-Grasshopper plug-in also allows generating and

visualizing SEs (see Fig. 2.5) [Jakubiec and Reinhart, 2011].

Similarly, Faucher and Nivet [2000] proposed incorporating in a CA(A)D tool urban regula-

tions and the design intents of the user, linked to sunlight and visibility, both considered as

constraints on 3D volumes. This approach, termed ‘declarative modeling’, was also adopted

by Gallas et al. [2011a,b], where users must declare their intentions in terms of the desired

daylighting atmosphere.

Based on the SE, Capeluto and Shaviv [2001] introduced new envelopes: the solar rights and

collection envelopes which respectively represent the maximum building heights that can be

achieved without violating solar rights and the lowest point where window/solar collectors

are not shaded by the surroundings. From those envelopes, a Solar Volume (SV) is defined,

containing the building heights allowing solar access to all nearby buildings. All of those

parameters are determined for a given period of time. Using the SV to ensure maximum solar

insolation, an investigation was done to determine the urban fabric (street orientation, dis-

tance between buildings) that allowed the densest urban setting, for the city of Tel Aviv (Israel)

[Capeluto and Shaviv, 1999]. The simplified section lines, which define the SE respecting the

required exposition hours in each direction, are also presented as an easier tool to be used by

planning authorities, although more geometrically limiting [Capeluto et al., 2005, 2006].

The Solar Envelope and Solar Volume approaches allow freedom in building design and

flexibility in criteria selection. Although they address the urban scale, Littlefair [1998] stated

they may be too strict for dense urban areas and that their use requires the collaboration

between urban designers and experts. The value of the SE concept has also recently been

questioned through a study based on typical buildings in the US and focused on energy use

and plot density [Niemasz et al., 2011]. The results suggest that direct solar exposure may affect

energy performance in a significantly different way according to the climate and construction.

The SE concept as a zoning tool had some negative impact on both energy use and achievable

density for the building type considered in the study. The authors argue that “there is obviously
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a need for more climate-specific guidelines and standards that holistically integrate the concerns

of solar access and developable density” [Niemasz et al., 2011].

Addressing the need for a year-round approach focusing both on winter and summer seasons,

Okeil [2010] proposed a specific residential urban shape, the Residential Solar Block, maximiz-

ing (respectively minimizing) solar energy on facades (resp. roofs and ground). In response to

the SE’s lack of energy considerations, Morello and Ratti [2009] introduced iso-solar surfaces,

3D envelopes receiving equal amounts of solar energy. Similar to the envelopes introduced

earlier, iso-solar rights and collection surfaces were defined, respectively representing the max-

imum height for buildable volumes preserving a certain amount of irradiation on surrounding

sites, and the lowest possible surface for collecting a given amount of solar radiation. The

same authors also addressed the computational limitations of applying the SE on extensive

and irregular areas by proposing an approach using digital elevation models (DEMs) and

image processing techniques.

Sky opening factors

The abstract nature of early urban designs, proper to their ill-defined problem solving charac-

teristic introduced in chapter 1.2, fosters the use of simple assessment methods. In addition

to the volume-based approaches listed above, metrics are also derived from geometrical ana-

lyzes to quantify solar availability. As an indicator of urban daylight potential and radiation

exchanges, the sky view factor (SVF) is often used, either defined as the proportion of visible

sky from a point to the overall sky dome (geometrical definition) or the ratio between the

radiation received by a planar surface and by the entire hemisphere (cosine-weighted defini-

tion, associated to the urban heat island (UHI) effect) [Zhang et al., 2012a]. Ratti et al. [2003]

computed average SVFs at different facade heights, taking these values as a measure of the

daylight condition inside buildings. Looking at different urban squares of London using DEMs,

Chatzipoulka et al. [2015] found a negative correlation between density and mean facades

SVF. Zhang et al. [2012a] adapted the SVF by computing the facade area falling within a SVF

range and normalizing it by the floor area, using this metric as an environmental performance

indicator. Compagnon [2004] presented a visualization technique displaying the facade area

per orientation weighted by its corresponding SVF, forming an orientation rose useful as a

planning tool allowing to compare various hypothetical urban forms. Robinson [2006] tested

the validity of the SVF as well as two other related urban geometrical parameters: street canyon

height-to-width ratio and urban horizon angle (mean elevation of the skyline from a facade).

He found that the validity of such indicators is actually limited and that raw irradiation data

are preferred.

Another daylight availability indicator is the Preferable Sky Window, representing the sky zone

with the greatest daylight potential with respect to a horizontal indoor plane [Pereira et al.,

2009]. Through a case study in Brazil, Pereira et al. [2009] applied this metric to establish

guidelines (e.g. in terms of building height and spacing) ensuring urban daylight access on the

winter solstice. A correlation was found with the illuminance values in a room model simulated
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with the Apolux software [Claro et al., 2005]. Seong et al. [2006] addressed the question of solar

rights standardization in the Korean context with the development of a tool (HELIOS), based

on the WALDRAM diagram method that calculates the sunshine duration in each housing unit

of a building then declared satisfactory or not. Yezioro et al. [2006] proposed a methodology

for deriving design recommendations and guidelines allowing proper insolation of urban

squares (courtyards), based on the ratio between the exposed and total surface area, termed

the Geometrical Insolated Coefficient.

Appraisal

The above-mentioned concepts have been used in case-studies to demonstrate their relevance

for urban planning as they allow defining - SE and derivatives - and assessing - indicators

such as the SVF - the urban fabric with regards to ‘proper’ (varying definition) solar exposition.

The case-specific nature of many of those methods, with assumptions and criteria to be

pre-defined according to the objectives, make them challenging to implement and use by

decision-makers. While they remain early-phase friendly due to the low level of detail of the

required design information, for the same reason they offer little assurance as to global energy

outcome, with the focus placed mainly on insolation duration and sky view. Many are by

default spatially and temporally static; their evaluation is done for a specific moment and land

parcel/point. Moreover, it is difficult to find any validation studies correlating the outcome

of these methods to actual energy consumption or interior daylight levels, restraining our

conviction about their value in the context of this thesis’ objectives.

In the following section, we pursue our review with studies that have taken a closer look at

urban form, captured through different parameters that have been linked to performance

criteria.

2.2.2 Morphological parameters as performance indicators

Due to the time and knowledge required to evaluate performance through modeling and

simulation, as well as the need to make educated guesses regarding unknown design infor-

mation at the early phase (factors which are amplified with the size of the project), multiple

investigations have attempted to link morphological parameters, e.g. density and shape, to

various performance aspects in order to identify potential indicators of the latter, more easily

computable.

Density and compactness

A prevailing parameter is the urban density, defined in terms built volumes (e.g. Floor Area

Ratio (FAR): total floor area over site area) [Cheng, 2010]. Studies conducted have however

come to divergent conclusions [LSE Cities and EIFER, 2014], challenging the often accepted

notion that increasing density leads to energy efficiency [Laëtitia et al., 2011; Rodríguez-
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Álvarez, 2016]. Careful case-specific analyzes are instead advocated [Mindali et al., 2004],

adopting a more holistic point of view to include for instance daylight and transport-related

energy consumption [Steemers, 2003]. Similar debates have been on-going regarding the

compactness of cities - as an inverse of the urban sprawl - in relation with their sustainability

[Burton et al., 2003].

A stronger consensus has been reached on the compactness parameter measured at the build-

ing scale, the rule-of-thumb being its maximization for increasing the thermal performance in

winter. Compactness is quantified by slightly different metrics such as the surface-to-volume

ratio [Knowles, 1974], also known as the shape parameter (exposed envelope surface / enclosed

volume), and the relative compactness (6*volume2/3 / exposed envelope area) introduced by

Mahdavi and Gurtekin [2002]. Assuming a fixed volume, the most compact shape is the one

with the least exposed surface area. Knowles [1974] demonstrated the correlation between

the surface-to-volume ratio, which was referred to in that early study as the coefficient of

susceptibility of a built arrangement, and the stress expressed as a function of variation of

the environmental forces acting on this built domain. Based on certain assumptions related

e.g. to thermal transmittance of facades, Martin and March [1972] concluded that the shape

minimizing heat losses was that of a half cube [Ratti et al., 2005]. The value of the shape

factor has been questioned in various studies where its correlation to energy consumption

was shown to vary significantly for different climates and design features (e.g. glazing ratio)

[Danielski, 2011; Depecker et al., 2001; Laëtitia et al., 2011; Pessenlehner and Mahdavi, 2003].

Referring to the relative compactness as a potential indicator of overheating, Pessenlehner

and Mahdavi [2003] concluded that it does “not appear to capture the geometry of a building to

the extent necessary for the predictive assessment of the overheating risk”.

Although computed at the building level, compactness metrics are also applied in macro-scale

studies [Taleghani et al., 2013]. Questioning the value of compactness as an indicator of the

global energy performance (as opposed to the heating energy only), Ratti et al. [2005] con-

ducted a study comparing the surface-to-volume ratio to the energy consumption for heating,

cooling, ventilation and lighting, computed using the same default assumptions (including

same London climate) for areas in London, Berlin and Toulouse. They tested another metric,

derived from the passive zone concept initially proposed by Baker and Steemers [2000]: the

passive to non-passive zone ratio, where a passive zone is defined as the area within twice the

floor to ceiling distance (approximately 5.5-6 m) from an exposed facade. Illustrated in Fig.

2.6a, this concept is based on the fact that spaces closer to a facade can better benefit from day-

light, natural ventilation and solar gains. The proportion of passive zones is thus considered

an energy performance indicator. The outcome of Ratti et al. [2005]’s study showed that the

ratio of passive to non-passive zones is a better indicator of urban energy consumption than

the surface-to-volume ratio. The LT method was employed to predict the annual energy use for

heating, cooling, lighting and ventilation. Originally developed by Baker and Steemers [2000],

the aim of this method is to offer a simplified approach to energy performance assessment.

It is based on a mathematical model - the LT model - derived from simulations over a room

module, taking into consideration the energy flows illustrated in Fig. 2.6b. It consists in curves
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(a) The passive zone concept where the yel-
low area is considered passive and the dark
gray core zone non-passive. H = height of
one story.
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(b) Energy flows considered in the LT model. Image
adapted from Baker and Steemers [2000].

Figure 2.6 – The (a) passive zone concept, applied in the (b) LT method, both proposed by Baker and
Steemers [2000].

displaying the monthly net heating and cooling load for different glazing ratios. Multiple

assumptions are made for deriving these curves by fixing default values to the LT model (e.g.

insulation, lighting). Its application in practice consists in (i) identifying the passive and

non-passive zones in a building, (ii) extracting the annual primary energy consumptions

(heating, cooling and lighting) per floor area from the LT curves for the relevant glazing ratio,

(iii) applying the correction factor for shading, and (iv) multiplying the resulting energy values

by the corresponding building zones (passive/non-passive). Many LT models exist for various

climates and building types: 1.2 for office buildings in Europe [Baker, 1992], 3.0 for southern

Europe [Baker and Steemers, 1996] and the urban version [Ratti et al., 2000]. The latter couples

the LT method with DEMs, used to extract the required information (e.g. urban horizon angle).

However, the effect of the built context on the solar exposure (i.e. shading effect) is not taken

into account through this method.

In a study exploring the link between various high-density urban forms and their level of solar

radiation in the context of Singapore, Leung and Steemers [2009] put in question common

conceptions and concluded that “the application of broad-brush design concepts do not always

guarantee real effect. Simplified computer-aided design methods that provide real-time feed-

backs on solar irradiance on building facades are therefore desirable for the conceptual design

stage” [p.438].

The use of heuristics also becomes problematic when conflicting criteria are considered. In an

investigation of the impact of block typologies of varying density on their solar gain, energy and

daylight performance, Sattrup and Strømann-Andersen [2013] identified an optimal region of

density demonstrating the need for a trade-off between the performance criteria. Their results,

illustrated in Fig. 2.7, show the conflict between energy and daylight. They moreover found

differences of 16% and 48% in terms of total energy use and daylight autonomy respectively

between the designs, emphasizing the importance of incorporating such considerations into

the decision-making process early-on.
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(a) (b)

Figure 2.7 – Results from a study investigating the impact of urban typology on energy and daylight
performance and the correlation between (a) density, energy use (light gray line) and compactness
(dark gray line), and (b) density, daylight autonomy (dark gray line) and solar gain (light gray line).
Figures reprinted from Sattrup and Strømann-Andersen [2013], used with the permission of Peter
Sattrup and Locke Science Publishing Company, Inc.

Figure 2.8 – Different versions of the rule-of-
thumb for predicting the daylit area from the
window height. Image adapted from Reinhart
[2005].

Additional geometry-based heuristics

At the building or room level, simple geometrical rules-of-thumb are applied with the aim of

ensuring proper daylight levels. Despite a lack of standardized and validated rules [Galasiu

and Reinhart, 2008; Reinhart and LoVerso, 2010], a commonly used example is based on the

height of the window top and the room depth [Reinhart, 2005]. The daylit area is estimated as

extending from the window facade to a certain factor of the window height, as illustrated in Fig.

2.8. Following a simulation-based experiment, Reinhart [2005] asserted the validity of such

heuristics, however stating that daylight simulations should be conducted in specific cases

such as for taking into account the potential obstructing impact of the surrounding context.

Focusing on diffuse daylight, Reinhart and LoVerso [2010] proposed a rule-of-thumb design

workflow for deriving the window-to-wall ratio and room dimensions from a defined perfor-

mance target expressed in terms of the Daylight Factor (DF). The DF is a static metric defined

as the ratio between the internal illuminance measure at a point inside a building and the ex-

ternal horizontal illuminance obtained assuming an overcast sky (Moon and Spencer [1942] as

cited in Reinhart et al. [2006]). The simple workflow bypasses the need for calculating the DF.

27



Chapter 2. State-of-the-art in decision-support methods applied to design

Simple geometry-based guidelines are also used to assess the energy production potential,

notably the optimal tilt and the orientation of surfaces on which active solar systems are to

be installed. This allows bypassing the need for full radiation simulations. However, multiple

values can be found in the literature, e.g. setting the tilt equal to or 10 degrees below the latitude

[Cronemberger et al., 2012]. In a study conducted over 78 cities in Brazil, Cronemberger et al.

[2012] have shown that these various recommendations are not valid for such low latitudes,

highlighting the need for climate-based indicators.

Appraisal

From this review arises the need for methods finely balanced between case-specificity and

generalizability. While many studies target the same fundamental question of finding the

optimal building or urban form, slight differences in the objective function(s) they are aiming

at maximizing/minimizing and the context they are looking at (e.g. climate, building function)

lead to divergent results. This situation casts doubt on the applicability of simple geometrical

parameters as proxies of performance metrics. In line with this concern, more comprehensive

methods have been developed exploiting computational tools, in some cases resulting in

indicators similar to the geometry-based ones, but derived from simulation outputs such as

irradiation levels.

2.2.3 Physics-based simulation

Solar exposure

The technological advances brought about new possibilities for approaching performance

evaluation through visualization techniques and simulation of incident solar radiation. A

large majority of the methods involving simulation of solar exposure rely on the extensively

validated and highly trusted Radiance engine, an open-source ray tracing1 software used for

lighting analysis and visualization [Larson and Shakespeare, 1998]. While a detailed software

review is not the focus of this chapter, this particular program is worth mentioning since it is

used in many of the studies and applications listed below.

Various CA(A)D tools are nowadays used for modeling, visualization and renderings (e.g.

AutoCAD2, SketchUp3, Rhinoceros4). Many directly integrate or are linked to, e.g. via plug-

ins, performance assessment engines, for which examples are given further. More recently,

geographic information systems (GISs) are being used to visualize the solar exposure levels

of building roofs, in the form of solar maps or cadasters [Kanters et al., 2014c]. These allow

1Radiance’s lighting simulation engine employs a hybrid approach consisting in a Monte Carlo and deterministic
ray tracing, starting from a measurement point from which light rays are traced backwards to the sources (http:
//radsite.lbl.gov/radiance/framew.html, last accessed on April 18, 2016).

2http://www.autodesk.com/products/autocad/overview (last accessed on March 9, 2016)
3http://www.sketchup.com/ (last accessed on March 20, 2016)
4https://www.rhino3d.com/ (last accessed on March 20, 2016)
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obtaining an estimate of the solar potential for ST and PV systems. Such maps are continuously

being developed for specific regions, such as the city of Cambridge in the US5 and some zones

of Switzerland6.

As seen earlier with geometry-based parameters, illuminance- or irradiation-based metrics

are also used as performance indicators. Irradiation thresholds are often applied to quantify

the active solar potential. These diverge between countries and sources, often influenced by

financial parameters. For example, Cronemberger et al. [2012] found that the ratio of available

to maximum irradiation considered as acceptable - for an optimally inclined and oriented

surface - ranges from 55% to 80%.

Compagnon [2004] defined irradiation- and illuminance-based thresholds to assess the per-

formance in a more holistic way. A value was defined for the passive thermal, daylight and

active (PV and ST) potential, and the exposed surface areas with a level exceeding the respec-

tive threshold was identified. This method was adopted in other studies [Cheng et al., 2006;

Montavon et al., 2004b] including Swiss [Robinson et al., 2005] and European [Compagnon,

2000] projects.

As an indicator of the daylight conditions inside a building, the vertical Daylight Factor (DF)

is used, measured on external facades and equivalent to the typical DF measured inside a

building (introduced earlier). When computed for dense urban arrays of 25 buildings varying

in terms of height, Ng [2005] concluded that larger building height differences could increase

the vertical DF. The same author proposed a simplified method to evaluate the vertical DF,

exploiting its correlation with the Unobstructed Vision Area, a geometrical parameter easier

to compute [Ng and Cheng, 2004]. Requirements in terms of building height were defined.

This method is used by the Government of Hong Kong for regulatory control of daylight

performance. Concerned with linking external daylight levels with the interior building spaces,

Zhang et al. [2012b] proposed a facade vertical DF per unit floor area, measuring the average

amount of daylight on the facade that could affect the usable floor space.

In addition to indicators, some methods also produce specific types of images. The irradiation

mapping for complex urban environment (ICUE) developed by Mardaljevic and Rylatt [2003]

produces maps of annual/monthly sun and sky irradiation incident on building facades, taking

into account shading and reflection by/between buildings. The creation of the 3D irradiation

images, done in Radiance, is however very time-consuming.

Developed and exposed through case studies in [Samimi and Nasrollahi, 2014], SOLARCHVI-

SION is an analysis tool aiming at helping planners integrate climatic and solar considerations

in their decision-making process. Focusing on both active and passive solar strategies, it allows

visualizing sun path diagrams of different metrics such as the ‘degree of need to shade/shine’,

computed from the difference between the hourly outdoor temperature and a fixed indoor

comfort temperature, and the ‘positive/negative effects of the sun’, depending on the amount

5http://www.mapdwell.com/en/cambridge (last accessed on March 30, 2016)
6http://www.bfe-gis.admin.ch/sonnendach/?lang=fr (last accessed on March 30, 2016)

29



Chapter 2. State-of-the-art in decision-support methods applied to design

of solar radiation and the need to shade/shine degree. An example of each image for the

climate of Montreal and an indoor temperature of 18◦C are illustrated in Fig. 2.9.

Compagnon et al. [2015] developed a climate- and site-specific tool for guiding designers

and policy makers, aiming to ensure sufficient day/sunlight access to both open spaces

and buildings. The tool produces two types of stereographic images, starting from a simple

3D model (master planning type) and using Radiance: a multishading mask indicating the

percentage unobstructed area toward each direction of the sky vault, and an effective envelope

area picture displaying the total projected envelope area seen from the sky vault [Compagnon

et al., 2015]. A series of daylight and sunlight availability indicators for open spaces and

buildings’ envelope can then be computed from these images: sky view factor (SVF), partial

sunlight exposure, mean irradiation and others.

Similarly, various types of images (e.g. stereographic, isochronal) along with solar access

metrics (e.g. solar flux, sky opening) are produced by many urban-adapted software including

TownScope [Teller and Azar, 2001], Heliodon [Beckers and Rodriguez, 2009], SOLENE [Miguet,

2007] and Apolux (building-scale) [Claro et al., 2005] which have their own background sky

modeling algorithm often based on the radiosity7 method.

Leidi and Schlüter [2013] developed new analytical and visualization methods for urban con-

ceptual design. The Volumetric Insolation and Visibility Analysis (VIA and VVA) methodologies

were proposed and combined with computational fluid dynamics (CFD) to offer various rep-

resentations over an unoccupied volume located in an urban environment, as shown in Fig.

2.10 (upper row). Additional constraints can be applied on the volume such as setbacks and

occupation targets, as seen in the second row of Fig. 2.10.

Until now, we have seen methods that produce images and evaluate geometry-, irradiation-

and illuminance-based indicators while remaining at the exterior surfaces of buildings. In

the following, we go over approaches and tools that require more detailed building models to

assess the performance from within. With this shift we see that indicators used to substitute

established performance metrics are abandoned, as the goal of the following methods is to

directly evaluate these more accurate metrics.

Building behavior

In this section we will see that while an extensive amount of building-scale tools have been

developed, many of them represent front-ends to a much smaller set of performance assess-

ment engines. Some of these main underlying programs are Radiance (previously introduced)

and Daysim8, a Radiance-based program, for annual irradiation and illuminance simulation,

and EnergyPlus [Crawley et al., 2000] and DOE-2 [Birdsall et al., 1990] for dynamic thermal

7Radiosity-based algorithms involve subdividing surfaces in a scene into patches for which radiosity values are
computed iteratively until sufficient illumination is obtained within the scene [Müller et al., 1995].

8http://daysim.ning.com/ (last accessed on March 20, 2016)
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(a) Degree of need to shade/shine (b) Positive and negative effects of the sun

Figure 2.9 – Example products based on the SOLARCHVISION method [Samimi and Nasrollahi, 2014]
post-processed from Environment Canada’s long-term climate data at Montreal station (reprinted with
the kind permission of Mojtaba Samimi).

Figure 2.10 – Visualization methods developed by Leidi and Schlüter [2013]. Red represents higher
values; [0y] refers to the actual situation (a future case is also shown in the paper from which these
graphs were directly taken [Leidi and Schlüter, 2013]).

simulations. The goal of the front-end software are to embed these engines into a more user-

friendly format complemented with a 3D modeler/visualizer, an interface for user-inputs and

outputs, etc. The 3D modeler is either based on CA(A)D or building information modeling

(BIM), fundamentally different in their approach. The former concept represents a digital

version of the traditional pencil-sketched drawing, while the latter, more recent, consists in a

parametric model embedding the physical and logical characteristics of the building elements

[Graphisoft, 2016]. However, according to Hermund [2009], the use of BIM prompts a linear

workflow that restricts the typical creative iterations of architects, and it currently concerns

more the construction than architecture domain. Many programs are plug-ins for existing

CA(A)D/BIM software such as Rhino and SketchUp, or they extend the modeling capacities of
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an integrated CA(A)D/BIM tool to incorporate a performance assessment engine. Instead of

attempting to review individual existing tools, which is out of the scope of this thesis, we here

identify features and general approaches of interest.

Since the 3D model and building information required are different between a daylighting

and a thermal simulation, these two performance aspects are sometimes separated. Daylight

metrics such as illuminance levels, the Daylight Factor (DF) and the climate-based DA are

calculated inside a room or building by many tools such as Apolux [Claro et al., 2005], Daylight

1-2-3 [Reinhart et al., 2007], Daylighting Dashboard [Reinhart and Wienold, 2011] and DIVA-

for-Rhino [Jakubiec and Reinhart, 2011]. The latter, a plug-in for the 3D modeler Rhino,

continues to be developed and is increasingly used particularly in education and research

[Elghazi et al., 2014; Sherif et al., 2013]. In addition to its daylighting and glare assessment

features, based on Radiance and Daysim, it also allows a thermal simulation using EnergyPlus,

but with an adapted building model slightly different than the daylighting model9. The DIVA

package also includes a plug-in for Grasshopper10, a Rhino-based graphical algorithm editor.

The latest version of DIVA (4.0) contains a multi-zone energy simulation component for

Grasshopper called Archsim11, based on EnergyPlus, which combines seamlessly with the

daylighting assessment model requirements.

Multiple other plug-ins exist for both Rhino and Grasshopper, documented on the Food4Rhino

webpage12. Examples for Grasshopper are Mr. Comfy, allowing visualization of thermal/-

daylight simulation results (provided by an EnergyPlus-/Daysim-based program) [Doelling,

2014] and Ladybug+Honeybee for weather data analysis and simulation based on EnergyPlus,

Radiance, Daysim and OpenStudio [Roudsari et al., 2013].

Other comprehensive stand-alone, plug-in or web-based tools allow evaluating both day-

lighting and thermal performance metrics, varying from simple to more complex in term of

interface and assessment engine, e.g. Ecotect13 [Roberts and Marsh, 2001]; Sefaira14, a plug-in

for Revit and SketchUp based on EnergyPlus, Radiance and Daysim; DIAL+ [Paule et al., 2011]

for lighting, natural ventilation and cooling, based on Radiance and the ISO 13791 dynamic

thermal calculation; OpenStudio15, a plug-in for SketchUp, and DesignBuilder16, both based

on EnergyPlus and Radiance.

9In DIVA-2.0: http://diva4rhino.com/user-guide/simulation-types/thermal-analysis (last accessed on March
11, 2016)

10http://www.grasshopper3d.com/ (last accessed on March 20, 2016)
11http://archsim.com/ (last accessed on March 20, 2016)
12http://www.food4rhino.com/ (last accessed on March 3, 2016)
13Although no longer available, some of Ecotect’s features will be integrated into Revit products (http://usa.

autodesk.com/ecotect-analysis/, last accessed on March 18, 2016).
14http://sefaira.com/ (last accessed on February 29, 2016)
15https://www.openstudio.net/ (last accessed on February 29, 2016)
16http://www.designbuilder.co.uk/ (last accessed on February 29, 2016)
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A drastically small yet increasing amount of more comprehensive tools are conceived for

meso- to macro-scale assessment. Notable examples are introduced below and illustrated

in Fig. 2.11.

The master-planning analytical tool CityCAD17 allows visualizing a sketched or imported city

model along with extracted and computed values from user-inputs such as electricity and

land and water use indicators (see Fig. 2.11a).

The urban modeling interface (UMI, Fig. 2.11b) is a Rhino plug-in conceived for neighbor-

hood to city level assessment of energy use (embodied and operational) through EnergyPlus,

walkability and daylight potential through Daysim [Reinhart et al., 2013]. Its main advantages

lie in the simple workflow, user-friendly interface and semi-automated modeling features

(e.g. windows automatically modeled from a given window-to-wall ratio). An effort was also

made to accelerate the simulation time, by implementing simplified methods. For instance

the daylight evaluation is done through the Urban Daylight program, which simulates hourly

solar radiation levels on all facades via Daysim, that get converted into interior illuminance

distributions with a generalized impulse response [Dogan et al., 2012].

The ArchiWIZARD18 software offers a thermal, solar and lighting (based on ray-tracing) eval-

uation of an imported 3D (CA(A)D or BIM) model, with comparison to the French RT 2012

(thermal regulations). Results can be viewed in many tabular and graphical forms, such as the

example illustrated in Fig. 2.11c.

CitySim (Fig. 2.11d), successor of SUNtool [Robinson et al., 2007], simulates urban energy

flows with four core models: thermal, radiation, behavioral and plant/equipment [Robinson

et al., 2009]. It was employed in the context of an energy concept for a master plan [Ville de

Lausanne, 2010], but has however mainly remained in research until now [Thomas et al., 2014;

Vermeulen et al., 2013].

As seen in section 2.1, the uptake of such tools is hampered notably by a lack of user-friendliness

and guidance and a level of complexity judged too high. Some features attempted to mitigate

one or many of these shortcomings are highlighted in the following.

To facilitate the simulation procedure, some tools such as the MIT Design Advisor [Urban and

Glicksman, 2006] have an implemented editable database of default values that is used to

reduce the amount of inputs demanded to the user. An important feature of those tools is that

they offer a gradual exposure to details and can therefore be used at various stages throughout

the design process. To support interpretation of results, code-compliance checks are offered

by some tools, typically created for a specific climatic and political context, e.g. Lesosai19

for Europe/Switzerland (EN ISO 13790 and SIA 380/1 norms as well as different labels) and

ArchiWIZARD for France (RT 2012 regulation).

17https://www.holisticcity.co.uk/index.php/citycad (last accessed on February 26, 2016)
18http://www.graitec.com/fr/archiwizard.asp (last accessed on March 20, 2016)
19http://www.lesosai.com/en/ (last accessed on March 20, 2016)
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(a) CityCAD: urban design software tool for
conceptual 3D master-planning. Source of im-
age: https://www.holisticcity.co.uk/index.php/
citycad (last accessed on February 26, 2016).

(b) Umi [Reinhart et al., 2013]: Rhino-based design
environment for modeling the environmental per-
formance of neighborhoods and cities. Source of
image: http://urbanmodellinginterface.ning.com/
(last accessed on April 14, 2016).

(c) ArchiWIZARD: 3D thermal simulation soft-
ware. Source of image: http://www.graitec.com/fr/
archiwizard.asp (last accessed on April 11, 2016).

(d) CitySim [Robinson et al., 2009]: simulation
and optimization of energy fluxes of urban dis-
tricts. Source of image: http://www.kaemco.
ch/download.php (last accessed on April 14,
2016).

Figure 2.11 – Interface of various existing urban-scale tools.

Other features of interest are linked to support in the 3D model generation and interpretation.

Developed by a team at Autodesk, Revit’s Conceptual Energy Analysis tool automatically

generates an energy model from the massing model of the architect, while also ensuring that

both are in sync if modifications are made by the user to the massing model [Smith et al.,

2011]. Automatic zoning, glazing and shading as well as surface determination are done

based on assumptions, editable default values, metrics and mapping logic. For example, the

window-to-wall percentage metric is used as a control method, with defaults for the target

percentage. This allows the definition of all surfaces, thermal zones and shading objects.

Conceptual constructions characteristics are then assigned as well as ‘intelligent’ defaults for

occupancy and internal gains based on documents and studies from the American Society

of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) and codes for California.

Comparison between alternatives can also be done. While the energy model is automatically

generated, it remains the task of the user to manually modify the massing to create a design

variant to be compared.
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Similarly, focusing on facilitating the modeling particularly for urban-scale assessment, Dogan

et al. [2015] developed Autozoner, an algorithm that automates the separation of buildings

into thermal zones in preparation for an energy simulation [Dogan et al., 2015].

A large majority of the simulation tools introduced in this chapter are based on physical

methods that solve equations describing the behavior of buildings or radiation from the sky.

This makes them intrinsically accurate to some degree depending on the complexity of the

engine and information provided and taken into account. In our context of interest of early

neighborhood design, information is scarce and simulation is computationally expensive.

Attempting to address these issues, Rodríguez-Álvarez [2016] recently proposed the Urban

Energy Index for Buildings (UEIB), a thermal and lighting model for facilitating energy con-

siderations at the planning stage. Existing in both a spreadsheet and GIS-integrated format,

the method incorporates a procedure for simplifying an urban morphology to a notional grid

of repeated buildings as illustrated in Fig. 2.12. The heating, cooling and lighting loads are

estimated through a simplified method, based on default values that can be edited by the

user (e.g. materials’ characteristics). Similar to the notional grid concept is the parametric

street network generation and block subdivision method by Schneider et al. [2011], which

is built from existing and custom-developed Grasshopper components. CitySim’s thermal

model, analogous to an electrical circuit, is another example of an alternative representation

of buildings and of their behavior for reducing simulation time [Robinson et al., 2009].

Figure 2.12 – Urban morphology (left) and its corresponding notional grid (right), which is evaluated in
the UEIB method of Rodríguez-Álvarez [2016]. Images reprinted with the permission of Elsevier.

An alternative path to physics-based methods is to resort to techniques coming from the fields

of computer science, artificial intelligence and statistics. The LT method introduced earlier

was developed using such techniques, resulting in a mathematical model used to cheaply

predict, from simple inputs, the energy performance. Multiple other examples can be found,

mainly focused on the building scale [Ekici and Aksoy, 2009; Foucquier et al., 2013; Tsanas and

Xifara, 2012]. As will be seen in chapters 3 and 4, this topic will become central to this thesis

and will be further discussed in chapter 4 along with more examples found in the literature.
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Appraisal

Most simulation-based tools are often referred to in the literature as ‘generate-and-test’ or ‘trial-

and-error’ and often criticized for being poorly integrated into the design process [Oxman,

2009; Petersen and Svendsen, 2010]. Despite the variety of graphical outputs offered by most

tools, additional guidance is required for interpreting the results. As Prazeres and Clarke [2003]

state: “Copious amounts of data are generated by contemporary building simulation programs

and the translation of these data to information that may be acted upon is problematic.” These

issues can be mitigated by allowing comparing design alternatives (e.g. SOLENE [Miguet, 2007],

MIT Design Advisor [Urban and Glicksman, 2006], Building Design Advisor [Papamichael et al.,

1997], Home Energy Efficient Design (HEED) [Milne et al., 2001]) or conducting sensitivity

analyzes (e.g. iDbuild [Petersen and Svendsen, 2010]), therefore reducing the need for repeated

manual evaluation while increasing the knowledge gained by users.

Such approaches bring us toward emerging design paradigms that promote a restructuring of

the traditional linear process. As introduced in chapter 1, adopting a ‘non-linear’ flow involving

the simultaneous generation and multi-criteria evaluation of multiple design alternatives can

provide more guidance to the user [Grobman et al., 2010]. Example approaches that follow

this notion are presented in the next section.

2.3 Analysis support

As seen in the above review, what we have termed assessment methods are at the core of any

performance-based DDS. They vary in complexity and in the characteristics of the framework

within which they must be embedded to be used by practitioners. In this section, we take a

closer look at different or additional features these frameworks can have to further support

users in making informed decisions. We use the term analysis support to convey this extra

step toward producing and facilitating the interpretation of results from pure evaluation tools.

2.3.1 Generative design

Grobman et al. [2008] proposed a non-linear, performance-based tool, Generative Perfor-

mance Oriented Design (GenPOD), allowing to generate and evaluate multiple design alter-

natives. Based on a morphing algorithm, building forms are generated to populate a design

solution space, based on different performance aspects (e.g. sun shading/exposure, visibility).

Similarly, Mahdavi and Gurtekin [2002] observed that BPS tools, despite being able to provide

significant amounts of data, do not effectively support the exploration of this data, or the

navigation into the ‘design-performance space’. To address this shortcoming, they proposed a

workflow involving the generation of alternatives through parametric variations of variables

from an initial design, conducting a performance simulation on these design variants to be

represented as a performance space landscape that can be interactively explored to identify

the preferred alternatives.
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Figure 2.13 – Constraints decision plot
from which solutions achieving the re-
quired daylight performance and density
level can be identified. Source of image:
Peronato [2014].

Lagios et al. [2010] developed an Animated Building Performance Simulation (ABPS) design

workflow combining Rhino, Grasshopper and Radiance/Daysim. Allowing the evaluation

of various performance indicators including solar radiation maps and daylight metrics, two

simulation approaches are offered: the single versus multiple variant analysis. In the latter,

design variables such as window size can be varied automatically using Grasshopper’s para-

metric modeling features and slider component allowing to iteratively go through a range of

numerical values. An animation is then generated by compiling the result images captured for

each design variant.

Along the same line and also based on parametric modeling using Rhino, Grasshopper and

simulation plug-ins, Peronato et al. [2015] developed a design-based method for assessing and

visualizing various building performance criteria at the neighborhood scale. In this approach,

elaborated in the context of a master’s thesis conducted in part at LIPID [Peronato, 2014],

parameters such as building set-back and height are varied one at a time, generating a series

of design alternatives that are evaluated. Results are displayed through various graphs and

images allowing to visualize the effect of specific parameters on a given performance output

(e.g. energy need and active solar suitability of building surfaces). Optimal solutions can be

identified by plotting the values associated to two criteria in addition to specific constraints,

as illustrated in Fig. 2.13.

Populating this type of graph can be done through a formal mathematical method, optimiza-

tion, used to identify highly performing design alternatives. Before addressing this field, we

introduce a technique that is often adopted to identify the most influential parameters prior

to or in combination with developing a parametric or optimization framework.

37



Chapter 2. State-of-the-art in decision-support methods applied to design

2.3.2 Sensitivity analysis

Considering a set of input parameters whose exact value is uncertain, sensitivity analysis

can serve to identify which of these inputs most determine the uncertainty in a given out-

put [Saltelli et al., 2004].

Martins et al. [2014] investigated the impact of varying urban and building parameters, e.g.

the height, glazing U-value and plot ratio, on the irradiation and illuminance levels on the

envelope. They then used the results to define the constants (less significant factors, e.g.

U-value and glazing ratio) and variables (highly significant, e.g. albedo and aspect ratio) for an

urban design optimization problem. Other studies, mainly at the building scale, have adopted

a similar approach, often in combination with regression techniques [Capozzoli et al., 2009;

Eisenhower et al., 2012; Hygh et al., 2012], or for investigating the sensitivity of a building to

different climates based on its properties e.g. U-value and thermal mass [Rastogi, 2016].

Kavgic et al. [2013] identified the following four most influential factors out of 14 on the

space heating energy consumption of a dwelling: mean indoor temperature, efficiency of

heating system, external air temperature, and window U-value. They concluded that “if

there is a large error/uncertainty associated with these parameters, it is very likely that model

predictions will be inaccurate”. They however also stated that knowing the exact value for

those inputs was still insufficient for obtaining accurate results, since the sensitivity analysis

showed differences in the relative influence of parameters based on the examined building’s

form and construction year.

Results that can be retrieved from a sensitivity analysis are dependent upon the context under

study (e.g. climate, scale), the defined range for each variable, as well as the number and

type of performance output(s) considered. This limits any generalization of the outcomes

and highlights the need for robust methods that can be applied to different cases rather than

specific studies.
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2.3.3 Design optimization frameworks

Where other methods leave the search for the most satisfying solution and at least part of the

interpretation of the results in the hands of the user, optimization explicitly directs the latter

toward optimal conditions [Papalambros and Wilde, 2000]. To optimize a design means to

find the settings, e.g. in terms of design parameters, that lead to minimizing or maximizing a

certain criterion. For instance, in the simple case where one would like to maximize the daylit

surface inside a room (objective function), the optimal solution would consist in the values of

the design variables (e.g. whatever can be modified such as room and/or window dimensions)

leading to the highest achievable daylit area.
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F1(A) < F1(B)
F2(A) > F2(B)

Figure 2.14 – Pareto front of the solution space in
a multi-criteria optimization problem where two
functions are to be minimized.

Formally, the optimization of a design

consists in defining a vector from the

design variables: x = (x1, x2, ..., xn) and

the objective as a function of these vari-

ables: f (x), with some potential con-

straints being described by functional re-

lations such as h(x) = 0 [Papalambros

and Wilde, 2000]. Multi-criteria or multi-

objective optimization is when more

than one objective function is defined

or when constraints are present in addi-

tion to the objective(s) function(s). In

such cases, a Pareto set of solutions can

be obtained, consisting of Pareto opti-

mal solutions in the form of x vectors.

This concept is illustrated in Fig. 2.14 for

a minimization problem with two objec-

tive functions. A point A is considered a Pareto optimum if and only if there is no other point

that equals or minimizes all functions (Fi (A) ≤ Fi∀i ) and A minimizes at least one function

(Fi (A) < Fi ) [Papalambros and Wilde, 2000]. All points beyond the Pareto front are dominated

by the Pareto set [Forrester et al., 2008].

While optimization-based approaches are commonly criticized for their ‘black-box’ nature

and low user-interaction [Gagne, 2011], exploiting the Pareto solutions can mitigate these

issues by providing multiple design alternatives to the user as opposed to a unique optimal

solution. The latter case is likely to be not well embraced by practitioners.

Optimization algorithms broadly fall into two categories: local optimizers (or hill-climbers)

and global searches [Forrester et al., 2008]. Methods in the former group include gradient-

based optimizers and direct search methods. In the second group we find for instance genetic

algorithms (GA) and simulated annealing. While a detailed explanation of optimization meth-

ods is out of the scope of this review, it is worth mentioning that in the field of sustainable
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building design, genetic algorithms (GA) and direct search methods are the most common

[Evins, 2013]. While optimization, in particular multi-objective optimization, is increasingly

applied in this field, it is still mostly found in research, academia and engineering practices [At-

tia et al., 2013b; Evins, 2013]. We here give some examples focused on supporting performative

design.

Oliveira Panão et al. [2008] employed a powerful optimization technique, GA, to search for

the building shapes maximizing (respectively minimizing) the absorptance in winter (resp.

summer), a parameter influenced by the solar irradiation on facades. In a case-study limited

to a uniform urban layout - i.e. all buildings and street of same dimensions - optimal urban

forms, as defined by the fitness function, for a specific latitude were identified. Similarly,

Martins et al. [2014] applied multi-objective optimization to minimize (resp. maximizing)

irradiation on facades (resp. roofs), with constraints linked to density and facade illuminance

levels.

Bruno et al. [2011] combined the program Catia, used for parametric modeling, with Mode

Frontier, an evolutionary computational software, to conceive a workflow for urban district

optimization. A Multi-Objective Genetic Algorithm (MOGA-II) scheduler designed for rapid

Pareto convergence is used to optimize different functions based on building program, location

and density. Abstract cylindrical building shapes are modeled. Example solutions found for

individual objective functions in a case study in Masdar are presented in figure 2.15.

Similarly, Mashood et al. [2007]’s GALOP system combines a knowledge base (concept intro-

duced in the next section) with a GA optimization method, to be applied at the building layout

planning stage. Focusing on three objectives - maximizing rental area, maximizing circulation

grade and minimizing heat gain - and incorporating constraints both from the user and the

knowledge base, the system searches the solution space for Pareto optimal configurations (e.g.

orientation, shape), which are presented to the user. A decision-maker module also aids the

designer in selecting a final design, by considering a priori knowledge and user preferences.

MIN Urban Circulation
Space at Grade

MIN Retail
Proximity Disperse

MAX Commercial 
Proximity Cluster

MAX Residential
Ground Floor Area

Figure 2.15 – Solutions proposed by Bruno et al. [2011]’s workflow, corresponding to four different
optimization functions. Image reprinted with the kind permission of Michele Bruno.
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Caldas [2006] developed an Evolutionary-based Generative Design System (GENE-ARCH),

combining a GA with the DOE2.1E engine to optimize buildings thermal and lighting perfor-

mance. Various case-studies have been published [Caldas, 2008; Caldas and Norford, 2002],

including one conducted at the urban scale incorporating a shape grammar of the patio house

typology in Marrakech [Caldas, 2011]. In this study, the methodology is applied with the goal

of varying dimensional parameters, while respecting the typology of the patio houses, in order

to minimize the energy consumption. Highly influencing geometrical factors on the energy

consumption are also identified. The authors argue that through its goal-oriented generative

design approach involving constraints and rules, the generation of non-intuitive optimal

solutions can contribute to the user’s creativity.

Marin et al. [2008] proposed an evolutionary design tool that evaluates the solar passive quality

of evolving shapes through the Unified Day Degree method. Taking into account the subjective

preferences of the designer, its aim is to explore the solution space of shapes for optimality

regarding heating needs in winter.

Another optimization framework was recently proposed by Zemella et al. [2011]: the Evolu-

tionary Neural Networks Design (ENN-Design) applied to building facades. Two approaches

are presented: a single-objective optimization for minimizing the CO2 emissions and a multi-

objective optimization for minimizing both cooling and lighting energy consumptions. In

the latter, a Pareto front illustrating the trade-off curve between both objectives is derived.

Assumptions are made for the internal environment (temperature, gains, etc.) and facade

thermal transmittances, while the glazing ratio, and window and solar protection type are

taken as variables.

An example software, previously introduced, that integrates an optimizer is CitySim [Robinson

et al., 2009], which relies on a hybrid evolutionary algorithm (CMA-ES/HDE) [Kämpf and

Robinson, 2009, 2010]. Another software is GenOpt [Wetter, 2001], which includes a library of

optimization algorithms that it links to various simulation software (e.g. EnergyPlus, DOE-2)

to determine the parameter settings leading to the minimization of a thermal energy objective

function. New input parameters are iteratively defined and sent to the program until the

function’s minimum has been found. Similarly, Opt-E Plus, developed at the National Renew-

able Energy Laboratory (NREL) as an in-house tool, uses multivariate and multi-objective

optimization to identify the Pareto front related to total cost and energy savings (objective

functions) using EnergyPlus [Long et al., 2010].

The main limitations of such optimization tools are their computational cost and detailed

information required, as a large amount of design configurations must be fully simulated in

often many runs to achieve convergence. However, the multi-objective approach is promising

due to the possibility of generating a Pareto front from which multiple design options can be

presented to the user, making it better suited and thus more seamlessly integrated into the

design process.

Most optimization-based methods are somewhat disconnected from the field in which they
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are applied and can sometimes act as a black-box with limited explanation brought to - and

involvement of - the user [Gagne, 2011]. A more transparent approach for supporting the

decision-making process consists in embedding expert knowledge into the performance

assessment framework.

2.3.4 Guidance through expert systems

A typical expert system is structured as illustrated in Fig. 2.16. At its core is a knowledge-

based problem solver containing general and case-specific knowledge about the domain of

interest [Luger, 2005]. It can for instance be rule-based in the form of if...then... rules. This

knowledge is applied to solve problems through the inference engine and information about

the reasoning of the system is provided to the user by the explanation subsystem.

User interface 
may employ:

question-and-
answer,

menu-driven,

natural 
language, or

graphics 
interface styles

Non-expert 
user

Knowledge-
base editor

Inference 
engine

Explanation 
subsystem

General 
knowledge base

Case-specific 
data

Knowledge from 
an expert

(research field)

Figure 2.16 – Typical expert system structure. The shell of the system (within the dashed border)
represents the generic, non-domain specific components. Image adapted from Luger [2005] with
modifications.

A distinction must be made between databases of system-related data and the knowledge

base containing the problem solving information. Knowledge is defined as “facts, information,

and skills acquired by a person through experience or education; the theoretical or practical

understanding of a subject” while data are “facts and statistics collected together for reference

or analysis”20. For instance, material properties found in a software database does not rep-

resent a knowledge base in the sense of an expert system, which could contain rules such as

if room overheating and material thickness is over code-compliance then decrease material

thickness still respecting code-compliance.

Integrating an expert system allows generating and proposing advices to the user for improving

their design, as done for instance in DIAL+ (based on a fuzzy-logic rule-based inference engine)

[De Groot et al., 2003] and Lightsolve [Gagne, 2011]. More examples can be found in research,

many of which were developed for Israel.

20Definitions taken from the Apple Mac OS New Oxford American Dictionary.
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Shaviv et al. [1996] proposed combining a knowledge base and procedural simulation to be

used with any CA(A)D tool and containing an energy (thermal performance) and a shading

module. The knowledge base contains heuristic rules that were defined through case studies

in Israel related to the design of passive solar buildings. An early example of a building

design knowledge-based system, BEADS, was proposed by Fazio et al. [1989]. From the

user inputs (location, building/wall/roof types, fenestration area and wall/roof thicknesses),

feasible alternatives are proposed, respecting the performance requirements contained in

a knowledge base, related to thickness, R-value, condensation and energy consumption,

which also contains building code constraints. An additional database of material properties

is implemented and design alternatives are produced and checked against the constraints.

In this program, the knowledge is implemented in the form of schema rather than rules,

containing attributes and values for the specification of performance characteristics.

Kalay also contributed to the development of rule-based expert systems early on for appli-

cation to performance-based building-scale design [Kalay, 1985, 1998, 1999, 2001]. Yezioro

[2009] developed a two-fold approach for passive solar architecture called PASYS. The first part

addresses the pre-conceptual stage to help users determine the best combination of climatic

design strategies. The resulting scenario is used as an input to the second (conceptual) stage

during which the passive systems are selected and sized using a knowledge base.

NewFacades offers alternative design parameters (e.g. U-value, shading controls) following

the input of a simple building description in the form of design intentions rather than a 3D

model [Ochoa and Capeluto, 2009]. Explanations regarding the selection of the alternatives

can be viewed. The program integrates the EnergyPlus engine for which a library of default

values for component characteristics is used. The user is gradually exposed to details of the

design and can eventually edit those values. The expert rule-based system is built from Israel’s

prescriptive directive, therefore ensuring the code-compliance of the designs.

The use of expert systems at the building, room or facade level appears promising, as proven

by the above examples. However, envisioning their application at larger scales is not straight-

forward. Indeed, expert systems are for a reason typically used in specialized domains with

clear solutions [Luger, 2005]. The fact that they are manually encoded requires an extensive

amount of work and knowledge, in turn linked to a large quantity of data. For instance, coming

back to our room optimization example (section 2.3.3), it is conceivable that a rule-based

expert system be developed to guide the search for the optimal design with rules such as if

daylit area is below target and window area is below max allowed then increase window area by

x%. Acquiring the data to code such a knowledge base seems feasible. However, if we extend

the room to a neighborhood, the jump in scale is matched with a surge in complexity.
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2.4 Synthesis - The need for a new approach

In this chapter we have reviewed how the performance of a design is defined and evaluated,

and how this information can be conveyed to and used by decision-makers. We have looked

at the research and development side as well as the practitioners’ perspective.

In Fig. 2.17, we have attempted to summarize how building performance is typically measured

along the design process, according to our review. We here define performance metrics as

quantitative measures of one or more performance criteria that are obtained using specific

evaluation methods. For instance, wind flow is a quantity computed through CFD simulation

and typically used to measure outdoor and internal thermal comfort and air quality.

This synthetic view allows us to better see which metric is mostly used at the early urban

design phase: geometrical parameters and rules-of-thumb, Solar Envelopes (SEs) and similar

concepts based on angles and volumes, and to a certain extent (but mostly in research) wind

analysis, irradiation levels and derived metrics. There does not appear to be any established

metric or set of metrics used to assess a specific performance criterion. At the detailed building

Evaluation 
method | 

engine
Architectural designUrban planning Urban design

Performance 
criteria | 
assessment 
purpose 

Performance metric | 
quantifier

Active solar potential | Solar rights | Shading
Daylight availability | potential

Energy performance | Code compliance

Outdoor comfort | Air quality
Thermal comfort

Land use | Social mix

Passive heating potential

CAD (3D) 
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Energy need (iii)

Passive solar gains
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Figure 2.17 – Commonly used metrics (center) typically used as quantifiers for various performance
criteria (bottom) along the design process (top), and evaluated through different methods and tools
(left). The schema loosely summarizes the detailed review of section 2.2. The numbered metrics are
further investigated in chapter 3.
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scale, more complex methods associated to more accurate quantities are employed. However,

their application in early urban design is not straightforward: the information required and

computational complexity engendered make them inadequate, leading to the shortcomings

highlighted in section 2.1.

What is not apparent in the schema of Fig. 2.17, although highlighted previously, is the often

partial view of building performance. That is, multiple studies as well as developed methods

and tools focus or allow evaluating only one criterion at a time, preventing a holistic view of

the performance. This is however important, especially since optimizing for one criterion -

e.g. heating need - may be detrimental to another valuable aspect - e.g. daylight.

“[...] two conflicting exigencies for energy conservation appear: reducing the build-

ing envelope, which is beneficial to heat losses, and increasing it, which is favorable

to the availability of daylight and natural ventilation. Which of the two phenom-

ena prevails in the global budget of buildings? The above question is not likely to

have an absolute answer.” [Ratti et al., 2005, p.768]

This issue naturally leads to adopting a multi-objective, climate-based approach. Looking at

only one performance criterion may be valid when assessing an existing environment, e.g.

when a city wants to identify surfaces appropriate for installing solar systems. However, when

dealing with the design of new buildings, which is the focus of this thesis, we argue that a

more comprehensive view is of order, since passive measures are exploitable; the morphology

and layout of buildings are yet to be defined and can lead to significant differences in terms

of energy and daylight performance, as previously highlighted in studies such as the one

presented in Fig. 2.7. This comprehensive view also means considering the interdependencies

between buildings, a need also highlighted by Ratti et al. [2005]:

“[...] they [current energy models and techniques] tend to consider buildings as

self-defined entities, neglecting the importance of phenomena that occur at the

urban scale. In particular, the effect of urban geometry on energy consumption still

remains understudied and controversial. [...] Even software developed to simulate

energy consumption at the city scale tend to neglect the effects of urban geometry.”

[p.762]

This situation is likely caused in part by the complexity induced by incorporating considera-

tions extending beyond a building. Yet, the effect of urban morphology, and its consequences

on solar exposure levels, on various performance criteria has been acknowledged, as brought

out in section 2.2.

The question now is: can we address this issue by coming up with a performance assessment

method satisfying the needs for its integration into a DDS workflow, addressing the challenges

exposed in section 2.1? To answer this question, we begin in the next chapter with a test on a

selected set of methods, by applying them on neighborhood case studies. The idea behind

this first step is to deepen our understanding of the implications associated with evaluating

a neighborhood design, while simultaneously probing the validity of existing performance
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metrics chosen from the literature. These fall into the categories that have been numbered

in Fig. 2.17 and range from parameters computed on a simple geometrical model, often

used as rules-of-thumb (e.g. compactness), to values obtained by simulating a more detailed

building geometry (e.g. energy need). In line with the goal of having a more comprehensive

solar/energy-performance assessment, we will focus on criteria related to both the passive

and active solar potential of a neighborhood design.

This preliminary study, described in chapter 3, will guide us toward developing our perfor-

mance assessment method, a process which is described in chapter 4. As foresight, our

proposed workflow employs a technique at which we have glimpsed in this chapter: mathe-

matical modeling, which allows predicting the performance without the need for a full thermal

or daylight simulation.

Forming the core contribution of this research, this method will then have to be integrated

into a framework allowing it to be tested by practitioners. This transformation into a DDS

prototype occurs in chapter 5, where we continue to build upon findings from this review.

As previously emphasized, we observe that a large majority of the tools publicly available

induce a generate-and-test process, leaving the interpretation of results to the user. This linear

process, depicted in Fig. 2.18a, also involves the translation of the initial design idea into

a format that can be evaluated, e.g. by one or more specific performance assessment tools.

This task can represent an important barrier from the practitioner’s side. So does the need for

manual repetitions when a comparative exploration of design alternatives is sought.

Addressing some of these issues are features offering more guidance to users as exposed

in section 2.3, for instance by providing means to compare alternative designs or optimize

specific parameters. The alternative assessment process induced by such features is illustrated

in Fig. 2.18b. In this workflow, the initial design idea is expanded to a realm of possible

solutions, by parameterizing design variables that practitioners typically wish to explore at

a given moment in the design process, and that are likely to influence performance. User-

defined ranges and objectives can then be used by an automated system to sample the solution

space, generating and evaluating design variants in a way that supports decision-making.

In this research, we adopt this generative performance-driven approach when developing our

DDS workflow, supported by existing tools, with the aim of fulfilling the requirements for a

seamless integration into the early-design of neighborhood projects. Further motivated and

detailed in chapter 5, the application potential of our approach is explored in chapter 6.
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(a) Linear ‘generate-and-test’ workflow induced by many of the existing performance assessment
methods and tools. The initial design idea must be translated into a model understood by the evaluation
engine, after which an interpretation of the result must be made by the practitioner. This process is
often manually repeated for evaluating different performance aspects (possibly using different tools), to
enable comparing design variations, and until a satisfying solution is found.
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(b) Non-linear ‘generative’ workflow. The translation of the initial design is replaced by a parametriza-
tion, where design variables and their corresponding range are defined by the user to depict a solution
space from which an automated procedure samples to generate design variants. Once evaluated, in-
terpretation of the results is supported by a (multi-criteria) performance-based representation of the
solution space and/or suggestions on modifications with information on the effect of specific changes.

Figure 2.18 – Main steps and tasks (a) in a traditional, linear design assessment process versus (b) an
alternative, generation-based approach.
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3 Validity assessment of existing metrics
through neighborhood case studies

Following the review of chapter 2, we here investigate if we can build on existing approaches

to develop a performance assessment method addressing the challenges unveiled in section

2.1. Through case studies, a test is conducted on a selected set of existing methods. This

preliminary investigation serves to define the performance criteria and associated metrics of

interest in this thesis1. The outcomes lead us toward our proposed performance assessment

method, based on predictive models.

3.1 Experimental method

3.1.1 Selected metrics

The selected metrics, abstractly introduced in section 2.4, are explicitly listed in Table 3.1 and

further detailed in the following sections. They fall into the following categories:

(i) Geometry-based: metrics computed from the morphology of the buildings, based uniquely

on the 3D model. These are simple and early-design phase friendly, requiring a low

level of modeling detail. They include the glazing ratio [Danielski, 2011; Pessenlehner

and Mahdavi, 2003], the passive zone [Ratti et al., 2005], the plot ratio (a measure of

density also known as Floor Area Ratio (FAR)) [Martins et al., 2014] and the compactness

measure [Martins et al., 2014; Miguet and Groleau, 2007; Pessenlehner and Mahdavi,

2003; Ratti et al., 2003].

(ii) External solar- and geometry-based: metrics computed from the level of solar exposure

of external surfaces expressed in terms of irradiation (kWh/m2) or illuminance (lux),

thus taking into account the interaction of buildings and their geometry. These require

an irradiation simulation on a simple model and are commonly used [Otis, 2012; van

Esch et al., 2012], sometimes including threshold values, identified by an ‘I’ in Table

3.1 [Cheng et al., 2006; Compagnon, 2000, 2004; Kanters et al., 2014b; Martins et al.,

2014]. From now on, we adopt the abridged name of irradiation-based metrics to refer

to this category.

1A large portion of this chapter has been summarized in Nault et al. [2015b, 2013].
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(iii) Full climate- and geometry-based: metrics which are obtained through a more complex

and computationally expensive yet conventional simulation, accounting for the climate

and geometry in more detail (e.g. thermal zoning). These are established metrics such

as the simulated energy need, and are here taken as the reference (ground truth).

The goal of this preliminary experiment is to investigate the validity of the early-phase-friendly

metrics in categories (i) and (ii) as performance indicators of neighborhood designs. To infer

their validity as ‘true’ indicators, we make the assumption that the full climate- and geometry-

based metrics (category (iii)) are to be considered as the reference values. For conciseness, we

refer to this set as the reference metrics.

Thus, results obtained by applying metrics from the first two categories should reflect the

results obtained for the reference metrics. These were selected so as to cover the following

performance criteria:

Passive solar potential: related to the passive performance of buildings, i.e. the potential to

benefit from passive solar heating and from natural daylight while mitigating the risk of

overheating.

Active solar potential: expressing the potential energy production by active solar systems

(PV and ST).

The chosen reference metrics are, in the case of the passive criteria, more accurate, conven-

tional and well-acknowledged performance indicators obtained through either daylight or

thermal simulations. The dynamic climate-based sDA metric is used for quantifying the

daylight potential [IESNA, 2012], while the space heating and cooling needs are obtained as

a measure of the passive thermal potential. As seen in chapter 1, such metrics are the target

of many regulations and labels due to the major share of the need for heating, cooling and

artificial lighting in both non-residential (administrative, commercial, etc.) and residential

buildings. Although an air conditioning system for cooling is not always present, the then

hypothetical need for cooling still reflects the distance to a comfortable temperature range.

For the active solar criterion, additional calculations from the irradiation data (cat. (ii)) provide

an estimated energy production by active solar systems. All metrics are described in detail in

sections 3.1.3 and 3.1.4.

While the sDA and energy need are not adequate metrics for early-design phase assessments

due to the factors introduced earlier (e.g. computational cost, required information not yet

known), they are valuable for proving or disproving the validity of alternative metrics, which

are simpler and easier to calculate. This approach is based on the thinking that if we are to

trust any one metric as being a performance indicator, it should effectively ‘indicate’ following

the same trend as (i.e. go hand in hand with) the performance itself, which is quantified

here by more transparent metrics closely tied to the physical thermal and radiation processes.

These metrics are evaluated for a series of neighborhood designs presented in the next section.
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3.1. Experimental method

Table 3.1 – Selected metrics to be compared for each performance criterion. Sources are listed in the
text. PV: photovoltaic; ST: solar thermal; F: facades; R: roofs.

Performance 
criteria 

(i) Geometry-
based metrics 

(ii) External solar- and geometry-
based metrics 

(iii) Full climate- and 
geometry-based metrics 

Pa
ss

iv
e 

so
la

r Solar heat 
gains 

Density 

Compactness 

Passive zone 

Glazing ratio 

Envelope area with 
irrad. > Iheat gains (%) Annual 

irradiation 
per envelope 
or floor area 
(kWh/m2

(FA)) 

Annual heating need per 
floor area (kWh/m2

FA) 
Overheating 
avoidance 

Envelope area with 
irrad. < Iheat avoid (%) 

Annual cooling need per 
floor area (kWh/m2

FA) 

Daylight Facade area with 
illumin. > Idaylight (%) 

Spatial daylight 
autonomy (%) 

A
ct

iv
e 

so
la

r 

PV-F Facade area with 
irrad. > IPV-F (%) 

Annual 
roof/facade 
irradiation 
per floor area 
(kWh/m2

FA) 

Annual energy 
production on 
roof/facade per floor 
area (kWh/m2

FA) 

ST-F Facade area with 
irrad. > IST-F (%) 

PV-R Roof area with   
irrad. > IPV-R (%) 

ST-R Roof area with    
irrad. > IST-R (%) 

3.1.2 Case studies

The research presented in this chapter originated from different analyzes conducted in the

context of four projects. The work done for these projects provided us with an opportunity

to further exploit the data, by looking at it from another angle for the purpose of the current

study. A series of 3D models used as case studies were the outcomes of each project:

• EPFL studios2, 2010-2012: bachelor-level architecture studios and summer workshops

that resulted in six student visions that were analyzed and presented in the Green

Density album [Andersen and Nault, 2013; Rey, 2013]. The schematic master plans of

the projects, elaborated for the Waldstadt district in the city of Bern, Switzerland, are

shown in Fig. 3.1. We will refer to this study by the acronym BE which stands for its

location.

• EPFL studios3, 2012-2014: similarly, eight student designs developed in the same studio,

but for the Gare-Lac area of Yverdon-les-Bains (Switzerland), were analyzed in the

context of the Urban Recovery album [Nault et al., 2015a; Rey, 2015]. Their master plan

is illustrated in Fig. 3.2. This study will be referred to by the acronym YLB.

• Master thesis [Peronato, 2014], 2013-2014: during a joint master’s thesis between EPFL

and IUAV conducted by Giuseppe Peronato whom we co-supervised in our laboratory

(LIPID), multiple design variants were generated based on the master plan of the Gare-

Lac sector in Yverdon-les-Bains [Bauart Architectes et Urbanistes SA et al., 2010]. Figure

2DENSE AGAIN (Yearbook 2010-2011) and URBAN MIX (Yearbook 2011-2012). Du projet urbain au détail
constructif. Studio of Prof. Emmanuel Rey (EPFL, LAST).

3URBAN LAKESIDE (Yearbook 2012-2013) and URBAN REGENERATION (Yearbook 2013-2014). Du projet
urbain au détail constructif. Studio of Prof. Emmanuel Rey (EPFL, LAST).
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3.3 shows a schematic shadow plan of the master plan (base case design) along with

two example variants (irradiation maps) [Peronato, 2014]. The acronym YLB-PDL4,

standing for the location and master plan type (Plan Directeur Localisé (PDL)) will serve

to distinguish this study from the previous one conducted on the same area.

• Comparative study, 2014: through collaboration with a Swiss urban design firm5, a

study was conducted to compare design variants during the elaboration of a master

plan document (Plan Directeur Localisé Intercommunal [Urbaplan, 2015]) for an area

in the north of Lausanne (Switzerland), illustrated in Fig. 3.4 along with the base case

designs (M1, M2) from which the variants were generated. Six specific designs (M3 A-F)

provided by the firm were also analyzed. We assign to this project the acronym LN-PDL

standing for its general location (Lausanne-Nord) and master plan context.

For all cases, the experimental approach for obtaining the data that allow us to compare the

selected metrics is illustrated in Fig. 3.5 and further detailed in the following sections. The

first step is to model the geometry at a Level of Detail (LoD)6 1 to extract the geometry-based

metrics. The Level of Detail (LoD) 1 model corresponds to buildings modeled as blocks with

a flat roof. An irradiation simulation, executed on the same model, allows us to compute

the second category of metrics. The reference metrics are obtained either through further

processing of results from the second phase (active solar) or full simulations on slightly more

detailed models that include thermal zones and windows.

Most of the outputs associated with each phase of this workflow were obtained in the course of

the four individual projects. In some cases, further work was done to complete the data for the

purposes of the current analysis. We here make use of this data by looking at the correlation

degree between specific pairs of metrics. Different tools (or versions of) were used between

studies, as well as distinct modeling and simulation assumptions or settings. This is due to the

fact that the four projects occurred consecutively and in distinct contexts. These discrepancies

are not considered an issue here, as the intention of this chapter is not to compare absolute

results between the studies, but rather investigate the outcome of applying the selected set of

metrics to different neighborhood designs. The diversity of cases and simulation assumptions

can rather be seen as an advantage. In the first two studies, BE and YLB, we have a small

number of designs, quite different in terms of building typology and layout. The third study,

YLB-PDL, includes a much larger number of designs created from small variations applied to

a base case. LN-PDL is an in-between case, containing both multiple variants generated by

applying moderate variations to two base case designs (M1 and M2), as well as six specific and

distinct designs (M3 A-F).

4To avoid any confusion, it should be noted that this study has been presented in a previous publication using
the acronym YLB [Nault et al., 2015b], here assigned instead to the Urban Recovery project.

5Urbaplan: http://www.urbaplan.ch/ (last accessed on March 20, 2016)
6The Level of Detail (LoD) is a concept defined by the City Geography Markup Language (CityGML) to classify

building models on a scale from 0 to 4 [Kolbe et al., 2005].
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1 Interface 2 Transition 3 Damier

4 Avant-postes 5 Continuités 6 Hyperdensités

N
50m

Figure 3.1 – Schematic master plan of the six urban visions (delimited by a green border), and the
existing built context (outside of the delimitation) in the BE case study. The sample surrounded by
a dashed red line represents the simulated portion of each design. The shade of gray of the unbuilt
buildings gives an indication of their height: darker = higher. Location: Waldstadt district, Bern,
Switzerland. Images adapted from Rey [2013], in which the designs are referred to by their name here
displayed.

1 Lyon (LYN) 2 Copenhague (CPH) 3 Berlin (BER) 4 Dublin (DUB)

6 Genève (GVA) 7 Barcelone (BCN) 8 Amsterdam (AMS)5 Louvain-la-Neuve (LLN)

Figure 3.2 – Schematic master plan of the eight urban visions (black) and the existing immediate (gray)
and surrounding (light gray) built context in the YLB study. Location: Gare-Lac sector, Yverdon-les-
Bains, Switzerland. Images adapted from Rey [2015], in which the designs are referred to by their name
here displayed.

53



Chapter 3. Validity assessment of existing metrics through neighborhood case studies

Figure 3.3 – Left: Schematic shadow plan of the YLB-PDL base case. Due to practical considerations,
only buildings G, H and I were simulated (red), taking into account their surroundings. Right: Annual
irradiation map of two example variants. Source of images: Peronato [2014].

Figure 3.4 – Illustrative master plan of the LN-PDL study, with example plots (framed in red) on which
the design variants created from M1 and M2 or the specific designs of M3 (top) could be located. Plan
adapted from Urbaplan [2015].
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Figure 3.5 – Experimental approach and tools used for acquiring the data necessary to compare the
selected metrics. Results obtained for the simpler metrics of categories (i) and (ii) are compared with
the full climate- and geometry-based metrics (iii) taken as reference values. The level of complexity
and of detail of the obtained output increases along with the computational cost from top to bottom.

The interest of having this diversity of cases lies in the fact that these represent various

situations that could be found in practice. For instance, the student visions of BE and YLB

could emanate from a design exploration phase or from an urban design competition, while

the extensive series of variants in the YLB-PDL study would come up at a subsequent phase,

after fixing the building typology. The fourth project occurred (in reality) in the context of a

master plan elaboration. All of these situations moreover correspond to the applications and

audience at which our proposed DDS workflow, developed in the next chapters, is addressed.
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3.1.3 Modeling

Tools and LoDs

Table 3.2 summarizes the tools used in the 3D modeling of the designs for each study. Rhino7was

used as the base 3D modeler and for visualization. The first version of UMI [Reinhart et al.,

2013], a plug-in for Rhino, was used to facilitate the translation of the BE designs into thermal

models. The window-to-wall ratio was fixed to 0.5 and 0.45 for BE and YLB respectively, with

values falling within that range for the other two studies. Each story was defined as a thermal

zone, except for YLB-PDL, where each bar (or block) composing the courtyards was modeled as

a thermal zone without internal floors, due to limitations of Viper, the DIVA-for-Grasshopper

component allowing an EnergyPlus simulation (described later).

As mentioned earlier, the modeling was done at different Level of Details (LoDs); buildings

were first modeled as simple boxes for extracting all geometry-based metrics (except the

window-to-floor ratio) and running the irradiation simulation. An example can be seen in

Fig. 3.7. For computing the window-to-floor ratio and executing the thermal and daylight

simulations, thermal zones were defined and windows were added, in a different layout

according to the tool used, as illustrated in Fig. 3.6 and detailed further on.

Table 3.2 – Tools used in the modeling process in each project. Sources are mentioned in the text.

Tool Role BE YLB YLB-PDL LN-PDL
Rhino 3D modeler x x x x
UMI Thermal modeling support x
Grasshopper Parametric modeling x x x
Matlab Script for defining design vari-

able values
x

gHowl Import/export of data between
Excel, Grasshopper and Matlab

x x

Total number of variants 6 8 768 1008

Parametric modeling

For YLB-PDL and LN-PDL, a parametric modeling approach was adopted. Parametric model-

ing means generating a series of design variants that are linked through one or more math-

ematical relationship(s), forming a space that contains multiple related yet distinct shapes

[Lagios et al., 2010]. The parametric modeling was done using Grasshopper8, a graphical

scripting program for Rhino that allows automating, in an iterative sequence, the application

of changes to a design. A screenshot is shown in Fig. 3.7. The added-value of this program also

lies in the multitude of plug-ins continuously developed for it. One of them is gHowl9, used

7https://www.rhino3d.com/ (last accessed on March 20, 2016)
8http://www.grasshopper3d.com/ (last accessed on March 20, 2016)
9http://www.grasshopper3d.com/group/ghowl (last accessed on March 20, 2016)
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(a) Example design (1-Interface) in BE, modeled
in Rhino-UMI-UD.

(b) Example design from the M2A series of LN-
PDL, modeled in Grasshopper for simulation in
DIVA.

Figure 3.6 – Example models used for the thermal and daylight simulation using different tools.

Figure 3.7 – Rhino and Grasshopper (partial) set-up for the parametric modeling of variants and
computation and simulation of metrics. Example for the M2A case in the LN-PDL study.

here to exchange data between the software in the form of Excel files. Finally, Matlab10 was

used in the LN-PDL study, for which a script was developed to randomly assign values to each

design variable and building for the series of M1 and M2 variants. Validity checks were also

performed to ensure that models were realistic (e.g. no overlapping buildings) and respected

the constraints (e.g. minimum density).

Parameters that were varied, kept constant or taken as constraints for YLB-PDL and LN-PDL

are listed in Tables 3.3 and 3.4 respectively. In the former, geometrical modifications were

done by varying the height of buildings within the range of values prescribed by the master

plan [Bauart Architectes et Urbanistes SA et al., 2010], and by setting their depth and setback

10http://www.mathworks.com/products/matlab/ (last accessed on March 20, 2016)
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to values expected to be representative of possible design choices. These variations, illustrated

in Fig. 3.8 were simultaneously and iteratively applied on each courtyard block, leading

to 768 design variants covering all possible combinations of parameter settings. To reduce

simulation time, only buildings G, H and I in Fig. 3.3 were simulated, taking into account

their surrounding context (terrain and buildings’ reflectance/shading effect). The variations

were applied equally on all three buildings, i.e. within each variant all buildings have the

same depth, setback, and height value, with the exception of additional stories located on the

northern facade of buildings G and H. Despite these uniform parameter values, we obtain

three distinct building sizes due to the initial outer perimeter being different for each block.

This can be better understood by looking at the annual irradiation map of the two example

variants in Fig. 3.3.

In LN-PDL, the design variables and their range were specified by the urban design firm who

provided the base case models. As mentioned, a random sampling algorithm was used to select

building dimensions from the ranges. M2 was eventually split into M2A and M2B, to explore

two different spans of (partially overlapping) building heights, the other settings being equal.

A total of 144 (M1), 190 (M2A) and 164 (M2B) variants were generated and simulated for two

orientations (N-S and E-W alignments), resulting in 1008 variants altogether, including M3.

In both projects, the window modeling was based on fixed values, e.g. the distance between

the window base and the floor and the window height. This generated similar window-to-wall

ratios among design variants, specified in Tables 3.3 and 3.4 in the constants’ section.

Table 3.3 – Design variables and constants for generating variants in the YLB-PDL study, based on
the PDL [Bauart Architectes et Urbanistes SA et al., 2010]. *Window-to-wall ratio was dictated by the
window modeling done using constant intervals (e.g. between window bottom and floor).

Variable Min:Step:Max
Setbacks (N-S/E-W) 0:1:3 m
Block width 10:1:17 m
Number of stories 2:1:3
Additional stories on N side 0:1:2
Constant Value
Window-to-wall ratio* ∼0.48
Story height ground floor 3.95 m
Story height other floors 2.95 m

stories
height horizontal layout

extra stories width setback

Figure 3.8 – Illustration of design variations in the YLB-PDL study. Source of image: Peronato [2014].
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Table 3.4 – Design variables and constraints for generating variants in the LN-PDL study. *Window-to-
wall ratio was dictated by the window modeling done using constant intervals (e.g. between window
bottom and floor). bldg(s): building(s); cst: constant; var: variable. See Fig. 3.4 for a visual description
of x, y, z and d.

M1 M2A M2B
Variable Min:Step:Max Min:Step:Max Min:Step:Max
x 8:1:15 m 10:2:20 m 10:2:20 m
y 6:1:24 m 12:2:24 m 12:2:24 m
z 6:3:12 m 9:3:18 m 12:3:24 m
d (cst) 6:1:20 m 6:1:20 m
Number of bldgs per side 8:1:14 (cst) (cst)
Orientation 0◦ (N-S alignment) and 90◦ (E-W alignment)
Constant/Constraint Condition/Value Condition/Value Condition/Value
d 0 m (var) (var)
Number of bldgs per side (var) 4 4
Window-to-wall ratio* 0.44-0.46 ∼0.46 ∼0.46
Plot ratio > 0.9 > 0.9 > 0.9
Total floor area per bldg > 50 m2 > 200 m2 > 200 m2

Distance between neigh-
bor bldgs

(0 m by default) 6 m < dist < 20 m 6 m < dist < 20 m

Computation of (i) geometry-based metrics

Once we have achieved a simple LoD 1 modeling of the designs, the geometry-based metrics

are computed, either manually via Rhino and Excel (for BE) or via automated operations

directly scripted in Grasshopper (all other studies), as noticeable in Fig. 3.7. The exact

definition of each metric is as follows:

Plot ratio: Density measure also known as the FAR and computed as the ratio between the

total floor area and the plot area (constructible parcel of land). Common urban morpho-

logical parameter [Martins et al., 2014], linked to energy consumption and production

[Steemers, 2003].

Surface-to-volume: Compactness measure computed as the ratio between the total exposed

envelope area and the total enclosed volume. Indicative of heat losses; the smaller the

surface-to-volume, the more compact the building, and the lower the heat losses due to

a smaller exposed surface area [Ratti et al., 2003]. In northern climates, this ratio should

generally be minimized to avoid heat losses which dominate over heat gains in winter,

and to limit heat gains by having a smaller collecting surface in summer [Miguet and

Groleau, 2007].

Passive zone: Ratio between the total area of passive zones (within 6 m of an exposed facade)

and the total floor area [Steemers, 2003]. Quantifies the potential of a space to use

daylight, sunlight and natural ventilation, and was found to be a better indicator than

the surface-to-volume ratio for total energy consumption (heating, cooling, ventilation

and lighting) [Ratti et al., 2005].
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Chapter 3. Validity assessment of existing metrics through neighborhood case studies

Window-to-floor: Measure of the glazing ratio, computed as the total window area divided

by the total floor area. Used instead of the more common window-to-wall ratio which

was kept approximately constant in the case studies. Glazing proportion characterizes

heat gains and losses, natural ventilation, daylight, as well as other aspects not treated

in this study such as glare [Ochoa et al., 2012].

These values are computed over the whole neighborhood, i.e. for an ensemble of buildings,

leading to one value per design variant.

3.1.4 Simulation

Due to practical reasons linked to modeling and simulation time and resources, in the BE

study only a sample of each design judged representative of the whole was simulated. These

samples are highlighted in Fig. 3.1. Similarly for YLB-PDL, where the analysis was limited to

the three courtyard buildings identified in Fig. 3.3. In all cases, the surrounding context is

taken into account in the simulations, in terms of shading and reflectance of both existing and

designed buildings.

All simulations are climate-based, that is, they all make use of the provided weather file from

which some data (e.g. dry-bulb temperature) is extracted and used in the simulation. The

weather files are the one for Bern for the BE study [Meteotest, 2012], Yverdon-les-Bains for both

YLB and YLB-PDL [Meteotest, 2012] and Geneva for the nearby LN-PDL project [EnergyPlus,

2014].

Computation of (ii) external solar- and geometry-based metrics

Running an irradiation simulation on the same LoD 1 models as in the previous step allows us

to compute the second category of metrics (see also Table 3.1):

Annual average irradiation: Total annual irradiation received on a certain exposed surfaced

divided by the area of that surface. Direct measure of solar availability.

Floor-area-normalized annual irradiation: Total annual irradiation received on a certain

exposed surface divided by the total floor area. Direct measure of solar availability.

Threshold-based daylight/passive/active solar potential: Percentage envelope or facade area

receiving an irradiation or illuminance level above (or below for heat avoidance cri-

terion) the corresponding threshold, as listed in Table 3.5. Adapted from a method

developed by [Compagnon, 2000].

The tools used, displayed in Fig. 3.5, as well as the settings applied when conducting the

irradiation simulation are listed in Table 3.5. The values of the irradiation and illuminance

thresholds for the calculation of the threshold-based metrics are also included the table.

In the four studies, the irradiation simulation is done via the DIVA plug-in for both Rhino

and Grasshopper [Jakubiec and Reinhart, 2011], which relies on the Radiance [Larson and
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Shakespeare, 1998] and Daysim11simulation engines. DIVA uses in particular a cumulative

sky method based on the GenCumulativeSky Radiance module [Robinson and Stone, 2004] to

obtain annual direct and diffuse irradiation levels on a grid of nodes (or sensor points) located

on the exposed building envelope areas and oriented outwards with respect to the enclosed

volume. An example grid is shown in Fig. 3.9a, for a 1 m resolution (distance between points).

Results can be visualized through a false-color irradiation map, as shown in Fig. 3.9b.

The node-specific values are exploited in the calculation of the threshold-based metrics, which

come from a method developed by Raphaël Compagnon in the context of a European project

called PRECis [Compagnon, 2000] and further applied in subsequent studies [Compagnon,

2004; Montavon et al., 2004a]. Distinct threshold values are defined for assessing the passive

heating, daylight and active solar potential. We have added to this list the heat avoidance

threshold, for assessing the risk of overheating. These metrics have been computed in the BE

and YLB-PDL studies only, the latter not including the added heat avoidance threshold. The

origin of the threshold values, listed in Table 3.5, is explained below.

The passive heating threshold represents the amount of solar energy (kWh/m2) collected

over the heating period - defined as September 15 to May 14 for the Swiss climatic context12 -

required to compensate the heat losses through glazing [Compagnon, 2000]:

Iheat gains =
24 ·DD ·U
1000 · g ·η (3.1)

where

DD: heating degree days for Bern and Yverdon-les-Bains (DDBE = 2906K·day [Meteotest, 2012],

DDY LB = 2874K·day [MétéoSuisse 2000-2013 average])

U : thermal transmission coefficient for a typical double glazing (1.3 W/m2K)

g : solar energy transmission coefficient for a typical double glazing (0.75)

η: utilization factor taking into account occupants and building’s dynamic behavior (0.7)

The heat avoidance threshold is defined in a simpler manner based on the fact that to mitigate

the risk of overheating, the solar exposure in summer should be minimized. To allow a

comparison among the BE designs to which this metric is applied, an upper limit has been set

based on the energy received on average on all surfaces of all designs over the non-heating

period (May 16 to September 14). This value does not represent the amount of energy that will

lead to an overheating of the buildings, which would have required many assumptions and

full energy analyzes to be determined. However, it still represents a case-specific approach

worth investigating.

11http://daysim.ning.com/ (last accessed on March 20, 2016)
12http://www.hausinfo.ch/home/fr/droit/droit-bail/utilisation/chauffage.html (last accessed on March 11, 2016)
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3.1. Experimental method

The active solar system thresholds are split per surface orientation - roofs versus facades

- and technology - photovoltaic (PV) panels and solar thermal (ST) collectors. They repre-

sent the amount of energy collected throughout the year, considered as ‘reasonable’ levels,

based on economic and technical factors for existing systems and the Swiss climatic context

[Compagnon, 2004].

The daylight threshold is computed from the following equation [Compagnon, 2000]:

Idaylight =
Ei

CU
(3.2)

where

Ei : mean indoor illuminance on workplace, typically fixed at 500 lux for the working hours

(8am-6pm)

CU: coefficient of utilization taking into account construction details (e.g. glazing ratio),

typically of about 0.05 for vertical openings

For each threshold, a performance metric is computed, expressed as the percentage of exposed

surface respecting the criteria-specific threshold condition:

Potentialcrit = 100×
(∑n

i=1αi

n

)
[%] with αi =

⎧⎨
⎩1 if (Ii − Icrit) > 0 (< 0 for heat avoidance)

0 otherwise (1 for heat avoidance)

(3.3)

where Ii is the annual irradiation (or illuminance) value at node i ∈ [1,n] and Icrit is the

criterion-specific threshold as defined above.

Computation of (iii) full climate- and geometry-based metrics

Through additional mathematical operations and simulations on a more detailed model, the

final category of metrics, our reference values, are obtained:

Energy production: Estimate of the energy produced by facade- and roof-mounted PV pan-

els and ST collectors, computed by further processing the irradiation data previously

acquired.

Energy need: Annual heating and cooling need of the entire neighborhood, normalized by

its total floor area, representative of the energy required to maintain comfort.

Spatial daylight autonomy: Measure of the interior space that receives a specified amount

of daylight over a given period of time over the year.

Each metric is further detailed below.
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Chapter 3. Validity assessment of existing metrics through neighborhood case studies

Energy production

For BE and YLB-PDL, the energy production is computed by differentiating between each

system and surface. A value is obtained for PV and ST on roofs and on facades. This metric

builds upon the results from the irradiation-threshold metrics by making use of the surfaces

(nodes) identified as adequate for each system, based on the same threshold value given

in Table 3.5. As such, this metric does not require any additional simulation. However, we

consider that it provides more trustworthy or realistic results, as the efficiency of each system

is considered as well as the actual amount of irradiation of each node which exceeds the

relevant threshold. It is computed through the following equation:

Esys =
∑msys

i=1 Ii × An ×ηsys

FA
[kWh/m2

FA] (3.4)

where

sys: combination of active system and installation surface (PV-F, PV-R, ST-F, ST-R)

msys: nodes for which the irradiation threshold is achieved for surface and system sys

Ii : annual irradiation of node i ∈ [1,msys] [kWh]

An : average node area [m2]

ηsys: efficiency of system (0.15 for PV-F/R, 0.70 for ST-F/R)13

FA: total floor area [m2]

In the YLB study, a different method is used to compute the energy production, developed

by Giuseppe Peronato, PhD student at LIPID. The production metric corresponds to the

electricity generated by PV panels installed on available roof surfaces, where areas reserved to

ST collectors have been discarded. The algorithm is as follows.

First, the energy required to cover 50% of the annual Domestic Hot Water (DHW) needs,

brought back to a period of 8 months corresponding to the heating season (September 15 to

May 14), is computed:

DHW = 0.5×FA× (rres×Qhw1+ (1− rres)×Qhw5)× 8

12
(3.5)

where

FA: the total floor area [m2]

Qhw1 and Qhw5: annual energy need per floor area for DHW for multi-family housing (75

MJ/m2) and commercial buildings (25 MJ/m2) respectively [SIA, 2009b], converted to kWh/m2

rres: ratio of residential surface, ranging between 0.5 and 0.9 among the YLB projects, with the

remaining areas assigned to a commercial usage.

13These values respectively correspond to standard polycrystalline-based panels and flat-plate collectors (http:
//www.swissolar.ch/fr/lenergie-solaire/photovoltaique/technologie/, http://www.minergie.ch/tl_files/download_
fr/ad_cs.pdf, last accessed on April 18, 2016).
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3.1. Experimental method

The energy production from each node is computed for both ST and PV systems:

EST,i = Iw,i × An ×ηST EPV,i = Iy,i × An ×ηPV (3.6)

where

Iw,i : total irradiation over winter season for node i

Iy,i : total irradiation over year for node i

An : average node area [m2]

ηsys: efficiency of system (0.15 for PV, 0.70 for ST)

The production by PV is then sorted from highest to lowest, and the same order is applied to

the series of ST production values. The latter are summed until the DHW need is achieved.

The nodes thus ‘used’ for covering the DHW are removed from the PV series. Among the

remaining nodes, the production is computed as:

E =
∑m

i=1 EPV,i

FA
[kWh/m2

FA] (3.7)

where m nodes achieve the irradiation threshold for PV systems (set to 1000 kWh/m2 in this

thesis as in [Compagnon, 2004]), excluding the ones reserved for covering the estimated DHW

demand.

Energy need

The tools and settings used in the thermal simulation to obtain the heating and cooling needs

are listed in Table 3.6. In all studies, a front-end for the EnergyPlus engine [Crawley et al., 2000]

is used, where an ideal loads air system is assumed. This ZoneHVAC:IdealLoadsAirSystem

object is modeled as an ideal Heating, Ventilation and Air Conditioning (HVAC) system that

supplies conditioned air to the defined zone to meet all requirements (e.g. setpoint tempera-

ture) while consuming no energy in itself14. That is, no additional energy is required to meet

the demand, as the ideal HVAC has an efficiency of 100%.

The outputs recorded, the total (sensible and latent) heating and cooling energy added to

each zone, are summed over all zones and buildings within a design and divided by the

total floor area. Figure 3.10a illustrates, for an example design of the YLB study, the annual

heating need per floor area on average in each story, considered a thermal zone. Simulated via

Archsim/EnergyPlus, the total needs per zone are summed over the whole design and divided

by its total floor area. The same is done for cooling (when recorded). We refer to this metric as

the energy, heating or cooling need, which is here equivalent to the consumption or the Energy

Use Intensity (EUI), which is the total energy consumed by one (or a group of) building(s) in

one year divided by the total gross floor area.

The main differences in the settings between the studies are found in the building function (or

14http://nrel.github.io/EnergyPlus/InputOutputReference/02-HVACTemplates/ (last accessed on March 11,
2016)
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program), either defined as office or residential, the infiltration rate and loads, as well as the

materials heat transfer coefficient. Sources consulted are noted in the table for the relevant

studies. In some cases, default values provided by the tool were used, despite their inadequacy

for the study’s climate and context. For instance, the Archsim plug-in, then still in its early

development status, was used for the first time in the LN-PDL study. A residential function

was assigned, with a very high occupancy ratio, internal loads and U-values. This combination

of parameters, obtained by overlooking default values in the plug-in, does not represent a

realistic situation. In that same study, the Zone Ideal Loads Zone Total Heating Energy output,

extracted from the .csv file generated by EnergyPlus, was the one used to compute the heating

need metric. However it was later found that this value does not include the energy required

to warm up the outdoor (fresh) air (Zone Ideal Loads Outdoor Air Total Heating Energy)15.

Learning from this early experiment, more realistic settings were used in the thermal simu-

lation for other studies in which Archsim was employed, by processing the .idf it generated

in Matlab to adjust settings before running the simulation in EnergyPlus. The total amount

of heating including the proportion required for the outdoor air was used for computing the

energy need, by extracting the District Heating output provided in EnergyPlus’ Table file. As

we will see in the next section, the mixed settings in LN-PDL and the exclusion of the outdoor

air energy, which is conditioned by the function, occupancy and internal loads, somehow

compensate each other to a certain degree, e.g. through the combined and opposite effect of

high internal loads and low insulation.

Although some values are outside their typical range or do not represent best practice construc-

tion materials, the comparative nature of the study attenuates the importance of the settings

accuracy, as we do not aim at obtaining accurate absolute energy need values. As mentioned

earlier, it is rather interesting to investigate the effect on the results of these discrepancies in

the settings among studies.

0 5kWh/m2
FA

(a) Heating need

0 100%

(b) Daylight Autonomy

Figure 3.10 – False-color map of the (a) heating need (average per zone) and (b) DA for design 1-LYN in
the YLB study.

15More information on the definitions of all output values can be found at http://bigladdersoftware.com/epx/
docs/8-0/input-output-reference/page-032.html (last accessed on March 17, 2016).
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Chapter 3. Validity assessment of existing metrics through neighborhood case studies

Spatial daylight autonomy

The sDA, detailed in [IESNA, 2012], is a climate-based metric that describes the annual suf-

ficiency of daylight levels inside a building. It is quantified by the percentage of an interior

horizontal area that meets a minimum illuminance target t over a certain fraction x of the

occupied hours of the year. The sDA is thus a spatially ‘condensed’ version of the temporal

Daylight Autonomy (DA) metric. The recommended parameter values are t = 300 lux and

x = 50%, denoted by sDA300/50% [IESNA, 2012]. The analysis grid is set at 30” (76.2 cm) above

the floor with a resolution of 24” (61 cm between nodes), the period from 8am - 6pm, with

blinds operated hourly to block direct sunlight according to a procedure described in the

aforementioned reference. While these are the official settings for measuring the sDA, we

partly deviate from them in the four studies, in particular regarding the blinds modeling for

which we met technical limitations linked to the tools used.

In all studies, the analysis grid is placed at 0.8 m above the floor, with a node resolution of 2 m.

This distance, larger than the specified 61 cm, is to reduce computational time, significant at

the scale of our studies (∼hours for multiple buildings). The occupancy hours are extended

to 8am - 10pm in three of the studies, to cover a larger range of possible daylight hours while

detaching ourselves from a fixed building function. As mentioned for the energy simulation,

these settings do not prevent us from comparing designs within a same study.

The tools and full list of settings for the daylight simulation are given in Table 3.7. The

background engines common to all tools are Radiance and Daysim. Results for the BE study

were obtained directly from Urban Daylight16, which produced the binary DA maps shown

in Fig. 3.11 and provided the overall sDA through its interface. The maps display the daylit

(white) versus non-daylit (black) areas, where daylit is defined as zones achieving a DA300/50%,

i.e. with an illuminance level above the 300 lux threshold over 50% of the occupied hours. Only

in this study was the sDA computed on all floors. For reasons linked to computational time, in

the other three projects only the ground floor was considered, as a worst-case situation (most

potentially shaded out of all floors).

The format of the simulation outputs is different for the other studies for which Grasshopper

was used as an intermediary, to facilitate the modeling, between Rhino and the simulation

plug-ins. Figure 3.10b shows the raw results obtained via DIVA-for-Grasshopper, plotted as a

false-color DA map, for an example design of YLB. The sDA is computed by processing this

data in Matlab to obtain the percentage space achieving a DA300/50%. The same procedure

was followed for the parametric studies. In YLB-PDL, only 32 variants out of the 768 were

simulated, due to the high computational cost of the daylight simulation.

16Urban Daylight converts hourly solar radiation levels on all facades simulated via Daysim into interior illumi-
nance distributions through a generalized impulse response [Dogan et al., 2012].
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1 Interface 2 Transition 3 Damier

4 Avant-postes 5 Continuités 6 Hyperdensités

Daylit (sDA300/50% achieved) Not daylit

Figure 3.11 – Map of the DA results produced by Urban Daylight [Dogan et al., 2012] for all designs in
the BE study.

3.2 Results

We here present the results through scatter plots showing the computed reference values

(y-axis) against, on the x-axis, each (i) geometry-based metric in section 3.2.1 and (ii) external

solar- and geometry- (or irradiation-) based metric in section 3.2.2. In each section, a sub-

division is made to look at the three performance criteria: energy production, energy need

and spatial daylight autonomy. Results for the first two smaller sized studies, BE and YLB,

are often merged an presented together in the graphs, followed by YLB-PDL and LN-PDL.

This sequence is repeated for each pair of metrics compared, with studies excluded in parts

where no results were measured, e.g. LN-PDL for the energy production, not computed in that

project. As motivated earlier, we want to investigate whether metrics (i) and (ii) are correlated

to the reference values (iii), in order to judge of the ability of the former to establish a ranking

among design alternatives with respect to a specific performance criterion.

The relationship between each pair of metrics is quantified by the linear coefficient of de-

termination (R2), displayed only in graphs where it was found to be higher than 0.70. In the

results for YLB-PDL, we have identified an example cluster through colored points, matching

across all graphs for this study. Each cluster consists of variants with identical block depth, i.e.

equivalent surface-to-volume and passive zone ratio, but distinct setbacks, window-to-floor

and plot ratio. This allows visualizing where the same data points fall in the different graphs

and will be used throughout this section to facilitate highlighting certain behaviors.

3.2.1 Geometry-based versus reference metrics

Energy production

Figures 3.12, 3.13 and 3.14 present the comparison between the energy production (reference

metric) and the geometry-based metrics respectively for the BE, YLB and YLB-PDL studies.
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Chapter 3. Validity assessment of existing metrics through neighborhood case studies

The abstract trends decipherable in the graphs of BE and YLB are more clearly seen for the

much larger dataset of YLB-PDL (Fig. 3.14), showing patterns particularly for facade-mounted

systems (PV-F and ST-F). In those cases, a linear relationship is found across all metrics,

strongest for the window-to-floor ratio. This is explained by the fact that larger ratios mean

more facade (i.e. collecting) surfaces for a certain enclosed floor area, the latter being the same

normalization basis as the energy production value (kWh/m2
FA). For systems on roofs (PV-R,

ST-R), we observe a spread with higher values associated to designs with 2-story buildings. The

irradiation on roofs is likely to be very similar between designs with 2- and 3-story buildings,

as this change affects all buildings so there is no increased shading. Thus, the floor area

normalized irradiation level is higher for lower buildings, due to their smaller total floor area.
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Figure 3.12 – Energy production by (a) PV and (b) ST systems on facades and roofs against each
geometry-based metric for BE.
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Figure 3.13 – Energy production against each geometry-based metric for YLB.
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Figure 3.14 – Energy production by (a) PV and (b) ST systems on facades (F, top) and roofs (R, bottom)
against each geometry-based metric for the YLB-PDL designs.

Energy need

Figure 3.15 shows the heating need (top) and the energy need (including heating and cooling;

bottom) against each of the four geometry-based metrics, for studies BE and YLB. Results

for the cooling need are not separately shown as they were found to be very small for the BE

case and displaying no trend for both BE and YLB. While the heating need is about twice as

high for BE than YLB mainly due to the simulation settings, e.g. differences in infiltration rate

and U-values, the total energy values are similar due to the cooling need contributions. Yet,
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only BE displays high correlations for the surface-to-volume and window-to-floor ratios. The

positive direction of the correlations are to be expected for this heating-dominated climate,

with higher heat losses associated to both a larger window-to-floor ratio and a lower level of

compactness (higher surface-to-volume). We speculate that the lack of trends for the YLB

dataset may be caused by the combined effect of low U-values and the diversity of building

orientations - and in some cases typologies - in the designs. In this study, a higher number

of buildings spread over a larger surface area was included in the simulation (see Fig. 3.2)

compared to the other studies. This may have led to an averaging effect limiting the differences

in energy need and simultaneously fading out the influence of geometry-based metrics.

The same comparison is shown in Fig. 3.16 for the heating (top) and cooling (bottom) need

of YLB-PDL. Designs with 2 versus 3 stories are separated particularly in the plot ratio and

surface-to-volume graphs. For a same surface-to-volume ratio, 2-story designs perform better

than the ones with 3 stories. Strong patterns are found across all geometry-based metrics for

this larger dataset, with an R2 consistently above 0.70 except for the cooling versus plot ratio.

These correlations are likely due to the way variants were generated through the parametric

modeling, causing a dependency between the four geometry-based metrics. For example,

when increasing the building depth design variable, all metrics are affected: the surface-to-

volume, passive zone and window-to-floor augment while the plot ratio diminishes. Figure

3.17a shows an analysis of these four metrics through a correlation matrix, including the

histogram of each parameter, displaying the Pearson correlation coefficient17 between each

pair. The correlation is strongest between the plot ratio (PR) and surface-to-volume (SV).

The consequence of this interdependency is that if any one of the geometry-based metrics

correlates with the heating need (positively or negatively), as expectedly occurs for the surface-

to-volume ratio for instance, all other metrics will correlate as well. This observation puts us

on guard regarding ‘indirect’ correlations, which are difficult to detect. Caution must also be

used when drawing conclusions on the cause of the observed trend, as in the famous saying

correlation does not imply causation.

The slope of each relationship indicates whether the metric should be minimized or maximized

to achieve a better performance. The same directionality between heating and cooling means

that both outputs can be minimized through the same geometrical features out of the ones

considered. The positive slope for the passive zone is contradictory to the concept being it,

where non-passive zones should theoretically potentially consume more than passive ones.

Indeed, in our case, variants with values of 1, for which 100% of the space is passive, show the

highest heating and cooling need. However, it must be noted that total energy consumption

for heating, cooling, ventilation and lighting is used in the passive zone concept [Ratti et al.,

2005; Steemers, 2003]. Include these contributions and converting to primary energy values

would allow a better comparison with the sources cited above.

17http://www.mathworks.com/help/matlab/ref/corrcoef.html (last accessed on March 20, 2016)
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Figure 3.15 – Heating (top) and energy (including heating and cooling; bottom) need against each
geometry-based metric for both the BE and YLB studies.
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Figure 3.16 – Heating (top) and cooling (bottom) need against each geometry-based metric for the
YLB-PDL designs.

When looking beyond the overall pattern of each graph, we observe that clusters are showing

different or no trends, e.g. the group of colored dots. The overall positive correlation with the

window-to-floor ratio is not observed within this group; the highest heating need is associated

with a window-to-floor ratio of about 0.32, which is not the maximum value for this parameter.

At constant surface-to-volume, the influencing factor appears to be the higher heat gains

provided by larger glazed area, as opposed to the general trend in the window-to-floor ratio

graph. Any one parameter is not sufficient to clearly rank the design alternatives, as we still

observe clusters of points with identical values but different heating and cooling needs. This

observation highlights the importance of considering multiple parameters in parallel.
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Chapter 3. Validity assessment of existing metrics through neighborhood case studies

Results obtained in the LN-PDL study for the heating need versus the geometry-based metrics

(except the passive zone which was not computed) are shown in Fig. 3.18. Separations between

the design series are observed, with 0◦ and 90◦ cases closely located. M1 designs present higher

heating needs while M2A and M2B partly overlap. The overall trends are similar to the ones

observed for YLB-PDL, particularly for the plot ratio and surface-to-volume. As for YLB-PDL,

these two metrics are here also correlated, as shown in the correlation matrix of Fig. 3.17b

where a Pearson coefficient of -0.92 is obtained.

Despite the differences in the simulation settings between YLB-PDL and LN-PDL as explained

earlier (see also Table 3.6), it is interesting to compare these two studies. The heating need

values are generally higher for LN-PDL, although these include only a part of the full amount

of energy required, which is the value used in YLB-PDL, as explained in section 3.1.4. However,

the cumulative effect of the LN-PDL settings - higher U-value, presence of blinds, etc. com-

pared to the YLB-PDL settings - make the heating needs higher for this study. The LN-PDL

values also span a wider range, from approximately 15 to over 55 kWh/m2
FA, likely due to the

larger diversity in the designs in terms of building typology and layout, but also dimension

variations in the parametric modeling set-up. Yet, the ranges spanned by the geometry-based

metrics - x-axes - in both studies are very similar. One hypothesis for explaining the larger

differences seen in LN-PDL, as well as the weaker trend with the window-to-floor, is that by

excluding the energy needed for providing and heating up the outdoor fresh air, the effect of

morphological parameters on the heating need may be enhanced. What would be interesting

to investigate is if the relative positioning or ranking of the design alternatives is changed

when different simulation settings are used and the full energy need is taken as the reference

metric. This is a question to which we will come back in the next chapter (section 4.7.3).

(a) YLB-PDL (b) LN-PDL

Figure 3.17 – Correlation matrix and Pearson coefficient between each pair of geometry-based metrics
for the LN-PDL designs. PR: plot ratio, SV: surface-to-volume, WF: window-to-floor.

74



3.2. Results

M1 0° M2A 0° M2B 0° M3 0°×
× M1 90° M2B 90°M2A 90° M3 90°

1 2 3
15

25

35

45

55

Plot ratio

H
ea

tin
g 

ne
ed

 [k
W

h/
m

2 FA
]

R2=0.75

0.2 0.25 0.3 0.35 0.4
Surface-to-volume [m-1]

R2=0.80

0.2 0.25 0.3 0.35

Window-to-floor

Figure 3.18 – Heating need against geometry-based metrics (except passive zone) for the LN-PDL
designs.

Spatial daylight autonomy

Trends are also observed between the sDA and the geometry-based metrics for some datasets.

Figure 3.19 presents the graphs for the BE and YLB studies, the former showing a linear

correlation for the surface-to-volume and window-to-floor metrics.

Results for YLB-PDL, shown in Fig. 3.20, also display such positive trends, despite the disparity

in the data caused by reducing the simulated designs to 32 variants. As mentioned earlier,

the sDA was obtained only for a sample of the 768 variants due to the computational cost of

daylight simulations. This sample was chosen so as to capture extremes in terms of design

variables, reflected in the results with the gap between high and low sDA values. The passive

zone and window-to-floor show the highest positive correlation levels.

The same general effects are found for the larger dataset of LN-PDL, shown in Fig. 3.21.

Designs that are denser, less compact, with larger window-to-floor ratios are linked to higher

sDA values. However, the strength of the overall relationship between each pair is weaker as

in no case have we reached an R2 of 0.70. When looking at individual design series, we do

however obtain high correlation coefficients: 0.75-0.72 (M3 0◦-90◦) for the plot ratio, from 0.72

(M3 90◦) to 0.86 (M2B) for the surface-to-volume and from 0.75 (M3 90◦) to 0.90 (M2A-B) for

the window-to-floor.

While results show patterns similar to the energy need, the actual indicative trend should be

interpreted inversely: higher sDA values are indicative of a better performance (not accounting

for possible glare issues), as opposed to the energy need which is to be minimized. This means

that the passive zone here presents an overall behavior in accordance with its definition.

Designs for which buildings are fully passive (value of 1) present a higher output. This result is

in line with the various rules-of-thumb defining the ratio between window-head-height and

daylit zone depth. The general statement behind such rules is that “the depth of the daylit area

usually lies between 1 and 2 times the size of the window-head-height” [Reinhart, 2005]. Where
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Chapter 3. Validity assessment of existing metrics through neighborhood case studies

this rule becomes weaker is when the inter-building shading effect is noticeable. In the case of

YLB-PDL, this does not seem to be the case, since height variations are small and applied to all

three assessed buildings and thus the shading is relatively constant between design variants

(if present at all). However, the shading may explain the weaker relationship with the passive

zone observed for BE and YLB, considering the diversity in these designs (see Fig. 3.1 and 3.2).
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Figure 3.19 – sDA against each geometry-based metric for both the BE and YLB studies.
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Figure 3.20 – sDA against each geometry-based metric for the YLB-PDL designs.
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Figure 3.21 – sDA against geometry-based metrics for the LN-PDL designs.
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3.2.2 Irradiation-based versus reference metrics

We now look at the correlation results for the second category of metrics, compared to the

same reference values.

Energy production

Figures 3.22, 3.23 and 3.24 show, for BE, YLB and YLB-PDL respectively, the energy production

against the threshold-based irradiation metric (left) and the annual irradiation averaged over

the collecting surface (middle) and total floor area (right). As explained in section 3.1.4, a

different threshold is applied for each system and surface, denoted as PV-F/R and ST-F/R

where F stands for facade and R for roof. The same notation is used for the average irradiation

metrics, which are computed for the corresponding surface (F/R) as opposed to the overall

envelope. For YLB, only the average irradiation metrics are shown, computed over the roof

to account only for the surfaces that contribute to the production (see eq. 3.7). Despite the

discontinuous spread of data, a correlation is found for the mean roof irradiation.

For BE and YLB-PDL, the annual irradiation per floor area is the best indicator with R2 values

close to 1 for both systems installed on the roof. This is not surprising considering the calcula-

tion of the energy production (see eq. 3.4). The only difference between the compared metrics

in the right-most graph is a multiplication factor (efficiency of system) and the exclusion of

eventual shaded roof areas (nodes not achieving threshold). The floor area irradiation metric

also shows the best correlation for facade-mounted systems except in the case of PV for BE,

where we observe a higher correlation for the surface percentage and annual irradiation per

envelope area.

Energy need

The threshold-based metric does not show a clear pattern with respect to the heating need,

as seen in the left graph of Fig. 3.25 and 3.26 for the BE and YLB-PDL datasets respectively.

In fact, the overall trend for YLB-PDL is opposite to what it ought to be considering that a

higher surface percentage (x-axis) should correspond to a better performance, but is instead

associated here with a higher heating need (lower performance). However, the trend within

variants of equal surface-to-volume ratio illustrates the ‘correct’ correlation, highlighting the

adequacy and validity of the metric for evaluating existing built environments, where the

building shape cannot be changed, rather than for comparing hypothetical designs where

more freedom exists.

In Fig. 3.26, the overall relationships between heating and cooling are the same for both

averaged irradiation metrics. For instance, larger floor-area-normalized irradiation values are

associated to both higher heating and cooling needs. If this metric was to be used to select

a design, one would normally aim at maximizing its value, assuming it would decrease the

heating need. In the current context, that would lead to the opposite.
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Figure 3.22 – Energy production by (a) PV and (b) ST systems on facades and roofs against each
irradiation-based metric for BE.
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Figure 3.25 – Heating (top) and energy (bottom) need against each irradiation-based metric for both
the BE and YLB studies.
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PDL designs.
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Figure 3.27 – Heating need against irradiation-based metrics for the LN-PDL designs.

Stronger correlations are found for the average irradiation metrics, particularly for the floor

area normalized irradiation in the YLB-PDL study (R2 = 0.82), and similarly for LN-PDL (Fig.

3.27, R2 = 0.87). The mean envelope irradiation graph for YLB-PDL shows a double behavior

with respect to the heating need: a negative versus positive trend for the overall versus clustered

data. More irradiation per envelope area leads to a lower heating need as one would expect,

except at constant surface-to-volume ratio, where lower exposure levels are preferred, likely

due to the effect of the window-to-floor ratio as seen previously. For LN-PDL, a general positive

curvature is observed for that metric, with clouds of points for each design series with a slight

shift between 0◦ and 90◦ cases. This shift is more important for M1 and M3, less symmetrical

than the M2 series.

The right-most graph for YLB-PDL shows more consistency, with the heating need increasing

with the annual irradiation per floor area within and across clusters. However, this trend

is opposite what one would expect, as observed for the BE case study as well. This can be

explained by the fact that more irradiation per floor area means more exposed surface area

and less compact buildings: heat losses dominate over solar gains for this climate.

Spatial daylight autonomy

Results are less clear for the sDA; Fig. 3.28 to 3.30 show dispersed data points, the latter hinting

at a positive relationship between the output and the facade irradiation per floor area, stronger

for the M2 design series of LN-PDL. The orientation difference is more noticeable than in

previous graphs, particularly for M1 and M3 due to their asymmetric layout.
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Figure 3.29 – sDA against irradiation-based metrics for the YLB-PDL designs.
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Figure 3.30 – sDA against irradiation-based metrics for the LN-PDL designs.
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3.2.3 Correlation between geometry- and irradiation-based metrics and relative
influence

In light of the trends observed for the irradiation-based metrics, it is of interest to verify the

correlation level between the two categories of metrics tested. For example, we would like to

see if the positive correlation between the heating need and the envelope irradiation per floor

area for YLB-PDL (Fig. 3.26) could be linked to the effect of a dominating geometry-based

parameter. This can be investigated through a correlation analysis, as done earlier for the

geometry-based metrics, this time on both categories together. Results are shown in Fig. 3.31

through a partial correlation matrix, where the top part corresponding to results presented

earlier (Fig. 3.17a) has been cut-off to avoid redundancy. A high R2 value is found between the

irradiation per floor area and the plot ratio (negative) and surface-to-volume (positive) metrics.

For the latter, this means that less compact designs have (logically) more solar exposure levels

per floor area, yet these additional gains do not compensate the heat losses, as pointed out in

section 3.2.2.

Figure 3.31 – Correlation matrix and Pearson coefficient between each pair of geometry- and irradiation-
based metrics evaluated over the YLB-PDL designs. PR: plot ratio, SV: surface-to-volume, PZ: passive
zone, WF: window-to-floor, MeanIrrad: mean envelope irradiation, IrradPerFA: envelope irradiation
per floor area.

A natural continuation to the above correlation studies is to simultaneously consider multiple

parameters to assess their relative influence on the performance metrics. This influence can be

quantified by applying a linear regression fit on the set of parameters, previously standardized

to eliminate the effect of units and differences in their order of magnitude. This analysis was

done for the geometry-based metrics (cat. (i)) for the larger datasets of YLB-PDL and LN-PDL.

The set of metrics were scaled (standardized) to have a mean of 0 and a standard deviation of

1 using the Matlab zscore function18. A linear fit was applied through Matlab’s fitlm function19,

providing the plotted coefficients including an intercept term (constant) representing the

mean of each output.

18http://www.mathworks.com/help/stats/zscore.html (last accessed on March 20, 2016)
19http://www.mathworks.com/help/stats/fitlm.html (last accessed on April 18, 2016)
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Results are shown in Fig. 3.32. For YLB-PDL, the fit was first done over the four metrics (Fig.

3.32a), and without the passive zone (Fig. 3.32c) to allow comparing the results with the

LN-PDL study (Fig. 3.32b) for which the passive zone was not computed.

Not only does the influence of each parameter differ between the two outputs, it also differs

from the trends we previously observed. For instance, the surface-to-volume has a negative

vs positive effect over the heating vs sDA for YLB-PDL, although a positive correlation was

found for both outputs in Fig. 3.16 and 3.20. When removing the passive zone, the effect

of the surface-to-volume is negative for both outputs. Differences are also found between

the two projects. In fact, all coefficients are opposite (bars below vs above 0) except for the

window-to-floor influence over the sDA, however showing a much lower value for LN-PDL

than YLB-PDL.

The coefficients of determination obtained through these fits are given in Fig. 3.32d. All are

very close to 1 except for the sDA of LN-PDL (0.70). By considering and merging multiple

metrics, we thus hypothesize that it is possible to ‘create’ a better performance indicator. Yet,

the construct of this indicator is very sensitive to the underlying data. We will come back to

this topic in the next chapter.

3.2.4 Conflicting performance criteria

An additional analysis of interest consists in plotting the simulation outputs (reference metrics)

against each other to demonstrate the conflicting multi-objective situation that arises. This is

done in Fig. 3.33 for the sDA versus heating need for the two largest datasets. Designs with

the highest sDA are the ones with the worst heating performance. Non-dominated solutions

defining the Pareto front are identified in red.

A point is considered a Pareto optimum if there is no other point that optimizes one criterion

without worsening the other [Papalambros and Wilde, 2000]. If we focus on the first top-

left red point in Fig. 3.33a and trace a line from this point to the next red one, the heating

need increases (performance worsens) and so does the sDA (performance improves; note the

reversed y-axis). This trade-off occurs across the Pareto front.

This visualization is in line with the opposite trends seen through the correlation graphs. The

conflicting nature of certain performance criteria, despite being hard to address, should be

captured and brought to light by a DDS tool for instance through such plots where partially

optimal designs can be identified. The choice on which criterion to prioritize should remain

in the hands of the decision-maker and be based for example on the project-specific goals

and context.
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and LN-PDL. Constant: intercept term in a linear regression (mean output when all parameters are 0).
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3.3 Discussion and limitations

We here present a synthesis of the different analyzes conducted in this chapter by highlight-

ing the main observations. We discuss limitations of the tested metrics as well as of our

experimental approach.

In this study, we considered that an increase in the passive solar potential, as quantified by

any metric such as the ones tested here, should go hand in hand with energy consumption

reductions. Similarly, an increase in the active solar potential should go together with higher

production levels by PV and ST systems on roofs and facades. These correlations should

be respected for both contexts of study: when different typologies are compared, as for the

smaller datasets of BE and YLB, and when comparing variants generated from a base case

design, as in the other two projects.

From the pairwise correlation analyzes, some metrics emerge as stronger indicators of the dif-

ferent performance criteria. However, results are not consistent over all projects, for instance

in terms of strength of the relationship expressed through the R2 value, e.g. for the heating need

vs window-to-floor between YLB-PDL and LN-PDL. According to our study, adopting a unique

geometry- or irradiation-based metric as a performance indicator to support decision-making

when comparing design alternatives could be misleading due to:

• Partial consideration of influential parameters;

• No consideration of how variants are generated;

• Use of metric can be based on ‘false’ correlation level and/or direction, caused by other

dominating parameters correlated to the metric.

Combining the information brought by multiple complementary metrics can serve to ad-

dress these issues. However, the possible interdependence between metrics can impede the

interpretation of a multi-metric analysis, as highlighted in section 3.2.3.

It is important to note that it is practically impossible to detect causal relationships or even

direct correlations. For example, although we observe a strong correlation between energy

production by PV-F and the window-to-floor ratio, this relationship is caused by a non-direct

effect linked to the parametric modeling method. To be able to more confidently evaluate the

direct impact of a metric, it would have to be directly controlled keeping other parameters

constant. Considering the nature of the metrics assessed in this chapter, this would not have

been easily possible, as their values were derived from the 3D models and not used as design

variables.

While we cannot generalize the results obtained, the fact that they differ stresses the need for

more robust and flexible performance assessment methods, that can adapt to the specificity

of the context proper to a project. Although specific design guidelines are typically sought by

practitioners, it is very difficult in practice to provide this sort of information with confidence.
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As Oke [1988] stated:

“These [vast range of possibilities and special cases] are associated with the almost

infinite combination of different climatic contexts, urban geometries, climate vari-

ables and design objectives. Obviously there is no single solution, i.e., there is no

universally optimum geometry. However, this should not stop us seeking general

guidelines as long as they are flexible enough to cater to special needs and situations.

We certainly do not want a rigid ’solution’ whose blind application leads to further

problems.” [p.103]

We emphasize that the results presented in this chapter and the following ones should not be

interpreted as proof of a clear cause-and-effect relationship between the parameters assessed.

Our study does not aim at advocating specific designs, e.g. in terms of building typology.

The data acquired through simulation is subject to the intrinsic limitations of the software

used, especially since some tools were still in development. However, this issue is mitigated

by the comparative nature of the study, which makes relative values more important than

absolute ones. The small number of data points for BE and YLB restricts the depth of the

analysis that can be conducted on these datasets, and the conclusions that can be drawn from

it. While the YLB-PDL case study offers a much larger dataset, it must be recalled that the

variations between the variants are smaller. Results between all datasets differ significantly

due to distinct simulation settings, tools used, climate files and built context. The study could

benefit from further work regarding the simulation details (e.g. natural ventilation) and the

output metrics measures (e.g. energy for artificial lighting). Finally, the nature and amount

of geometrical parameters considered were defined by the targeted (i.e. early) design phase

and limited by the parametric modeling workflow; simple parameters were preferred and

additional influential ones such as the location and proportion of windows with respect to

each orientation were kept constant.

3.4 Towards a novel performance assessment method

The investigation presented in this chapter has brought out the difficulty in ascertaining trends

that can be translated into valid performance indicators, independent from the problem under

study. However, the preliminary work towards multiple linear regression presented in section

3.2.3 pushes us to investigate this path further. Building upon the metrics tested in this chapter

and the various analyzes conducted, we propose to inquire into the feasibility of constructing

a predictive20 mathematical function as a performance assessment engine. Our goal is to

address the main requirements highlighted throughout the previous chapters:

Information required to be limited to early-design knowledge, by imposing this restriction

to the data needed by the predictive functions;

20In the context of this thesis, the term predictive is associated to a process that approximates the result from a
full simulation, taken here as the ground truth.
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Figure 3.34 – Proposed ‘hy-
brid’ approach situated mid-
way between simple rule-of-
thumb like and simulation-
based methods.
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Simulation time to be minimized to allow real-time interaction, to be achieved by the predic-

tive approach intrinsically designed for that purpose;

Specificity to be mitigated by adopting a multi-criteria approach, covering relevant solar

performance aspects;

Design scale taking into consideration the interdependence of buildings, both by evaluat-

ing the performance at the meso scale and incorporating parameters capturing the

influence of the surrounding context on individual buildings.

Design decision-support in the form of heuristics such as the morphological parameters

tested in this chapter, practitioner knowledge, and many of the existing digital tools are

difficultly applicable at the more abstract early design phase and complex neighborhood

scale, where intuition, rules-of-thumb and detailed simulation lose in relevance, validity and

appropriateness. However, we do not aim at discarding such methods, but instead try to adapt

and exploit them in a way that can render them adequate for our targeted purpose. Detailed

in the next chapter, the proposed approach can be seen as an in-between, hybrid method,

exploiting the advantages of simple metrics and using more complex methods to ‘inform’ the

former into becoming performance indicators. This vision is illustrated in Fig. 3.34.
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4 Metamodel development

“Essentially, all models are wrong, but some are useful.”

George Box

(mathematician, statistics professor)

This chapter describes the development process of our performance assessment engine,

representing a core part of this research1. We begin in section 4.1 by laying down the basic

theory of mathematical modeling (or metamodeling2), stemming from the statistics and

machine learning domains. A brief review of the state-of-the-art regarding the use of such

methods in the field of building performance is presented, followed by an overview of our

workflow. The process for building a reference dataset and the choice of the model to derive

from this data are detailed in sections 4.2 and 4.3. The dataset is analyzed in section 4.4 before

proceeding with the function fitting in section 4.5.

From this work emerge predictive functions for rapidly estimating the passive solar and

daylight potential from simple design parameters. The assessment of a third performance

criterion - the active solar potential - is done through an algorithm detailed in section 4.6. The

combination of these methods form the central piece of our DDS workflow, introduced in

chapter 5. We conclude in section 4.7 with the limitations and foreseen work.

4.1 Theoretical framework and overview of approach

As seen in chapter 2, most existing performance assessment methods are based on solving

equations that simulate the thermal behavior or the (day)light conditions of a building. This

intrinsically makes it difficult to fulfill the requirements, identified throughout the previous

chapters, to provide adequate early-design support. Evaluation methods based on machine

learning techniques represent a promising alternative. Foucquier et al. [2013] and Zhao and

1Dr. Carlos Becker, computer scientist, contributed to sparking the main ideas behind this chapter, while also
providing support and advice in the development of the research method.

2Different terms, introduced later on, can be used to refer to a predictive mathematical function.
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Magoulès [2012] conducted detailed reviews to compare different building energy assessment

approaches, including the more common physics-based (or engineering), the alternative

statistical and machine learning methods, and hybrids of the two. Table 4.1 presents a blend of

their comparative analysis, including the main advantages and shortcomings of each method.

To better understand the distinction between these approaches and their pros and cons, an

explanation of machine learning methods is of order.

As illustrated in Fig. 4.1, machine learning is a multidisciplinary field: it employs techniques

from analogous domains to build algorithms that can learn from data with minimal human

intervention [Hall et al., 2014]. Our metamodeling approach, later detailed, stems from the

specific branch of supervised machine learning, which consists of algorithms obtained by

training an equation from a set of data. Such equations, known as metamodels, surrogate

models or emulators, can then be used for prediction. The term metamodel is used in this

thesis, sometimes replaced by (predictive) function or simply model to alleviate the text, the

latter not to be confused with a 3D model (the sentence’s context should prevent any mix-up).

Metamodels are used to “replace the actual expensive computer analyses, facilitating multi-

disciplinary, multi-objective optimization and concept exploration” [Simpson et al., 2014]. As

noted in Table 4.1, they are typically not as accurate as what they are meant to replace, i.e.

thermal and daylight simulations in the present case. However, they are easier to apply in

practice and provide fast estimates of the desired output. At the early design phase, when

little is known about the design and accuracy is not a priority, such models are thus useful for

facilitating rapid design space exploration.

The general metamodeling concept is presented in Fig. 4.2. First, in the development phase, a

dataset linking a series of inputs (or predictors, x)3 and outputs (or responses, y) is acquired by

sampling the design decision space, through the available yet expensive simulation [Forrester

et al., 2008]. A choice of model form is then selected and fitted to the data. The concept of

fitting means that we attempt to learn a mapping y = f (x) that emulates the black box which is

the simulation, but that veils its physics [Forrester et al., 2008]. The dataset of samples is thus

used to construct an approximation f̂ of the simulation. Through this supervised (machine)

learning or instance-based learning process, an approximate function is obtained that can

then be used to cheaply predict the output for a given set of new inputs (application phase).

The use of such techniques in the field of building performance is fairly recent. A non-

exhaustive list of studies employing statistical and machine learning methods is presented

in Table 4.2. The type of technique, model and design space sampling method, as well as the

context in which it is applied - base case building, inputs and outputs - are presented.

While metamodeling techniques are often used for building energy forecasting [Asadi et al.,

2014; Ekici and Aksoy, 2009; Foucquier et al., 2013; Hygh et al., 2012; Tsanas and Xifara, 2012],

machine learning methods can more generally be useful also for performance optimiza-

3Note on mathematical notation: scalars are italicized (y), vectors are italicized and bold (x), and matrices are
denoted by a bold capital letter (X).
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tion [Caldas, 2008; Evins, 2013; Evins et al., 2012; Kämpf and Robinson, 2010; Magnier and

Haghighat, 2010; Nguyen et al., 2014; Wang et al., 2005; Yi and Malkawi, 2009] and sensitivity

analyzes [Eisenhower et al., 2012; Hemsath and Alagheband Bandhosseini, 2015; Martins et al.,

2014].

A large majority of studies have focused on a unique and isolated building, employing multiple

linear regression, artificial neural networks (ANN), genetic algorithms (GA) or support vector

machines (SVM). Different sets of parameters related e.g. to the building material, orientation

and glazing area are typically used as inputs to the predictive function [Asadi et al., 2014; Ekici

and Aksoy, 2009; Hygh et al., 2012; Tsanas and Xifara, 2012].

A much smaller number of studies have looked at the macro scale, either by exploiting city-

wide data for predicting the distribution of energy consumption per building through a

probabilistic approach [Kolter and Ferreira Jr, 2011], or for predicting the end-use energy

consumption of existing districts, as done by Howard et al. [2012] for the city of New York.

For optimization purposes, the most common methods fall in the category of evolutionary

algorithms, which have been used mainly at the building scale [Caldas, 2008; Magnier and
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Haghighat, 2010; Wang et al., 2005; Yi and Malkawi, 2009] and somewhat at the urban scale

[Kämpf and Robinson, 2010; Martins et al., 2014].

Sensitivity analyzes, to assess the influence of certain parameters on a performance metric,

can be done prior to optimization [Martins et al., 2014] and model fitting [Eisenhower et al.,

2012] to decrease the dimension of the problem by removing parameters of low influence.

The demonstrated feasibility of applying machine learning methods at the building level for

allowing a real-time performance assessment leads us to question its potential applicability to

the meso scale. According to our knowledge, the work by Howard et al. [2012] represents one

of the closest to this question. As detailed below, our approach however distinguishes itself by

its specific scale and purpose of application, as well as by both the methods employed, e.g. for

acquiring the data, and the information exploited for - and resulting from - the prediction. As

such, this core thesis chapter details a novel contribution to the research field.

We therefore propose to investigate the feasibility of emulating thermal energy and daylight

simulations at the neighborhood scale by developing a metamodel for each of these two

performance criteria. The challenge consists in limiting the amount and, more importantly,

the level of complexity and detail of the information required by the metamodels, while

still achieving reasonable accuracy in the prediction. This shall ensure that the predictive

performance assessment engine thus developed can be applied in the context of early-phase

neighborhood design.

The main phases of our approach and their underlying steps are illustrated in Fig. 4.3 and

further detailed in the next sections. To develop the metamodels, a reference dataset rep-

resenting a sample of a delimited neighborhood design space is first acquired (section 4.2).

Our choice of model form, multiple linear regression, is motivated and detailed in section

4.3. From the dataset, an analysis is conducted in section 4.4 prior to the metamodel fitting

procedure, presented in section 4.5.

4.2 Data collection

The dataset, from which the metamodels are to be learned, should provide a good repre-

sentation of the design space that we would like to be able to assess, once the functions are

generated. In the current context of neighborhood-scale designs, this space is practically

infinite. Designs can vary in terms of building typology, layout, program, construction and

many more design parameters. It is thus necessary to define a bounded sub-space on which

to focus to ensure the completion of the proposed approach as a proof-of-concept. These

boundaries are exposed in the following sections.

The modeling and simulation approach including tools and some of the 3D designs used in

this chapter have already been introduced in chapter 3. As such, we will regularly refer the

reader to previous sections, in parallel with repeating some important phases and details.
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Figure 4.3 – Overview of metamodeling procedure including data collection and analysis, model
selection and training and testing. The main tools used at each phase are annotated: ML: Matlab,
Rhino, GH: Grasshopper, DIVA, Archsim. For a description of each program, we refer the reader to
chapter 3. References are provided in the text.

4.2.1 Base case neighborhood designs

To construct our dataset we begin from base case designs, each consisting of a replicated

building typology (or shape) according to a certain urban layout. An example variant for each

base case is illustrated in the upper left corner of Fig. 4.3. The base case designs come from

two earlier studies which were presented in chapter 3. M0 to M2 correspond to the series from

the LN-PDL collaborative study with the urban design firm (Urbaplan, Fig. 3.4), here renamed

so that what was previously M1-M2A-M2B become M0-M1-M2. M3 to M5 were inspired by

three student projects from the BE study: 2-Transition, 3-Damier and 6-Hyperdensité in Fig.

3.1 (Green Density album [Rey, 2013]).
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4.2. Data collection

These designs were selected for their diversity yet simplicity of building shape, allowing us

to cover common typologies: adjacent buildings and isolated, linear, L-shaped and closed

(courtyard) blocks. M6 was later added to cover the tower typology, with the same layout as

M0-M2. In what follows, we will refer to each base case as case Mi, as a term inclusive of both

the building typology and the urban layout. Since these characteristics are fixed, the cases only

encompass a small portion of the theoretically unbounded space of possible neighborhood

designs. However, they do capture some of the main typologies recurrently encountered in

early-stage projects. The following examples serve to support this point.

Figures 4.4 and 4.5 illustrate example neighborhood-scale designs from urban design compe-

titions and master plan reports (Plan Directeur Localisés (PDLs)) [SDOL and Gauthier, 2012;

Urbaplan, 2015]. By examining such design alternatives we can extract the Level of Detail

(LoD) typically encountered at this early project stage, as well as the variations in terms of

design features. For instance, we note that the building typology (shape) ranges from simple

cubic volumes to courtyards, while the layout varies in terms of building replication, alignment

and spacing. The dimensions also differ in height, width, length and depth in the case of

L-shaped and courtyard buildings.

Multiple urban-scale studies have also focused on similar building typologies (using varying

terminology), often with a regular replication pattern [Cheng et al., 2006; Kanters and Wall,

2014; Kristl and Krainer, 2001; Okeil, 2010; Pereira et al., 2009; Ratti et al., 2003; Tereci et al.,

2010]. Examples are shown in Fig. 4.6 - 4.8.

In our approach, an irregular layout is preferred to the more commonly encountered regular

grid of buildings. While the latter offers a simpler, more systematic generation of designs and

analysis of results due to its repeated features, allowing more variations in the design brings

us closer to real projects [Ratti et al., 2003].

4.2.2 Parametric modeling of design variants

Design variables, constants and constraints

To increase the design space sampling, a parametric modeling workflow was developed, as

was done for the YLB-PDL and LN-PDL studies in chapter 3. Starting from the seven base

cases portraying a diversity in terms of building typology and layout, specific design variables

were varied in an iterative sequence. To define which parameters to vary versus keep constant,

the following requirements were considered:

1. The design variables should represent parameters with which designers normally play

at the early-design phase of neighborhood-scale projects,

2. have a significant impact on the solar access / energy performance of buildings,

3. be reasonably easy to vary parametrically and compute over a whole neighborhood

design.
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Chapter 4. Metamodel development

Figure 4.4 – Hypothetical designs proposed in the PDL for an area of Lausanne (Vernand) with a mixed
program, highlighting the envisioned variations of building typology and layout for this mixed-used
district. Source of images: Urbaplan [2015].

Figure 4.5 – Six example plans submitted to an urban design competition for an area of Lausanne
(Malley) with a mixed program. Designs vary in terms of replicated versus mixed building typology (e.g.
L-shape, cubic shape) and layout (e.g. different alignments, distances). Source of images: SDOL and
Gauthier [2012].
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4.2. Data collection

Figure 4.6 – Digital elevation models (DEMs) of the generic urban forms studied by Ratti et al. [2003]
based on Martin and March [1972]. The shade of gray is indicative of the height (darker=higher). Top
left to bottom right: pavilions, slabs, terraces, terrace-courts, pavilion-courts and courts. Source of
image: Ratti et al. [2003].

Strip
50 x 50

Closed
80 x 60

Closed
50 x 50

Uform

Figure 4.7 – Four typical building block designs identified and assessed by Kanters and Wall [2014].
Adapted from the original image found in the aforementioned source, licensed under CC BY 3.0.

Figure 4.8 – Examples of models evaluated in Cheng et al. [2006] (source of the image).
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Chapter 4. Metamodel development

Relevant design parameters which did not conform to these criteria were considered either as

fixed or as constraints to respect. Parameters related to point 1 were extracted from master plan

documents including the ones cited above [SDOL and Gauthier, 2012; Urbaplan, 2015] and

presented in chapter 3 (YLB-PDL study) [Bauart Architectes et Urbanistes SA et al., 2010], as

well as through communication with the urban design firm that provided M0-M2 (Urbaplan).

Parameters most likely to affect building performance were identified through the outcome

of our study presented in the previous chapter and by looking at multiple papers on the

subject. From the main references listed in Table 4.3, we observe that building shape and

layout - expressed by different measure such as the distance between buildings - were found

to considerably affect the performance. To account for this impact both at the individual

building scale and the neighborhood level, we judged that values quantifying the effect of the

shading between buildings should be considered in addition to morphological parameters

simultaneously capturing building and urban features.

When analyzing the highlighted parameters in the context of the third requirement above, a

decision was made to separate design variables used for generating variants from the ones used

as potential inputs to the metamodel. This distinction was necessary to ease the parametric

modeling of variants while ensuring a relevant dataset for the metamodel training. For the 3D

modeling, we needed one value per building, while in our metamodeling approach we wanted

to use aggregated neighborhood values, as opposed to having a repetition of building-specific

values. For example, if building height were to be used as an input to the metamodel, we

would require one value per building, which would restrict the number of buildings to a fixed

amount and increase the dimensionality of the inputs dataset. Instead, parameters considered

as inputs, introduced in the next section, were chosen such that one value can be extracted for

a set of buildings.

Modeling workflow

In light of the above considerations, the height, depth and width of individual buildings were

taken as variables for the 3D modeling, as well as the grid orientation. The ranges of design

variables covered are presented in Table 4.4. The definition of each variable x, y, z and a can be

seen in Fig. 4.9, with some example variants for each base case. For M0-M2, each variable’s

interval was specified by the urban design firm who provided the base designs (see also section

3.1.3). Similar values were used for M3-M5, for which only two dimensions were varied: height

and length for the linear blocks and height and depth for the L-shaped and courtyard buildings.

Values for M6 were set to generate 10- to 20-story high buildings.

Confining the design variables was necessary to bound the degrees of freedom in the paramet-

ric modeling. For this reason, the absolute position of each building was kept constant, except

for the M0 case, where the number of buildings on each side and their length was randomly

defined from the ranges specified in Table 4.4. Despite this condition, the relative layout of the

buildings varies as a consequence of their dimension variations.
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Figure 4.9 – Top view of base case Rhino design (left) from which variants are generated (examples on
the righ) for each case Mi.
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Figure 4.9 – (Continued) Top view of base case Rhino design (left) from which variants are generated
(examples on the right) for each case Mi.
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With these combinations of parameters, a generated building can theoretically have a total

floor area between 96 and 21 472 m2. For comparison, Table 4.5 lists common values found

in the Commercial Reference Building Models of the National Building Stock of the U.S.

Department of Energy [Deru et al., 2011] and the SIA 2024 document Données d’utilisation des

locaux pour l’énergie et les installations du bâtiment [SIA, 2015]. These dimensions correspond

to small and medium to large office buildings, which is the program defined in our simulation

as detailed later in section 4.2.4.

A parametric modeling workflow was set-up using Rhino4and Grasshopper5, in the same way

as explained in section 3.1.3, and starting from the base case Rhino designs illustrated in Fig.

4.9. Windows were modeled equally on each facade, using constant distances (e.g. between

window side and building edge) and sizes (e.g. window height), producing window-to-wall

ratios ranging from 44% to 48%.

The 3D models were generated through an iterative sequence by reading the value of each

variable to be applied to each building from an Excel file previously generated. The method

for defining these values is explained below. At every iteration, i.e. for each design, a series of

automated actions took place to extract all the information necessary to populate our database

of inputs and outputs, needed for the metamodeling phase. This procedure is detailed in the

next sections.

Solution space sampling

From the ranges of design variables in Table 4.4 for each case Mi, a series of values had to be

selected for each building to generate the design variants. For M0-M2 and M6, this selection

was done via a random sampling algorithm as explained in section 3.1.3, which included a con-

straints verification to ensure all generated variants respected the specified minimum plot ratio

xmin xmid xmax
ymin

ymid

ymax

zmin

zmid

zmax

Figure 4.10 – Sampling technique for M3-M5: 3-level Box-
Behnken Design of Experiment, visually directly translatable
to our x, y, z design variables (Table 4.4).

and building footprint. For

M3 to M5, we followed the De-

sign of Experiment (DoE) ap-

proach and used a 3-level Box-

Behnken design6 to generate

the variants. Illustrated in Fig.

4.10, the Box-Behnken design

treats the minimum, median

and maximum value, coded as

-1, 0 and +1, of each design vari-

able as possible options. It falls

under the category of response

surface designs, whose purpose is to allow estimating the interaction and eventual quadratic

4https://www.rhino3d.com/ (last accessed on March 20, 2016)
5http://www.grasshopper3d.com/ (last accessed on March 20, 2016)
6http://www.itl.nist.gov/div898/handbook/pri/section3/pri3362.htm (last accessed on March 19, 2016)
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Chapter 4. Metamodel development

effects between factors, while covering the design space in a more efficient way than by vary-

ing one factor at a time (referred to as a full factorial design). In our case, two Box-Behnken

designs with a shifted range were used to increase the number of sampled points. All variants

generated were duplicated with a 90◦ grid rotation with respect to their initial alignment.

Both the random sampling and DoE-based approaches for acquiring data are valid experi-

mental methods found among multiple others [Simpson et al., 2014]. Although they ensure

some level of coverage of the possible solution space, this is not explicitly exploited through

our approach, since we are making a distinction between the parametric design variables

and the input parameters to be used for predicting the performance, as aforementioned.

The experimental methods for sampling the solution space apply only to the former, while

the latter are subsequently derived instead of being directly controlled. Irrespective of this

situation, some techniques exist to refine the selection of designs in order to improve the

information gain, a topic that is addressed later on.

4.2.3 Computation of predictors (inputs)

We will interchangeably use the words inputs, predictors or parameters to refer to the set of

potential inputs (x) to the predictive functions developed in upcoming sections.

The design variations prompted by the parametric modeling procedure affect multiple other

parameters at the neighborhood scale such as the street width, density, and solar exposure

levels of the buildings. To capture these changes and keeping in mind the design variable

requirements exposed earlier, an extensive amount of geometry- and irradiation-based pa-

rameters were computed at the neighborhood scale and used to populate the inputs dataset.

Table 4.6 lists the complete set, which includes most of the metrics tested in chapter 3, along

with complementary parameters identified as relevant from the literature (see Table 4.3).

The process for extracting the predictors is similar to what was presented in section 3.1.3

and 3.1.4. All geometry-based parameters were computed via a Grasshopper script. The

raw irradiation data was obtained through an annual simulation using GenCumulativeSky

in DIVA-for-Grasshopper [Jakubiec and Reinhart, 2011; Robinson and Stone, 2004]. A grid of

nodes with a resolution of 1 meter was used, and the number of ambient bounces7 was set to

2. The EnergyPlus weather data file for Geneva, Switzerland [EnergyPlus, 2014] was used.

Both the geometrical information and the irradiation simulation output were exported to

Excel using gHowl8and further processed in Matlab, where the irradiation-based parameters

were computed.

7The number of ambient bounces (-ab) corresponds to the maximum number of diffuse bounces computed by
the indirect radiation calculation. Other Radiance parameters were kept at their default values: number of ambient
divisions -ad = 1000, number of ambient super-samples -as = 20, ambient resolution -ar = 300, and ambient
accuracy -aa = 0.1 Full descriptions can be found at http://www.siggraph.org/education/materials/HyperGraph/
raytrace/radiance/man_html/rpict.1.html (last accessed on April 8, 2016).

8http://www.grasshopper3d.com/group/ghowl (last accessed on March 20, 2016)
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4.2. Data collection

Table 4.6 – List of geometry- and irradiation-based parameters representing potential performance
predictors (inputs to the metamodels). Envelope includes all exposed facades and roof. TFA: total floor
area; TEEA: total exposed envelope area

Abbreviation Description

Geometry-based [-]

PlotRatio Density indicator: ratio between TFA and constructible land area

SiteCoverage Density indicator: ratio between footprint area and constructible
land area

FormFactor Compactness indicator: ratio between TFA and TEEA

RoofRatio Total roof area divided by total exposed envelope area

NorthFacRatio Total exposed north-facing facade area divided by TEEA

EastFacRatio Total exposed east-facing facade area divided by TEEA

SouthFacRatio Total exposed south-facing facade area divided by TEEA

WestFacRatio Total exposed west-facing facade area divided by TEEA

WWRatio Glazing ratio indicator of level of opening: ratio between total win-
dow area and total exposed facade area

WFRatio Glazing ratio indicator of level of opening: ratio between total win-
dow area and TFA

MeanHeight Average building height [meters]

Irradiation-based
[
kWh/m2

surface area or floor area

]
MeanEnvelopeIrrad Average irradiation on all exposed envelope surfaces

MeanRoofIrrad Average irradiation on all exposed roofs

MeanFacIrrad Average irradiation on all exposed facades

MeanNorthFacIrrad Average irradiation on north-facing facades

MeanEastFacIrrad Average irradiation on east-facing facades

MeanSouthFacIrrad Average irradiation on south-facing facades

MeanWestFacIrrad Average irradiation on west-facing facades

EnvelopeIrradPerFA Total irradiation on all exposed envelope surfaces divided by total
floor area

RoofIrradPerFA Total irradiation on all exposed roofs divided by total floor area

FacIrradPerFA Total irradiation on exposed facades divided by total floor area

NorthFacIrradPerFA Total irradiation on north-facing facades divided by total floor area

EastFacIrradPerFA Total irradiation on east-facing facades divided by total floor area

SouthFacIrradPerFA Total irradiation on south-facing facades divided by total floor area

WestFacIrradPerFA Total irradiation on west-facing facades divided by total floor area
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Chapter 4. Metamodel development

4.2.4 Simulation of responses (outputs)

The outputs, or values to be predicted by the metamodels, correspond to the reference metrics

measured in chapter 3 falling under the passive solar performance criteria. However, from

now on, we use the term passive solar potential as referring only to the energy need for heating

and cooling, while the daylight potential is considered as a separate criterion. Using the

EnergyPlus weather file for Geneva, these metrics are obtained through full climate-based

simulations as detailed below. The algorithm for quantifying the third performance criterion

considered, the active solar potential, is described in section 4.6.

Passive solar potential: energy need

As seen in chapter 1, the energy consumption distribution in buildings is dominated by the

heating need in a climate like Switzerland’s. To reduce this need and achieve the targets

established by various regulations and labels, it is essential to prioritize passive measures

related to the built form, in addition to complying with the imposed values regarding for

instance the thermal envelope (e.g. U-value). The energy need for both heating and cooling is

an indicator of how far we are from comfortable thermal conditions. Although the cooling

need is sometimes absent if no systems are (allowed to be) installed, in highly insulated and

glazed modern buildings, maintaining a comfortable indoor temperature in summer is often

an important issue. As such, the cooling need quantifies the energy that would be needed to

achieve these comfortable conditions. When settings related to internal gains and systems are

maintained constant, one of the main influences9 on the heating and cooling needs comes

from solar heat gains and shading from the sun caused by surrounding buildings.

To obtain the floor-area-normalized energy need, the initial EnergyPlus input files (.idf) were

generated via the Grasshopper plug-in Archsim10. They were then processed in Matlab before

executing the simulation to obtain the annual energy need based on an ideal loads air system,

as explained in section 3.1.4. Each building floor, of 3 meter high, was modeled as a thermal

zone. The simulation results were summed over all zones and buildings and normalized by

the total floor area for each design variant. In the following sections, we simply use the term

energy to refer to this metric. Additional energy simulation settings are listed in Table 4.7,

along with comparison values extracted from various standards.

It is to note that simulation batches were run in collaboration with a colleague11 for different

simulation settings, including three levels of U-values (low, medium, high). Since investigating

interactions with such detailed parameters is out of the scope of this work, we have limited

our study to a unique set of simulation settings. The moderate U-value case was retained, so

as to ensure some level of variation in the energy need to facilitate the metamodel fitting. This

9Natural ventilation is also an important passive measure, which requires CFD simulations and falls outside the
scope of this thesis.

10http://archsim.com/ (last accessed on March 20, 2016)
11Parag Rastogi, doctoral assistant at LIPID, contributed in defining the simulation settings and managing the

computational resources for executing the simulation tasks.
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topic is further discussed in section 4.7.3 and chapter 7, where we also show that low U-values

attenuate the differences in the heating need across the design variants, diluting the effect of

their diversity of features captured through urban morphological parameters. The U-values

corresponding to the dataset used in this chapter are higher than the target from the SIA, yet

closer to what can currently be encountered in other studies (e.g. 1.15 W/m2K for walls in

[LSE Cities and EIFER, 2014]) and contexts (e.g. climate- and construction period-referenced

databases [Deru et al., 2011]). Moreover, considering that a larger amount of material with

an associated higher cost and embodied energy are required for achieving low U-values, it

is of interest to see the performance level that can be reached only through morphological

changes. In any case and as mentioned in chapter 3, we emphasize that the purpose of the

study is not to derive concrete design guidelines, which are dependent upon the simulation

assumptions as further demonstrated in section 7.2.

An office function and associated occupancy schedule was defined. There was no specific

motivation behind that choice except that it was considered a better match to the relatively

high window-to-wall ratio, closer to an office than a residential building.

Future work, addressed in section 4.7 and chapter 7, includes looking at the additional data

acquired. Along the same lines, work was initiated to define fully residential neighborhoods as

well as mixed-used scenarios (including both office and residential units). Regardless of the

source and underlying assumptions of the dataset, the main steps in the workflow described

in the next section are applicable.

Daylight potential: spatial Daylight Autonomy

The artificial lighting demand also weights heavily in the energy consumption, particularly in

administrative buildings as seen in chapter 1. This need can be partly substituted through day-

lighting whose potential is here quantified by the sDA as defined in section 3.1.4. This metric

was computed from illuminance data obtained through a DIVA-for-Grasshopper simulation,

with the settings shown in Table 4.8. The occupancy schedule was defined to cover most

daylight hours as opposed to representing a clear building function (e.g. office). This allows

comparing between design variants without assuming any fixed function. To reduce com-

putational time, simulation is done at the ground floor level only, representing a worst-case

scenario with respect to upper building levels. No blinds were simulated due to limitations in

the tool. Both the terms daylight and sDA are used to refer to this metric in this chapter.
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Chapter 4. Metamodel development

Table 4.7 – Settings for the energy need simulations with reference values for comparison. *[SIA, 2015],
**[SIA, 2009b], ***[Deru et al., 2011].

Parameter Setting Comparison values
Building function Office (values below for offices as well)
Heating/cooling 20/26◦C 21/26◦C *;
set point 20◦C ambient temperature **
Loads
Equipment 12 W/m2 7-10 W/m2 *
Lighting 3 W/m2 (300 lux set point) 12.5-15.9 W/m2

(500 lux set point) *
Occupancy 0.05 people/m2 idem **/***; 0.07-0.1 *

8.75 h/week-day 7.2 h/week-day *
Ventilation 0.0125 m3/s person 0.01 m3/s person *
Infiltration 0.1 ach 0.15-0.3 ach (target-existing) *;

0.62 ach ***
Conductivity
Wall U = 1.3 W/m2K 0.2 W/m2K limit **;

0.8 W/m2K (existing) *
Roof U = 1.84 W/m2K 0.2 W/m2K limit **;

0.8 W/m2K (existing) *
Floor U = 1.25 W/m2K 0.2 W/m2K limit **;

0.8 W/m2K (existing) *
Windows U = 1.5 W/m2K 1.3 W/m2K limit **;
(double low e argon) 1.5 W/m2K (existing)*

≈ 44-48% glazing ratio 50% for west-oriented facades*
Solar protections Venetian blinds
Activated when Incident irradiation ≥ 180 W/m2

Table 4.8 – Settings for the daylight simulation.

Parameter Setting
Windows double-argon
Occupancy 8am - 10pm
Illuminance target 300 lux
Sensor grid resolution 2 m
Sensor grid height above ground floor 0.8 m
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4.3. Selection of metamodel form

4.3 Selection of metamodel form

The reference dataset of inputs and outputs is thus populated following the above-mentioned

steps of modeling and simulation. A model function must be selected to guide the following

steps of data analysis and metamodel development. While options from which to choose

from are theoretically infinite, many of them would not perform well when applied to new,

unseen data [Forrester et al., 2008], i.e. to predict the performance of a new neighborhood

design. Our approach follows Occam’s Razor: “all things being equal, the simplest solution

tends to be the best one”. That is, minimizing the complexity of a model tends to improve its

generalization to unseen data [Forrester et al., 2008]. As such, a multiple linear regression

model form is selected as a starting point. In section 4.5, trials are made with different settings

e.g. to investigate the effect of including interaction terms.

As seen in Table 4.1, multiple linear regression assumes a linear relation between inputs and

the output and is relatively easy to use and interpret. It takes the form of the following equation

[Hastie et al., 2009]:

y = f (x)+ε=β0 +
p∑

i=1
βi xi +ε (4.1)

where f (x) is the predictive function we want to define to estimate the real output y , which

is in our case the simulated reference values. ε is the prediction error. β0 is a constant (or

intercept) term and βi the coefficient for input parameter xi .

It is important to note that there are potential issues associated to the use of multiple linear

regression. Some of the main ones, placed in the context of our study, are12:

• Strong dependency of the input coefficients and contribution to error reduction on

the presence/absence of other parameters present in the model function. Linked to

the possibility of having multi-collinearity among the inputs. If some parameters are

strongly correlated, it is no longer possible to interpret outcomes during the metamodel-

ing process. Considering our starting set of potential inputs, this is particularly relevant

and further addressed in section 4.5.5.

• Extrapolation beyond the scope of the metamodel, occurring when the function is ap-

plied on new data whose input values are out of the range ‘seen’ by the metamodel. In

such unknown regions, the prediction may be far from the expected output. This issue

is investigated in chapter 6.

• Over-fitting: the β parameters are fitted too closely to the sample data, and capture more

than the underlying relationships among the inputs and outputs [Forrester et al., 2008].

This extra information represents artifacts that we would like to avoid being included in

the model, which we hope to be able to apply with confidence on new neighborhood

designs for predicting their performance. We return on this risk of over-fitting in the

next sections.

12https://onlinecourses.science.psu.edu/stat501/node/343 (last accessed on April 2, 2016).
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4.4 Data analysis

Before proceeding with fitting the metamodel, the data must be examined for potential

anomalies/outliers. An analysis is also conducted to identify any correlation between inputs

and outputs, as well as among inputs. These checks respectively help identify the relevant and

redundant parameters prior to fitting the metamodel. The significance of this information is

further addressed in section 4.5.

It is to note that although both the energy and daylight simulations were automated from

within the same modeling and simulation workflow via Grasshopper, the total number of

design variants for which outputs were collected differs between the two performance metrics.

Due to the simulation set-up, available computational resources, as well as the removal of

some data due to errors detected, the energy dataset contains only a fraction of the designs

present in the daylight dataset. In total, 624 variants (or data points) are included in the energy

dataset, against 2060 in the daylight dataset. M2 is altogether absent in the former, due to

errors detected in the simulated geometry. However, considering that this case falls between

M1 and M6 in terms of morphology, layout and dimension ranges, its loss is considered as

minor. In the following, we distinguish between the two datasets both in the text and figures.

4.4.1 Distributions

Figures 4.11 and 4.12 show the distribution of each input for the energy and daylight datasets

respectively, distinguishing between the seven case series. The histograms produced by

merging all cases can be seen in appendix A.1.

As the geometry- and irradiation-based parameters were not directly controlled when generat-

ing the design variants, as explained earlier, non-uniform distributions like the ones observed

for most inputs were to be expected. However, the ranges spanned are good representations

of what can be found in real, constructed neighborhoods. Table 4.9 gives some comparison

values from various sources for some of the geometry-based parameters.

Although higher frequencies are observed for the daylight dataset due to its larger size, the

range spanned by each parameter and the shape of the histograms are similar to the ones

observed for the energy dataset. When looking at individual case series, we observe clusters,

for instance for the PlotRatio parameter where the tower typology of M6 pushes this series

towards higher values, creating a gap around a plot ratio of 5. The higher values are above

what is commonly found based on Table 4.9. In the current context of deriving a predictive

function from a dataset, we are more concerned with covering a wide range than closely

sticking to commonly encountered values. Our narrow WWRatio is caused by the window

modeling method as previously explained. The latter parameter was explicitly kept close to a

constant to reduce the number of variables and ease the parametric modeling. Transforming

this parameter into a variable should be addressed in future work, as discussed in section 4.7.

The WFRatio is instead used to capture the diversity in glazing ratio.
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Figure 4.11 – Parameters distribution for each case series (Mi) for the energy [kWh/m2
FA] dataset.
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Figure 4.12 – Parameters distribution for each case series (Mi) for the daylight [%] dataset.
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Table 4.9 – Comparison values for some geometry-based parameters. Sources: (1) [LSE Cities and
EIFER, 2014], (2) [Zhang et al., 2012a], (3) [Knowles, 2003], (4) [SIA, 2015], (5) [Steemers, 2003], (6)
[Laëtitia et al., 2011].

Parameter Range/Value Context Source
PlotRatio 1.7-3.3 regular urban block

(1)
1-5 compact urban block
0.2-1.7 slab/terraced/detached housing
1 minimum recommended
2.7-5.3 range for studied zones in the cities of Amster-

dam, Barcelona and Paris
(2)

SiteCoverage 30-50% regular urban block
(1)30-65% compact urban block

5-35% slab/terraced/detached housing
20-75% range for studied zones in the cities of Amster-

dam, Barcelona and Paris
(2)

FormFactor 1.7 regular urban block

(1)
1-3.3 compact urban block
0.7-2.2 slab/terraced/detached housing
1.7 minimum recommended
0.3-5.3 range for city of Los Angeles (3)

WWRatio 50% west-oriented facades of office buildings (4)
40% modeling assumption in comparative study (1)
25-38% range of optimal ratios (min. energy consump-

tion) according to height for London case study
(5)

WFRatio 17% French policy for optimal daylight and comfort (6)

The histograms of the simulated responses are shown in Fig. 4.13 and 4.14 for each case series

as well as for the whole dataset. The majority of cases in the energy dataset fall near the 40

and 50 kWh/m2 regions. For comparison, we have plotted the range of heating energy for

existing small to large office buildings (hatched rectangle) [SIA, 2015], as well as the histogram

of the SIA heating limits (Qh,lim), corresponding to new administrative (office) buildings and

computed based on the formula and default values given in SIA [2009b]:

Qh,lim =Qh,lim0 +ΔQh,lim × Ath/AE (4.2)

where Qh,lim0 and ΔQh,lim are limit values depending on the type of building (here 65 MJ/m2

and 85 MJ/m2), Ath is the surface of the thermal envelope and AE the energy reference area

(total floor area in our case). The limit is computed for each case by inserting its (inverted) form

factor, one of the parameters already computed, in the formula and applying a conversion

factor of 0.278 kWh/MJ to obtain kWh/m2.

The distribution associated to the limit values falls below our simulated energy needs, which

is to be expected since the latter contain the cooling need in addition to the heating need.

Moreover, as mentioned in section 4.2.4, our simulation settings do not exactly match the SIA
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assumptions. Nevertheless, this comparisons serves to demonstrate that our range covers a

domain of realistic values and that it may be possible to fall below the SIA limit despite the

unfavorable thermal envelope.

The sDA distributions shown in Fig. 4.14 vary between case series from narrow - e.g. M1, M6 -

to wider - e.g. M4, M5 - ranges. In the graph holding all cases, dashed lines have been added

for reference: the nominally accepted daylight sufficiency of 55% and the preferred daylight

sufficiency of 75%, as recommended by IESNA [2012]. It must be remembered however that

the official method for computing the sDA has not been exactly applied, as explained in section

3.1.4. Moreover, the values obtained are only for the ground floor level and are thus likely to

be more conservative. For our purpose of learning a metamodel, it is of interest to have a wide

span over the possible performance values, which correspond to [0, 100] in the case of the

sDA. This is achieved through the combined M cases.

4.4.2 Correlations

It is important to look at the possible correlations, both between pairs of input parameters

as well as between each input and output. This analysis can provide support in tuning and

interpreting results in the metamodeling process detailed in the next section. The correlation

level is here quantified using Pearson’s linear correlation coefficient obtained via the corr

Matlab function13.

Figure 4.15 shows a matrix view of the correlation level between each pair of inputs in the

two datasets. White, gray and black squares respectively represent a perfect positive (+1), the

absence of (0), and a perfect negative (-1) correlation. It is to note that, as observed in chapter

3, these correlation results stem from the parametric modeling, i.e. the way variants were

generated and the fact that they were duplicated with a 90◦ rotation. As such, we observe

some correlation among the North-East-South-West parameters and between the plot ratio,

roof ratio and mean height. The presence of both white and dark zones highlights the need to

take care of collinearity between the inputs when interpreting results from the model fitting.

This is addressed in section 4.5.5.

To avoid redundancy there is thus a need to reduce the dimensionality of the inputs sets. Yet,

we don’t want to ignore parameters strongly linked to the output we are trying to predict. This

link is shown in Fig. 4.16 and 4.17 for each dataset, with distinction between the different case

series. The pairwise linear correlation coefficient, computed over all cases taken together, is

displayed for combinations for which it was found to exceed (±)0.70. This is the case for the

FormFactor, EnvelopeIrradPerFA and FacIrradPerFA in the daylight dataset, and for the same

three parameters with the addition of the RoofIrradPerFA in the energy dataset. The same

graphs plotted without distinction between the cases can be found in appendix A.1.

13http://www.mathworks.com/help/stats/corr.html (last accessed on April 2, 2016)
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(hatch) and SIA limits [SIA, 2009b] (light-gray histogram) - are shown in the background of the bottom
right overall graph.

0

20

40

60

80

100

120

Fr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
es

288M0 346M1 291M2 594M3

0 20 40 60 80
0

20

40

60

80

100
196M4

0 20 40 60 80

Simulated spatial daylight autononmy [%]

91M5

0 20 40 60 80

254M6

0 20 40 60 80 100
0

40

80

120

160

200

ac
ce

pt
ed

preferred

2060All Ms

Figure 4.14 – Histograms of the simulated spatial daylight autonomy distribution for each case series
and over all variants together (bottom right graph). The number in the top right corner represents the
amount of data points in the respective histogram. The nominally accepted 55% and preferred 75%
thresholds defined by the IESNA [2012] are shown on the bottom right overall graph.

117



Chapter 4. Metamodel development

We see that the relationship differs between the seven cases. For example, M6 distinguishes

itself from the other cases, showing a more clustered and localized group of points, with

an often flatter slope such as for the PlotRatio and MeanHeight parameters. Despite these

differences, in the following section we attempt to train the metamodels on all M-cases taken

together, without any variable accounting explicitly for their difference in typology/layout.

The advantages and drawbacks of this approach are discussed in section 4.7.

When selecting the list of ‘final’ inputs, that will effectively become the predictors in the energy

and daylight functions, both types of correlations - i.e. between inputs and among inputs and

outputs - are taken into account. We want to avoid redundant parameters while retaining

influential ones. This is further addressed in the next section. The quasi-constant WWRatio,

although it has until now been included in the figures, is removed from both datasets for the

upcoming metamodeling training and testing phases.

It is important to highlight that the observed trends are strongly conditioned by the simulation

assumptions, e.g. the U-values and building function in the case of the energy dataset. The

results of the current correlation analysis are therefore not to be taken as design guidelines. In

chapter 7, we demonstrate that, given different simulation settings, the observed trends differ

to some extent.
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(a) Energy dataset

(b) Daylight dataset

Figure 4.15 – Matrix of pairwise linear correlation coefficient between each combination of input
parameters in the two datasets. From black (-1) to gray (0) to white (+1): negative to none to positive
correlation.
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M0 M1 M3 M6M5M4× * +

Figure 4.16 – Relationship between the energy need output and each input in the energy dataset, with
distinction between the different cases.
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M0 M1 M2 M3 M6M5M4× * +

Figure 4.17 – Relationship between the sDA output and each input in the daylight dataset, with distinc-
tion between the different cases.
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4.5 Metamodel training and testing

4.5.1 Overview of fitting procedure

This section details the procedure for fitting the metamodels to the energy and daylight

datasets. This procedure is illustrated in an abstract way in Fig. 4.18. In the following subsec-

tions, we expose the content of the dark boxes, each consisting of a distinct iterative fitting

process that allows us to progress in identifying, with some level of confidence, an adequate

model form (e.g. linear, quadratic) and subset of inputs to be used when fitting the final

predictive model.

X y

Xd,α y

Comparative analysis  

Final predictive
model

Xd,α y

Identify main coefficients

Selected
predictors

X y

Select model form

Stepwise

Stepwise

Ridge

Ridge

A

B

C

D

Figure 4.18 – Flowchart of the
procedure for defining the pre-
dictors to use in the final pre-
dictive model fitting. Each
block (top to bottom) is respec-
tively detailed in sections 4.5.3
and 4.5.4.

As mentioned in section 4.3, a multiple linear regression

model form is selected as a starting point. In steps A and B

(section 4.5.3), a stepwise selection algorithm is used, first

to compare model variations to see the effect of allowing

interaction and quadratic terms, and secondly, to reduce

the dimensionality of the inputs. Instead of randomly or

manually searching for the best subset of the 25 possible

predictors (listed in Table 4.6), we undertake a gradual elim-

ination process using the information gathered through

the distribution and correlation analysis of 4.4, combined

with results from the stepwise selection. In phases C and

D (section 4.5.4), a different algorithm, ridge regression, is

used. The set of inputs is further reduced and fed to the

final predictive function fitting algorithm. The final func-

tions represent the metamodels to be implemented and

subsequently used for predicting the performance of new,

unseen neighborhood designs. This application phase is

addressed in chapters 5 and 6.

Since each phase of the flowchart informs its successor, in

the next sections we expose both the theory behind each

algorithm and method as well as their respective results.

4.5.2 Particularities of deterministic simulations
and consequences on metamodeling

Results from each fitting phase are analyzed using the statis-

tical metrics listed in Table 4.10, indicators of the goodness-

of-fit, i.e. how well the fitted model performs as a predictor

of the response y . It is important at this point to highlight

the precautions that must be taken when applying statis-

tical techniques in our context, due to the deterministic
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nature of the simulations we are attempting to emulate. Indeed, the thermal simulation in

EnergyPlus is deterministic, meaning that re-running the simulation for an identical set of

inputs will give the exact same output. In the case of daylight simulations, Radiance uses a

hybrid deterministic-stochastic14 (Monte Carlo) approach. However, the difference in the

outputs for two simulation runs of the same design is small and gets reduced even more when

computing the sDA over the whole neighborhood design.

The particularity of deterministic simulations with respect to stochastic experiments is that

the concept of random error does not apply [Simpson et al., 2014]. That means that the

error term ε in equation 4.3 only represents the approximation error and does not include

a random component. The consequence is that many statistical measures, which rely on

an assumed presence of a random error, loose their meaning. According to Simpson et al.

[2014], the only values that can be used to verify the performance of a metamodel used to

replace a deterministic computer experiment are the Coefficient of Determination (R2), which

indicates the level of correlation between two sets of data, and its adjusted version, which

takes into account the number of parameters. These should be combined with residuals

plots to identify trends and outliers, where a residual is simply the difference between a

simulated (reference) and predicted value. Moreover, validation using additional data points

is indispensable. Maximum and mean absolute error and Root Mean Square Error (RMSE)

can then be used to assess the metamodel’s accuracy [Simpson et al., 2014]. We have retained

the RMSE and added the Percentage Error (PercErr) as listed in Table 4.10. While the former

quantifies the overall difference between the simulated and fitted values in the units of the

response, the PercErr provides a relative reference to the order of magnitude of the output

values. In some cases we will directly take the difference instead of the absolute value of the

nominator in the PercErr equation, to preserve the sign which is an indicator of over (-) and

under (+) prediction.

4.5.3 Model selection and inputs reduction - Stepwise linear regression

In phases A and B, a stepwise selection algorithm is employed, first to compare different levels

of model complexity, and second to search for the inputs with the most statistical significance

in explaining the output. We use the stepwiselm Matlab function 15, whose algorithm proceeds

by adding and removing terms in an iterative fitting process, comparing the explanatory power

of each combination. There are two mechanisms possible for searching for the best model:

forward-stepwise selection, which starts with an intercept term and adds the predictors that

most improve the fit, and backward-stepwise selection, which begins with the full model and

removes inputs that have the least impact on the fit [Hastie et al., 2009].

The Matlab function uses both techniques to determine the best fit, judged using the adjusted

R2 as the performance criterion. Running the code results in a Matlab linear model object

14http://radsite.lbl.gov/radiance/framew.html (last accessed on April 20, 2016)
15http://www.mathworks.com/help/stats/stepwiselm.html (last accessed on April 6, 2016)
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Table 4.10 – Goodness-of-fit and error statistics used to compare and analyze results across the different
fitting phases of Fig. 4.18. N : number of data points; P : number of input terms; y : simulated (reference)
value; ŷ : predicted (fitted) value; μ: mean.

Name (acronym) [units] Equation Aim
Coefficient of Determination (R2) [-] R2 = 1− SSE

SST → 1

Adjusted Coefficient of Determination (R2) [-] R2
adj = 1− ( N−1

N−P

) SSE
SST → 1

Residuals [units of y] Δ= yi − ŷi → 0

Root Mean Square Error (RMSE) [units of y] RMSE =
√∑N

i=1

(
yi − ŷi

)2

N
→ 0

Percentage Error (PercErr) [%] (± when with-
out the |absolute|) PercErr = 100×

∑N
i=1

|yi − ŷi |
yi

N

→ 0

Where:

Sum of Squared Error (SSE) [units of y] SSE =∑n
i=1(yi − ŷi )2

Total Sum of Squares (SST) [units of y] SST =∑N
i=1

∣∣yi −μ
∣∣2

with multiple properties, including the model’s formula and its characteristics (e.g. number of

inputs, coefficients), and error and fit measures (e.g. RMSE, R2).

A - Model form

X y

Stepwiselm (Δ settings)

Select model form

shuffle rows 
and columns

Fit stats

shuffle rows

Figure 4.19 – Flowchart of the procedure for selected
the model form using the Matlab stepwiselm func-
tion with different settings. ‘Fit stats’ corresponds
to the metrics described in Table 4.10.

We first use the stepwise approach to

compare different model forms (Fig.

4.19), distinct in terms of their com-

plexity. The largest allowed model type,

specified by the ‘upper’ argument in the

stepwiselm function, is iteratively set

to: ‘constant’, ‘linear’, ‘interactions’ and

‘quadratic’. Each setting represents a cer-

tain model complexity level, described

in Table 4.11. An example of the Mat-

lab output associated to each model type

can be found in appendix A.2.

It is to note that the stepwise method is

locally rather than globally optimal; the final model built may differ according to the terms

in the initial model and the order in which inputs are added and removed. To address this

potential variability, the columns and rows of X (and by association the rows of y) are shuffled

in a sequence of 10 iterations, in addition to varying the model settings as described above.

Results for both metrics are shown in Fig. 4.20. Figure 4.20a illustrates the histogram of the

residuals, which are the differences between the simulated and the fitted (predicted) responses,
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Table 4.11 – Model forms tested using the stepwiselm function with different settings. y : simulated
(reference) value; β0: constant term (bias, intercept); βi ; coefficient of input xi ; ε: error term.

Constant: containing only a constant
term (intercept, no predictor
terms)

y =β0 +ε

Linear: containing an intercept and
linear terms

y =β0 +β1x1 +β2x2 + ...+ε

Interactions: containing an intercept, lin-
ear terms, and products of
pairs of distinct inputs

y =β0 +β1x1 + ...+βn x1x2 + ...+ε

Quadratic: containing an intercept
and linear, interactions and
squared terms

y =β0+β1x1+...+βn x1x2+...+βm x2
1+...+ε

associated to one of the 10 iterations for each model form tested. The shape of the distribution

can allow discovering outliers - i.e. instances further from the symmetric, Gaussian-like shape

- and systematic over or under estimations - i.e. shift of the peak towards negative or positive

values. In our case, the shape of the histograms were found to be the same across the 10

iterations, meaning that there was no effect of shuffling the data. This is the reason why only

one example is here displayed.

The constant model type is, not surprisingly, the worst with a wide spread in the residuals

going up to a 20 kWh/m2 and 25% error respectively for the energy and daylight metric. This

range is greatly reduced for the other three models, with the linear type showing a more

dispersed histogram than the interactions and quadratic models.

The predictive performance of each model is also reflected in Fig. 4.20b, showing the Coef-

ficient of Determination (R2) and Root Mean Square Error (RMSE) corresponding to each

type, averaged over the 10 iterations. Although values for the linear (L), interactions (I) and

quadratic (Q) forms are similar, their structure is significantly different. That is, their level of

complexity expressed through the number of terms present in each equation varies consider-

ably, as seen in Fig. 4.20c. The linear form contains on average 20 terms, while this number

jumps to nearly (resp. above) 100 terms for the quadratic energy (resp. daylight) model. An

example output for each model type can be seen in appendix A.2.

In light of the above results and analyzes, the linear model form is selected to pursue the fitting

process for both metrics. The small loss in prediction performance compared to the I and

Q options is counterbalanced by the simpler equation form. An important reason for this

choice comes from the risk of over-fitting, which increases with the number of terms. This

intermediate result leads us on to the next phase.
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(a) Histogram of the residuals obtained over one iteration.
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(b) Average R2 and RMSE over the 10 iterations.
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(c) Average number of terms appearing in the model over the 10 iterations.

Figure 4.20 – Results from the stepwise selection for each type of model for the energy (left) and daylight
(right) metric. C: constant, L: linear, I: interactions, Q: quadratic.
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B - Main coefficients

Random split

Xtrain ytrain Xtest ytest

X y

Stepwiselm

Fit stats

predictMdl

ypredicted Fit stats

Inputs
- Frequency of occurrence
- Values

Test

Identify main coefficients

Select model form

Train

B

Figure 4.21 – Flowchart of the iterative process for
identifying influential inputs using stepwiselm on
different training data subsets.

With the model form set to a regression

with linear terms only, we now use a sim-

ilar iterative stepwise approach to iden-

tify the inputs that appear the most over

50 iterations (Fig. 4.21). At each run,

the initial dataset is randomly split into

a training and testing subset. A model

is fitted on the training data and applied

on the test data. The resulting predic-

tions are compared to the responses in

the test set. The iteration-specific inputs

selected by the algorithm are analyzed

along with the associated fit statistics.

The number of times each input ap-

peared in a fitted model over the 50 it-

erations for the energy dataset is plotted in Fig. 4.22a. The value of each input’s coefficient at

each iteration is shown in Fig. 4.22b. The same two graphs for the daylight dataset are shown

in Fig. 4.23.

In the coefficients’ value graph, plots showing a straight line at the zero on the y-axis indicate

that the corresponding input is not significant in explaining the response since its coefficient is

always null. Inputs with a few non-zero values are linked to the random split at these instances

and are thus not predominant. Conversely, we can be more confident that inputs consistently

showing a non-null value, e.g. PlotRatio, FormFactor, are significant. Less clear are the inputs

that appear about half the time such as the RoofIrradPerFA in the energy models. The number

of inputs that appear in all 50 iterations is of 10 and 12 for the energy and daylight respectively.

Using the frequency of appearance information acquired in this phase, we proceed to the next

step to further test the impact of including or not certain inputs.
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(a) Number of appearances of each input.

(b) Coefficient value of each input at each iteration.

Figure 4.22 – Occurrence and coefficient value for each input over 50 iterations of the energy model.
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(a) Number of appearances of each input.

(b) Coefficient value of each input at each iteration.

Figure 4.23 – Occurrence and coefficient value for each input over 50 iterations of the daylight model.
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4.5.4 Fitting the predictive functions - Ridge regression

In the next two phases C and D, we conduct additional tests this time using a different algo-

rithm: ridge regression [Hastie et al., 2009], which we apply using the Matlab ridge function16.

Ridge regression is a shrinkage method; it enforces a penalty on the coefficients to mitigate

the consequences of potential multicollinearity between inputs. This is particularly relevant

to our problem since some of the inputs are likely to be correlated, as highlighted in the data

analysis phase of section 4.4.2. In such cases, a large positive coefficient on one input can be

canceled out by an equally large negative coefficient on a correlated input [Hastie et al., 2009].

This issue is linked to the risk of over-fitting to our dataset, which decreases the generalization

potential of the metamodel.

Considering our model equation:

y = f (x)+ε= ŷ +ε=β0 +
P∑

i=1
βi xi +ε (4.3)

where x ∈ RP contains the P input values, y is a reference (simulated) value, ŷ the model

output (prediction), β the unknown coefficients and ε the experiment error. To estimate the

model coefficients, we minimize:

N∑
i=1

(
f (x)− yi

)2 +λ‖β‖2 (4.4)

where N is the number of training samples and λ the regularization parameter which penalizes

large coefficient values. The β minimizing equation 4.4 can be obtained as:

β̂= (
XT X+λI

)−1
XT y (4.5)

where X ∈RN×P . Starting with 1000 values of λ between 0 and 117, we use a technique called

k-fold cross-validation to find the best λ [Hastie et al., 2009]. We split the data in k(=10)

sets, take k-1 sets for training, then test the fitted model on the remaining set. The best λ

corresponds to the value yielding a minimum RMSE averaged over the k-fold iterations. We

then fit a model over the entire training set using λbest, within a two-fold cross-validation to

estimate the prediction error over the test set [Hastie et al., 2009]. The ridge function internally

scales the inputs to have a mean of 0 and a Standard Deviation (std) of 1. The computed

coefficients are then restored to match the scale of the original inputs.

16http://www.mathworks.com/help/stats/ridge-regression.html (last accessed on February 23, 2016)
17Tests were conducted, starting from a larger range, to define these boundary values.
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C - Final predictors

Random split

Xα-train ytrain Xα-test ytest

Xd,α y

k-fold cross validation 
with Ridge to find λbest

Fit stats

predictMdl
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Coefficient values
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Comparative analysis  

Train Test

Identify main coefficients

Selected
predictors

Fit stats

C

Figure 4.24 – Flowchart of the iterative process for
testing different input combinations using the Mat-
lab ridge function and leading to the final predic-
tors’ selection.

Using the information about the main in-

puts identified in the previous phase, we

proceed with another iterative fitting se-

quence to further assess the fit obtained

with different input subsets. As illus-

trated in Fig. 4.24, the X matrix is re-

cursively reduced to the inputs that ap-

peared in α = 25, 50, 75 and 100% of the

50 iterations in the previous phase (see

Fig. 4.22a and 4.23a). For example, the α

= 100% case for the energy metric corre-

sponds to fitting the model using the 10

inputs showing a full bar in Fig. 4.22a. To

the four α values is thus associated a P

number of inputs. A ‘manual’ selection

is also added, for which a smaller subset

of inputs are retained, corresponding to

the ones that were found to most influ-

ence the fit based on manual iterations.

Starting from the α = 100% case, values

corresponding to each input present were removed and the training/testing algorithm was

repeated. By comparing the fit and error metrics obtained at each trial, a reduced set of main

contributors was identified.

In addition to the variations in the number of inputs, the sequence of Fig. 4.24 is first executed

using all designs (d=100%) and then repeated using only half (d=50%). This test is done to see

the effect of fitting using a smaller amount of reference data points.

To clarify both reductions, let us consider our matrix:

X =

⎡
⎢⎢⎢⎣

x11 x12 x13 . . . x1P

x21 x22 x23 . . . x2P

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xN 1 xN 2 xN 3 . . . xN P

⎤
⎥⎥⎥⎦

where xi j is the value of input parameter j = 1, ...,P (e.g. plot ratio) for design i = 1, ..., N (e.g.

variant 20 in M1 series). Reducing the number of designs consists in randomly cutting rows of

X, while removing some inputs means eliminating specific columns.

The train-test process described earlier is again executed, this time using the ridge function

detailed above. For comparative purposes, the same random split is applied at each of the

four α runs.
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Results are shown in Fig. 4.25 and 4.26 for the energy and daylight metrics respectively. For

each α, the predicted versus simulated values over the 25 fitting runs are plotted along with

the corresponding residuals histogram, for both the full series (d=100%) and half (d=50%) of

the designs. Fit and residuals statistics are displayed as well as the number of terms associated

to each α value.

For the energy metric, results are very similar across α = 25 to 75% and between the full and

half datasets. For α = 100%, the prediction accuracy slightly decreases as indicated by the

lower R2 and wider spread in the residuals. From the scatter plots, we observe that values

located at the extremities (e.g. energy need > 55 kWh/m2
FA) are over-predicted. This situation

is exacerbated in the bottom graphs showing the results for the manual reduction, which has

the highest standard deviation of the residuals.

For the daylight metric, results are similar across all graphs, with a slight decrease in the

prediction accuracy for the manual selection case (bottom graphs), as seen from the residuals’

histograms. In all cases, we observe in the scatter plots both over- and under-predictions

around simulated values of 75 to 85%.

For both metrics, we should as further work take a closer look at the extremes to identify

potential outliers and eventually acquire new data points in those regions to improve the

results.

The effect of reducing the dataset to half its original size - comparing d=100% to d=50% - is

small. While the number of terms corresponding to each α is slightly different and the number

of data points present in the plots is lower (due to the smaller X), the fit and error statistics

are only slightly worse. Considering the similarity between the different runs, we choose to

retain the α = 100% and the manual reduction, both for d = 50%, for proceeding with the

next phase. Although the RMSE is higher for those settings, this choice is made to mitigate

the risk of over-fitting to our reference dataset. It may seem contradictory to hypothesize

that the risk of over-fitting can be reduced by removing some data. However, we believe that

the high similarity between some design variants may cause the model to fit too closely to

these specific characteristics, decreasing its accuracy when applied to distinct designs. Indeed,

considering for example case M3 which has the most number of variants (see Fig. 4.13 and

4.14), it is possible that two or more of these variants have identical buildings in terms of

dimensions, but with an inverted (or mirrored) layout, due to the sampling technique detailed

in section 4.2.2. This would mean that all geometry-based parameters are equal between the

two designs, with variations (possibly small) only in their irradiation-based parameters and

outputs. As such, we are ready to sacrifice in accuracy based on the current results, in the

hope of a better future generalization potential of the metamodel when applied to unseen

designs. This test, essential to further probe the metamodels, is conducted in chapter 6.
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4.5. Metamodel training and testing

(a) 100% of data (b) 50% of data

Figure 4.25 – Predicted versus simulated energy need values (left) with associated residuals histogram
(right) over all 25 iterations for each α (different subset of inputs included in each model), when
training-testing using (a) the entire and (b) half of the dataset. The constant (intercept) is not counted
in the displayed number of terms. Predicted, simulated and residual values are expressed in kWh/m2

FA.
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(a) 100% of data (b) 50% of data

Figure 4.26 – Predicted versus simulated spatial daylight autonomy values (left) with associated residu-
als histogram (right) over all 25 iterations for each α (different subset of inputs included in each model),
when training-testing using (a) the entire and (b) half of the dataset. The constant (intercept) is not
counted in the displayed number of terms. Predicted, simulated and residual values are expressed in %.
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D - Final energy and daylight metamodels

Ridge (k-fold cross validation λbest)

Final predictive
model

Xd,α y

Final fit

Selected
predictors

d=50%, α = 100%, manual

Figure 4.27 – Flowchart of the final metamodel
fitting procedure using ridge regression.

The final metamodels are to be fitted using

the same ridge function, in a simplified proce-

dure illustrated in Fig. 4.27. This time, we do

not split the data as no testing takes place. An

internal 10-fold cross-validation is however

used to define the best λ value.

The set of inputs Xd,α to be included for fit-

ting the final metamodels corresponds to the

selected cases of α = 100% and the manual

reduction, both with d = 50%. They are listed

in Table 4.12, along with their level of correlation with each output metric. Values range

from a low (+)0.25 to a high of (-)0.91. The fact that some inputs are included despite their

low correlation to the output may be caused by an interaction with another input present.

Although the chosen model form does not allow explicit interaction terms (see Table 4.11),

the inclusion of specific parameters in the model is a process that depends upon the other

available input parameters. For instance, the MeanRoofIrrad in the daylight model may not be

useful in predicting the output when considered on its own: ŷ =β0 +β1x1. However, its effect

may be enhanced when accompanied by other inputs even though interactions terms (e.g.

β12x1x2) are not included: ŷ =β0 +β1x1 +β2x2 + ...+βn xn .

The predictive functions obtained are described in Table 4.13. f(x) corresponds to what we will

refer to as the ‘full’ metamodel version (α = 100%), while fred(x) contains the reduced subset of

inputs defined through the manual procedure previously explained. The reason for having two

metamodel versions for each output metric comes from our hypothesis that simpler models

may generalize better to new designs distinct from the ones used to construct the reference

dataset. This hypothesis will be tested in section 6.2.2.

Table 4.12 – Correlation level between the output metric and each input selected for fitting the corre-
sponding full and reduced (bold) final predictive models.

Energy metric
Input Correlation
PlotRatio -0.62
FormFactor -0.91
RoofRatio 0.58
MeanEnvelopeIrrad 0.69
MeanFacIrrad 0.64
MeanNorthFacIrrad 0.57
MeanSouthFacIrrad 0.58
MeanWestFacIrrad 0.63
NorthFacIrradPerFA 0.43

Daylight metric
Input Correlation
PlotRatio -0.67
SiteCoverage -0.59
FormFactor -0.78
WFRatio 0.62
MeanHeight -0.68
MeanRoofIrrad 0.25
MeanFacIrrad 0.36
MeanNorthFacIrrad 0.66
EnvelopeIrradPerFA 0.85
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Chapter 4. Metamodel development

Table 4.13 – Full and reduced final fitted equations to be used for predicting the performance of new
designs.

Energy metamodel [kWh/m2
FA]

f(x) = 105.30−0.45 ·PlotRatio−25.16 ·FormFactor+87.65 ·RoofRatio
−0.13 ·MeanEnvelopeIrrad+0.12 ·MeanFacIrrad
+0.021 ·MeanNorthFacIrrad−0.028 ·MeanSouthFacIrrad
−0.021 ·MeanWestFacIrrad+0.011 ·NorthFacIrradPerFA

fred(x) = 72.76+0.19 ·PlotRatio−22.75 ·FormFactor+0.0024 ·MeanEnvelopeIrrad

Daylight metamodel [%]

f(x) = 105.24+10.49 ·PlotRatio−137.00 ·SiteCoverage−16.43 ·FormFactor
+28.66 ·WFRatio−1.23 ·MeanHeight−0.031 ·MeanRoofIrrad
+0.076 ·MeanFacIrrad+0.013 ·MeanNorthFacIrrad
+0.011 ·EnvelopeIrradPerFA

fred(x) = 74.44+16.41 ·PlotRatio−179.89 ·SiteCoverage+58.47 ·WFRatio
−2.55 ·MeanHeight+0.083 ·MeanFacIrrad

4.5.5 Interpretation

At first view, it may seem like the metamodeling approach could allow investigating the

relationship between the inputs and outputs. For instance, it is possible to apply the same

fitting algorithm on a standardized version of the dataset to obtain the relative influence of

each input present. Standardizing consists in scaling each series of input values, equivalent to

each column of X, so that they are centered with a mean of 0 and a std of 1. Using the Matlab

function zscore18, this transformation is done to remove the effect of different units between

the inputs and hence allow comparing their coefficient.

Figures 4.28 and 4.29 show the importance of each input respectively in the energy and daylight

metamodel (full final version). In the bar plots of Fig. 4.28a and 4.29a, the position above

versus below zero indicates the direction of the effect on the output. These coefficients are also

found in the slope of each line in the Partial Dependence Plots (PDPs) of Fig. 4.28b and 4.29b,

where the corresponding input histogram is also plotted to help interpretation by showing the

range spanned by the data. A Partial Dependence Plot (PDP) describes the contribution of a

predictor to the metamodel [Hastie et al., 2009]. It shows by how much, in average, the output

varies in function of a unique input, when averaging the other parameters. For linear models

like ours, a PDP also portrays a linear relation.

These results are intrinsic to the metamodels structure (f(x) in Table 4.13). That is, the infor-

mation they portray is an artifact of the fitting process rather than a reflection of the trends

observed in the raw data in section 4.4.2. Let us consider for example the MeanEnvelopeIrrad

parameter in the energy metamodel. A negative effect is seen in Fig. 4.28b, where higher

18http://www.mathworks.com/help/stats/zscore.html (last accessed on April 4, 2016)
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values are linked to a lower energy need. Yet, a positive correlation was previously observed in

Table 4.12 and Fig. A.2a.

Other such inversions can be found, e.g. for the PlotRatio in the daylight metamodel. In-

terpreting the coefficients for instance for design-guidance is not a valid application of the

metamodeling results. When the metamodels are fitted, there is no guarantee that the actual

correlations are respected, as the algorithm only finds what works best for predicting the

desired value, without accounting for the underlying relationships. What we observe from

the above steps is that the structure of a metamodel is strongly dependent on the data from

which it learns. Coefficients obtained for the set of included inputs are affected if one or more

parameters are dismissed. This statement is further reinforced by the graphs presented in

appendix A.3, showing the estimated main effect of each input for different fitting settings, i.e.

different subsets of inputs based on the α values in section 4.5.

In the context of this thesis, the metamodels are used for predicting the performance, to

some level of accuracy which is further quantified in chapter 6. The functions can be seen

as in constant evolution, a structure that feeds itself off the data it is given. Based on our

experimental methods for the data acquisition, processing, and model fitting, it is not possible

to extrapolate the application of the metamodels to investigate the relative importance of the

parameters.
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(b) Partial dependence plot (dark line) overlaid on corresponding input histogram (light gray)

Figure 4.28 – Relative importance and effect of each input according to the energy f(x) metamodel
structure.
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Figure 4.29 – Relative importance and effect of each input according to the daylight f(x) metamodel
structure.
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4.5.6 Additional metamodel version

A third metamodel version is shown in Table 4.14, fprelim(x), corresponding to preliminary

functions fitted earlier in the course of this doctoral research, in view of the workshops

described in chapter 5. These metamodels are the ones that were implemented in the DDS

workflow also introduced in the next chapter. They were obtained from a slightly different

dataset. Specifically, the total number of cases in the energy and daylight datasets were of 508

and 2263, respectively lower and higher than the current 624 and 2060 data points as noted

in Fig. 4.13 and 4.14. In the initial energy dataset, the M0 case was absent, while the daylight

dataset contained erroneous cases that were later identified and removed from the initial

version. Moreover, the fitting procedure followed to derive these preliminary metamodels did

not include all the steps presented in this chapter (e.g. the initial comparison of settings in the

stepwise function in section 4.5.3).

In section 6.2, we bring back all metamodel versions when testing them on a new set of

neighborhood designs, acquired through workshops conducted with professionals, as detailed

in section 5.2.

Table 4.14 – Preliminary version of the predictive functions.

Energy metamodels [kWh/m2
FA]

fprelim(x) = 78.83−0.667 ·PlotRatio−2.73 ·SiteCoverage−8.15 ·FormFactor
+39.68 ·RoofRatio−0.043 ·MeanEnvelopeIrrad
−0.073 ·MeanNorthFacIrrad−0.025 ·MeanEastFacIrrad
+0.014 ·FacIrradperFA+0.169 ·NorthFacIrradperFA
+0.115 ·EastFacIrradperFA

Daylight metamodels [%]

fprelim(x) = 47.67+4.78 ·PlotRatio−97.98 ·SiteCoverage−10.31 ·FormFactor
+69.21 ·RoofRatio+63.60 ·WFRatio−0.008 ·MeanEnvelopeIrrad
−0.027·MeanRoofIrrad+0.021·MeanFacIrrad+0.013·MeanEastFacIrrad
+0.017 ·MeanSouthFacIrrad+0.009 ·MeanWestFacIrrad
+0.049 ·FacIrradperFA
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4.5.7 Further investigation

Training and testing by case series

Until now, we have treated the dataset as a whole without distinguishing between the different

case series of which it is composed. In the above steps, whenever a random split of the data was

present, it was applied without controlling for the M-cases falling in the training and testing

sets. It is of interest to verify what happens when we specifically use one or more case(s) for

training and the remaining ones for testing. This sort of investigation can provide information

on which type of design(s) contributes most to the metamodeling process. Specific cases may

yield features that capture more explanatory information with respect to the output we are

trying to predict.

Figure 4.30 shows the R2, RMSE and Percentage Error (PercErr) statistics obtained when

applying the stepwise algorithm on a unique case Mi (x-axis) and testing on each other case

Mj (y-axis). As expected, the combinations where i = j lead to good results, since the training

and testing datasets are the same. For combinations where Mi and Mj are further apart in

terms of building typology such as M0-M6, the prediction error is higher. In that example

case, the PercErr jumps to nearly 300%. However, for the opposite order where M6 is used for

training and the resultant model is tested on M0, results are better (e.g. PercErr < 20%).

Based on our results, we observe that the energy model trained on M1 performs generally

better across all other variants. For the daylight metric, the M4 and M6 models have the

lowest prediction errors. This information could be exploited in future work to sample the

solution space more efficiently, by adding designs characterized by features contributing most

to improving the fit.

Although a higher prediction accuracy could be achieved by fitting a series of case-specific

metamodels, their application range would be limited to similar typologies. We therefore

consider a combined treatment, as done in the previous section, preferable to a separation by

case series.
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(a) Energy

(b) Daylight

Figure 4.30 – Fit and error metrics for each combination of data subsets, where a model trained on case
Mi (x-axis) is tested on case Mj (color-coded bar).
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Gaussian Processes

The choice of multiple linear regression applied in the previous sections conditions the

function f (x) to be linear. A different supervised machine learning technique called Gaussian

Processes (GP) regression detaches itself from the need to assume a fixed model form. GPs are

probabilistic regression methods that can easily model non linear functions [Rasmussen and

Williams, 2006].

To use a GP for prediction we must first define a prior distribution over functions, which is

done by choosing an appropriate kernel (or covariance) function. This kernel function defines

a ‘family’ of possible shapes or forms of the regression function we are trying to estimate. A

popular and widely-used non-linear kernel function is the Radial Basis Function (RBF), also

known as the squared exponential covariance function [Ebden, 2008; Rasmussen and Williams,

2006]:

cov
(

f (xi ), f (x j )
)= k(xi , x j ) =σ2

f exp

(
− 1

2l 2

∣∣xi −x j
∣∣2

)
(4.6)

where xi and x j are a pair of inputs and σ and l parameters through which the level of

smoothness of the function can be controlled.

Through a collaboration with Prof. Peter Moonen19, work was initiated to investigate the

application of this method to our context. A technique further detailed in [Moonen and

Allegrini, 2015] and based on the above kernel function was applied, leading to a metamodel

employing the five inputs listed in Table 4.15, which were identified as most improving the

fit for each model. The correlation coefficients, found through the analysis of section 4.4.2,

have been included in the table in the same way as done in Table 4.12. Only two parameters,

appearing in bold, are also found in the linear regression models presented earlier (see Table

4.13). This points again to the impossibility of drawing conclusions on the direct effect of

specific inputs on the performance metrics just by judging from their presence/absence in the

metamodels. Values such as the mean irradiation received on roof surfaces is not expected to

affect the daylight conditions inside a building, yet this parameter is present in both the GP

and linear models for that metric.

Results from the training-testing process of each metamodel containing the five respective

inputs are shown in Fig. 4.31. The prediction accuracy achieved for both metrics is very similar

to the results from our approach, previously shown in Fig. 4.25 and 4.26. However, the GP

metamodels only contain about half the minimum number of terms we have considered

(α=100% case).

In section 6.2.2 we present the prediction results obtained by applying the GP metamodels on

a new test set, to further assess the potential of this powerful yet more complex technique.

19Collaboration leading up to a joint publication (in preparation) is ongoing with Prof. Peter Moonen from the
Université de Pau et des Pays de l’Adour. All results presented here reflect his contribution.
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Table 4.15 – Predictors found in the GP models along with their correlation level to the output metric.
Bold terms denote predictors also contained in the final metamodels presented in section 4.5.4 (Table
4.13).

Energy metric
Input Correlation
FormFactor -0.91
NorthFacRatio -0.29
WFRatio 0.66
MeanWestFacIrrad 0.63
EnvelopeIrradPerFA 0.90

Daylight metric
Input Correlation
SiteCoverage -0.59
EastFacRatio -0.15
WestFacRatio -0.15
MeanRoofIrrad 0.25
RoofIrradPerFA 0.65
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Figure 4.31 – Performance of the metamodels obtained by GP regression. For each metric: predicted
versus simulated values (left) and residuals histogram (right). Each model contains the five input terms
listed in Table 4.15.
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4.6. Complementary algorithm: active solar criterion

4.6 Complementary algorithm: active solar criterion

The third performance criterion we want to include in our DDS workflow relates to the active

solar potential of a neighborhood. Since we already have access to irradiation data, required

to compute the irradiation-based predictors in the above metamodels, the exploitation of this

information suffices to estimate the energy production by PV panels and ST collectors. Instead

of a metamodel, an algorithm is therefore used, corresponding to a slightly modified version

of the one presented in section 3.1.4.

Assuming an office function of all buildings and a DHW coverage of 50% over the year, equation

3.5 becomes simply:

DHW = 0.5×FA×Qhw5 = 3.47×FA (4.7)

where FA is the total floor area and Qhw5 the annual demand per floor area for commercial

buildings (25 MJ/m2 converted to kWh/m2) [SIA, 2009b].

The remaining steps are the same, except that we take the annual instead of the winter

irradiation value Iw , i in equations 3.6. This is done to avoid the need for a second irradiation

simulation with a different period of time in DIVA, in view of the desired real-time calculation

as explained in the next chapter.

In future work, this algorithm could be refined to include facades, by removing or lowering

the irradiation threshold that is currently set to 1000 kWh/m2, and discarding glazed surfaces.

Different assumptions, editable by the user, could be used for the each system’s efficiency and

relative coverage ratio, according to the building function and project-specific priorities.

4.7 Summary - Achievements, limitations and future work

This chapter has described the process of developing a novel multi-criteria method for rapidly

predicting the solar performance of a neighborhood design in its early phase. The method

combines predictive functions to estimate the energy need for heating and cooling and the

spatial Daylight Autonomy, along with an algorithm for computing the potential energy

production from active solar systems.

Trained on a series of design alternatives incorporating morphological variations, the meta-

models perform well although they do not explicitly include parameters linked to the building

typology (or shape). This is an advantage considering that there is no need to identify and

categorize the typology when applying the metamodels. Their validity boundaries over neigh-

borhood designs incorporating a mix of shapes is further assessed in chapter 6.
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Chapter 4. Metamodel development

4.7.1 Reduction of computational cost

Inputs to the predictive functions consist of a mix of parameters capturing the essential

features of a 3D model in terms of geometry and solar exposure levels. The computational

cost of applying the metamodels is dictated by the irradiation simulation needed to obtain

the irradiation-based predictors. Table 4.16 lists the time required to run a full simulation

versus the metamodel for each metric. Depending on the size and complexity of the design,

e.g. number of buildings, an energy and daylight simulation can respectively take up to

(approximately) 10 and 180 times longer than applying the metamodel. In addition to time

savings, our approach requires a simpler 3D model, i.e. empty boxes as opposed to the facade

and internal (e.g. zoning) required for an energy and daylight simulations.

Table 4.16 – Comparison of computational cost of evaluating the performance through a simulation
versus the metamodel. These times were recorded for simulations run on an Intel i7-4820K (4 cores)
3.70GHz computer with 16 GB of RAM. Ranges correspond to the min-max value measured across the
seven M cases that were simulated to generate the dataset. Daylight simulation on ground floor level
only.

Evaluation Time per design variant
Energy simulation with EnergyPlus ∼1 to 5 minutes
Energy metamodel ∼ seconds, max 1 minute
Daylight simulation with DIVA ∼30 minutes to over 1.5 hour
Daylight metamodel ∼ seconds, max 1 minute

4.7.2 Solution space sampling

Although an effort was made to obtain a large amount of data through the parametric modeling

and different sampling techniques (DoE and random), we may have missed some important

zones in terms of design features. This has an impact on the defined list of potential pre-

dictors as well as on the landscape of output values recorded, which may both be lacking

some information. Complementary or alternative predictors could tested in the future. The

possibility of adopting an experimental design providing more control over the covered ranges

of the input values should be investigated. Along the same lines, an infill strategy could be

used to identify at which point additional simulations should be done to improve the dataset.

The acquisition of so called infill or update points would allow improving the accuracy of the

predictive function [Forrester et al., 2008].

Moreover, basing the data collection process on a thorough examination of contemporary

urban developments would allow achieving a wider and more realistic coverage of the hypo-

thetical design space in terms of building typology and layout.
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4.7.3 Effect of simulation settings

As promised in section 3.2.1, we here come back to the question of the energy simulation

settings. Considering that the metamodels are to be applied for quickly comparing design

alternatives, what we want to investigate is whether or not these variants are ranked in the

same order, according to their energy performance, when different simulation settings are

applied in EnergyPlus.

Figure 4.32 shows the simulated heating need values for the same subset of designs, corre-

sponding to the current M0 series, previously termed M1 in chapter 3 (LN-PDL study). For

each orientation, the data corresponding to the LN-PDL study has been sorted from the lowest

to highest value. The same order was applied on the current data. Looking at orientation 0◦

(light gray), we see that the heating need is lower for the current dataset and that the overall

trend is slightly different. This means that the ranking in terms of heating need is not exactly

the same between the two datasets. This difference is more important for the 90◦ orientation,

corresponding to an East-West street alignment and hence dominant North- and South-facing

building facades (see Fig. 4.9a). The two dark gray lines representing this orientation are closer

in terms of order of magnitude, but show divergent rankings among designs. Not only do the

distinct simulation settings have an effect on each design’s heating need, but this effect is

not the same across variants. Moreover, for larger North- and South-facing facade ratios, this

difference in the effect is amplified.

0 10 20 30 40 50 60
Design variants

25

30

35

40

45

50

S
im

ul
at

ed
 h

ea
tin

g 
ne

ed
 [k

W
h/

m
2 FA

]

LN-PDL 0°

Current 0°

LN-PDL 90°

Current 90°

Figure 4.32 – Comparison of simulated floor-area-normalized heating need [kWh/m2
FA] between the

current dataset and the LN-PDL results presented in chapter 3 for the adjacent M0 design series, in
both orientations.
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Chapter 4. Metamodel development

To increase the scope of applicability of the metamodels, additional data should be analyzed

and exploited, obtained through simulations with different underlying assumptions related to

the climate and building function, materials, occupancy, etc. This has been initiated through

preliminary work [Nault et al., 2015c].

Multiple versions of the metamodels should then be defined, generating a library of functions

from which the adequate version could be retrieved based on the context. Another option

would be to include predictors to account for the added variables linked to the climate,

function, etc., assuming a robust metamodel could be derived. This topic is further discussed

in chapter 7, where an additional analysis is presented to compare two datasets with different

U-value settings.

4.7.4 Error sources

As for any computational experiments, results presented throughout the chapter are subject to

deterministic experimental errors of both human nature - e.g. bugs in the Grasshopper scripts

and Matlab code - and systematic type that can cause consistent under- or over-estimation of

the measured values [Forrester et al., 2008].

Fitting results are conditioned by the choice of a linear regression and by the reference dataset.

In future work, it would be of interest to investigate other types of models (e.g. non-linear) and

techniques, such as the one presented in section 4.5.7 - Gaussian Processes - and ensemble

methods, e.g. random forests based on decision trees, which were shown to be promising for

predicting housing electricity energy consumption [Tso and Yau, 2007].

Further thoughts on the possible limitations and improvement and application prospects

of the metamodels are presented in chapters 7 and 8. In the next chapter, we describe how

the performance assessment engine consisting of the energy and daylight metamodels and

the active solar potential algorithm are integrated into a DDS workflow to be tested among

practitioners.
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“We cannot solve our problems with the same thinking we used when we created them.”

Albert Einstein

(physicist)

The performance assessment method developed in the previous chapter offers the means to

quickly and simply estimate the multi-criteria performance of a set of buildings. To further

inquire into its accuracy as well as its usefulness and adequacy in the context of early neigh-

borhood design, the assessment engine is integrated into a design decision-support (DDS)

workflow. Described in this chapter, the workflow adopts a generative approach with the aim

of providing user-guidance for exploring a space of design solutions from the perspective of

their performance.

The implementation of the workflow as a computer-based prototype is detailed, as well as the

approach adopted to test the prototype among practitioners through workshops1. Results of

these workshops are presented in the next chapter.

5.1 Implementation as a design decision-support workflow

5.1.1 Related work and objectives

As mentioned in chapter 2, specific features built around a performance assessment engine

can enhance the design-support aspect of a tool. We here briefly survey related work before

presenting our implementation approach in the next section.

In the field of architectural design of structural elements with a focus on early-phase design,

Mueller and Ochsendorf [2013] developed structureFIT2, an interactive web-based tool for

exploring a solution space of planar trusses, linking geometrical variables to structural per-

1Some elements of this chapter have been presented in Nault et al. [2016a,b].
2http://digitalstructures.mit.edu/page/tools#structurefit (last accessed on April 5, 2016)
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formance. A surrogate model is used to compute the performance, while an evolutionary

algorithm allows exploring the solution space and identifying optimal designs.

Focusing on room-level wind flows, Malkawi et al. [2005] developed an ‘evolution model’ using

genetic algorithms (GA) and computational fluid dynamics (CFD). Conceived to minimize the

deviation from a specified mean velocity inside a room, the optimization algorithm is used to

make the design evolve by playing with relevant variables (e.g. position and length of supply

duct).

Closer to our field are the Parametric Urban Design components developed by Schneider

et al. [2011] for automating the generation of a street network, and the Animated Building

Performance Simulation of Lagios et al. [2010] allowing the solar performance evaluation

of multiple building-scale design variants. Both make use of the Grasshopper3graphical

algorithm editor, linked to the Rhino43D modeler.

Ritter et al. [2015] recently developed a design space exploration assistance method (DSEAM)

that relies on a metamodel for predicting the energy use for heating and cooling and the maxi-

mum correspond loads for a building. From user-defined inputs consisting in a initial building

design along with ranges for parameters such as the glazing ratio and envelope properties,

the system automatically generates the design space and corresponding metamodel. Once

this phase is completed, results are displayed in the form of graphs showing the impact of the

different parameters on the outputs.

The approach we propose embraces the same vision of a semi-automated and interactive

process for populating a solution space of design alternatives, supporting a visual comparison

of their performance.

5.1.2 Implementation process and structure of workflow

The workflow is composed of the performance assessment engine, consisting of the passive

solar and daylight metamodels and the active solar algorithm developed in chapter 4, com-

plemented by additional elements as illustrated in the flowchart of Fig. 5.1. These elements,

further detailed in the following sections, concern the acquisition of inputs from the user,

the automatic generation of design alternatives (or variants), and the outputs visualization.

It is important to note that we here use the term inputs to refer to both the data entered by

users and the data passed to the performance assessment engine, i.e. the predictors x in the

functions f (x) as described in chapter 4. In the same way, the term outputs represents the

performance values as well as the different formats in which these are presented to the user.

The exact meaning of the words should be clear from the context.

3http://www.grasshopper3d.com/ (last accessed on March 20, 2016)
4https://www.rhino3d.com/ (last accessed on March 20, 2016)
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The structure of the workflow was conceived based on the outcome of our review presented in

chapter 2, including the identified requirements that helped us configure the interface, the

interaction with the user, and the multi-design-variants approach. This latter aspect was also

inspired by the parametric modeling procedure developed for gathering data in section 4.2.

Factors of technical nature linked to the implementation, which was done in collaboration

with a student assistant5 who provided coding support, also played a major role in shaping

the workflow.

To transform this workflow into a CA(A)D-integrated digital prototype easily understood

and directly usable by the concerned decision-makers (i.e. architects, urban designers), the

implementation relied on the 3D modeler Rhino. Other existing tools, referred to in Fig.

5.1, were exploited and linked as illustrated in Fig. 5.2. Grasshopper became the central

background program in which all elements of the workflow are linked. However, since this

program quickly leads to complex graphical scripts (see Fig. 3.7) and is limited in terms of GUI,

it was decided to transform parts of the workflow into a ‘hidden’ code and generate a custom

interface to facilitate communication with the user. As such, the core of the prototype was

coded in C# [Microsoft, 2013] and packaged as a Grasshopper plug-in for Rhino. This plug-in

consists of three custom Grasshopper components illustrated in Fig. 5.3. The custom interface

conceived for gathering user-inputs, shown in Fig. 5.4, is opened by double-clicking on the

Parameters’ component. The performance assessment engine is coded into the Evaluation

component. Additional Grasshopper plug-ins are also used in the implementation: DIVA-

for-Grasshopper [Jakubiec and Reinhart, 2011] for running the irradiation simulation and

LunchBox6 for exporting design variants as Rhino .3dm models and the performance data as

an Excel file. The diagram in Fig. B.1 of appendix B.1 illustrates the internal functioning of the

prototype and links between its constituents.

The DDS prototype thus produced was named Urban SOLar Visual Explorer (UrbanSOLve).

The prototype is installed like any other Grasshopper plug-in, i.e. by placing it (a .gha file) in

Grasshopper’s Components folder. In its current status, the prototype requires some manual

settings (e.g. components linking) in Grasshopper before it can be used. This is further

explained in section 5.2.3. For now, we will assume these settings have been done to pursue

below with detailing the workflow of Fig. 5.1. A screenshot-based demonstration of the

workflow can also be found in appendix B.2.

It is to note that the text contained in most images referred to in this section - placed either

herein or in the appendix - is in French, since the prototype was developed in view of the

workshops presented in section 5.2 and in which local architects and urban designers (all

French-speaking) participated. An effort is made in the description of the images and workflow

to clarify/translate the important terms.

5The contribution of Mélanie Huck, architect and computer scientist, has been crucial in transforming the
workflow into a usable prototype.

6https://provingground.io/tools/lunchbox/ (last accessed on April 22, 2016)
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Figure 5.1 – Implementation flowchart. The developed performance assessment engine (dashed boxes),
detailed in chapter 4, is integrated with additional components to complete the workflow. Tools used,
indicated by their logo, are presented in Fig. 5.2.
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Figure 5.2 – Tools used in the development of the prototype to produce the workflow of Fig. 5.1.
UrbanSOLve consists in a Grasshopper plug-in (.gha file) that holds three components presented in Fig.
5.3.
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Figure 5.3 – Three custom Grasshopper components of the prototype (coded in C# by Mélanie Huck).
These can be found in Grasshopper’s Component Tab ‘Extra’. Once selected, they must be placed in the
current Grasshopper document and linked to/complemented by additional elements as explained in
section 5.2.3 and Fig. 5.12.
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Figure 5.4 – Custom interface of the prototype (coded by Mélanie Huck), opened by double-clicking on
the Parameters’ component (see Fig. 5.3). Boxes that are grayed-out correspond to variables that are
currently fixed.
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User-inputs

The acquisition of user-inputs is made both through the custom interface developed (Fig.

5.4) and the Rhino window. First, users must draw the parcel of land on which they want to

design, and on a distinct Rhino layer, the existing context i.e. surrounding buildings as simple

volumes (optional). The name of each layer must be entered in the corresponding boxes in

the UrbanSOLve interface (Calques).

The next step consists in defining an abstracted neighborhood base design by positioning

building-specific reference points on the empty parcel. To do so, users must, for each building:

(i) select the desired typology among the three options given in the UrbanSOLve interface:

simple volume, courtyard or L-shaped7, and (ii) position a reference point (either corner or

center)8 on the empty parcel.

Once all points have been positioned, users must adjust the remaining parameters in the

UrbanSOLve interface, which define the acceptable range (min/max) of values for each vari-

able and constraint. Variables consist in the dimension X, Y and Z (in number of stories) of

the buildings, as well as the depth (D) in the case of the courtyard and L-shaped typologies.

These apply to all buildings as opposed to each individual one, in order to simplify the sub-

sequent process detailed in the next section. Constraints to respect are linked to the density,

expressed through the plot ratio (IUS: indice d’utilisation du sol) and site coverage (TOS: taux

d’occupation du sol), and the minimum distance between buildings. Other items appearing

in the UrbanSOLve window, currently grayed-out and fixed to a certain value, could become

additional variables or constraints (e.g. glazing ratio and story height). These currently corre-

spond to the assumptions made in chapter 4, when modeling and simulating our dataset from

which the metamodels were derived.

The user-inputs phase is illustrated in Fig. 5.5: each numbered item is a schematic version

of the selected typology and positioned building. To produce this visualization of the base

design, fixed dimensions (independent from the data entered) are assigned to each item. In

this example, items 0 to 3 have been positioned using the corner alignment as the reference

point, while the center alignment was used for item 4. This distinction influences the way

variants are generated in the subsequent phase of the workflow, i.e. how buildings ‘grow’

within the variables ranges. This is further explained in the following sections.

7This typological constraint comes from both the metamodeling approach, where we also limited ourselves to
similar simple building shapes, and technical implementation limitations. However, users can mix these typologies,
something which is not found in the reference dataset. This topic is further addressed in the next chapter.

8Additional settings can be chosen when positioning a point: the orientation (in the case of L-shaped buildings),
and the alignment and rotation. The effect of these settings is illustrated in Fig. B.2 in appendix B.1.
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Figure 5.5 – User-inputs are acquired through the custom interface (left) and the Rhino window (right,
example user-defined configuration).

Generation and evaluation of design variants

Once all input-parameters have been provided and adjusted, users are ready to launch the

simulation (Lancer la simulation), effectively the solution space population process. During

this phase, which is hidden from the user, the prototype iteratively generates a design vari-

ant (or alternative) by randomly selecting a value for each variable and building from the

user-defined ranges. It then verifies if the variant produced respects the density constraints.

Additional checks are made to avoid any non-realistic situations such as buildings overlapping

or extending beyond the defined parcel. This search process continues until 20 valid solutions

have been found, populating to some extent the hypothetical design solution space defined

by the user. Currently, this number of 20 design variants to be ‘found’, grayed-out in the

UrbanSOLve window, is fixed due to technical implementation aspects linked to the use of

DIVA. As one DIVA irradiation simulation component is required per design variant - leading

to a repeated Grasshopper script illustrated in Fig. B.3 of appendix B.1 - it was necessary to

freeze the number of variants. A value of 20 was arbitrarily defined, by considering also the

simulation execution time. If users were given the option of changing the number of variants,

a more direct communication pathway with the irradiation simulation would be necessary,

to bypass the need for using DIVA. During the implementation, one solution considered was

to directly use Radiance, an option that was then discarded due to time limitations in the

development process and complications linked to creating the grid of nodes (a DIVA feature).
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For each variant, the geometry- and irradiation-based parameters required as inputs to the

metamodels (chapter 4) are computed, the latter following the irradiation simulation. These

inputs (x) are passed to the performance assessment engine that computes an estimate,

through our predictive mathematical functions, of the energy need for heating and cooling

(indicator of the passive solar potential) and sDA (indicator of the daylight potential). The

third criterion (active solar potential) is computed using our irradiation-based algorithm also

previously described.

This generation and evaluation phase occurs over a minimum time of about two minutes,

conditioned by the irradiation simulations9. It can extend over slightly longer periods (> 5

minutes) when the user-inputs reflect strict boundaries within which it is harder to find valid

designs (e.g. narrow density range).

Outputs and visualization

Results from the generation and assessment of the design variants are shown in various

formats that are produced in part by the UrbanSOLVe plug-in (in particular the Solutions

component) and through some Grasshopper script. A .3dm Rhino model of each design is

automatically created and saved in a folder. An Excel file containing the performance outputs

of all variants is also exported to the same folder. In the Rhino window, the initial schematic

model (Fig. 5.5) is overlapped with the irradiation map of the design variant selected by the

user via a slider, as illustrated in Fig. 5.6. The slider, located at the top in the Grasshopper

Remote Control Panel (green window), allows browsing through the 20 variants, which are

numbered from 0 to 19. The information associated to the selected variant is displayed below

the slider and includes parameters such as the plot (or floor area) ratio and total floor area, as

well as the performance outputs and each building’s dimensions.

Taking advantage of the multiple viewports in Rhino, a 3D graph, having one axis per perfor-

mance criterion, can be visualized in 2D to compare the performance of the variants among

each other and with respect to two criteria, as illustrated in Fig. 5.7. The three possible criteria

combinations are displayed. The design showing the best performance in terms of active solar,

passive solar and daylight potential is respectively colored in orange, green and purple.

By combining the different outputs, users can link a 3D model to its multi-criteria performance,

while also comparing the performance of design alternatives whose morphologies are more or

less distinct according to the user-inputs. An eventual weighting of the performance aspects is

left to the user. The added-value and limitations associated to the prototype’s functioning and

GUI are further discussed in chapter 7.

9Time estimates obtained on an Intel i7-4820K (4 cores) 3.70GHz computer with 16 GB of RAM.
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Figure 5.6 – Irradiation map (left) and solution’s information (right) for two example design variants
generated and evaluated by the prototype.
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Figure 5.7 – 3D performance graph seen in 2D via three Rhino viewports. x-axis: active solar potential;
y-axis: passive solar potential; z-axis: daylight potential. The 20 generated solutions are represented by
numbered points (0-19).
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Figure 5.8 – Results from the two example runs of the prototype with a different starting base case (see
Table 5.1). Top: performance of each variant generated in the first (left) and second (right) run. Bottom:
irradiation map of example variants generated in each run, with distinct performance outputs.
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5.1.3 Example application

While a step-by-step demonstration of the prototype can be found in appendix B.2, we here

present an application example for two base case designs (i.e. two runs of the prototype)

comprising three simple volumes each, with the user-inputs given in Table 5.1.

The performance outputs are plotted in Fig. 5.8 (top) for each variant generated in run 1 and 2.

The example variants shown at the bottom of the figure (irradiation maps) present differences

in their performance, despite similar geometry and total floor area.

This example could represent an investigation of the relative performance between design

alternatives achieving a certain density level defined through a narrow plot (or floor area) ratio

interval. Comparing results within each run as well as between the two allows exploring the

effect of a larger dimension in Y versus X, which is equivalent to an orientation shift of 90◦.

We observe that the range spanned by the daylight and passive solar potential is similar

between the two runs, while the active solar potential shows more variation. Between variants,

performance differences reach up to 5 kWh/m2
FA, a number that can translate into a larger gap

in terms of absolute values for the total floor area. The analysis of the results serve to get some

insight on both the performance variations and similarities in relation to (sometimes small)

changes in the geometry.

Table 5.1 – User-inputs for the first and second example runs.

Run 1 Run 2
Variables (min : max)
X [m] 20 : 46 10 : 16
Y [m] 10 : 16 20 : 46
Z [stories] 2 : 5 2 : 5
Constraints (min : max)
Floor area ratio [-] 0.6 : 0.8 0.6 : 0.8
Site coverage [-] 0 : 1 0 : 1
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5.2 Preparation of workshops with practitioners

To assess our proposed design decision-support workflow, we organized sessions where

professionals were invited to test the implemented prototype. The structure of the workshops

is detailed in this section, while their outcome is presented in chapter 6.

5.2.1 Objectives and phases

Three workshop sessions were organized in October 2015, each lasting one afternoon. A first

test-run was conducted with four colleagues with professional experience as architects. The

outcome from this session, not reported in this thesis, served to identify bugs and refine the

workshop schedule and tasks. The following two more official sessions held four professionals

each and included architects, urban designers and one engineer. Recruitment was done by

contacting professionals working in the Lausanne area, whose email was obtained through

immediate colleagues at the EPFL. Registration was made on a voluntary basis by filling in an

online Doodle form.

The main objectives of the workshops were to:

1. assess the potential of the proposed workflow as a solar/energy performance-based

design decision-support method for the early-design phase of neighborhood projects;

2. verify if the workflow could bring new knowledge and help improve the performance of

a design;

3. identify bugs and improvements in the interface and workflow;

4. assess the predictive accuracy of the underlying mathematical functions.

To fulfill these goals, we devised the workshop schedule as shown in Fig. 5.9, which is briefly

introduced here and further detailed in the next section. Prior to the event, participants were

asked to fill a questionnaire that included questions on their level of experience with tools and

performance assessment methods. The workshop itself began with a brief introduction to the

tasks and performance criteria addressed by the proposed prototype (daylight and passive

and active solar potential). A design task was introduced, adapted from a real master plan, as

illustrated in Fig. 5.10. Participants were first asked to come up with their own design - Variant

A (VA) - for the identified plot, using their usual approach, methods and tools, and keeping

in mind the three performance criteria introduced without trying to optimize for them. This

design phase was followed by two ranking phases, devised to test the capacity of participants

to estimate the relative performance of a set of designs based on their intuition and experience

(‘Initial rank’), and by seeing given examples (‘Intermediate rank’).

Participants were then shown a demo of the prototype before proceeding with the test. They

were asked to re-create something similar to their VA and explore the variants generated by

the tool to see if they could improve their design. Finally, they were asked to submit a (possibly

improved) Variant B (VB), before proceeding with a last ranking phase (‘Final rank’). The

160



5.2. Preparation of workshops with practitioners

workshop concluded with a questionnaire to collect the impression and suggestions from

participants. This second questionnaire can also be found in appendix C.1 (in French only).

To ensure traceability of the material collected from participants while maintaining their

anonymity, they were asked to note down the date and the number posted on their assigned

work station (computer) on everything they submitted, and retroactively add this information

on the initial questionnaire which was anonymously answered before the event.

The core part of the workshop, falling under the Design task section in Fig. 5.9, is further

detailed in section 5.2.3. Throughout the session, slides were displayed as supporting material

to explain each phase. The full presentation can be found in the Appendix in section C.2 (in

French only).

Initial questionnaire to collect experience level (prior to workshop)

Introduction to design problem and performance criteria

Design task

Phase A – Design and ranking in ‘intuitive’ way

Design with usual methods and tools

Rank variants V1-V3 & VA  

Re-rank VA with respect to known V1-V3 

* Testing of the prototype *

Phase B – Design and ranking following the test

Redesign following the prototype test

Re-rank VA and rank VB with respect to V1-V3

Final questionnaire and discussion to collect comments

Variant A

Variant B

Final rank

Initial rank

Intermediate rank

Figure 5.9 – Workshop phases and tasks.

Figure 5.10 – Images of the design task: the ‘empty’ plot, selected from the hypothetical plan for an
area of Vernand part of the Lausanne-Vernand - Romanel-sur-Lausanne PDLi (Plan Directeur Localisé
intercommunal) [Urbaplan, 2015], and its modified context.
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Chapter 5. Application to the design process

5.2.2 Questionnaires

Both the initial and final questionnaires were formatted using Google Forms10, producing a

private online document that was shared to the participants. Responses were stored automati-

cally by Google in an Excel spreadsheet.

The full questionnaires can be found in appendix C.1 (in French only). Two main sources of

reference were used when defining the question content and format as well as the choices of

answers when present: similar workshop-based studies conducted by Attia et al. [2013a] and

Gagne [2011], both in the same context of a doctoral thesis in which a decision-support tool

was proposed and tested. These references also served as inspiration when defining the main

phases of the workshop.

In the initial questionnaire, participants were first asked to provide information on their

profession, years of experience and type of participation in neighborhood-scale projects

through questions 1 to 4. They were then asked to specify if they used specific modeling

and simulation tools, e.g. SketchUp, Rhino, Lesosai, and were given the option to specify

any missing tool from the listed options (questions 5 to 10). Through questions 11 to 19,

participants had to select out of the listed options or add by which means they typically assess

the performance associated to: passive solar potential (for passive heating), thermal comfort

(e.g. overheating in summer), active solar potential through PV and ST, and daylight potential.

Options were: rules-of-thumb/heuristics, visualization (e.g. sun-path diagram), simulations,

external consultant.

To get more precision on when the tools are typically used and the performance assessed,

participant had to answer to all of the above questions by selecting one of the four possible

answers: no, early phase, detailed phase, early and detailed phase. The questions were

elaborated in order to get some insight, before the workshop, into the familiarity of participants

with specific tools, including the ones part of the prototype (e.g. Rhino), as well as the

performance criteria relevant to our proposed approach.

A second questionnaire, administered at the end of the workshop session, was developed

to gather participants’ feedback on their experience with the prototype. Questions 1 to 3

were posed as a list of statements to which participants had to answer in terms of level of

agreement, based on the commonly used 5-point psychometric Likert scale [Likert, 1932;

Nemoto and Beglar, 2014]. The questionnaire concluded with three open-ended questions (4-

6) to gather any additional comments and suggestions. The exact content of this questionnaire

is presented in the next chapter when revealing the results, in section 6.1 and appendix C.4.

10https://www.google.com/forms/about/ (last accessed on March 28, 2016)
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5.2. Preparation of workshops with practitioners

5.2.3 Design task

Phase A

In this first design phase, participants were asked to work as ‘normally’ as possible given the

different environment to come up with their Variant A. Working at individual work stations

with one computer each as illustrated in Fig. 5.11, they were given access to typical tools:

tracing paper and drawing/sketching sheets (including the base in Fig. C.1 of appendix C.3),

material to build a scale model, and modeling software (SketchUp, Rhino and AutoCAD). A

scale model of the context, seen in Fig. 5.11, was prepared prior to the event as supporting

material for visualizing both the surroundings and variants that were built.

Participants had approximately one hour to complete this task. Designs were collected in

various formats (e.g. 3D model, sketch), always including all the dimensional information that

would later be necessary to complete a virtual 3D model for further analysis (e.g. simulation).

In addition to the fixed context and dimension of the empty parcel (9 744 m2) as illustrated in

Fig. 5.10, they were asked to design buildings respecting a north-south-east-west alignment of

their facades, with a plot ratio (total floor area / plot area) falling between 1.3 and 2, equivalent

to having a total floor area of ∼12 600 - 19 500 m2. This range was defined to fall within the

major region found in the reference dataset (see Fig. 4.11 and 4.12) while also comprising the

target of 1.75 found in the master plan document [Urbaplan, 2015].

Scale model 
of context

Foam cutting 
machines

Foam to build
scale model

Work stations (4) with 
installed tools 
(including tested prototype)

Figure 5.11 – Workshop physical set-up: four work stations (computers) with installed software, scale
model of the context (prepared prior to event) and material for making a scale model of the design.
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Chapter 5. Application to the design process

They were then asked to fill in the initial ranking sheet shown in Fig. 5.13, containing the

3D model of three example variants (V1-V3) to be ranked along with their VA in terms of the

relative performance for each criterion. More specifically, they had to order the four variants

from best to worst by writing the name (V1, V2, V3, VA) in the boxes from top to bottom for

each of the three performance criteria. In addition, they were asked to provide an explanation

for their ranking (to be written in the wider, rectangular boxes).

After completing this task in approximately 15 minutes, the second sheet shown in Fig. 5.14

was distributed, displaying the actual performance of the three example variants through

images and bar graphs. Accounting for this new knowledge, participants were given the task

to re-rank their VA, now in a more precise way by filling in the empty bars.

As will be seen in chapter 6, all Variants A were simulated after the workshops to assess the

correctness of the rankings. While the initial phase probes the intuition of participants, the

second ranking incorporates the added effect of learning from example cases which may or

may not resemble each participant’s VA.

Testing of the prototype

In preparation for the workshops, the adapted master plan (Fig. 5.10) was modeled in Rhino,

leading to a 3D model of the parcel (or plot) and context, illustrated in Fig. C.2 of appendix C.3.

As mentioned in section 5.1, the prototype currently requires some setting-up in Grasshopper,

as the custom plug-in in itself does not include all the workflow elements such as the outputs

visualization. A Grasshopper script was thus specifically developed to avoid the need for user-

intervention in setting-up the workflow. The script, illustrated in Fig. 5.12, includes the linked

UrbanSOLve components and the algorithm for visualizing the results in the Rhino viewports.

Users did not see or intervene with any part of this script except the circled component below

‘Double-click to open interface’, which allowed them to open the UrbanSOLve interface (Fig.

5.4).

After a short demo of the prototype, participants were given instruction sheets that can be

found in appendix C.3 (in French only). They were asked to begin by trying to reproduce their

Variant A through the tool’s user-inputs - not by importing or drawing the exact 3D model

as this option is not currently allowed by the prototype. Instead, the goal was to specify the

relevant building typology, location, variable ranges and constraints (see Fig. 5.5), defining a

solution space in which their VA could be found.

After launching the simulation process where 20 variants are generated and evaluated by the

tool, participants could explore the results, extract interesting information and start over with

adjusted input parameters. This testing phase lasted approximately 1.5 hour and was recorded

using Rylstim Screen Recorder11, producing one .avi video file per participant.

11http://www.sketchman-studio.com/rylstim-screen-recorder/ (last accessed on March 16, 2016)
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5.2. Preparation of workshops with practitioners

A screenshot-based demonstration of the workflow, representative of the participants’ experi-

ence with using the prototype, can be found in appendix B.2.

Phase B

Following or during the use of the prototype, participants were asked to design a second

variant (VB), derived from VA, incorporating in their process whatever information they would

have extracted from the trial phase. As such, there was freedom in how participants interpreted

and made use of the results. We will come back to this topic in the next chapter when analyzing

the workshop outcomes. As for VA, all VB variants were collected either in sketch or 3D format.

Participants were then asked to rank this second design using the provided sheet illustrated in

Fig. 5.15. An empty bar was also included for an optional revision of the ranking of VA, given

the insight possibly gained by using the tool. This final ranking task thus represented a means

for investigating the impact of using the tool on participants’ capacity to relatively evaluate a

design’s performance for each aspect considered.

Figure 5.12 – Grasshopper script prepared for the workshops. The interface for gathering the user-
inputs (see Fig. 5.4) is opened by double-clicking the circled (Parameters) component. The rest of the
script is automated and does not require user intervention.
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6 Appraisal of developed prototype

“Usability, fundamentally, is a matter of bringing a bit of human rights into the world of

computer-human interaction.”

Joel Spolsky

(Software developer)

In this chapter, we analyze the outcomes from the workshops first, in section 6.1, to assess

the general potential, usability and current limitations of the prototype as a design decision-

support tool, and in section 6.2, to test the predictive power of its core performance assessment

engine. Each section concludes with a summary of the main outcomes and lessons learned,

including a discussion on the level of achievement respectively of first three objectives and

the fourth one introduced in section 5.2.

6.1 Workshop outcome

The first workshop session, conducted with colleagues, was considered a test-run. It led to

adjustments in the workshop schedule as well as changes to the prototype. As such, results

from this preliminary session are not presented. For the subsequent two workshops, each

conducted with four professionals, results are presented for all participants taken together.

We also highlight some observations based on the analysis of each participant’s experience

which can be found in appendix C.4. The main results of this section have been presented in

Nault et al. [2016b].

6.1.1 Initial questionnaire

Answers to the initial questionnaire, which can be found in appendix C.1, give us information

on the level of experience of the participants, both with software and approaches for assessing

different performance aspects. Within the group of eight participants, there were three archi-

tects, one engineer and four who declared themselves as both architects and urban designers,
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Chapter 6. Appraisal of developed prototype

with years of professional experience ranging from 2 to 15. All participants have some type of

experience in neighborhood-scale projects, either through participating in competitions or in

the elaboration of master or district plans, as shown in Fig. 6.1.

3

7

7

PDL

PQ

Competition

Figure 6.1 – Participation in
neighborhood-scale projects. PDL:
(localized) master plan (Plan Directeur
Localisé), PQ: district plan (Plan de
quartier).

Answers regarding the use of various tools are

shown in Fig. 6.2. Participants have more expe-

rience with drawing/modeling tools, in particu-

lar SketchUp and AutoCAD which are used both

at the early and detailed design phase. The only

simulation software used are Lesosai (four partic-

ipants), a Swiss product, and the now obsolete

Ecotect (one participant only).

Regarding the specific ways of approaching differ-

ent performance aspects, results are summarized

in Fig. 6.3. In cases where an assessment is done,

it generally occurs at the early phase through the application of simple methods such as rules

of thumb and visualization (e.g. sun path diagram). External consultants are solicited to some

extent both at the early and detailed phases across all performance criteria, while simulation

is conducted, here by a small portion of participants, mostly for daylight and active solar

potential assessment.

6.1.2 Performance of variants

Variants A and B submitted by the participants were collected in order to be modeled and

evaluated through full simulations using the same tools and settings as in chapter 4. Since

the metamodels are built from a dataset with underlying assumptions, these same settings

must be applied to any new case for which we wish to compare the simulation results to the

predictions from the metamodels.

While the design of all variants can be visualized in appendix C.4 for each participant, Fig. 6.4

and 6.5 illustrate examples in the form of sketches and 3D scale models.

It is to note that some participants experienced difficulties in reproducing variants similar

to their VA in the prototype, due to limitations which are further discussed in section 6.1.5.

Because of this situation, three participants did not submit a VB and final ranking.

Results from both the simulation and metamodels are presented in Fig. 6.6, where the y-axis

of the energy need graph is inverted, so that higher bars across all graphs, i.e. all performance

criteria, represent a better performance. The comparison between simulated and predicted

values for investigating the metamodels’ accuracy is conducted later in section 6.2. Unless

stated otherwise, all results presented in this section are based on the simulated values. For

the active solar criterion, there is no distinction between predicted and simulated values; this

metric is evaluated through the algorithm described in section 4.6.
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Figure 6.2 – Participants’ experience with tools.
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Passive solar potential
(passive heating)

Thermal comfort
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Figure 6.3 – Participants’ experience with assessing different performance aspects.
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(a) Variant A (b) Variant B

Figure 6.4 – Drawings and calculations from one participant, from (a) Variant A to (b) Variant B.

Figure 6.5 – 3D models of some of the participants’ variant.
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Figure 6.6 – Performance of each participant’s VA and VB with respect to each criteria, evaluated
through simulation (left) and the predictive functions implemented in the prototype (right).
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Figure 6.7 – Simulated values for the sDA versus energy need with the energy production coded in
shades of gray, for all variants A and B created by the participants.

173



Chapter 6. Appraisal of developed prototype

The difference between the highest and lowest performance is of 13 kWh/m2
FA, 28.2 %FA and

29.2 kWh/m2
FA for the energy need, sDA and energy production respectively. These differences

are considerable, especially when applied to the whole set of buildings. For example, the

design corresponding to the highest energy need value (51.9 kWh/m2
FA) has a total floor area

of 18 112 m2, leading to a total annual energy need of 940 000 kWh. In comparison, the case

having the lowest energy need (38.9 kWh/m2
FA) achieves 577 665 kWh in total considering its

slightly smaller total floor area of 14 850 m2. This means that the difference of 13 kWh/m2
FA

stated above translates to a 362 335 kWh gap in the annual energy need between the current

‘best’ and ‘worst’ design variant. Despite their difference in density - 1.85 versus 1.52 - these

two designs could feasibly represent alternatives considered in a real project (e.g. urban design

competition). Their distinct energy performance emphasizes the relevance and importance of

incorporating energy-related criteria early-on in the decision-making process.

When comparing between VA and VB for participants that submitted both, we observe that

the performance decreases from VA to VB in three out of five cases for the energy need and

production, and in two out of five cases for the sDA. As previously mentioned, instructions

given to the participants when designing VB were explicitly vague. No emphasis was put on

any single performance aspect and participants were simply asked to create VB as a revised

(or identical to) VA, based on their experience when exploring the solution space using the

prototype. It is thus not possible to know the intention of each participant or if an effort was

made to improve one or more performance criteria when designing VB.

Moreover, an error was detected in the energy production algorithm after the workshops,

causing participants to see erroneous values for the active solar potential. This situation may

well have induced them in error if they particularly focused on this criterion.

In any case, improving all aspects would have proven to be challenging, due to their conflicting

nature as highlighted in chapter 3, section 3.2.4. This situation is observed for the participants’

variants in Fig. 6.7, where for instance the design with the highest sDA (note the reversed

y-axis) shows a relatively high energy production, but the worst passive solar potential (highest

energy need). This sort of trade-off also appears in the output performance graph produced

by the prototype (see Fig. 5.7). In its current format, the prototype does not provide any

means for weighting the different performance aspects. However, it would be of interest to

compute an aggregated performance metric that would allow comparing the variants using

a comprehensive yet unique value. This shift would require translating the spatial daylight

autonomy metric into the amount of artificial lighting needed to compensate the lack of

daylight. A conversion into primary energy would offer a more accurate representation of the

share for heating, cooling, and lighting. A balance between energy demand and production

through PV and ST systems could also be added to the performance assessment. This topic is

further discussed in chapter 7.
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6.1.3 Ranking success rate

Computing the performance of variants A and B allows us to verify if the rankings done by the

participants were correct. Despite the low number of participants, the overall results from

each ranking task are analyzed using a statistical method, namely the Kendall rank correlation

coefficient. This value, also termed Kendall’s τ, quantifies the degree of similarity between two

sets of ranked data [Abdi, 2007]. The value computed using the Matlab function corr with the

type parameter set to Kendall corresponds to the version known as τ-b, which accounts for

possible ties in the rankings. It ranges between -1 and +1, dictated by the number of inversions

between the two sets. It is computed as follows:

τ= K(√
N (N−1)

2 −Tx

)(√
N (N−1)

2 −Ty

) (6.1)

with

K =
N−1∑
i=1

N∑
j=i+1

sgn
(
x(i )−x( j )

) · sgn
(
y(i )− y( j )

)
(6.2)

where N is the number of ranked objects, Tx and Ty the number of ties in rankings x and y ,

and sgn a function that performs the transformation illustrated in Fig. 6.8. Let us consider an

example to clarify these equations, were we have N = 4 design variants (V1, V2, V3, VA), which

we represent by the vector [1, 2, 3, 4]. If we have two different rankings y = [1, 2, 3, 4] (same as

original order) and y = [3, 2, 4, 1], both Tx and Ty are null, since there are no ties (i.e. equal

values) within the ranks. Computing K , we have:

i = 1 sgn(x(1)−x(2 : 4)) · sgn(y(1)− y(2 : 4))

= sgn([1]− [2,3,4]) · sgn([3]− [2,4,1])

= sgn([−1,−2,−3]) · sgn([1,−1,2])

= [−1,−1,−1] · [1,−1,1] =−1+1−1 = -1

i = 2 sgn(x(2)−x(3 : 4)) · sgn(y(2)− y(3 : 4))

= sgn([2]− [3,4]) · sgn([2]− [4,1])

= sgn([−1,−2]) · sgn([−2,1])

= [−1,−1] · [−1,1] = 1−1 = 0

i = 3 sgn(x(3)−x(4)) · sgn(y(3)− y(4))

= sgn([3]− [4]) · sgn([4]− [1])

= sgn([−1]) · sgn([3])

= [−1] · [1] =−1 = -1

Which gives: τ = −1+0−1(�
6
)(�

6
) =−0.33

Our compared sets of ranks correspond to the performance of the variants, for each criterion,

ordered according to (i) the simulation values and (ii) each participant’s ranking in the three

phases (initial, intermediate, final). This provides a Kendall coefficient for each participant,
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Figure 6.8 – Sign function where positive,
null and negative values (x-axis) are re-
spectively transformed to +1, 0 and -1 (y-
axis).

performance criterion and ranking phase, which are presented in the next section. To obtain a

coefficient over all participants P , assuming no ties, we compute:

τ= 1

P

∑P
j=1 K j

N (N −1)/2
(6.3)

As seen in section 5.2.3, each ranking phase was slightly different both in the format of the sheet

to fill in and the degrees of freedom in positioning the variants. These differences are however

not explicitly taken into account in the above formulas. This means that between the initial

and intermediate phases for instance, where N =4 (V1-V2-V3-VA), the denominator in equation

6.1 is the same, although V1, V2 and V3 cannot possibly be inverted in the intermediate phase

since their performance values are given. For the same reason, the numerator is likely to be

higher, since less freedom exists in rankings x and y . Indeed, the probability of them being

closer is higher, which translates to more occurrences of multiplications of identical numbers

(e.g. [-1, 1] · [-1, 1]) in turn leading to higher K values. As such, Kendall rank coefficients will

by default be higher for the intermediate phase than for the initial one. This limitation, further

discussed in section 6.1.5, is intrinsic to how the ranking exercises were formulated. The value

of N does however change between the initial/intermediate and the final phase, going from

four to five to account for VB. P , the number of participants, also varies, decreasing from eight

to five since three participants did not provide a VB and final ranking.

In light of the above considerations, the ranking success rate was evaluated through a second

method, based on the ‘distance’ between the participants’ ranking and the real one (i.e. based

on simulated values). We have termed it the level of closeness to the real rank, l . It is computed

over all participants through the following equation:

l = 1−
∑P

j=1

∣∣∑N
i=1(x j − y j )

∣∣
Dmax ×P

(6.4)

where P is the number of participants, N the number of ranked objects, (x j -y j ) the element-

wise subtraction between the participant’s and the reference ranking (based on simulated

values), and Dmax the maximum theoretical distance between the two rankings, that is, the

largest possible argument of the absolute value found in the equation. This value is proper to

each phase considering the variation in the level of freedom. In the initial phase, the maximum

error is of eight, while in the intermediate phase, it is reduced to six due to V1-V2-V3 being
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given. In the final ranking phase, it is of 10 considering the addition of VB. For example, the

calculation of l for one participant (without the summation over P ) for the initial phase would

be:

V1 V2 V3 VA

Participant’s ranking (x1) 4 1 2 3

Ranking based on simulated values (y1) 4 3 1 2

Difference (x1 − y1) 0 -2 1 1

Sum absolute difference, normalize by Dmax and subtract from 1 l = 1-4/8 = 0.5

A perfect ranking would thus result in l = 1−0 = 1, while a complete opposite ranking would

have a value of 0.

Results obtained by applying the Kendall and distance methods over all participants are shown

in Fig. 6.9, where the y-axis goes from -1 to 1 for the Kendall coefficient τ in Fig. 6.9a and from

0 to 1 in Fig. 6.9b to illustrate the level of closeness to a perfect rank. For both graphs, taller

bars indicate higher success rate.

The overall trends are similar; there is an increase from the initial to the intermediate ranking

phases across the three performance criteria, followed by a slight drop in the final phase. It is

likely that the gap between the first and second phases are the effect of the visualization, by

the participants, of the performance of the three example variants in the intermediate phase.

Although there is a drop between the intermediate and final rankings, the latter still remains

better than the initial ranking for the passive solar and daylight criteria.

Despite being shown in the graphs, the final ranking related to the active solar potential cannot

be truthfully analyzed and interpreted, as erroneous values were shown to the participants due

to the bug in the algorithm mentioned earlier. We can speculate that this may explain to some

extent the drop in the final ranking’s success rate compared to the initial and intermediate

phases. Another potential factor blurring the results is linked to chance; luck in successfully

ranking variants is something we cannot capture.

Figure 6.10 illustrates the same τ and l values computed for each participant1. The ranking

success rate improves from dark blue to yellow squares, with white spaces reflecting the

absence of data corresponding to the three participants who did not submit a second variant

and complete the final ranking sheet, as mentioned earlier. The overall trend is similar

between the two methods. Considering the issues discussed earlier related to the structure of

the ranking tasks, the methods used to compute the success rate, as well as the small number

of participants (further reduced when we exclude the ones who did not complete all tasks),

the conclusions that can be drawn from these quantitative results about the influence of using

the prototype on the ability to rank are limited.

It is thus of interest to complement this quantitative analysis by looking at the qualitative

data obtained in the initial phase, where participants were asked to justify their ranking using

1A detailed view of the participant-specific results can be found in appendix C.4.
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the dedicated space (see Fig. 5.13). Table 6.1 lists the words and concepts written by the

participants with respect to each performance criterion according the terminology used in

the sheet (translated from French). Despite the divided level of experience depicted by the

questionnaire’s answers (see Fig. 6.3), the terms brought up by participants illustrate a certain

level of understanding and knowledge regarding the performance aspects. Indeed, these

capture many of the parameters considered in this thesis, e.g. the input parameters to the

metamodels. Yet, initial ranking results had the lowest success rate, supporting the need for

adequate performance-based design guidance, one of the motivating arguments behind this

thesis. We speculate that having to judge neighborhood designs, a scale intrinsically more

complex than the building level due to interaction between buildings, has challenged partic-

ipants. They may also have been confounded by the need to grasp an overall performance,

where possible extreme values of individual buildings are averaged out. This latter aspect

represents a limitation of our approach in its current status, further addressed in section 6.1.5.

Table 6.1 – Terms that appeared in the justifications provided by participants when ranking the variants
in the initial phase.

Passive energy potential
(energy consumption)

Daylighting Active energy potential
(energy production)

compactness, orientation
and/or amount of exposed
facades, shading and dis-
tance between buildings,
spreading of facades, sun
exposure level, density

(diversity in) orientation(s)
and/or amount of exposed
facades, shading and distance
between buildings, solar ex-
posure, spreading of facades,
footprint, facing buildings

shading on roof, roof to
floor area ratio, density, ori-
entation, building height,
roof surface

6.1.4 Final questionnaire

Responses to the final questionnaire, which is shown in appendix C.1, are presented in Fig. 6.11

and Table 6.2 for the multiple choice and open-ended questions respectively. These answers

bring a qualitative input, complementary to the measurements linked to the performance and

ranking results.

Participants were generally in agreement with most statements listed in Fig. 6.11, with a few

exceptions where the ‘disagree’ option was selected. This occurred for the statement on (i) the

influence of using the prototype on the final concept (VB) and (ii) the satisfaction related to

the relevance of the approach. Plausible explanations for these disagreements were identified

when reviewing the participant-specific results (detailed in appendix C.4). The participant

who did not agree with item (i) experienced difficulties in obtaining design variants similar

to their Variant A. This same participant also disagreed with statement (ii). It was found that

the second person to disagree with that statement was particularly focusing on the active

solar potential when analyzing the performance graphs and working on their Variant B. The

erroneous results displayed for that criterion likely caused some confusion to the participant.
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Figure 6.9 – Ranking success rate computed through the (a) Kendall rank and (b) distance method, over
all participants for each criterion and phase.
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Figure 6.10 – Ranking success rate displayed as the color-coded (a) Kendall coefficient and (b) level of
closeness, computed for each participant, criterion and phase. White squares correspond to no data.

A stronger consensus is found for the following points: (using the prototype) ‘influenced your

approach to the problem’ and ‘allowed you to learn new elements useful in your approach to

the problem’, as well as for the satisfaction level regarding the relevance of the interface and

the information brought by the prototype. This qualitative insight demonstrates a perceived

knowledge-gain by the participants from the usage of the prototype.

Results collected through the open-ended questions (Table 6.2) also shed an optimistic light on

the overall outcome from the workshops. The main positive feedback gathered relates to the

interface and general approach of the prototype, with qualifiers such as ‘intuitive’, ‘interactive’

and ‘promising’. The predominant weaknesses are linked to the current limitations in the

number and types of user-inputs and the generation of variants. More flexibility or precision

is required in the inputs to enforce specific typologies and ensure credible designs. Multiple
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suggestions were also given to overcome the current limitations and to expand the usability

and relevance of the prototype, such as by adding specific parameters (e.g. maximum distance

between buildings) and providing an automatically generated summary report.

allowed you to learn new elements useful in your approach
to the problem

influenced your approach to the problem

influenced your final concept

made you more confident in your decision-making

Using the prototype...

the passive solar potential (heating/cooling)

the daylight potential

the active solar potential (energy production)

Using the prototype allowed you to learn about the performance criteria linked to...

0 1 2 3 4 5 6 7 8

the ease of use

the interface

the required time

the relevance of the approach

the relevance of the information brought

Number of participants

You are satisfied with... [when using the prototype]

Strongly agree Agree Neutral Disagree Strongly disagree

Figure 6.11 – Distribution of answers to the final questionnaire, in terms of agreement level on a 5-point
Likert scale with specific statements. A strong level of agreement is observed for most statements, while
the disagreement instances are likely mainly caused by technical limitations of the tested prototype.
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Table 6.2 – Summary of feedback gathered through the open-ended questions in the final questionnaire,
re-structured according to positive and negative aspects along with suggestions regarding different
features of the prototype.

Positive aspect Negative aspects Suggestions
Interface
and visual-
ization

Intuitive, interactive,
easy to understand,
directly usable

Difficult to visualize and
compare variants and to
read graphs, slow, points
position imprecise on
graphs

Visualize shadow on ground
and initial model as back-
ground image, add ’restart’
button to start from scratch,
add scale on graphs, com-
pare performance to abso-
lute value for reference

User-inputs
and au-
tomated
generation
of variants

Does not attempt to
impose an optimal so-
lution

Too restrictive, unreal-
istic variants generated,
hard to recreate some-
thing similar to Variant A

More precision and liberty
in inputs, ungroup typology
1 to have 5 typologies in to-
tal whose dimensional char-
acteristics can be controlled
individually, add parameter
for maximum distance be-
tween buildings, add ’en-
trance’ point option

Overall
approach

Interesting to help
architects choose
between 2-3 options,
complementary to ex-
isting tools, interesting
and useful for (ad-
dressing performance
criteria that are rarely
part of) early-design
phase, promising

Possibility to import/draw
3D model, integrate pro-
gram types, add possibil-
ity of changing building pa-
rameters after simulation,
provide automatically gen-
erated summary report
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6.1.5 Synthesis - Potential of the prototype as design decision-support

The outcomes of the workshops presented in this section allow us to go over the first three

main objectives that were introduced in section 5.2 (with the fourth one addressed in the next

section):

1. assess the potential of the proposed workflow as a solar/energy performance-based

design decision-support method for the early-design phase of neighborhood projects;

2. verify if the workflow could bring new knowledge and help improve the performance of

a design;

3. identify bugs and improvements in the interface and workflow.

Potential as a DDS tool

We observe that the objectives which we intended to fulfill in terms of prototype features,

namely: integration within the design process, relevance of approach, simplicity of user-

inputs, intuitiveness of workflow and interface, were asserted by a majority of participants

through their feedback collected in the final questionnaire. Despite a general low level of prior

experience with existing tools and in particular programs exploited by the prototype (Rhino,

Grasshopper, DIVA), users could all easily and quickly understand the workflow and use the

interface. Based on the qualitative data, the prototype appears as highly promising in terms of

the relevance and usefulness of its approach, as well as its intuitive and simple interface.

Knowledge-gain conferred by the prototype

Results from the ranking phases and comparison of VB to VA for each participant provide

quantitative data for verifying if the workflow could bring new knowledge and help improve

a design’s performance (objective 2). Yet, it remains difficult to draw clear conclusions, due

to the confluence of different factors including: the conflicting nature of the criteria, causing

one performance value to improve while another one worsens; the technical difficulties

(also detailed below) in reproducing and investigating variations of VA; the small number of

participants, limiting the application of statistical analysis such as the descriptive Kendall

rank coefficient; differences in the format and degrees of freedom between the ranking phases,

restricting their comparison on equal grounds; possible intrinsic errors in the modeling and

simulation of the variants performance, to which the ranking results are compared.

It would be desirable to obtain strong quantitative data that reflect the perceived knowledge-

gain brought to light through the qualitative feedback. We note that this goal of verifying if

the workflow can bring new knowledge and help improve a design’s performance can only

be achieved if design flexibility is increased significantly, so as to allow highly customized

building massing options. Improvements in the visualization and interaction with the user

can also contribute to enhancing the guidance feature of the prototype.
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x

y
y

z

Variable Min Max

x 10 12

y 10 25

z 6 30

Figure 6.12 – Hypothetical design to attempt to reproduce in the prototype. The three buildings must
be inputted by selecting the same ‘simple volume’. The minimum intervals of dimensions to input to
ensure covering the ranges found in the design are listed in the top right corner table.

Moreover, a second series of workshops with a revised schedule and tasks, including more

participants and an extended time-frame, would be necessary so as to enable a dedicated

focus on assessing the educational potential of the prototype. Explicit directives should be

communicated to participants to ensure they truly attempt to improve the performance of

a design using the information given by the tool. In any case, it remains difficult to judge

the level of effort made by participants in trying to understand, absorb and translate this

information into a new design.

Limitations of the prototype

Considering the early development status of the tested prototype, multiple elements were

identified regarding objective 3, including suggestions made by participants through the open-

ended questions of the final questionnaire. The main issues encountered are linked to the lack

of flexibility in the design, caused by grouped building typologies and dimensions inputs being

applied to all buildings. These two conditions have a combined effect of generating buildings

often not corresponding to what is desired by the user. To better illustrate this issue, let us

consider the example design illustrated in Fig. 6.12, hypothetically representing the initial

concept of a practitioner. Using the prototype, it is possible to investigate the effect on the

performance of varying, within certain boundaries, design parameters linked to the building

dimensions. To do so, the design must be ‘inputed’ into the program, following the approach

described in section 5.1 and using the interface of Fig. 5.4. All three buildings correspond to

the same category of ‘Volume simple’. However, to cover the range of dimensions spanned by

the buildings, large intervals must be specified for y and z, as shown in the top right corner of

Fig. 6.12. Since the generation of design variants by the prototype is done through a random

sampling of the possible variables’ values, there is no way to enforce searching in specific

areas of the solution space domain. There is thus no guarantee that the mix of a tower, low

block and bar will be obtained in the 20 generated variants. The reasons behind this way of

functioning of the prototype are linked to technical feasibility issues in the coding and limited

time in implementing the prototype in view of the workshops. Through suggestions made by

participants and continued development following the workshops, improvement paths have
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been identified and their implementation is foreseen. While we hint at some of these ideas in

this section, they are further discussed in chapter 7.

The limited flexibility in the design is also linked to the underlying performance assessment

engine. Building typologies were specifically restricted to the simple shapes present in the

dataset used for training the metamodels, presented in section 4.2. This was done to ensure

that predicted performance values, obtained when applying the functions on new, unseen

designs, would remain realistic. The assessment of the predictive performance and validity

boundaries of the metamodels is further addressed in the next section. Other design con-

straints were also the consequence of the underlying metamodels’ input parameters and/or

training dataset, e.g. the north-south-east-west alignment of facades and the climate file of

Geneva.

Outcome

In light of the qualitative information collected from the workshops, a general consensus on

the high potential of the prototype was observed, despite its early development status. Issues

encountered, mostly of technical nature, were to be expected due to the youth of the prototype

and are judged as straightforwardly solvable, as further discussed in chapter 7.

In this section, we have assessed the prototype from the perspective of its usability, relevance

and potential in becoming a DDS that can be seamlessly integrated into practitioners’ work

process. It is equally important to evaluate its level of accuracy in estimating the perfor-

mance of neighborhood designs. This is done in the next section, by applying the predictive

mathematical functions on the set of variants developed by the participants.

V1 V2 V3

V4 V5 V6

V7 V8 V9

Figure 6.13 – Pre-workshop variants added to the participants’ designs to form the test set.
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6.2 Testing the metamodels’ performance and boundaries

In this section, we focus on the performance results of the variants collected through the

workshops, to further investigate the metamodels’ predictive power. This study represents an

‘external’ test, which complements the internal training and testing procedure presented in

chapter 4 when developing the predictive functions2.

The three example variants shown to participants during the ranking phases were selected

from a set of nine test variants generated in preparation for the workshops. These are added

to the 13 designs from the participants to form the external test set, comprising 22 variants in

total. In the following, we refer to this group as the ‘test set’.

6.2.1 Computation of inputs and reference outputs for the test set

As explained in section 6.1, the modeling and simulation process following for acquiring the

reference dataset in chapter 4 was applied on the workshop variants, to compute both the

metamodels’ inputs and reference outputs to allow verifying the prediction accuracy.

The nine variants added to the participants’ variants are illustrated in Fig. 6.13. To facilitate

the comparison of the test data, the input and simulated output values are standardized and

displayed using a visualization technique called parallel coordinates [Few, 2006; Ritter et al.,

2015]. As explained in chapter 4, standardization consists in scaling a list of values so that it

is centered with a mean of 0 and a std of 1. The standardized values are plotted through the

parallel coordinates graph shown in Fig. 6.14, where one line is associated to one design. The

last parameter appearing on the x-axis corresponds to the simulated output and is preceded by

the full list of inputs introduced in chapter 4. The ones in bold and starred are the predictors

included in the full and reduced final versions of the metamodels respectively (detailed in

Table 4.13). The reference dataset is plotted in the background in light gray.

Through these graphs, the variants’ profile can be compared between the test data as well as

with respect to the reference dataset used for fitting the metamodels. Participants’ variants are

denoted in the legend by the participant’s number Px and the variant name A or B (full lines

with marker). The nine post-workshop variants are listed from V1 to V9 (dashed lines).

We observe a diversity of profiles, with extreme values located at or exceeding the boundaries

defined by the reference data. For example, variant P8-VB is out of the reference range for its

PlotRatio, MeanHeight and MeanEnvelopeIrrad value. Other designs with parameter values

located out of the main range spanned are P8-VA, P6-VA and V5. In terms of the simulated

responses, most variants are closely distributed within the reference data interval, with a few

divergent designs e.g. P6-VA for both the energy and daylight metrics.

In the next section, we make use of this information for interpreting the prediction results.

2Some of the following results have been presented in Nault et al. [2016a].
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Figure 6.14 – Parallel coordinates plot showing the standardized value of the inputs and outputs
corresponding to each test variants. Inputs in bold and starred are respectively the ones included in
the full and reduced final versions of the metamodels.
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6.2.2 Assessment of prediction accuracy

Multiple linear regression models

As explained in section 4.5.6, the metamodels implemented in the prototype correspond to

a preliminary version, fprelim(x), detailed in Table 4.14. The second version f(x) presented in

section 4.5.4 was later obtained from a slightly different dataset following a more extensive

fitting procedure. From this second version, a ‘reduced’ variation fred(x) was derived. Both are

detailed in Table 4.13.

Results from applying each metamodel variation to the 22 variants are presented in Fig. 6.15

for the energy (left) and daylight (right) metrics. In each figure, the left-side plot shows the

predicted versus simulated performance values along with the RMSE and R2. The right-side

plot displays the residuals across the 22 test variants, with information on the metamodel’s

number of inputs and the residuals’ mean and std.

Comparing across model versions for the energy metric, we observe that the simpler (reduced)

function that only uses three inputs (Fig. 6.15b) yields the lowest RMSE and highest R2 value.

However, the residuals’ mean is further from the desired zero, demonstrating a dominant over-

prediction. Yet, due to the small dataset size, conclusions made by comparing the residuals

distribution statistics are limited since outliers strongly condition the mean and std. For

instance, residuals for the other two versions are not closer to the zero dashed line, yet the

mean is nearly null due to the averaging effect involving points further above/below zero.

Moreover, consistent under- or over-prediction may be beneficial to our purpose of comparing

design alternatives, despite the fact that such a behavior may indicate that the model is missing

a predictor3. In the current context, that would ensure that the relative ranking of the designs

based on the predicted performance is closer to the one obtained based on the simulated

(reference) values.

Some test variants may be categorized as outliers. For instance, P8-VA (over-estimated) and

V3 (under-estimated) for the final version (Fig. 6.15a). Buildings in design P8-VA, shown

in Fig. C.11a, have a larger base at the ground-floor level, a trait which is not found in the

reference dataset and could not have been reproduced in the prototype. As for V3, possible

reasons explaining the prediction error are harder to discern based on its design and inputs

profile. Removing these two variants from the test set, the RMSE and R2 for the final energy

metamodel improve to 2.76 [kWh/m2
FA] and 0.63 respectively, while the mean of the residuals

stays similar with μ = -0.24. Results for the reduced version fred(x) show a slight improvement

by ignoring the outliers, mainly reflected by the R2 which increases to 0.79.

The prediction accuracy achieved for the daylight metric is lower across all metamodel ver-

sions, with no clear ‘winner’. This metric appears more challenging to predict than the energy

need, at least from the predictors we have considered. The fact that the reference dataset

used to generate the functions is over three times the size of the energy dataset may have

3https://onlinecourses.science.psu.edu/stat501/node/328 (last accessed on April 12, 2016)
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caused these functions to over-fit due to similarities between variants within each case series,

as explained in section 4.5.4.

Some test variants may be categorized as outliers. For instance, P6-VA, a design which was also

highlighted in previous sections for its divergent input values (Fig. 6.14) and complex layout

that could not be reproduced in the prototype (Fig. C.9a). The particularities of this design

may well explain the prediction error, which is consistent across all daylight metamodels.

Similarly for design P8-VB, which has input values bordering or exceeding the reference range

in Fig. 6.14 and whose daylight performance is over-estimated by all three model versions.

If we remove these two variants from the test set, the predictive performance of the later

metamodels improves: the RMSE decreases to 6.75 and 5.53 [%] respectively for f(x) and

fred(x), with an associated increase in R2 to 0.52 and 0.48. The residuals mean remains close to

its current value.

We can quantify the RMSE as a percentage of the simulated values by dividing it by the range

of the corresponding test data output:

RMSE% = 100× RMSE

(ymax − ymin)
(6.5)

The RMSE of the final energy and daylight metamodel respectively represent 22% and 21% of

the range of each metric. For the reduced versions of the functions, these figures respectively

reduce to 16% and 19%, getting closer to the 10% threshold defined by Forrester et al. [2008] to

qualify a reasonable global model.

Preliminary Gaussian Processes regression model

Using the Gaussian Processes (GP) regression model introduced in section 4.5.7, we obtain

the results shown in Fig. 6.16. Compared to the above results (Fig. 6.15), we observe for the

energy metric a higher R2 value, but a residuals’ mean further from zero, showing a consistent

over-estimation. All fit and error metrics for the daylight metric indicate a lower prediction

accuracy for that metamodel. More tests should be conducted to verify the source of these

behaviors, for instance by removing/adding one input at a time to verify the effect on the fit.

6.2.3 Synthesis - Generalization potential of metamodels

In this section, we have compared the predicted and simulated (reference) performance values

computed for each of the 22 designs developed prior to and during the workshops. Results

allow us to go over our initial goal, stated in section 5.2, of assessing the predictive accuracy of

the DDS’s underlying mathematical functions.

The predictive performance achieved by the metamodels is encouraging considering the

following observations:
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Figure 6.15 – Prediction accuracy of each energy (left) and daylight (right) metamodel version. For
each figure: predicted against simulated performance values (left) and residuals (right) across the test
variants.
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Figure 6.16 – Prediction accuracy of the (a) energy and (b) daylight GP metamodels. For each figure;
predicted against simulated performance values (left) and residuals (right) across the test variants.

Differences between reference designs and test variants. Some degree of error was to be ex-

pected due to differences between the designs used to fit the functions and the workshop

test set, specifically in terms of building layout and number as well as dimension of

the parcel of land. Another dissimilarity of importance is the fact that some workshop

variants present a mix of building typologies, a situation not found in the reference

dataset. Yet, the metamodel was still able to accurately estimate the performance of

such designs, for example P4-VA and V9, composed of both L-shaped and linear blocks.

Application to designs beyond the protoype’s generative feasibility region. As highlighted

in section 6.1.2 and in the participant-specific analysis found in appendix C.4, some of

the participants’ VA could not be reproduced in the prototype due to time and technical

issues (discussed in section 6.1.5). Some of these limitations are linked to the hypoth-

esized validity boundaries of the metamodels; the prototype was developed to allow

reproducing designs that we assumed could be evaluated by the metamodels with some

level of accuracy. As explained in section 5.1, design options were constrained to delimit

the solution space and ensure some degree of similarity to the reference dataset, e.g.

in terms of building typology and facade alignment. When applying the metamodels

on the variants that could not be handled by the prototype mainly due to this design

flexibility limitation, namely P5-VA and P6-VA, the prediction error is either low - P5-VA

energy prediction from all versions and daylight prediction from the reduced version -

or justifiably larger than average - P6-VA for preliminary energy model and all versions

of daylight model.

We conclude that the predictive modeling approach adopted for constructing our DDS perfor-

mance assessment engine is promising. To further improve the metamodels, multiple avenues

can be explored as detailed in section 4.7 and further in chapter 7, such as enlarging the design

diversity in the reference dataset and investigating other model forms and fitting techniques.
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In this chapter, we go over parts of this work to expand the discussion and highlight the main

limitations and foreseen improvement possibilities, bringing complementary or additional

observations to what has been presented in previous chapters.

7.1 Prediction error and fitting technique

The topic of prediction error or uncertainty has only been indirectly addressed in chapters 4

and 6, when looking at the residuals (e.g. Fig. 4.25, 4.26 and 6.15). It would be important to

incorporate these notions particularly into the output visualization provided by the prototype.

In that case, an error bar could be drawn around each performance value, enabling users to

better distinguish significantly different variants.

Figure 7.1 presents results from a preliminary investigation where confidence intervals were

obtained around each prediction for one iteration in the training-testing process in phase C

of the metamodel development (see Fig. 4.24). The Matlab linear regression function fitlm

was applied on the training set, giving a Matlab LinearModel object that was then used to

obtain predictions and confidence intervals from the inputs in the test dataset. The intervals

correspond to prediction bounds covering the likely values for a new simulated value (or

observation yn+1) given a set of predictors (xn+1)1. The graphs show that the width of the

95% confidence interval is similar when fitting using 19 inputs (Fig. 7.1a) versus 10 inputs

(Fig. 7.1b) with a mean of 4.95. It becomes wider with a mean width of 10.63 when reducing

to three inputs (Fig. 7.1c). This means that there is a larger uncertainty in the prediction of

new simulated values using the reduced function containing only three inputs. This sort of

information could in the future be a useful complement to the other goodness-of-fit measures

employed in chapter 4.

1http://www.mathworks.com/help/curvefit/confidence-and-prediction-bounds.html (last accessed on June 27,
2016)
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Obtaining an uncertainty for each prediction could moreover be achieved by resorting to

Gaussian Processes, introduced in section 4.5.7, or similar methods. Due to the probabilistic

nature of GP, its prediction is a random variable. This means that it is possible to obtain a

confidence range for each prediction, as illustrated in Fig. 7.2. The advantages conveyed by

adopting a GP regression technique also include an added knowledge about the under- and

over-sampled regions in terms of the predictor values, information that can guide the process

of improving the metamodel.

(a) α=50% (19 inputs) (b) α=100% (10 inputs) (c) Manual selection (3 inputs)

Figure 7.1 – Simulated against predicted energy need [kWh/m2
FA] with 95% confidence intervals for

predicted values, for one example iteration in the training-testing procedure (see Fig. 4.24), when
fitting using the entire dataset (d=100%) and (a) 19 inputs, (b) 10 inputs, and (c) 3 inputs (see also
section 4.5 and Fig. 4.25). These graphs were produced using the predict and fitlm functions in Matlab.

Figure 7.2 – Schematic representation
of the prediction uncertainty obtained
with GP regression. From (a) to (b):
when new reference points are added
for a given x value, the prediction
uncertainty decreases in the region
around that value. x

f(x)

x

f(x)

(a) (b)

Simulated value Confidence intervalPrediction
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7.2 Sensitivity to simulation settings

Sensitivity analysis to various simulation assumptions would be beneficial to allow making

more sound conclusions on the results, e.g. in terms of metamodel validity. In addition to the

preliminary investigation presented in section 4.7.3, further work was initiated by comparing

two energy datasets distinct in terms of the U-value simulation settings for opaque surfaces:

(i) the medium U-value set from which the metamodels were developed, and (ii) a low U-value

set later acquired for a partial group of design variants (M-cases). The U-values for both

settings are given in Table 7.1. All other parameters were identical (see Table 4.7).

Figure 7.3 shows the histogram for the simulated heating, cooling, and total energy need for

each dataset, with a distinction between the five M-cases for which we had data for both

U-value settings. The maximum difference observed in each graph is displayed (Δmax). The

medium U-value dataset presents a wider and slightly narrower spread respectively for the

heating and cooling need. The heating need values for the low U-value setting are particularly

clustered, demonstrating that the effect of urban morphology is attenuated when high insu-

lation standards are applied. However, the opposite effect is observed for the cooling need.

In terms of energy for both heating and cooling, although a lower value (< 30 kWh/m2
FA) is

reached with the low U-value setting, the fact that medium and low U-value distributions

partly overlap indicate that similar performance levels can be achieved with less insulation.

These results lead us to speculate that the effect of poor insulation can potentially be coun-

terbalanced by a proper urban form. Considering the evolution of the design process, this

statement can be reformulated to: if the urban form is well planned, savings can potentially

be made on insulation materials.

It is also important to note that the relative position of the M-specific peak is altered between

the medium and low U-value histograms, e.g. the M0 and M1 designs that are switched. The

ranking is different not only between series, but also between variants of a same series, as

illustrated in Fig. 7.4, showing the difference between the medium and low U-value simulated

energy need for each design. A flat line would indicate a constant difference, i.e. ymedU =

ylowU + constant. Such a situation would in turn signify an identical ranking between design

alternatives. However, we observe variations across the variants, particularly for the M0

and M5 cases where the mean difference μ exceeds 20%. This value is computed using the

following equation:

μ= 100

N
×

(
N∑

i=1

yi ,medU − yi ,lowU

yi ,medU

)
(7.1)

where N is the number of designs and yi is the simulated output of variant i .

A final comparison of the medium and low U-value datasets is presented in Fig. 7.5, which

shows the input-output correlation graphs for each dataset and M-case. As in section 4.4.2,

the pairwise linear correlation coefficient, computed over all cases taken together, is displayed

when it was found to exceed (±)0.70. We observe that the spread of the points differ between
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Fig. 7.5a and 7.5b, e.g. for the PlotRatio parameter, bringing out again the attenuation effect

of the low U-value setting. This is also reflected in the reduced correlation level with the

FormFactor. The input portraying the highest correlation with the energy metric in the low

U-value dataset is the window-to-floor ratio, due to the larger difference between the wall and

window U-values compared to the medium U-value setting (see Table 7.1).

We conclude that the underlying assumptions related to the dataset used in the metamodel

development process are a matter of importance as they condition the observed trends. The

current results indicate that a different metamodel structure, e.g. with other main inputs and

coefficients, would most likely be obtained, were we to pursue the analysis of the low U-value

dataset and apply the same metamodeling approach detailed in chapter 4. As highlighted

earlier, the ranking of the variants based on their performance is also linked to the simulation

assumptions, restraining the generalization of the results obtained with any one metamodel

version into broader design guidelines. However, this thesis has contributed a method that can

be extended/adapted to other design contexts than the one here used as a proof-of-concept. A

future research path of interest would be to investigate the relative performance improvement

achievable through early versus more detailed design variables, as well as the interaction

between these two groups of parameters, e.g. through sensitivity analysis. As a second step, a

robust and semi-automated method could be developed to allow conducting such a study

and support the interpretation of its outcomes. This method could follow a similar workflow

as developed in this thesis, starting from a user-defined base case with a range for each design

variable and some constraints. This information would then be used by the underlying engine

to generate the data required to perform a case-specific sensitivity analysis.

Further tests could be conducted, for instance on reflected light, linked to envelope material

and likely to influence the energy consumption and daylight conditions in urban settings of

a certain density [Strømann-Andersen and Sattrup, 2011]. Design characteristics for which

specific parameters become influential could be identified in the form of thresholds. For

example, density levels above which the contribution from inter-building reflection should be

taken into account in the performance assessment could be defined.

Similarly for other design variables such as the window-to-wall ratio and glazing material.

Figure 7.6 shows the effect of increasing the window-to-wall ratio on the energy demand for

heating according to various glazing U-values for the climate of Paris, in the context of a study

investigating different urban morphologies [LSE Cities and EIFER, 2014]. The heating demand

increases with the glazing ratio from a U-value of 3.2 and 2.8 for the detached housing and

compact urban block respectively.

The identification of such case-specific parameters would in turn influence the way metamod-

els are derived; according to the specificities of the project to be studied using the predictive

DDS approach, the appropriate metamodel could be retrieved or even built. This idea is

further detailed in section 8.3.
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Table 7.1 – U-values used in the energy need simulation for the medium and low U-value energy
datasets. The medium setting corresponds to the dataset used to develop the metamodels in chapter 4.

Medium U-value Low U-value
[W/m2K] [W/m2K]

Wall 1.3 0.18
Roof 1.84 0.19
Floor 1.25 0.18
Windows (double low e argon) 1.5 1.5

M1 M3 M4 M5M0

Figure 7.3 – Heating, cooling, and total energy need in the medium (top) and low (bottom) U-value
datasets (see Table 7.1), with distinction between the different M-cases. The difference between the
maximum and minimum value is displayed (Δmax).
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Figure 7.4 – Difference in the energy need between the medium and low U-value datasets (see Table
7.1), for each variant of each case series. The mean percentage difference, computed with respect to
the medium U-value dataset, is displayed (μ, see equation 7.1).
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Figure 7.6 – Variation in the annual heating energy demand (normalized per floor area) obtained when
increasing the window-to-wall ratio, for different glazing U-values, in the case of detached housing and
compact urban block in Paris. Graphs made using data from [LSE Cities and EIFER, 2014].

7.3 Averaging effect and extension to existing context

The fact that the metamodels make use of inputs computed over all buildings taken together

and output an estimated overall value blurs the individual building’s performance. For exam-

ple, two buildings with opposite energy needs - low versus high - lead to the same average

performance as two buildings with a mid-range value. However, the latter may be more desir-

able, especially if the mid-range value falls below the limit imposed by some standard or label.

Future work should look into solving this potential pitfall, by including a verification of the

individual building’s performance and avoid the possible misleading caused by the averaging

effect. A way to do so would be to define thresholds in terms of performance per building, e.g.

based on labels such as Minergie.

It would also be interesting to include an assessment of the effect of the new buildings planned

on the existing surrounding context, to ensure that all buildings retain their solar rights and

to mitigate the impact on the built environment. Along the same lines, an evaluation of the

outdoor spaces, e.g. solar exposure in parks and on sidewalks, would also enrich the method

by adding another element of importance of the conceptual design phase.

7.4 Refining the dataset

Through a random sampling approach, an extensive number of design variants were collected

for building the reference dataset used to developed our metamodels. However, this method

was used to assign values to the parameters varied in the parametric modeling, which are

different from the ones we have used for training our metamodels. Indeed, the model inputs
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were derived after the fact, i.e. once the design variants were modeled and their solar exposure

levels computed. This disconnect between the sampled design variables and input parameters

prevent us from controlling the distribution of the latter. Yet, it would be hard to start from

fixed input values from which to define design variants. For instance, if we were to fix the plot

ratio, form factor, window-to-floor ratio and other main parameters, it is not obvious how a

corresponding design could be modeled from such a set of values.

Still, it would be of interest to refine the sampling method and the general approach for

populating the dataset required to fit the metamodels. This is further discussed in section 8.2.

An alternative method for populating the database would consist in using available data from

recently built projects. This would likely require significant work to collect all information

needed, e.g. building plans, construction details and energy usage, including data often

unavailable for confidentiality reasons.

7.5 Increase in design flexibility

Since the workshops of October 2015, the prototype has undergone modifications. One major

change is the extended flexibility offered when defining the base case design through the

custom interface and Rhino program. The ranges defined by the user for each design variable,

defining the solution space within which the prototype searches for variants, was previously

being applied to all buildings. The upcoming version will allow specifying a building-specific

range, enabling more precision in the modeling and therefore producing variants closer to the

user’s expectations.

This extended flexibility will have to matched by the metamodels’ application range. Further

work will involve adding new data to the reference dataset, e.g. the workshop variants, to

inform and refine the predictive functions.

The current status of the forthcoming prototype’s interface is shown in Fig. 7.7. Aside from the

language change - the next workshop will be held in English - the only visible difference is the

rearrangement of the interface’s elements. However, the background code has been adjusted

to allow the above-mentioned functionality and to facilitate applying the same settings to

multiple buildings successively positioned.

7.6 Enhanced guidance and informative features of workflow

In its status as of the time of the workshops, the prototype’s GUI was still rather crude. Changes

were brought to the output performance graphs to address some of the participants’ com-

ments, in particular the difficulty in visualizing and comparing variants (see full list in Table

6.2). An example of the latest version of the graphs is illustrated in Fig. 7.8. Axes have been

fixed and a grid with a constant separation of 5 [units] was added, facilitating the visualization
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Figure 7.7 – New version of
the custom interface for user-
inputs (for comparison, see
previous version in Fig. 5.4).

UrbanSOLve

Figure 7.8 – Example graph for
the new version of the perfor-
mance visualization, with fixed
axes allowing clearer comparison
between the design variants from
one run of the workflow, as well
as between iterations starting
with distinct initial user-inputs
(for comparison, see previous
version in Fig. 5.7).
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Table 7.2 – Envisioned balance to compute an aggregated performance metric.

Demand Partial coverage through
Heating <– Heat produced by ST collectors
Cooling <– Electricity produced by PV panels
(accounting for natural ventilation)
Artificial lighting <– Electricity produced by PV panels
(exploiting daylight potential)

and comparison both across variants generated in one run of the prototype, as well as between

different iterations (starting from another base case design). The clearer visualization of the

relative difference in performance allows users to see not only which variants are better/worse,

but also which ones are not significantly different. This information can be useful when incor-

porating other performance criteria in the decision-making process, such as morphological

integration into the existing context, cost, etc.

As mentioned in section 6.1.2, potentially greater user-guidance could be achieved by provid-

ing an aggregated performance value, by merging the three criteria into an ‘autonomy’ metric

quantifying the balance between energy demand and production (see Table 7.2). This trans-

lation could ideally benefit from an hourly analysis of the different values and a conversion

into primary energy, which could allow computing additional performance metrics such as

CO2 emissions. Both interventions would however lead to an increased complexity of the

whole assessment and pose new difficulties in the metamodeling approach. Alternatively,

other performance metrics could also be computed, e.g. the thermal comfort in terms of

overheating hours (replacing the cooling energy need yet preventing an aggregation) with a

detailed natural ventilation assessment through CFD simulation, and the UHI effect.

A goal-based approach with user-defined performance targets could be adopted, facilitated

by replacing the currently random population of the design space by an optimization-driven

search. Both user-guidance and interactivity could be enhanced in parallel, by incorporat-

ing the user’s preferences into the optimization process to guide the generation of design

alternatives. This is further discussed in chapter 8.

7.7 Revised workshop plan

From the lessons learned during the workshops and in parallel with the advancement of

the forthcoming prototype version, a revised plan will be devised for the next tests with

practitioners. The attention will be particularly placed on ensuring that results from each

phase, e.g. ranking tasks, can be confidently compared to draw clearer conclusions on the

added-value of using the prototype. According to the number of the participants, groups may

be formed and assigned to a different design task to allow a comparative analysis.
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8 Conclusion

8.1 Main outcomes and achievements

We began this thesis by highlighting the main challenges that remain in the specific field

of methods for supporting urban designers and architects incorporate energy performance

considerations early in their design process. In particular, a need was identified to facilitate

real-time assessment of neighborhood designs in relation to decisions whose impact extends

beyond the scale of the individual building.

This thesis has attempted to address this gap by proposing a design decision-support workflow

whose features were defined so as to provide multi-criteria performance-based guidance in

real-time, while respecting the ill-defined nature of early-phase meso-scale designs. Adopting

the emerging generative design approach, the integration of the workflow into a digital pro-

totype enabled us to demonstrate its accessibility among practitioners and its relevance to

the exploratory early design stage. This was made possible by the underlying performance

assessment engine, developed keeping in mind the limited available design information while

capturing its effect at the neighborhood level. At the core of this engine, and concurrently

of this thesis, are the daylight and energy neighborhood-scale metamodels, which repre-

sent a novel aspect of this research. The work was achieved by combining knowledge and

methods coming from different fields, ranging from urban design to machine learning, while

remaining cautious and attentive to the potential pitfalls or misinterpretations linked to such

a cross-disciplinary approach.

Coming back to the three main questions introduced at the beginning of this thesis in section

1.4, we can further detail the main outcomes:

1. How should we define the (energy/solar) performance of a (virtual) neighborhood and

what metrics should be used to quantify each performance aspect, in a way that captures

the interdependencies between buildings?

Through the literature review and investigation presented in chapters 2 and 3, lim-

itations associated to employing geometry- and/or irradiation-based parameters as
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performance indicators were highlighted. Despite their advantageous simplicity, we

observed that they lacked robustness and scope when used to compare and rank neigh-

borhood designs in terms of their energy and daylight performance. This knowledge

has led us to aim at ensuring a strong link to established performance metrics truly

capturing the solar potential: the heating and cooling needs for expressing the energy

required to maintain a comfortable indoor temperature, here associated to the (inverse

of) passive solar potential, the spatial Daylight Autonomy (sDA) as a measure of the

daylight conditions inside the buildings, and the energy production by photovoltaic

(PV) and solar thermal (ST) systems as quantifying the active solar potential.

2. How can we efficiently evaluate these metrics considering the available (low) amount of

design information, in the context of a real-time interactive computer-based workflow?

The time-consuming evaluation of the energy and daylight metrics require detailed

building models and simulation assumptions, hindering their assessment at the con-

ceptual design phase. As an alternative to simulation at this exploratory early stage, we

have proposed in chapter 4 a data-driven method based on mathematical functions

that can predict to some level of accuracy the value of each metric. Building upon

the knowledge gained in chapter 3 when investigating the correlation between these

established metrics and simpler parameters, the latter were combined to obtain a set

of complementary information capturing the effect of urban morphology. As such, the

metamodels generated only require early-phase friendly design information and can

be seen as a temporary proxy of more advanced simulations that should nevertheless

be conducted later on in the process. This approach thus promotes a temporal spread

of the inclusion of energy-related considerations in design decision-making. Tested in

chapter 6, the predictive accuracy was judged as satisfying, particularly considering the

characteristics of the designs in the test set.

3. What are the essential features of a design decision-support system, built around the

performance assessment engine (defined through the previous questions), that will make

it in line with the ill-defined nature of the design process?

We have identified features judged relevant and of interest in the context of this the-

sis, through reviews, surveys, as well as recent developments found in the literature.

Challenging the traditional generate-and-test workflow, we have adopted a generative

approach that allows constructing a sample of a design solution space, from simple

project-specific and user-defined inputs. These correspond to design variables that

are typically decided upon early-on, and for which an exploration of their effect on

the performance is highly desirable considering their strong influence on all criteria

here considered. Described in chapter 5, the developed workflow was implemented as

a digital tool to be tested by practitioners through workshops. This allowed distilling

the technical, metamodel-based performance assessment method into an accessible

and relevant format from the perspective of decision-makers. Results from the work-

shops, presented in chapter 6, demonstrate a solid potential of the prototype and of the

proposed design approach.
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8.2 Application potential

We have demonstrated, through the workshops outcomes, the potential of the proposed

workflow as a DDS tool that could be seamlessly integrated into the early design process of

practitioners. The focus has been placed on new neighborhood-scale projects, such as the

ones that can be found in urban design competition or in master plans (e.g. Plan Directeur

Localisé (PDL)). We argue that our method could provide support in these contexts both

beforehand and afterwards, by helping the concerned actors when defining the ‘rules’ to be

contained in urban planning instruments and competition briefs, while subsequently guiding

designers who must respect the above documents in their exploration of design alternatives,

decision-making, and communication. Moreover, the prototype could be adapted to become

a useful teaching tool addressed mainly to architecture students.

We can envision that a similar approach could be extended or modified to application in

renovation and renewal projects, considering the importance of current phenomena such as

the densification and renewal of European cities [Riera Pérez, 2016] and of brownfield areas

[Laprise et al., 2015].

Considering that 65% of the existing buildings in Switzerland were built before 1980 [OFS,

2014], it is indeed relevant to address the issues related to the renovation of the building

stock. In such cases, databases of existing buildings including renovated examples could

potentially be used to derive the metamodels. These could generate variants in the form of

renovation options at the building envelope level [Aguacil Moreno et al., 2016], complemented

by geometrical modifications through housing infill or roof raising strategies [Peronato, 2014].

The metamodels would predict the associated performance, having learned from existing

cases.

The application of the method to projects differing in terms of size, e.g. expressed through

the number/dimension of buildings, is theoretically possible. The validity of the metamodels

should however be further tested on small (one building) to large urban settings. Similarly, the

approach could be applied in other climates once the corresponding functions are developed,

unless a unique robust version (for each criterion) can be obtained by including factors captur-

ing the main climatic characteristics. This investigation was initiated through a collaborative

study [Nault et al., 2015c].

In addition to the concrete improvement avenues highlighted throughout the thesis and

in chapter 7, envisioned prospects for the future concern a revised string of actions for the

workflow and enhanced features of the prototype. Figure 8.1 depicts this future vision. In Fig.

8.1a, the workflow is modified so that the solution search, currently random, is integrated

to an optimizer such as the genetic algorithms offered by Octopus1, a Grasshopper plug-in.

Accessing the background code of Radiance instead of passing through the front-end DIVA for

the irradiation simulation allows more flexibility in the number of design variants generated

1http://www.grasshopper3d.com/group/octopus (last accessed on April 5, 2016)
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at each optimization iteration (see also section 5.1.2 and Fig. B.3 in the appendix). During

the process, users are given the chance to interact with the tool to select or discard specific

variants, guiding the optimization towards the desired solution space, based on user-specific

criteria. A similar approach was adopted by Mueller and Ochsendorf [2013] in the devel-

opment of structureFIT2, a web-based tool for incorporating structural considerations into

early architectural design, also exploiting metamodeling and optimization techniques. The

integration of an optimization-driven improvement-search mechanism could also facilitate

the inclusion of user-defined performance goals.

Figure 8.1c portrays the idea of a tool that either (i) continuously ‘learns’ by adding to its

database of neighborhood designs to cover areas in the solution space, e.g. in terms of

building typology and layout, that are currently unknown by the metamodels, or (ii) builds

case-specific metamodels by efficiently defining the designs - in terms of number and position

in the solution space - necessary to achieve a reasonable prediction accuracy. This latter

approach was adopted by Ritter et al. [2015] for building-level energy consumption prediction.

To deal with different climates, a library of metamodels could be developed, with associated

simulation settings corresponding to context-specific best practice values, e.g. in terms of

insulation levels. Another option would be to incorporate climate-based inputs into the

metamodels, as discussed earlier.

8.3 Outlook

In a long-term perspective, the expansion of existing cities through the design of new neighbor-

hoods induces a need to take into account sustainability parameters to provide comfortable

housing and work places in harmony with the environment. Tools supporting the design of

such neighborhoods, based on the passive use of local resources and renewable energy, will

become key to the urban development of the future, not only making it possible to reduce

energy consumption, but offering better daylit and healthier living spaces for occupants.

This research casts a light on a wide range of development opportunities that could further

contribute toward achieving a sustainable built environment. By working at the junction

between distinct yet complementary fields, we believe it is possible to develop high-impact

methods and tools, for instance: by applying and automating powerful data generation,

analysis, treatment, and visualization techniques related to architectural modeling, energy

simulation, statistics, machine learning, and computer vision; by automating and linking

pieces of a workflow using existing tools and custom scripts to facilitate the user’s experience

and enhance user-interaction; by working on developing robust methods through the above-

mentioned actions instead of conducting case-specific studies with limited application and

generalization validity.

2http://digitalstructures.mit.edu/page/tools#structurefit (last accessed on April 5, 2016)
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Performance 
assessment

Design 
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Output models 
and summary 
document (.pdf)

Optimized solution search

Interaction with user

Visualization 
of outputs
Pareto front

User selection

(a) Modifications envisioned to the workflow, replacing the current random sampling by an optimization-
based solution search, with enhanced interaction with the user. See Fig. 5.1 for comparison with the
current workflow.

Octopus
GH plug-in
Multi-objective optimizer

Irradiation simulation

Main window: user-
inputs, visualization, 

interaction

Central background tool: 
data processing, plug-ins

GH plug-in for 
exports

GH plug-in for irradiation 
simulation

GH

GH plug-in for 
workflow

UrbanS Lve

GH plug-in for irradiation 
simulation

(b) Current and additional tools that would be
used in the above workflow.

Libraries
- Climates
- Simulation settings 

based on best practice

Simulations for unseen cases
Addition to existing dataset
or construction of case-
specific dataset

(c) Recourse to computational resources for con-
tinuous addition to the reference dataset or pop-
ulation of new case-specific dataset, respectively
increasing or refining the solution space coverage
and predictive power of the metamodels.

Figure 8.1 – Vision for future development avenues.

We have attempted through this research to make a contribution to a specific niche, to promote

awareness and a performance-driven design approach within the process of decision-makers.

Through an interdisciplinary work, an effort was made to reach out to professionals, as a

step toward bringing our research to the practice world. Through its simple, design-oriented,

and time-efficiency functioning, the proposed workflow appears as a relevant method that

can complement other tools for incorporating crucial considerations throughout the design

process toward efficient and comfortable buildings.
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A Metamodels

A.1 Data analysis - Distributions and correlations

Figure A.1 shows the distribution each input in the energy and daylight datasets. Figure A.2

illustrates the relationship between each input and output for the corresponding dataset.

Reference to these graphs is made in section 4.4.
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A.1. Data analysis - Distributions and correlations
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Appendix A. Metamodels

A.2 Stepwise selection

Example output from the stepwiselm algorithm, for each type of model tested in section 4.5.3,

corresponding to an increasing level of complexity (see Table 4.11). Results are for the energy

metric.

% Constant model type

Linear regression model :
Energy ~ 1

Estimated C o e f f i c i e n t s :
Estimate SE t S t a t pValue
________ ____ ______ ______

( Intercept ) 46.80 0.27 174.30 0.00

Number of observations : 624 , Error degrees of freedom : 623
Root Mean Squared Error : 6.71

% Linear model type

Linear regression model :
Energy ~ [ Linear formula with 21 terms in 20 predictors ]

Estimated C o e f f i c i e n t s :
Estimate SE t S t a t pValue
________ _____ ______ ______

( Intercept ) 74.38 7.49 9.93 0.00
NorthFacRatio 6.63 3.17 2.09 0.04
FormFactor −10.62 1.29 −8.23 0.00
RoofIrradPerFA 0.09 0.05 1.93 0.05
WestFacIrradPerFA 0.29 0.09 3.18 0.00
EnvelopeIrradPerFA −0.08 0.05 −1.62 0.11
SiteCoverage 2.74 1.17 2.35 0.02
PlotRatio −1.09 0.22 −5.02 0.00
MeanEnvelopeIrrad −0.12 0.01 −15.36 0.00
WestFacRatio 6.92 2.98 2.32 0.02
NorthFacIrradPerFA 0.50 0.05 9.13 0.00
MeanNorthFacIrrad −0.04 0.01 −6.21 0.00
RoofRatio 84.71 6.70 12.64 0.00
MeanFacIrrad 0.14 0.02 7.47 0.00
MeanRoofIrrad 0.01 0.00 1.89 0.06
SouthFacIrradPerFA 0.03 0.05 0.71 0.48
MeanWestFacIrrad −0.04 0.01 −5.11 0.00
WFRatio −16.79 15.87 −1.06 0.29
MeanEastFacIrrad −0.02 0.01 −2.27 0.02
MeanHeight 0.06 0.05 1.27 0.20
MeanSouthFacIrrad −0.03 0.00 −6.13 0.00

Number of observations : 624 , Error degrees of freedom : 603
Root Mean Squared Error : 1.3
R−squared : 0.964 , Adjusted R−Squared 0.962
F−s t a t i s t i c vs . constant model : 797 , p−value = 0
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% Interact ions model type

Linear regression model :
Energy ~ [ Linear formula with 95 terms in 17 predictors ]

Estimated C o e f f i c i e n t s :
Estimate SE t S t a t pValue
________ _______ _____ ______

( Intercept ) 321.35 130.62 2.46 0.01
FormFactor −3.34 34.49 −0.10 0.92
RoofIrradPerFA −0.08 0.75 −0.11 0.91
EnvelopeIrradPerFA 0.15 0.65 0.22 0.82
SiteCoverage −130.87 37.31 −3.51 0.00
PlotRatio 11.20 3.66 3.06 0.00
MeanEnvelopeIrrad −0.77 0.54 −1.44 0.15
EastFacIrradPerFA 0.26 1.05 0.25 0.80
WestFacRatio −81.19 44.13 −1.84 0.07
MeanNorthFacIrrad −0.02 0.16 −0.14 0.89
RoofRatio 1369.98 514.03 2.67 0.01
MeanFacIrrad −5.11 0.90 −5.67 0.00
MeanRoofIrrad 0.02 0.02 0.80 0.42
SouthFacIrradPerFA 0.63 0.67 0.93 0.35
MeanWestFacIrrad 0.09 0.14 0.65 0.51
WFRatio −214.85 313.01 −0.69 0.49
MeanEastFacIrrad 0.17 0.16 1.03 0.30
MeanSouthFacIrrad 0.09 0.16 0.56 0.57
FormFactor : RoofIrradPerFA −4.20 0.94 −4.48 0.00
FormFactor : EnvelopeIrradPerFA 4.40 0.95 4.64 0.00
FormFactor : SiteCoverage 14.67 14.25 1.03 0.30
FormFactor : PlotRatio −2.18 1.71 −1.27 0.20
FormFactor : MeanEnvelopeIrrad 0.06 0.12 0.52 0.60
FormFactor : EastFacIrradPerFA 0.31 0.07 4.13 0.00
FormFactor : RoofRatio −311.42 119.14 −2.61 0.01
FormFactor : MeanWestFacIrrad 0.04 0.05 0.80 0.42
FormFactor : WFRatio −542.62 204.46 −2.65 0.01
FormFactor : MeanSouthFacIrrad 0.05 0.04 1.24 0.21
RoofIrradPerFA : EnvelopeIrradPerFA −0.00 0.00 −1.22 0.22
RoofIrradPerFA : SiteCoverage −0.07 0.04 −1.70 0.09
RoofIrradPerFA : MeanEnvelopeIrrad −0.01 0.00 −2.71 0.01
RoofIrradPerFA : EastFacIrradPerFA −0.00 0.00 −0.41 0.68
RoofIrradPerFA : WestFacRatio 0.79 0.22 3.58 0.00
RoofIrradPerFA : MeanNorthFacIrrad −0.00 0.00 −2.53 0.01
RoofIrradPerFA : RoofRatio 2.96 1.48 2.00 0.05
RoofIrradPerFA : MeanFacIrrad 0.01 0.00 1.72 0.09
RoofIrradPerFA : SouthFacIrradPerFA 0.00 0.00 1.95 0.05
RoofIrradPerFA : MeanWestFacIrrad −0.00 0.00 −4.17 0.00
RoofIrradPerFA : WFRatio 1.32 0.63 2.10 0.04
RoofIrradPerFA : MeanEastFacIrrad −0.00 0.00 −1.62 0.11
RoofIrradPerFA : MeanSouthFacIrrad 0.00 0.00 2.63 0.01
EnvelopeIrradPerFA : PlotRatio −0.03 0.01 −5.32 0.00
EnvelopeIrradPerFA : MeanEnvelopeIrrad 0.01 0.00 2.62 0.01
EnvelopeIrradPerFA : EastFacIrradPerFA 0.00 0.00 3.39 0.00
EnvelopeIrradPerFA : WestFacRatio −0.53 0.21 −2.50 0.01
EnvelopeIrradPerFA : RoofRatio −2.65 1.45 −1.83 0.07
EnvelopeIrradPerFA : MeanFacIrrad −0.00 0.00 −1.00 0.32
EnvelopeIrradPerFA : MeanWestFacIrrad 0.00 0.00 2.62 0.01
EnvelopeIrradPerFA : WFRatio −1.01 0.29 −3.48 0.00
EnvelopeIrradPerFA : MeanEastFacIrrad 0.00 0.00 1.29 0.20
EnvelopeIrradPerFA : MeanSouthFacIrrad −0.00 0.00 −3.36 0.00
SiteCoverage : PlotRatio −1.39 1.21 −1.15 0.25
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SiteCoverage : MeanEnvelopeIrrad 0.36 0.09 4.18 0.00
SiteCoverage : MeanNorthFacIrrad 0.01 0.05 0.20 0.84
SiteCoverage : RoofRatio −223.74 77.63 −2.88 0.00
SiteCoverage : MeanWestFacIrrad 0.03 0.03 0.87 0.38
SiteCoverage : MeanEastFacIrrad −0.04 0.03 −1.14 0.26
MeanEnvelopeIrrad : EastFacIrradPerFA −0.02 0.00 −4.07 0.00
MeanEnvelopeIrrad : RoofRatio −0.89 0.35 −2.53 0.01
MeanEnvelopeIrrad : MeanFacIrrad 0.00 0.00 3.68 0.00
MeanEnvelopeIrrad : SouthFacIrradPerFA −0.01 0.00 −4.17 0.00
MeanEnvelopeIrrad : MeanWestFacIrrad −0.00 0.00 −2.14 0.03
MeanEnvelopeIrrad : WFRatio 2.23 1.43 1.56 0.12
MeanEnvelopeIrrad : MeanEastFacIrrad 0.00 0.00 3.02 0.00
MeanEnvelopeIrrad : MeanSouthFacIrrad −0.00 0.00 −2.71 0.01
EastFacIrradPerFA : MeanNorthFacIrrad 0.00 0.00 1.61 0.11
EastFacIrradPerFA : RoofRatio 9.70 2.77 3.51 0.00
EastFacIrradPerFA : MeanFacIrrad 0.00 0.01 0.56 0.57
EastFacIrradPerFA : MeanEastFacIrrad −0.00 0.00 −0.86 0.39
EastFacIrradPerFA : MeanSouthFacIrrad 0.01 0.00 4.51 0.00
WestFacRatio : MeanNorthFacIrrad −0.13 0.17 −0.73 0.47
WestFacRatio : WFRatio 518.32 192.20 2.70 0.01
WestFacRatio : MeanSouthFacIrrad 0.03 0.09 0.36 0.72
MeanNorthFacIrrad : RoofRatio 0.53 0.39 1.38 0.17
MeanNorthFacIrrad : MeanFacIrrad 0.00 0.00 0.01 0.99
MeanNorthFacIrrad : MeanWestFacIrrad −0.00 0.00 −0.16 0.87
MeanNorthFacIrrad : WFRatio −0.05 0.41 −0.12 0.90
MeanNorthFacIrrad : MeanEastFacIrrad −0.00 0.00 −1.83 0.07
MeanNorthFacIrrad : MeanSouthFacIrrad 0.00 0.00 1.48 0.14
RoofRatio : SouthFacIrradPerFA 6.55 1.79 3.66 0.00
RoofRatio : MeanWestFacIrrad 1.56 0.39 3.99 0.00
RoofRatio : WFRatio −4333.56 1137.10 −3.81 0.00
RoofRatio : MeanSouthFacIrrad 1.24 0.24 5.13 0.00
MeanFacIrrad : SouthFacIrradPerFA 0.00 0.00 0.90 0.37
MeanFacIrrad : MeanWestFacIrrad −0.00 0.00 −1.52 0.13
MeanFacIrrad : WFRatio 2.24 1.40 1.59 0.11
MeanFacIrrad : MeanSouthFacIrrad −0.00 0.00 −1.33 0.19
MeanRoofIrrad : MeanWestFacIrrad −0.00 0.00 −2.02 0.04
SouthFacIrradPerFA : MeanEastFacIrrad −0.00 0.00 −0.74 0.46
SouthFacIrradPerFA : MeanSouthFacIrrad 0.01 0.00 4.19 0.00
MeanWestFacIrrad : MeanEastFacIrrad −0.00 0.00 −0.73 0.47
MeanWestFacIrrad : MeanSouthFacIrrad 0.00 0.00 3.34 0.00
WFRatio : MeanEastFacIrrad −0.74 0.56 −1.32 0.19
WFRatio : MeanSouthFacIrrad −0.44 0.46 −0.95 0.34
MeanEastFacIrrad : MeanSouthFacIrrad −0.00 0.00 −5.58 0.00

Number of observations : 624 , Error degrees of freedom : 529
Root Mean Squared Error : 0.827
R−squared : 0.987 , Adjusted R−Squared 0.985
F−s t a t i s t i c vs . constant model : 431 , p−value = 0
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% Quadratic model type

Linear regression model :
Energy ~ [ Linear formula with 99 terms in 18 predictors ]

Estimated C o e f f i c i e n t s :
Estimate SE t S t a t pValue
________ ______ _____ ______

( Intercept ) 491.78 110.96 4.43 0.00
NorthFacRatio 277.28 116.56 2.38 0.02
FormFactor −40.60 50.27 −0.81 0.42
WestFacIrradPerFA −0.44 0.57 −0.78 0.44
EnvelopeIrradPerFA −0.02 0.04 −0.52 0.60
SiteCoverage −173.23 29.34 −5.90 0.00
PlotRatio 15.09 3.51 4.29 0.00
MeanEnvelopeIrrad −0.20 0.24 −0.82 0.41
EastFacIrradPerFA −0.24 0.67 −0.35 0.73
NorthFacIrradPerFA 1.56 1.60 0.97 0.33
MeanNorthFacIrrad −0.10 0.06 −1.69 0.09
RoofRatio 308.47 232.23 1.33 0.18
MeanFacIrrad −0.33 0.33 −1.00 0.32
SouthFacIrradPerFA −1.02 0.76 −1.35 0.18
MeanWestFacIrrad −0.04 0.07 −0.59 0.55
WFRatio −108.07 440.92 −0.25 0.81
MeanEastFacIrrad 0.07 0.11 0.67 0.50
MeanHeight −6.01 2.17 −2.77 0.01
MeanSouthFacIrrad 0.03 0.07 0.42 0.67
NorthFacRatio : FormFactor −49.63 34.42 −1.44 0.15
NorthFacRatio : WestFacIrradPerFA 1.13 0.87 1.29 0.20
NorthFacRatio : EnvelopeIrradPerFA 0.43 0.06 6.62 0.00
NorthFacRatio : EastFacIrradPerFA −0.99 0.84 −1.17 0.24
NorthFacRatio : RoofRatio −497.02 122.28 −4.06 0.00
NorthFacRatio : WFRatio −1058.47 269.59 −3.93 0.00
NorthFacRatio : MeanEastFacIrrad −0.03 0.12 −0.27 0.79
FormFactor : EnvelopeIrradPerFA 0.03 0.05 0.53 0.59
FormFactor : SouthFacIrradPerFA 0.07 0.07 1.01 0.31
FormFactor : WFRatio −619.31 248.41 −2.49 0.01
FormFactor : MeanEastFacIrrad 0.04 0.03 1.22 0.22
FormFactor : MeanHeight 1.91 0.63 3.03 0.00
FormFactor : MeanSouthFacIrrad 0.04 0.03 1.46 0.14
WestFacIrradPerFA : PlotRatio 0.01 0.01 0.99 0.32
WestFacIrradPerFA : EastFacIrradPerFA −0.04 0.01 −2.93 0.00
WestFacIrradPerFA : NorthFacIrradPerFA 0.01 0.01 1.65 0.10
WestFacIrradPerFA : MeanNorthFacIrrad 0.00 0.00 2.90 0.00
WestFacIrradPerFA : RoofRatio 2.78 0.62 4.52 0.00
WestFacIrradPerFA : MeanFacIrrad −0.01 0.00 −3.70 0.00
WestFacIrradPerFA : SouthFacIrradPerFA −0.00 0.00 −0.94 0.35
WestFacIrradPerFA : MeanWestFacIrrad 0.01 0.00 3.72 0.00
WestFacIrradPerFA : MeanEastFacIrrad 0.00 0.00 1.74 0.08
WestFacIrradPerFA : MeanSouthFacIrrad −0.00 0.00 −2.67 0.01
EnvelopeIrradPerFA : SiteCoverage −0.05 0.02 −2.79 0.01
EnvelopeIrradPerFA : MeanNorthFacIrrad −0.00 0.00 −2.10 0.04
EnvelopeIrradPerFA : MeanFacIrrad 0.00 0.00 5.28 0.00
EnvelopeIrradPerFA : MeanWestFacIrrad −0.00 0.00 −6.55 0.00
EnvelopeIrradPerFA : MeanEastFacIrrad −0.00 0.00 −2.76 0.01
EnvelopeIrradPerFA : MeanSouthFacIrrad −0.00 0.00 −4.29 0.00
SiteCoverage : MeanFacIrrad 0.39 0.05 7.66 0.00
SiteCoverage : WFRatio −21.73 40.57 −0.54 0.59
PlotRatio : MeanFacIrrad −0.02 0.01 −4.16 0.00
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Appendix A. Metamodels

PlotRatio : MeanHeight −0.13 0.04 −3.09 0.00
MeanEnvelopeIrrad : EastFacIrradPerFA −0.00 0.00 −1.41 0.16
MeanEnvelopeIrrad : NorthFacIrradPerFA 0.01 0.00 3.38 0.00
MeanEnvelopeIrrad : RoofRatio −1.60 1.32 −1.22 0.22
MeanEnvelopeIrrad : MeanFacIrrad −0.00 0.00 −0.98 0.33
MeanEnvelopeIrrad : SouthFacIrradPerFA −0.01 0.00 −4.66 0.00
MeanEnvelopeIrrad : MeanWestFacIrrad 0.00 0.00 3.26 0.00
MeanEnvelopeIrrad : MeanSouthFacIrrad 0.00 0.00 1.43 0.15
EastFacIrradPerFA : SouthFacIrradPerFA −0.00 0.00 −1.18 0.24
EastFacIrradPerFA : MeanWestFacIrrad −0.00 0.00 −3.24 0.00
EastFacIrradPerFA : MeanSouthFacIrrad 0.00 0.00 4.95 0.00
NorthFacIrradPerFA : RoofRatio −6.32 2.20 −2.87 0.00
NorthFacIrradPerFA : MeanFacIrrad −0.02 0.01 −4.02 0.00
NorthFacIrradPerFA : MeanWestFacIrrad 0.00 0.00 3.31 0.00
NorthFacIrradPerFA : WFRatio −9.23 3.72 −2.48 0.01
NorthFacIrradPerFA : MeanEastFacIrrad 0.00 0.00 3.73 0.00
NorthFacIrradPerFA : MeanHeight 0.00 0.01 0.51 0.61
NorthFacIrradPerFA : MeanSouthFacIrrad 0.00 0.00 1.67 0.10
RoofRatio : MeanFacIrrad −1.13 1.03 −1.09 0.27
RoofRatio : SouthFacIrradPerFA 4.79 0.86 5.60 0.00
RoofRatio : WFRatio −1419.10 361.01 −3.93 0.00
RoofRatio : MeanEastFacIrrad 0.45 0.19 2.39 0.02
RoofRatio : MeanSouthFacIrrad 0.32 0.16 1.99 0.05
MeanFacIrrad : SouthFacIrradPerFA 0.00 0.00 3.08 0.00
MeanFacIrrad : MeanWestFacIrrad 0.00 0.00 0.57 0.57
MeanFacIrrad : WFRatio 1.66 0.40 4.17 0.00
MeanFacIrrad : MeanSouthFacIrrad 0.00 0.00 3.01 0.00
SouthFacIrradPerFA : WFRatio 3.72 1.44 2.59 0.01
SouthFacIrradPerFA : MeanHeight −0.00 0.00 −0.63 0.53
SouthFacIrradPerFA : MeanSouthFacIrrad 0.00 0.00 0.24 0.81
MeanWestFacIrrad : MeanEastFacIrrad 0.00 0.00 3.66 0.00
WFRatio : MeanHeight 6.73 3.76 1.79 0.07
MeanEastFacIrrad : MeanHeight −0.00 0.00 −1.15 0.25
MeanEastFacIrrad : MeanSouthFacIrrad −0.00 0.00 −6.02 0.00
NorthFacRatio^2 26.80 72.24 0.37 0.71
FormFactor^2 −8.61 9.02 −0.96 0.34
WestFacIrradPerFA^2 0.02 0.01 3.16 0.00
MeanEnvelopeIrrad^2 0.00 0.00 0.67 0.50
EastFacIrradPerFA^2 0.02 0.01 2.66 0.01
NorthFacIrradPerFA^2 0.01 0.01 2.12 0.03
RoofRatio^2 760.78 437.66 1.74 0.08
MeanFacIrrad^2 0.00 0.00 0.32 0.75
SouthFacIrradPerFA^2 −0.00 0.00 −1.74 0.08
MeanWestFacIrrad^2 −0.00 0.00 −4.69 0.00
WFRatio^2 63.59 291.32 0.22 0.83
MeanEastFacIrrad^2 −0.00 0.00 −1.97 0.05
MeanHeight^2 0.02 0.01 2.27 0.02
MeanSouthFacIrrad^2 −0.00 0.00 −3.19 0.00

Number of observations : 624 , Error degrees of freedom : 525
Root Mean Squared Error : 0.813
R−squared : 0.988 , Adjusted R−Squared 0.985
F−s t a t i s t i c vs . constant model : 427 , p−value = 0
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A.3. Interpretation - Main effects
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B Prototype

B.1 Implementation

The following images are supporting material regarding the implementation of the prototype

described in section 5.1. The diagram of Fig. B.1 presents the internal functioning and re-

lationship between each part of the prototype. Figure B.2 illustrates the different building

configurations possible when combining the alignment, rotation and orientation specifica-

tions in the user-interface of Fig. 5.4. Figure B.3 is a screenshot of the DIVA cluster (see Fig.

B.1) holding 20 instances of the DIVA irradiation simulation component, i.e. one per design

variant generated by the prototype.

Graphical 
user interface

Solution 
class

DIVA
cluster

Parameters 
component

Building 
class

Evaluation 
component

Solutions 
component

Add building

Launch 

simulation

Function query

New building

Generate 

solutions

Irradiation 

simulation

Information

Query info of 

solution i

Compute 

predictors

Function return

‘Hidden’ 
code

UrbanSOLve
component

Figure B.1 – Implementation diagram showing the chronological communication between the different
parts composing the prototype (diagram by Mélanie Huck).
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Appendix B. Prototype
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B.1. Implementation

x 20

Figure B.3 – Irradiation cluster in Grasshopper, holding 20 instances of the DIVA irradiation simulation
component.
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Appendix B. Prototype

B.2 Static demo of prototype

The screenshots below illustrate the unfolding of the workflow through the use of the prototype,

starting from the Rhino and Grasshopper files prepared for the workshops. The numbered

items in the images represent user actions.

Rhino file with base design (parcel + context)

Grasshopper file with 
workflow set-up

1. Open custom interface from 
‘Parameters’ component

Custom interface for 
user-inputs

2. Select building typology, orientation 
(for L-shaped), alignment for reference 

point (center vs corner) and rotation

3. Click button to position 
building reference point

(a) Starting point: design context and parcel from the prepared Rhino file; Grasshopper file containing the 
implemented workflow and custom plug-in, from which the custom interface can be opened. 

(b) Start of user-input phase via the custom interface and Rhino window. 

222



B.2. Static demo of prototype

(c) Definition of a first ‘abstracted building’ by positioning a reference point on the parcel. 

(d) A schematic view of each positioned building (numbered) is provided by the prototype.  

4. Position first building (here 
with center point as reference)

(simplified view of context)

Schematic visualization 
of first building 

5. Continue user-input process 
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Appendix B. Prototype

(e) Once the base case design has been completed (all reference points placed), the user must specify the 
remaining inputs: the parameterization of the design (minimum and maximum design variable values). 

(f) When the user launches the simulation, the prototype searches for valid design variants and computes the 
required metamodel inputs (geometry- and irradiation-based parameters) for each one of them. 

6. Definition of remaining 
user-inputs

7. Launch of simulation

Schematic visualization of all 
positioned reference points

Irradiation simulation (DIVA) for each design variant 
randomly defined by prototype from user-inputs
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B.2. Static demo of prototype

(g) Following the performance assessment by the prototype, results can be visualized in different formats: an 
irradiation map of the variant selected by the user via a slider; the relative performance in 2D graphs.  

(h) Additional outputs from the prototype are a Rhino model for each variant and an excel file containing the 
performance data for all variants, all automatically exported in a folder. 

Visualization of outputs

8. Browse through variants

Information of 
selected variant

Irradiation map of 
selected variant

3D performance graph 
visualized in 2D

Visualization of outputs

Automatically saved 3dm 
model or each variant

Automatically saved excel file 
with performance of each variant
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C Workshop

C.1 Questionnaires

The original French version of the pre- (initial) and post- (final) questionnaires to which

workshop participants had to answer are included in the following pages. They are introduced

in section 5.2.2, while answers are shown in section 6.1 and appendix C.4.
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C.1. Questionnaires
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C.3 Supporting material

Figure C.1 – Drawing base provided to participants in Phase A.

Figure C.2 – Rhino 3D model of the design task prepared for the workshops. Participants worked on the
central empty parcel.
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URBAN SOLAR VISUAL EXPLORER - URBANSOLVE [BETA VERSION]

Instructions - Inputs

1. Démarrer la capture vidéo de l’écran. 

2. Maximiser la fenêtre Rhino ‘Maquette_Workshop_Final.3dm’.

3. Dans la fenêtre Grasshopper, double cliquer sur l’icône des 
    Paramètres pour ouvrir l’interface UrbanSolve. 

4. Création des bâtiments : 
    choississez d’abord la typologie, 
    l’alignement voulu (centre ou bord), 
    la rotation (0, 90, 180 et -90) et dans 
    le cas de typologie en L, l’orientation.  

    

    Appuyez ensuite sur  ‘Créer un bâtiment’.  Positionnez le bâtiment en cliquant sur la parcelle dans la fenêtre Rhino. 
    Répétez pour chaque bâtiment. Vous pouvez à tout moment (avant l’étape 6) bouger ou éliminer un point.

5. Ajuster les paramètres restants : 
            - Min et max pour les dimensions X, Y, Z (en nombre d’étages de 3 m)
            - Min et max pour la profondeur dans le cas de typologies en L ou en ilôts
            - Min et max pour l’IUS (déjà fixé à 1.3 et 2) 
            - Distance minimale à respecter entre bâtiments (3 m par défaut)
    Afin de faciliter et accélérer le processus de recherche de solutions, bien 
    définir les paramètres par exemple à l’aide de quelques calculs.

6. Appuyer sur ‘Valider les paramètres’ et ensuite ‘Lancer la simulation’. 
    Vous devrez alors attendre un moment pendant que l’outil génère et 
    évalue 20 solutions. 

1. 

3. 

5. 

6. 

centre bord 
(rotation 0) 

240



C.3. Supporting material

URBAN SOLAR VISUAL EXPLORER - URBANSOLVE [BETA VERSION]

7. La visualisation des résultats se fait dans les différentes fenêtres (’viewports’) de Rhino. 
    Pour faciliter la visualisation, minimiser la fenêtre Grasshopper (double-click sur la barre du haut). 

Instructions - Outputs/Visualisation

8. Les 3 graphes vous permettent de voir la performance relative 
    des 20 variantes (numérotées de 0 à 19). Chaque graphique 
    montre les résultats pour 2 des 3 critères de performance. 
    Pour chaque critère, le scénario avec la meilleure performance
    est identifié :
 Vert : meilleur potentiel énergétique passif
 Orange : meilleur potentiel énergétique actif
 Mauve : meilleur potentiel en éclairage naturel
    
    Les limites de  l’axe de chaque critère sont calculées à partir 
    du minimum et maximum obtenus sur l’ensemble des 20 solutions 
    pour ce critère en particulier. Ces limites changent donc à 
    chaque exécution du programme (chaque nouvelle itération 
    ‘Lancer la simulation’). 
  

10. Pour chaque scénario, un fichier Rhino est créé et sauvegardé dans le dossier : 
      ‘Workshop_[date]\Variantes3dm\’ 
       Cela permet d’ouvrir un modèle .3dm pour un 
       scénario en particulier que l’on voudrait examiner 
       davantage et/ou utiliser ultérieurement. 
       Un fichier excel est également créé, contenant les 
       valeurs de performance pour chaque critère et scénario.       
       Attention, ces fichiers sont écrasés à chaque fois 
       qu’on relance la simulation (chaque fois que 20 nouvelles variantes sont créées).  

9. Vous pouvez visualiser un scénario en particulier, ainsi que 
    les valeurs relatives à ce scénario, à l’aide du curseur (’slider’) 
    ‘Sélectionner une solution, qui se trouve dans 
    la fenêtre Grasshopper intégrée à Rhino. 
    Soyez patient, le fait de bouger le curseur 
    cause un temps d’attente dans la mise 
    à jour de la solution affichée.  
    Truc : taper une commande 
    (ex : ‘distance’) dans la fenêtre Rhino
    avant de bouger le curseur. 
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C.4. Results per participant

C.4 Results per participant

In this section, we present the results for each of the eight participants in a summary in-

cluding, in this order: responses to the initial questionnaire, simulated performance of the

variants along with ranking results for each phase, Variant A and B (when present) through

an irradiation and DA false-color map, and answers to the final questionnaire. A brief syn-

thesis concludes each part to highlight the main observations and, when relevant, issues

encountered by the participant.
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Participant 1 - Architect / urban designer (15 years of experience)

Table C.1 – Participant 1’s (a) answers to the initial questionnaire and (b) results in the ranking phases
according to the simulated performance of each variant.

(a) Previous experience with tools and performance
evaluation.

Conceptual Detailed Both

Experience with…

Modeling tools SketchUp, AutoCAD

Simulation tools

Experience with evaluating…

Rule-of-thumb heating

Visualization heating

Simulation

Ext. consultant

Rule-of-thumb

Visualization

Simulation

Ext. consultant

Rule-of-thumb

Visualization

Simulation

Ext. consultant

Passive solar 
through:

Daylight 
through:

Active solar 
through:

(b) Simulated performance of variants and ranking
results.

V1 V2 V3 VA VB τ

Simulated energy need 
[kWh/m2

FA]
44.0 43.6 37.1 39.0

Initial ranking 1 0 0 0 0.33

Inter. ranking 1 1 1 1 1

Final ranking

Simulated sDA [%FA] 63.7 62.6 57.5 54.4

Initial ranking 0 1 0 0 -0.33

Inter. ranking 1 1 1 1 1

Final ranking

Simulated energy 
production [kWh/m2

FA]
61.3 56.4 60.8 61.9

Initial ranking 1 0 0 1 0.67

Inter. ranking 1 1 1 1 1

Final ranking

Incorrectly ranked

Correctly ranked

(a) VA - Irradiation map

0

1000

kW
h

/m
2

(b) VA - sDA map

0

100 

%
 

Figure C.3 – Variant submitted by participant 1.

Figure C.4 – Example variants produced by the prototype, showing the building dimensions issue
(screenshots of recorded session).
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C.4. Results per participant

Table C.2 – Participant 1’s answers to the final questionnaire.

The usage of this prototype…
allowed you to learn new elements useful in your approach to the problem

influenced your approach to the problem

influenced your final concept

made you more confident in your decision-making

The usage of this prototype allowed you to learn about the performance criterion linked to…
the passive solar potential 

daylight

the active solar potential 

You are satisfied regarding…
the facility of using the prototype

the prototype's interface

the time required when using the prototype

the relevance of the prototype's approach

the relevance of the information brought by the prototype

General comments

Suggestions

strongly 
agreeagree

neither 
agree nor 
disagreedisagree

strongly 
disagree

Hard to use in practice in its current status due to difficulty in specifying realistic building dimensions for the 
‘simple volume’ typology.  The output table allows to easily identify optimal solutions.

Synthetic view of 20 solutions as output (pdf format). Ungroup ‘simple volume’ types for better dimension 
control. Add parameter maximum distance between building. Add axis limits on graphs. 

Issue This participant experienced some difficulties in re-creating something

similar to their VA when using the prototype and as such, has not pro-

vided a VB and final ranking. The source of the problem seems to lie

in the minimum and maximum y value required to cover the range of

building dimensions, from the narrow bars to the longer L-shaped (see y

dimension in Fig. C.3b). Indeed, as explained in section 5.1, the allowed

range in terms of x, y, z specified by the user is applied to all buildings. The

effect of the wide range in y caused the prototype to propose designs with

large buildings instead of the desired narrow bars. In light of these en-

countered difficulties, this participant explicitly mentioned answering the

final questionnaire based on the potential of the tool if further developed,

particularly to solve the problem of unrealistic building dimensions and

to allow reproducing with more accuracy the desired building typology

and layout.

Ranking Between the initial and intermediate ranking phases, we observe a clear

overall increase in the level of success in Table C.1b.
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Participant 2 - Architect / urban designer (4 years of experience)

Table C.3 – Participant 2’s (a) answers to the initial questionnaire and (b) results in the ranking phases
according to the simulated performance of each variant.

(a) Previous experience with tools and performance
evaluation.

Passive solar 
through:

Daylight 
through:

Active solar 
through:

Conceptual Detailed Both

Experience with…

Modeling tools SketchUp, Vectorworks

Simulation tools

Experience with evaluating…

Rule-of-thumb

Visualization

Simulation

Ext. consultant

Rule-of-thumb

Visualization

Simulation

Ext. consultant

Rule-of-thumb

Visualization

Simulation

Ext. consultant

(b) Simulated performance of variants and ranking
results.

V1 V2 V3 VA VB τ

Simulated energy need 
[kWh/m2

FA]
44.0 43.6 37.1 40.9 39.7

Initial ranking 1 0 0 0 0.33

Inter. ranking 1 0 1 0 0.67

Final ranking 1 0 1 0 1 0.80

Simulated sDA [%FA] 63.7 62.6 57.5 51.5 58.5

Initial ranking 0 1 0 0 -0.33

Inter. ranking 1 1 1 1 1

Final ranking 1 1 1 1 1 1

Simulated energy 
production [kWh/m2

FA]
61.3 56.4 60.8 59.3 58.1

Initial ranking 0 1 0 1 0.67

Inter. ranking 1 1 1 1 1

Final ranking 1 1 1 1 1 1

Incorrectly ranked

Correctly ranked

(a) VA - Irradiation map

0

1000

kW
h

/m
2

(b) VA - sDA map

0

100 

%
 

(c) VB - Irradiation map

0

1000

kW
h

/m
2

(d) VB - sDA map

0

100 

%
 

Figure C.5 – Variants submitted by participant 2.
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C.4. Results per participant

Table C.4 – Participant 2’s answers to the final questionnaire.

The usage of this prototype…
allowed you to learn new elements useful in your approach to the problem

influenced your approach to the problem

influenced your final concept

made you more confident in your decision-making

The usage of this prototype allowed you to learn about the performance criterion linked to…
the passive solar potential 

daylight

the active solar potential 

You are satisfied regarding…
the facility of using the prototype

the prototype's interface

the time required when using the prototype

the relevance of the prototype's approach

the relevance of the information brought by the prototype

General comments

Suggestions

strongly 
agreeagree

neither 
agree nor 
disagreedisagree

strongly 
disagree

The building generation is too restrictive, it was impossible to recreate my initial concept. The interface is 
simple to use and could be more complex if it allows modeling with more adequacy. Visualization is interesting 
although a little bit slow. 

Be able to distinguish between bars and more cubic volumes and to specify x, y, z for each building. Output a 
pdf to visualize all variants with a notation system with respect to an acceptable reference value. Be able to 
assess the exact initial variant to compare.  

Issue This participant also experienced some difficulties in re-creating some-

thing similar to their VA when using the prototype. In addition to the

issues explained earlier linked to the dimension ranges, the problem may

have been caused also by the bar being positioned ‘within’ the L-shaped

building. This participant’s VB is thus not derived from VA, but rather

from a design they were able to explore using the tool.

Ranking Between the initial and intermediate ranking phases, we observe an in-

crease in the level of success in Table C.3b, particularly for the daylight

and active solar criteria. The final ranking is as good or better than the

intermediate one.

Performance VB is similar to VA for the energy need and production criteria, while

having a higher sDA value, as can be visualized in Fig. C.5.

247



Appendix C. Workshop

Participant 3 - Architect (8 years of experience)

Table C.5 – Participant 3’s (a) answers to the initial questionnaire and (b) results in the ranking phases
according to the simulated performance of each variant.

(a) Previous experience with tools and performance
evaluation.

Conceptual Detailed Both

Experience with…

Modeling tools Vectorworks

Simulation tools Lesosai

Experience with evaluating…

Rule-of-thumb

Visualization

Simulation

Ext. consultant heating, thermal comfort

Rule-of-thumb

Visualization

Simulation

Ext. consultant x

Rule-of-thumb

Visualization

Simulation

Ext. consultant x

Passive solar 
through:

Daylight 
through:

Active solar 
through:

(b) Simulated performance of variants and ranking
results.

V1 V2 V3 VA VB τ

Simulated energy need 
[kWh/m2

FA]
44.0 43.6 37.1 40.8 44.7

Initial ranking 0 0 0 0 -0.33

Inter. ranking 1 1 1 1 1

Final ranking 0 0 1 0 0 0.40

Simulated sDA [%FA] 63.7 62.6 57.5 62.1 61.4

Initial ranking 0 0 0 0 0.33

Inter. ranking 0 0 1 0 0.33

Final ranking 1 1 0 0 1 0.40

Simulated energy 
production [kWh/m2

FA]
61.3 56.4 60.8 72.3 59.3

Initial ranking 0 1 0 1 0.67

Inter. ranking 1 1 1 1 1

Final ranking 0 0 0 0 1 0

Incorrectly ranked

Correctly ranked

(a) VA - Irradiation map

0

1000

kW
h

/m
2

(b) VA - sDA map

0

100 

%
 

(c) VB - Irradiation map
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(d) VB - sDA map

0

100 
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Figure C.6 – Variants submitted by participant 3.
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C.4. Results per participant

Table C.6 – Participant 3’s answers to the final questionnaire.

The usage of this prototype…
allowed you to learn new elements useful in your approach to the problem

influenced your approach to the problem

influenced your final concept

made you more confident in your decision-making

The usage of this prototype allowed you to learn about the performance criterion linked to…
the passive solar potential 

daylight

the active solar potential 

You are satisfied regarding…
the facility of using the prototype

the prototype's interface

the time required when using the prototype

the relevance of the prototype's approach

the relevance of the information brought by the prototype

General comments

Suggestions

strongly 
agreeagree

neither 
agree nor 
disagreedisagree

strongly 
disagree

The interface is directly usable without much preliminary instructions. Visualization in Rhino is pleasant and 
directly usable. I realized that my intuition is not necessarily just and that this type of decision-support tool 
would be very useful to me. The easy handling and intuitive interface are perfectly adapted for the purpose of 
the tool, which is complementary to other classical design tools. 

More complementary typologies when modeling.  

Ranking Between the initial and intermediate ranking phases, we observe an in-

crease in the level of success in Table C.5b, particularly for the energy need

and production criteria. The final ranking is better than the intermediate

one for the sDA and worse for the other two criteria. For the active solar

potential, the participant may have been misled by the erroneous values

displayed by the tool, due to the mistake in the algorithm as explained in

section 6.1.

Performance VB is worse than VA for the energy need and production criteria, while

very close in terms of sDA.
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Appendix C. Workshop

Participant 4 - Engineer (3 years of experience)

Table C.7 – Participant 4’s (a) answers to the initial questionnaire and (b) results in the ranking phases
according to the simulated performance of each variant.

(a) Previous experience with tools and performance
evaluation.

Passive solar 
through:

Daylight 
through:

Active solar 
through:

Conceptual Detailed Both

Experience with…

Modeling tools ArchiCAD, AutoCAD SketchUp

Simulation tools Lesosai

Experience with evaluating…

Rule-of-thumb heating, thermal comfort

Visualization

Simulation

Ext. consultant

Rule-of-thumb

Visualization

Simulation x

Ext. consultant

Rule-of-thumb x

Visualization

Simulation

Ext. consultant

(b) Simulated performance of variants and ranking
results.

V1 V2 V3 VA VB τ

Simulated energy need 
[kWh/m2

FA]
44.0 43.6 37.1 39.9 43.0

Initial ranking 1 0 0 1 0

Inter. ranking 1 0 1 0 0.67

Final ranking 1 0 1 0 0 0.60

Simulated sDA [%FA] 63.7 62.6 57.5 53.0 56.0

Initial ranking 0 1 0 0 -0.33

Inter. ranking 1 0 0 0 0.33

Final ranking 0 0 0 0 0 0

Simulated energy 
production [kWh/m2

FA]
61.3 56.4 60.8 65.3 69.4

Initial ranking 0 0 0 0 -0.33

Inter. ranking 0 1 0 0 0

Final ranking 0 1 0 0 0 0.40

Incorrectly ranked

Correctly ranked

(a) VA - Irradiation map

0

1000

kW
h

/m
2

(b) VA - sDA map

0

100 

%
 

(c) VB - Irradiation map

0

1000

kW
h
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2

(d) VB - sDA map

0

100 
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Figure C.7 – Variants submitted by participant 4.
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C.4. Results per participant

Table C.8 – Participant 4’s answers to the final questionnaire.

The usage of this prototype…
allowed you to learn new elements useful in your approach to the problem

influenced your approach to the problem

influenced your final concept

made you more confident in your decision-making

The usage of this prototype allowed you to learn about the performance criterion linked to…
the passive solar potential 

daylight

the active solar potential 

You are satisfied regarding…
the facility of using the prototype

the prototype's interface

the time required when using the prototype

the relevance of the prototype's approach

the relevance of the information brought by the prototype

General comments

Suggestions

strongly 
agreeagree

neither 
agree nor 
disagreedisagree

strongly 
disagree

Interesting exercise, somewhat unsettling to ask a computer to re-create by itself a representation of what we 
have imagined. Very interactive process, very positive for the evolution of the typology with respect to the three 
performance axes. Can be a very interesting tool to work on the first sketches taking into account the future 
solar performances.  

Differentiate in the interface between parameters that are building-specific versus those that apply to the 
whole design.  

Ranking There is an increase in the level of success between the initial and inter-

mediate ranking phases in Table C.7b, with the final ranking similar to the

intermediate one.

Performance VB has a slightly higher daylight and active solar potential than VA.
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Appendix C. Workshop

Participant 5 - Architect (6 years of experience)

Table C.9 – Participant 5’s (a) answers to the initial questionnaire and (b) results in the ranking phases
according to the simulated performance of each variant.

(a) Previous experience with tools and performance eval-
uation.

Conceptual Detailed Both

Experience with…

Modeling tools Rhino AutoCAD

Simulation tools Lesosai

Experience with evaluating…

Rule-of-thumb heating, thermal comfort

Visualization heating

Simulation

Ext. consultant heating, thermal comfort

Rule-of-thumb x

Visualization

Simulation

Ext. consultant x

Rule-of-thumb x

Visualization

Simulation

Ext. consultant x

Passive solar 
through:

Daylight 
through:

Active solar 
through:

(b) Simulated performance of variants and rank-
ing results.

V1 V2 V3 VA VB τ

Simulated energy need 
[kWh/m2

FA]
44.0 43.6 37.1 40.6

Initial ranking 0 1 0 1 -0.67

Inter. ranking 1 1 1 1 1

Final ranking

Simulated sDA [%FA] 63.7 62.6 57.5 46.1

Initial ranking 0 0 1 0 -0.33

Inter. ranking 1 1 1 1 1

Final ranking

Simulated energy 
production [kWh/m2

FA]
61.3 56.4 60.8 63.0

Initial ranking 1 1 1 1 1

Inter. ranking 1 1 1 1 1

Final ranking

Incorrectly ranked

Correctly ranked

(a) VA - Irradiation map

0

1000

kW
h

/m
2

(b) VA - sDA map

0

100 

%
 

Figure C.8 – Variant submitted by participant 5.
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C.4. Results per participant

Table C.10 – Participant 5’s answers to the final questionnaire.

The usage of this prototype…
allowed you to learn new elements useful in your approach to the problem

influenced your approach to the problem

influenced your final concept

made you more confident in your decision-making

The usage of this prototype allowed you to learn about the performance criterion linked to…
the passive solar potential 

daylight

the active solar potential 

You are satisfied regarding…
the facility of using the prototype

the prototype's interface

the time required when using the prototype

the relevance of the prototype's approach

the relevance of the information brought by the prototype

General comments

Suggestions

strongly 
agreeagree

neither 
agree nor 
disagreedisagree

strongly 
disagree

Pleasant interface. Results quickly and easily comparable. Pleasant visualization, except for graphs (hard to 
read). Very promising and interesting tool. 

Integrate program types. Increase resolution in decisions on dimensions for individual buildings. Be able to 
integrate street network, green areas, facade materials. Possibility of importing 3D models,. 

Issue This participant experienced some difficulties in re-creating something

similar to their VA when using the prototype. They did not provide a

VB and final ranking. The problem is likely to have been caused by the

complexity of the design, with multiple and closely positioned buildings

of varying dimensions. Following the user-inputs, the prototype kept

searching for valid solutions and had to be forced to restart considering

the limited duration of the workshop.

Ranking There is an increase in the level of success between the initial and inter-

mediate ranking phases in Table C.9b for the passive solar and daylight

criteria, the active solar showing a perfect ranking in both phases.
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Appendix C. Workshop

Participant 6 - Architect / Urban designer (6 years of experience)

Table C.11 – Participant 6’s (a) answers to the initial questionnaire and (b) results in the ranking phases
according to the simulated performance of each variant.

(a) Previous experience with tools and performance evalu-
ation.

Passive solar 
through:

Daylight 
through:

Active solar 
through:

Conceptual Detailed Both

Experience with…

Modeling tools Rhino, Grasshopper, Vectorworks AutoCAD

Simulation tools Lesosai

Experience with evaluating…

Rule-of-thumb heating thermal comfort

Visualization heating thermal comfort

Simulation

Ext. consultant heating, thermal comfort

Rule-of-thumb x

Visualization x

Simulation

Ext. consultant x

Rule-of-thumb x

Visualization x

Simulation

Ext. consultant

(b) Simulated performance of variants and rank-
ing results.

V1 V2 V3 VA VB τ

Simulated energy need 
[kWh/m2

FA]
44.0 43.6 37.1 51.9

Initial ranking 0 0 1 1 0.67

Inter. ranking 1 1 1 1 1

Final ranking

Simulated sDA [%FA] 63.7 62.6 57.5 73.3

Initial ranking 0 1 0 1 0

Inter. ranking 0 0 1 0 0.33

Final ranking

Simulated energy 
production [kWh/m2

FA]
61.3 56.4 60.8 73.3

Initial ranking 1 1 1 1 1

Inter. ranking 1 1 1 1 1

Final ranking

Incorrectly ranked

Correctly ranked

(a) VA - Irradiation map

0

1000

kW
h

/m
2

(b) VA - sDA map

0

100 

%
 

Figure C.9 – Variant submitted by participant 6.
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C.4. Results per participant

Table C.12 – Participant 6’s answers to the final questionnaire.

The usage of this prototype…
allowed you to learn new elements useful in your approach to the problem

influenced your approach to the problem

influenced your final concept

made you more confident in your decision-making

The usage of this prototype allowed you to learn about the performance criterion linked to…
the passive solar potential 

daylight

the active solar potential 

You are satisfied regarding…
the facility of using the prototype

the prototype's interface

the time required when using the prototype

the relevance of the prototype's approach

the relevance of the information brought by the prototype

General comments

Suggestions

strongly 
agreeagree

neither 
agree nor 
disagreedisagree

strongly 
disagree

Easy and intuitive. 

With increased modeling capabilities, the development of unusual typologies can become very interesting with 
this tool. 

Issue This participant could not re-creating something similar to their VA when

using the prototype and did not provide a VB and final ranking. Simi-

larly to participant 5, the complexity of the design with nested L-shaped

buildings could seemingly not be handled by the prototype, which kept

searching for valid solutions.

Ranking The active solar potential shows a perfect ranking for both phases, while

there is an increase in the level of success between the initial and interme-

diate rankings for the other two criteria in Table C.11b.
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Appendix C. Workshop

Participant 7 - Architect / Urban designer (7.5 years of experience)

Table C.13 – Participant 7’s (a) answers to the initial questionnaire and (b) results in the ranking phases
according to the simulated performance of each variant.

(a) Previous experience with tools and performance evalua-
tion.

Passive solar 
through:

Daylight 
through:

Active solar 
through:

Conceptual Detailed Both

Experience with…

Modeling tools Rhino, SketchUp, ArchiCAD, Vectorworks AutoCAD, ArchiCAD

Simulation tools

Experience with evaluating…

Rule-of-thumb

Visualization heating

Simulation thermal comfort

Ext. consultant thermal comfort heating

Rule-of-thumb

Visualization

Simulation x

Ext. consultant x

Rule-of-thumb

Visualization x

Simulation x

Ext. consultant

(b) Simulated performance of variants and rank-
ing results.

V1 V2 V3 VA VB τ

Simulated energy need 
[kWh/m2

FA]
44.0 43.6 37.1 39.3 38.9

Initial ranking 0 0 1 1 0.67

Inter. ranking 0 0 1 0 0.33

Final ranking 0 0 1 0 1 0.60

Simulated sDA [%FA] 63.7 62.6 57.5 57.0 53.6

Initial ranking 1 0 1 0 0

Inter. ranking 1 0 0 0 0.33

Final ranking 1 0 0 1 0 0.20

Simulated energy 
production [kWh/m2

FA]
61.3 56.4 60.8 64.7 60.8

Initial ranking 1 1 1 1 1

Inter. ranking 1 1 1 1 1

Final ranking 1 1 0 1 0 0.80

Incorrectly ranked

Correctly ranked

(a) VA - Irradiation map

0

1000
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h

/m
2

(b) VA - sDA map

0

100 

%
 

(c) VB - Irradiation map
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Figure C.10 – Variants submitted by participant 7.
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C.4. Results per participant

Table C.14 – Participant 7’s answers to the final questionnaire.

The usage of this prototype…
allowed you to learn new elements useful in your approach to the problem

influenced your approach to the problem

influenced your final concept

made you more confident in your decision-making

The usage of this prototype allowed you to learn about the performance criterion linked to…
the passive solar potential 

daylight

the active solar potential 

You are satisfied regarding…
the facility of using the prototype

the prototype's interface

the time required when using the prototype

the relevance of the prototype's approach

the relevance of the information brought by the prototype

General comments

Suggestions

strongly 
agreeagree

neither 
agree nor 
disagreedisagree

strongly 
disagree

Interesting and useful tool since it allows evaluating multiple variants through criteria that are not often 
present when designing an urban form at the beginning of a project. The impression I got is that the tool does 
not try to impose an optimal urban form based on energy-related criteria, which are surely important for 
sustainable development, but that do not necessarily generate ‘urbanity’ and quality of public spaces (which 
remain priorities in the urban project). Rather, the tool wants to attract the attention of the user on elements of 
thought that will anyway have to be integrated into the project. This tool allows addressing these in advance. 

The tool should not propose buildings that cannot be assigned a residential or other function due to their 
dimensions. The interface should allow more freedom in defining built forms. 

Ranking Table C.13b displays no striking differences between the ranking phases.

For the active solar criterion, the participant may have been misguided

by the tool in the final ranking phase, due to the bug in the algorithm as

mentioned earlier.

Performance VB is slightly worse than VA in terms of daylight and active solar potential.
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Appendix C. Workshop

Participant 8 - Architect (2 years of experience)

Table C.15 – Participant 8’s (a) answers to the initial questionnaire and (b) results in the ranking phases
according to the simulated performance of each variant.

(a) Previous experience with tools and performance eval-
uation.

Passive solar 
through:

Daylight 
through:

Active solar 
through:

Conceptual Detailed Both

Experience with…

Modeling tools SketchUp, Grasshopper, Revit Rhino, AutoCAD

Simulation tools Ecotect

Experience with evaluating…

Rule-of-thumb heating, thermal comfort

Visualization heating

Simulation heating

Ext. consultant heating thermal comfort

Rule-of-thumb x

Visualization

Simulation x

Ext. consultant x

Rule-of-thumb x

Visualization x

Simulation x

Ext. consultant x

(b) Simulated performance of variants and rank-
ing results.

V1 V2 V3 VA VB τ

Simulated energy need 
[kWh/m2

FA]
44.0 43.6 37.1 41.6 44.8

Initial ranking 1 1 0 0 0.67

Inter. ranking 1 1 1 1 1

Final ranking 0 0 1 0 0 0.40

Simulated sDA [%FA] 63.7 62.6 57.5 45.1 60.1

Initial ranking 0 0 0 0 -1

Inter. ranking 1 1 0 0 0.67

Final ranking 1 1 0 1 0 0.80

Simulated energy 
production [kWh/m2

FA]
61.3 56.4 60.8 77.6 87.3

Initial ranking 1 1 1 1 1

Inter. ranking 1 1 1 1 1

Final ranking 0 0 0 0 0 0.20

Incorrectly ranked

Correctly ranked

(a) VA - Irradiation map

0

1000
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2

(b) VA - sDA map

0

100 

%
 

(c) VB - Irradiation map
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Figure C.11 – Variants submitted by participant 8.
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C.4. Results per participant

Table C.16 – Participant 8’s answers to the final questionnaire.

The usage of this prototype…
allowed you to learn new elements useful in your approach to the problem

influenced your approach to the problem

influenced your final concept

made you more confident in your decision-making

The usage of this prototype allowed you to learn about the performance criterion linked to…
the passive solar potential 

daylight

the active solar potential 

You are satisfied regarding…
the facility of using the prototype

the prototype's interface

the time required when using the prototype

the relevance of the prototype's approach

the relevance of the information brought by the prototype

General comments

Suggestions

strongly 
agreeagree

neither 
agree nor 
disagreedisagree

strongly 
disagree

The tool works very well, we only have to understand the possibilities in terms of available form and the 
relation with our variant A.  

Directly see on the buildings a window with their dimensions. Be able to see our initial design as a background 
image. Have a middle or entrance point when positioning buildings. Be able to visualize the shadows on the 
ground (open space).     

Ranking There is an increase in the level of success between the initial and inter-

mediate ranking phases for the energy need and daylight criteria in Table

C.15b. The final ranking is similar to the intermediate one for the sDA,

but worse for the energy need and production, the latter possibly caused

by the erroneous values seen by the participant.

Performance VB is better in terms of daylight and active solar potential.
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Acronyms

ach air changes per hour. 110

ANN artificial neural networks. 91, 93, 95

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers. 34

BIM building information modeling. 31, 33

BPS building performance simulation. xi, 8, 14, 17, 19, 36

CA(A)D computer-aided (architectural) design/drafting. 14, 15, 17, 20, 22, 28, 31, 33, 41

CFD computational fluid dynamics. 30, 43, 109, 148

DA Daylight Autonomy. xiv, 31, 65, 67, 224

DDS design decision-support. ix, xii, 9–11, 13, 19–21, 36, 44–47, 54, 85, 87, 89, 138, 143, 146,
147, 149, 165, 175, 179, 183, 185, 187, 191–193

DEM digital elevation model. xv, 23, 26, 99

DF Daylight Factor. 27, 29, 31

DHW Domestic Hot Water. 63, 143

DOE US Department of Energy. 17

DoE Design of Experiment. xv, 95, 106, 144

EU European Union. 1

FAR Floor Area Ratio. 24, 47, 58

GA genetic algorithms. 38, 39, 91, 93, 95, 148, 193

GHG greenhouse gases. 1, 2

GIS geographic information system. 22, 28, 35, 95

GP Gaussian Processes. xvii, xviii, xxii, 95, 141, 142, 183, 185
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Acronyms

GUI graphical user interface. 14

HVAC Heating, Ventilation and Air Conditioning. 64

IEA International Energy Agency. 15, 17

LCA life cycle analysis. 15

LoD Level of Detail. 53, 54, 58, 59, 97

LT Lighting and Thermal. xii, 25, 26, 35

MIT Massachusetts Institute of Technology. 33, 36

NZEB Net Zero-Energy Building. 17

PDL Plan Directeur Localisé. xi, xv, xviii, xxi, 4, 6, 50, 57, 97, 98, 166, 193

PDP Partial Dependence Plot. 135

PercErr Percentage Error. 123, 124, 139

PV photovoltaic. xiv, xxi, 15, 28, 29, 45, 49, 60–63, 69, 70, 76–78, 85, 143, 158, 192

R2 Coefficient of Determination. 123–126, 139, 182, 183

RMSE Root Mean Square Error. 123–126, 130, 132, 139, 182, 183

sDA spatial Daylight Autonomy. xiv–xvi, xviii, 48, 65, 67, 74–76, 79, 81–85, 111, 116, 121, 123,
143, 153, 169, 170, 192, 225, 227–231, 233, 235, 237, 239, 240

SE Solar Envelope. xii, 21–24, 43

SHC Solar Heating & Cooling programme. 15

SIA Société Suisse des ingénieurs et architectes. xvi, 2, 5, 33, 109, 113, 116, 117

SSE Sum of Squared Error. 124

SST Total Sum of Squares. 124

ST solar thermal. xiv, xxi, 15, 28, 29, 45, 49, 60–63, 69, 70, 77, 78, 85, 143, 158, 192

std Standard Deviation. 130, 135, 180, 182

SV Solar Volume. 22

SVF sky view factor. 23, 24, 30

SVM support vector machines. 91, 93

UHI urban heat island. 23

UK United Kingdom. 5

US United States. 5, 22, 28, 95
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