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Abstract

A new optimization-based numerical method is proposed for the solution of diffusion problems with sign-changing
conductivity coefficients. In contrast to existing approaches, our method does not rely on the discretization of a
stabilized equation and the convergence of the scheme can be proved without any symmetry assumption on the
mesh near the interface where the conductivity sign changes.

Résumé

Une méthode d’optimisation pour des problèmes de diffusion avec changement de signe. Nous
proposons une nouvelle méthode, basée sur la résolution d’un problème de minimisation, pour l’approximation de
problèmes de diffusion avec changement de signe. Cette approche, qui tire profit d’une reformulation du modèle
initial sous la forme d’un problème de transmission, ne repose pas sur la discrétisation d’une équation stabilisée, et
la convergence de la méthode est obtenue sans hypothèse de symétrie du maillage dans un voisinage de l’interface
où la conductivité change de signe.

Version française abrégée

Dans cette note, nous introduisons une méthode d’optimisation pour l’approximation numérique de
problèmes de diffusion dont la conductivité change de signe dans le domaine. La résolution numérique
efficace de ce genre de problèmes est importante pour de nombreuses applications (e.g., super-lentilles,
invisibilité), mais les méthodes existantes ne sont pour l’instant pas satisfaisantes. Dans [6], les deux
approches envisagées reposent (i) sur la discrétisation d’une équation stabilisée, pour laquelle les taux
de convergence obtenus sont sous-optimaux, ou (ii) sur des hypothèses de symétrie du maillage autour
de l’interface où la conductivité change de signe, exigences pouvant s’avérer très contraignantes pour des
interfaces générales (voir [3]) ou en 3D. La méthode numérique introduite ici, qui utilise une reformulation
du modèle initial en un problème de transmission, ne repose pas sur l’ajout de dissipation à l’équation,
et nous montrons sa convergence pour des problèmes elliptiques présentant un changement de signe sans
aucune hypothèse de symétrie sur le maillage. Nous notons que cette méthode numérique a pour la
première fois été introduite par Gunzburger et al. [9] (voir aussi [8]), dans un contexte de décomposition
de domaine pour des équations elliptiques classiques, sans preuve de convergence. L’application de cet
algorithme à des problèmes elliptiques présentant un changement de signe est introduite dans cette note,
et la convergence de la méthode est démontrée.

Email addresses: assyr.abdulle@epfl.ch (Assyr Abdulle), martin.huber@epfl.ch (Martin E. Huber),
simon.lemaire@epfl.ch (Simon Lemaire).



1. Introduction

Partial differential equations with sign-changing coefficients play an increasingly important role in the
modeling of metamaterials, with applications ranging from superlensing to cloaking. In this paper, we
consider in an open bounded polytopal domain Ω Ă Rd, d P t2, 3u such that Ω “ Ωe Y Ωi, with Ωe,Ωi

disjoint open polytopal subsets of Ω with nonzero measure, the following sign-changing diffusion problem

´divpsK∇ũq “ f in Ω, ũ “ 0 on BΩ, (1)

where K is a symmetric, uniformly elliptic and bounded matrix-valued field, and s : Ω Ñ R is a sign
function such that se :“ s|Ωe

“ 1 and si :“ s|Ωi
“ ´1. The subscripts ’e’ and ’i’ respectively stand for

the exterior (for which we assume that BΩe X BΩ has nonzero measure) and the interior subdomains,
and we denote their interface Γ “ BΩe X BΩi. We assume that f P L2pΩq and study the following weak
formulation of Problem (1): Find ũ P H1

0 pΩq such that

apũ, ϕq :“ psK∇ũ,∇ϕqΩ “ pf, ϕqΩ @ϕ P H1
0 pΩq. (2)

Several approaches have been developed to study the well-posedness of Problem (2). We first mention
the T-coercivity theory of Bonnet-Ben Dhia et al. [4]. In this context, well-posedness (in the classical
Hadamard sense or in the Fredholm sense) of Problem (2) is equivalent to finding a linear, bounded
and bijective operator T : H1

0 pΩq Ñ H1
0 pΩq such that the bilinear form ap¨, T¨q is coercive (for classical

well-posedness) or weakly coercive (for the Fredholm case). The operator T plays the role of an explicit
inf ´ sup operator. However, proving T-coercivity can be difficult for complex geometries, especially in
3D. More recently, another viewpoint has come out that consists in studying the “limit” as δ Ñ 0` of
the well-posed stabilized problem: Find ũδ P H1

0pΩq such that

aδpũδ, ϕq :“ apũδ, ϕq ´ iδpK∇ũδ,∇ϕqΩi
“ pf, ϕqΩ @ϕ P H1

0pΩq, (3)

where H1
0pΩq is complex-valued. This approach has been developed in the context of Helmholtz equations

by Nguyen [11,12], and makes use of transport operators called reflections.
Different strategies have been studied by Chesnel and Ciarlet Jr. in [6] for the numerical approximation

of Problem (2) (assuming that it is well-posed in the classical Hadamard sense). The first approach is based
on a simplicial discretization Th of Ω, that respects the interface Γ and the construction of a conforming
finite element space V0pThq that is stable by the operator T. Well-posedness and optimal convergence rates
can be shown for this approach. In practice, T-stability is achieved by means of symmetric meshes near
the interface, whose construction is a nontrivial task for complicated interfaces (see [3]) or 3D problems.
On general meshes, two main approaches have been investigated by Chesnel and Ciarlet Jr. The first
one consists in building a (mesh-dependent) operator Th, such that the bilinear form a is Th-coercive
on V0pThq (see, e.g., [13]). This kind of approach is limited by the fact that, in general, well-posedness
cannot be proved for the whole range of admissible coefficients. The second idea consists in discretizing
the stabilized equation (3), and in scaling the dissipation δ as a function of h. However, and as studied
in [6], this approach leads to suboptimal convergence rates.

In this note, we aim at proposing a new discretization approach, that is based on a reformulation
of Problem (1) as a transmission problem, whose solution is obtained numerically from an optimization
procedure. The approach we propose is proved to converge, and does not rely on any symmetry assumption
on the mesh. As opposed to T-coercivity theory, we do not need to assume well-posedness of Problem (2)
in the Hadamard sense (i.e. for any f P H´1pΩq) to prove convergence of our numerical method. We only
need to assume that, for the given f P L2pΩq we consider, the solution to Problem (2) exists and is unique.
This allows us to treat cases that cannot be analyzed using the T-coercivity theory (cf. Remark 3). The
numerical method we consider here has been introduced by Gunzburger et al. [9] (see also [8]), in the
context of domain decomposition for classical elliptic equations. However, up to now, the convergence
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of this method has never been proved. We provide the first proof of convergence of such a numerical
method, with application to sign-changing elliptic equations, for which this approach seems particularly
promising.

2. Transmission problem and numerical method

We provide in this section, under suitable regularity assumptions, an alternative characterization of
the solution to Problem (2), that will be our starting point for the design of the numerical method.

2.1. Transmission problem

Recall that f P L2pΩq. Hence, sK∇ũ P Hpdiv; Ωq. Denoting, for α P te, iu, by nα the unit normal
vector to Γ pointing out of Ωα, and introducing g̃ such that

g̃ :“
”

pK∇ũq|Ωe
¨ne

ı

|Γ
, (4)

we have that g̃ P H´1{2pΓq. Here, H´1{2pΓq denotes the dual of H1{2pBΩiq when Γ “ BΩi or of H
1{2

00 pΓq
otherwise. For α P te, iu, and for any g P H´1{2pΓq, we consider in the subdomain Ωα the problem

sαpK∇uαpgq,∇ϕαqΩα “ pf, ϕαqΩα ` sαxg, ϕαyΓ @ϕα P H
1
0zΓpΩαq, (5)

where H1
0zΓpΩαq is the space of functions in H1pΩαq that vanish on BΩαzΓ. In Ωe, Problem (5) always

admits a unique solution uepgq P H
1
0zΓpΩeq, as the measure of BΩeXBΩ is nonzero. In Ωi, Problem (5) also

admits a unique solution uipgq P H
1
0zΓpΩiq if the measure of BΩi X BΩ is nonzero. Otherwise, the problem

in Ωi is purely Neumann and we assume that the flux g P H´1{2pΓq satisfies pf, 1qΩi
´xg, 1yΓ “ 0 to ensure

that Problem (5) admits a solution, that is unique up to an additive constant. We fix the constant by
imposing puipgq, 1qΓ “ puepgq, 1qΓ. Finally, for g P H´1{2pΓq, we denote by upgq the function such that
upgq|Ωα :“ uαpgq, α P te, iu.

Proposition 2.1 (Characterization of the solution to Problem (2)) We assume that (2) admits
a unique solution ũ P H1

0 pΩq, and that there exists s̃ ą 1
2 such that ũ|Ωα P H

1`s̃pΩαq for α P te, iu. Then,

‚ the flux g̃ defined in (4) belongs to L2pΓq, and satisfies g̃ “ ´
”

p´K∇ũq|Ωi
¨ni

ı

|Γ
;

‚ upg̃q “ ũ P H1
0 pΩq;

‚ almost everywhere on the interface Γ, uepg̃q “ uipg̃q;

‚ the problem inf
gPL2pΓq

}uepgq ´ uipgq}
2
0,Γ admits g̃ as its unique solution.

Remark 1 (Assumptions on ũ) The existence (and uniqueness) of a solution ũ P H1
0 pΩq to Problem (2)

is satisfied in practice in a large variety of situations (cf., e.g., [12]). The assumption ũ|Ωα P H
1`s̃pΩαq

for α P te, iu, s̃ ą 1
2 , made in Proposition 2.1 is convenient for the analysis, as it enables to work in

L2pΓq instead of working in H´1{2pΓq. This theoretical assumption is quite strict, but not mandatory in
practice for the method to be applicable. In a forthcoming work [1], we will consider a test-case for which
this regularity assumption is violated, and show that numerical convergence can still be observed.
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2.2. Minimization problem and numerical method

We consider a family of simplicial conformal discretizations tThuh of Ω, that respects the interface Γ
and is shape-regular in the sense of Ciarlet [7]. The subscript h stands for the meshsize, i.e. the maximum
diameter of all the simplices in Th. We denote by Γh the set of faces of the mesh Th belonging to Γ. For
k P N‹ and α P te, iu, we introduce the space V kpTh,αq :“

 

v P H1pΩαq | v|T P PkdpT q, @T P Th,α
(

, where

PkdpT q is the space of d-variate polynomial functions of total degree less or equal to k in T P Th. We also
introduce the subspace V k0zΓpTh,αq :“ V kpTh,αq XH1

0zΓpΩαq.

For α P te, iu, and for any g P H´1{2pΓq, we consider, in the subdomain Ωα, the following conforming
approximation of Problem (5):

sαpK∇uh,αpgq,∇ϕh,αqΩα “ pf, ϕh,αqΩα ` sαxg, ϕh,αyΓ @ϕh,α P V
k
0zΓpTh,αq. (6)

As in the continuous case, Problem (6) always admits a unique solution uh,epgq P V
k
0zΓpTh,eq in Ωe, and

uh,ipgq P V
k
0zΓpTh,iq in Ωi when the measure of BΩi X BΩ is nonzero. For the case of a pure Neumann

problem in Ωi, we assume that pf, 1qΩi
´ xg, 1yΓ “ 0, ensuring existence of a solution and uniqueness up

to an additive constant, that we fix imposing puh,ipgq, 1qΓ “ puh,epgq, 1qΓ. For g P H´1{2pΓq, we introduce
uhpgq such that uhpgq|Ωα :“ uh,αpgq, α P te, iu.

To define the minimization problem, we introduce F kpΓhq :“
 

q P L2pΓq | q|F P Pkd´1pF q, @F P Γh
(

when the measure of BΩiXBΩ is nonzero, and we add the constraint pq, 1qΓ “ pf, 1qΩi
otherwise. We then

define the functional Jh : F kpΓhq Ñ R` such that Jhpghq :“ }uh,epghq ´ uh,ipghq}
2
0,Γ` λphq}gh}

2
0,Γ, where

λ : R‹` Ñ R‹` is a function such that lim
hÑ0

λphq “ 0, and we consider the minimization problem

inf
ghPFkpΓhq

Jhpghq. (7)

The continuous function Jh is coercive on F kpΓhq, and hence admits at least one minimizer: there exists
g̃h P F

kpΓhq such that

Jhpg̃hq ď Jhpghq for any gh P F
kpΓhq. (8)

The approximation of ũ we then consider is uhpg̃hq. The following result is a direct consequence of (8)
and of the properties of the L2-orthogonal projector from L2pΓq onto F kpΓhq.

Lemma 2.1 (Estimate on Jhpg̃hq) Assume that g̃ defined in (4) is in L2pΓq. Then, the following holds:

Jhpg̃hq ď }uh,epg̃q ´ uh,ipg̃q}
2
0,Γ ` λphq}g̃}

2
0,Γ. (9)

3. Convergence

From now on, we write A À B when there exists a constant c ą 0, possibly depending on K, k, and on
the geometry, but independent of h, and of ũ, g̃, such that A ď cB.
Lemma 3.1 (Approximation properties) Suppose that the assumptions of Proposition 2.1 are ful-
filled. Then, letting p “ minpk, s̃q, there exists δ P

`

0, 1
2

‰

such that

}∇hpuhpg̃q ´ ũq}0,Ω À hp
´

|ũ|1`p,Ωe
` |ũ|1`p,Ωi

¯

,

}uh,epg̃q ´ uh,ipg̃q}0,Γ ď
ÿ

α Pte, iu

}uh,αpg̃q ´ ũ}0,Γ À hp`δ
´

|ũ|1`p,Ωe
` |ũ|1`p,Ωi

¯

.
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Proof We first assume that we have, both in Ωe and Ωi, mixed Dirichlet–Neumann boundary conditions.
Then, classical arguments (particularly, Aubin–Nitsche duality argument, and a multiplicative continuous
trace inequality) yield

}uh,αpg̃q ´ ũ}0,Ωα ` h
δmα
2 }uh,αpg̃q ´ ũ}0,Γ ` h

δmα }∇puh,αpg̃q ´ ũq}0,Ωα À hp`δ
m
α |ũ|1`p,Ωα , (10)

for α P te, iu and with δm
α P p0, 1s only depending on the geometry of Ωα. By setting δ “ min

´

δme
2 ,

δmi
2

¯

,

we obtain the stated result. We next treat the case of a pure Neumann problem in Ωi. Due to the
choice puh,ipg̃q, 1qΓ “ puh,epg̃q, 1qΓ to fix the constant, a straightforward Aubin–Nitsche duality argument
fails. We therefore consider an auxiliary function uh,ipg̃q, defined as the unique discrete solution of the
same Neumann problem in Ωi, but for which we fix the constant as in the continuous problem, namely
puh,ipg̃q, 1qΩi

“ pũ, 1qΩi
. Then, there exists δn

i P p0, 1s, only depending on the geometry of Ωi, such that

}uh,ipg̃q ´ ũ}0,Ωi
` h

δni
2 }uh,ipg̃q ´ ũ}0,Γ ` h

δni }∇puh,ipg̃q ´ ũq}0,Ωi
À hp`δ

n
i |ũ|1`p,Ωi

. (11)

Note that, a priori, δn
i ‰ δm

i since regularity results for pure Neumann or mixed problems are different in
general. Next, we observe that uh,ipg̃q ´ uh,ipg̃q “ ch, for a constant ch P R. We then write

|Γ| ch “ puh,ipg̃q ´ uh,ipg̃q, 1qΓ “ puh,epg̃q ´ uh,ipg̃q, 1qΓ “ puh,epg̃q ´ ũ, 1qΓ ` pũ´ uh,ipg̃q, 1qΓ,

which yields, using (10) and (11),

|ch| ď |Γ|
´1{2

´

}uh,epg̃q ´ ũ}0,Γ ` }uh,ipg̃q ´ ũ}0,Γ

¯

À hp`
δme
2 |ũ|1`p,Ωe

` hp`
δni
2 |ũ|1`p,Ωi

. (12)

We finally obtain from (12)

}uh,ipg̃q ´ ũ}0,Γ ď }uh,epg̃q ´ ũ}0,Γ ` 2}uh,ipg̃q ´ ũ}0,Γ À hp`
δme
2 |ũ|1`p,Ωe

` hp`
δni
2 |ũ|1`p,Ωi

,

which enables to conclude the proof, setting in that case δ “ min
´

δme
2 ,

δni
2

¯

. l

We note that, as a consequence of Lemma 3.1, it is always possible to choose λphq in (7) such that

}uh,epg̃q ´ uh,ipg̃q}
2
0,Γ “ O pλphqq or }uh,epg̃q ´ uh,ipg̃q}

2
0,Γ “ o pλphqq. We then have the

Theorem 3.2 (Convergence of the method) Suppose that the assumptions of Proposition 2.1 are

fulfilled. Denote uhpg̃hq by ũh. Then, up to a choice of λphq in (7) such that }uh,epg̃q ´ uh,ipg̃q}
2
0,Γ “

O pλphqq, there holds as hÑ 0:

g̃h á g̃ in L2pΓq, ∇hũh á∇ũ in L2pΩqd, ũh Ñ ũ in L2pΩq. (13)

If we further choose λphq such that }uh,epg̃q ´ uh,ipg̃q}
2
0,Γ “ o pλphqq, then we have

g̃h Ñ g̃ in L2pΓq, ∇hũh Ñ∇ũ in L2pΩqd, ũh Ñ ũ in L2pΩq. (14)

Proof We begin by remarking that, for α P te, iu,

uh,αpg̃hq “ uh,αpg̃q ` vh,α, (15)

where vh,α P V
k
0zΓpTh,αq satisfies

pK∇vh,α,∇ϕh,αqΩα “ ppg̃h ´ g̃q , ϕh,αqΓ @ϕh,α P V
k
0zΓpTh,αq. (16)

From (16), we readily infer

}∇vh,α}
2
0,Ωα

À }g̃h ´ g̃}0,Γ}vh,α}0,Γ. (17)
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Besides, the following estimate can be obtained from (9):

}g̃h}
2
0,Γ ď

}uh,epg̃q ´ uh,ipg̃q}
2
0,Γ

λphq
` }g̃}

2
0,Γ. (18)

As soon as }uh,epg̃q ´ uh,ipg̃q}
2
0,Γ{λphq ď c, the combination of (18), (17), and of a continuous trace

inequality (as well as of an appropriate Poincaré inequality [5, Equation (1.1)] when the measure of
BΩi X BΩ is zero) enables to infer that there exist g̃0 P L

2pΓq, and vα P H
1
0zΓpΩαq, α P te, iu, so that the

following convergences hold as hÑ 0, up to a subsequence (retaining the same notation):

g̃h á g̃0 in L2pΓq, ∇vh,α á∇vα in L2pΩαq
d,

vh,α Ñ vα in L2pΩαq, vh,α á vα in L2pΓq.
(19)

Now, from (9) we infer

}uh,epg̃hq ´ uh,ipg̃hq}
2
0,Γ ď }uh,epg̃q ´ uh,ipg̃q}

2
0,Γ ` λphq}g̃}

2
0,Γ ď

´

c` }g̃}
2
0,Γ

¯

λphq. (20)

Owing to the fact that λphq tends to zero as h vanishes, we deduce from (20) that }uh,epg̃hq ´ uh,ipg̃hq}0,Γ Ñ

0 as hÑ 0. Combining this last result with (15) and Lemma 3.1, we get that }vh,e ´ vh,i}0,Γ Ñ 0 as hÑ 0

and hence, owing to (19), that ve “ vi almost everywhere on Γ. Passing to the limit in (16) using (19) and
a strongly converging interpolant for test functions, it can be shown that v P H1

0 pΩq such that v|Ωα :“ vα
for α P te, iu satisfies psK∇v,∇ϕqΩ “ 0 for all ϕ P H1

0 pΩq, which implies, from the well-posedness of
Problem (2), that v ” 0 and g̃0 ” g̃ (this last result is inferred considering the limit equation in a subdo-
main, and using a density argument along with the fact that g̃0, g̃ P L

2pΓq). The uniqueness of the limits
implies that the whole sequences converge in (19). Collecting these last results, (15), and Lemma 3.1, we

prove (13). If we further choose λphq such that }uh,epg̃q ´ uh,ipg̃q}
2
0,Γ{λphq Ñ 0 as hÑ 0, we get from (18)

and from the weak convergence of g̃h towards g̃ that

}g̃}0,Γ ď lim
hÑ0

inf }g̃h}0,Γ “ lim
hÑ0

sup }g̃h}0,Γ ď }g̃}0,Γ, (21)

which states the strong convergence of g̃h towards g̃ in L2pΓq. Testing (16) with vh,α, and using (21)
combined with the weak convergence result for vh,α in L2pΓq of (19), we finally get the strong convergence
of ∇vh,α towards 0 in L2pΩαq

d for α P te, iu, proving (14) and concluding the proof. l

4. Numerical validation

We consider the 2D symmetric cavity test-case of [6], for which Ω :“ p´1, 1q ˆ p0, 1q and Ωe :“
p´1, 0qˆp0, 1q (it follows that Ωi “ p0, 1qˆp0, 1q and Γ “ t0uˆr0, 1s). For this test-case, both the exterior
and the interior problems feature mixed Dirichlet–Neumann boundary conditions. For the particular
geometry considered here, elliptic regularity holds in both subdomains (see, e.g., [2, Remark I.3.6]), so
that δ “ 1

2 in Lemma 3.1. The tensor K is taken isotropic, with constant value in each subdomain
(k|Ωe

“ ke ą 0 and k|Ωi
“ ki ą 0). For this particular setting, it is known [6] that Problem (2) is well-

posed in the classical Hadamard sense if and only if the contrast ν :“ ´ ki

ke
is different from ´1. The exact

solution ũ P H1
0 pΩq we consider is

ũpx, yq :“

$

’

’

&

’

’

%

ˆ

px` 1q
2
´

2ke ´ ki

ke ´ ki
px` 1q

˙

sinpπyq in Ωe,

ke

ke ´ ki
px´ 1q sinpπyq in Ωi,
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(a) Member of the mesh sequence

10´3 10´2 10´1

10´6

10´5

10´4

10´3

10´2

10´1

100

k “ 1
k “ 2

(b) Relative H1-norm error vs. h

10´3 10´2 10´1

10´7

10´5

10´3

10´1

k “ 1
k “ 2

(c) Relative L2-norm error vs. h

Figure 1. Relative errors on Ω vs. meshsize for the symmetric cavity test-case with ν “ ´1.001.

and is associated to the right-hand side f “ ´divps k∇ũq P L2pΩq. It can be easily seen that, for α P te, iu,
ũ|Ωα P H

1`lpΩαq for any l ą 0, meaning that p “ k in Lemma 3.1.
As in [6], we choose ke “ 1 and ki “ 1.001, so that ν “ ´1.001. We run the computations on a sequence

of non-symmetric (with respect to the interface Γ), unstructured meshes. Results are depicted on Figure 1
for linear pk “ 1q and second-order pk “ 2q FEM, for our approach (solid blue), and for classical FEM
(dashed black) applied to (2). For our approach, the parameter λphq is chosen as Ophβq with βďp2k`1q, as
required by Theorem 3.2 and Lemma 3.1. Here we choose λphq “ 0.002h3 for k “ 1 and λphq “ 0.002h4.2

for k “ 2. We first observe that all convergence plots for our approach are strictly monotone, as opposed
to classical FEM. In the L2-norm, for h sufficiently small, we observe a slightly super-convergent behav-
ior for our approach for both k “ 1 and k “ 2. In the H1-norm, for both orders, our method seems
to reach the expected convergence rates for h sufficiently small, and clearly outperforms classical FEM.
The choice of a small multiplicative coefficient 0.002 in the function λ is guided by the fact that the
norm of g̃ is big for such a contrast. Hence, for coarse meshes for which convergence is far from being
reached, one has to give less weight to the second term of the functional Jh in the minimization process,
to have a chance to recover a correct approximation of g̃. This weight is useless when h is sufficiently small.

Remark 2 (Stabilization parameter) For coarse meshes, one has to tune the parameter λphq in a nontriv-
ial, contrast-depending way. This has to do with the regularization we use. If the L2-orthogonal projection

Πk
hg̃ of g̃ onto F kpΓhq was known, then we would stabilize the functional Jh with µphq

›

›gh ´Πk
hg̃
›

›

2

0,Γ

instead of λphq}gh}
2
0,Γ, yielding, in view of (18), an optimal estimate on

›

›g̃h ´Πk
hg̃
›

›

0,Γ
.

Remark 3 It has to be noted that the symmetric cavity test-case can be analyzed by means of T-coercivity.
However, it cannot be on general meshes, which is the main outcome of our approach. Furthermore, there
are also many cases (even in 2D) that cannot be analyzed, at the continuous level, using the T-coercivity
approach. This is for example the case of the cloaking device studied in [10, Section 4]. In that case, the
operator associated to the problem, viewed as an operator from H1

0 pΩq to H´1pΩq is not Fredholm, as
its range is not closed. T-coercivity is hence inapplicable. However, it is known that, for compatible right-
hand sides f P L2pΩq, the solution exists and is unique in H1

0 pΩq [10]. The convergence of our numerical
method for compatible loadings as well as numerical experiments for such problems will be investigated in
a forthcoming work [1].
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of Mathématiques & Applications. Springer-Verlag, Berlin, 2004.

[3] A.-S. Bonnet-Ben Dhia, C. Carvalho, and P. Ciarlet Jr. Mesh requirements for the finite element approximation of

problems with sign-changing coefficients. Submitted (2016). Preprint hal-01335153.

[4] A.-S. Bonnet-Ben Dhia, L. Chesnel, and P. Ciarlet Jr. T-coercivity for scalar interface problems between dielectrics and
metamaterials. ESAIM: Math. Model. Numer. Anal. (M2AN), 46:1363–1387, 2012.
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