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ABSTRACT

In this paper we address the problem of learning image structures
directly from sparse codes. We first model images as linear combi-
nations of molecules, which are themselves groups of atoms from
a redundant dictionary. We then formulate a new structure learn-
ing problem that learns molecules directly from image sparse codes,
namely from the image representation in the atom domain. We build
on a structural difference function that permits to compare molecules
and we derive an algorithm that analyses sparse codes and estimates
the most relevant signal structure without reconstructing the images.
Experiments on both synthetic and real image datasets confirm the
benefits of our new method compared to traditional learning meth-
ods.

Index Terms— sparse domain, geometric representation, repre-
sentation learning

1. INTRODUCTION

Structured sparsity [1, 2, 3] has become a popular trend in signal
processing since the consideration of dependencies between signal
elements and not only of their number leads to very effective signal
models. However, extracting the structure from the signals is quite a
challenging task. Several methods have been proposed to deal with
this problem like the double sparsity model in [4], the Markov Ran-
dom Fiels (MRFs) models in [5, 6, 7] and various deep learning ar-
chitectures [8, 9].

In this paper, we propose a new perspective on representation
learning and we address the problem of estimating the image struc-
tures directly in the sparse code domain. Our goal is to provide a way
to understand and analyze the sparse codes with minimal informa-
tion requirements on the sparse coding algorithm and the dictionary
of atoms, which are not always readily available. We consider that
the signal, given by its sparse code, is actually a linear combina-
tion of a few molecule realizations. The molecule realizations are
linear combinations of atoms and they resemble the molecule pro-
totypes which define the main structures in the image. Equipped
with a structural difference measure [10] that permits to compare
molecules built on possibly redundant dictionaries of atoms, we pro-
pose a new learning algorithm for representing an image sparse code
with molecule realizations and estimate the corresponding molecule
prototypes. Our algorithm is different than traditional dictionary
learning [11, 4, 12] as it does not work in the image domain, hence
the possible similarities between the different code entries have to be
taken into account carefully.

Our algorithm is able to recover the signal structure indepen-
dently of the exact atom form and of the actual sparse coding algo-
rithm that produced the codes. In this way, we follow the idea sup-
ported by various biological evidence that sparsity can be employed

to produce representations that fully describe the corresponding sig-
nals without the need to reconstruct them. Moreover, in our scheme
we directly deal with sparse data which is much more computation-
ally efficient than working with the original signals. In the rest of the
paper, we provide more details about the problem formulation and
the proposed algorithm in Sections 2 and 3 respectively. Finally, in
Section 4 we provide results on both synthetic and real images that
verify the effectiveness of our scheme.

2. PROBLEM FORMULATION

2.1. Signal model

We formulate now the problem of learning the underlying structure
of images given by their sparse codes. As with most structured spar-
sity priors, we assume that the occurrence of atoms in the sparse
codes is not completely independent but that atoms rather tend to
form typical visual patterns. In other words, there are some lin-
ear combinations of atoms that tend to appear more frequently than
others. In our work, we call these underlying patterns ‘molecules’
and we assume that each code is a linear combinations of a few
molecules. Therefore, our task is to identify these groups of atoms
from sparse codes. In order to cope with the overcomplete nature of
the underlying dictionary and the variability of natural signals, we
distinguish between molecule prototypes and molecule realizations,
which form respectively the image structures and their actual appear-
ance in different signals. We employ the structure difference func-
tion used for structured sparse coding with pre-defined dictionaries
in [10], in order to compare different sets of atoms without explicit
knowledge of the underlying atoms. To be more specific, we con-
sider a set of sparse codes X = {x ∈ RN , ||x||0 ≤ TS}, where TS
is the maximum sparsity level. We want to learn a set ofM molecule
prototypesCπ = [cπ,1 cπ,2 . . . cπ,M ] ∈ RN×M , ||cπ,i||0 < TA, ∀i,
where each prototype is a sparse linear combination of atoms on a
base dictionary D ∈ RN×K , such that each sparse code x ∈ X
can be represented well as a linear combination of a few slightly
deformed versions of the molecules prototypes.

The deformed versions of the prototypes are called molecule
realizations and they are defined based on the notion of pools of
atoms. The pools of atoms represent atoms in D that are similar
i.e., the pool of dj ∈ D is defined as P (dj) = {dm, 1 ≤ m ≤
K, | 〈dj , dm〉 > 1 − ε} where ε is a suitable chosen threshold
depending on the application at hand and the coherence of the dic-
tionary D. Then, the actual energy corresponding to the atom dj
in a sparse code x can be calculated by measuring the energy cap-
tured by the coefficients of all the atoms in the pool P (dj), i.e.,
ej(x) =

∑
dm∈P (dj)

x(m)〈dj , dm〉 = Sj x. The vector Sj essen-
tially expresses the pairwise relationships between the atom dj and
the rest of the atoms in the dictionary D. It is non-zero only when



dm ∈ P (dj). A molecule realization cx,i is then a deformation of
a molecule prototype cπ,i whose original atoms could be each sub-
stituted by atoms from their respective pool. As a result, a molecule
realization has a similar energy as the prototype when measured on
atom pools but not necessary exactly the same coefficients on the
atoms. Therefore, the realizations of a molecule prototype are al-
lowed to have non-zero values only in the union of the pools of the
active atoms in the prototype, namely ΓPπ,i =

⋃
dk∈Γπ,i

P (dk).
By denoting Γx,i and Γπ,i the set of atoms for which the cx,i and
the cπ,i are non-negative respectively, the constraint on the support
of cx,i can be written as Γx,i ⊆ ΓPπ,i . The structural difference ∆
then computes the energy in the pools of cx,i and compares it to the
ones in cπ,i, i.e.,

∆(cπ,i, cx,i) =
∑

dj∈Γπ,i

(cπ,i(j)− ej(cx,i))2

= ||Wi × (cπ,i − S cx,i))||22 (1)

where S = [S1 S2 · · · SK ]. The indicator vector Wi denotes the
inclusion of dictionary atoms in the support Γπ,i of the molecule
prototype cπ,i, and it is non-zero only for the atoms dj ∈ Γπ,i. The
operator × stands for element-wise multiplication. Equipped with
the above definitions, each sparse code x ∈ X can finally be written
as a sparse non-negative combination of molecules realizations plus
some bounded noise, i.e.,

x = Cxax + η, with Cx = [cx,1 cx,2 · · · cx,Q]

and ∆(cπ,i, cx,i) < T, ∀i (2)

with the atom and molecule coefficients ax(k) ≥ 0, ∀k and
cx,i(k) ≥ 0, ∀(k, i) and ||ax||0 ≤ TM , ∀x for some sparsity
threshold TM .

2.2. Structure learning problem

With the code representation in Eq. (2), the structure learning prob-
lem is cast as an optimization that seeks the best set of molecules
prototypes Ĉπ to effectively represent a set of signals given by their
sparse codes X . It can be written as:

Ĉπ = arg min
Cπ≥0

∑
x∈X

arg min
ax≥0, cx,i≥0

∆(cπ,i,cx,i)≤T
Γx,i⊆Γx∩ΓPπ,i , ∀i

||x− Cxax||22

such that ||ax||0 ≤ TM and ||cπ,i||0 ≤ TA, ∀i, x (3)

The threshold parameters TM and TA control the sparsity of the rep-
resentation while the parameter T controls the flexibility to deforma-
tions. All parameters are dependent on the application at hand. The
support of each molecule realization Γx,i, is constrained by defini-
tion to be a subset of ΓPπ,i . In order to comply with the sparse nature
of the code x, we constrain it to be also a subset of the support of x,
i.e., Γx,i ⊆ Γx∩ΓPπ,i . Note finally that the only dependence on the
dictionary D lies in the structural difference ∆(cπ,i, cx,i) from Eq.
(1) that only depends on the matrix S, representing the information
about the atoms’ pools, and not on the actual underlying dictionary
D.

3. THE MLSC ALGORITHM

The problem in Eq. (3) is highly complicated and non-convex as
it requires to solve for the code representations for all x ∈ X as

well as the molecule prototypes Cπ . To solve it, we adopt the
technique of alternating optimization to design our algorithm for
molecule learning from sparse codes (MLSC). In particular, we di-
vide the learning problem into two sub-problems: the representation
of the sparse codes as linear combinations of molecule realizations
given the molecule prototypes and the update of the molecule pro-
totypes based on the codes’ representations. We iterate over these
two steps until we reach convergence. To check for convergence
we use a symmetric extension of the structural difference mea-
sure in Eq. (1) suitable for molecule prototypes i.e., we set the
difference between two molecule prototypes cπ,k and cπ,m to be

∆π(cπ,k, cπ,m) =
1

2
(∆(cπ,k, cπ,m) + ∆(cπ,k, cπ,m)) . Then,

given the old and the new molecule sets, we use the Hungarian
algorithm [13] to find the matching with the minimum cost i.e.,
minimum sum of ∆π’s over the pairs of matched prototypes. If that
cost is small, the sets are similar and the algorithm has converged.

3.1. Sparse code representation

We present now our scheme for representing the sparse codes as lin-
ear combinations of molecule realizations given the molecule pro-
totypes. In this case, the problem in Eq. (3) becomes equivalent
to representing a sparse code x ∈ RN as a set of molecule realiza-
tions x ≈ Cxax given the prototypes Cπ , where Cx and ax follow
the required constraints. This is essentially a constrained sparse cod-
ing problem. However, the sparse nature of the codes in combination
with the absence of the dictionaryD from the data fidelity term com-
plicates the procedure since now a code x and a molecule are similar
only if they have an overlap in their non-zero entries.

To resolve this issue, we propose a greedy matching pursuit al-
gorithm [14, 15] that adjusts the molecule prototypes to the code, i.e.,
it solves for the molecule realizations simultaneously with the coeffi-
cients while taking into account the atom similarities. The algorithm
starts with an empty code representation and a residual code equal
to the original sparse code. Then, at each iteration the molecule that
best fits the residual code is picked for the code representation. The
residual is then updated and the iterations continue until either the
maximum number of allowed molecules in the representation TM is
reached, or the residual cannot be reduced anymore.

However, when picking the next molecule a simple inner prod-
uct solution between the residual and the molecule prototype is chal-
lenged by potential non-overlaps in their support. Therefore, we
have designed a new scheme for discovering the realization of a
molecule prototype that best approximates a residual sparse code by
taking into account the special characteristics of the codes. In partic-
ular, to project a residual sparse code r to the direction of a prototype
cπ,i, we need to find the molecule realization of cr,i that best approx-
imates r, while fulfilling the structural constraints Γr,i ⊆ Γr∩ΓPπ,i
and ∆(cπ,i, cr,i) = ||Wi× (cπ,i−S cr,i)|| ≤ T . The constraint on
the support Γr,i indicates exactly which entries should be non-zero
in cr,i, namely the common atoms between the residual code and the
union of active pools in the prototype cπ,i. Then, we only need to
decide the actual coefficients on this support. In particular, it is suf-
ficient to decide the energies in the active pools. Therefore we can
transform all the vectors to the pool level, i.e., rp = Wi × (S r),
cp = Wi × cπ,i and vp = Wi × (S cr,i) for the residual, the pro-
totype and the realization respectively. Then, we get the following
optimization problem:

{b̂, v̂p} = arg min
b≥0 vp≥0,
||cp−vp||≤T

||rp − vp b||22 (4)



This is essentially the problem of projecting the point rp to the closed
convex cone CΩ, where Ω is the intersection of the hypersphere H
defined by ||cp − vp|| ≤ T and the non-negative orthant J . Ac-
cording to the projection theorem [16], it is a convex problem with a
unique solution which could be solved by iterating over projections
on the individual sets [17]. However, in our case due to the small
value of T and the positivity of cp, it usually happens that the hyper-
sphere H lies entirely into J , i.e. Ω = H ∪ J = H . In this case,
our problem has a closed form solution whose detailed computation
is presented in [18].

3.2. Structure update

After finding the codes’ representations, we need to update the set
of molecule prototypes Cπ . To simplify this optimization prob-
lem, we update each molecule prototype alone. However, since
the molecule realizations are strongly related to the corresponding
prototypes through the ∆ structural constraints, the prototypes and
their realizations need to be updated at the same time. In partic-
ular, for each molecule i ∈ [1,M ], we find the codes that use it,
i.e., Xi = {x ∈ X, ax,i > 0}. Then, for each code x ∈ Xi
we define the residual code with respect to the ith molecule, i.e.,
ex = x −

∑
j 6=i Cx,jax,j . The goal of the optimization is then to

uncover a prototype cπ,i and the corresponding code representations
cx,i, ax,i for all the codes in Xi such that the ex’s are well approx-
imated. A major challenge in the corresponding optimization prob-
lem is the existence of binary variables namely the indicator function
of the support of the prototype Wi and the corresponding union of
active pools ΓPπ,i . As a result, we have a mixed-integer optimiza-
tion problem whose exact solution can be time consuming as it may
require a full search of the variable space. To overcome this diffi-
culty, we build an approximate solution in two successive steps. In
Step A, we decide on the support Γπ,i of the prototype cπ,i, and in
Step B we solve for the coefficients of the prototype on the chosen
support Γπ,i.

3.2.1. Step A: Solve for molecule support

In this step, we solve for the support of the prototype cπ,i, denoted
as Γπ,i. Our solution is based on the fact that the active pools in the
molecule prototype, namely ΓPπ,i , should cover as many of the non-
zero entries in the ex’s as possible. Otherwise, the molecule realiza-
tions cannot be non-zero in these positions and the approximation
error increases. However, given the maximum number of pools in
a prototype TA, deciding which pools to pick to maximize the cov-
ered energy in the residuals ex is an NP-hard problem [19]. To solve
the problem efficiently, we propose instead a greedy solution that
approximates the optimal support through iterations: the algorithm
starts with an empty support set and at each iteration adds the most
‘energetic’ pool to it. The total energy in each pool is computed as
Ep =

∑
x∈Xi S rx where S is the matrix representing the atoms’

pools defined in Section 2.1 and rx are the residual codes, initialized
to ex. At each iteration the pool with the highest value inEp is added
to the support. Then, the residuals rx are updated by excluding the
coefficients in the chosen pool, and the iterations continue until the
maximum number of atoms per prototype is reached.

3.2.2. Step B: Solve for molecule coefficients

After computing Γπ,i, in the second step we solve for the exact coef-
ficients of the prototype cπ,i. As before, we only need to compute the
energies at the pool level. Therefore, we end up with a formulation

similar to the one in Eq. (4). The difference is that now multiple rp’s
are available and the unknowns are both the cp and the vp’s. Seen
from a geometric perspective, the unknown now is the direction of
the center of the cone CΩ which minimizes the sum of distances
between the set of rp’s and their projections on the cone. For the
sake of efficiency, we have approximated the solution by picking the
direction that maximizes the projections of the rp’s, i.e., their first
principal component. This solution is more accurate when the value
of the radius T is small, which is usually the case, as then the cone
CΩ shrinks close to its central line.

Once the prototype cπ,i has been computed through steps A and
B, we complete the solution by finding the molecule realizations cx,i
that best fit the residual codes ex, ∀x ∈ Xi with our corresponding
algorithm described in Section 3.1.

4. EXPERIMENTAL RESULTS

We have experimented with both synthetic and real images to check
the performance of our learning algorithm, namely MLSC, when
learning the structure of a set of sparse codes. We have used an
underlying dictionary of gaussian anisotropic atoms i.e., D = {φu :
u = (τx, τy, r, σ) ∈ U} where φ(x, y) = A exp(−(x/h)2 − y2)
is the gaussian mother function and φu(x, y) = φ(x′, y′) with x′ =
cos r (x − τx) + sin r(y − τy), y′ = (1/s)(− sin r (x − τx) +
cos r(y − τy)) is the transformation between the mother function
and an atom φu. In this definition, h stands for the anisotropy, r for
rotation, τx and τy for translations in x and y directions, and σ for
scale. We compare our results with those of the double sparsity al-
gorithm (DS) [4] and K-SVD [11]. The input to the algorithms in all
cases is the sparse codes of the data. The performance is measured
with the structural difference for molecule sets introduced in Section
3 when the ground truth is known and with the mean square recon-
struction error (MSRE) of the testing set in both the sparse code and
the image domain.

4.1. Synthetic data

For our synthetic data, the atoms in D are of size 14 × 14 and
anisotropy h = 2. We have sampled the image plane for the scales
0.5 and 1 with a step size of 2 for translation and

π

6
for rotation.

Each molecule has been randomly constructed to contain 2, 3 or 4
atoms of equal energy. To produce a molecule realization, each non-
zero atom in the molecule prototype is substituted by a few atoms
in its pool. The results of the experiments, averaged over 5 different
structure instances for eachM , are shown in Figure 1. From the first
plot in the Figure 1, we can verify that our scheme manages to un-
cover the structure that is the most relevant one in terms of structural
difference. In the same plot, we observe that K-SVD unsurprisingly
performs very poorly in terms of this measure, since it does not take
into account the sparse nature of the molecules. Double sparsity on
the other hand, performs better than K-SVD but still worse than our
scheme. In the next two plots, we plot the MSRE for the testing set in
both the sparse code and image domain. For reference, we also plot
the MSRE achieved when the optimal structure is used in the coding,
denoted as ‘MLSC, opt’. The qualitative behavior in both domains
is the same for all schemes with our scheme being the closest to the
performance of the optimal structure. The interesting twist however
is that the MSRE achieved by the structure learned with K-SVD is
a bit better than that of the double sparsity scheme. This means that
the non-sparse nature of the molecules of K-SVD that is completely
wrong in terms of structure, permits a better approximation perfor-
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Fig. 1. The evaluation of the structures learned by the different schemes over the number of molecules M in the dictionary for the case of
synthetic data. In (a) we plot the structural difference between the learned models and the optimal structure and in (b) and (c) the MSRE in
both the sparse code and image domain for the testing set.
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Fig. 2. Comparison of the MSRE on ALOI dataset in both the sparse
code and image domain. The 30 molecule prototypes are extracted
with 3 different schemes namely MLSC, DS and K-SVD and the
coding is performed with our scheme for MLSC and DS and with
both our scheme and the OMP for the K-SVD.

mance of the signals while the sparse and strict molecules of the DS
scheme are more accurate but perform worse in the approximation.
Therefore, the two performance measures are not equivalent and sat-
isfying both tasks, namely correct structure and good approximation
performance, seems challenging. Interestingly enough, our scheme
performs well on both aspects.

4.2. Object images

We have also experimented with images of objects from the Amster-
dam Library of Object images (ALOI) [20] which is a color image
collection of small objects where each object is recorded under dif-
ferent viewing angles and illumination settings. In our experiments,
we have used the grayscale version of the images downsampled to
35× 35 pixels. For the sparse representation of the images we have
used the dictionary D with the anisotropy h set to 1 and 4 and the
scale s to 2[0:0.5:4] as in [21]. The translation parameters τx, τy are
sampled with a step size of 0.5 and the rotation parameter r with

π
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.

We compare the approximation performance of the molecules
learned with the different schemes when we set the values of the
MLSC parameters as TA = 10, TM = 5, T = 0.2, TE = 0 and
M = 30. Since the number of objects per category is small in the
ALOI dataset, approximately 100 instances per object, we use all
the instances for training and we report the MSRE for these images
in Figure 2. For the K-SVD algorithm, we plot both cases of cod-
ing with our algorithm and the classical OMP as the nature of the
molecules extracted by KSVD is not always proper for our scheme

SRE = 0.0060913 SRE = 0.067362 SRE = 0.37355 SRE = 0.15907

SRE = 0.0055397 SRE = 0.047743 SRE = 0.25735 SRE = 0.60608

Fig. 3. Approximation example for an instance of the object duck.
On the bottom line, from left to right we have: the initial code and
the codes retrieved with molecules learned with the MLSC, DS and
K-SVD (for KSVD molecules coding with both our coding scheme
and OMP) respectively. For better visualization, on the top line we
also provide the corresponding images.

(negative values, non-sparse). From the Figure 2, we can verify that
the molecules learned with our scheme, approximate the signals bet-
ter than the molecules learned with the competing schemes in both
domains. This can also be verified from the Figure 3 where we show
the approximation of a ’Duck’ instance from all algorithms in both
the image and the sparse domain.

5. CONCLUSIONS

We have presented a new algorithm for learning image structures
directly from sparse codes. In order to deal efficiently with the re-
sulting complex optimization problem, we have alternated between
steps of finding the representation of the codes based on the cur-
rent molecule structure and then updating the structure based on the
codes’ representation. Our scheme requires only minimal knowl-
edge about the underlying dictionary, namely the ‘correlation’ ma-
trix S of the atoms’ pools. We have tested our scheme with both
synthetic and object images and we have verified the superior perfor-
mance of our scheme compared to other existing learning techniques
that are however not designed explicitly for the sparse domain.
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