LABORATOIRE DE PRODUCTION MICROTECHNIQUE

Thomas Maeder

EPFL-STI-IMT-LPM, Station 17 CH-1015 LAUSANNE, Switzerland **2**: +41 21 693 58 23

Fax: +41 21 693 38 91 thomas.maeder@epfl.ch

2016-07-29 ajustement de résistances en triangle.docx

Ajustement de résistances en triangle

Mesure et ajustement de résistances reliées triangulairement (fig. 1), sans système de garde – bases de calcul, aussi utiles pour la détermination des résistances individuelles d'un pont de mesure / de Wheatstone (fig. 2).

Bemessung und Trimm von in Dreieck angeschlossenen Widerständen (Abb. 1), ohne Guarding – Berechnungsbasis, auch für die Bestimmung der individuellen Widerständen von einer Messbrücke/ Wheatstone-Brücke nützlich (Abb. 2).

Measurement and adjustment of resistors in a triangular configuration (fig. 1), without guarding – formulae, useful as well for the determination of individual resistors of a measurement / Wheatstone bridge (fig. 2).

Thomas Maeder, 29.7.2016 (révision de la version originale, 26.7.2003)

Mots-Clefs: ajustement, résistances, électronique, mesure, pont de mesure, pont de Wheatstone

Table des matières

1.	CALCULS	. 2
2.	PROCEDURE D'AJUSTEMENT	. 2
	EXTENSION A UN PONT DE WHEATSTONE	
	I ITTED ATIDE	٠.

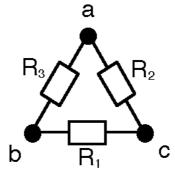


Fig. 1. Résistances connectées en triangle.

Résistances en triangle 1/3

1. Calculs

Pour ce qui suit, on définit d'abord les grandeurs suivantes.

$$u = R_1 + R_2 + R_3 \tag{1}$$

$$v = R_{ab} + R_{ac} + R_{bc} \tag{2}$$

$$W = \frac{1}{2} (v - 2R_{ab}) \cdot (v - 2R_{ac}) \cdot (v - 2R_{bc})$$
(3)

Connaissant les valeurs des résistances R_1 , R_2 et R_3 , on peut calculer (une résistance en parallèle avec deux en série) les valeurs apparentes R_{bc} , R_{ac} et R_{ab} , qui sont les valeurs de résistance mesurées entre les bornes bc, ac et ab respectivement.

$$R_{bc} = \frac{R_1 \cdot (R_2 + R_3)}{R_1 + (R_2 + R_3)} = R_1 \cdot \left(1 - \frac{R_1}{u}\right)$$

$$R_{ac} = \frac{R_2 \cdot (R_1 + R_3)}{R_2 + (R_1 + R_3)} = R_2 \cdot \left(1 - \frac{R_2}{u}\right)$$

$$R_{ab} = \frac{R_3 \cdot (R_1 + R_2)}{R_3 + (R_1 + R_2)} = R_3 \cdot \left(1 - \frac{R_3}{u}\right)$$
(4)

Par diverses transformations mathématiques, on peut également calculer R_1 , R_2 et R_3 à partir de R_{bc} , R_{ac} et R_{ab} , ce qui est utile pour le contrôle et l'ajustement.

$$R_{1} = R_{bc} + \frac{w}{(v - 2R_{bc})^{2}}$$

$$R_{2} = R_{ac} + \frac{w}{(v - 2R_{ac})^{2}}$$

$$R_{3} = R_{ab} + \frac{w}{(v - 2R_{ab})^{2}}$$
(5)

2. Procédure d'ajustement

On considère ici qu'on veut ajuster R_1 à la valeur $R_{1,cible}$. La procédure est bien entendu applicable aux autres résistances.

- 1) Mesurer R_{bc} , R_{ac} et R_{ab} (valeurs initiales).
- 2) En utilisant (5), calculer R_2 et R_3 (valeurs ici inchangées). R_1 (valeur initiale) peut être aussi extrait à titre de contrôle.
- 3) En utilisant (4), calculer $R_{bc,cible}$.
- 4) Ajuster R_{bc} à $R_{bc,cible}$.

On peut ensuite répéter la procédure pour les autres résistances.

Restriction

La méthode ne fonctionne pas bien (grosses imprécisions) si la résistance que l'on veut connaître ou ajuster est beaucoup plus grande que les deux autres : par exemple, s'il faut ajuster R_1 à 10 kOhm alors que $R_2 = R_3 = 1$ kOhm.

Résistances en triangle 2/3

3. Extension à un pont de Wheatstone

On peut étendre facilement les calculs à la détermination des résistances individuelles d'un pont de Wheatstone, en mesurant la résistance globale du pont entre V⁺ et V⁻, ainsi que les résistances entre les bornes adjacentes. Ensuite, il suffit d'appliquer (5), avec les correspondances données au tableau 1.

Note. Voir aussi l'article de Showalter et al. [1] pour un formalisme quelque peu différent.

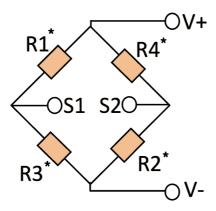


Fig. 2. Pont de Wheatstone.

Branche	Points de mesure	Résultats
Gauche, R_1^* et R_3^*	a:V ⁺ ; b:V ⁻ ; c:S1	$R_1:R_3^*; R_2:R_1^* \text{ (aussi : } R_3:R_2^*+R_4^*)$
Droite, R_4^* et R_2^*	a:V ⁺ ; b:V ⁻ ; c:S2	$R_1:R_2^*; R_2:R_4^* \text{ (aussi : } R_3:R_1^*+R_3^*)$

Tableau 2. Correspondances pour pont de Wheatstone, Fig. 2 et (5).

4. Littérature

[1] R.L. Showalter, C.C. Perry, R.B. Watson, Application of the Wye-Delta transformation to troubleshooting a Wheatstone bridge, in: Proceedings, SEM Annual Conference & Exposition on Experimental and Applied Mechanics, Society for Experimental Mechanics (SEM), Milwaukee (USA), 2002. https://sem.org/application-of-the-wye-delta-transformation-to-troubleshooting-a-wheatstone-bridge-4-pages/ (accessed August 15, 2016).

Résistances en triangle 3/3