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Abstract

Apps supporting social networking in proximity are gaining momentum as they enable to both augment
face-to-face interaction with a digital channel (e.g. classroom interaction systems) and augment digital
interaction by providing a local real life feeling to it (e.g. nearby friends app in Facebook). Such apps
effectively provide a cyber-physical space interweaving digital and face-to-face interaction. Currently such
applications are mainly relying on Internet connection to the cloud, which makes them inaccessible in
parts of the world with scarce Internet connection. Since many of their interactions happen locally, they
could theoretically rely on Mobile Networking in Proximity (MNP), where data could be exchanged among
devices without the need to rely on the availability of an Internet connection. Unfortunately, there is a
lack of off-the-shelf programing support for MNP. This paper addresses this issue and presents Padoc, a
middleware for social networking in proximity that provides multi-hop MNP support when cloud connection
is unavailable. Furthermore the paper evaluates three MNP message diffusion strategies and presents Heya
a novel classroom interaction app running on iOS devices as a proof-of-concept built on top of Padoc.
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1. Introduction

Far from only serving as ego boosting and gos-
siping platforms, social media apps have proven to
be powerful tools for learning and sharing knowl-
edge, think of YouTube instructional videos, Quora
question and answer forums, Stackoverflow coding
community, and so forth. Sharing knowledge is par-
ticularly important in emergency situations, such
as in the 2010 earthquake in Haiti [30], during the
2011 Tsunami in Japan [1], or in the recent 2015
earthquake in Nepal.1 Spacialized platforms such
as Ushahidi are designed to crowdsource social in-
formation to produce a crisis map from different
sources [23] and mainstream social apps such as
Twitter can be mined to produce similarly useful
data [9]. From this brief overview it looks like so-
cial media applications have taken over the world.
Or have they? Unfortunately, their reliance on the
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1http://www.nytimes.com/2015/04/28/world/

asia/google-and-facebook-help-nepal-earthquake-

survivors-and-contacts-connect.html?_r=0

cloud makes them still unavailable in much of the
world that cannot count on ubiquitous Internet ac-
cess. For instance, according to United Nations
specialized agency for information and communi-
cation technologies (ITU) in least developed coun-
tries, only 7% of households have Internet access.2

Increasing this number will require massive infras-
tructure investments [18]. Possibly, wired Inter-
net solutions will never emerge in many places and
will be directly replaced by mobile solutions [4].
However, mobile solutions still require infrastruc-
ture and impose centralized points of control (the
network operators), which implies a single point of
failures [33].

1.1. Mobile networking in proximity

A potential solution is to leverage on the net-
working capabilities of end user devices, such as
tablets or mobile phones to enable mobile network-
ing in proximity (MNP), where apps do not need

2http://www.itu.int/en/ITU-D/Statistics/

Documents/facts/ICTFactsFigures2015.pdf
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to rely on any fixed infrastructure when the Inter-
net connection is not available. In such settings,
phones communicate directly with one another and,
as they can relay each other’s messages, it is pos-
sible for one device to reach devices far beyond its
technical transmission range, as long as there is a
chain of devices that can act as relays. Such set-
tings can be combined with standard cloud based
communication when the network is available to
synchronize data. Unfortunately, despite the fact
that over a decade of research in ad hoc networking
has resulted in a huge amount of literature inves-
tigating communication protocols, middleware and
other programming support mechanisms, there are
currently almost no real world implementations of
end-user MNP [6].

1.2. Social networking in proximity

A class of applications that is particularly well
suited for MNP is the social networking in prox-
imity apps, also known as co-located social media.
Co-located social media apps are gaining momen-
tum as they enable to both augment face-to-face
interaction with a digital channel (e.g. classroom
interaction systems) and augment digital interac-
tion by providing a local real life feeling to it (e.g.
the nearby friends app in Facebook). As such, they
provide some kind of cyber-physical space where
face-to-face interaction interweaves with digital in-
teraction. Since most of the interaction happens
between nearby users there is no need for constant
Internet connection.

1.3. Contributions

This paper specifically aims at bridging the gap
between the theoretical research in ad hoc networks
and its practical implementations to support co-
located mobile ad hoc social media apps by provid-
ing adequate programming support for that pur-
pose. More specifically, we focus on a subclass
of such apps, namely classroom interaction apps
for classrooms with no access to Internet. Indeed,
classroom interaction apps have gained interest in
recent years to provide students with channels to
express themselves more freely and for teachers to
get feedback on the progress of their students, but
they are lacking in non-connected settings. The
main contributions that we present in this paper
can be summarized as follows:

• First, we present Padoc, a novel middleware for
commercially available iOS mobile devices de-
signed to support co-located mobile social me-
dia apps. Padoc provides an implementation of
a location-based multicast addressing service
with two message diffusion strategies (push
and pull) that can be fine-tuned depending on
the application scenario. Furthermore Padoc
also provides two message diffusion algorithms
for message diffusion. A scoped flooding algo-
rithm and a scoped counter-based scheme that
allows to reduce message load. To the best of
our knowledge it is the first time such a scheme
is evaluated on standard commercial off-the-
shelve devices and it is also the first multi-hop
library available for such devices.

• Second, we present a performance evaluation of
the different message diffusion strategies pro-
vided by Padoc using 10 real devices (iPod
Touch) in three network topological settings
for two messaging patterns. Note that such an
evaluation is still challenging as there are no
readily available testbeds for ad hoc network-
ing algorithms on actual mobile devices.

• Third, we present Heya, a novel co-located so-
cial media application for group interaction in
classroom settings with no access to the Inter-
net built on top of Padoc as a proof-of-concept
available freely on the Apple AppStore.

• Fourth, we present a preliminary usability eval-
uation of Heya with national staff of Médecins
Sans Frontières in the field in Mozambique.

• Fifth, in order for the contributions of this ar-
ticle to spillover in the community, the latest
versions of the middleware3 as well as the ap-
plication prototype4 are freely available under
an open source MIT licence.

1.4. Roadmap

The remainder of this paper is structured as fol-
lows: Section 2 discusses related work and Section 3
presents a requirement analysis of classroom inter-
action apps, a type of social networking in prox-
imity. Section 4 presents the Padoc middleware
and Section 5 presents its evaluation. Section 6

3https://github.com/react-epfl/padoc-lib
4https://github.com/react-epfl/padoc-heya
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then presents Heya, the proof of concept applica-
tion built on top of Padoc along with a pilot usabil-
ity study in Mozambique with staff from Médecins
Sans Frontières. Finally, Section 7 concludes with
a discussion of the results and an outlook on future
research avenues.

2. Related work

Here we review the main research on middleware
mobile networking in proximity and classroom in-
teraction systems and point to open research op-
portunities.

2.1. Theoretical middleware solutions

Middleware for MNP have been studied exten-
sively in the literature [7, 26, 6]. For instance the
authors of [26, 7] surveyed a large range of mid-
dleware solutions developed over the last 15 years.
They make the harsh observation that hardly any
of them are used in the real world. In an overview
of research in ad hoc networks, the authors of [6]
observe that contrary to sensor network solutions
or vehicular network solutions, which are emerg-
ing in the real world, there is a lack of real-world
people-centric ad hoc networks [6]. The people-
centric paradigm is based on the premise that MNP
can leverage on mobile devices that people use in
their daily lives. This type of network is precisely
the type of network on which co-located ad hoc so-
cial media apps could be built. So despite theo-
retical work on MNP, there has hardly been any
spillover in the real world [26] and there is cur-
rently a lack of solutions that provide program-
ming support for developers to build mainstream
MNP. The main issues identified related to build-
ing proper people-centric solutions is to move away
from adopting traditional system-oriented middle-
ware solutions, and moving towards taking people’s
needs and constraints into account first [6, 26].

2.2. Practical middleware solutions

One of the main shortcomings of the literature
that prevents ad hoc application from becoming
mainstream is the fact that most solution are not
targeting commercially available mobile devices.
Recently, several efforts move in this direction.

BASA. For instance, as part of the European FP7
Societies project5 which aimed at supporting ser-
vices bridging community and pervasive computing,
researchers recently built the BASA System [32].
BASA provides developers with a system to build
mobile ad hoc social media apps on top of Android.
BASA’s network layer extends the Android limi-
tation that nearby neighbors cannot immediately
form communities since there is no ad hoc function
that enables this out-of-the box. However, BASA
does not address the multi-hop limitation of the
platform.

Serval. The Serval Mesh [12, 13] is another exam-
ple of research project focused on a real world ap-
plication. Serval is a research project aiming at
allowing phone calls in geographically remote areas
through an ad hoc network. The app is developed
for Android devices, uses the Wi-Fi Direct technol-
ogy and is available on Google Play. To extend
its capabilities, the Serval Project provides a Mesh
Extender [25]. The Serval Mesh application is open
source and has been tested in different situations,
such as with the New Zealand Red Cross in 2012
and 2013. In this situation, they modified the ver-
sion of the field assessment forms used by the Red
Cross teams on the field so that they could use the
Serval Mesh to be shared together. The middleware
layer of Serval is called Serval DNA6 and provides
a network level Mesh Datagram Protocol (MDP)
and an application layer Voice over Mesh Protocol
(VoMP). Serval DNA also offers a content distribu-
tion protocol called Rhizome. Even though Serval
targets commercially available devices, it appears
that in order to perform multi-hop communication,
the Linux kernel code of the Android platform must
be modified. Indeed, it is not possible to create
an efficient multi-hop network among devices with
the standard Wi-Fi Direct available on off-the-shelf
Android devices as the routing can be implemented
only as an application over the transport layer [8].
In a nutshell, Android offers a Wi-Fi Direct inter-
face for one hop ad hoc networking. Typically a
node can create a Wi-fi Direct group. This node
becomes the group owner and its neighbors become
the clients. Unfortunately, multi-hop communica-
tion is hindered by the fact that a node cannot be
part of several groups at the same time and the

5http://www.ict-societies.eu
6http://developer.servalproject.org/dokuwiki/

doku.php?id=content:servaldna:Main\%20Page
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fact that setting up connections and closing them
is time consuming.

OpenGarden. The most popular ad hoc social me-
dia application to date is probably OpenGarden’s
Firechat.7 The app is available on the AppStore
and Google Play and allows to chat with people
nearby without requiring an Internet connection.
It was released in March 2014 for iOS as a proof-
of-concept of the MultipeerConnectivity framework
released shortly before by Apple. The Multipeer-
Connectivity framework, was Apple’s first main-
stream library to provide access to ad hoc peer-to-
peer messaging. The app became popular thanks
to two main events. First, the restrictions on In-
ternet use imposed by the government of Iraq in
20148 made people find alternative ways to com-
municate together, and they discovered FireChat
for this purpose, which made the application get
known at a larger scale. Second, during the Hong
Kong pro-democracy protests [5] that happened in
September and October 2014, the authorities shut
down the cellphone service in order to prevent peo-
ple from organizing demonstrations. Since the Mul-
tipeerConnectivity framework provided by Apple
only offers limited communication features for de-
vices within each other’s transmission range, Open
Garden is working on providing developers with an
SDK9 to cover these shortcomings. However, at the
time of writing, this SDK is not available.

In summary. The programming interfaces cur-
rently offered by operating systems for off-the-shelf
mobile devices for ad hoc communication are lim-
ited to communication in the transmission range.
There is currently a lack of programming support
that hides the complexity of multi-hop communi-
cation behind any communication primitive. Thus
more research is needed to convert theoretical find-
ings about multi-hop communication services into
practically applicable solutions to provide program-
ming support to developers through adequate inter-
faces.

3. Classroom interaction apps

The review of middleware solutions suggests that
there is still room for further investigation in pro-

7https://firech.at
8http://www.theguardian.com/technology/2014/jun/

24/firechat-updates-as-40000-iraqis-download-mesh-

chat-app-to-get-online-in-censored-baghdad
9https://opengarden.com/sdk

viding programming support for social networking
in proximity. The review also suggests that a way
forward is to take a people-centric approach as de-
scribed in [6] and build support for a set of de-
fined applications that fulfil end user needs and con-
straints. This is precisely what we aim to achieve by
targeting a particular type of social networking in
proximity, namely, classroom interaction systems,
as they represent a growing topic of interest in a
crucial field, namely education (e.g., [15, 3, 16, 21]).
These solutions, typically provide a shared messag-
ing space for people to post questions and com-
ments and possibly rate each other’s contributions
or answer polls created by the tutor. In the class-
room context, increasing interactions is appreciated
by teachers and students as it allows students to
express themselves more frequently and, in cases
where the interaction is anonymous, more freely,
and it at the same time allows teachers to better
understand the issues students face and potentially
use the received feedback to improve their instruc-
tion in real time.

3.1. Class interaction apps specifics

The specificities of class interaction apps can be
broadly described as follows:

Users. In general these apps have two types of
users, a tutors (sometimes more than one) and stu-
dents (between 20-500) with mobile phones with
typical Wi-Fi and Bluetooth communication capac-
ities with around a 30 meter communication range.
Most students are not expected to be very mobile
during the class and tutors are expected to move
around the class in a relative slow walking pace.

Proximity. Users are likely to be co-located in a
same classroom, or in the field. the surface is likely
to be limited, namely below 1500 square meters
(which is the size of the largest conference hall in
our institution).

Interaction. In these applications any student is ex-
pected to post messages and interact with messages
from others in real time. The messages can be tem-
porary just for a lecture or an event, but tutors
sometimes also want to eventually persist them in
order to reflect on the discussion in the class.
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3.2. Middleware requirements

These specificities, indicate that such interaction
could be supported by a communication middle-
ware offering a many-to-many abstraction (since
many students are expected to send messages to
each other) implemented on a MNP (since interac-
tion is confined to a certain area where all users are
located at a point in time) with multi-hop commu-
nication (since the area is likely to cover more than
the communication range of the devices). Finally,
the middleware should allow teachers to persist in-
teractions on the cloud when an Internet connection
is available.

4. Padoc – Middleware Solution

Padoc is a novel communication middleware to
support multi-hop co-located mobile ad hoc social
media application running on standard off-the-shelf
iOS mobile devices (iPhones, iPods, iPads).

4.1. Service

Location-based multicast addressing service
(LMA) [20], where the many are defined by a mul-
ticast group which can contain as little as one node
(single receiver) or as many as all nodes in the net-
work (full broadcast) and where both groups and
messages can be restricted to a specified distance
around a node. LMA is good theoretical candi-
date for a middleware interface for developer of
co-located group interaction apps since (1) inter-
actions can be geographically restricted, (2) LMA
supports multi-hop communication, (3) LMA does
not make assumptions on node positions and sup-
ports node mobility, and (4) LMA supports many-
to-many messaging. However, until now LMA has
only been implemented for network simulators and
no implementation is yet available for off-the-shelf
mobile devices. Padoc is the first effort to overcome
this limitation. The main service provided to the
application developer by the Padoc middleware are
the following methods:

/* multicasts a message m to members of group located within
a range r */
- (void) multicast:(Message*) m to:(NSString*) group within:
(NSNumber*) r persisted:(BOOL*) bool;

/* joins a multicast group located within a range r */
- (void) join:(NSString*) group within:(NSNumber*) r per-
sisted:(BOOL*) bool;

/* abandons the multicast group*/
- (void) leaveMulticastGroup:(NSString*) group;

Furthermore, it delivers messages to delegate
object implementing the following PadocDelegate
method:

/* callback when a message m is received by padoc */
- (void) padoc:(Padoc*) padoc didReceive:(Message*) m from-
Cloud:(BOOL bool) ;

The padoc object can be instantiated using four
different communication strategies (i.e., Padoc-
StrategyPushFlooding, PadocStrategyPushCBS,
PadocStrategyPullFlooding, PadocStrategyPullCBS)
using the following call:

/* instantiation of the padoc middewlare object */

- (id) initWithDelegate:(PadocDelegate*) delegate usingStrat-

egy:(PadocStrategy*) strategy;

4.2. Architecture

The architecture of the implementation of the
service is depicted in Figure 1. Padoc provides
a MNP module and a Cloud module. The MNP
module is in charge of disseminating messages in
the proximity using ad hoc technology whereas the
Cloud module is used to forward information to the
cloud when an Internet connection is available and a
message requires persistence. Note that this paper
focuses on the MNP module. In the MNP module,
multicast can be implemented using a pull or push
strategy. Since research indicates that none of these
strategies is superior for all network topologies and
all application scenarios [20], Padoc offers both im-
plementation strategies for multicast. The Push
strategy can be tuned to use either Scoped Flooding
(PadocStrategyPushFlooding) or a Scoped Counter-
based Broadcasting Scheme, dubbed PadocStrate-
gyPushCBS, as underlying multi-hop message dif-
fusion protocol. The Pull strategy on the other
hand is built on to of a Gradiented Routing (GR)
protocol for its multi-hop message diffusion. GR
uses a warm up phase that can also either rely
on Flooding (PadocStrategyPullFlooding) or on CBS
(PadocStrategyPullCBS). These services are built on
top of a Connection handler which interfaces with
Apple’s Multipeer Connectivity Framework, a tech-
nology providing one-hop ad hoc message diffusion
and managing the physical layer encapsulation.

4.2.1. MultipeerConnectivity Framework

The MultipeerConnectivity Framework10 is a
readily usable library provided by Apple in its iOS

10https://developer.apple.com/library/prerelease/

ios/documentation/MultipeerConnectivity/Reference/

MultipeerConnectivityFramework/index.html
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Figure 1: Padoc architecture

SDK since iOS 7. It allows to discover neighboring
nodes and communicate with them when the app is
active. Neighboring nodes are all nodes located in
the transmission range of a node. A communication
with a neighbor is called one-hop since it does not
require that messages are relayed by intermediate
nodes. Note that the ad hoc technology used in this
framework is either Wi-Fi or Bluetooth, but is made
transparent to users. The limitation of the Multi-
peerConnectivity framework include, only one hop
communication, only a one-to-one messages prim-
itive, connections between neighbors that require
manual user confirmation, no background mode.
Padoc aims at providing a lightweight layer on top
of the Multipeer Connectivity framework to over-
come these limitations.

4.2.2. ConnectionHandler

Padoc provides a small wrapper above the Multi-
peerConnectivity framework called the Connection-
Handler which handles connections with neighbors
when their app is in both active or background
modes. With the ConnectionHandler, a device au-
tomatically detects other devices in its transmission
range and establishes a connection without the need
for manual intervention from the user. This layer
thus allows to loosen the MultipeerConnectivity’s
constraint, that requires nodes in the network to
have their apps in active mode at all time to allow
messages to be sent and delivered. This layer sim-
ply triggers a task in the background that continues
to listen for messages and delivers them to upper
layers.

4.2.3. Multi-hop message diffusion

Whereas the Multipeer Connectivity allows to
communicate with neighboring nodes, Padoc pro-
vides facilities to communicate with a node’s ex-

tended neighborhood, i.e., all nodes that are reach-
able through a chain of intermediate nodes that for-
ward the message in what is called a multi-hop com-
munication. Padoc implements three basic multi-
hop message diffusion services, namely flooding,
counter-based broadcasting and gradiented routing.

Scoped flooding. Scoped Flooding [29] is a very sim-
ple one-to-all (broadcast) message diffusion scheme
limited to a certain range around the sender.

It works as follows: When Bob receives a message
m sent by Alice, Bob increases forwards m unless
he has already forwarded it previously or unless he
is located at a distance of Alice greater than m.r.
Note that m.r is the range defined by Alice. Note
that the distance is either calculated based on the
GPS location of both users if available or it is based
on a hop count approximation. note that such ap-
proximation can be made on observed values of the
transmission range, but are subject to potentially
large variations depending on the terrain. This pro-
tocol implies that all nodes in a non-partitioned
network forward m once. This protocol has the
advantage of being very simple and achieve good
reliability in a non-partitioned network with little
message collisions.

The problem with this algorithm is that as all
nodes retransmit a message, the algorithm itself,
depending on the number of nodes, the network
topology, and the application usage, might cause
message collisions in what is referred to as a broad-
cast storm [29]. The number of forwarders in Flood-
ing can be reduced by requiring each message re-
ceiver to roll a dice before deciding to forward m.
This reduces the number of forwards predictably
(depending on the dice rule), but can result in lower
reliability as critical nodes (for example those lo-
cated in between two network partitions) might de-
cide not to forward m, which implies that some
peers may not receive it.

Scoped counter-based broadcasting scheme. The
Scoped Counter-based Broadcasting Scheme
(CBS) [29] provides a simple, yet effective [10]
mechanism to address the broadcast storm issue,
by reducing the message forwarding load of a
broadcast algorithm while mitigating the reliability
issue, while not entirely resolving it. In CBS, when
Bob receives m from Alice through the Connection
Handler, he sets a timer, and when the timer is up,
he only forwards m if he has not received a copy of
m from one of his neighbors in the meantime. This
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mechanism is particularly effective in reducing the
forwarding load in dense networks, where it is most
needed.

Scoped gradiented routing. The Scoped Gradiented
Routing (GR) protocol is a scoped version of the
Six-Shot Multicast [11] and is a proactive route-
based one-to-many (multicast) algorithm. It allows
to send messages to a subset of nodes in the net-
work. To do so, it goes through a proactive warm
up phase in which a routing table is created, and
then messages are disseminated to destinations in
the routing phase.

The warm up phase works as follows. When Bob
joins a multicast group, a message is broadcasted
using CBS to the network. This message contains
the indication that Bob is interested in receiving
messages intended for the group. It also contains an
information about the proximity of Bob in terms of
hops. So if Carol is located in Bob’s neighborhood
she will receive a message indicating that Bob is
at a 1 hop distance. Alice, who is located 5 hops
away from Bob, will receive the indication of that
distance. In this phase, either scoped flooding or
scoped CBS can be used.

During the routing phase, when Alice sends a
message to the group, the algorithm uses the di-
rectional acyclic graph (DAG) created in the warm
up phase to route messages downhill from Alice who
is located at a 5-hop distance toward nodes located
lower on the gradient eventually reaching Bob at
the bottom of the virtual valley. To do so the algo-
rithm has the following rule. When Alice sends the
message to group, it includes its proximity to each
of the nodes in the group. Then when her neighbors
receive the message they check if they are closer to
Bob than Alice (i.e., they have a lower number of
hops towards Bob). If they are closer, they set a
timer very much like in CBS, and if they did not
receive the message from another peer before the
timer is elapsed, they replace the distance between
Alice and Bob by their own in the message and for-
ward it.

4.2.4. Location-based Multicast Addressing

The multicast service in Padoc offers two imple-
mentation strategies, a Push and a Pull strategy
similarly to the strategies presented in [20] in the
context of Location-based Multicast Addressing or
related work (e.g., [22, 31, 19]).

Push Strategy. The Push mutlicast strategy uses
either Flooding or CBS as underlying layer. In this
scheme, messages are always sent to all nodes in
the network. When a node receives a message, it
only decides to deliver it if the node is part of the
multicast group to which the message is addressed.
Thus, when a node joins a group, no messages are
exchanged with other nodes.

Pull Strategy. The Pull strategy is based on the
GR protocol and thus broadcasts messages to all
when a node joins a multicast group and then routes
messages only to interested nodes.

5. Middleware evaluation

The goal of the middleware evaluation was to
assess the how the Push and Pull strategies com-
pare to each other. For the Push strategy, we mea-
sured evaluations for both the implementation us-
ing scoped flooding (PushFlooding) and scoped CBS
(PushCBS). For the Pull strategy, we only measure
the routing phase, which is the same no matter if
the warm up strategy uses Flooding or CBS. Note
that we do not take into account the cost for the
routing table creation. Hereafter we present perfor-
mance evaluation settings and the results of Padoc
evaluations on real iOS devices with MNP condi-
tions (no simulation, nor emulation of location).

5.1. Settings

Hereafter, we detail the settings of the evalua-
tion, namely the type of devices, network topolo-
gies, messaging load and measures used.

5.1.1. Devices

The devices used throughout the experiments
were 10 5th generation iPod Touch from Apple, 8
of them running iOS 8.2 and the remaining 2 run-
ning 8.3. These devices support both Wi-Fi and
Bluetooth for communication. For consistency rea-
sons, during the experiments only the Wi-Fi tech-
nology has been turned on. Devices had an ob-
served transmission range of approximately 30 me-
ters. The transmission throughput was approxi-
mately 100 KB/s.

5.1.2. Network topologies

Devices were placed according to two network
topologies covering extreme cases and one topology
mimicking a small field class. The network topolo-
gies are the result of the actual physical placement
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of the devices. For each topology, 12 experiments
have been carried out, giving thus a total of 36 dif-
ferent configurations.

Cluster topology. The first network, shown in Fig-
ure 2, is a fully connected cluster where all devices
were placed in a 2 meter radius so that they were
all within a one-hop reach. In the other topologies,
since the observed transmission range of the devices
was 30 meters, they were placed in such a manner
to build the desired topology. Note that with the
ConnectionHandler, a device automatically detects
other devices in its transmission range and estab-
lishes a connection.

2 m

Figure 2: Cluster topology

Line topology. The second topology, shown in Fig-
ure 3, corresponds to a straight line where a device
is only connected at most with 2 other devices.

20 m

Figure 3: Line topology

Small field class topology. The final topology,
shown in Figure 4, mimics a small field classroom
with 8 fixed nodes representing students and 2 mo-
bile nodes representing teachers who move through
the class at walking speed (approx 1 meter per sec-
ond). The teachers trajectory is depicted on the
figure using arrows. Here only half of the motion is
shown. The other half is symmetrical with respect
to an imaginary horizontal plane.

5.1.3. Messaging load

In all scenarios, we ran the experiments for 2 min-
utes and all nodes acted as senders. We varied mes-

30 m

30 m

20 m

Figure 4: Small field class topology

sage loads along two dimensions, namely the size of
the multicast group and the throughput.

Multicast group size. The multicast group size rep-
resents the number of nodes interested in delivering
a message. For the experiments, we created a ded-
icated multicast group called padoc-experiment. At
the beginning of the experiment a certain number
of devices were set to join this group, by calling the
join method. We evaluated two extreme cases of
multicast group sizes, namely a full broadcast set-
ting where all devices joined the multicast group
and a single receiver setting where only one node
joined the multicast group.

Throughput. We evaluated a mild throughput set-
ting with 30 messages per minute per sender, and
a high throughput setting with 120 messages per
minute per node. Thus, the number of messages
sent in 2 minutes totals 600 in the mild throughput
setting and 2400 in the high throughput setting (for
the broadcast setting). Note that the messages were
sent automatically.

5.1.4. Measures

In order to compare the different implementation
strategies and algorithms, we have measured two
variables:

Delivery rate. The delivery rate is the ratio be-
tween the number of nodes having received a par-
ticular packet divided by the number of nodes sup-
posed to receive it. These ratios are then averaged
over all packets. This is a measure of effectiveness.
A high value indicates more reliability and it should
always equal 1 when the retransmission algorithm
is reliable.
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Retransmission rate. The retransmission ratio of a
message is the number of nodes having retransmit-
ted it divided by the number of nodes in the net-
work. The ratios are then averaged over all packets.
As a retransmission is costly in terms of energy and
bandwidth, the retransmission rate is a measure of
efficiency, a low rate indicates more efficiency. It
should be noted that this rate also potentially af-
fects delivery rate, since an inefficient retransmis-
sion rate can result in message collision, packet
losses and thus lower delivery.

5.2. Results

Hereafter, we detail the evaluation results for
each topology. The results are presented in Fig-
ures 5-7.

5.2.1. Cluster topology results

The retransmission ratio is equal to 1.0 for Push-
Flooding as expected, since all nodes which receive a
message for the first time will forward it. PushCBS
is much more efficient as it provides a retransmis-
sion ratio of around 0.1 for the mild throughput
setting and 0.2 for the high throughput scenario.
Finally, the retransmission ratio of Pull is equal to
zero as no node is located closer to the recipients
than the sender itself. Note that the mean hop
count for every configuration is 1.0 as expected, be-
cause every node is at a one-hop distance from any
other node. In this setting, the delivery rate of
PushFlooding slightly higher than the other strate-
gies and is equal to 1.0 in mild throughput condi-
tions and drops to 0.98 and 0.93 in high throughput.
The delivery rate of Pull is the lowest in this setting
and varies from 1 to 0.91. A delivery rate below 1.0
means that some messages did not reach their des-
tination. This can be due to message collisions or
connection interruptions.

5.2.2. Line topology results

The retransmission ratio is equal to 1.0 for both
PushFlooding and PushCBS as expected, since all
intermediate nodes are required to relay messages.
In this topology, the Pull strategy allows to save
between 7% and 20% for the full broadcast and be-
tween 35% and 37% for the single broadcast sce-
narios since at least the last nodes of the line can
decide not to forward the message. Nevertheless,
the delivery rate for the Pull strategy scores worse
than the Push strategies in this setting (0.88 to 1.0
compared to 1.0 in all cases).
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Figure 5: Evaluation results for the Cluster topology
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Figure 6: Evaluation results for the Line topology

5.2.3. Small field class topology

For the full broadcast configuration, PushCBS
saves between 5% and 9% of messages compared
to PushFlooding and Pull saves between 11% and
14%. For the single receiver configuration, Pull is
even more efficient and imposes only a retransmis-
sion rate of 0.16 to 0.18. In this topology, the de-
livery rate is the highest with 8 configurations out
of 12 scoring above 0.99%.
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Figure 7: Evaluation results for the small field class topology

5.2.4. Overview

In terms of effectiveness, the different strategies
provide good reliability, but can be vulnerable to
message collisions in high throughput scenarios.
Note that the warm up phase of the Pull strategy
is not immune to message loss, which can make its
routing phase less reliable than Push based strate-
gies in some cases (especially in broadcast scenar-
ios, where all nodes join the multicast group). To
improve effectiveness, an additional layer could be
built on top of the routing algorithm to ensure reli-
ability by for example requesting acknowledgement
messages.

When comparing PushCBS and PushFlooding,
the former can sometimes be slightly less effective
(lower delivery ratio), as it does sometimes pre-
vent some nodes from forwarding messages to re-
ceivers. For instance in our evaluation we observed
a drop of about 10% in distribution ratios in the
cluster and small field class topologies when the
message throughput was high. In terms of effi-
ciency, when comparing the two Push implementa-
tions, PushCBS is more efficient than PushFlooding
in most scenarios. This is especially true when the
network is highly connected, as in the cluster topol-
ogy, where we observed a decrease in message load
by a factor of 10x.

The Pull strategy is superior to both Push strate-
gies in terms of efficiency because messages are
not propagated in parts of the network where no
receiver is located. This difference is especially

marked when the number of receivers is low. How-
ever, the evaluation does not take into account the
warm up phase of the Pull strategy. Note, that
the cost of the warm up phase depends on the cho-
sen refresh rate and the number of group members
and can thus vary substantially. Nevertheless, we
can estimate that one warm up phase, will cost the
same as one broadcast per receiver. So it will not
cost much in efficiency with a low number of re-
ceivers, where Pull will remain the best strategy,
but it will put a larger burden on efficiency with
many receivers. In such cases, the PushCBS will be
the more efficient option.

6. Heya – proof-of-concept

Here we present Heya which is a novel classroom
interaction app built on top of Padoc as a proof
of concept. Heya is based on the SpeakUp app
for co-located social media interaction in the class-
room [21]. Whereas SpeakUp relies on a client-
server architecture suitable in classrooms with ac-
cess to broadband Internet, Heya works without
any external infrastructure and is suitable for field
classes that do not have access to any connectivity.
Hereafter, we describe the user interface of the app,
then we describe and discuss possible implementa-
tion architectures of Heya using Padoc.

6.1. Functionality

Heya is an application that allows people to cre-
ate chat rooms or join existing ones, write posts in
those rooms and rate people’s posts. Figure 8 shows
the user interface of Heya. The image on the top
left shows the list of rooms available in the network
in proximity. To create a new room, users, typi-
cally tutors, can press the plus button, which leads
to the screen depicted on the top right of Figure 8.
There, users can define the name of a new room
which will follow them around. A user can also
choose to persist a room. The idea is that when
a room is persisted, its content will eventually be
uploaded to the cloud. Tutors will then typically
be able to reflect on the exchanges that occurred
during their session. Students located in the vicin-
ity of the tutor will see the newly created room and
will be able to access it by simply pressing the room
name in the list of nearby rooms, as depicted in the
image at the top left of Figure 8 – no need for a
password or registration. As shown in the image
at the bottom of Figure 8, they can then see the
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existing messages in that room and they can vote
on them by pressing the thumb up or thumb down
buttons. Users can also post messages anonymously
through the input field at the bottom of the screen.

Figure 8: User interface of Heya.

6.2. Implementation using Padoc

There are several possible implementation strate-
gies for Heya using Padoc.

One approach is fully decentralized and delegates
computation of the state to all users. This implies
potential inconsistencies as certain users might re-
ceive some posts before others or even possibly not
receive at all some posts.

Another option is to delegate computation of
state to one user which then relays the state of the
app. This method has the advantage of keeping a
coherent state, but has the disadvantage of relying
on the presence of a coordinator throughout the in-
teraction.

For the implementation of Heya, we chose this
second option as it better mimics the actual ap-
plication scenario of Heya, which implies a de facto

coordinator – the tutor. Note that we chose a Push-
Flooding strategy for Heya for simplicity.

Creating a room. When a tutor, Alice, creates a
room, a roomcreated message containing the new
room is sent to the all group, and everyone can
add this room. When Alice deletes a room a
roomdeleted message containing the room id is sent
to the all group. All peers receiving this message
will then delete the room. Alice can decide to per-
sist a room or not. In the case she decides to persist
it, all calls will set the persisted flag to YES and the
middleware will send the room and its content to
the cloud when an internet connection is available.

Discovering nearby rooms. When a student, Bob,
opens his app, he joins the all group and a group
based on Bob’s unique peer id bob and a getrooms
message is sent to the all group, scoped to 200 me-
ters around Bob11 and persisted, which means that
Bob is both interested in receiving rooms from the
cloud and from the ad hoc network in proximity.
When Alice or another room creator located within
200 meters, receives such a message, she sends a
rooms message to the bob group containing the list
of all rooms that she has created. When Bob re-
ceives a rooms message, he adds the received rooms
to his list of nearby rooms (if they are not already
present).

Entering a room. When Bob enters the fieldcourse
room created by Alice, a getroom message contain-
ing the id of the room is sent to the alice group, Al-
ice is then solely in charge of sending the entire list
of posts in a room message sent to the bob group.
As before, Bob joins the multicast group defined by
the fieldcourse room id.

Creating a post. When Bob creates a post in the
fieldcourse room, a postcreated message containing
his new post is sent to the alice group. When receiv-
ing this message, Alice will then send a postcreated
message to the fieldcourse group, and other peers
will add the post to their list of posts for this room.
In the same way, when Bob deletes a post, a post-
deleted message containing the post id is sent to the
alice group and Alice then forwards the deletion to
other peers that will delete the message locally.

11Note that this scope is an arbitrary application choice.
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Voting on a post. When Bob votes on a post in
the fieldcourse room, he sends a postupdated mes-
sage containing his vote and the post id to the alice
group. When receiving this message, Alice will then
compute the number of votes and the new score for
the room and send postupdated message to the field-
course group.

6.3. Tales from the field

In order to evaluate the usability of Heya in
the field, we conducted evaluations in the Ma-
puto province in Mozambique in the context of
a Médecins Sans Frontières (MSF) mission. We
performed three 6-hour hands on sessions with in-
depth interviews with one expat NGO workers and
8 national staff of MSF, age 26-56, (mean 41, 1 fe-
male). Note that two of the national staff owned
iPhones. One of the national staff and the re-
searcher were present in all three sessions, thus five
people were present in the first two sessions and four
in the last session. Each session started with a 30
minute introduction followed by a free and a guided
interactions to test the application’s functionalities.
In the free interactions, users posted messages and
rated them as illustrated in Figure 9. In the guided
interaction, the users moved away from each other
to test the limit of the transmission range and to
test multi-hop communication. Typically ranges up
to 120 meters where tested with different network
topologies. After the hands on sessions which lasted
around 2h30 hours, the users sat down with the re-
searcher for an in depth debriefing with semi guided
interview questions and users were also asked to an-
swer to a formal System Usability Scale (SUS) [2]
and Attrakdiff 2 [17] questionnaire for a so called
quick and dirty usability evaluation. The SUS score
of Heya was 80.5 indicates good to excellent us-
ability according to Bangor et al. [2]. This result
is inline with the SUS of SpeakUp (83) as eval-
uated in [21]. The results of the Attrakdiff also
show strong positive attitudes towards the applica-
tions with maximal values for all three dimensions
of the scale (attractiveness, hedonic quality, prag-
matic quality). Note that such positive results can
also indicate bias due to the convenience sampling
method.

Nevertheless, these results were echoed in the in
depth interviews. Users did not know about the
possibility of ad hoc communication prior the hands
on sessions. They were positively surprised by the
fact that the app was available on the regular app
store. The limits in terms of transmission range

did not appear to be an issue for them. One of
the main advantages that users saw was the reduc-
tion in communication costs. Indeed, many of them
cannot afford to pay for unlimited plans, so they
use prepaid cards which they use up quickly, which
prevents them from being reachable. Furthermore,
they also saw the advantage of being able to com-
municate despite potential government censorship.
The government would order the network operators
to switch off their service in case of demonstrations
for example. Also users, especially those with lower
socio-economic status seemed suspicious of the gov-
ernment and were happy to “play the system” by
using a parallel communication channel.

Figure 9: Hands on session with Heya in Mozambique

7. Discussion and conclusion

In this paper we have observed that there is a
lack of mainstream computing solutions for multi-
hop co-located ad hoc social media interactions in
settings with scarce connectivity even though such
interaction could have important applications, for
instance in terms of knowledge sharing and edu-
cation. To address this issue, we have designed a
novel communication middleware called Padoc for
off-the-shelf iOS devices. Note, that there is an ob-
vious limitation to using the iOS platform as target
since the devices running iOS are top end products
and thus even if they are mainstream in developed
countries they are much rarer in developing coun-
tries where connectivity can be more limited. The
rationale behind the choice of iOS resides in the fact
that at this stage it is the best candidate for multi-
hop communication. Thus we see the iOS library
as first proof of concept of multi-hop communica-
tion middleware on a commercially available plat-
form. Such a first proof-of-concept allows to build
and evaluate end user application that could not
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be built otherwise and it is only when such applica-
tions are built and deployed that we can get insights
about usability and usefulness.

We then carried out real world performance eval-
uation of the different message diffusion strategies
offered in Padoc (i.e., PushFlooding, PushCBS, and
Pull) using 10 iPod Touch devices in three differ-
ent network topologies and several different messag-
ing scenarios. Our results show that these strate-
gies offer good reliability and show that Pull offers
the best efficiency, especially in settings with a low
number of receivers, where it can reduce the mes-
sage load by orders of magnitude. However Pull ap-
pears to be somewhat less reliable (5%-10%) than
the other strategies. PushCBS offers a good alterna-
tive for settings with many receivers. The process of
gathering performance evaluation from actual mo-
bile devices without the help of location and con-
nection emulators also highlight the logistical diffi-
culty of performing such real life tests given the lack
of dedicated testbed tools. Indeed, even though ex-
periments have become more prominent in the com-
munity [24], most of the open available testbeds are
sensor oriented [14] and few include smartphones
(an exception includes SmartSantander [27] which
provides a SmartCity testbed) and to the best of
our knowledge none of them is targetted at off-the-
shelf mobile devices on which people centric social
media in proximity would run. Thus, we argue that
this is an important research gap, which needs to
be addressed in order to support larger scale vali-
dation of communication middleware and services
for mobile social newtorking in proximity.

In this paper we also presented Heya, a novel co-
located classroom interaction system built on top
of Padoc as proof-of-concept. As mentionned, the
Padoc middleware, with its scoped messaging ser-
vices is particularly well suited for this application
scenario. We believe that Padoc can also be use-
ful for other applications for social networking in
proximity, however we do not see it as a magic
bullet for any cyber-physical application. We ar-
gue that providing a targeted middleware can be
a strength rather than a weakness. Indeed, using
a people-centric approach to middleware design, as
promoted by Conti and Giordano [6] means under-
standing application usage in a particular context
and designing communication accordingly. Such an
approach is used by Socievole et al. [28] who use in-
formation from online social media apps to predict
physical encounters and thus adjust their oppor-
tunistic routing protocol accordingly. Future work

should further investigate such opportunistic and
people-centric middleware design. This is particu-
larly relevant in cyber-physical systems where con-
text is inherently tied to application logic.

Finally, we perform a usability field evaluation of
Heya on a mission with MSF, which confirms the in-
terest for such technology in places where communi-
cation access cannot be taken for granted, whether
by lack of infrastructure, cost or censorship. The
small scale of this evaluation, taken with potential
biases of the convenience sampling, limits the gen-
eralizability of the results and should be taken like
a first step of a larger usability study. Nevertheless,
it provides a first concrete deployment example on
the field of an app for mobile social networking in
proximity.

Our evaluation process has however also high-
lighted the challenges to evaluate both ad hoc com-
munication protocols and applications in real con-
ditions and future work should investigates new
methodologies and tools for testing off-the-shelf
cyber-physical systems.
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