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Supplementary Notes

1 Derivation of expressions for p = ra
rt

Here we derive the relation in the case of Neyman-Scott process with Gaussian shaped clusters. The
derivation in the case of other distributions are similar, starting from the expressions in Supplementary
Table S1.

We start from the K-function for Gaussian shaped clusters:

K(r) = πr2 +
1

κ
(1− exp(

−r2

4σ2
)). (1)

In the form K(r) = πr2 + 1
AH(r) as in Main Text, this corresponds to A = κ,H(r) = 1− exp(−r

2

4σ2 ) and

h(r) = r
2σ2 exp(−r

2

4σ2 ). Substituting in the equation

A =
h(ra)

2

4π(H(ra)− rah(ra))
(2)

from Main Text and rearrangement will give the relation as in Supplementary Table S2.

2 95% radius for different models

These were found by solving the CDF
∫ r

0 fpdf (r)dr = .95 for r, where fpdf (r) is the radial probability
density function for each model(1–3). In the case of Cauchy and varGamma models, marginal PDFs of r
in polar coordinates were obtained from the bivariate PDFs in cartesian coordinates by standard trans-
formation(multiplication by 2πr). The results are given in the following table, along with the 95% limits.
Kν(.) denotes the modified Bessel function of the second kind.

Model fpdf (r) r.95 = u.95rt Lower bound for p.95

Gaussian r
σ2 exp

(
− r2

2σ2

)
2.448σ .914

disk 2r
R2 .975R 1.329

Cauchy r
ω2

(
1 + r2

ω2

)−3/2
4.469ω .568

VarGamma
4√2r3/4K− 1

4

(
r
η

)
η7/4Γ( 3

4)
3.547η .505

3 Proofs regarding lower bound for radius of maximal aggregation

Lemma .1. Let h : <+ 7→ <+ be a unimodal differentiable function with a unique maximum at rm > 0
and a derivative satisfying h′(r) > 0 for 0 ≤ r < rm, and h′(r) < 0 for r > rm. Note: this is satisfied by
all the models in Supplementary Table S1.

Further assume that there exists r∗ > 0 that satisfies

H(r∗)− r∗h(r∗) = 0.

Then the radius of maximal aggregation ra ≥ r∗ where ra is obtained as a solution to (2) for some A > 0.
Furthermore as A→∞, we have ra → r∗.

Proof. Define
w(r) = H(r)− rh(r).

Clearly w(0) = 0 and the derivative satisfies w′(r) = −rh′(r).
From the properties of h′ we have w′(r) ≤ 0 for 0 ≤ r < rm, with strict inequality for 0 < r < rm, and

w′(r) > 0 for r > rm. Hence
w(r) < 0 for 0 < r ≤ rm. (3)
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Since w(r∗) = 0 it follows that r∗ > rm. Moreover since w′(r) is strictly positive for r ∈ (rm, r
∗], it follows

that w(r) < 0 for r ∈ (rm, r
∗). Combining with (3) it follows that w(r) < 0 for r ∈ (0, r∗).

Now, we know that ra satisfies (2) for some A > 0. Thus we must have w(ra) > 0 and hence it follows
that ra ≥ r∗.

Now consider the situation in which A→∞. Define

z(r) =
h(r)2

H(r)− rh(r)

to denote the expression on the right hand side of (2) without the factor of 4π included. Since z(r) = h(r)2

w(r)

we know from the earlier analysis of w that z(r) ≤ 0 for r < r∗ and z(r) ≥ 0 for r < r∗. Now consider the
derivative of z. We have

z′(r) =
(H(r)− rh(r))2h(r)h′(r) + rh′(r)h(r)2

(H(r)− rh(r))2

=
2h(r)h′(r)H(r)− rh′(r)h(r)2

(H(r)− rh(r))2

=
h(r)h′(r)(2H(r)− rh(r))

(H(r)− rh(r))2
(4)

Now consider the function q(r) = 2H(r)− rh(r) for r ≥ r∗. At r = r∗ we have q(r∗) = 2H(r∗)− r∗h(r∗) =
H(r∗) > 0. Moreover the derivative of this function is q′(r) = h(r)−rh′(r) which is non-negative for r > r∗

because h′(r) < 0. Thus q(r) > 0 for r > r∗. This observation combined with the fact that h′(r) < 0 for
r > r∗ and (4) implies that z′(r) < 0 for r > r∗. Thus we have that z is strictly decreasing in the interval
(r∗,∞). Moreover z(r) → ∞ as r approaches r∗ from above. Hence as A → ∞ the left hand side of (2)
→∞ and thus by virtue of (2) we must have ra → r∗.

4 Radius of maximal aggregation in the case of K̃(r, n) of Lagache et al

Setting ∂K̃(r,n)
∂r = 0 for disk clusters as discussed in Main Text, followed by routine manipulations lead us

to the relation:

−
0.0210642p2

((
16 − 4p2

)
cos−1(0.5p) + p

√
4− p2

(
p2 − 4

)) (
6.0286m3 + 7.35489m2p− 18.9394mp2 + np3

)
p2 − 4

+ 0.00789906p
(
2.45163m2 − 12.6263mp+ np2

) (√
4− p2

(
p2 + 2

)
p− 8p2 cos−1

(p
2

)
− 8 sin−1

(p
2

))
+0.0317468

(
m3 + 1.22m2p− 3.14159mp2 + 0.165876np3

) (√
4− p2

(
p2 + 2

)
p− 8p2 cos−1

(p
2

)
− 8 sin−1

(p
2

))
= 0, (5)

where p = r̃a/R, m = side/R where A = side2, P = 4.side.
The contour plot of p vs m, based on this expression, is shown in the Main Text, for different values of

n.
In the case of Gaussian clusters, the relation is simpler:

m3

(
p2 − 2e

p2

4 + 2

)
+m2p

(
1.22p2 − 3.66e

p2

4 + 3.66

)
+mp2

(
−3.14159p2 + 12.5664e

p2

4 − 12.5664

)
+ np3

(
0.165876p2 − 0.82938e

p2

4 + 0.82938

)
= 0, (6)

and the corresponding contour plot is provided in Main Text.
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5 Bias in parameter estimation based on exponential PCF approximation

We simply show the case for Ising model. Derivation for other models follow the same procedure. For
ga(r) = 1 + a exp(−r/d) and f(r) = 1 +Ar−1/4 exp(−r/D), the Least Squared Error criteria gives:

(â, d̂) = arg min
a,d

E = arg min
a,d

∫ rm

0
(f(r)− ga(r))2dr. (7)

We obtain: E = −1
2a

2d
(
−1 + e−

2rm
d

)
+

A2
√

π
2

√
rmErf[

√
2
√

rm
D ]√

rm
D

−
2aAr

3/4
m

(
Γ[ 3

4 ]−Γ
[

3
4
,
(d+D)rm

dD

])
(

(d+D)rm
dD

)3/4

∂E
∂a = 0 =⇒ ∂E

∂a = −ad
(
−1 + e−

2rm
d

)
−

2Ar
3/4
m

(
Γ[ 3

4 ]−Γ
[

3
4
,
(d+D)rm

dD

])
(

(d+D)rm
dD

)3/4 =0

∂E
∂d = 0 =⇒ ∂E

∂d = −1
2a

2
(
−1 + e−

2rm
d

)
− a2e−

2rm
d rm
d −

2aAdDe−
(d+D)rm

dD

(
rm
dD
− (d+D)rm

d2D

)
(d+D)r

1/4
m

+
3aAr

3/4
m

(
rm
dD
− (d+D)rm

d2D

)(
Γ[ 3

4 ]−Γ
[

3
4
,
(d+D)rm

dD

])
2
(

(d+D)rm
dD

)7/4 =0

Solving both equations separately for a = â, we obtain:

â =
2Ae

2rm
d r

3/4
m

(
Γ[ 3

4 ]−Γ
[

3
4
,
(d+D)rm

dD

])
d

(
−1+e

2rm
d

)(
(d+D)rm

dD

)3/4

and,

â =

4ADe
− (d+D)rm

dD r
3/4
m

d(d+D)
−

3Ar
7/4
m Γ[ 3

4 ]

d2
(

(d+D)rm
dD

)7/4
+

3Ar
7/4
m Γ

[
3
4 ,

(d+D)rm
dD

]
d2

(
(d+D)rm

dD

)7/4

−1+e−
2rm
d + 2e

− 2rm
d rm
d

Equating both the above expressions of â, simplifying, and setting m = d/D and k = rm/D, we get:

2e
2k
m (Γ( 3

4)−Γ( 3
4
,k(1+ 1

m)))

e
2k
m −1

+
me

k( 1
m−1)(4( km+k)

3/4−3Γ( 3
4)e

k
m+k+3e

k
m+kΓ( 3

4
,k(1+ 1

m))
)

(m+1)
(
m
(
e

2k
m −1

)
−2k

) = 0

Note that this equation does not contain the amplitude parameters a and A. A contour plot of
this equation is shown in Supplementary Figure S2. For reasonably large values of rm (i.e., rm > 2D),
m = d̂/D = .5. That is, the correlation length parameter estimated by the approximate model is half of
the correlation length of the true model.

From these results, the parameter values k = 4,m = .5 (or any k > 2) can be substituted in the
expression for â, to obtain:

n =
a

A
= 2.15031D−1/4

That is, the amplitude parameter of the approximate model is dependent on both the true amplitude
parameter as well as the correlation length. The relationship is shown in Supplementary Figure S3. This
parameter could be n = .38−1.44 scaled from the true amplitude parameter for D = 5−1000nm, relevant
scales for membrane protein clusters.

Now, the average number of points per cluster:

NI = 1 + ρ

∫ ∞
0

(f(r)− 1)2πrdr ≈ 2πAD1.75Γ

(
7

4

)
Na ≈ 2πad2ρ = 3.3777AD1.75 = 0.584919NI

That is, the approximate model underestimates the average number of points per cluster by over 40%.
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6 Case of power law PCF

In the case of the PCF g(r) = 1 + c
(
r0
r

)s
, assuming s 6= 1,

K(r) = πr2 +
2πc

2− s

(r0

r

)s
r2 (8)

for s < 2.
A in (10) of Main Text will be A = 2−s

2πc . Using (10), we get:

p =
ra
r0

=

(
c(2− s)
2(s− 1)

)1/s

. (9)

A plot of this equation for different s is shown in Supplementary Figure S5. It can be seen that p varies
across orders of magnitude based on values of s and c.
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Supplementary Figures
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Supplementary Figure S1: Comparison of p = ra/rt from theory and simulations. Figure 2 in Main Text
with error bars(σ).

k=rm/D

Supplementary Figure S2: Contour plot of k = rm/D vs m = d/D for Ising model. rm is the distance
value to which the Least Squares sum is taken, where D is the true size parameter of the Ising model, and
d that of the exponential approximation of PCF. After ≈ rm > 2D, the m value is fixed at .5.

6



Supplementary Figure S3: Plot of D vs n = a/A for Ising model, at k = 4,m = .5. See Supplementary
Figure S2 for details on parameteric values of k,m.
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Supplementary Figure S4: Comparison of fitting empirical PCF of Gaussian clusters to (1) exponential
PCF ga and (2) theoretical PCF of Gaussian clusters, for different true cluster σ. Figure 6b in Main Text
shown with error bars(σ).
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Supplementary Figure S5: Ratio of radius of maximal aggregation to true cluster size parameter p = ra
r0

for power law PCF, as a function of amplitude parameter c for different values of power s. Depending on
s, p could be crucially dependent on c.
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Supplementary Tables

Model (rt) g(r)− 1 K(r)− πr2

Gaussian (σ) (1) 1
4πκσ2 exp(−r

2

4σ2 ) 1
κ(1− exp(−r

2

4σ2 ))

disk (R) (1) 2
π2R2κ

(cos−1( r
2R)− r

2R

√
1− r2

4R2 ) †
Cauchy (ω)(2) 1

8πω2κ
(1 + r2

4ω2 )−3/2 1
κ(1− 1√

1+ r2

4ω2

)

variance Gamma
ν = 1/2 (η) (3) 1

2πη2κ
exp(−r/η) 1

κ

(
1− e−

r
η

(
1 + r

η

))
Ising (4) aIr

−1/4 exp(−r/ξ) 2πaIξ
7/4
(

Γ
(

7
4 − Γ

(
7
4 ,

r
ξ

)))
Supplementary Table S1: Cluster models used for analysis.† 2

κπ (
r2 cos−1( r

2R)
R2 −

r
√

1− r2

4R2 (r2+2R2)
4R3 +

sin−1
(
r

2R

)
). Also, for disk model, the functions provided here are for r ≤ 2R, for r > 2R, it is 0. Note

that for disk, g(r) = 1 at r ≥ 2R, which provides a simple estimator for R.

Cluster model Expression for p = ra/rt
Theoretical lower bound
for p (to 5 digits)

Gaussian (p = ra/σ) κσ2 = e−
p2

4 p2

8π

(
−p2+2e

p2

4 −2

) 2.24181

Disk (p = ra/R) κR2 =
p2
(
p
√

4−p2−4 arccos( p2 )
)2

π2
(√

4−p2(3p2−2)p−8p2 arccos( p2 )+8 arcsin( p2 )
) 1.29564

Cauchy(p = ra/ω) κω2 = p2

π(p2+4)3/2
(

(p2+4)3/2−4p2−8
) 2.54404

varGamma (p = ra/η) κη2 = p2

4π(exp(2p)−exp(p)(p2+p+1))
1.79328

Ising (p = ra/ξ)
1

2πa
−1
I ξ1/4 = exp(−2p)p3/2

4π(− exp(−p)p7/4−Γ( 7
4
,p)+Γ( 7

4))
1.37220

Supplementary Table S2: Exact expressions for the radius of maximal aggregation ra for
different cluster models.
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