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Abstract— When an epidemic spreads in a network, a key
question is where was its source, i.e., the node that started the
epidemic. If we know the time at which various nodes were
infected, we can attempt to use this information in order to
identify the source. However, maintaining observer nodes that
can provide their infection time may be costly, and we may have
a budget k on the number of observer nodes we can maintain.
Moreover, some nodes are more informative than others due to
their location in the network. Hence, a pertinent question arises:
Which nodes should we select as observers in order to maximize
the probability that we can accurately identify the source?

Inspired by the simple setting in which the node-to-node
delays in the transmission of the epidemic are deterministic,
we develop a principled approach for addressing the problem
even when transmission delays are random. We show that the
optimal observer-placement differs depending on the variance
of the transmission delays and propose approaches in both
low- and high-variance settings. We validate our methods by
comparing them against state-of-the-art observer-placements
and show that, in both settings, our approach identifies the
source with higher accuracy.

I. INTRODUCTION

Regardless of whether a network comprises computers,
individuals or cities, in many applications we want to detect
whenever any anomalous or malicious activity spreads across
the network and, in particular, where the activity originated.!
We call the spread of such activity an epidemic and the
originator the source.

Clearly, monitoring all nodes is not feasible due to cost and
overhead constraints: The number of nodes in the network
may be prohibitively large and some of them may be unable
or unwilling to provide information about their state. Thus,
studies have focused on how to estimate the source based
on information from a few nodes (called observers). Given
a set of observers, many models and estimators for source
localization have been developed [25], [20], [31]. However,
the selection of observers has not yet received a satisfac-
tory answer: Most of state-of-the-art methods are based on
common centrality heuristics (e.g., degree- or betweenness-
centrality) or on more advanced heuristic approaches that
do not directly optimize source localization (see [31] for a
survey) or are limited to simple networks such as trees (e.g.,
[15]). Moreover, such methods consider only the structure
of the network when placing observers. However, depending
on the particular epidemic, the expected transmission delay
between two nodes, and its variance, can differ widely. We
show that different transmission models require different

'In effect, we wish to answer questions such as what was the origin of a
worm in a computer network?, who was the instigator of a false rumor in
a social network? and can we identify patient zero of a virulent disease?

observer placements: This is illustrated in Figure 1: As the
variance of the transmission delays changes, the optimal set
of observers also changes (see also Figure 2 for a concrete
example).
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Fig. 1. Transmission variance o and optimal observer placement. For
o € (0,00) the transmission delays are effectively deterministic. For
o € (00,01) the variance o affects the accuracy of source localization
but the optimal observer placement is still Og. For larger o, the optimal
observer placement may change, possibly multiple times (Of denotes the
optimal placement for o € (o), 0k+1)) up to 0 = op. For 0 > o the
optimal placement remains the same (Op).

The difficulties faced in finding the optimal observers are
two-fold. First, computing the likelihood of a node being the
source conditional on the available observations can be com-
putationally prohibitive [28], [25]; evaluating the probability
of detection given a set of observers is, in general, even
harder. Second, the optimal selection of a limited number
of observers is NP-hard, even when the transmission times
are deterministic. We take a principled approach that begins
with considering deterministic transition delays, and build
on this intuition in order to develop heuristics for both the
low-variance and high-variance regimes.

A. Model and Problem Statement

Our Transmission Model. We assume that the contact
network G = (V, E, w) is known and is weighted. The weight
Wy € Ry of edge uv € E is the mean of the transmission
delay encoded by the random variable X,,,; this is the time
it would take for w to infect v.2 This transmission model
is both natural and versatile as it comprises deterministic
transmissions (i.e., if X, = wy, € R4 a.s. for all edges
uv € F), which we call zero-variance, and arbitrary random
independent transmission models. It naturally captures the
SI epidemic model adopted, e.g., in [25], [22] and related
SIR/SIS/SEIR models (see [14] and the discussion in [31]).
We study, in particular, how the amount of randomness (i.e.,

2For ease of presentation we assume the graph is undirected and wy,, =
Wy ; however our definitions and approach extend straightforwardly to the
directed case.



the variance of X,,) in the transmission delays affects the
choice of observers for source localization. Towards this,
we are the first to separately analyze two different regimes
for the amount of randomness in transmission delays: low-
variance and high-variance. A dichotomy exists between the
two, and our approach for observer placement differs.

Our Source Estimation. We assume that there is a single
source that initiates the epidemic® and let @ C V (which
we will select) be the set of observer nodes. We assume we
know the time at which each observer is infected, and refer
to this vector of infection times as T». This is a standard
(see, e.g., [23]) and realistic assumption (for example, clinics
keep records of patients and carefully record outbreaks so
can provide such information). To identify the source, we
use this (and only this) information.

We use maximum likelihood estimation (MLE) to produce
an estimate S of the true unknown source s* as in [25],%i.e.,

5 € argmax, ., P(Tols* = s)P(s" = s).

We assume the prior on s* is uniform unless otherwise
specified (i.e., P(s* = s) = 1/n for all nodes s € V where
n = |V|).
Our Observer Placement. We assume that we are given
a budget k on the number of observers we can use, and that
we must select our observers once and for all. In order to
select the best set of observers O of size k we must first
define our metric of interest. We consider the two metrics
proposed by [15], although variations (including worst-case
versions) exist [15]:
1) the success probability Ps = P(5 = s*), and
2) the expected distance between estimated source and
real source, i.e., E[d(s*, )] with d denoting the dis-
tance between two nodes in the network.

The two metrics might require different sets of ob-
servers [15], however we show experimentally that maxi-
mizing Py is a good proxy for minimizing E[d(s*,3)] (see
Section III). Hence, due to space constraints, we focus on
the minimization of the former.

B. Main Contributions

Low-Variance Regime. When the variance in the trans-
mission delays is low (see Section III), we prove that the
set of optimal observers is equal to the optimal set for the
zero-variance regime. In the zero- and low- variance regime,
both the probability of success P, and the expected distance
E[d(s*,3)] can be explicitly computed. Despite this seeming
simplicity, the problem remains NP-hard. We tackle the
problem by using its connection with the well-studied related
Double Resolving Set (DRS) problem [6] that minimizes
the number of observers for perfect detection.” From this
connection we find inspiration for our algorithm that, by

30ur results can be extended to the case of multiple sources following
the recent work by [32] on a related problem.

4This approach is common (see e.g., [28], [8]), although the exact form
of the estimator depends on the model and assumptions.

5This minimum number is, in many cases, still prohibitively large, and
can be as much as n — 1, hence we cannot use this approach directly.

selecting one observer at a time until the budget is exhausted
in order to reach a DRS set, greedily improves Ps.

High-Variance Regime. When the noise in the trans-
mission delays is high (see Section IV), it is no longer
negligible and it poses an additional challenge to source
localization; in effect, the accumulation of noise from node
to node as the epidemic spreads might no longer enable
us to distinguish between two potential sources, especially
when they are both far from all observers. Hence, we must
strengthen the requirements for observer placement in order
to ensure that the nodes can be distinguished by observers
that are near to them; this nearness is a function of the
noise, the budget k, and the network topology. We define
a novel objective function that both maximizes the success
probability and imposes a uniform spread of observers in the
network. Taking inspiration from the low-variance regime,
we design an algorithm that greedily maximizes this new
objective (see Section IV).
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Fig. 2. Optimal observers for Gaussian transmission delays with variance
2. (a): different observer placements; (b): their performance in terms of
probability of success (Ps) for w = 20 and 30 edges.

Empirical Results. Our methods perform favourably
against state-of-the-art approaches in both the low- and high-
variance regimes (see Section V-B). In Appendix III, for
the low-variance regime, we further compare them against
two other natural objective functions; we show that our
approach is the best. Moreover, in the empirical results
the dichotomy between the low- and high-variance regimes
becomes apparent.

II. RELATED WORK

The problem of source localization has been widely stud-
ied in recent years, we survey the works that are more
relevant to ours and refer the reader to the survey by Jiang
et. al. [10] for a more complete review of the different
approaches.

Transmission delays. Many transmission models for epi-
demics have been studied [16] and considered for source
localization. Although discrete-time transmission delays are
common [21], [26], [3], in order to better approximate real-
istic settings, much work (including ours) adopt continuous-
time models with varying distributions for the transmission
delays; e.g., exponential [28], [22] or Gaussian [25], [20],
[19], [31]. In the same line of the latter class of works, we use
truncated Gaussian variables, which gives us the advantage
of ensuring that infection delays are strictly positive.



Source localization. Many approaches [33], [26], [29],
beginning with the seminal work by Shah and Zaman [28],
rely on knowing the state of the entire network at a fixed
point in time t; this is often called a complete observation
of the epidemic. These models use maximum likelihood
estimation (MLE) to estimate the source. The results of [28]
have been extended in many ways, for example in the
case of multiple sources [22] or to obtain a local source
estimator [8]. An alternate line of work considers a complete
observation of the epidemic, except that the observed states
are noisy, i.e., potentially inaccurate [34], [29]. As assuming
the knowledge of the state of all the nodes is often not
realistic, partial observation settings have also been studied.
In such a setting, only a subset of nodes O reveal their
state. In this line of work, the observers are mainly given,
either arbitrarily or via a random process, and the problem
of selecting observers is not addressed. For example, when
a fraction = of nodes are randomly selected, Lokhov et
al. [18] propose an algorithm that relies on the knowledge
of the state (S, I or R) of a fraction of the nodes in the
graph at a given moment in time. This approach, however,
crucially relies on the assumption that the starting time of
the epidemic is known, which is often not realistic [10], [25].
When the nodes are independently selected to be observers,
an approach to source estimation based on the notion of
Jordan center was proposed [21] and has since been used
in other work for source estimation, especially with regard
to a game theoretic version of epidemics [9]. This line of
work does not assume infection times are known, which
we believe is, in many cases, an unnecessary limitation.
Indeed by using infection times we can achieve exact source
localization in the zero-variance setting with sufficiently
many observers [7], whereas this is not true otherwise.

Observer placement. Natural heuristics for observer
placement (e.g., using high-degree vertices or optimizing for
distance centrality) were first evaluated under the additional
assumption that infected nodes know which neighbor in-
fected them [25]. Later, Luoni et al. [20] proposed, for a
similar model, to place the observers using a Betweenness-
Centrality criterion (which we use as a benchmark, see
Section V-B), and extended it to noisy observations [19].
These and other heuristic approaches for observer placement
are evaluated empirically by Seo et al. [27]; they reach the
conclusion that, among the placements they evaluate, the
Betweenness-Centrality criterion performs the best. In their
work the source is estimated by ranking candidates according
to their distance to the set of observers, without using the
time at which the observers became infected. Once again,
this approach is inherently limited by the fact that it does
not make use of the time of infection. The problem of
minimizing the number of observers required to detect the
precise source (as opposed to maximizing the performance
given a budget of observers) has been considered in the
zero-variance setting. For trees, given the time at which
the epidemic starts, the minimization problem was solved
by Zejnilovic et al. [30]. Without assuming a tree topology
and a known starting time, approximation algorithms have

been developed towards this end [7] (still in a zero-variance
setting). However, in a network of size n, the number of
observers required, even if minimized, can be up to n — 1,
hence, a budgeted setting is practically more interesting. For
trees, the budgeted placement of observers was solved by
using techniques different from ours [15]. However these
techniques heavily rely on the tree structure of the network
and do not seem to be extendible to other topologies. In
a very recent work, Zhang et al. [31] consider selecting
a fixed number of observers using several heuristics such
as Betweenness-Centrality, Degree-Centrality and Closeness-
Centrality and they show that none of these methods are
satisfactory. They introduce a new heuristic for the choice
of observers, called Coverage-Rate, which is linked to the
total number of nodes neighboring observers, and show that
an approximated optimization of this metric yields better
performance. Connecting the budgeted placement problem to
the un-budgeted minimization problem, we provably outper-
form their approach in low-variance settings.® Moreover, the
effect of the variance in the transmission delays is neglected
by Zhang et al., leaving open the question of whether their
approach works in general. However, we consider Coverage-
Rate as one of our baselines.

III. THE LOW-VARIANCE REGIME

In this section, we focus on the low-variance regime. We
start by introducing the setting and the definitions we adopt.

A. Preliminaries

Let G = (V,E) be an undirected weighted network.
Assuming u is infected, the weight w,, of edge wv € E
represents the expected time it takes for u to infect v. As
the network is undirected, we assume w,, = wW,, for all
w € E.

We assume that the epidemic is initiated by a single
unknown source s* at an unknown time t*. If a node u
gets infected at time ¢,,, a non-infected neighbor v of u will
become infected at time ¢, = t, + X,, where X,, is a
random variable with E[X,,] = wy,.

The time t* at which an epidemic starts is unknown.
This adds a significant difficulty to the problem because a
single observation is not per se informative. Instead, we must
use the collection of differences between observed infection
times. If the variance is zero or if it is low compared to
edge weights, network distances are a good proxy for time
delays (see Proposition 1). We refer to this setting as a low-
variance regime, as opposed to the high-variance regime in
which time delays are highly noisy and network distances
no longer work as a proxy for time delays.

Distance vectors and equivalence between nodes. We
start with a few definitions. Our setting is similar to [15].

Definition 1 (Equivalence): Let G = (V,E) and O C V
with |O] = k > 2 be a set of observers on G. A node u is

SFor example, on cycles of odd-length d with a budget k = 2 in the
low-variance setting, any two nodes at distance more than 2 are equivalent
with respect to the coverage rate, but only optimal if the observers are at
distance (d — 1)/2; our approach selects this optimal placement.



Fig. 3.  An unweighted network with two observer nodes o1 and o2.
Different shapes represent different equivalence classes, i.e., groups of nodes
which are not distinguishable from the point of view of the observers (solid
red). In this example there are ¢ = 5 equivalence classes.

said to be equivalent to a node v (which we write v ~ v) if
and only if, for every 0;,0; € O

d(ua Oi) - d(ua Oj) - d(U, Oi) - d(v70j)' (1)

where d(z,y) is the (weighted) distance between x and y.
The relation ~ is reflexive, symmetric, and transitive, hence it
defines an equivalence relation. Therefore, a set of observers
O partitions V' in equivalence classes (an example is given in
Figure 3). We denote by ¢ the number of equivalence classes
and we let [u]o be the class of u, i.e., the set of all nodes
that are equivalent to w.

When the variance is zero, given an observer set, we can
distinguish u from v if Equation (1) does not hold for u,v
and a pair of observers o;,0;, i.e., if [u]o # [v]o.

The problem of finding the minimum-size set of nodes
S, such that for every u,v there exist s;,s; € S for which
d(u, s;)—d(u, s;) # d(v, s;) —d(v, s;) is known as the Dou-
ble Resolving Set (DRS) Problem [6]. Our problem differs
from DRS because we focus on the more realistic context in
which, due to limited resources, we want to allocate a finite
budget in order to maximize the detection probability (as
opposed to minimizing the number of observers for perfect
detection, which is, in many cases, still prohibitively large).
However, the connection between our problem and DRS
paves the way for a principled approach.

We now define a distance vector associated with a can-
didate source, which, as we will prove in Lemma 1, math-
ematically captures equivalence in a manner that is easy to
work with.

Definition 2 (Distance Vector): Let G = (V,E) and O C
V with |O] = k > 2 a set of observers on G. For each
candidate source s the distance vector is dg o € R*~! with
entries d(s,0;41) — d(s,01) for 1 <i <k —1.

The following lemma, similar in spirit to Lemma 3.1
in [7], shows that, the equality between distance vectors of
different candidate sources does not depend on the choice of
the reference observer o1.

Lemma 1: Let G = (V,E) and O CV with |O| =k > 2
and let u,v € V. Then, [u]p=[v]p if and only if d, 0 =
d, o, independently of the choice of the reference observer
01 in Definition 2.

Estimating the source in the low-variance setting. We
are now ready to describe how we can estimate the source,
and define the probability of correct detection in the zero-
and low- variance setting, i.e., when X,, = w,, a.s. for
every edge (u,v).

For every observer o; € O, denote by ¢; the time at which
o; gets infected. In the zero-variance setting, the observed

infection times of nodes o2, ..,0x with respect to observer
01, 1.e., the vector 7 def to —t1,...,t — t1, is exactly the
distance vector of the unknown source s*. Then, if for every
u,v € V, [ulo # [v]o, the source can be always correctly
identified. We will see in Proposition 1 that this is true also
in a more general low-variance framework where we are
always able to identify the equivalence class to which the
real source belongs.

We assume a prior probability distribution on the location
of the source to be given, i.e., Q(u) ef P(s* = u). As we
cannot distinguish between vertices inside [s*]o (otherwise
they would not be in the same equivalence class), we let our
estimated source § be chosen at random from the conditional
probability Qg+ (u) def P(s* = wu|u € E*). Hence the
success probability is

Ps(0) £ 3" P(E = s[s* = 5)P(s* = 5)

= Q(s) .
= S;/th]o(S)Q(S) = S%‘:/ m@(s),

and is 1 if all equivalence classes are singletons.
In the experimental results in Section V we also look at

another relevant metric for the source localization problem,
the expected distance (weighted or in hops) between the true
and estimated source:

Eld(s*,5)] = Y P(s* =5) Y PE=uls" = s)d(s,u)

seV u€l[slo
B QW
‘2.2[:] Qo) )

3)
Alternative metrics, including worst-case metrics, also exist
[15] (see Appendix I for some examples).

B. Setting

For ease of exposition, we focus on the case in which the
prior distribution on the position of the source is uniform,
hence Q(u) = 1/n for all u € V.7

Proposition 1: Let G = (V, E) be a network of size n
and O C V. Call § = minum:dmo;ﬁdvp Hdmo — dv,@HOO.
Assume a uniform prior Q(u) = 1/n for all w € V and
call D the maximum distance in hops in any shortest path
between any node and any observer.

1) In the zero-variance case, then P,(O) = ¢/n, where ¢

is the number of equivalence classes for O;
2) If the transmissions are such that for each
w € E, Xyp € [Wyy — €, Wyy + €], we denote

as P:(O) the probability of success and we
define g¢ = sup{e > 0: P(O) = PY(0)}, we have
€0 > 9/2D.

Proof:

1) By definition,
Ps(0) = ZP(?Z s*|s* € [u])P(s* € [u]).
[u]o

7Qur algorithms and observations can be generalized using Equation (2)
instead of the simpler formula that we now derive for the uniform case.
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2) Recall that, for u,v € V, [ulo # [v]o if and
only if dy, 0 # dy,0. Since d,, 0 # d, o implies
ldu,0 —dy,0llec > 6, if € < /2D, no estimation error
is possible between u,v € V such that d,, o # d, 0.
Hence ¢y > 9/2p.

|

Note that here € plays the role of o in Figure 1. Indeed,
for € < ¢ the variance of the transmission delays does not
affect the accuracy of source localization.

If additional conditions on the weights or on the network
topology are made, more refined bounds for ey can be
derived. For example, in a tree with integer weights, due the
uniqueness of the path between two any vertices, the min-
imum distance (in the infinity norm) between two distance
vectors is 2. Hence, in this case, an accumulated variance of
less than 1 can be tolerated and we have 9 > 1/D.

For the remainder of this section, we will assume
€ < 0/2D, which we call the low-variance case. Indepen-
dently of the topology of the network G, the success proba-
bility P, as well as other possible metrics of interest, can be
computed exactly in polynomial time (see e.g., Equation (2)
and (3)). In fact, due to Lemma 1, it is enough to compute the
distance vector of Definition 1 for all the nodes. Nonetheless,
if we have a budget £ > 2 of nodes that we can choose
as observers, finding the configuration that maximizes Ps
is an NP-hard problem. This is a direct consequence of the
hardness result of Chen et al. [7].

Theorem 1: Let k > 2 be the budget on the number of
nodes we can select as observers. Finding O C V such that
O € argmax o, Ps(0) is NP-hard.

The proof follows straightforwardly with a reduction from
the DRS problem (see Appendix IV).

C. Observer Placement

Our first main contribution in this paper is a solution to the
budgeted observer-placement problem. Our approach, pre-
sented in Algorithm 1, is specifically designed for the source
localization problem and has a simple greedy structure: for
every node v € V, initialize O + {v} and iteratively add
to O the node u that maximizes the gain with respect to
the success probability until we either run out of budget or
Ps = 1. Proposition 1 ensures that greedily maximizing the
success probability is equivalent to greedily maximizing the
number q of equivalence classes. When adding an element to
the observer set, the partition in equivalence classes can be
updated in linear time, hence the total running time of our
algorithm is O(kn?). Despite bypassing the NP-hardness of
the problem, this might not be sufficiently fast for very large
graphs. However, the procedure is extremely parallelizable
and well suited, e.g., for Map-Reduce (see, for example, the
main for loop and the argmax in the while loop).

The observer placement obtained through Algorithm 1 will
be denoted LV-OBS to emphasize the fact that it has been

Algorithm 1 (Lv-OBS): Observer placement for the low-
variance setting.
Require: Network G, budget k
for v € V do
O, +—wv
while P,(0,) # 1 and O, < k do
U 4 argmax, gy o, [Ps(O, U{z}) — Ps(Oy)]
Oy +— O, U{u}.
return argmax, .y Ps(O,)

designed for the case in which the variance is absent or very
small (LV stands for low-variance regime).

D. Performance

As budgeted observer placement (even in the zero-variance
setting) is NP-hard, there is no optimal algorithm to compare
against. Instead, we evaluate the performance of our algo-
rithm against a set of natural benchmarks that have shown
to have good performance in other works [27], [4], [31] (see
Section V-B for a discussion of these benchmarks, Figure 7
for the results).

We further compare against two other natural heuristics
that also optimize an objective function greedily. The first is
an adapted version of the approximation algorithm for the
DRS problem proposed by Chen at al. [7] and described in
Appendix II. By stopping the greedy process after it selects
k nodes, we can adapt in a natural way this approximation
algorithm and create a heuristic for the budgeted version. The
second is a direct minimization of the expected error distance
obtained by Equation (3) with Q(u) = 1/n for all v € V.
Comparing all three approaches, our algorithm outperforms
the other two (see Appendix III for details).

IV. THE HIGH-VARIANCE REGIME

When the variance is not guaranteed to be low, as defined
in Section III, computing analytically the success probability
- or other metrics of interest - is unfortunately not possible
(except for very simple graphs, like the path in the example
of Figure 2). Moreover, the estimation of the source is more
challenging because the observed infection delay ¢; —t; can
be misleading, especially if the corresponding observers o;
and o; are far from the source. Take, for example, a path of
length L where the two leaves are the only two observers
and all edges have weight 1. Figure IV shows how the
success probability P, decays faster for increasing values
of L. Building on this observation, we propose a strategy
for observer placement that enforces a controlled distance
from a general source node to the observer set.

A. Diffusion Model and Source Estimation

For every edge (u,v) the infection delay X,, is dis-
tributed as a truncated Gaussian random variable with
parameters (Wyy, CWyy, [Wuv /2, 3Wu 2]). More precisely, if
Yo ~ N (wWyy, 0wyy) is a Gaussian random variable, X,
is obtained by conditioning Yy, with Yy, € [wuv/2, 3wu /2],
This delay distribution has two advantages with respect to
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Fig. 4. (a): Success probability Ps on a path of length L for increasing
variance o. (b): Counterexample for the converse of Lemma 2; for each pair
of observers in O, u is not contained in the shortest path between them,
yet O is a DRS.

the one of [25], ie., that X(, ,y ~ N (wyy, 0wyy). First,
the model admits only strictly positive infection delays.
Second, different values of the standard deviation o result
in different regimes for the propagation, making our model
very versatile. When o = 0, X, boils down to a deter-
ministic value equal to the edge weight w,,; when o is
large, the distribution of X, becomes closer to uniform
U([wuv/2,3wuv /2]). Finally, when o is strictly positive but
small, Xy, ~ N (Wyyp, (0Wyy)?). In Appendix V, we explain
how an approximated maximum likelihood estimator for the
source can be derived in this setting.

B. Observer Placement

First, we formalize why distances between observers are
important: If o;,0; are two observers and the source is
s* € P(0;,05), then

var(ti — tj) ~ O'2 Z ’LU,Zw (4)
(uv)€eP(0i,05)

where P(x,y) denotes the shortest path from z to y, written
as a sequence of edges. Although we cannot control o, we
can control the path length between observers.® We make
use of the following sufficient condition for a set to be a
DRS, i.e., for an observer set to guarantee optimal source
detection.

Lemma 2: Let G = (V, E) be a network, O C V. If for
every u € V there exist 01,02 € O such that there is a unique
shortest path P (01, 02) between o1 and 0 and u € P(01,02),
then O is a DRS for G.

Proof: Let u,v € V\O. We will prove that there exist
01,02 € O such that the pair (u,v) is resolved by (01, 02),
i.e., d(v,01) —d(u,01) # d(v,02) —d(u,02). Let 01,05 € O
such that w appears in the unique shortest path P(01,02)
and 03,04 € S such that v appears in the unique shortest
path P(o03,04). If v € P(01,02) or u € P(03,04) than u
and v are resolved by, respectively, (01, 02) or (03, 04). Take
v & P(01,02) and u ¢ P(03,04). In this case, {01,02} #
{03, 04}. Let us suppose without loss of generality that 0, ¢
{03,04}. We look only at the case where (01, 02) does not
resolve (u,v) and prove that the pair is indeed resolved by

8A relevant but orthogonal line of work would study how to control
the parameter o by, e.g., immunizations, quarantines, or other preventative
measures and is outside the scope of our work.

two vertices in O. Since (01,02) does not resolve (u,v),
there exists ¢ € R such that d(v,01) — d(u,01) = ¢ =
d(v,09) — d(u,02). Since the unique shortest path between
01 and 09 goes through uw we have that ¢ > 0. We prove that
either (01, 03) or (01, 04) resolves (u,v). If this was not the
case, we would have the following equalities:

c=d(v,01) — d(u,01) = d(v,03) — d(u, 03)
c=d(v,01) —d(u,01) = d(v,04) — d(u, 04).

Since ¢ > 0, d(v,03) > d(u,03) and d(v,04) > d(u,04)
giving a contradiction with v (and not u) being on the
shortest path P (03, 04). We conclude that (u,v) are resolved
by either (01, 03) or (01, 04). [ |
The converse of this lemma is not true: If O double resolves
g, it is not even true that for every node u there must exist
01,02 € O such that u is contained in some shortest path
between o; and oy of (see the Example in Figure IV).

Path covering strategy. We take Lemma 2 as a basis for
deriving a path covering strategy for observer placement. In
practice, the condition about the uniqueness of the shortest
path is too strong and excludes many potentially useful
observer nodes®. This is why we relax the condition of
Lemma 2 and we prefer, when the shortest path is not unique,
to select one arbitrarily. Let S C V be a set of observers
and L a positive integer: We call Pr(S) the set of nodes
that lie on a shortest path of length at most L between
any two observers in the set S. Given a budget k, and a
positive integer L, we denote by S} ; the set of k vertices
that maximize the cardinality of Py (). We call L the length
constraint for the observer placement because we consider
an observer to be useful for source localization only if it
is within distance L from another observer. Sy ; can be
approximated greedily as in Algorithm 2.1

Algorithm 2 (HV-OBS): Observer placement for the high-
variance setting.
Require: Network G(V, E), budget k, length constraint L
n + |G|
for v € V do
O, +—v
while |P(O,)| #n and O, < k do
u - argmax.cyn o, [ PL(O, U{=})] — [PL(O,)]
O, «+ 0, U{u}.
return argmax,, . | Pr(O,)|

We will refer to the observer placement produced by
Algorithm 2 as HV-OBS(L) to emphasize that it is designed
for the high-variance case.

Comparison with Algorithm 1. Note that taking L
equal to the maximum weighted distance A does not make

9Experimentally we see that in many practical situations two shortest
paths differ only by a few nodes and the majority of nodes on the path are
resolved by the two extreme nodes.

0The running time of Algorithm 2 is O(n2k?2), however, as with the
low-variance case, this is highly parallelizable and hence tractable even for
large networks.
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Fig. 5. Fraction of nodes in Pr,(-) for the California dataset with 2% of
observers.

Algorithm 2 equivalent to Algorithm 1, i.e., we do not obtain
LV-OBS. To see how the two algorithms could give different
results, take a cycle of odd length d with a leaf node ¢ added
as a neighbor to an arbitrary node v and assume to start
the algorithm with initial set {v}. At the first step, the two
algorithms will make the same choice, choosing one of the
two nodes that is at distance (d—1)/2 from v. At the second
step however, Lv-OBS will add ¢ (a DRS contains all leaves
[71), whereas Algorithm 2 will add a node on the cycle. This
observation is key to our results because it explains why
Algorithm 2 results in a more uniform (and hence variance-
resistant) observer placement with respect to LV-OBS. HV-
OBS operates a trade-off between the average distance to the
observers and the maximization of P,.

Choice of the L parameter. How could one optimally set
L? Needless to say, the optimal L depends on the network
topology and on the available budget: Clearly, for a larger
budget a smaller L is preferred.

The cardinality of Pr,(O) is a good proxy for the perfor-
mance of O. The value |Pr| is increasing in L and reaches
its maximum for L equal to the maximum weighted distance
(L = A). For small L, |Pr,(HV-OBS)| < | Pa(LV-OBS)| but
for L large enough this is no more the case. See Figure 5
for an example. Our empirical results suggest that L should
be chosen as the maximum for which |Pp(HV-OBS)| <
| PA(LV-OBS)|. The key property of HV-OBS with respect to
LV-OBS is that observers are spread more uniformly without
losing too much in terms of success probability Ps: Figure 6
shows |Pr(HV-OBS)| and P, as a function of L.

LV-OBS and HV-OBS can give drastically different ob-
servers (see Appendix VI for an example).

V. EMPIRICAL RESULTS

We purposely run our experiments on three very differ-
ent real-world networks that, in addition to being relevant
examples of networks for epidemic spread, display different
characteristics in terms of size, diameter, clustering coeffi-
cient and average degree (see Table I), enabling us to test
the performance of our methods on various topologies.

A. Datasets

The three networks we consider are:

- Friend & Families (F & F). This is a dataset containing
phone calls, SMS exchanges and bluetooth proximity,

1.0 1.0
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Fig. 6. Fraction of nodes in Pr,(HV-OBS) and success probability as a

function of L/A for the CR and the F & F datasets comparing with the
zero-variance setting.

among a community living in the proximity of a uni-
versity campus [2]. We select the largest connected
component of individuals who took part in the experi-
ment during its whole duration. The edges are weighted,
according to the number of phone calls, SMSs, and
bluetooth contacts.

- Facebook-like Message Exchange (FB) [24]. As the
individuals included in this dataset were living on
the same university-campus, the number of messages
exchanged is likely to be a good measure of in-person
interaction. We selected links on which at least one
message was sent in both directions and individuals that
had more than 1 contact.

- California Road Network (CR) [1]. In order to obtain
a single connected component and remove points that
effectively represent the same location, we collapsed
the points falling within a distance of 2 km. Moreover
we iteratively deleted all leaves.!! The diameter of this
network is very large compared with that of the other
two networks. The edges are weighted according to a
rescaled version of the real distance (measured in km).

In all three networks, edges are given (non-unit) integer
weights, which is realistic in many applications as the
expected transmission delays are known only up to some
level of precision. Integer weights do not simplify the esti-
mation of the source; in fact, this makes it more difficult to
distinguish between vertices. For example, if the edges of
the CR network were weighted according to the Euclidean
distance between the two endpoints, Lv-OBS would use only
a very small portion of the budget and the comparison would
not be meaningful.

"The roads that cross the state border are not completely tracked in
this dataset and terminate with a leaf. Some other leaves might represent
remote locations, not necessarily close to the borders, but their influence on
the epidemic should anyway be very low.



V] |[E]  min(wyw) avg(Wuw) max(wuy) Avg Degree  Diameter  Avg Dist  Avg Clust.
Friends & Families 120 563 4 5.58 7 9.38 6 17.5 0.67
Facebook Messages | 1020 6205 1 2.97 5 12.16 5 6.69 0.09
California Roads 1259 1801 1 1.71 9 2.86 66 55.3 0.2
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B. Comparison against Benchmarks

We compare HV-OBS against the following benchmarks:

1y

2)

3)

LV-OBS: this is our solution for the low-variance case
(see Section III).

BC (Betweenness Centrality): This is a popular
method for placing observers for source-localization
(see, e.g., [20] and [27], where it emerges as the best
heuristic for observer placement among those tested).
It consists of the k& nodes having the largest BC, which
is defined, for all u € V as

>

z,yeV,x#y

Oz,y(u)

Oz,y

BC(u) =

where o, is the number of shortest paths between x
and y and o, ,(u) is the number of those paths that
passes through u.

Coverage-rate (COVERAGE) [31]: This approach max-
imizes the number of nodes that have an observer as
a neighbor, i.e.,

C(O) = |Uoeo Nol/n,

where N, denotes the set of neighbors of 0 and n =
|[V|. Tt has been shown to outperform several heuristics
with a diffusion model and an estimation setting that
are very similar to ours.

(e) F & F, 5% observers

(f) F & F, 10% observers

Success probability Ps as variance o is increased.

4) K-MEDIAN: this is the optimal placement for the
closely-related problem of maximizing the detectabil-
ity of a flow [4]. The K-MEDIAN placement is the set
of k nodes O such that

O = argmin|p|_y, Z(gélg d(s,0)).
seV
Determining the K-MEDIANS of a network is NP-hard
[12]; we use a greedy heuristic for K-MEDIANS.

C. Experimental Results

We estimate P and E[d(s*,5)] for different values of the
variance 0. We generate epidemics by using each node in
turn as the source. For the FB and CR datasets, we run 5
simulations per node and variance level; and for the F & F
dataset, as the network is smaller, we run 20 simulations per
node and variance level. For the FB and CR datasets, we
estimate the source based on the first 20 observations only:
Given the large size of the network, it would be unrealistic
to wait for all the network to get infected before running
the algorithm. The results for P, are displayed in Figure 7.
An approximation of the value o;, above which HV-OBS
outperforms LV-OBS, is marked with a vertical line. For the
expected distance (weighted and in hops), see Appendix VI.

We first take as budget for the observers the minimum
budget for which Ps(Lv-OBS) = 1. This corresponds to



k ~ 9% for the F & F dataset, k ~ 9% for the CR network
and k ~ 5% for the FB dataset. This is the setting in which
we expect the improvement of HV-OBS over LV-OBS to be
especially strong: For smaller values of k we expect LV-
OBS to be nearly optimal even in the high-variance regime
because we do not have enough budget to contrast both the
topological undistinguishability among nodes (what Lv-OBS
is designed for) and the accumulation of variance (what HV-
OBS is designed for). For the F & F and the CR networks,
we also experiment with smaller percentages of observers
and consistently find an improvement of HV-OBS over LV-
OBS in the high-variance regime: Below a certain amount of
variance o LV-OBS performs better than HV-OBS for any
choice of the parameter L, whereas above o; a calibrated
choice of L leads to a significant improvement. Such L stays
constant for all ¢ > o4, i.e., with the notation of Figure 1
we have 01 = op. For the FB dataset instead, probably due
to the low diameter with respect to the number of nodes,
we observe that HV-OBS does not improve on LV-OBS for
any value of L. Both Lv-OBS and HV-OBS systematically
outperform the baseline heuristics for observer placement
that we described in Section V-B. For the CR dataset the
performance of Betweenness Centrality is particularly poor
and the results are not shown. The Coverage Rate heuristic
outperforms Betweenness Centrality on all three networks
(confirming what found by by Zhang et al. [31]) but is
consistently less effective than K-Medians and our methods.

D. Robustness

To measure the robustness of our approach, we consider
an alternate transmission model, and we measure whether,
without making any changes, our observer placement still
performs well. For every edge uwv € E with weight w,,,,
we take Xy, ~ Unif([(1 — &)wyy, (1 + €)wy,]). We find
comparable results (see Appendix VI); they suggest that our
observer placement is not dependant on the exact transmis-
sion model and that the variance of the transmission delays
is really a key factor for a good observer placement.

VI. CONCLUSION & FUTURE WORK

In this work, we have taken a principled approach towards
budgeted observer placement for source localization. We are
the first to have observed a dichotomy between the low and
high-variance regimes, and we developed complementary
approaches for both. We have evaluated our approaches
against state-of-the-art and alternative heuristics and find that
the performance of our algorithms is favourable.

One natural extension would account for two stages of
observation; in the first stage, as in this work, we select a
set of observers to monitor the network. In the next stage,
once an epidemic begins, we deploy additional observers in
the relevant region of the network. This would pave the way
for other types of adaptive models, including ones where
we not only observe a node but can act to immunize it or in
which we can move the observers as required.
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APPENDIX I
OTHER METRICS

In this section we define other metrics of interest. In particular,
we consider an adversarial setting (e.g., in the case of bio-warfare)
where if our observers are known, the adversary would select the
worst location for the source.

First, we consider minimum success probability, which is

def

P(O) = 1-— max (P(s#£s"|s" € Ey))
where {E;} are the equivalence classes with respect to O. Note
that in an adversarial setting, we would not consider any prior,
rather would select 5 € argmax P(5 # s"[s" € E;) uniformly
at random; given any non-uniform distribution, the adversary could
place the source at the location with lowest probability.

For the same reasons, we may also wish to consider the maximum
distance between the true and the estimated source as a metric.

max(d(s*,3) % maxA,=maxA;,

seV @

where A, (similarly A;) denotes the diameter of equivalence class
[s]o (similarly E;). Note that, in particular, this is independent of
any prior.

Another natural consideration which interpolates between ex-
pected and worst-case metrics is the expected maximum distance
between the true and the estimated source. This captures the case
where there is a prior @) on the source, and we are able to identify
the equivalence class of s*, but make the worst-case estimation §
within that class.

E[max(d(s*,3))] % Z P(s* = s)( max d(s,u))

v u€(slo
= > QA=) QE)A.
seV i

APPENDIX II
DOUBLE RESOLVING SETS

The problem of minimizing the required number of observers in
order to perfectly identify the source in the zero-variance setting has
been studied [7]; an observer set O such that Ps(O) = 1 is called
a Doubly Resolving Set (DRS). While the original formulation
of the DRS problem is slightly different, this version follows
straightforwardly from our observations in Section III.

Definition 3 (Double Resolving Set): Given a network G, S C
V' is said to be a Double Resolving Set of G if for any z,y € V
there exist u,v € S s.t. d(z,u) — d(z,v) # d(y, v) — d(y, v).
Finding a Doubly Resolving Set of minimum size is known to
be NP-hard [11]. An approximation algorithm, based on a greedy
minimization of an entropy function, has been studied. Note that
this has no connection to true information-theoretic entropy.

Definition 4 (Entropy [7]): Let G a network, O C V, |O]| =k
a set of observers. The entropy of O is

Ho =logy( ] Ilulol).

ulo CV

Note that Hp is minimized if ang ‘only if each equivalence class
consists of only one node and hence if and only if Ps = 1.
However, despite the fact that Hp is minimized when P is
maximized and that both act on the same set of equivalence
classes for a given O, the greedy processes that minimize Ho and
maximize P, are not the same. This can be seen by rewriting both
objective functions in the following way. Let [c1,...,cq] be the
sequence of equivalence class sizes. Then Hp can be written as
Ho([er, - cq]) = Yimy 3055, log(j) = 0005 log(i)#{e; >
i}. Analogously we have the following equality for the success
probability Ps([c1,...,¢cq]): n(1 — Ps([cr,...,¢q])) =n—q =
S #{c; > i} Hence, though similar in spirit, a greedy
minimization of He is not related to a greedy optimization of P,
(or E[d(s*,9)]).

APPENDIX III
ALTERNATE OBJECTIVE FUNCTIONS

Random Geometric Graph, N = 100, » = 0.2

Ps(Pdist) —Ps(P) Eq(Pdist) —Eq(P)) Ps(®Pent)=Ps(P)

Ps(P) BEg(®gist)+1 Ps(P)
k= -0.205 -0.101 -0.033
k=4 -0.014 0.003 -0.007
k=38 -0.003 0.002 -0.003

Barabasi Albert Graph, N = 100, m = 3

Ps(Pdist) —Ps(P) Eq(®Pdist) =Eq(P)) Ps(Pent)=Ps(P)

Ps(P) By (®gist)+1 Ps(P)
k=2 -0.168 -0.023 -0.037
k=4 -0.039 -0.025 -0.028
k=28 -0.004 0.003 0.005

TABLE II

COMPARISON OF LV-OBS (®) WITH THE GREEDY ALGORITHMS THAT
MINIMIZE THE ENTROPY FUNCTION OF [7] (®¢pnt) AND THE EXPECTED
DISTANCE (P g;5¢)

Here we compare Algorithm 1, denoted in this section as @, with
two other greedy algorithms that allocate the budget for observers
according to different objective functions:

1) ®.,+ minimizes the entropy function Ho [7] (see Section
1);
2) P45+ minimizes the expected distance (see Equation (3)).

We considered different topologies and different budgets k for the
observers. The results are given in the form of (averaged) relative
differences in Table II. The standard error of measurement is not
reported for the sake of readability but it was checked to be small:
approximately 1072 for k£ = 2 and (Ps(Paist) — Ps(P))/Ps(P);
on the order of 1072 or smaller in all the other cases. Note that,
since the expected distance can be 0 we add 1 in the denominator
when comparing E4(®g;st) and Eg(®). The results achieved by
these algorithms are, on average, worse than those of Algorithm 1
(®) independently of the graph topology. The only exception is the
minimization of the expected distance when k is very small.

APPENDIX IV
HARDNESS OF BUDGETED OBSERVER PLACEMENT

Theorem 2: Given a network G = (V,E) and a budget k,
finding an observer set O which maximizes Ps is NP-hard.

Proof: We will prove that the budgeted observer placement is
NP-hard with a reduction from the DRS problem (see Section II),
i.e., given a polynomial-time algorithm for the budgeted observer
placement problem, we will prove that we can solve the DRS
problem in polynomial time.

Assume that we have a polynomial-time algorithm A that takes
as input a network G = (V,E) and a budget k, and outputs a
set O C V of size k such that P, is maximized. Recall from
Section III that given a network G and a set O, the probability
P, can be calculated in time O(n) where n = |V/| (it is enough to
compute the n distances vector with respect to O and any reference
observer 01 € O). Hence, we will construct an algorithm for the
DRS problem.



Algorithm 3 Finds the minimum cardinality DRS given an
algorithm to compute the k-nodes set that maximizes P;.
Require: Network G = (V, E)
fork=1,...,|V| do

O := A(G,k)

P =P, (0)

if P =1 then

return k

Since the full set V' always resolves the network, the program
is well defined (i.e., it always returns some k). Moreover, it returns
precisely the minimum budget & required in order to attain P, = 1.
Lastly, it is clear that the runtime is at most O(n(pa(n) + n))
where p4(n) is the running time of algorithm 4. Hence, we have
a polynomial-time algorithm for the DRS problem. |

APPENDIX V
HIGH-VARIANCE SOURCE ESTIMATION
Denote by To the observed infection process. If the infection
delays are Gaussian, G is a tree and no prior information about

the source position is available, the maximum likelihood (ML)
estimator is defined as § € arg max P(s|To), which has a tractable
EIS

closed form [25]."> In particular, given a set of observers @ =
{01,02,...,06} C V, the vector of observed infection delays
T = [tz —11,...,tk — tl] c Rk_l is distributed as N(ds,o, Ao)
where ds, o is the distance vector of Definition 2 and the covariance
matrix Ao is

Ao (ki) = o’ {

with P(x,y) denoting the set of edges in the unique path between
node x and node y. Hence the ML estimator is

exp ( — %(T — ds’o)TAo_l(T — ds,o))
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On non-tree networks, the multiplicity of paths linking any two
nodes makes source estimation more challenging. As claimed in
[25], the same estimator can be used as an approximation of the
ML estimator for a non-tree network by assuming that the diffusion
happens only through a BFS (Breadth-First-Search) tree rooted at
the (unknown) source. In this case the paths which appear in the
definition of the covariance matrix Ao are computed on the BFS
tree rooted at the candidate source considered. Hence Ao depends
on the candidate source and the ML estimator is

R exp | — %(T—dsy(g)TA%_l(T—ds,(g))
Sbfs € argrsnea‘ic |A§9|1/2

In this work, we adopt (7) as the source estimator in the noisy
case. In fact, even if our edge delays are truncated Gaussians, under
the hypothesis of sparse observations, we can apply the Central
Limit Theorem (CLT) to approximate the sum of the edge delays
with Gaussian random variables: if all edges have the same weight
we can apply the CLT for i.i.d. random variables; if this is not the
case, we can apply Lyapunov’s version of CLT."

@)

IZNote that the model of [25] additionally assumed infected observers
knew the neighbor that infected them; this assumption is not required for
our work.

BLyapunov condition with § = 1 is easily verified for a sequence of
independent and uniformly bounded random variables (see Example 27.4
in [5] for more details).

APPENDIX VI
ADDITIONAL FIGURES

(a) Lv-OBS (b) HV-OBs, L/A = 0.5

Fig. 8. The oberver placements of Lv-OBS and HV-OBS with L/ﬁ =0.5
and k = 5% on the F & F network are very different; Lv-OBS contains
leafs while HV-OBS has shorter spacing.
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Fig. 9. Success probability Ps as variance is increased on a uniform

transmission model (Section V-D).
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Fig. 10. Expected distance in number of edges (left column) and
in weighted path length (right column) for the datasets and setting of
Section IV



