
Cryptanalysis of a Homomorphic Encryption

Scheme

Sonia Bogos⋆, John Gaspoz and Serge Vaudenay

EPFL
CH-1015 Lausanne, Switzerland

{soniamihaela.bogos, john.gaspoz, serge.vaudenay}@epfl.ch

Abstract. Homomorphic encryption allows to make specific operations
on private data which stays encrypted. While applications such as cloud
computing require to have a practical solution, the encryption scheme
must be secure. In this article, we detail and analyze in-depth the ho-
momorphic encryption scheme proposed by Zhou and Wornell in [20].
From the analysis of the encryption scheme, we are able to mount three
attacks. The first attack enables to recover a secret plaintext message
broadcasted to multiple users. The second attack performs a chosen ci-
phertext key recovery attack and it was implemented and verified. The
last attack is a related chosen plaintext decryption attack.

1 Introduction

Homomorphic encryption enables operations directly in the encrypted
domain. The notion of homomorphic encryption was first introduced by
Rivest et al. [15] in 1978. While this was instantiated at first only for
addition or multiplication, a breakthrough in this area was done by Gen-
try [7] that introduced the first Fully Homomorphic Encryption (FHE)
scheme. An FHE scheme is one that can support computation of any
arbitrary functions in the encrypted domain. While there is an exten-
sive work done in this area [7,16,9,17,8,10,18,5,6,4,3,2,1], FHE is not yet
practical and many applications do not require such a strong primitive.
Instead, there are many schemes that offer a limited number of homomor-
phic operations. While more restrictive, these schemes may offer practical
solutions depending on the application (e.g. database queries, protection
of medical data).

The encryption scheme proposed in [20] is a homomorphic encryption
scheme that supports three operations: addition, linear transformation
and weighted inner products. Moreover, based on the three fundamen-
tal operations, the scheme enables to compute arbitrary polynomials. As

⋆ Supported by a grant of the Swiss National Science Foundation, 200021 143899/1.

stated in [20], these operations can be useful in applications where tasks
as feature extraction, recognition, classification, and data aggregation are
needed. This scheme is a natural generalization of the PVW scheme [13]
from binary vectors to integer vectors where techniques as ciphertext
packing [1] and key switching [3] are employed to optimize the scheme.
Working with plaintexts that are integer vectors (and not bits) is efficient
and attractive from a practical point of view.

Our Contribution. It is desired by the cryptographic community and
by many research communities (e.g. big data, medical research, cloud
computing) to have a practical, secure homomorphic encryption scheme.
While we believe that a lot of research should be invested in the area of
homomorphic encryption, it is also essential to analyse and filter those
schemes whose security is questionable.

In this article, we first formalize the homomorphic encryption scheme
from [20]. The presentation in the original paper is not very intuitive nor
easy to follow. As the devil is in the details, we believe it is important to
be rigorous and careful with every step of the scheme. A clear descrip-
tion allows us to further discover weaknesses. Thus, we are able to mount
three attacks: a broadcast encryption, a chosen ciphertext attack and a re-
lated chosen plaintext attack against this scheme. These attacks, together
with an incomplete security analysis in the original work, suggest that
another approach and work is required in order to be able to construct a
homomorphic scheme that works with vectors of integers.

Structure of the paper. In Section 2, we formalize the encryption scheme
from [20] and describe the operations which are possible in the encrypted
domain. In Section 3, we present three attacks against this encryption
scheme. Finally we conclude with Section 4.

Notations. We will use small bold letters for vectors and capital bold
letters for matrices (i.e a is a column vector). We define |a| to be the
L∞-norm and ⌈a⌋ the round up of a to the nearest integer. The notation
vec(A) denotes the vector that consists of all the entries in a matrix A,
where the values are taken column by column. Given a domain D, we

denote by x
U
←− D the fact that x is drawn uniformly at random from D.

2 Encryption Scheme on Integer Vectors

In this section we introduce the encryption scheme from [20] and the
homomorphic operations that it supports. The presentation differs from

2

the original description. Our goal is to properly formalize the scheme and
eliminate any ambiguity.

The scheme from [20] encrypts vectors of integers and supports three
homomorphic operations that are going to be presented later in this Sec-
tion.

As noted in the original work [20], the scheme relies on the idea of
key switching [3]. Given a pair of public key/secret key, (pk, sk), and a
different secret key sk′ one is able to generate the new public key pk′ that
corresponds to sk′. In terms of encryption, a ciphertext c, encryption of
plaintext m under the public key pk, can be switched to a new ciphertext
c′ that will decrypt correctly to m under the key sk′. We will formalize
the scheme following the line of this concept.

We first present some methods that will ease the explanation of the
encryption scheme. The first method, that we denote Bin, is taking a
vector c where all the components are smaller than 2ℓ. The method is
constructing c∗, the binary representation of c, where each component of
c is represented by ℓ bits.

Algorithm 1 Bin(c, ℓ)

1: Input: n, ℓ, c ∈ Z
n s.t. |c| < 2ℓ

2: Output: c∗ ∈ {0, 1}nℓ

3: for all i with 0 ≤ i ≤ n− 1 do ⊲ (i.e. each component of c = [c0, . . . , cn−1]
T)

4: write the binary decomposition ci = ci0 + ci12 + ci22
2 + · · ·+ ci(ℓ−1)2

ℓ−1

5: Construct a column vector c∗ as
6: c∗ = [c00, . . . , c0(ℓ−1), c10, . . . , c(n−1)0, . . . , c(n−1)(ℓ−1)]

T

7: return c∗

The Dev procedure takes a matrix S ∈ Z
m×n and an integer ℓ, and it

constructs the matrix S∗ ∈ Z
m×nℓ such that each value Sij is transformed

into a block S∗

ij =
[
Sij , Sij2, . . . , Sij2

ℓ−1
]
.

Given the description of these two procedures, we can state the fol-
lowing Lemma.

Lemma 1. Given a matrix S ∈ Z
m×n, an integer ℓ and an integer vector

c ∈ Z
n such that 0 ≤ |c| < 2ℓ, we have that Sc = Dev(S, ℓ) · Bin(c, ℓ).

3

Algorithm 2 Dev(S, ℓ)

1: Input: m,n, ℓ,S ∈ Z
m×n

2: Output: S∗ ∈ Z
m×nℓ

3: for all i with 0 ≤ i ≤ m− 1 do

4: for all j with 0 ≤ j ≤ n− 1 do

5: Construct S∗

ij =
[

Sij , Sij2, . . . , Sij2
ℓ−1

]

return S∗

Proof. We write S∗ = Dev(S, ℓ) and c∗ = Bin(c, ℓ). We observe that for
each block of values S∗

ij of S∗ and c∗j of c∗ we have

S∗

ijc
∗

j =
[
Sij 2Sij · · · 2

ℓ−1Sij

]




cj0
cj1
...

cj(ℓ−1)




= Sijcj0 + 2Sijcj1 + . . . + 2ℓ−1Sijcj(ℓ−1)

= Sij(cj0 + 2cj1 + . . . + 2ℓ−1cj(ℓ−1))

= Sijcj

Hence we have that Sc = S∗c∗ = Dev(S, ℓ)Bin(c, ℓ). ⊓⊔

The three generic algorithms of the encryption scheme from [20], i.e.
key generation, encryption and decryption, are described below.

2.1 Key Generation

As a first step, the user generates the public and secret keys that will
be used for encryption and decryption. The key generation algorithm is
described in Algorithm 3. Once the random matrices T and A and the
noise matrix E, drawn from a noise distribution χ on Zq, are sampled,
the secret key S and the public key M are computed. The public key M
is defined such that SM = Dev(I, ℓ) +E (mod q) is verified.

Conditions imposed on the parameters ℓ,m, n, p, q, w are the ones de-
scribed in Algorithm 3. In the original work [20], the authors propose a
set of parameters: ℓ = 28,m = 27, n = 28, p = 28, q ≈ 250, w = 220.

2.2 Encryption

Given the public key M, the public parameter w, and the plaintext x ∈
Z
m, the encryption algorithm outputs the ciphertext c that is computed

as in Algorithm 4.

4

Algorithm 3 Key generation Gen()

1: Input: ℓ,m, n, p, q, w ∈ Z where ℓ = ⌈log2(q−1)⌉, m < n, q ≫ p and w(p−1) < q,
distribution χ

2: Output: (M,S), where M ∈ Z
n×mℓ
q and S ∈ Z

m×n
q

3: Sample T
U
←− Z

m×(n−m)
q

4: Sample A
U
←− Z

(n−m)×mℓ
q

5: Sample E← χm×mℓ

6: Construct S = [I,T] ∈ Z
m×n
q , with I ∈ Z

m×m as the identity matrix

7: Construct M =

(

−TA+Dev(I, ℓ) +E

A

)

∈ Z
n×mℓ
q

8: Return (M,S)

Algorithm 4 Encryption algorithm Enc(M, w,x)

1: Input: public key M ∈ Z
n×mℓ
q , public parameter w, plaintext x ∈ Z

m

2: Output: ciphertext c ∈ Z
n
q

3: c = M×Bin(wx, ℓ) (mod q)
4: Return c

2.3 Decryption

At decryption, the user receives c and knows the value of the secret key
S and the public parameter w. In order to decrypt, one reduces modulo q

the value of Sc. Once we change the domain from Zq to Z, by a mapping
that maps i ∈ Zq to i ∈ Z, we perform division by w and round up to the
nearest integer to obtain the plaintext x.

Algorithm 5 Decryption algorithm Dec(S, w, c)

1: Input: secret key S ∈ Z
m×n
q , public parameter w, ciphertext c ∈ Z

n
q

2: Output: plaintext x ∈ Z
m

3: Compute r = Sc (mod q)

4: Change domain Zq → Z to compute
r

w

5: x = ⌈
r

w
⌋

6: Return x

Correctness. The encryption scheme described above is correct, i.e., if c
is the encryption of a plaintext x as above, then one decrypts c to x,

5

provided that he knows the secret key S. This is possible when the noise
is under a given threshold.

In order to prove the correctness of the scheme we need the following
result that describes the relation that a valid encryption satisfies.

Theorem 1. We assume that q > w|x| and we have the plaintext x ∈
Z
m. We define ℓ = ⌈log2(q)⌉. We take the distribution χ such that x← χ

is such that x < w
2mℓ

with high probability. We assume that the output of
the key generation is (S,M). The vector c ∈ Z

n
q is the ciphertext of x

with length n > m. We have

Sc = qk+ wx+ e (1)

for some integer vectors k and e such that |e| < w
2 .

Proof. We have defined the secret key S = [I,T] ∈ Z
m×n
q and the public

key

M ≡

(
−TA+Dev(I, ℓ) +E

A

)
(mod q)

We have

SM ≡ Dev(I, ℓ) +E (mod q)

so,

SM = qkSM +Dev(I, ℓ) +E

with kSM an integer matrix.

From Algorithm 4, the ciphertext c is computed as

c ≡MBin(wx, ℓ) (mod q)

c = qk∗ +MBin(wx, ℓ)

where k∗ is an integer vector and |k∗| is much smaller than q when |T| is
much smaller than q.

Finally, we have

Sc = qSk∗ + SMBin(wx, ℓ)

= qSk∗ + (qkSM +Dev(I, ℓ) +E)Bin(wx, ℓ)

= q(Sk∗ + kSMBin(wx, ℓ)) + wx+EBin(wx, ℓ)

= qk+ wx+EBin(wx, ℓ)

= qk+ wx+ e

6

withDev(I, ℓ)Bin(wx, ℓ) = wx (by Lemma 1), k = Sk∗+kSMBin(wx, ℓ)
integer vector and e = EBin(wx, ℓ) the noise vector. E is sampled from
distribution χ and we have |EBin(wx, ℓ)| < w

2 . This is a required condi-
tion on equation (1) as this boundary will have an important role during
the decryption. ⊓⊔

We can now prove the correctness of the scheme.

Lemma 2 (Correctness). We assume that q > w|x| and that (M,S)
is a pair of public-secret key. We assume c is a valid encryption of the
plaintext x under key M, i.e. it satisfies the relation Sc = qk + wx + e
with |e| < w

2 . Then c decrypts correctly to x under key S.

Proof. If we follow the steps of the decryption algorithm we can see that
by applying the modulo on Sc we remove the qk value. Since we as-
sume that w|x| < q, the value wx does not get modified by the modulo
operation. We have

Sc ≡ wx+ e (mod q)

After the division in Z we obtain

Sc

w
= x+

e

w

By performing the round up to the nearest integer we obtain

⌈
Sc

w
⌋ = ⌈x+

e

w
⌋ = ⌈x⌋+ ⌈

e

w
⌋ = x

Since |e| < w
2 , we have that

ej

w
<

w

2w
⇒ ej <

1

2
, ∀ 1 ≤ j ≤ m

Thus, the decryption algorithm correctly recovers the plaintext x. ⊓⊔

2.4 Key-Switching Technique

As aforementioned, the encryption scheme relies on the concept of key-
switching. We are given two secret keys S,S′ ∈ Z

m×n
q . The ciphertext

c ∈ Z
n
q decrypts to the plaintext x ∈ Z

m
p under the key S. We would like

to compute a new matrix M′, that will produce a new ciphertext c′ such
that the secret key S′ will decrypt c′ to the same x.

We describe below the two methods that perform this task.
The matrix M′ is generated such that

S′M′ = Dev(S, ℓ) +E′ (mod q)

7

Algorithm 6 SwitchS(S,S′)

1: Input: S = [I,T] ,S′ = [I,T′], distribution χ

2: Output: M′

3: Sample A′ U
←− Z

(n−m)×mℓ
q

4: Sample E′ ← χm×mℓ

5: Construct M′ =

(

−T′A′ +Dev(S, ℓ) +E′

A′

)

∈ Z
n×mℓ
q

6: Return M′

Algorithm 7 SwitchC(c,M′)

1: Input: ℓ, public key M′, ciphertext c
2: Output: ciphertext c′

3: c′ = M′ ×Bin(c, ℓ) (mod q)
4: Return c′

Lemma 3. Let c be a valid encryption of the plaintext x. Let M′ ←
SwitchS(S,S′) and c′ ← SwitchC(c,M′). Then we have that Dec(S′, c′) =
Dec(S, c) = x given that |Sc− wx mod q|+ nℓ|E′| ≤ w

2 .

Proof. We have

S′c′ = S′M′ ×Bin(c, ℓ) (mod q)

= (Dev(S, ℓ) +E′)×Bin(c, ℓ) (mod q)

= Dev(S, ℓ)Bin(c, ℓ) +E′ ×Bin(c, ℓ) (mod q)

= Sc+E′ ×Bin(c, ℓ) (mod q)

= wx+ e1 +E′ ×Bin(c, ℓ) (mod q)

= wx+ e′ (mod q)

where Sc = wx+ e1 (mod q), e′ = e1 + E′ ×Bin(c, ℓ). We see that the
noise has been increased.

In order to have Dec(S′, c′) = Dec(S, c), we need |e1|+ nℓ|E′| < w
2 .
⊓⊔

Using the key-switching technique we can rephrase the key generation
and the encryption algorithms as:

Gen()→ {S,M}
S = [I,T]
M = SwitchS(I,S)

Enc(M, w,x) → c
c = SwitchC(wx,M)

8

2.5 Operations on Encrypted Data

Three types of fundamental operations on integer vectors can be per-
formed based on the encryption scheme from [20]: addition, linear trans-
formation and weighted inner products. We assume that all the plaintext
values are between zero and ⌊ q

w
⌋ in order to avoid integer overflows.

Addition Let c1 and c2 be the two ciphertexts of the integer vectors x1

and x2, respectively. The addition operation x1 + x2 is straightforward
if c1 and c2 have the same secret key S. In this situation we have that
c′ = c1 + c2 (mod q) is the encryption of x1 + x2.

In the case c1 and c2 do not have the same key, we need to switch
one secret key to the other.

To guarantee a valid decryption after an addition in the encrypted
domain, we need to have |e1 + e2| <

w
2 .

Linear Transformation The linear transformation Gx1 follows the
observation that

GSc1 = qGk1 + wGx1 +Ge1

So if |G| is much smaller than q, we can treat c′ = c1 as the ciphertext
of Gx1 with secret key GS and error Ge1. Hence to perform the linear
transformation we have to compute Dec(GS, c′) = Gx.

The resulting noise after the transformation and the key-switching
will be Ge1 = GE × Bin(wx, ℓ). Hence, to ensure a valid operation we
must have |GE×Bin(wx, ℓ)| < w

2 .

Weighted Inner Products Given two plaintexts, x1 and x2, encrypted
as c1 and c2 with the keys S1 and S2 and a matrix H, we can compute
the weighted inner products x1

THx2.

Let S′ = vec(ST
1 HS2)

T be the new secret key, and let c′ = ⌈
vec(c1c

T
2)

w
(mod q)⌋ be the new ciphertext. By decrypting c′ with the secret key S′,
we compute the weighted inner products xT

1 Hx2. The proof of this result
is presented in [19,20].

Again, in order for the decryption to work, we need to ensure that the
noise level after this operation in under the w

2 threshold.
As presented in [20] these three operation combined allow to compute

arbitrary polynomial on integers. Note that every operation will increase
the resulting noise. Hence, only a limited number of operations can be
chained.

9

3 Attacking the Scheme

We present in this section three attacks on the encryption scheme from [20].
These attacks were implemented and tested to certify their validity.

3.1 Attack on Broadcast Encryption

We can notice that the encryption algorithm performs the multiplication
between the public key M and the binary representation of the vector
wx. We have that M ∈ Z

n×mℓ
q and Bin(wx, ℓ) ∈ {0, 1}mℓ. This means

we have n equations in Zq and mℓ unknowns, where n < mℓ. If we have
access to ⌈mℓ

n
⌉ equations c′i = Mi × Bin(wx, ℓ), where Mi and c′i are

different at each equation but the same Bin(wx, ℓ) is used, then we could
solve the system of equations by Gaussian elimination and recover the
value of x.

Let us assume we have a network of more than ⌈mℓ
n
⌉ users where every

user i has its own public key Mi. Now, let us assume that a user, e.g.
Bob, wants to broadcast a secret information x to the users using the fixed
parameters p, q, w. Hence, Bob will compute c′i = Mi×Bin(wx, ℓ) for all
the users. By listening to the traffic, an adversary A could obtain all the
values c′i broadcasted by Bob and he would have enough information to
solve the system.

Indeed, the attacker A could use all the gathered information to pro-
duce

M̃ =




M1

M2

...
Mz


 ∈ Z

zn×mℓ
q

and

c̃ =




c1
c2
...
cz


 ∈ Z

mℓ
q

where z > ⌈mℓ
n
⌉.

Hence, the attacker could solve the system M̃×Bin(wx, ℓ) = c̃ using
a Gaussian elimination algorithm in O((mℓ)3) 1.

1 This attack has even a lower complexity if we use optimized matrix inversion algo-
rithms

10

This attack can be seen as similar to the broadcast encryption in RSA
with small keys [11]. The difference is that our attack should always work
as mℓ

n
should not be too large.

A valid scenario for this attack would be one where a service provider
has to send an activation key to its customers. The activation key is the
same for all the customers. In such case, when the service provider has to
send the encrypted activation key to enough customers, an unauthorized
user could recover the activation key.

3.2 Chosen Ciphertext Attack

In this attack we assume that the adversary has access to an oracle that
decrypts a given ciphertext. His goal is to retrieve the secret key S.

We recall that the secret key is of the form S = [I,T] ∈ Z
m×n
q , with

I ∈ Z
m×m the identity matrix and T ∈ Z

m×(n−m)
q a random matrix. Let

us define T =




ta1 ta2 . . . ta(n−m)

tb1 tb2 . . . tb(n−m)
...

...
...

...
tm1 tm2 . . . tm(n−m)


.

An attacker could construct n − m ciphertexts ci, with i ∈ [1, n − m]
and where ci is a vector of size n that contains zeros except a value w at
the (m+ i)th position.

With these special ci we have that Sci =




wtai
wtbi
...

wtmi


.

The attacker could ask for decryption of every ci which would result
in

Dec(S, w, ci) = xi =




xi1
xi2
...

xim


 =




⌈wtai
w
⌋

⌈wtbi
w
⌋

...
⌈wtmi

w
⌋




The second equality holds if w|T| < q. As described in [20] the matrix
T is chosen such that |T | ≪ w and that w < q. Thus, with a high
probability we have that w|T| < q. The decryption algorithm will output
the vector

11

xi =




⌈wtai
w
⌋

⌈wtbi
w
⌋

...
⌈wtmi

w
⌋


 =




tai
tbi
...

tmi




Hence, by asking for the decryption of the n −m ci ciphertexts, we
can recover the T matrix, hence the entire secret key S. The attack has
a complexity of (m− n) requests to the decryption oracle.

3.3 Chosen Related Plaintext Attack

In order to describe the following attack, we first introduce the notions
we need.

Definition 1. Given two integers a and b, we define

carry(a, b) = (a+ b)⊕ a⊕ b

where ⊕ denotes the bitwise exclusive OR.

We similarly define carry(a, b) for integer vectors component-wise.

Lemma 4. Given two integers a and b, where their binary decomposition
is a = a0 + a1 ∗ 2 + . . . + an2

n and b = b0 + b1 ∗ 2 + . . .+ bn2
n, we have

(a+ b)i = ai + bi + carry(a, b)i − 2 · carry(a, b)i+1.

Proof. The binary addition is defined as follows:

Algorithm 8 Binary addition
1: c0 = 0
2: for all i = 0 to n do

3: x = ai + bi + ci
4: (a+ b)i = x mod 2
5: ci+1 = ⌊x

2
⌋

So, by induction we have ci = carry(a, b)i at each iteration. ⊓⊔

12

Lemma 5. Given two integer vectors x and y, we have

Bin(x+ y, ℓ) = Bin(x, ℓ) +Bin(y, ℓ) + (I − 2J) · Bin(carry(x,y), ℓ),

where |x|, |y| < 2ℓ, I is the identity matrix and J is the block diagonal
matrix having blocks with a diagonal of 1 just over the main diagonal, i.e.




0 1 · · · 0 0
0 0 1 · · · 0
...

...
...

. . .
...

0 · · · 0 0 1
0 · · · 0 0 0




Theorem 2. Given two integer vectors x and y, we have

Enc(x+ y) = Enc(x) + Enc(y) +M(I − 2J)Bin(carry(wx, wy), ℓ),

where M is the public key and I and J are defined in Lemma 5.

We recall that the encryption scheme from [20] is homomorphic for
the addition. This means that we expect to have Enc(x+y) = Enc(x)+
Enc(y). But, since the ciphertext space is larger than the plaintext one,
several ciphertexts map to the same plaintext. We have that M(I −
2J)Bin(carry(wx, wy), ℓ) is an encryption of the zero vector. Thus the
relation from above is valid and it can be translated to Enc(x + y) =
Enc(x) + Enc(y) + Enc(0).

In the attack we propose, we assume there is a secret x and that the
adversary can obtain Enc(x+ y) for many chosen y values. The purpose
is to recover x. Interestingly, the adversary will take advantage in getting
the encryption of x+ y which is not Enc(x) + Enc(y). In clear, we will
see that the y →M(I − 2J)Bin(carry(wx, wy), ℓ) function leaks.

In the scheme we analyse here, the parameter w is not so large. So, its
Hamming weight is small. Let us denote it by ν = HW (w). For example,
in [20] we have w = 220, so ν = 1. We assume that w is an odd multiple
of 2λ of weight ν.

First, we precompute the list L of all possible c = carry(u,w2i), for
every possible i. We note that the size of L is bounded by ℓν .

For each i and j, we set ti,j = [0, . . . , 0, 2i, 0, . . . , 0] (where 2i is at
position j). Then, we insert c in the list Ti,j[M(I − 2J)Bin(ct0,j, ℓ)] = c

for all c ∈ L. We obtain many tables Ti,j.
Having Enc(x), Enc(ti,j) and Enc(x+ ti,j) and the hash tables Ti,j ,

we can obtain the value

γi,j = M(I − 2J)Bin(carry(wx, wti,j), ℓ).

13

If all the elements of Ti,j[γi,j] end with λ+ i+ 2 zero bits, we deduce
that the (λ + i + 1)th least significant bit of wxj is zero. If all elements
of Ti,j [γi,j] end with a bit 1 followed by λ + i + 1 zero bits, we deduce
that the (λ + i + 1)th least significant bit of wxj is one. In other cases,
we cannot conclude, but these cases are unlikely to occur.

Note that the λ first least significant bits of wxj are all zero.
By repeating this for all i and j, we recover the bits of wx and thus

recover the secret x.
This attack can easily be improved to reduce the number of chosen

related plaintexts and the complexity.

Implementation. To experiment with the encryption scheme and to test
these three attacks, we developed an implementation of the scheme in
Matlab. The implementation offers all the high level functions described in
Section 2 such as Gen(), Dev(S, ℓ), Enc(M, w, x), etc., which enables an
easy use of the encryption scheme. We implemented the three attacks. For
the chosen ciphertext attack we tested the attack with several parameters,
including those provided in [20]. Our tests certify that we can recover the
secret key. We ran tests for the third attack and we were able to recover
the unknown plaintext.

4 Conclusion

In this article we have formalized and analysed the scheme from [20]. The
analysis of the homomorphic encryption scheme showed some weaknesses
which resulted into three attacks. The attacks rely on realistic scenar-
ios and enable an attacker to retrieve sensitive information such as the
plaintext or the secret key.

References

1. Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in lwe-based
homomorphic encryption. In Kaoru Kurosawa and Goichiro Hanaoka, editors,
Public-Key Cryptography - PKC 2013 - 16th International Conference on Practice

and Theory in Public-Key Cryptography, Nara, Japan, February 26 - March 1,

2013. Proceedings, volume 7778 of Lecture Notes in Computer Science, pages 1–13.
Springer, 2013.

2. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. In Shafi Goldwasser, editor, Innova-
tions in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10,

2012, pages 309–325. ACM, 2012.
3. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryp-

tion from (standard) LWE. In Ostrovsky [12], pages 97–106.

14

4. Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède
Lepoint, Mehdi Tibouchi, and Aaram Yun. Batch fully homomorphic encryption
over the integers. In Thomas Johansson and Phong Q. Nguyen, editors, Advances
in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,

2013. Proceedings, volume 7881 of Lecture Notes in Computer Science, pages 315–
335. Springer, 2013.

5. Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi.
Fully homomorphic encryption over the integers with shorter public keys. In
Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual

Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceed-

ings, volume 6841 of Lecture Notes in Computer Science, pages 487–504. Springer,
2011.

6. Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compres-
sion and modulus switching for fully homomorphic encryption over the integers.
In Pointcheval and Johansson [14], pages 446–464.

7. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory

of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages
169–178. ACM, 2009.

8. Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing
using depth-3 arithmetic circuits. In Ostrovsky [12], pages 107–109.

9. Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryp-
tion scheme. In Kenneth G. Paterson, editor, Advances in Cryptology - EURO-

CRYPT 2011 - 30th Annual International Conference on the Theory and Applica-

tions of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 129–148. Springer, 2011.

10. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption
with polylog overhead. In Pointcheval and Johansson [14], pages 465–482.

11. Johan Hastad. On using rsa with low exponent in a public key network. In Lecture

Notes in Computer Sciences; 218 on Advances in cryptology—CRYPTO 85, pages
403–408, New York, NY, USA, 1986. Springer-Verlag New York, Inc.

12. Rafail Ostrovsky, editor. IEEE 52nd Annual Symposium on Foundations of Com-

puter Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011. IEEE
Computer Society, 2011.

13. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, Advances in Cryp-

tology - CRYPTO 2008, 28th Annual International Cryptology Conference, Santa

Barbara, CA, USA, August 17-21, 2008. Proceedings, volume 5157 of Lecture Notes

in Computer Science, pages 554–571. Springer, 2008.
14. David Pointcheval and Thomas Johansson, editors. Advances in Cryptology - EU-

ROCRYPT 2012 - 31st Annual International Conference on the Theory and Ap-

plications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Pro-

ceedings, volume 7237 of Lecture Notes in Computer Science. Springer, 2012.
15. R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy homo-

morphisms. Foundations of Secure Computation, Academia Press, pages 169–179,
1978.

16. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with rel-
atively small key and ciphertext sizes. In Phong Q. Nguyen and David Pointcheval,
editors, Public Key Cryptography - PKC 2010, 13th International Conference on

15

Practice and Theory in Public Key Cryptography, Paris, France, May 26-28, 2010.

Proceedings, volume 6056 of Lecture Notes in Computer Science, pages 420–443.
Springer, 2010.

17. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations.
Des. Codes Cryptography, 71(1):57–81, 2014.

18. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
homomorphic encryption over the integers. In Henri Gilbert, editor, Advances in

Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, French Riviera, May 30 -

June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science,
pages 24–43. Springer, 2010.

19. A. Yu, W. Lok Lai, and J. Payor. Efficient integer vector homomorphic encryption.
https://courses.csail.mit.edu/6.857/2015/files/yu-lai-payor.pdf, 2015.

20. Hongchao Zhou and Gregory W. Wornell. Efficient homomorphic encryption on
integer vectors and its applications. In 2014 Information Theory and Applications

Workshop, ITA 2014, San Diego, CA, USA, February 9-14, 2014, pages 1–9. IEEE,
2014.

16

