000220673 001__ 220673
000220673 005__ 20190117220218.0
000220673 0247_ $$2doi$$a10.1016/j.endm.2015.07.012
000220673 037__ $$aCONF
000220673 245__ $$aBudgeted sensor placement for source localization on trees
000220673 269__ $$a2015
000220673 260__ $$c2015
000220673 336__ $$aConference Papers
000220673 520__ $$aWe address the problem of choosing a fixed number of sensor vertices in a graph in order to detect the source of a partially-observed diffusion process on the graph itself. Building on the definition of double resolvability we introduce a notion of vertex resolvability. For the case of tree graphs we give polynomial time algorithms for both finding the sensors that maximize the probability of correct detection of the source and for identifying the sensor set that minimizes the expected distance between the real source and the estimated one.
000220673 6531_ $$aepidemics
000220673 6531_ $$asource localization
000220673 6531_ $$asensor placement
000220673 700__ $$0248244$$aCelis, Elisa$$g245193
000220673 700__ $$aPavetic, Filip
000220673 700__ $$0247061$$aSpinelli, Brunella Marta$$g226024
000220673 700__ $$0240373$$aThiran, Patrick$$g103925
000220673 7112_ $$aLatin-American Algorithms, Graphs and Optimization Symposium
000220673 8564_ $$s206104$$uhttps://infoscience.epfl.ch/record/220673/files/1-s2.0-S1571065315001675-main.pdf$$yPublisher's version$$zPublisher's version
000220673 8564_ $$s359977$$uhttps://infoscience.epfl.ch/record/220673/files/extended.pdf$$yExtended version$$zExtended version
000220673 909C0 $$0252454$$pLCA3$$xU10431
000220673 909CO $$ooai:infoscience.tind.io:220673$$pconf$$pIC
000220673 917Z8 $$x226024
000220673 917Z8 $$x226024
000220673 917Z8 $$x226024
000220673 917Z8 $$x226024
000220673 917Z8 $$x226024
000220673 917Z8 $$x192636
000220673 917Z8 $$x226024
000220673 917Z8 $$x226024
000220673 937__ $$aEPFL-CONF-220673
000220673 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000220673 980__ $$aCONF