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Abstract 
Numerous applications, not only Earth-based, but also space-based, have strengthened the interest of the 

international scientific community in using Global Navigation Satellite Systems (GNSSs) as navigation 

systems for space missions that require good accuracy and low operating costs. Indeed, already used in Low 

Earth Orbits (LEOs), GNSS-based navigation systems can maximize the autonomy of a spacecraft while 

reducing the costs of ground operations, allowing for budget-limited missions of micro- and nanosatellites. 

This is why GNSS is also very attractive for applications in higher Earth orbits up to the Moon, such as in 

Moon Transfer Orbits (MTOs).  

However, while GNSS receivers have already been exploited with success for LEOs, their use in higher Earth 

orbits above the GNSS constellation is still at the research stage. Indeed, space remains a challenging 

operational environment, particularly on the way from the Earth to the Moon, characterized by weaker 

signals with wider power variability, larger dynamic ranges resulting in higher Doppler and Doppler rates, 

critically lower satellite signal availability, and poorer satellites-to-user geometry.  

In this context, the first research objective and achievement of this PhD research is a feasibility study of 

GNSS as an autonomous navigation system to reach the Moon, and the determination of the requirements 

for the design of a code-based GNSS receiver for such a mission. The most efficient combinations of signals 

transmitted by the GPS, Galileo, and combined GPS-Galileo constellations have been identified by analyzing 

the theoretical achievable signal acquisition and tracking sensitivities, the resultant constellation 

availability, the pseudorange error factors, and the geometry error factor. Moreover, the expected GNSS-

based navigation performance has been estimated. The results clearly demonstrate that GNSS signals can 

be tracked up to Moon altitude, but not with the current GNSS receiver technology that has been developed 

for terrestrial use.  

The second research objective and achievement is the design and implementation of a GNSS receiver proof-

of-concept capable of providing GNSS observations onboard a space vehicle orbiting up to Moon altitude. 

This research work describes the hardware architecture, the high-sensitivity acquisition and tracking 

modules and the standalone single-epoch navigation performance of the developed GPS L1 C/A hardware 

receiver, named the “WeakHEO” receiver. As expected, the higher the altitude the receiver is above the 

GNSS constellations, the poorer and the weaker are the relative geometry and the received signal powers, 

with a consequent significant reduction of the navigation accuracy. Indeed, although they can still be 

collected, GNSS observations at Moon altitude, if not filtered, but simply used to compute a single-epoch 

least-squares solution, lead to a very coarse navigation accuracy, on the order of 1 to 10 km, depending on 

the number and type of signals successfully processed.  

Therefore, the third and main research objective and achievement is the design and implementation of a 

GNSS-based orbital filter (OF) determination unit, which uses an extended Kalman filter (EKF), an adaptive 

tuning of the covariance matrix of the measurements and a flexible orbital forces model function of the 

space vehicle altitude, able to significantly improve the navigation performance achievable using GNSS 

observations. Simulation results of the OF performance in a defined MTO are reported and discussed for 

different input configurations and different combinations of modelled GNSS observations (from GPS and 

GPS-Galileo combined). These results are then validated by filtering the real GPS L1 C/A observations 

provided by the WeakHEO receiver at Moon altitude, when connected in a hardware in the loop 

configuration to a full constellation GNSS radio frequency signal simulator, and reaching a positioning 

accuracy at Moon altitude of a few hundred meters. 

The manuscript also includes the implementation of a signal frequency aiding for the signal processing 

engine, estimated by the OF, as well as the assessment of its benefits in terms of improved signal acquisition 
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and tracking sensitivity. The performance of the aided acquisition and of the aided tracking engines is tested, 

showing respectively an achieved sensitivity of 15 dB-Hz and of 11 dB-Hz. 

Finally, a preliminary design and study of a more advanced GNSS/INS/Star Tracker integrated architecture 

is described, which includes the integration of GNSS observations with the observations provided by an 

inertial navigation system (INS) and a Star Tracker, to further improve the achievable navigation 

performance.  
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Résumé 
De nombreuses applications, non seulement sur Terre, mais aussi dans l’espace, ont renforcé l'intérêt de la 

communauté scientifique internationale dans l'utilisation des systèmes de navigation par satellites (GNSS), 

pour les missions spatiales qui nécessitent une bonne précision avec des faibles coûts d'exploitation. 

Effectivement, déjà utilisé en orbite terrestre basse (LEO), un système GNSS peut maximiser l'autonomie 

d'un vaisseau spatial tout en réduisant les coûts des opérations au sol, ce qui est notamment très 

avantageux pour les micro- et nano- satellites. Pour les même raisons, un système GNSS est aussi très 

attractif pour des applications en orbite plus haute jusqu'à la Lune, y compris pour une orbite de transfert 

lunaire (MTO). Cependant, bien que l’utilisation des systèmes GNSS ait déjà été démontrée en orbite basse, 

leur utilisation pour la navigation dans les orbites plus élevées au-dessus de la constellation GNSS est encore 

au stade de la recherche. En effet, l'espace reste un environnement opérationnel difficile, en particulier sur 

le chemin de la Terre à la Lune qui est caractérisé par des signaux très faibles, des effets Doppler très 

importants, une visibilité très réduite des satellites, et une dilution de la précision à haute altitude due à 

une pauvre géométrie entre le récepteur et la constellation de satellites GNSS. 

Dans ce contexte, le premier objectif et achèvement de cette thèse est une étude de faisabilité du GNSS 

comme système de navigation autonome pour atteindre la Lune, et la détermination des spécifications d'un 

récepteur GNSS pour une telle mission. Les combinaisons les plus efficaces des signaux émis par les 

constellations GPS, Galileo et GPS-Galileo combinées ont été identifiés en considération de leur acquisition, 

de leur poursuite, de la disponibilité de la constellation (et constellations combinées), et des facteurs 

d'erreur sur les observations du type pseudo-distance et de la géométrie. Les résultats démontrent 

clairement que les signaux GNSS peuvent être suivis jusqu'à l’altitude de la Lune, mais pas avec la 

technologie des récepteurs GNSS actuels qui a été développée pour une utilisation terrestre. 

Le deuxième objectif de ce travail est la conception et l’implémentation d'un prototype de récepteur GPS 

L1 C/A (aussi appelé “WeakHEO”) qui serait capable de fournir des observations à bord d'un véhicule spatial 

en route pour la Lune. Cette recherche décrit l'architecture matérielle, les modules de traitement du signal 

pour l'acquisition de haute sensibilité ainsi que pour la poursuite des signaux GPS, ainsi que les 

performances de navigation du récepteur en mode autonome. Comme on s’y attendait, plus l'altitude du 

récepteur est au-dessus des constellations GNSS, plus faibles sont les signaux reçus ainsi que la géométrie 

du positionnement des satellites, ce qui résulte en une réduction significative de la précision de la 

navigation. En effet, bien que les observations GPS puissent encore être collectées à l’altitude de la Lune, 

sans filtrage supplémentaire, leur utilisation pour le calcul d’une position basée sur une seule époque avec 

la méthode des moindres carrés conduit à une précision peu précise de l'ordre de 1 à 10 km selon le nombre 

et le type des signaux GNSS traités. 

Par conséquent, le troisième objectif de ce travail et achèvement consiste en la conception et 

l’implémentation d'un filtre orbital (OF) reposant sur les observations GNSS, et utilisant un filtre de Kalman 

étendu (EKF), un réglage adaptatif de la matrice de covariance des mesures et un modèle des forces 

orbitales agissant sur le véhicule spatial à l'altitude considérée. Ce filtre est capable d'améliorer 

sensiblement les performances de navigation. Les résultats de simulation du filtre en scénario MTO sont 

présentés et discutés avec différentes configurations et différentes combinaisons d'observations GNSS (GPS 

et GPS-Galileo combinées). Ces résultats sont ensuite validés par le filtrage d’observations réelles GPS L1 

C/A enregistrées et utilisées ensuite par le récepteur WeakHEO monté en boucle sur un simulateur de 

constellation GNSS. On démontre ainsi que cette technologie peut atteindre une précision de 

positionnement de quelques centaines de mètres à l'altitude de la Lune. 
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Le manuscrit considère également l’implémentation d'une solution d’assistance du récepteur GNSS au 

moyen de l’OF, qui permet d'améliorer de manière significative la sensibilité de l’acquisition des signaux 

GNSS ainsi que leur poursuite jusqu’à un niveau de signal sur bruit extrêmement faible pouvant atteindre 

un niveau de porteuse/bruit de l’ordre de 15 dB-Hz et 11 dB-Hz pour respectivement l’acquisition et la 

poursuite du signal GPS L1 C/A. 

Finalement, l’étude préliminaire de l’architecture d'un système de navigation intégrant les observations 

GNSS avec les observations fournies par un système de navigation inertielle (INS) et un système “Star 

Tracker” est décrite, pour une amélioration encore plus poussée des performances de navigation. 
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1 Introduction 

1.1 Global Navigation Satellite Systems in LEO, MEO, GEO 

and beyond 

Global Navigation Satellite Systems (GNSSs), such as GPS, GLONASS, and the future Galileo and BeiDou, 

were originally designed to provide position, velocity and timing (PVT) services for land, maritime, and 

aircrafts users. In addition, in the last few years, they have been adopted for a wide range of other 

applications, also in Low Earth Orbit (LEO), such as for real-time navigation, formation flying, remote sensing 

of the Earth, precise time synchronization, orbit determination and atmospheric profiling. Indeed, a 

spacecraft collecting GNSS data with an onboard receiver, can compute its real time 3D position and 

velocity, maximizing its autonomy, simplifying ground tracking and reducing the burden and costs of 

network operations [1]. In addition to position and velocity, GNSS can also provide very accurate UTC 

(Temps universel coordonné) synchronized reference time, useful for telecommunications, observations and 

synchronization between satellites and ground stations. Generally using three or more antennas, a GNSS 

receiver can also determine the attitude of the spacecraft with a certain accuracy, depending on the 

separation distance between the antennas. Recorded raw GNSS data can also be processed for scientific 

applications, such as remote sensing, or many other Earth science studies, such as gravity recovery, 

atmosphere sounding (using radio occultation) and reflectometry [2]. 

GNSS is essentially revolutionizing future spacecraft systems.  

Besides LEO, the GNSS-use is also attractive for applications at higher Earth orbit; such as for Medium Earth 

Orbit (MEO), Geostationary Orbit (GEO), High Earth Orbit, and Highly Elliptical Orbit (HEO) missions, 

including Moon Transfer Orbits (MTO).  Figure 1:1 illustrates the LEO, MEO and GEO orbits and their relation 

in altitude. 

 

 

Figure 1:1 LEO, MEO, GEO orbits. 
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However, space represents a challenging operational environment, where the GNSS receiver performance 

is considerably affected. The receiver performance is in fact strongly influenced by the high translational 

and rotational dynamics of the spacecraft, weaker received signals power, thermo-mechanical stresses and 

possible multipath effects, self-induced from nearby surfaces or due to reflection by other vehicles. 

Moreover, depending on the receiver sensitivity, the GNSS satellites geometry at high altitude can 

drastically reduce the navigation solution accuracy, due to the very limited region in the GNSS receiver field 

of view where the GNSS satellites can be observed.  

The use of GNSS in GEO and HEO has been investigated in [3], [4], [5], [6], [7] and [8].  Reference [3] presents 

initial simulation results obtained in GEO from tests of the PiVoT GPS receiver developed at NASA’s Goddard 

Space Flight Center (GSFC) and describes the capability that has to be added to operate in HEOs. The 

autonomous tracking of GPS signals within a HEO was demonstrated for the first time onboard the AMSAT-

OSCAR 40 spacecraft flying in a 1000 to 59000 km altitude orbit as described in [4] and [5] where 

encouraging experimental results are reported. Several aspects of GNSS use in LEO, GEO, HEO and beyond 

have been discussed and analyzed in [6]. Results of additional hardware in-the-loop tests that assessed the 

performance of a GPS receiver developed by GSFC in various HEOs are reported in [7]. Reference [8] shows 

by means of simulations that using GNSS for GEO/GTO is feasible, even considering state-of-the-art current 

spaceborne receivers. 

This PhD research is concerned with the specific use of GNSS as navigation system to reach the Moon. 

 

1.2 Orbital determination 

The process of determining the position and velocity vectors of a space vehicle is known as orbit 

determination (OD). In the recent years the need for precise orbit determination (POD) is increasing as a 

requirement of a larger number of applications, such as Earth observation and meteorology, based on 

precise measurements of Earth’s atmosphere, sea surface height, gravity field, etc. In addition, such 

observation data are very often required in real time or almost real time [9].  Typically, POD aims at 

determining precise ephemerides, which are computed from the position and velocity estimates.  POD is 

based on a number of navigation observations. Usually the equations of space motion are integrated from 

an initial estimate of the kinematic state and later used to predict the navigation observations. In order to 

solve an orbit determination problem, we need [9]: 

o A model of the orbital forces acting on the space vehicle (and if possible the covariance of the 

process noise if a Kalman filter is used). 

o Observations, which can be used, in a direct or indirect way, to compute a partial or complete 

kinematic state of the space vehicle. 

o The relationship between the observations and the kinematic of the space vehicle. 

o An estimation algorithm (e.g. a single-epoch least-squares or a sequential Kalman filter estimator). 

Typically three approaches exist to determine the orbit [10]: the kinematic, the dynamic and the reduced 

dynamic approach. 

1. The kinematic approach proposed by Montenbruck in [11], does not use any dynamic model, 

computing a least-squares solution for all the locations where the navigation observations are 

collected. However it relies purely on the observations; indeed a dynamic model is used only to 
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interpolate consecutive solution points. For this reason, the kinematic approach is very vulnerable 

(e.g. in case of GNSS, four simultaneous measurements are required and the achievable OD 

accuracy will be strongly penalized by large ranging errors and bad relative geometry between the 

vehicle and the GNSS satellites). 

2. The dynamic approach uses forces and satellite models to compute the acceleration of the orbiting 

vehicle (described later in section 5.5), from which the satellite’s position and velocity are 

computed by numerical integration. These results are fused with the ones predicted by the 

observations. In a batch least-squares solution, the independent force parameters are selected to 

minimize the difference between the trajectory predicted by the dynamic model and the one 

estimated by the observations, while  Yunck’s “Kinematic Orbit Determination” [12] adopts a 

Kalman filter to correct the geometry of the trajectory as result of the GNSS measurements, and 

Yunck’s “Reduced Dynamic Orbit Determination” [12] applies both the geometric and dynamic 

corrections [10]. 

3. The reduced dynamic approach, proposed by Montenbruck et al. in [13], is able to compensate for, 

with a certain accuracy the dynamic model errors using a process noise model that optimally 

weights observational and dynamical errors. This involves the estimation of empirical 

accelerations, typically in the radial, in-track and cross-track directions, on top of a precise 

deterministic force model. The amplitude of such acceleration components is estimated as part of 

the orbit determination process (e.g. in the Kalman filtering approach, as part of the estimation 

state vector).  

As suggested in [2], OD can be ground based or onboard (also known as space based). 

In the first case, the observations collected onboard by an orbiting vehicle are broadcasted to a ground 

station, where the OD is performed in real time or in near real time. This is also known as satellite orbit 

tracking. In the second case the OD is autonomously obtained onboard, without the need for the ground 

support. This is also known as autonomous navigation.  

In case of the use of GNSS observation, as in this research, both ground-based and onboard OD techniques 

can be additionally classified as direct-GNSS-based OD and differential-GNSS-based OD. The direct-GNSS-

based method involves measurements from the GNSS satellites only, with a limited accuracy, while the 

differential-GNSS-based method uses observations collected at a global GNSS tracking network of many 

ground stations (e.g. tens for GPS), which are processed together with the onboard measurements, 

achieving for LEO orbit satellites an accuracy to within 10 cm in [2] and only 5 cm at the Astronomical 

Institute of the University of Bern in [14]. 

Furthermore, as will be described in section 2.5, a GNSS navigation solution can be obtained using a single-

epoch estimator (single point solution), where every solution has no dependence on the previous one, or a 

sequential estimator (filtered solution), where the solution evolution between one instant and the next is 

filtered by the prediction of its evolution. 

An onboard system that autonomously provides orbital navigation based on direct GNSS measurements 

further increases the spacecraft autonomy (e.g., not requiring any additional assistance from other external 

sources) and is clearly a very attractive solution. However, this requires a much more complex design of the 

onboard electronics and algorithms that have to accommodate an autonomous OD capability on limited 

computing resources. 

This research has focused on the autonomous direct-GNSS-based orbit determination, adopting a dynamic 

approach based on a sequential estimator. A dynamic approach was selected as a compromise in terms of 
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accuracy and computational burden for an onboard OD unit. In addition, a sequential estimator (an 

Extended Kalman filer described in Chapter 5) was chosen since it is particularly useful for real-time 

applications in view of its recursive nature. Although more complex, a sequential estimator can provide 

better orbital navigation performance, most of all when a single-point solution is not always available 

because of signal outages or because of a noncontinuous onboard power supply. 

1.3 Moon missions 

Since 1958 to our time, many space missions have been undertaken to investigate the Earth’s only natural 

satellite. In 1959 the Soviet Union was the first country that successfully reached the Moon with an 

intentional impact on the lunar surface of the spacecraft Luna 2. A “simple” impact any place on the Moon’s 

surface, which nowadays would seem unimpressive compared to the more demanding recent lunar 

missions, was the goal of an extremely challenging and complex exploration mission, at a time when the 

personal computer was not yet invented. After a few years, the Soviet Union was also able to land softly on 

the Moon surface and then to orbit the Moon. But only in July 1969 did Neil Armstrong become the first 

human to walk on the Moon, successfully completing the United States’ NASA Apollo 11 mission.   

Later, other lunar missions were conducted by the Soviet Union and United States, as well as by the 

European Space Agency, Japan, India and China. A list of these subsequent missions, both failed and 

successful, can be found in [15]. 

After all these lunar missions, are the governments still interested in reaching the Moon? 

No doubt China’s government is: the Chinese Lunar Exploration Program (CLEP), also known as the Chang'e 

program, is an ongoing series of robotic Moon missions led by the China National Space Administration 

(CNSA), which includes lunar orbiters, landers, rovers and sample return spacecrafts. On December 14, 

2013, Chang'e 3 landed on the Moon, and other missions to Moon are foreseen in the same Chinese moon 

program [16]. As stated in [17], “the interest and buzz about lunar mining will continue after China’s 

successful landing on the Moon (with more missions in the pipeline) and stated intentions to mine resources 

there”.  

In another very recent article [18] of March 2016, titled “The Moon vs. Mars: Why NASA should set its sights 

on a manned lunar mission next”, the following issue is discussed “With the Aerospace Safety Advisory Panel 

saying NASA’s current proposal to reach Mars could be unsafe and untenable (largely due to limited funding 

that makes the project unfeasible in its current form), and Congress openly questioning the overall direction 

of the space agency on a grand scale, it begs the question: Should we reclaim the Moon before engaging in 

a much riskier mission to plant a flag on Mars?”. “A Moon mission could work and be affordable”, “the 

Moon is the safer, smarter bet” … In conclusion, “Studies posit that the Moon, with its reduced gravity, 

would be the perfect place for a spaceport/refueling station to the rest of our solar system. Beyond that, 

there are still a lot of things we can learn from our closest celestial neighbor with modern technology, with 

research tech that was unfathomable back in the Apollo days” [18]. 

1.4 The objectives and main contributions of the study 

1.4.1 Major research objectives and achieved milestones 

The goal of this research work was to analyse, study, and implement an onboard autonomous GNSS-based 

navigation system for lunar missions. 

The major research objectives were to: 
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1. Study the feasibility of GNSS as navigation system to reach the Moon; 
o Study and identify the most efficient combination of GNSS signals to be used as 

observations in a lunar mission; 
o Analyze the expected GNSS navigation performance; 

• Study possible strategies to improve the standalone GNSS navigation 
performance; 

• through an orbital filter; 

• through an integration with other sensors (i.e. INS); 
2. Design and implement a GNSS receiver proof of concept capable of providing GNSS observations 

up to Moon altitude; 
3. Design and implement a GNSS-based OD unit, able to significantly improve the navigation accuracy 

achievable using GNSS observations; 
o Identify an efficient estimation algorithm, a compromise of achievable accuracy and 

computational burden ; 
o Design and implement a GNSS-based adaptive orbital filter; 
o Design and implement an orbital filter aiding for the GNSS signal processing module. 

 

Figure 1:2 illustrates a basic block diagram of the research milestones reached in the past three years, aiming 

at implementing a GNSS-based navigation system for lunar missions.  

For the first milestone, the characteristics of the GNSS signals were investigated and the feasibility of using 

them for a Moon mission was analysed; this was described in [19]. The achievement of this milestone 

provided all the requirements to design and develop a GNSS signal processing engine as a proof of concept 

for lunar missions, which is the second achieved milestone, described in [20]. However, the navigation 

performance achievable by using only unfiltered GNSS receiver observations is very coarse and only a few 

signals can be tracked and decoded. Following this, for the same mission a GNSS-based orbital filter was 

implemented, which is the third milestone, described in detail in [21], with a significant improvement of the 

navigation accuracy. Finally, the use of the aiding that the orbital filter can provide to the GNSS signals 

processing module was analysed, in order to make the GNSS receiver capable of acquiring and tracking a 

larger number of GNSS signals at Moon altitude. This is the fourth milestone. Note from the blocks shown 

in Figure 1:2 that the GNSS receiver, the orbital filter and the aiding computation are not only milestones, 

but they are subsystems of the full architecture and part of a closed loop system. The GNSS receiver provides 

GNSS observations, which are passed to the orbital filter to be filtered and transformed to the position and 

velocity of the receiver, which themselves are then manipulated to be used as aiding for the signal 

processing. 
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Figure 1:2 Basic block diagram of the achieved research milestones. 

1.4.2 Benefits of the research 

As mentioned in section 1.3, there is a growing interest in lunar missions. At the same time, the traditional 

use of expensive ground RF (Radio Frequency) networks needed for navigation along the Earth to Moon 

trajectories may be replaced by the use of GNSS. The use of GNSS as navigation system for lunar missions 

would also increase the autonomy of the lunar probe, reducing or even replacing ground station operations, 

allowing for budget-limited missions of micro- and nanosatellites.  

This research offers the opportunity to analyze the feasibility of using GNSS as a navigation system for a 

Moon mission and then to open up for any other mission in Earth orbits below the Moon but above the 

GNSS constellation, in addition to current LEO use. Furthermore, the achieved results can be an input for 

the development of an outright GNSS-based navigation system for high Earth orbits up to the Moon. 
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1.5 Structure and organization of the thesis 

The rest of this manuscript is organized as follows. 

Chapter 2 describes the GNSS principles and basics, the general GNSS architecture, the GNSS systems, the 

GNSS signals and their acquisition and tracking, and finally the use of GNSS to compute the position (and 

velocity) of a user. 
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Chapter 3 consists of a feasibility study of GNSS as a navigation system from the Earth to the Moon. The 

study, published in [19], identifies the most efficient combination of GNSS signals from the GPS and Galileo 

constellations, analyses the characteristics of such signals and the consequent requirements for their 

acquisition and tracking, and finally estimates the expected achievable navigation accuracy. 

Chapter 4 includes a description of the WeakHEO receiver, a GPS L1 C/A receiver proof of concept for lunar 

missions, developed during the course of this thesis. The architecture and the implementation of the 

acquisition and tracking modules are detailed and experimental tests results are reported. This work was 

published in [20]. 

Chapter 5 describes the implementation of the GNSS-based orbital filter designed for lunar missions, which 

was published in [21] and [22]. Following the introduction of the estimation method, different 

configurations of the filter are considered and compared, processing the least-squares position and velocity 

solution or directly the pseudorange and pseudorange rate, and making use of signals from GPS and from 

the GPS and Galileo combined constellation. The implementation of the adopted orbital forces model is also 

described.   

Chapter 6 reports the performance results of the implemented orbital filter described in Chapter 5; in 

simulations, with modelled GPS and Galileo observations and in hardware-in-the-loop (HIL) experiments 

using the GPS observations provided by the WeakHEO receiver described in Chapter 4. 

Chapter 7 characterizes the use of the orbital filter to aid the signal processing engine, in particular of the 

WeakHEO receiver described in Chapter 4. The implementation of the aiding computation is described and 

the test results of the aiding effectiveness are presented. This was published in [23]. 

Chapter 8 provides a brief description of a preliminary implementation of a more advanced architecture, 

which, as well as using an orbital filter, also integrates the GNSS measurements with INS and Star Tracker 

measurements. The resultant system has potentially better performance than the ones achievable when 

only an orbital filter is used; however, due to the limited functionality of the current INSs available in the 

market in high Earth orbits, this architecture was investigated only preliminarily. 

Chapter 9 contains the conclusions. It summarizes the achievements and the expected future 

improvements. 

Note that, as shown in Figure 1:2, Chapters 3, 4, 5 and 6, and 7  correspond respectively to a milestone 

achieved during this PhD research. 
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2 GNSS principles and basics 
In this chapter, the fundamentals of satellite navigation relevant for this thesis are introduced. First the 

GNSS architecture is introduced in terms of segments, each with a specific function, which are known as the 

space, control and user segments. Then the structure of the GNSS signals and the methods used to measure 

the range and pseudorange rate from it are described. In the end the determination of the user position 

and velocity is demonstrated and the error sources and performance limitations are presented. For a more 

detailed description, the interested reader is referred to textbooks such as [24], [25] and [26]. 

2.1 GNSS architecture 

The architecture of a generic GNSS consists of the space, control and user segments as shown in Figure 2:1. 

In particular each GNSS has its own space and control segments, but the user may use signals from more 

than one GNSS. 

 

User

Space Segment

Control Segment

 

Figure 2:1 GNSS segments. 

The space segment corresponds basically to the constellation of GNSS satellites that transmit signals to the 

other two segments. The GNSS satellites (typically 5 m across, with a mass of around 1 000 kg [25]) number 

at least 24 per constellation. Figure 2:2 illustrates the GPS, GLONASS, Galileo and BeiDou (medium earth 

orbit) satellite navigation system orbits with the International Space Station, Hubble Space Telescope and 

Iridium constellation orbits, the GEO, and the nominal size of the Earth. The Moon's orbit is around 9 times 

larger (in radius and length) than the GEO [27]. As shown in Figure 2:2, for GPS, GLONASS, Galileo and 

Compass, their satellites are distributed among several MEOs specifically designed to provide simultaneous 

visibility in the line-of-sight (LOS) of a number of them from the Earth surface. Clearly their visibility will not 

be ensured elsewhere than on the Earth as discussed later in Chapter 3. 
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Figure 2:2 Comparison of GNSS orbits [28]. 

 

The GNSS satellites transmit multiple signals on different frequencies. The signals contain ranging codes and 
navigation data messages (consisting of timing parameters and information about the satellite orbits), which 
enable the user equipment to determine respectively the time of transmission and the satellites’ positions. 

The control segment consists of a network of monitor, control and uplink ground stations (e.g. GPS has 16 

monitor, 2 control and 12 uplink stations [25]). Located at precisely known locations, with synchronized 

clocks, the monitor stations collect ranging measurements from the GNSS satellites and send them to the 

control stations. The latter determine the precise orbits of each satellite (and whether its needs to be 

corrected with maneuvers) and calibrate its clocks. Information such as precise ephemeris and clock 

corrections are then transmitted to the space segment through the uplink stations. 

The user equipment essentially consists of a) an antenna that converts the incoming GNSS radio signals to 

electrical signals; b) a receiver that demodulates the electrical signals using a local time reference (e.g., a 

temperature-controlled crystal oscillator); c) a ranging processor that, using acquisition and tracking 

algorithms, decodes the navigation messages and determines the pseudoranges between the antenna and 

each satellite’s transmitters; and d) the navigation processor that uses the pseudorange measurements to 

compute the PVT solution. 

Note that for automotive application, currently most of the user equipment receives only GPS signals or 

GPS signals together with signals from other GNSS constellations. 

 

 



GNSS-Based Navigation for Lunar Missions 

35 

2.2 The GNSS systems 

The TRANSIT, also known as NAVSAT (Navy Navigation Satellite System), was the first satellite navigation 

system, operative from 1964, originally used by the United State (US) Navy to periodically calibrate the 

inertial systems of submarines and later available for civilian users. The determination of the position was 

based simply on the Doppler shift of radio signals transmitted by a limited number of satellite platforms in 

Earth orbit. The system provided a fix only every hour or more [29]. 

The NAVSTAR GPS (Navigation Satellite Timing and Ranging Global Positioning System) development, 

undertaken by the US government to provide military services, started in 1973 and reached full operation 

with 24 satellites on six orbital planes in 1994.  It is controlled by the US Department of Defense (DOD). 

Today the system offers two main navigation services: one, open to civilians, known as the Standard 

Positioning Service (SPS), and one, restricted to use by the US and NATO military, known as the Precise 

Positioning Service (PPS). Since 1993, GPS has been under a modernization process (new ground stations, 

satellites and signals have been added), aiming an overall improvement of its three segments. The system 

offers global, real time, continuous coverage to an unlimited number of users, for 3D positioning and 

velocity determination. Typical accuracy positioning is within 10 m for the SPS and a few meters for the PPS 

[25]. Note that these values, valid for a terrestrial user, may improve in the future, as result of further 

improvements. 

GLONASS (Global’naya Navigatsionnaya Sputnikovaya Sistema) was developed by the USSR, later Russia, in 

parallel with GPS, to offer civilian and military positioning services (similar to GPS). It was first completed in 

1995 with a full constellation of 24 satellites on three orbital planes and later modernized with new satellite 

platforms, new signals and an updated ground segment in 2010 [25]. It is important to note that this system, 

unlike the other GNSSs, makes use of a different DSSS (Direct Sequence Spread Spectrum) technique based 

on FDMA (Frequency-Division Multiple Access) to transmit its ranging signals [30]. 

Galileo development, led by the European Union (EU) and the European Space Agency (ESA), started in 

1999, essentially for civilian users only. The first two experimental satellites were launched in 2005, and full 

operational capability is currently planned to be reached in 2020 [31]. It offers an open service (OS), a public 

regulated service (PRS), a search-and-rescue (SAR) service, and a commercial service (CS). The OS should 

provide service at a level that is similar to or slightly better than the modernized SPS GPS service. The PRS, 

restricted for use by EU subscriber member states, will offer higher integrity, continuity and interference 

resistance, for emergency, security and military services [25]. The SAR service includes locating and helping 

people in distress at sea or in the mountains, desert or urban areas [32], while the CS allows for development 

of applications for professional or commercial use, with better performance than that obtained through the 

OS. It provides value-added services on payment of a fee [33]. 

BeiDou has been operating since 2000 and a complete GNSS is currently under development. The first phase 

of the system known as BeiDou-1 consists of only three satellites, offering regional coverage and service 

(for China and nearby countries). The second phase, officially known as BeiDou Navigation Satellite System 

(BDS) and as COMPASS or BeiDou-2, will provide global coverage and service with 35 satellites. It currently 

has 20 satellites in orbit, providing regional service to China and nearby countries. By 2020 it should provide 

global service, transmitting both open and restricted signals [34]. 

QZSS (Quasi-Zenith Satellite System) aims to provide positioning services, specifically for cars and personal 

receivers in Japan. The system will consist of high elevation satellites (each 120° apart, in highly inclined, 

slightly elliptical, geosynchronous orbits (GSO)), visible in urban canyons and mountainous regions, to 

supplement GPS [25]. The first satellite was launched in 2010 and full operational capability was projected 

for 2013, but is currently delayed. The basic four-satellite system is planned to be operational in 2018 [35]. 
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IRNSS (Indian Regional Navigation Satellite System) has been designed to provide a fully independent GNSS 

service for India from longitudes 40° to 140° (over India and the region extending 1500 km around India). 

The complete IRNSS consists of three satellites in GEO orbit and four satellites in GSO orbit, at an altitude 

of approximately 36 000 km. It was planned to be fully operational by 2015, with the first satellite launched 

in 2013. The constellation of seven satellites is expected to be fully operational from 2016 [36].  

In addition, two types of augmentation system have been developed: space-based augmentation systems 

(SBASs) to provide a service for a large country or small continent, transmitting signals from geostationary 

satellites; and ground-based augmentation systems (GBASs) to provide service for a local area using 

groundbased transmitters, typicall used in airports [25]. 

Three SBAS are currently operational: the Wide Area Augmentation System (WAAS) for North America, the 

European Geostationary Navigation Overlay System (EGNOS), and the Multi-functional Transport Satellite 

(MTSat) Satellite Augmentation System (MSAS) for Japan [25]. Three other SBASs are under development: 

the GPS Aided Geo Augmented Navigation (GAGAN) system being operated by India, the GLONASS System 

for Differential Correction and Monitoring (SDCM), proposed by Russia, and the Satellite Navigation 

Augmentation System (SNAS), proposed by China [37]. 

Table 2:1 provides an overview of the current GNSS status. 

 

Country Constellation Current Status Coverage Finance 

USA GPS 31 operational 
satellites [38] 

Global Public; controlled by 
the military 

China Beidou/Compass 20 satellites in orbit 
and in health [34] 

Regional and global 
but fully operational 
by 2020 [34] 

Public and private; 
controlled by the 
military 

Europe Galileo 9 satellites 
operational [39], 30 
by 2020 [40] 

Global  Public; not controlled 
by the military 

Russia GLONASS 24 satellites 
operational [30] 

Global and 
operational 

Public; controlled by 
the military 

Japan QZSS 1 satellite operational 
and 2 planned to be 
launched [35] 

Regional Public; controlled by 
the military 

India IRNSS 1 satellite operational 
and 6 more planned 
to be launched [36] 

Regional Public; controlled by 
the military 

Table 2:1 Current GNSS status. This table is an updated version of the one proposed in [41].  

 

2.3 GNSS signals  

Each GNSS satellite transmits on several frequencies mostly within the 1-2 GHz L-band, usually with multiple 

signals on each frequency, with a right-handed circular polarization [25].  

For all GNSSs, the spreading technique called the DSSS is used, increasing the double-sided bandwidth of 

the main spectral lobe and decreasing the power spectral density. In particular, in DSSS a carrier wave is 

modulated by a navigation data signal overlaid with a ranging code, which is a high frequency 

pseudorandom noise (PRN) spreading signal [26]. Indeed, since many signals from different constellations 
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use the same frequency bands, multiplexing techniques are required. The main ones are the Code Division 

Multiple Access (CDMA), which uses different spreading codes to allow the simultaneous sharing of 

common carrier frequencies and the FDMA, which uses different carrier frequencies to transmit multiple 

signals (only used in GLONASS, in addition to CDMA for the ranging codes). 

The GNSS signals consist of ranging codes and navigation data to allow users to compute the travelling time 

from the satellite to the receiver and the satellite coordinates at any time (epoch). Thus, the main signal 

components can be described as follows [28]: 

o Carrier: Radio frequency sinusoidal signal at a given frequency. 
o Ranging or spreading code: Sequence of +1 and –1, which allows the receiver to determine the 

travel time of the radio signal from the satellite to the receiver. They are called PRN sequences or 
PRN codes. A PRN code seems to be random, but it is perfectly deterministic and known by the 
receiver. 

o Navigation data: A binary-coded message providing information on the satellite ephemeris 
(Keplerian elements or satellite position and velocity), clock bias parameters, almanac (with a 
reduced accuracy ephemeris data set), satellite health status, and other complementary 
information. Note that, by convention, the data message is described in terms of symbols or bits 
while the ranging code is described in terms of chips, though mathematically the two terms may 
be interchanged. 

 

For example, the main components of the GPS L1 C/A signal are represented in Figure 2:3. 

Some GNSS channels transmit PRN codes without data modulation. These channels, known as pilot channels 

are very useful to improve the acquisition and tracking processes. In fact, the absence of data bit transition 

enables longer integration times during the correlation process and higher sensitivity or more robustness 

in noisy environments.  

Modern signals, as those of Galileo, use tiered codes, a combination of a primary code with medium length 

and a secondary code with shorter length. 

 

 

Figure 2:3 Main components of the GPS L1 C/A signal [28]. 
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2.3.1 Allocation of frequency bands 

The allocation of frequency bands is not trivial since multiple simultaneous services and users can be 

coexistent in the same range. The International Telecommunications Union (ITU) has been working on the 

allocation of the radio frequency bands used by the Radio Navigation Satellite Services (RNSS), which 

includes GNSS. Figure 2:4 illustrates what has been agreed to in the World Communication Conferences in 

2000 and 2003. As shown, two bands are allocated to the Aeronautical Navigation Service (ARNS): the upper 

L-Band (1559 – 1610 MHz), which includes GPS L1, Galileo E1 and GLONASS G1, and the bottom of the lower 

L-Band (1151 – 1214 MHz) which includes GPS L5, Galileo E5 and GLONASS G3. GPS L2, GLONASS G2 and 

Galileo E6 belong to the remaining part of the lower L-Band (1215.6 – 1350 MHz), which is more vulnerable 

to interference and is allocated to Radio-location Services (ground radars) and RNSS [28]. 

 

Figure 2:4 GPS, GLONASS and Galileo navigational frequency bands [28]. 

A GNSS modernization process, with modernized signals and new satellite platforms, has started to replace 

the old platforms and, once completed, GNSS satellites will typically transmit about 10 signals each over 

three or four frequencies. More signals from the same GNSS satellite are used for different open and 

restricted services, as well as for different applications and in different operational conditions. Moreover, 

more frequencies are needed to mitigate ionospheric signal propagation delay, to reduce the impact of 

interferences and to aid in carrier-phase positioning [25]. 

2.3.2 GNSS signal types 

As suggested in [25], GNSS signals can be classified based on DSSS modulation, code repetition length and 

data modulation. 

The first civilian GNSS signal was the GPS L1 C/A signal that uses a simple Binary Phase-Shift Keying (BPSK) 

modulation. For a BPSK modulated GNSS signal, its amplitude � is given by:  

 �������� = √2���������cos	�2#$%&� + '(� (2:1) 
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Where � is the signal power, � is the spreading code, � is the navigation data, $%& is the carrier frequency, � is the time and '( is the phase offset [25].  

Many newer GNSS signals make use of the Binary Offset Carrier (BOC) modulation, adding a subcarrier )���, 

which gives the following amplitude: 

 ��*+��� = √2�)�����������cos	�2#$%&� + '(� (2:2) 
 

BOC modulation can be used for interference minimization with BPSK signals (as it splits the signal energy 

on both side of the carrier) or for improving the code tracking performance and the multipath resistance 

(as it provides more bandwidth); however, it requires a more complex receiver design [25]. A detailed 

description of the BPSK and BOC modulations can be found in section 7.2.1 of [25], section 4.2.1 of [24] and 

section 2.2 of [26]. 

For some signals (e.g. GPS L5 and Galileo E5a and E5b), the data and pilot channels are in quadrature; in this 

case, if the channels are modulated with BPSK, the modulation then is known as quadrature phase shift 

keying (QPSK), the data channel is denoted as the I channel and the pilot channel as the Q channel. 

Higher code chipping rates give stronger resistance against narrowband interferences and multipath, 

offering high precision ranging, but require larger computational capacity in the receiver to process them 

[25]. 

Faster data messages allow for a larger amount of information to be broadcasted or a given amount to be 

downloaded faster, but require higher post-correlation bandwidth with a consequent reduction in 

robustness against interferences [25]. 

Figure 2:5 shows the different GNSS signals in the different frequency bands that will be available when all 

the systems will be completed. Detailed descriptions of all the GNSS signals can be easily found in the 

literature, as well as in the already cited references [25], [24]  and [26]. Table 2:2 from [42], summarizes the 

characteristics of some of the current GNSS signals. Note that the minimum received power on Earth is for 

a 3 dB gain linearly polarized antenna or a unity gain right-hand circularly polarized (RHCP) antenna and that 

E1B refers to the data component, E1C refers to the pilot component, and L5 I refers to the data component, 

while L5 Q refers to the pilot component.  

For a space mission, it can be seen that two frequency bands, E5/L5 and E1/L1, are especially interesting 

since these two bands are used by GPS, GLONASS (CDMA), Galileo, BeiDou, and QZSS. The L2 and E6 bands 

contain instead only a few civil signals. 
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Signal 

type 

Signal 

feature 

GPS 

L1 C/A 

Galileo E1 

E1B     E1C 

GPS L5 

I        Q 

Galileo E5a 

I        Q 

GalileoE5b 

I        Q 

Minimum received 

signal power (dBm) 

–128.5 –130   –130 –127*  –127* –128   –128 –128   –128 

Carrier frequency 

(MHz) 

1575.42 1575.42 1176.45 1176.45 1207.14 

Modulation BPSK CBOC QPSK QPSK QPSK 
Primary code 

length (chip) 

1023 4092 10 230 10 230 10 230 

Primary code 

length (ms) 

1 4 1 1 1 

Primary code 

chipping rate 

(Mchip/s) 

1.023 1.023 10.23 10.23 10.23 

Code frequency 

(MHz) 

1.023 1.023 10.23 10.23 10.23 

Secondary code 

length (chip) 

- - 25 10   20 
 

20   100 4   100 

Secondary code 

length (ms) 

- - 100 10   20 20   100 4   100 

Secondary code 

chipping rate 

(chip/s) 

- - 250 1000 1000 1000 

Data rate (bit/s) 50 250   - 100   - 50   - 250   - 
Usable 

transmitters in 

orbit today  

31 [38] 9 [39] 12 [43] 9 [39] 9 [39] 

Usable 

transmitters in 

orbit in the future 

>24 [38] 24 in 2018, 
30 in 2020 

[40] 

24 in 2021 
[43] 

24 in 2018, 
30 in 2020 

[40] 

24 in 2018, 
30 in 2020 

[40] 

Table 2:2 GNSS signal features, according to [42] and their current and future status of service, according 
to several sources specified in the table. *For block III GPS satellites (–127.9 dBm for block IIF satellites). 
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Figure 2:5 Different signals for the same frequency band [28]. 

 

2.4 Signal acquisition and tracking 

To understand how GNSS signals are processed to provide a navigation solution, it is necessary to 

understand the basic operation of GNSS receivers. In this section, the essential processes of signal 

acquisition and signal tracking are described. 

Figure 2:6 illustrates a generic block diagram of a GNSS receiver. First, a GNSS signal is received by using a 

RHCP antenna. Then it is amplified by a low-noise amplifier (LNA), down converted to an intermediate 

frequency (IF), and digitized through an analog-to-digital converter (ADC) with an automatic gain control 

(AGC) and passed to the correlator channels. Here, the residual carrier and the code sequence of the signal 
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are removed by correlating the received signal with locally generated replicas of them. Then, the processor 

decodes the navigation data and, in combination with information derived from the carrier and code 

tracking loops, computes pseudoranges and Doppler observations, which afterwards can be used to 

compute the position, velocity and time of the user. 

 

 

Figure 2:6 Generic block diagram of a GNSS receiver. 

A signal reaching the antenna of the receiver, has a code delay due to the distance between the receiver 

and the transmitter and is also shifted in frequency because of the Doppler effect acting on it and because 

of the local oscillator frequency drift. For this reason, the receiver must search the signal in both frequency 

and time domains [26]. Such research is basically done by shifting the frequency and code delay of the 

generated replicas until they both match with a certain accuracy, the values of the incoming signal. 

Code search 

In the process of correlation, the incoming signal is multiplied by a replica of the spreading code. This 

product is maximum when the phase of the spreading code replica corresponds to the phase of the incoming 

signal, thus allowing the recovery of the original carrier and navigation data. The product has a low average 

value over time when the codes are not aligned, which means that the two codes are out of phase, and then 

the carrier and navigation data cannot be recovered. When the PRN code of the receiver-generated replica 

and the one of the incoming signal are different, their correlation is significantly smaller than if they were 

the same and aligned in phase. Then, it is possible to adjust the phase of the receiver-generated replica PRN 

code until the correlation peak is found. From the navigation message, the transmission time of the 

incoming signal can be inferred and finally by using the receiver clock, the time of arrival can be determined.  

Carrier search 

The received carrier frequency can be different from the ideal transmitted carrier frequency, because 

affected by the Doppler effect and in addition because of the receiver clock drift. Thus, to take into account 

any Doppler shift affecting the carrier frequency of the incoming signal, all possible carrier frequencies must 

be searched as well, shifting the replica carrier (otherwise, the correlation of incoming signal with reference 

code only would be a sinusoid). In particular, the incoming signal is correlated with two reference signals, 

which are 90° out of phase in order that the sum of the squares of the two products is always positive 

despite the difference in phase between the reference and the incoming signal. In general, carrier phase 

alignment is not required (although it can be used to improve the positioning) [25].  

This process is known as signal acquisition. 

The GNSS pseudorange is thus computed by subtracting the time of arrival from the time of transmission 

and multiplying it by the speed of light , as follows. 

 ��-./�	�01- = ��	�0�23��3�0	�32- − 	�		35��	�32-�, (2:3) 
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As is described later, the pseudorange is different from the range because of synchronization errors 

between the transmitter and receiver clocks. From the Doppler measurements, it is then possible to 

determine the pseudorange rate, as described later. 

When the pseudorange is unknown, all the possible phases of the PRN code must be searched until the 

correlation peak is found; similarly when the pseudorange rate is unknown, all the possible frequencies 

must be searched. When instead a pseudorange  and pseudorange rate (or Doppler shift) prediction is 

available from a previous measurement (or from an assistance), it is only necessary to change the replica 

code phase and carrier frequency slightly to refine these values, keep track and demodulate navigation data 

from the satellites, and finally estimate the pseudoranges (and pseudorange rates). This process is known 

as signal tracking [25]. 

 

2.4.1 Signal acquisition 

“The purpose of acquisition is to determine visible satellites and coarse values of carrier frequency and code 

phase of the satellite signals” [44].  

Let us assume the acquisition of GPS L1 C/A signals, each characterized by a unique PRN code (corresponding 

to one of the GPS satellites).  

Three methods of acquisition are presented in the following sections, according to [44]. 

2.4.1.1 Serial search acquisition 

Figure 2:7 shows the block diagram of the serial search acquisition algorithm, which is based on the 

multiplication of PRN code replica sequences and carrier replica signals, both locally generated. In the figure, 

a PRN sequence corresponding to a specific satellite is generated by a PRN code generator. The incoming 

signal is first multiplied by the locally generated PRN sequence and then multiplied by a locally generated 

carrier signal. As a result, an in-phase signal (denoted as I) is generated by the multiplication. In addition, a 

quadrature signal (denoted as Q) is generated by multiplying the incoming signal with a 90° phase-shifted 

replica of the carrier [44]. The multiplication outputs I and Q are then typically integrated over T=1 ms (which 

corresponds to the length of one GPS L1 code), or up to 20 ms in high-sensitivity architectures (equal to the 

duration of one navigation bit composed of 20 code replicas), and finally squared and added. 

As the phase of the received signal is not known, the I signal generated in the receiver does not necessarily 

correspond to the demodulated I. As consequence, to be sure that the signal is detected, a research on both 

I and Q signals is needed. The outcome is the result of the correlation between the incoming signal and the 

locally generated replica, which, if higher than a predefined threshold, indicates that the frequency and the 

code phase of the replica signal are correct [44]. 

Thus, the serial search algorithm performs two different researches: a frequency research over all the 

possible carrier frequencies of the incoming signal and a code phase research over the different code phases 

of its code. 

For a terrestrial receiver, ± 10 kHz frequency uncertainty is typically considered [44], with a step size of 

2/(3T), i.e. 666 Hz for T= 1 ms.  Moreover, with the code length of GPS L1 C/A being equal to 1023 and with 

a typical use of ½ chip spacing between every code phase to minimize losses to 2.5 dB, 2046 possible phases 

exist. Then there are 63487 different possible code/frequency combinations to be searched. 
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More details about this method can be found in [24]. 
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Figure 2:7. Serial search algorithm diagram [44]. 

 

2.4.1.2 Parallel frequency space search acquisition 

Although the serial search algorithm can be used successfully, the large number of combinations to be 

searched makes it very time consuming. The acquisition process could be accelerated if all possible code 

phases for a given frequency, or vice versa if all possible frequencies for a given code phase, could be 

searched [45]. The parallel search acquisition methods, using the fast Fourier transform (FFT) to perform a 

transformation from the time domain to the frequency domain, parallelizes the search for one of the two 

parameters (code phase and carrier frequency), significantly increasing the effectiveness of the research 

procedure in the code-frequency domain.  

The parallel frequency search method parallelizes the search in the frequency space. The coherent 

integration is performed on a small part of the signal (normally less than the PRN code period) and after an 

FFT is adopted on consecutive accumulation results [46]. The output of the FFT shows a visible peak in 

magnitude when the PRN codes are perfectly aligned. This peak corresponds to the residual frequency of 

the carrier signal. If the locally generated PRN code is not aligned with the incoming signal, the Fourier 

transform output will not result in a peak in the spectrum but only in noise [45]. Then, the receiver has to 

generate all possible PRN code offsets, i.e. 2046 for the GPS C/A code. However, for the same GPS C/A code, 

since all the frequency bins are searched simultaneously, the total number of code/frequency combinations 

is reduced to 2046 from 63487. 

Thus, if the computational burden of the Fourier transform can be accommodated, the parallel frequency 

space search acquisition method is clearly faster than the serial search method. A more detailed description 

of this method and of the pros and cons can be found in [46]. 

2.4.1.3 Parallel code phase search acquisition 

As said, a second Fourier-transform-based solution to reduce the acquisition time is to parallelize the code 

phase search. The number of search steps in the code phase domain is typically much larger than that in the 

frequency domain, e.g. for a ± 10 kHz carrier frequency uncertainty with a search step size of 666 Hz, a GPS 
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L1 C/A signal could have a code phase among 2046 possible values and a carrier frequency of 31 possible 

intervals. For the same signal, while the parallel frequency search method eliminates the necessity of 

searching through the 31 possible frequency intervals, the parallel code phase method removes the need 

to search the 2046 possible code phases, thus requiring only 31 search steps instead of the 2046 in the 

previous algorithm. 

Indeed, instead of multiplying the input signal with a spreading code with 2046 different code phases, as 

done in the previous method, it is more convenient to make a circular cross correlation between the input 

and the PRN code without a shifted code phase. A method to perform a circular correlation through FFT and 

the inverse FFT (IFFT) is described in [44]. The latter transformation represents the correlation between the 

input and the PRN code. If the correlation presents a peak, its index identifies the PRN code phase of the 

incoming signal. 

The FFT for the replica of the spreading code is performed just once per acquisition. Instead, for each of the 

31 frequencies, the method executes one Fourier transform and one inverse. As consequence, the 

computational effectiveness depends on the FFT and IFFT implementations. A more detailed description of 

this method and of the relative advantages and disadvantages is provided in [46]. 

 

2.4.1.4 Navigation data sequence size 

It is important to note that, the described algorithms do not take into account any possible navigation data 

bit transition during the period of the acquisition, which must not be present in the processed data 

sequence. The presence of possible data bit transitions has to be taken into account in the selection of the 

data size used in acquisition. 

For instance, for GPS L1 C/A signals, the navigation data are broadcasted with a rate of 50 b/s, resulting in 

a possible data bit transition every 20 ms. However there is 50% chance of bit transition every 20 ms, then 

in average we can consider a transition every 40 ms. This means that, if 10 ms of data sequence are 

processed in acquisition, there is 25% chance of containing a bit transition. However, if two consecutive 

sequences are processed, each 10 ms long, at least one will not contain a data bit transition. On the other 

hand, the probability of detection of the correct frequency and code phase increases with the amount of 

the data processed. Furthermore, if the sequence is longer, the computation is slower and heavier. Then, 

the amount of the data to be processed (and accordingly the integration time) in acquisition is essentially a 

trade-off [44]. 

 

2.4.2 Signal tracking 

As described in section 2.4.1, the acquisition process procures just a coarse estimation of frequencies and 

code phases. The tracking process instead refines these values, keeping track of and demodulating 

navigation data from the satellites, and finally estimating pseudoranges (and pseudorange rates). 

2.4.2.1 Data demodulation 

Figure 2:8 shows the procedure used to demodulate the input signal in order to obtain the data message.  

The incoming signal is first multiplied with the local generated carrier replica to remove (or equivalently 

“wipe off”) the carrier waveform; afterward, it is multiplied with the code replica to remove the spreading 

code, giving the data message. In order to locally generate exact replicas, a loop for each replica is required; 

these loops are known as the carrier tracking loop and the code tracking loop, respectively, for the carrier 
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replica and code replica. A more detailed description can be found in many text books such as [24], [25], 

[26] and a simple formulation is provided in [44]. 

Both carrier tracking and code tracking can be supported by an analytic linear phase lock loop (PLL) to 

predict their performance [44], derived in [47].  

Incoming 
signal

Navigation 
data

Carrier 
replica

PRN
Code 

replica

 

Figure 2:8. Basic demodulation scheme (from [44]). 

2.4.2.2 Carrier tracking 

For carrier tracking of the incoming signal, phase lock loops (PLLs) or frequency lock loops (FLLs) are often 

used. 

Figure 2:9 illustrates the basic principle of a PLL. The two multiplications wipe off the carrier and the 

spreading code of the incoming signal. To remove the PRN code, the output from the code tracking loop 

(described in section 2.4.2.3) is used. The loop discriminator block is used to find the error of the carrier 

replica’s phase. The discriminator output, which is the phase error or a function of it, is afterwards filtered 

and fed back to the numerically controlled oscillator (NCO), which aligns the frequency of the carrier replica. 
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Figure 2:9. Basic tracking loop diagram [44]. 

A weakness of using an ordinary PLL is that it is sensitive to 180° phase shifts in case of a navigation bit 

transition and for this reason it cannot be used with a GPS L1 C/A signal. Unlike an ordinary PLL, a Costas 

loop is insensitive to phase transitions due to navigation bits; thus it is often used in GPS receiver. A Costas 

discriminator output is zero when the real phase error is 0 and ±180°, which is the reason why a Costas loop 

is insensitive to the 180° phase shifts due to bit transition of the navigation data [44]. 
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Figure 2:10 illustrates a Costas loop. Once the PRN code is removed, the input signal multiplies both the 

local carrier wave and the 90° phase-shifted carrier replica. “The Costas loop tries to keep all energy in the 

in-phase (I) arm” [44]. This is done by means of a feedback to the NCO. 

90°
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PRN
code

Lowpass 
filter
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filter

NCO carrier 
generator

Lowpass 
filter

 

Figure 2:10. Costas loop block [44]. 

 

Some common PLL and FLL discriminator can be found in [24], [25] and [44]. 

In conclusion, the phase discriminator output is filtered in order to predict any relative motion between the 

receiver and the GNSS satellite and to estimate the Doppler frequency. 

2.4.2.3 Code tracking 

The code tracking loop aims at keeping track of the code phase of a specific spreading code in the signal. It 

results in a perfectly aligned replica of the PRN code. In most GPS receivers, the code tracking loop is a delay 

lock loop (DLL), known as an early–late tracking loop, which correlates the incoming signal with three 

ranging code replicas, as shown in Figure 2:11 [44]. Then, each of the code replicas, after being integrated 

and dumped, based on its correlation value, indicates how close the specific code replica is to the code of 

the input signal. These three outputs (denoted in Figure 2:11 as 9: , 9� and 9;) are used in the  code 

discriminator to keep the maximum amplitude on 9�. 

A DLL as the one shown in Figure 2:11 is optimal when the carrier replica is locked in phase and frequency. 

When a phase error on the carrier replica is present, the signal will be noisier and it is more difficult for the 

DLL to keep a lock on the code. Therefore, the DLL in GPS receivers is often designed as shown in Figure 

2:12. It has the property of being independent of the phase on the local carrier wave [44]. 

If the code phase has to be corrected, then the DLL needs a feedback to the spreading code generators. The 

type of discriminator to be used depends on the application and the noise in the signal [44]. Some common 

DLL discriminators can be found in Table 7.2 of [44]. 
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Figure 2:11. Basic principle of a DLL [44]. 

 

Figure 2:12. DLL block diagram with six correlators [44]. 
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2.5 Positioning 

2.5.1 Coordinate frames 

In order to provide navigation and therefore the kinematic state of a vehicle, a specific point of the vehicle 

must first be selected. This may be the center of mass, the geometrical center or another convenient point; 

for radio positioning, the phase center of the antenna is typically adopted. Second, if the kinematic state 

includes the orientation and the angular motion, a set of three axes must be selected as well. Typically, the 

axes are mutually perpendicular, with one axis corresponding to the direction of motion.  

Furthermore, some form of reference frame is needed, relative to which the kinematic state of the vehicle 

is expressed. This reference frame is defined by an origin and a set of axes. 

The origin, of either an object or a reference, together with a set of axes define a coordinate frame. 

Any navigation problem then involves at least two coordinate frames: the object frame, which describes the 

body whose kinematic state is desired, and the reference frame, which describes a known body (e.g. the 

Earth), relative to which the object’s kinematic state is desired. 

2.5.1.1 Earth-Centered Inertial frame 

By definition, in physics, an inertial frame is any coordinate frame that does not accelerate or rotate with 

respect to the rest of the Universe; thus an Earth-centered frame is not strictly an inertial frame since the 

Earth actually accelerates in its heliocentric orbit, its spin axis slowly moves and, additionally, the galaxy 

rotates. However, these effects are negligible if compared to the navigation sensors’ noise. For this reason, 

an Earth-centered inertial (ECI) coordinate frame is practically treated as a true inertial frame [25]. 

The origin of the ECI coordinate system is the geocenter. According to [24], “the xy-plane is taken to coincide 

with the Earth’s equatorial plane, the +x-axis is permanently fixed in a particular direction relative to the 

celestial sphere, the +z-axis is taken normal to the xy-plane in the direction of the north pole, and the +y-

axis is chosen so as to form a right-handed coordinate system”. In order to fully define the ECI frame, it is 

necessary to provide temporal information. Indeed, the Earth’s shape is oblate, and due mainly to the 

gravitational effects of Sun and Moon, the Earth’s equatorial plane moves with respect to the celestial 

sphere (and, as already mentioned, the spin axis slowly moves). Since the x-axis is defined with respect to 

the celestial sphere and the z-axis is defined with respect to the equatorial plane, the ECI frame as defined 

earlier would not to be truly inertial. The solution to this problem is to define the orientation of the axes at 

a particular instant in time, or epoch. 

In this thesis, as in the GPS ECI coordinate system, the z-axis of this system is perpendicular to the Earth’s 

mean equator at epoch J2000, the x-axis points to the vernal equinox of the Earth’s mean orbit at epoch 

J2000, while the y-axis is perpendicular to the yz-plane in such a way to define a right-handed xyz coordinate 

system. The epoch J2000 corresponds to the Julian Date 2451545.0, equivalent to January 1, 2000, 12 hours 

Terrestrial Time (TT) [48]. Since the orientation of the axes remains fixed over time, the ECI coordinate 

system defined in this way can be considered inertial for GNSS purposes [24]. 

Note that when not specified differently, in this thesis ECI is always assumed. 
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Figure 2:13 Earth mean equator and equinox of the J2000 coordinate system [48]. 

2.5.1.2 Radial, In-track, Cross-track 

Another frame used in this thesis, is the radial, in-track, cross-track (RIC) frame, identified by the unit vectors �<,  => and ?<. 

In this frame �<  lies along the instantaneous radius vector, => lies in the orbit plane normal to �<  and in the 

direction of motion of the spacecraft, and ?< is normal to the orbit plane and lies along the angular 

momentum vector. Even though �<and => rotate together with the radius vector of the spacecraft, the frame 

is fixed at each instant in time. This means that these unit vectors do not have to be differentiated when 

transforming velocity to this frame, which thus has the same magnitude in this frame as in the ECI frame 

[49]. This coordinate frame is very useful to show the difference between two orbits in the radial, in-track, 

and cross-track directions. A good quantitative description of such a coordinate frame is provided in [49] 

and it is here summarized as follows. 

In order to compute the transformation matrix from ECI to RIC, let us assume to have position @ and velocity @A  vectors in the ECI frame, expressed as: 

 @ = BĈ + EF̂ + GH< (2:4) 

 

 @A = BA Ĉ + EAF̂ + GAH< (2:5) 

Where Ĉ, F ̂and H< are  respectively the unit vectors along ECI x-, y-, and z- axes. 

We can define: 

 �< ≡ @	 = B	 Ĉ + E	 F̂ + G	 H< (2:6) 

 

 ?< ≡ Jℎ = @ K @A‖@ K @A ‖ (2:7) 

 

 => ≡ ?< K �< (2:8) 
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Where  

 J = @ K @A  (2:9) 

Where K denotes the vectorial product. 

In matrices this is equivalent to: 

 M�<=>?<N = OPQ PR PS9Q 9R 9S�Q �R �ST M
ĈFĤ<N (2:10) 

 

Where 

 UVW+:+W ≡ OPQ PR PS9Q 9R 9S�Q �R �ST  (2:11) 

where the elements of UVW+:+Ware the direction cosines of the RIC unit vectors with respect to the ECI frame, 

given in equations (2:6), (2:7) and (2:8). Thus, 

 
MP9�N = UVW+:+W MXYZN and MXYZN = UVW+:+W[ MP9�N 

  

(2:12) 

In order to compute the difference between two orbits using the �<,  => , ?< directions, first one orbit has to 

be chosen as the reference, where @ and @A  are the position and velocity of the orbit. Then, we use equations 

(2:6), (2:7) and (2:8) to compute the unit vectors �<,  => , ?	< and equation (2:11) to compute UVW+:+Wusing @ and @A . We compute the position and velocity difference in the ECI frame, 

 
M∆X∆Y∆ZN = ∆@,	 M∆XA∆YA∆ZA N = ∆@A  

  

(2:13) 

Finally, we use equation (2:12) for the differences in the radial, in-track and cross-track directions. 

 

 
M∆P∆9∆�N = UVW+:+W M∆X∆Y∆ZN, M∆PA∆9A∆�AN = UVW+:+W M∆XA∆YA∆ZA N 

  

(2:14) 

 

2.5.2 Satellite-to-user range determination 

As already mentioned, in reality, there is no perfect synchronization between a user’s receiver clock and a 

satellite clock. In addition, there are a number of error sources affecting the range measurement accuracy, 

including propagation delays, receiver noise, interferences, etc. Such errors are much smaller than the error 

due to the unsynchronization between the receiver and transmitter clocks. Thus, in this section, errors other 

than clock offset are omitted.  
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Let us consider a GPS constellation and a user in a generic Earth orbit. 

Figure 2:14 shows the user-to-satellite range vector @, which can be computed as:  

 @ = ^ − _ (2:15) 

Where ^  is the GPS satellite position vector with respect to the ECI frame, computed using ephemeris data, 

part of the navigation data contained in the GPS signal; and _ is the user’s position vector with respect to 

the ECI frame, to be determined.  

The magnitude of @ is  

 	 = ‖^ − _‖ (2:16) 

It is possible to express the measured range 	̃ as done in equation (2:3) but using a simple notation as 

follows,  

 	̃ = ,��a − �b� (2:17) 

 

Where c is the speed of light, �a is the reception time (or arrival time) measured by the receiver’s clock and �b is the transmission time according to the satellite’s clock. Both clocks have an offset from the system 

time, as mentioned earlier. Indeed, the distance 	 is computed by measuring the propagation time ��a − �b�, 

which more specifically is the time required for the ranging code, generated by the GPS satellite, to reach 

the user’s receiver antenna from the GPS satellite transmitter antenna. A specific code phase generated by 

the GPS satellite transmitter at �c, reaches the receiver antenna at �d , taking a time interval Δ� = �d − �c . 

The receiver generates a signal replica with an identical ranging code at �, with respect to the receiver clock.  

As already described, in the acquisition process, this signal replica is shifted in time and in frequency until 

its cross correlation with the incoming signal results in a peak, which means that the PRN code phase of the 

generated replica is aligned with the code phase of the incoming signal and that their carrier frequencies 

match each other with a certain accuracy.  

If receiver and transmitter clocks were perfectly synchronized, the acquisition process would allow the 

calculation of the true propagation time and then, by multiplying it by the speed of propagation the true 

satellite-to-user distance. But this is not the case; the receiver clock has a bias error from the system time 

and the GPS satellites transmitters, although supplied by a highly accurate atomic clock, have a smaller, but 

still present, offset from the system time. This is the reason why, the measured satellite-to-user distance is 

denoted pseudorange f and not range 	, which instead denotes the true satellite-to-user distance. 

Then, if gb and ga are the true transmission and reception instants with respect to the system time, h� and Δ� are respectively the time offset of the satellite’s clock and the receiver’s clock (see Figure 2:15), and the 	 is the true range, the pseudorange is:  

 f = ,i�ga + Δ�� − �gb + h��j (2:18) 

 

 f = 	 + ,�Δ� − h�� (2:19) 



GNSS-Based Navigation for Lunar Missions 

53 

 

Figure 2:14 Range representation. 

 

Figure 2:15 Range and pseudorange relationship. 

2.5.3 TOA position determination 

In GNSS, the concept of time of arrival (TOA) is used to determine the user position. From the TOA, it is 

possible to compute the signal propagation time, which is the time that a transmitted signal by an emitter 

at a known location takes to reach the receiver. If this time is multiplied by the speed of the signal (for a 

GNSS signal, it corresponds to the speed of light, which is 299792.458 km/s according to [50]) the emitter-

to-receiver distance is obtained.  If the propagation time is known from multiple emitters at known 

locations, it is possible to determine the receiver’s position. 

The following excellent example of TOA position determination is presented in [24]. 

“Consider the case of a mariner at sea determining his or her vessel’s position from a foghorn. Assume that 

the vessel is equipped with an accurate clock and the mariner has an approximate knowledge of the vessel’s 
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position. Also, assume that the foghorn whistle is sounded precisely on the minute mark and that the 

vessel’s clock is synchronized to the foghorn clock. The mariner notes the elapsed time from the minute 

mark until the foghorn whistle is heard. The foghorn whistle propagation time is the time it took for the 

foghorn whistle to leave the foghorn and travel to the mariner’s ear. This propagation time multiplied by 

the speed of sound (approximately 335 m/s) is the distance from the foghorn to the mariner. If the foghorn 

signal took 5 seconds to reach the mariner’s ear, then the distance to the foghorn is 1,675m. Let this distance 

be denoted as R1. Thus, with only one measurement, the mariner knows that the vessel is somewhere on a 

circle with radius R1 centered about the foghorn. Hypothetically, if the mariner simultaneously measured 

the range from a second foghorn in the same way, the vessel would be at range R1 from Foghorn 1 and 

range R2 from Foghorn 2. It is assumed that the foghorn transmissions are synchronized to a common time 

base and the mariner has knowledge of both foghorn whistle transmission times. Therefore, the vessel 

relative to the foghorns is at one of the intersections of the range circles. Since it was assumed that the 

mariner has approximate knowledge of the vessel’s position, the unlikely fix can be discarded. Resolving the 

ambiguity can also be achieved by making a range measurement to a third foghorn” as shown in Figure 2:16. 

However, the assumption that the vessel’s clock is precisely synchronized with the foghorn time base might 

not be correct. If, for instance, the vessel’s clock is advanced with respect to the foghorn time base by 2 s, 

which means it has a +2 s offset, all the propagation intervals measured by the mariner are 2 s larger than 

the correct ones. In Figure 2:17,	k represents the range error due to clock offset, which is the clock offset 

multiplied by the speed of the signal. The red spot individuates the actual position of the vessel and the 

green points represent the estimated position, which is a function of the vessel’s clock offset. By removing 

or compensating for the offset, the range circles then intersect at the red point. 

In addition, in reality, the TOA measurements would not be perfect, as they would be affected by errors due 

to atmospheric delays, foghorn clock offset and other interferences. Furthermore, unlike the vessel’s clock, 

such errors are independent and different for each measurement. 

 

Figure 2:16 Position determination from three range measures. The red spot represents the vessel's 

position. 
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Figure 2:17 Effect of the receiver clock offset on TOA measures. 

 

GNSS uses this principle to determine a user’s position. For a single ith GNSS satellite transmitting a signal, 

the clock onboard is synchronized, with a certain offset h�l, to an internal system time scale (for GPS, called 

GPS system time). The user’s receiver contains a clock as well, which is synchronized with the system time 

also with a certain offset	�m. The signal includes a data message (discussed in section 2.4), based on the 

satellite clock time, which helps the receiver to calculate when the signal left the satellite, the transmission 

time. By evaluating the time when the signal is received, the reception time, the satellite-to-user 

propagation time can be computed with a certain accuracy. Then, with a certain accuracy, the satellite-to-

user distance can be obtained by multiplying the propagation time with the speed of light, as in equation 

(2:3).  Let us assume the ideal case of both offsets h�l and �m	being null and of perfect TOA measurements, 

not affected by any error. Therefore, the user will be somewhere on a sphere that is centered around the 

ith GNSS satellite whose radius is the measured satellite-to-user distance. If the user gets simultaneously a 

second measure from a different GNSS satellite, the receiver would be in the intersection of the two 

spheres. This intersection is the perimeter of a circle. Note that the user could be at a single point tangent 

to both spheres if collinear with the two GNSS satellites, but this is not the typical case. Using a third range 

measurement, the receiver could be located in both intersection points of a sphere with the perimeter of 

the circle. However, only one of these points is the user’s actual position. For a user located on the Earth’s 

surface, it is clear which of the two points will be the true position; indeed, they are symmetric with respect 

to the plane identified by the three GNSS satellites, then the one to be discarded will be the one above.  

However, for users above the Earth’s surface, such as aircraft or spacecraft, which can receive GNSS signals 

at negative elevation angles, the true position may be below or above the plane containing the GNSS 

satellites, and additional information is then required to have a univocal determination of the user’s 

position. 
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2.5.4 User position determination from pseudoranges 

The satellite clock offset h� consists of a bias and a drift. In general, the GNSS ground segment computes 

corrections for the satellite clock offset, which are transmitted from the ground stations to the GNSS 

satellites and from the GNSS satellites to the user receiver as part of the data message, in order to 

synchronize the transmission of each ranging signal to system time. Then, assuming that h� is compensated 

for (e.g. using the corrections provided in the navigation message), equation (2:19) can be rewritten as 

 f = 	 + ,�m (2:20) 

 

In order to determine the unknown user position and the receiver’s clock offset �m, four simultaneous 

pseudorange measures from four different GNSS satellites are needed. This yields to the resolution of a 

nonlinear system of four equations  

 

nop
oqfc = r�Bc − Bm�d + �Ec − Em�d + �Gc − Gm�d + ,�mfd = r�Bd − Bm�d + �Ed − Em�d + �Gd − Gm�d + ,�mfs = r�Bs − Bm�d + �Es − Em�d + �Gs − Gm�d + ,�mft = r�Bt − Bm�d + �Et − Em�d + �Gt − Gm�d + ,�m

 (2:21) 

 

where fu  denotes the pseudorange measure from the jth satellite and Bu , Eu , Gu  are its position components, 

while 	Bm, Em, Gm are the position components of the user’s receiver. 

2.5.5 Single-epoch navigation solution 

If the approximate position Bvm , Evm, Ĝm	of the receiver is known, it is possible to expand equations (2:21) as 

Taylor series about the approximate position and estimated receiver clock offset �̂m, neglecting the higher 

terms. 

 fu ≅ fvu + Bvm − Bu	̂u ΔB + Evm − Eu	̂u ΔE + Ĝm − Gu	̂u ΔG + ,Δ�m (2:22) 

 

Where:  

• Bvm , Evm and Ĝm are the user’s approximate position components;  

• fvu =	xyBu − Bvmzd + yEu − Evmzd + yGu − Ĝmzd + ,�̂m is the approximate pseudorange; 

• 	̂u =	xyBu − Bvmzd + yEu − Evmzd + yGu − Ĝmzd is the approximate range; 

• ΔB, ΔE and ΔG are the unknown displacements of the true position from the approximate one; 

• Δ�m	is the time difference between the offset of the receiver clock from system time �m and its 

approximate estimate �̂m. 

Equations (2:21) can be linearized and then, rearranged as 

 

nop
oqΔfc = �QcΔB + �RcΔE + �ScΔG − ,Δ�mΔfd = �QdΔB + �RdΔE + �SdΔG − ,Δ�mΔfs = �QsΔB + �RsΔE + �SsΔG − ,Δ�mΔft = �QtΔB + �RtΔE + �StΔG − ,Δ�m (2:23) 
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where, for simplicity, the following quantities are introduced: 

 
Δfu = fvu;  �Qu = − Qv{|Q}ã} ;	�Ru = − Rv{|R}ã} ; 	�Su = − Ŝ{|S}ã}  	  (2:24) 

 

In equation (2:24), �Qu , �Ru  and �Su  denote the direction cosines of the unit vector pointing from the 

approximate user position to the jth satellite.  

Then, the equation (2:22) can be expressed as: 

 �� = ��� (2:25) 

Where 

 �� = �ΔfcΔfdΔfsΔft
� (2:26) 

 

 � = ��Qc �Rc�Qd �Rd �Sc 1�Sd 1�Qs �Rs�Qt �Rt �Ss 1�St 1� (2:27) 

 

 �� = � ΔBΔEΔG−cΔ�m� (2:28) 

 

This system has a solution given by 

 �� = �|c�� (2:29) 

 

When �� is computed, the user’s position and the receiver clock offset are easily calculated from 

 Bm = Bvm + ΔB (2:30) 

 Em = Evm + ΔE (2:31) 

 z� = Ĝm + ΔG (2:32) 

 �m = �̂m + Δ�m (2:33) 

 

This process is reiterated as long as the displacements ΔB, ΔE, ΔG and  Δ�m are higher than a threshold 

value defined by the accuracy requirements. When the displacements are smaller than the defined 

threshold,  f�u  is replaced by a new pseudorange estimated from the user’s calculated position component. 
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In reality, the receiver can measure more than four pseudoranges at the same time. If 0 measurements 

(with 0 ≥ 4) from 0 different satellites are provided, the � matrix of equation (2:27) will be a 0 K 4 matrix 

that cannot be inverted. 

These redundant measures can be processed by an un-weighted least-squares estimator, which leads to the 

solution [24]: 

 �� = ��[��|c���� (2:34) 

 

Where the matrix ��[��|c�� is commonly known as the left pseudo-inverse of the � matrix. 

When the accuracy of the pseudorange measurements is known to vary over time (e.g. due to variations in 

the carrier-to-noise ratio � �(⁄  or in residual ionosphere and troposphere propagation errors because of 

different elevation angles), a weighted least-squares estimate can be computed as follows [25]: 

 �� = ��[?|c��|c��?|c�� (2:35) 

 

Where ? is the measurement error covariance matrix, which can be a 0 K 0 matrix where the diagonal 

elements are the predicted variances of each pseudorange error, while the off diagonal terms take into 

account any correlation between the pseudorange errors.  

 

2.5.6 Filtered navigation solution 

Unlike a single-epoch solution, a filtered solution exploits information derived from previous 

measurements; it uses prior clock offset and drift solutions and prior position and velocity solutions to 

predict, respectively, the current clock offset and drift and current position and velocity. In this way, the 

current pseudoranges and pseudorange rates are fused with the predicted navigation solution. The 

prediction of the navigation solution can be provided by a mathematical model of the user dynamics, which 

for a spacecraft is an orbital forces model, or by another sensor, e.g. an INS. A complete formulation of a 

filtered navigation solution is provided in section 9.4.2 of [25].  A Kalman filter-based estimation is used 

most of the time to optimize the weighting of the measured GNSS observations against the estimated GNSS 

observations from the previous navigation solution. In Appendix A, the Kalman filter estimation is described 

in detail. A filtered navigation solution for spacecraft using an Kalman filter estimator to predict the GNSS 

observations through an orbital forces model is described in Chapter 5. 

 

2.5.7 User velocity determination from Doppler shift 

The user velocity can be determined from GNSS observations in several ways. According to [24], in modern 

GNSS receivers it is usually computed by processing carrier phase measurements, from which the precise 

Doppler frequency of the received satellite signals can be estimated. The Doppler shift is due to the relative 

motion of the receiver with respect to the transmitter. The following formulation from [24] can be 

considered to understand the main principle of carrier phase velocity derivation. 

The received frequency $V at the receiver antenna can be approximated by the Doppler equation: 
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 $V = $[ �1 − ��a ⋅ ��, � (2:36) 

 

Where  $[ is the transmitted signal frequency, � is the unit vector identifying the line of sight from the user 

to the GNSS satellite, , is the speed of light and �a is the relative satellite-to-user velocity vector. For the ith 

GNSS satellite, the latter is obtained as follows: 

 �a = �l − �m (2:37) 

 

where �l  is the ith satellite velocity vector and �m is the user’s velocity vector. 

The Doppler shift affecting the signal from the ith satellite is: 

 Δ$l = $Vl − $[l = −$[l ��l − �m� ⋅ ��,  (2:38) 

 

It is important to note that $V and $[ are the true received and transmitted frequencies. However, as 

mentioned before, the frequency generation, as well as the timing, is based on onboard clocks, which are 

affected by an offset from the system time. As already mentioned, periodical corrections from the data 

message are applied in the receiver PVT computation to correct the GNSS satellite clock offset [24]. The 

frequency correction ∆$[ decoded from the navigation message, can be added to the nominal transmitted 

frequency $( to compute the actual frequency $[ : 

 $[l = $( + ∆$[l (2:39) 

Instead, the measured received signal frequency $�Vl 	can be related to the actual received frequency $Vl  with 

the receiver’s clock drift �mA  as follows: 

 $Vl = $�Vl 	�1 + �mA � (2:40) 

 

Substituting equation (2:39) and (2:40) into equation (2:36) for the ith GNSS satellite and rearranging   

 
y$�Vl − $[lz,$[l + �l ⋅ �� = �m ⋅ �� − ,$�Vl�mA$[l  (2:41) 

 

On the right side in equation (2:40) $�Vl/$[l ≈ 1	 [24]. Then, 

 
y$[l − $�Vlz,$[l + 5Ql�Ql + 5Rl�Rl + 5Sl�Sl = 5Qm�Ql + 5Rm�Rl + 5Sm�Sl − ,�mA  (2:42) 

where �Ql , �Rl  and �Sl  are the direction cosines of the unit vector pointing from the ith satellite to the user 

position, 5Ql , 5Rl  and 5Sl 	are the ith GNSS satellite velocity components and 5Qm , 5Rm and 5Sm are the 

unknown components of the user’s velocity. 

If for simplicity, we define  

 /l = 5Qm�Ql + 5Rm�Rl + 5Sm�Sl − ,�mA  (2:43) 

Then, 
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 � = �� 
(2:44) 

Where  

 
� = �/c/d⋮/�

� 					� = ���
��Qc �Rc �Sc 1�Qd �Rd �Sd 1⋮ ⋮ ⋮ ⋮�Q� �R� �S� 1���

 
 							� = � 5Qm5Rm5Sm−,�mA � 

 

(2:45) 

 

 

The solution for the velocity and clock drift are obtained as a least-squares estimation 

 � = ��[��|c�[� 
(2:46) 

Note that � is identical to the matrix used to determine the user’s position. 

 

2.5.8 Error sources and performance limitations 

In section 2.5.2 the concept of pseudorange measurement is described neglecting a number of error 

sources. This section mainly summarizes the description of positioning error sources provided in [24]. 

The sources of error affecting a pseudorange measurement can be divided into three groups: space segment 

errors, propagation errors and receiver errors. The first group includes errors due to satellite clock’s offset 

from the system time and the error in the broadcasted ephemeris. The carrier component of the signal is 

delayed by the atmosphere layers, whose effects are included in the propagation errors. Multipath and 

hardware effects are part of the receiver errors. Another classification can include two main types of error: 

time-correlated errors and noise. The satellite clock errors and the atmosphere (ionosphere and 

troposphere) propagation errors are correlated over the order of an hour and can be partially corrected; 

these remaining errors after the correction process are known as residual errors. 

2.5.8.1 Satellite clock error 

As stated before, GNSS satellites have atomic clocks that manage all onboard timing operations, including 

signal generation. Although these clocks are highly stable, corrections are periodically required. Indeed, an 

offset of 1 ms is equivalent to a 300 km error in pseudorange.  

Clock corrections are included in the data message as coefficients of a second order polynomial expansion, 

which is used to compute the clock’s offset, as follows [24]: 

 h�%¡¢ = �£( + �£c�� − �¤%� + �£d�� − �¤%�d + Δ�a (2:47) 

where: 

• �£( denotes the clock bias (�) 

• �£c represents the clock drift (�/�) 

• �£d is the frequency drift (�/�d) 

• �¤%  is the clock data reference time (�) 

• � is the current time (�) 

• Δ�a takes into account relativistic effects (�) 
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These parameters are computed using curve-fits to estimate the actual satellite clock error. Then, a residual 

error due to the satellite’s clock affects the pseudorange measurement after the application of the 

corrections. The nominal 1-sigma clock error averaged over the age of data (AOD) is 1.1 m [24]. This value 

is expected to decrease as new satellites, with better performing clocks, are launched.  

2.5.8.2 Broadcast ephemeris error 

In order to estimate the position and velocity of the user, by processing a number of GNSS signals, it is 

necessary to know the position and velocity of the GNSS satellites from which the same signals are 

transmitted. As mentioned already the kinematic state of a GNSS satellite is obtained by propagating its 

ephemeris, which are transmitted in its signal as part of the data message. However, the position and the 

velocity computed from the ephemeris are affected by an error, which grows with the time elapsed since 

the last ephemeris update [24]. 

The effective pseudorange error due to ephemeris prediction errors can be computed by projecting the 

satellite position error vector onto the satellite-to-user LOS vector. According to [24], ephemeris errors are 

smallest in the radial direction, which is the direction from the center of the Earth to the satellite. The 

components of the ephemeris error in the along-track (the instantaneous direction of the satellite’s velocity) 

and cross-track (perpendicular to the radial and along-track) directions are much larger since they are more 

difficult to be detected from ground stations. Luckily, the user does not experience large errors due to the 

largest ephemeris error components. 

The effective 1-sigma pseudorange error due to ephemeris prediction in approximately 0.8 m [24]. 

2.5.8.3 Atmospheric propagation errors 

Ionospheric effects 

The ionosphere is a dispersive medium present in the region of the atmosphere between approximately 70 

and 1000 km of altitude. In this region, ultraviolet rays from the Sun, ionize gas molecules and release 

electrons. These electrons delay the propagation of electromagnetic waves [24].  

According to [24], the propagation delay of an electromagnetic wave due to ionospheric refraction, can be 

expressed as follows respectively for the delay induced by the phase refractive index Δ)l¤�¤,¥	and for the 

delay induced by the group refractive index  Δ)l¤�¤,¦: 

 Δ)l¤�¤,¥ = −40.3$d g©� (2:48) 

 

 Δ)l¤�¤,¦ = 40.3$d g©� (2:49) 

 

Where:  

• $ is the frequency of the electromagnetic wave  

• g©� is the (Total Electron Content) electron density 0ª along the path length � between the receiver 	B and the transmitter	�B defined as follows: 

 g©� ≡ « 0ª	/�aQ
bQ  (2:50) 

Note that g©�  is expressed in units of electrons/md and is a function of the time of day, user 

location, satellite elevation angle, season, magnetic activity and solar cycle. 
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Since the ionospheric delay depends on the frequency, it can be removed by measuring the same range 

from two different frequencies. For instance, by means of pseudorange measurements on both L1 and L2 

signals from the same satellite, it is possible to estimate both the L1 and L2 ionosphere delays. In this way, 

according to [24], a ionospheric-free pseudorange can be computed as follows: 

  

fl¤�¤­¥®ªal%|£aªª = f;d − �$;c $;d⁄ �df;c1 − �$;c $;d⁄ �d  
(2:51) 

 

 

The previous equation can mitigate the ionospheric delay but it increases the measurement error through 

the combination of the two measurements. An alternative and preferred approach is to estimate the 

ionospheric error on L1, by using the L1 and L2 pseudorange measurements as follows [24]:  

 Δ)l¤�¤,;c = �f;c − f;d� ¯ $;dd$;dd − $;cd ° (2:52) 

 

In the case of a single-frequency receiver, the ionospheric delay is typically modelled by using some 

parameters decoded in the signal data message. One important example is the Klobuchar model, which is 

used by means of a set of coefficients included in the GPS data message. More details about ionospheric 

corrections can be found in [51] and [52]. 

According to [24], once the Klobuchar model is used to account for the ionosphere delay, a typical 1-sigma 

error due to residual errors, averaged over the globe and over elevation angles, for a user on the Earth’s 

surface is 7 m. It is important to note that the Klobuchar model is valid for terrestrial users that are located 

below the ionosphere’s upper bound; for a space user flying above the ionosphere layer, the model cannot 

be applied. If the receiver is located above the GNSS constellation, signals may come from those satellites 

located at the opposite side of the Earth as shown in Figure 2:18; in this case, such signals may cross the 

ionosphere twice, with a much larger delay.  

 

 

Figure 2:18 Signals transmitted from the other side of the Earth. 
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Tropospheric effects 

The troposphere is the lower part of the atmosphere (placed between the Earth's surface and an altitude 

of about 60 km). It is a non-dispersive medium for frequencies up to 15 GHz [24]. Within this medium, signals 

on both L1 and L2 are delayed equally with respect to vacuum propagation. Therefore, it is not possible to 

estimate it using a double-frequency receiver. 

In order to mitigate the tropospheric propagation error, it can be modelled with a certain accuracy, using 

updated tropospheric corrections. More details about how to model the tropospheric delay can be found 

in [24]. After corrections are applied, the residual 1-sigma error on pseudorange can be estimated as about 

0.2 m [24]. 

2.5.8.4 Receiver noise 

The receiver noise is induced mainly by the tracking loops.  In terms of the DLL when there is no multipath 

or other distortion of the received signal, the dominant source of error that affects pseudorange 

measurements is the thermal noise jitter (described in detail in section 3.5.1). This can be quite large when 

tracking signals with a very low carrier-to-noise ratio. According to [24], “Typical modern receiver 1σ values 

for the noise and resolution error are on the order of a decimeter or less in nominal conditions (i.e., without 

external interference) and negligible compared to errors induced by multipath”. 

2.5.8.5 Multipath 

According to [44], the signal observed at the receiver may be a distorted version of the one transmitted. 

One distortion effect is called multipath. 

In addition to the direct signal, the receiver could observe other signals propagating via other and longer 

paths. This can happen if the waves reach the receiver after interaction with obstacles in the environment. 

This second wave can disturb the tracking process, resulting in an error on pseudorange measures. 

As stated in [24], “typical 1-sigma multipath levels in a relatively benign environment of 20 cm and 2 cm, 

respectively, for a wide bandwidth C/A code receiver’s pseudorange and carrier-phase measurements” are 

used. 

2.5.8.6 Position error 

The previous paragraphs give a full description of the sources of error that affect pseudorange measures. 

Table 2:3 from [24], summarizes the error budget for a C/A user located on the Earth’s surface. The total 

user-equivalent-range-error (UERE) is the root-sum-square of the error sources and it is assumed to be 

Gaussian distributed. 

For a space receiver, these values may vary. As seen both for thermal tracking noise jitter and ionospheric 

effects, errors could be larger than those presented in Table 2:3.  

Error source ±²	³@@´@	�µ� 

Broadcast clock residual 1.1 

Broadcast ephemeris 0.8 

Ionospheric delay residual 7 

Tropospheric delay residual 0.2 

Receiver noise 0.1 

Multipath 0.2 

Total UERE  7.1 

Table 2:3. GPS C/A code error budget for terrestrial users (from [24]). 
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In order to understand the stand-alone GPS accuracy, in this section the relationship between pseudorange 

errors and position errors is analysed. 

It can be demonstrated that the error in positioning is a function of the pseudorange error and the system 

geometry, as follows [24].  

 

 ����3�3�0	-		�	� = �1-�2-�	E	$�,��	� K ���-./�	�01-	-		�	� 
(2:53) 

This is clarified in Figure 2:19, where two geometries are illustrated. On the bottom, the two GPS satellites 

are located at a certain angle with respect to the user position. On the top, the angle between the 

transmitters as viewed from the receiver is much smaller. In both cases, the errors on range are the same, 

but the position error, which is represented by the grey region, is much bigger in the top subfigure. This 

difference in accuracy is due to the relative geometry between the user and the GNSS satellites transmitter 

positions. 

 

 

Figure 2:19. Effect of the user-transmitters relative geometry on the position error. 

The term that takes the geometry factor into account is the geometric dilution of precision (GDOP), which 

is defined as 

 ��
� = r�	��[��|c (2:54) 

Where �	�⋅� indicates the trace of a matrix, and H is the matrix defined in (2:27). 

According to [24], it is possible to prove that 

 x�Qmd + �Rmd + �Smd + �%¶bmd = ��
� K �·:V:  (2:55) 
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Where	�Qmd , �Rmd , �Smd  and �%¶bmd  are respectively the variances of the user position components error and the 

variance of the range equivalent of the user time bias error, while �·:V:   denotes the standard deviation of 

the UERE.  
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3 Feasibility study of GNSS as a 

navigation system to reach the Moon 
This chapter aims to investigate the characteristics of GNSS signals in a lunar mission, their effect on the 

achievable GNSS-based positioning performance and the consequent constraints and requirements for a 

GNSS receiver to be designed for the specific scenario of MTO.  

The study described here about the use of GNSS for lunar missions was published mainly in [19]. It follows 

a more generic investigation about GNSS signal characteristics in MEO, GEO and HEO, which was carried out 

in the first months of this PhD research and was presented in [53]. Investigations conducted by other 

researchers about GNSS signals in GEO and HEO have also been published in [3], [4], [5], [6], [7] and [8]. 

However they were often using simplified models and assumptions, while the analysis carried out for this 

PhD thesis makes use of the very accurate multi-GNSS constellation simulator “Spirent GSS8000“, which 

supports simultaneously the GPS and Galileo systems with the L1, L5, E1, and E5 frequency bands, including 

facilities to accommodate to the special needs of space-based receiver testing (i.e. its relevant capabilities 

are fully accounting for the double-atmosphere effect of signals passing through the atmosphere twice for 

the GNSS satellites located on the far side of the Earth, realistic 3D satellite transmit-antenna patterns, 

spacecraft models and spacecraft motion models, ability to define trajectory data, even in real time, etc.). 

At the time of our study, it was possible to find in the literature other studies about the use of GNSS for 

lunar missions, such as [54], [55] and [56]. However, different approaches and very different assumptions 

were used. Indeed, more specifically, in [54] the authors assess the performance of a developed GPS 

receiver (the Navigator GPS receiver developed by NASA’s Goddard Space Flight Center (GSFC)) in three 

small representative segments of a manned lunar mission trajectory, only then taking into account the GPS 

constellation; essentially [54] proposes a solution (a developed GPS receiver) rather than, as in this chapter, 

an analysis of the constraints and requirements useful for the designer of a GNSS receiver for lunar missions. 

The other two studies [55] and [56] investigate, more similarly to this chapter, the feasibility of GNSSs as a 

navigation system to reach the Moon. But, unlike [55] and [56], this chapter aims to estimate the GNSS 

availability and the consequent positioning accuracy achievable in greater detail for different combinations 

of receiver sensitivities and signals, of more than one constellation, in order to be an input of different 

possible GNSS receiver designs. 

Here, different values of receiver sensitivity are considered according to the received power at the receiver 

(and according to the minimum sensitivity required to process a minimum number of signals for the 

computation of the navigation solution), for signals from GPS, Galileo, and GPS-Galileo combined (double 

constellation), in HEO with its perigee in LEO and apogee at Moon altitude. Next, it is shown theoretically 

that the considered sensitivity levels can indeed be achieved in acquisition and tracking. Then, the GNSS 

performances are evaluated in terms of availability, pseudorange error factors and geometry factors, for 

the full considered trajectory to the Moon altitude.  

The rest of the chapter is organized as follows. Section 3.1 presents the simulation models and the 

assumptions we used for our analysis, while section 3.2 reports the signal characteristics obtained as a result 

of simulations. The minimum required sensitivity values are then defined in section 3.3, where a theoretical 

analysis demonstrates that they can be achieved in the acquisition and tracking processes. Section 3.4 and 

section 3.5 respectively outline the consequent availability of signals and the expected navigation 

performance. In particular, pseudorange errors and Geometry Dilution of Precision (GDOP) are evaluated, 

and the achievable performance using an orbital filter is briefly discussed. 
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3.1 Simulation models and assumptions 

3.1.1 Preselection of the GNSS signals to be considered 

Figure 2:5 shows the different GNSS signals in the different frequency bands that will be available when the 

upgrade or the service of all the systems will be completed. It can be seen that two frequency bands are 

especially interesting, E5/L5 and E1/L1, since these two bands are used by GPS, GLONASS (CDMA), Galileo, 

BeiDou, and QZSS. The L2 and E6 bands contain only few civil signals, and are therefore not considered for 

this study. Table 2:2 summarizes the characteristics of most of the current and modernized GNSS signals, 

while Table 2:1 reports the status of the main GNSS constellations. It can be seen that the modern GPS L5 

and Galileo E1 and E5 signals should be transmitted by at least 24 satellites in 2018, according to [43] and 

[40]. 

Therefore, we preselected the GPS L1/L5 and Galileo E1/E5 signals for this study because 1) they rely on 

two bands for which all the constellations will have signals in the future (allowing for e.g. the reuse of the 

same radio frequency front-end); 2) the L5-band civilian signals have a pilot (data-free) channels that allows 

for very long integration times (to increase the sensitivity of the receiver at high altitudes) and a higher 

chipping rates (yielding a lower tracking noise jitter); 3)dual frequency signals can be used for ionospheric 

error mitigation and for aiding the acquisition of the L5 frequency band signals; 4) they are supported by 

our Spirent GSS8000 simulator.  

3.1.2 Spirent GNSS simulator for simulations of GNSS spaceborne 

receivers 

The Spirent GSS8000 GNSS simulator used in this PhD research, as in the whole manuscript, is able to model 

and generate realistic GNSS signals that would be present at the receiver antenna position, over time, for 

different kinds of scenarios.  Essentially for each simulation setup, the main setting steps are: 

1. Definition of the start time (i.e. date and time) of the simulation and of its duration. 

2. Setting of the atmosphere model. As discussed in section 2.5.8.3 the ionosphere and the 

troposphere delay the RF signal from each GNSS satellite to the receiver. In order to calculate the 

true range from each satellite, and hence the receiver position, these delays must be taken into 

account. To calculate the tropospheric delay, the simulator uses the tropospheric model from 

reference [57]. Regarding the ionospheric delay, for Galileo satellites, it uses the NeQuick 

ionospheric model (see [58]), which applies equally well to both terrestrial and spaceborne 

receivers. For GPS satellites, the ionospheric delay is modelled according to the Klobuchar model 

[59]. Furthermore, because the Klobuchar model is not applicable at altitudes within, or above, the 

ionosphere, the simulator can switch for altitudes above 80 km between the Klobuchar model and 

an alternative one, defined in [60], which can take into account the reduction in the ionization level 

(Total Electron Count, or TEC) with increasing height in the ionospheric layer. 

3. Selection of the GNSS signals to be modelled and generated. More signals can be simultaneously 

simulated at the receiver position, over time, from one or more GNSS constellations (i.e. GPS and 

Galileo in this study). Each constellation can be edited in terms of the number and motion of 

satellites in the constellation and signal characteristics (e.g. signal power, which is modelled as 

shown in equation (3:1)).  

4. Definition of the satellite (transmitter) and receiver antenna characteristics (gain, pattern). 
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5. Definition of the kinematic and dynamic state of the receiver’s antenna over time. Different kinds 

of vehicles hosting the receiver can be selected. In case of spacecraft, it is possible to define the 

characteristics that affect the spacecraft dynamics (i.e., mass for gravitational effect computation, 

aerodynamics and cross-sectional area for atmospheric resistance computation, and reflecting 

area and surface reflectivity for Solar Radiation pressure computation). Then it is possible to define 

the kinematic and dynamic states at the start time, which allows the simulator to propagate the 

receiver states over time by means of an accurate orbital propagator, or kinematic and dynamic 

states over time.  

More detailed information about the simulator can be found in [61], while a description about how to use 

it for spaceborne GNSS-based orbit determination is provided in [62]. Note that, as will be often specified, 

the same simulator was used to carry out all the analysis reported in this PhD thesis.  

 

3.1.3 Constellations model assumptions 

According to [63], we assumed a GPS constellation consisting of a nominal 24 operational GPS satellites 

allocated in six orbital planes (this assumption is conservative since there are generally more satellites 

operational than the nominal 24 GPS [24]) and, as defined in [64], the nominal Galileo constellation of 27 

satellites, allocated in 3 orbital planes. 

3.1.4 Signals model assumptions 

According to section 3.1.1, we will consider the GPS L1/L5 and Galileo E1/E5 signals, more precisely the GPS 

L1 C/A signal and only the pilot channels of GPS L5, Galileo E1, and Galileo E5a+E5b (the sum of the two 

signals Galileo E5a and Galileo E5b) signals. The use of the pilot channels enables very long coherent 

integration times, which are desired in very high sensitivity scenarios (as the coherent integration time for 

data channels is typically limited to one bit duration to avoid the losses incurred by the bit transitions). Note 

also that once a pilot channel is successfully tracked, it is easier to acquire and estimate the navigation data 

bits from the data channel since both channels are fully synchronized. 

The Spirent simulator has the capability to generate GNSS signals whose corresponding signal strength is 

modelled to provide realistic signal levels at the receiver position by modelling the gain patterns of both the 

transmitter and receiver antennas and taking into account the free space signal propagation losses. The 

signal strength of each satellite at the receiver position �a  is modelled as [60]: 

 �a = �W+¸ + 
¹ + 20 K ��1c( ºP( P» ¼ − �[½ − �V½			�¾�¿� (3:1) 

where :  

 

�W+¸  is the guaranteed minimum signal level for the GNSS signals on Earth, as provided in the signal-

in-space interface control documents. 


¹  Is the global signal strength offset. This value matches the performance obtained when using 

the simulator with the performance obtained when real signals are received.  
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P( is the reference range used for the inverse-square variation calculation and is equal to the range 

from a receiver to the GNSS satellite at zero elevation. P( =r����-��3�-	�	À3�		�/3.��d − �-�	�ℎ		�/3.��d 

P is the range from a GNSS satellite to the receiver. 

�[½ is the gain/loss from the GNSS satellite transmit antenna in the direction of the receiver that 

takes into account the radiation pattern of the antenna. 

�V½  is the gain/loss from the receiver antenna in the direction of the GNSS satellite, which here has 

been considered as constant. 

 

For the considered signals GPS L1 C/A, GPS L5Q, Galileo E1c and Galileo E5aQ+E5bQ, Table 3:1 reports the 

guaranteed minimum received signal power on Earth �W+¸  (see [64], [59] and [65]), and the global signal 

strength offset 
¹ 	 used for our simulations. This global signal strength offset takes into account for the 

difference between the guaranteed minimum signal level and the expected real one.  Indeed, typically, the 

transmitted signal powers are from 1 to 5 dB higher than the minimum received signal power value [24], 

therefore a value of 3 dB has been chosen, which is also in accordance with [66].  Although it models all 

signals from the full GPS and Galileo assumed constellations, our Spirent simulator signals output is 

characterized by only 12 channels for GPS and other 12 for Galileo.  However, as suggested in [60] for 

trajectories above the GNSS constellations, both the 12 channels of the GPS unit and the other 12 of the 

Galileo unit were configured to simulate respectively the strongest 12 GPS signals  (of the 24 modelled) and 

the strongest 12 Galileo signals (of the 27 modelled) in power. Note also that for Galileo signals  “the 

minimum received power on ground is measured at the output of an ideally matched RHCP 0 dBi polarised 

user receiving antenna when the SV elevation angle is higher than 10 degrees” [64], while for GPS signals 

“the minimum received power is measured at the output of a 3 dBi linearly polarized user receiving antenna 

(located near ground) at worst normal orientation, when the SV is above a 5-degree elevation angle” [59] 

and [65]. However the received signals from a 0-dBi, circular polarized antenna is about the same as from a 

3-dBi, linearly polarized antenna [66]. 

 

Signal Minimum Received Signal Power 	Á=?Â (dBm) 

Global signal strength offset 	ÃÄ (dB)  

GPS L1 C/A –128.5 +3 
GPS L5Q –127* +3 
Galileo E1c –130 +3 
Galileo E5aQ +E5bQ –125 +3 

Table 3:1 Assumed minimum received signal power and global signal strength offset of the four 
considered GNSS signals. *For block III GPS satellites (-127.9 dBm for block IIF satellites).  

 

In order to simulate the directional (angular) dependence of the power emitted by the GNSS transmitter 

antenna, the 3D transmitter antenna pattern is modelled as well (�[½	in	equation	�3: 1�). Since the GNSS 

transmitter antenna points to the Earth to serve users on Earth, this has a significant effect for space vehicles 

orbiting above the GNSS constellation, which very often receives the GPS signal from the transmitting 

antenna side lobes or from the spill-over around the Earth mask of the main lobe. Ideally, a different 
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accurate antenna pattern corresponding to each block and signal of each constellation should be modelled. 

Some information about the transmitting antenna pattern of different GPS signals and blocks can be found 

in the literature: e.g. for Block IIA in [67], IIR in [68]  and IIF in [69]. Unfortunately, fewer details are available 

for Galileo; e.g. only the gain at boresight and at the end of the coverage of the transmitting antenna of the 

four Galileo IOV (In Orbit Validation) satellites is provided in [70]. In the absence of more detailed 

information about the transmitting antenna patterns for both constellations, we used for this study the GPS 

transmitter antenna pattern from Block II-A (as defined in [67], illustrated in Figure 3:1 and in Figure 3:2 and 

provided by Spirent [60]]) to model all the transmitters for all the considered signals. Moreover, we assumed 

that the L1 C/A and L5Q signals are transmitted by all the GPS satellites and the E1c and E5 (E5aQ+E5bQ) 

signals are transmitted by all the Galileo satellites. The antenna model assumes no errors (phase or range 

biases) are introduced with the changes in elevation.  It is therefore important to keep these assumptions 

in mind when evaluating our results. In particular, our results should be considered as providing a qualitative 

indication, rather than a quantitative – even simulated – evaluation, of a real behavior. 

 

Figure 3:1. GPS transmitter antenna pattern used to simulate the antenna pattern of all considered GNSS 

satellites (based on [67] for Block II-A). The boresight is at 90°. The gain is normalized to 0 dB at the 

boresight. 

 

Figure 3:2. 3D representation of the same antenna pattern shown in Figure 3:2 (based on [67] for Block II-

A). The gain values for each elevation do not change in azimuth. 
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3.1.5 Trajectory and receiver dynamics model 

The “classical” Earth-Moon direct transfer begins from a so-called “parking orbit” around the Earth. The 

orbit’s apogee is reached at the Moon or at higher altitudes by a translunar injection. To reduce the transfer 

time, the apogee of the translunar orbit could be chosen higher, at the expense of a slightly greater ∆Í	(measure of the impulse that is needed to perform a manoeuver). A direct transfer typically lasts 2–5 

days. Such direct transfers were used for all lunar missions from the 1960s to the 1980s, including the Luna 

and Apollo missions. A more novel, and less expensive, indirect way (where more than one ∆Í is required) 

of reaching the Moon exists as well, which is slower but cost effective [71]. However, the definition of an 

optimal trajectory to reach the Moon is not the goal of this study, which instead only aims to investigate 

the feasibility of using GNSS for such a mission. Hence, for simplicity here, a direct transfer was considered, 

for which the initial position and velocity of the space receiver in terms of the Keplerian orbital parameters 

are reported in Table 3:2. The motion of the receiver is propagated by the Spirent GNSS8000’s SimGEN 

software [60] from the initial conditions as a function of perturbing accelerations (gravitational effects from 

the Earth, Sun and Moon, Solar Radiation Pressure and atmospheric drag), reaching the Moon altitude after 

approximately 4.5 days. Half of the corresponding osculating orbit (shown in Figure 3:3) can roughly 

represent an Earth-Moon transfer orbit (MTO). Figure 3:4 shows the first 14 h of this orbit, together with 

the GPS and Galileo constellations. Figure 3:5 displays the relation between time and altitude of the 

considered trajectory. 

 

Orbital Parameters  

Apogee 384 400 km 
Perigee altitude 600 km  
Length of the semimajor axis 195 689 km 
Inclination 31° 
Argument of perigee 0° 
Right ascension of the ascending node 

(RAAN) 

0° 

True anomaly 0° 

Table 3:2 Keplerian orbital parameters of the considered orbit. 

 

 

Figure 3:3 Plot of the half orbit defined in Table 3:2. 
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Figure 3:4 Plot of the first 14 h of the defined orbit and of the GPS and Galileo constellations. 

 

 

 

Figure 3:5 Relation between time and altitude of the considered trajectory. 

 

 

3.2 Signal characteristics 

The GNSS signal characteristics are here investigated in the defined scenario, in order to identify the 

constraints and requirements for a GNSS receiver. The evaluated metrics are: 

o Received power at the receiver antenna position (the four strongest power signals are considered 
over time since at least four ranging observations are necessary to compute a position solution); 

o Doppler shifts and Doppler rates. The Doppler effect is a change in the apparent frequency of the 
received signal caused by the relative motion between the emitter and the receiver. 

3.2.1 Received power levels 

For the GPS L1 C/A, GPS L1 C/A – Galileo E1c combined, GPS L5Q and GPS L5Q – Galileo E5aQ +E5bQ 

combined constellations, respectively, Figure 3:6, Figure 3:7, Figure 3:8 and Figure 3:9 show the highest, the 

second highest, the third highest and the fourth highest received power levels, as a function of the altitude, 

during the full considered trajectory, by assuming a 0 dBi receiver antenna gain (�V½  in equation (3:1)). The 
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fourth highest received power corresponds to a power threshold level for the receiver sensitivity, since at 

least four pseudoranges are required to compute the positioning solution.  

As expected, at the very beginning of the trajectory in LEO, the signal power level at the receiver position 

increases with the altitude, since the receiver is getting closer to the transmitters of the GNSS satellites, 

orbiting in MEO. Above the GNSS constellations, the power level of all the strongest signals has dropped, 

reaching the minimum levels, when approaching the Moon altitude. During the whole trajectory, the fourth 

highest received power levels of GPS L1 C/A, GPS L1 C/A – Galileo E1c, GPS L5Q and GPS L5Q – Galileo E5aQ 

+E5bQ signals do not drop below  –168.5 dBm if the few negative peaks are neglected. 

 

 

Figure 3:6 First, second, third and fourth highest received power levels of the GPS L1 C/A signals as a 
function of the altitude, during the full considered trajectory, by assuming a 0 dBi receiver antenna gain. 

 

Figure 3:7 First, second, third and fourth highest received power levels of the GPS L1 C/A and Galileo E1c 
signals as a function of the altitude, during the full considered trajectory, by assuming a 0 dBi receiver 

antenna gain. 
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Figure 3:8 First, second, third and fourth highest received power levels of the GPS L5Q signals as a function 
of the altitude, during the full considered trajectory, by assuming a 0 dBi receiver antenna gain. 

 

Figure 3:9 First, second, third and fourth highest received power levels of the GPS L5Q and Galileo 
E5aQ+E5bQ signals as a function of the altitude, during the full considered trajectory, by assuming a 0 dBi 

receiver antenna gain. 

 

3.2.2 Doppler shifts and Doppler rates 

For the design of the acquisition and of the tracking loops of an autonomous GNSS receiver, it is very useful 

to know the possible values of Doppler shift and Doppler rate for each received power. Figure 3:10 and 

Figure 3:11 represent respectively all the possible combinations of Doppler shift-received power and all the 

possible combinations of Doppler rate-received power, by considering all the GPS and Galileo satellites 

during the full-considered trajectory and by assuming a 0 dBi receiver antenna gain. As expected, the highest 

dynamics (Doppler shift almost up to 60 kHz and Doppler rate up to 65 Hz/s) are concentrated in the first 
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portion of the trajectory (in LEO) corresponding to the highest power levels where the receiver is below the 

GNSS constellations. As soon as the receiver is far from the Earth (power received below –150 dBm), the 

Doppler is between –30 kHz and 20 kHz, and the Doppler rate is within ± 5 Hz/s. Note that, for a typical GPS 

receiver operating on the Earth, the range of possible incoming Doppler shifts is about 5–10 kHz [26]. The 

Doppler rate instead, being a function of the vehicle acceleration, strongly depends on the vehicle type; e.g. 

for a car during a typical acceleration of 0.44 g (0–100 km/h in 6.4 s [72]), the Doppler rate would be about 

2.3 Hz/s (see equation (3.16) in [73]), while for a static receiver it would be smaller than 1 Hz/s [73].  

 

 

Figure 3:10 Possible combinations of Doppler shift and power levels during the whole considered 
trajectory. 

 

Figure 3:11 Possible combinations of Doppler rate and power levels during the whole considered 
trajectory. 

 

3.3 Required sensitivity 

As mentioned in section 3.2.1, it is well known that at least four pseudoranges have to be estimated by the 

receiver in order to compute a GNSS standalone position solution. In order to estimate a pseudorange over 

a time interval, the signal transmitted by the corresponding GNSS satellite has to be first acquired and then 

tracked over the same time interval.  
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According to the received power levels obtained by simulations and reported in section 3.2.1, in this section 

we identify the minimum power level of the four strongest signals that the receiver has to acquire and track 

(in order to provide the navigation solution). This minimum power level can be considered as the required 

sensitivity for a receiver to provide a navigation solution. However, considering a power level lower than 

the identified minimum, may allow the receiver to measure more than four pseudoranges with a possible 

consequent navigation accuracy improvement. 

Once the sensitivity values are defined, we specify how we assume the considered signals (GPS L1 C/A, GPS 

L5Q, Galileo E1c and Galileo E5aQ+E5bQ) can be processed to provide a pseudorange, and we verify 

theoretically whether such sensitivity values are achievable in acquisition and tracking. 

3.3.1 Definition of the sensitivity values 

As seen in section 3.2.1, once above the GNSS constellations, on the way to the Moon, even the four 

strongest signals are very weak, reaching values lower than –168.5 dBm. For this reason, as done in many 

other studies such as [56],  we assume a 10 dB gain for the receiving antenna; this value could be obtained 

during the whole trajectory by using one or more single moveable and directive (steerable) antennas 

onboard the space vehicle or, if the vehicle is big enough, by equipping it with more than one receiver 

antenna placed on different faces of the vehicle as in [55], in order that at least one antenna points in the 

direction of the GNSS satellites (at very high altitudes, this corresponds to an Earth-pointing space vehicle 

approximately).  

Figure 3:6, Figure 3:7, Figure 3:8 and Figure 3:9 show that during the whole trajectory the fourth highest 

received power levels of our signals of interest (GPS L1 C/A, GPS L1 C/A – Galileo E1c, GPS L5Q and GPS L5Q 

– Galileo E5aQ +E5bQ signals) do not drop below –168.5 dBm if the few peaks are neglected. This means 

that, by assuming a 10 dBi receiver antenna gain, a sensitivity of –158.5 dBm would allow for the 

simultaneous detection (with a certain probability) of at least four GNSS satellites and the computation of 

a navigation solution. However, because of the poor relative geometry between the receiver and the GNSS 

satellites expected at very high altitudes, we have considered the three higher sensitivity values of –159, 

–164 and –169 dBm in order to detect (with a certain probability) a larger number of GNSS satellites (i.e., 

more than four) and decrease the GDOP (as will be shown in section 3.5.2).  

These power values, as well as in signal strength (dBm), can also be expressed in terms of the carrier-to-

noise ratio �/�( (dB-Hz) as shown in equation (3:2) from [66].  

 

�/�(	(dB-Hz) = �310��	��	-01�ℎ	(dBW)−10��1c(	yÎ ∙ gª££z 

�/�(	(dB-Hz) = �310��	��	-01�ℎ	(dBm)−30 − 10��1c(	yÎ ∙ gª££z 

(3:2) 

Where Î = 1.38 ∙ 10|ds	Ñ/Ò is the Boltzmann constant and gª££  is the effective temperature of the entire 

front-end expressed in Ò. Note that the units of Î ∙ gª££  are W/Hz. gª££  can be calculated using Friis’s 

formula, as a function of the effective temperature of the antenna gÓ, of the ambient temperature g( and 

of the noise figure and gain of the different front-end blocks. According to [66], assuming 	gÓ = 130	Ò  

(typical for GNSS satellites) and g( = 290	Ò, for a front-end noise figure of 2 dB, gª££ = 296.4	Ò (see details 

of the computation in Table 6.1 in [66]). Thus, denoting �a  as the received power in dBm, equation (3:2) 

becomes:  

 

 �/�( = �a + 174 (3:3) 
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Using equation (3:3), the selected power thresholds of –159, –164 and –169 dBm correspond respectively 

to 15, 10 and 5 dB-Hz. Next, we demonstrate that such sensitivity values can be reached by a GNSS receiver. 

Note that when using a simulator to generate RF signals, the effective temperature of the antenna 	gÓ  

corresponds to the ambient temperature g(	and no longer to the typical	130	Ò. From Friis’s formula in [66], gª££ = �g(, where � is the front-end noise figure. Thus from equation (3:2): 

	
�/�(	�dB-Hz�	= �310��	��	-01�ℎ	�dBm�−30 − 10��1c(	�Î ∙ �g(�	=	�310��	��	-01�ℎ	�dBm�−30 − 10��1c(	�Îg(� − 10��1c(	���	=	�310��	��	-01�ℎ	�dBm�	+174 − �¾� 	 (3:4) 

 

Where �¾�  is the front-end noise figure in dB. Assuming �=1.6, �¾� = 10��1c(	�1.6� = 2	/Ú. 

Finally, for a test using a simulator, 

 �/�( = �a + 172 (3:5) 

 

3.3.2 Theoretical analysis of acquisition and tracking sensitivities 

for GPS L5Q and Galileo E5aQ +E5bQ 

We base our theoretical study only on the wideband GPS L5Q and Galileo E5aQ +E5bQ signals for the 

following reasons. Their power is slightly higher than the L1/E1 signals, they have a pilot channel allowing 

for long coherent integration times, and their chipping rate is ten times higher than that of the L1/E1 signals 

(which means a much-reduced tracking error in the ranging measurements, since the ranging error is 

inversely proportional to the chipping rate). Moreover, because the pilot channels and data channels in the 

L5 band are well synchronized, it is easy to demodulate the data channel with the assistance of the L5 pilot 

channel. The same can be done to demodulate the data in Galileo E5aI by using the assistance of the E5aQ 

pilot channels.  

 

Single- versus Dual-Frequency  

According to [74], a space receiver can experience ionosphere signal delays potentially much larger (more 

than 150 m) than the delays on signals travelling to a receiver on the Earth (typically 2–30 m). Indeed, for 

very high orbits, the receiver will be above the ionosphere and therefore a few signals (from the other side 

of the Earth) may pass through the ionosphere twice. For this reason, tracking GPS L1 C/A and Galileo E1c 

as well as the pilot channels GPS L5Q and Galileo E5aQ+E5bQ may be desired to remove the potentially high 

ionosphere delay (as described in section 2.5.8.3).  

Note that once a given satellite signal frequency is tracked, it is much easier to acquire another signal 

frequency from the same satellite, as the code phase search can be significantly reduced [75].  

However, when the receiver is far enough from the Earth (i.e. in most of the MTO up to 384 400 km), most 

of the signals, transmitted from GNSS satellites at MEO altitudes of roughly 19 000 – 23 000 km altitude, do 
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not cross the ~19–23 times smaller ionosphere layer, as shown in Figure 3:14. Therefore, above the GNSS 

constellations, the few signals that cross the ionosphere can be discarded. 

 

Figure 3:12 Number of available satellites (in blue), number of available satellites when the ones with LOS 
crossing the ionosphere are discarded (in red) and difference between the two cases (in black) (assuming -

159 dBm receiver sensitivity and 10 dBi antenna gain). 

Acquisition Sensitivity and Required Assistance 

Table 3:3 and Table 3:4 respectively report the acquisition parameters values that can be set to achieve a 

power sensitivity of –164 dBm (10 dB-Hz) and of –169 dBm (5 dB-Hz) (for this a final SNR of 17 dB was 

targeted according to [66] in section 6.8), following the method proposed in Chapter 6 of [66]. In both cases, 

the coherent integration time has been selected to decrease the squaring loss. We have selected a coherent 

integration time of 0.5 s for 10 dB-Hz and of 1 s for 5 dB-Hz as proposed in [76]. The maximum tolerable 

Doppler rate error is defined as the Doppler rate, which implies a shift of one frequency bin during the 

integration time. 

Quantity Value 

Desired sensitivity (dBm) –164  
Front-end noise figure (dB) 2 
Sampling rate after ADC conversion (MHz) 20.46 
Quantization (bit) 4 
C/N0 (dB-Hz) 10 
Coherent integration time (s) 0.5 
Coherent gain (dB) 70.10 
Frequency search step (Hz) 1 
Quantization loss (dB) –0.05 
Worst case frequency mismatch loss (dB) –0.91 
Worst case code alignment loss (dB) –2.50 
Data bit alignment loss (dB) 0 
Squaring loss (dB) –0.90 
Number of non-coherent integrations 19 
Non-coherent gain required (dB) 12.69 
Final SNR (dB) 17.10 
Total integration time required (s) 9.5 
Maximum tolerable Doppler rate error (Hz/s) 0.105 

Table 3:3 GPS L5Q theoretical analysis (10 dB-Hz). 
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Quantity Value 

Desired sensitivity (dBm) –169  
Front-end noise figure (dB) 2 
Sampling rate after ADC conversion (MHz) 20.46 
Quantization (bit) 4 
C/N0 (dB-Hz) 5 
Coherent integration time (s) 1 
Coherent gain (dB) 73.10 
Frequency search step (Hz) 0.5 
Quantization loss (dB) –0.05 
Worst case frequency mismatch loss (dB) –0.91 
Worst case code alignment loss (dB) –2.50 
Data bit alignment loss (dB) 0 
Squaring loss (dB) 0.43 
Number of non-coherent integrations 40 
Non-coherent gain required (dB) 16.00 
Final SNR (dB) 17.0 
Total integration time required (s) 40 
Maximum tolerable Doppler rate error (Hz/s) 0.0125 

Table 3:4 GPS L5Q theoretical analysis (5 dB-Hz). 

We note that GPS L5Q signals down to –164 dBm and –169 dBm can be acquired as reported in Table 3:3 

and Table 3:4. 

Therefore, Galileo E5aQ and E5bQ together can also be acquired at these power levels since their minimum 

received signal power is 2 dB higher (see Table 3:1). It can also be seen that due to the long total integration 

times required the maximum tolerable Doppler rate is very low: 0.1 Hz/s for 10 dB-Hz and 0.0125 Hz/s for 

5 dB-Hz. From Figure 3:11 we can see at moon altitudes that the Doppler rate can be up to 5 Hz/s and 

therefore very accurate Doppler rate aiding would be required to realise this performance. Fortunately, as 

discussed in Chapter 6, a 0.04 Hz (1�� accurate Doppler shift and a 0.01 Hz/s (1�� accurate Doppler rate 

estimations can be achieved when using an orbital filter to process modelled GPS-Galileo observations. 

We can also see that, since the total integration time will be considerable (9.5 s for –164 dBm and 40 s for 

–169 dBm), by considering the large Doppler shifts shown in Figure 3:10 and without assuming any 

assistance (i.e. no frequency aiding), the needed total acquisition time will be huge, even for an FPGA (Field 

Programmable Gate Array)-based implementation as considered in our study. Indeed, assuming that the 

incoming signal is stored in memory to allow for fast processing, the total acquisition time gÓis given as  

 gÓ = gW + �Û�gÛ�  (3:6) 
 

where  gW  is the time required for saving the data (which corresponds to the total integration time), �Û�  is 

the number of frequency bins to be searched and gÛ�  is the time needed to search one frequency bin, which 

is defined as 

 gÛ� = $�gW$Û�¹Ó (3:7) 

 

where $� is the sampling rate, gW  is the total integration time, and $Û�¹Ó is the processing frequency of the 

FPGA (assuming a FFT-based correlation that computes one correlation output sample per clock cycle [77]). 
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For example, for a –169 dBm sensitivity, considering ±20 kHz of Doppler shift at Moon altitude (see Figure 

3:10 and also Figure 4:6), �Û�  is equal to 80 000 (40 000 / 0.5), and assuming e.g. a 550 MHz processing 

clock, gÛ�  would be equal to 1.488 s (
d(.tÜ	c(Ý∙t(ÞÞ(	c(Ý ). Thus, the total acquisition time needed would be 33.08 h 

(	t(ßc.tàà∙à(	(((sÜ(( ). Therefore, the use of frequency aiding is also required to reduce the total acquisition time. 

Indeed, when the receiver clock offset and drift are estimated, the frequency search space can be 

approximately reduced to the aiding frequency error. For a 0.05 Hz aiding accuracy, this will correspond to 

an acquisition time of only 41.488 s (40 + 1.488). 

 

Tracking Sensitivity and Required Assistance 

The tracking process has to generate two replicas, one for the carrier and one for the code, to perfectly 

track and demodulate the signal of one satellite [44]. The major sources of phase error in a GNSS receiver 

carrier-tracking loop are the phase jitter and the dynamic stress error. As mentioned in [24], “a conservative 

rule-of-thumb for tracking threshold is that the 3-sigma jitter must not exceed one-fourth of the phase pull-

in range of the PLL discriminator”.  

For a data-less channel L5Q, E5aQ or E5bQ, considering a PLL four-quadrant arctangent discriminator, the 

pull-in phase range is 360°, and the 3-sigma rule threshold is therefore: 

 3��;; ≤ 90°. (3:8) 
 

Note that this can be applied for GPS L1 C/A as well, if an assistance for the data is available as proposed in 

[76] and [56]. 

The 1-sigma jitter ��;; can be expressed as [24]: 

 ��;; = x�db�;; + �âd + ãÓd + ãª3  (3:9) 

 

Where �db�;; is the 1� thermal noise of the PLL, �â is the 1-sigma vibration-induced oscillator jitter (here 

we assume a value of 	�â = 1.42° as computed in [24]), ãÓ is the Allan-variance-induced oscillator jitter, and ãª is the dynamic stress error. 

The thermal noise of the PLL can be defined as in equation (3:10) (from [24]), where 	Ú� = 0.5	Hz is the 

assumed PLL bandwidth: 

 �b�;; = 3602# å Ú��/�(	 (3:10) 

If a third-order loop and a high-quality onboard clock are assumed (Allan deviation �Ó�æ�=1×10–11), then 	ãÓ = 160 çè�é�£ê�� = 3.86° [24] with $; = 1207.14	MHz is the Galileo E5b carrier frequency (to be 

conservative, since the E5b frequency is higher than the L5 and E5a frequencies). Finally, from the result of 

our simulations shown in Figure 3:13, the maximum LOS jerk dynamics above the GNSS constellation (when 

high sensitivity is required) is 0.8 ∙ 10|s	m/ss, which corresponds to  1.5	°/ss. Thus, ãª/3 =ìíîìïís��_�	 (.ñàtÞ⁄ �í = 1.93°, where 
¾íV¾bí  is the maximum LOS jerk dynamics.  
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The corresponding overall carrier tracking error curve of equation (3:9), plotted as a function of the �/�(, 

is shown in Figure 3:14. In this figure, we also plotted the carrier-tracking threshold that ensures the loop 

stability. We see that for 5 dB-Hz, the tracking error is below the threshold if Ú� = 0.5	Hz. Therefore, the 5 

dB-Hz sensitivity proposed for the acquisition process is also achievable for the carrier tracking, if a 0.5	Hz 

accurate frequency aiding is available. We can also see that if Ú� = 1	Hz, the 5 dB-Hz are not achieved. 

 

Figure 3:13 LOS jerk during the full-considered MTO for one of the GPS satellites. Note that the curve is 
interrupted when the GPS satellite is not available. 

   

Figure 3:14 Intersection between the carrier tracking error and stability threshold for a data-less channel. 

As mentioned in [24], when there is no multipath or other distortions of the received signal and no 

interference, the dominant source of range error in a GPS receiver code-tracking loop (DLL) is the thermal 

noise range error jitter and dynamic error. “The rule-of-thumb for tracking threshold for the DLL is that the 

3-sigma value of the jitter must not exceed half of the linear pull-in range of the discriminator” [24], 

therefore: 

 				3�¸;; = 	3�b¸;; + Pª ≤ �/2, (3:11) 
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Where  �b¸;; is the 1-sigma thermal noise code tracking error in chip, Pª  is the dynamic stress error, and � 

is the early-late correlator spacing in chip. Because we assume precise frequency assistance, the dynamic 

error of the code loop is neglected, as it was for the carrier-tracking loop. The following formulation for the 

DLL thermal noise range error jitter is taken from [24], for BPSK signals (here GPS L5Q, Galileo E5aQ and 

E5bQ) and valid when using a non-coherent early-late power DLL discriminator: 

 

	�b¸;;

=
noo
op
ooo
q å Ú�2�/�( � �1 + 2g	�/�(�2 − ��� , � ≥ #P%Ú£ª
å Ú�2�/�( M P%Ú£ª + Ú£ªg%# − 1¯� − P%Ú£ª°

dN �1 + 2g�/�(�2 − ��� , P%Ú£ª < � < #P%Ú£ª
å Ú�2�/�(

P%Ú£ª �1 + 1g�/�(� , � ≤ P%Ú£ª

 
(3:12) 

 

where Ú£ª = 40	MHz is the double-sided front-end bandwidth in Hz, P% = 10.23	Mchip/s is the chipping 

rate for GPS L5 and Galileo E5, � = 1 is the distance between the early and late correlators in chip, Ú� =0.05	Hz is the code loop bandwidth in Hz, g = 0.2 s is coherent integration time, and g% = 1/P%. The very 

small code loop bandwidth of Ú� = 0.05	Hz is used again by assuming an accurate frequency aiding from 

the carrier tracking loop or from the orbital filter (a possible frequency aiding accuracy of 0.05 Hz is reported 

in [76] and of 0.04 Hz in Chapter 6).  

Figure 3:15 shows the code tracking error for GPS L5Q, Galileo E5aQ and E5bQ, obtained by using the first 

of the equations (3:12) (note that � = 1 ≥ õVö�÷ø = õ∙c(.dst( = 0.8). In the same figure, the tracking threshold 

of �/6 for the DLL is plotted by using equation (3:11). The tracking threshold of the code for the GPS L5 and 

Galileo E5a/E5b signals is lower than 5 dB-Hz. Therefore, the 5 dB-Hz sensitivity proposed for the acquisition 

process is also achievable for the code tracking. As we can see from the same figure, with a larger bandwidth 

of Ú� = 0.1	Hz, the 5 dB-Hz would not be achievable. This is another reason why a precise frequency aiding 

is needed. 
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Figure 3:15 Intersection between code tracking error and stability threshold. 

3.4 Resultant availability 

We can define the availability of the GNSS signal si for a defined sensitivity as a Boolean variable that is 
true at the time � only if:  
o at �, the GNSS satellite from which the signal si is transmitted is in the line of sight. 
o at �, the received power of the signal si is higher than the defined sensitivity. 
Following the results of the received power levels reported in section 3.2.1 and the sensitivity values defined 

in section 3.3, it is possible to compute the consequent availability of each GPS and Galileo signal along the 

full considered trajectory and specifically during some representative portions of it, for each of the defined 

sensitivity values –159, –164 and –169 dBm. For example, Figure 3:16 and Figure 3:17 display the results of 

such computations for the sensitivity of –164 dBm, respectively, for the GPS L5Q and Galileo E5aQ+E5bQ 

signals, along the full trajectory; for each PRN (y-axis) at each instant (x-axis) a point is plotted if the satellite 

is available. For the sensitivity of –164 dBm, the average of the GPS satellites is available 40% of the full 

trajectory duration, while the average of the Galileo ones is 34%. The same quantities are reported in Table 

3:6 for GPS and Table 3:7 for Galileo also for the other two considered sensitivity values (–159 and –169 

dBm) and for three representative portions of the trajectory defined in Table 3:5.  

 

portions  portion 1 portion 2 portion 3 

time interval (min) 0 – 500  1530 – 2030  5960 – 6460  
altitude interval (km) 600–96 200 200 000 – 235 000 377 600 – 384 400 

Table 3:5 Time and altitude definition of the three considered trajectory portions. The length of each 
portion has been set equal to 500 min, slightly higher than the duration of the longest continuous time 

interval of availability, which is 475 min. 
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average GPS percentage 

of availability 

full trajectory 

(%) 
portion 1 

(%) 
portion 2 

(%) 
portion 3 

(%) 

p >= –159 dBm 30 41 43 30 
p >= –164 dBm 36 41 43 38 
p >= –169 dBm 37 41 43 39 

Table 3:6 Average GPS percentage of availability in the full trajectory duration. 

 

average Galileo 

percentage of 

availability 

full trajectory 

(%) 
portion 1 

(%) 
portion 2 

(%) 
portion 3 

(%) 

p >= –159 dBm 16 39 21 6 
p >= –164 dBm 34 39 40 14 
p >= –169 dBm 36 39 40 40 

Table 3:7 Average Galileo percentage of availability in the full trajectory duration. 

Related to the availability, we can also define the continuity of a GNSS signal si as the duration of a time 

interval when the signal si is available continuously without any interruption. This is very useful information 

for the acquisition module design. Since during the full trajectory or some portions of it, a signal si can have 

a number of continuous intervals of availability of different duration, it is useful to express the continuity in 

terms of percentage of continuous time intervals (of the full trajectory or of a portion of it) that have a 

duration equal or longer than a time interval T. This is shown in Figure 3:18, Figure 3:19 and Figure 3:20, 

respectively, for the three defined sensitivity values, for the full trajectory and for the three defined 

portions, where a point of each curve identifies a time interval duration T (on the x-axis) and the 

corresponding percentage (on the y-axis) of continuous time intervals equal to or longer than T.  

Figure 3:21, Figure 3:22 and Figure 3:23 show the number of available satellites over time, for the GPS, 

Galileo and GPS-Galileo combined constellations, respectively, for the three considered sensitivity values. 

The obtained results show higher percentage of availability for GPS (except in portion 3 for –169 dBm) and 

a better continuity for Galileo. Since we assumed identical antenna patterns for the GPS and Galileo 

satellites (with different minimum received signal powers according the signal definitions), the different 

availability and continuity between the GPS and Galileo signals are certainly due to the different 

constellation architectures. In particular, the Galileo satellites are equally spaced in three orbital planes at 

the altitude of 23 222 km, while the GPS satellites are distributed on six orbital planes at an altitude of 

approximately 20 200 km [24]. 
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Figure 3:16 Available GPS L5Q signals over the time, for a sensitivity of –164 dBm (10 dB-Hz), during the 
whole considered trajectory. 

 

Figure 3:17 Available Galileo E5aQ+E5bQ signals over the time, for a sensitivity of –164 dBm (10 dB-Hz), 
during the whole considered trajectory. 



GNSS-Based Navigation for Lunar Missions 

87 

 

Figure 3:18 Percentage of continuous time intervals (of the full trajectory or of a portion of it) that have a 
duration equal to or longer than a time interval T for a sensitivity of –159 dBm. 

 

Figure 3:19 Percentage of continuous time intervals (of the full trajectory or of a portion of it) that have a 
duration equal to or longer than a time interval T for a sensitivity of –164 dBm. 
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Figure 3:20 Percentage of continuous time intervals (of the full trajectory or of a portion of it) that have a 
duration equal to or longer than a time interval T for a sensitivity of –169 dBm. 

 

 

Figure 3:21 Number of satellites available, for a sensitivity of –159 dBm (15 dB-Hz), during the whole 
considered trajectory.  

 

In Figure 3:21, for Galileo, the first outage of four satellites happens at time = 1795 min (219 170 km)., Then, 

up to time = 3260 min (299 180 km), there are many outages of 17 min on average with a maximum of 30 

min. After time = 3260 min, there are always fewer than four Galileo satellites available. Only six times are 

fewer than four GPS satellites available, and never for more than 5 min. By considering the combined 

constellation, there are always more than four satellites available. 
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Figure 3:22 Number of satellites available, for a sensitivity of –164 dBm (10 dB-Hz), during the whole 
considered trajectory.  

 

In Figure 3:22, only after time = 6055 min (379 040 km) are fewer than four Galileo satellites available for a 
duration shorter than 50 min. More than four GPS satellites are always available and, by considering the 
GPS-Galileo combined constellation, the minimum number of satellites simultaneously available is eight. 

 

 

Figure 3:23 Number of satellites available, for a sensitivity of –169 dBm (5 dB-Hz), during the whole 
considered trajectory.  

 

In Figure 3:23, respectively, for GPS, Galileo and GPS-Galileo combined constellations, the minimum number 

of satellites available is 5, 10 and 16. 
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3.5 Navigation performance 

If a GNSS solution exists, i.e. for code-based observations, its error will depend on the product between a 

pseudorange error factor (a statistical sum of the contributions from each of the ranging error sources) and 

a geometry factor (the composite effect of the relative satellite-user geometry on the GNSS solution error) 

[24]. In order to evaluate the navigation performance, the metrics used are: 

o Time offset, which affects the pseudorange error factor. The total time offset is due to the receiver 
clock offset, satellite clock offset, receiver noise and interference, multipath offset, receiver 
hardware offsets and delays due to the atmosphere [24].   

o Dilution Of Precision (DOP), which is the effect of the relative satellite/user geometry on the GNSS 
navigation solution. 

 

3.5.1 Pseudorange errors 

By assuming that ionosphere delays can be neglected, as the few signals that cross the ionosphere can be 

discarded or their ionospheric delay can be mostly removed processing a second signal from the same GNSS 

satellite with a different frequency, according to [24], at Moon altitude a significant contribution in the user 

equivalent range error (UERE) is the thermal noise range error jitter. In fact, it can be much higher than for 

terrestrial use due to the much weaker signal power levels. Figure 3:24, Figure 3:25 and Figure 3:26 show 

the code tracking thermal range error �b¸;; calculated for BPSK(10) signals (valid for the considered Galileo 

E5aQ, Galileo E5bQ, and GPS L5 signals), using equation (3:12) and the same assumptions of section 3.3.2, 

along the altitude of the considered trajectory, respectively for the three considered sensitivities. Since a 

different value can be computed for each signal, the maximum, median, mean and minimum of the values 

obtained for all the signals are displayed in the figures. It is important to underline that if the pseudorange 

is measured by processing the L1 band signals, due to the ten–times-longer chip length, the thermal noise 

code tracking error would be up to ten times larger as well. 

If the pseudoranges are obtained from the L5/E5 band signals with a –169 dBm sensitivity, at the Moon 

altitude the thermal noise code tracking error jitter �b¸;; reaches approximately 1 m (on average over all 

the signals) as shown in Figure 3:26. Then, neglecting atmosphere delays, by considering a multipath range 

error of 0.2 m, a broadcast clock error of 1.1, a broadcast ephemeris range error of 0.8 m, and a receiver 

noise and resolution error of 0.1 m [24], at Moon altitude the UERE would have a standard deviation 

approximately equal to 1.7 m (= √0.2d + 1.1d + 0.8d + 0.1d + 1d ). 

 

Figure 3:24 BPSK(10) thermal noise code tracking error �b¸;;  along the altitude of the considered 
trajectory, for a sensitivity of –159 dBm.  For each altitude, one value of thermal noise code tracking error �b¸;; is computed for each available PRN using equation (3:12). Maximum, median, mean and minimum 

among the values obtained for all the available PRNs are plotted in the figure.  
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Figure 3:25 BPSK(10) thermal noise code tracking error�b¸;; along the altitude of the considered 
trajectory, for a sensitivity of –164 dBm. 

 

Figure 3:26 BPSK(10) thermal noise code tracking error �b¸;;  along the altitude of the considered 
trajectory, for a sensitivity of –169 dBm. 

 

3.5.2 Geometric dilution of precision 

Figure 3:27 shows the GDOP values for the three considered sensitivities, for each altitude of the considered 

trajectory, when the GPS-Galileo double constellation is used.  Figure 3:28 illustrates the GDOP value for 

the –169 dBm sensitivity only, for the GPS-Galileo combined constellation as well as for the cases of 

standalone GPS and standalone Galileo constellations. The two figures clearly demonstrate the considerable 

benefit of the highest considered sensitivity and of the use of two GNSS constellations rather than only one. 

For the GPS-Galileo combined constellation and a sensitivity of –169 dBm, GDOP reaches approximately  

400. Considering the obtained pseudorange errors for the L5/E5 band signals and the GDOP values for a 

sensitivity of –169 dBm, roughly the achievable accuracy (tracking L5/E5 band signals) would be within 700 

m (indeed 400K1.7 m=680 m). However, an even more accurate navigation solution can be obtained by 

using additional sensors or an orbital filter, which is in any case required to assist the acquisition and tracking 

of the signals, as mentioned in section 3.3.2. 
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Figure 3:27 GDOP values for the three considered sensitivities, for the GPS-Galileo combined constellation, 
for each altitude of the considered trajectory. 

 

Figure 3:28 GDOP value for the –169 dBm sensitivity only, for the standalone GPS, standalone Galileo and 
GPS-Galileo combined constellations. 

 

3.6 Conclusions 

The reported study has investigated the potential use of a GNSS receiver for very high Earth orbits, in 

particular for a generic transfer orbit with perigee in LEO and apogee at Moon altitude. Received power 

levels, Doppler shifts and Doppler rates, pseudorange errors and GDOP have been estimated, and the 

achievable acquisition and tracking sensitivities have been briefly discussed. Using a double GNSS 

constellation increases the availability of the satellites and reduces the considerable GDOP. Moreover, in 

order to reduce the thermal noise code tracking error (very high for very weak signals), wideband signals 

such as those present in the L5/E5 band have to be used to measure the pseudoranges. In order to reduce 

the frequency search space in acquisition and the frequency bandwidth in tracking, an external frequency 
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aiding such as coming from an orbital filter is necessary. The few signals that cross the ionosphere should 

be discarded or a second signal of different frequency transmitted by the same GNSS satellite should be 

also processed to mitigate the related ionospheric pseudorange error. Finally the obtained results show that 

GNSS can be used as a navigation system for the considered trajectory with a position error below 700 m. 

However, according to our simulations (reported in Chapter 6) and also according to other studies, an orbital 

filter can increase the position accuracy to within about 100 m �1��. Such accuracy can be sufficient or not 

for a lunar mission, depending on the final goal of the mission; for instance, for transfers to lunar libration 

orbits, a positioning accuracy of less than 1 km (3σ) is required [105], but for lunar descent and landing, it 

should be 600 m, 60 m, 60 m (for along track, cross track, and radial position) [56]. 
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4 WeakHEO receiver 
In this chapter, the GPS L1 C/A hardware receiver named “WeakHEO” is described. It was designed and 

developed in our laboratory as a proof of concept for lunar missions.  This chapter is partially based on the 

published article [20] and adapted to the rest of the thesis manuscript.  

First, the hardware architecture of the receiver is presented. Then, the high-sensitivity acquisition and 

tracking algorithms of the receiver are described, and the navigation test results are reported. 

As shown in the previous chapter, the L5 band signals are the most promising signals for a space receiver, 

but they will only be fully available in a few years (approximately in 2020), while L1 band signals are easier 

to acquire, and their acquisition may thus be a pre-requisite to help acquire the L5 band signals. Moreover, 

L1 band signals (and in particular the L1 C/A) require much less computational effort for acquisition and 

tracking since their chipping rate is much smaller (e.g., 10x between GPS L1 C/A and L5). Due to the limited 

computational power of the FPGA platform available in our laboratory, we have thus selected the GPS L1 

C/A signal to start with the developed WeakHEO receiver.  However, in the future, the processing of other 

frequencies and of signals from other constellations will be considered to further improve the achievable 

performance. 

Figure 4:1 shows the hardware platform of the WeakHEO receiver proof of concept. 

 

Figure 4:1 The WeakHEO hardware receiver platform. 

4.1 The WeakHEO receiver architecture 

The architecture of the WeakHEO receiver is shown in Figure 4:2. The system comprises three main 

elements as follows. 

• A tri-band (L1, L2, L5) RF front-end, which amplifies, filters and down converts the GNSS signals to 

an intermediate frequency where they are sampled. As mentioned above, the reported initial 

implementation is focused on processing and utilization of the GPS L1 C/A signal. However, a triple-

frequency L1, L2, L5 front-end (an early version of the front-end in [78]) was selected to allow for 

future expansion to these frequencies and because it was already available in our laboratory. A 

high sampling rate is used to enable the receiver to support precision tracking architectures and 

additional wider bandwidth signals in the future. A common IF of 53.78 MHz is used for all three 
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bands, and signals are sampled at 40.96 MHz with 4-bit resolution. The RF front is driven by a 

stable, low-phase-noise Oven Controlled Crystal Oscillator (OCXO). 

• A DE3 FPGA platform. An FPGA platform was required to allow custom designs of the acquisition 

and tracking engines within the receiver. The WeakHEO receiver uses the same development 

platform and builds on the FPGA-based architecture of the “Signature” receiver developed by 

ESPLAB in EPFL [79]. Its core component is a Stratix III FPGA receiving the parallel sampled data 

from the RF front-end. The FPGA contains a softcore NIOS II (32-bit RISC) processor and performs 

all the high-sensitivity acquisition, tracking and navigational data decoding processes. Raw 

measurements (pseudoranges, pseudorange rates, signal parameters, time, etc.) are passed to the 

PC through a UART interface at a rate of 0.1 Hz. Note that this rate has been chosen in order to 

allow for the real-time processing of the navigation solution on the PC (currently programmed in 

Matlab). The current hardware implementation includes only 6 channels, due to the limited 

hardware resources of the adopted platform. In the next version of the receiver, more channels 

will be added and a faster update rate will be selected. An external memory (DDR2 SDRAM) 

connected to the FPGA is also used as a buffer for the acquisition. 

• A PC. The PC performs the navigation solution in real time or can record and compute the orbital 

filter calculations offline. 
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Figure 4:2 Architectural components of the WeakHEO receiver. 

4.1.1 Operations of the receiver 

The operations of the receiver are performed in several steps as follows. 

1) The navigation software on the PC determines which GPS satellites are visible and estimates the 

Doppler for each satellite. This information is then sent to the FPGA through the UART interface. 
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This allows a reduction of the frequency search space for the acquisition, and thus a reduction of 

the acquisition time. In the current implementation, practically, the almanacs and the ephemeris 

are preloaded on the receiver before the mission starts, in order to not need the decoding of the 

full data message when processing the signals. In principle, long-term extended ephemeris can be 

used (with a geocentric radial error on the satellite’s position of about 3 m (RMS) after 1 day, 9 m 

(RMS) after 3 days, and 21 m (RMS) after 7 days [80]) and new updated ephemeris can be decoded 

after several days or, as an alternative if possible, an ephemeris network assistance can be 

adopted. Note that the GPS ephemeris are contained in the first three subframes of the navigation 

message, each of 300 bits; thus even the use of a telemetry downlink of just 50 bit/s would allow 

for the update of the complete ephemeris for 31 satellites in only (900/50)*31 = 558 s = 9.3 min, 

which is much less than the typical 2 h time of validity of the ephemeris. 

2) The acquisition searches the satellites in view within a frequency search space around the coarse 

Doppler given. Once a satellite is acquired, there is a transition phase before tracking to determine 

the position of the bit edge. Following this, tracking is started and the Time Of Week (TOW) is 

decoded from the received navigation data. 

3) The measurements (pseudoranges, pseudorange rates, satellite PRN, estimated � �(⁄  and TOW) 
are sent to the computer by the FPGA at a rate of 0.1 Hz and a PVT solution is computed. 

4.1.2 Mission scenario 

Although the characteristics of different combinations of GNSS signals were already analyzed in Chapter 3 

for a highly elliptical orbit with its apogee at the Moon altitude, the analysis is conducted again in greater 

detail here for the GPS constellation only, considering a less conservative number of GPS L1 C/A signals 

(here 31 compared to 24 in Chapter 3) and considering a trajectory part of a real lunar mission, available in 

the library of the software System Tool Kit (STK). This trajectory includes the kinematic state of the space 

vehicle for the entire lunar mission, starting from the launch, followed by a direct MTO and ending with 

selenocentric orbit, as shown in Figure 4:3. In this study, similarly as done in Chapter 3, only the direct MTO 

part is considered, which is represented in light blue in Figure 4:3. The initial position and velocity with 

respect to the ECI are reported in Table 4:1, as well as some characteristics assumed for the host spacecraft.  

The full trajectory is propagated from the initial conditions by the SimGEN software of our Spirent GSS8000 

simulator, taking into account gravitational effects from the Earth, Sun and Moon, atmospheric drag and 

the solar radiation pressure. The reference trajectory propagated by SimGEN has been validated in [81], 

using the high-precision orbit propagator (HPOP) of the STK, which includes perturbations such as Earth 

gravitational potential spherical harmonics up to the 21st order and 21st degree, tidal forces, atmospheric 

drag, solar radiation pressure, and gravitational third-body perturbation due to both the Moon and Sun 

[82]. Figure 4:4 shows the relation between altitude and time during the considered MTO and also the 

altitude of the GPS satellites. 

 

Parameters Values 

ECI initial position (km) i2395.52 −5298.28 −3022.82j 
ECI initial velocity (km/s) i10.19 3.58 1.72j 

Departure date 2nd Jul 2005, 00:34:18 

Mass of the spacecraft (kg) 1000 

Reference surface (m2) 20 

Radiation pressure coefficient 1 

Table 4:1 Initial position and velocity of the considered receiver trajectory and spacecraft parameters. 
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Figure 4:3 STK representation of the considered MTO. 

 

Figure 4:4. Relation between altitude and time during the considered MTO and GPS constellation altitude. 

As mentioned before, a larger GPS constellation of 31 satellites was considered here instead of the 

conservative one of only 24 assumed in Chapter 3, using, nevertheless, the same signal model and 

assumptions defined in section 3.1.4. As was done in Chapter 3, the power level, Doppler and Doppler rate 

of the 31 GPS signals were here computed for the reference MTO defined in Table 4:1. As expected, totally 

equivalent characteristics were obtained, confirming the results assessed in Chapter 3. Indeed, Figure 4:5 

confirms the power threshold of about –168.5 dBm while Figure 4:6 and Figure 4:8 confirm a Doppler almost 

up to 60 kHz, and Figure 4:7 and Figure 4:9 confirm a Doppler rate up to 65 Hz/s. Unlike in Figure 3:10 and 

Figure 3:11, here the Doppler shifts and the Doppler rates are illustrated as a function of time (the 

corresponding altitude can be identified using Figure 4:4), in order to consider different value ranges in 

different parts of the trajectory.  
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Figure 4:5 First, second, third and fourth highest received power levels of the GPS L1 C/A signals as a 
function of time, during the full considered trajectory, by assuming a 0 dBi receiver antenna gain. 

 

Figure 4:6 : Doppler shift of the received GPS L1 
C/A signals across the MTO. Each line denotes a 

different PRN. 

Figure 4:7 : Doppler rate of the received GPS L1 
C/A signals across the MTO. Each line denotes a 

different PRN. 

Figure 4:8 : Doppler shift of the received GPS L1 
C/A signals across the MTO.  

Figure 4:9 : Doppler rate of the received GPS L1 
C/A signals across the MTO. 

 

4.1.3 GPS acquisition 

4.1.3.1 Acquisition strategy 

As mentioned in section 3.3.1, the identified minimum power level of –168.5 dBm of the fourth strongest 

signal during the full considered MTO can be seen as a power sensitivity value required for the receiver to 

acquire and track at least four signals (and then provide the navigation solution) with a certain probability. 
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Then, assuming a receiver antenna gain of 10 dBi, we have targeted a sensitivity of at least –159 dBm, 

slightly higher than the minimum required. Equation (3:3) expresses the carrier-to-noise density ratio � �(⁄  

(in dB-Hz) from the received power �a  (in dBm) for a front-end noise figure of 2 dB (which corresponds to 

the actual value for the front-end we used for the WeakHEO receiver) and an effective antenna temperature 

of 130 K. A received signal level of –159 dBm then corresponds to a C/N0 of 15 dB-Hz. However, when a 

GNSS simulator is used, the effective antenna temperature is the room temperature, which increases the 

noise. In that case the carrier-to-noise ratio can be obtained from equation (3:5). A received signal level of 

–157 dBm then corresponds to a � �(⁄  of 15 dB-Hz for testing with the GNSS simulator. 

Therefore, the targeted sensitivity, expressed as �/�(,	for the WeakHEO receiver is 15 dB-Hz, but an offset 

of 2 dB has been added to the signals’ transmitted power in the simulator, to compensate for the 2 dB 

additional noise due to the room temperature. In this way, the 15 dB-Hz still corresponds to the identified 

minimum power level of –159 dBm.  

The three main acquisition methods for GNSS signals are the serial search (SS), the parallel frequency search 

(PFS), and the parallel code-phase search (PCS) [77]. Compared to the PCS and the PFS methods, the 

acquisition time of the SS method is extremely long, and therefore the SS was not considered. Compared to 

PCS, PFS has two main drawbacks.  First, it has an extra loss due to the integration before the FFT and, 

second, it has a loss due to the mismatch between the replica code chipping rate and the received code 

chipping rate, especially important for long integration times and high chipping rates [77]. Since the 

sensitivity is of prime importance in high-altitude space applications, these additional losses are not 

acceptable, and therefore the PCS method was selected. 

The acquisition structure of receiver is illustrated in Figure 4:10 and using the methodology proposed in 

[66], the theoretical analysis of the acquisition parameters is presented in Table 4:2.  In acquisition the 

receiver uses coherent accumulations which are the length of a full navigation data bit (20 ms for GPS C/A 

code).  The results are then non-coherently accumulated to gain further sensitivity.  To reduce the effect of 

the data bit transitions, a number of different accumulations are formed with different starting points. 

Ideally for GPS C/A code we would have 20 accumulations spaced 1 ms apart.  However, to limit the impact 

on the FPGA resources, 10 accumulations spaced 2 ms apart were formed to achieve a balance between 

performance and the available resources. This results in a worst case 0.915 dB signal power loss. In the 

acquisition tests that follow, 475 non-coherent acquisitions were used, which results in a 9.5 second total 

accumulation time.   

In acquisition, the receiver’s sampling rate of 40.96 MHz is decimated to 4.096 MHz as a compromise to 

improve processing performance. The resolution in the code search is one sample, so this results in a 

resolution of around ¼ of a chip. A higher sampling frequency requires more samples to be processed but 

results in a fine resolution in the code search domain. A lower frequency means fewer samples to process 

but poorer resolution with higher losses from the code misalignment. However, in tracking, the full sample 

rate of 40.96 MHz is used to allow for precision tracking from narrow correlator spacings. For the acquisition, 

a frequency step of 25 Hz has been selected, again as a compromise for the performance. Finally, the 

maximum tolerable Doppler rate error is defined as the Doppler rate, which implies a shift of one frequency 

bin during the integration time. 
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Figure 4:10 Block scheme of the acquisition module. 

Quantity Value 

Desired sensitivity (dBm) -159 
Front-end noise figure (dB) 2 
Sampling rate (MHz) 4.096 
Quantization (bit) 4 
C/N0 (dB-Hz) 15 
Coherent integration time (ms) 20 
Coherent gain (dB) 46 
Frequency search step (Hz) 25 
Quantization loss (dB) –0.05 
Worst case frequency mismatch loss (dB) –0.91 
Worst case code alignment loss (dB) –1.16 
Data bit alignment loss (dB) –0.92 
Squaring loss (dB) –5.73 
Number of non-coherent integrations 475 
Non-coherent gain required (dB) 26.77 
Final SNR (dB) 16 
Total integration time (s) 9.5 
Maximum tolerable Doppler rate error (Hz/s) 2.63 

Table 4:2 Theoretical acquisition parameters. 

 

4.1.3.2 Acquisition hardware implementation 

The FPGA implementation of the acquisition is shown in Figure 4:11. The Nios II processor is used to manage 

and configure the different blocks (e.g., the acquisition module is configured with parameters such as 

Doppler frequency, PRN code, number of integrations, etc.), and to analyze the data provided by the 

acquisition module to decide whether a signal has been detected. The acquisition module processes the 

input data using the PCS method as shown in Figure 4:10 and provides acquisition statistics (peak value, 

mean value, standard deviation, etc.) to the Nios II processor. Since the integration time is very long (9.5 s), 

the amount of data to save is significant (around 39 M samples). Therefore, a DDR2 SDRAM external to the 

FPGA is used to save this data. 
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Figure 4:11. Global structure of the acquisition implementation. 

In high-sensitivity acquisition, due to the long acquisition time for processing the buffered data, the 

transition between the acquisition and the tracking becomes difficult. Thus, we have chosen to acquire the 

signal twice, reducing the frequency search space after the first step.  

According to equation (3:7), assuming a FFT correlation-based approach that computes one correlation 

output sample per clock cycle [77], the time spent to search one frequency bin is defined as  

 gÛ� = £ù[ú£ûüýè = t.(þÜ∙c(Ý∙þ.ÞcÜs.àt∙c(Ý = 237.5	2�  (4:1) 

where fS is the sampling rate, TI is the total integration time, and fFPGA is the clock frequency of the FPGA. 

For the first acquisition, the frequency search space considered is ±35 kHz. With a frequency step of 25 Hz, 

there are NFB,1 = 2801 frequency bins, and thus the time to search the entire frequency search space is   

 gÓ,c = gW + �Û�,cgÛ� = 9.5 + 2801 ∙ 237.5 ∙ 10|s = 674.5	�  (4:2) 
 

According to Figure 4:6, the Doppler rate is less than 4 Hz/s after the initial few hours of the MTO.  Therefore, 

during the first acquisition, the frequency of the received signal may have shifted by up to 2700 Hz (4 Hz/s 

× 675 s). For the second acquisition, the frequency search space is then ±2700 Hz, which corresponds to 

NFB,2 = 217 frequency bins. The time to search the frequency search space of the second step is thus 

 gÓ,d = gW + �Û�,dgÛ� = 9.5 + 217 ∙ 237.5 ∙ 10|s = 61	�  (4:3) 
During this time, the frequency of the received signal could have shifted by up to 244 Hz, which is still too 

large to correctly start the tracking. However, provided we recorded the time between the two consecutive 

acquisitions, the Doppler rate can been estimated by looking at the evolution of the Doppler frequency, or 

from the evolution of the code delay. From Figure 4:7, we can assume the Doppler rate is constant during a 

short time interval and therefore it is possible to initialize the tracking from these results. 
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4.1.4 GPS tracking 

4.1.4.1 Bit synchronization and navigation data decoding from very weak signals 

Following the acquisition stage, the acquisition engine passes its estimates of the Doppler, Doppler rate, 

code offset and bit position to the tracking channel and can then look for the next satellite. The position of 

the navigation data bit edge must be located and confirmed. This is necessary as, although the acquisition 

uses the full navigation data bit length accumulations of 20 ms, it computes only 10 branches spaced 2 ms 

apart to reduce complexity. In the tracking channel, 20 branches spaced 1 ms apart are then formed and 

accumulated to confirm the bit edge position. During this process, the tracking channel operates a low-

bandwidth FLL (0.2 Hz) initialised with the estimation of the Doppler, Doppler rate, code offset and bit 

position from the acquisition engine. Following confirmation of the bit edge position, decoding of the 

navigation data bits is started. The theoretical probability of a navigation data bit error of the C/A code 

signal assuming carrier phase tracking is given by [24]: 

 �� = 12 -	$, ºr� �(⁄ �&¼ (4:4) 

Where -	$, is the complementary error function, � �(	⁄ is the carrier-to-noise density ratio (scalar) and �& is 

the accumulation time (20 ms for C/A code). The probability of a bit error is 0.13 at a � �(⁄  of 15 dB-Hz and 

0.056 at 18 dB-Hz.  A � �(⁄  of 27.5 dB-Hz is required to give a probability of bit error of 10-6.  As each 

subframe is 300 bits long, this probability would result in less than one contaminated subframe in every 3 

000.  However, as shown in [83] and [84], the fact that the message is regularly repeating can be exploited 

to effectively increase the accumulation time and reconstruct the message at weaker signal levels.  

 

The data decoding procedure can be divided into two steps. The first step is frame synchronization (finding 

the preamble); the second step is to decode the desired data from multiple subframe repetitions. As 

depicted in Figure 4:12, each GPS frame contains five subframes. Every subframe has a duration of six 

seconds. It starts with a known 8-bit preamble and consists of 10 words. Each word has 30 bits. The 

preamble marks the beginning of each subframe and is repeated every six seconds.  
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Figure 4:12 GPS frame structure. 

The following steps are used to find out the position of the preamble from received data (see also Figure 

4:13). 

 

1) Store 20 frames (i.e. 20×30 seconds, or 100 subframes, i.e. 30,000 bits) of original demodulated 

data in vector A. 

2) Search for all the preamble-like sequences. Find all the likely preambles of vector A, and store these 

correlation values in vector B. Due to the possible 180° phase ambiguity induced by phase tracking 

and the chance of cycle slips with weak signals, positive and negative correlations are searched for. 
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3) Matrix C is generated by reshaping the correlation vector B into subframe length rows.  Each 

column then represents a possible preamble location in the subframe.  The size of this matrix is 

300×100. The absolute values of matrix C are then accumulated down the columns to form a vector 

D. 

4) The three largest correlations of vector D are recorded.  The largest value should be the correct 

position of the preamble; however, with weak signals other possible locations may need to be 

checked. 

5) The first position is assumed to be correct, vector A is reshaped into a matrix of subframe-length 

rows, and the subframe number from each successive subframe is checked after column-wise 

accumulation.  If the subframe number is incrementing correctly, this position is declared correct 

and is used in subsequent processing. Otherwise, the other probable positions of the preamble are 

checked. 

A
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30000

True 
preamble 
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Data bits

 

Figure 4:13 GPS preamble location. 

Assuming the signal is tracked consistently throughout, after preamble correlation and column-wise 

accumulation, the right position of the preamble will be found and the subframe will be synchronized.  

Once the subframe is synchronized, it is possible to reconstruct the desired data items from the stored data 

by accumulation down the column. The parity of each word in the matrix can then be checked individually. 

If the parity check is passed, the word is decoded and its position marked. The choice of 20 entire navigation 

frames is made so that subframes 1 to 3 will be repeated 20 times, resulting in a probability of bit error in 

the accumulated data of less than 10-6 at 15 dB-Hz. Therefore, we have only decoded the time of the week 

in our hardware implementation to demonstrate the principle. 
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The success rate of the signal search, bit synchronization and TOW decoding with signals of different � �(⁄  

is shown in Figure 4:14. As specified in section 7.3.1, a frequency aiding from the orbital filter described in 

Chapter 5, was used. Here 25 trials were performed at each signal level, and the success rate was recorded 

for the acquisition, bit synchronization and data decoding stages. The signals, affected by the Doppler shifts 

and Doppler rates of Figure 4:6 and Figure 4:7 at Moon altitude, were generated with our Spirent GSS800 

simulator, and the output power is also displayed in Figure 4:14.  The decoding of the time of the week is 

used to determine if frame synchronization was successful. Using typical derivations from [24] and [76], the 

detection threshold is chosen such that the probability of detection is theoretically 0.95 at 15 dB-Hz and the 

probability of false alarm is 10-3.The results of Figure 4:14 are slightly worse but within 1 dB of the expected 

values.  Clearly, the receiver is limited by its ability to synchronize and decode the navigation data before 

the acquisition limit is encountered.  Despite this, at 15 dB-Hz the receiver is still able to acquire and decode 

the navigational data with a success rate of around 60% for each attempt. 

 

Figure 4:14 Success rate of the signal search, bit synchronization and TOW decoding with varying signal 
levels, using a frequency aiding from the orbital filter as described in section 7.3.1. 

 

4.1.4.2 Weak Signal Tracking 

The WeakHEO receiver is assumed to be a stand-alone receiver with a low-rate communication interface to 

the spacecraft platform.  Therefore, knowledge of the full navigational data sequence is not assumed and 

data wipe-off is not used.  Data wipe-off allows for pure (non-squaring) PLL discriminators to be used in 

tracking for lower jitter, and a larger pull-in range compared to Costas-type discriminators. 

The typical expressions for the jitter of a conventional GNSS tracking loop have been described in section 

3.3.2 and can be found in [24] and [25].  Figure 4:15 a) shows the expected PLL jitter and a conservative loss 

of lock threshold for a third-order Costas PLL, assuming thermal and oscillator noise (based on the WeakHEO 

OCXO) are the only error sources and assuming an integration time of 20 ms. This indicates that in the 

presence of navigation data flips we need to use bandwidths as low as 1 Hz to operate at 15 dB-Hz. The 

code tracking loop of the receiver is a first-order loop aided by the carrier loop and uses a bandwidth of 

0.1 Hz.  Figure 4:15 b) shows the DLL jitter for the dot-product power discriminator with a 0.1 Hz bandwidth, 

a 20 ms integration time and different early-to-late correlator spacing d.  Correlator spacings of 0.25 chip or 

greater are required to maintain code tracking at 15 dB-Hz. If an adaptive spacing is used, smaller correlator 
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spacings can be used at higher signal levels to reduce the pseudorange jitter. It should be noted that using 

such low bandwidths to improve the performance in weak signal environments lengthens the time between 

statistically independent measurements from the code and carrier loops [25]. This is not critical for this 

application. These low bandwidths are suitable for operation at altitudes significantly above the GNSS 

constellation. 

 

a) b) 

Figure 4:15 a) PLL jitter b) DLL jitter versus � �(⁄ . 

Conventional tracking models the incoming system as having deterministic dynamics by typically using fixed 

tracking loop bandwidths. An alternative method, which provides more flexibility, is based on Kalman filter 

theory. Rather than assuming deterministic dynamics, the extended Kalman filter (EKF) assumes that the 

signal dynamics follow a linear stochastic model. This allows for an adaptive scheme where the response to 

dynamics is adjusted based on the signal conditions. Therefore, the ranging processor is designed to adapt 

the tracking loop bandwidths as a function of the measured � �(⁄  to maintain the optimum trade-off 

between noise resistance and dynamics response. It should be noted that this is not exclusively possible 

with EKF-based tracking, but can be applied to conventional tracking as well.  However, this is performed 

implicitly when using the EKF approach as part of its dynamic model. 

A number of variations on EKF tracking have been developed for both code and carrier tracking [83], [85], 

[86], [87].  Comparing EKF tracking to conventional architectures is troublesome as the non-linear models 

used in the EKF implementation are effectively constantly adapting its tracking bandwidth. Generally, jitter 

comparisons are made with conventional architecture under different dynamic conditions.  However, this 

does provide to opportunity to choose scenarios and tracking loop settings to exaggerate the benefits of 

one technique over another. An attempt to compare the techniques by experimentally determining the 

steady-state bandwidth of the EKF and finding the equivalent performing PLL is found in [88]. Here, the EKF 

is demonstrated to be able to track the carrier phase down to 10 dB-Hz, around a 7 dB improvement under 

equivalent conditions. Tests with software receiver implementations of conventional and EKF tracking in 

[89] show an improvement in sensitivity of around 4 dB to 7 dB for the EKF approach. 

The EKF is well suited to applications such as the one considered here where the platform has predictable 

dynamics and the receiver’s oscillator can be measured and modelled. For the WeakHEO receiver, we have 

implemented a first-order EKF for carrier phase tracking as detailed in [83]. The EKF is used only for the 

carrier tracking, and conventional tracking is used for the code loop to minimise the computational load. 
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In Chapter 7 we show how Doppler and Doppler rate aiding from an integrated orbital filter can be used to 

improve the sensitivity of conventional FLL tracking to around 11 dB-Hz. This is considered suitable for a 

stand-alone receiver as the orbital filter can be integrated into the receiver’s navigation software. 

Figure 4:16 shows double-difference measurements of the WeakHEO DLL jitter taken with our GNSS 

simulator with varying carrier-to-noise density ratios. Reasonable agreement with the theoretical values 

can be found. Here the minimum DLL tracking sensitivity (slightly better than 15 dB-Hz) is about 10 dB lower 

than in section 3.3.2, where a DLL tracking sensitivity better than 5 dB-Hz was theoretically demonstrated. 

Among several differences in some assumptions, this can be explained by considering that the tracking code 

loop bandwidth of 0.05 Hz assumed in section 3.3.2 is much smaller than the one here assumed of 0.1 Hz. 

 

Figure 4:16 WeakHEO DLL jitter versus � �(⁄ . 

 

4.2 Navigation performance experimental tests 

This section essentially summarizes the results obtained testing the navigation performance of the 

WeakHEO receiver, when no filtering technique is applied to its observations. Expected signal availability 

and GDOP are computed for the WeakHEO receiver, according to its sensitivity and its number of tracking 

channels. The signals that cross the ionosphere were discarded and their pseudorange, affected by 

ionospheric delay was not used to compute the navigation solution. Finally the receiver is tested in the 

defined scenario and from the collected observations. Single-epoch least-squares position and velocity 

estimation errors of the receiver are calculated and here reported. 

4.2.1 Signals availability and GDOP 

According to the acquisition and tracking sensitivity thresholds of the WeakHEO receiver, and of its six 

channels, Figure 4:17 and Figure 4:18 respectively show the number of available GPS satellites and the GDOP 

for each altitude value of the considered MTO. The availability and the GDOP have been computed 

considering the six or fewer available GPS signals with the best GDOP. The sensitivity of 15 dB-Hz of the 

WeakHEO receiver has been assumed. 
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As expected, compared to the availability and GDOP results obtained, respectively, in section 3.4 and section 

3.5.2 for the same sensitivity of 15 dB-Hz, here there is a small worsening of the achieved performances. 

This is due to the number of channels reduced from 12 in Chapter 3, to six for the WeakHEO receiver.  

 

 

Figure 4:17 Number of available GPS satellites for 
each altitude value of the considered MTO. 

 

 

Figure 4:18 GDOP for each altitude value of the 
full considered MTO.  

4.2.2 Experimental tests setup 

In order to test the processing of the WeakHEO hardware receiver observations, a test bench was set as 

shown in Figure 4:19, where: 

• Spirent GSS8000 generates the GPS L1 C/A. 

• The FPGA-based signal processing engine processes the GPS L1 C/A signals generated by the Spirent 
simulator. 

• As result of the signal processing, the GPS FPGA-based signal engine transmits the following data 
to a computer through a serial port : 

o time of the week (TOW) 
o number of tracked satellites (nbSat) 
o tracking channel for each tracked satellite 
o PRN of each tracked satellite 
o pseudorange from each tracked satellite 
o carrier phase of each tracked satellite 
o � �(⁄  of each tracked satellite 
o ephemeris (eph) 

• The computer uses the data transmitted by the signal processing hardware engine to compute 
satellite position and velocity and then the single-epoch least-squares receiver position and 
velocity. 

• The computer computes the error by comparing the estimated receiver position and velocity to 
the reference (true) receiver position and velocity provided by the Spirent simulator (the same 
reference used to generate the signals). 

• The following information is used to assist the signal processing engine: 
o PRN of the visible satellites 
o Doppler range of the visible satellite 
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Figure 4:19 Test bench block scheme. 

 

4.2.3 Single-epoch least-squares solution 

In order to test the achievable performance in terms of position determination, the WeakHEO receiver was 

tested in several representative portions of the considered MTO.  Here, two relevant portions are reported, 

each of one-hour duration. The first portion starts at approximately 36 000 km of altitude (altitude of the 

Geostationary Earth Orbit) and a second portion which starts at approximately the average distance of the 

Moon from the centre of the Earth of 384 400 km, very close to the apogee of the MTO. The single-epoch 

least-squares 3D position error for the considered portion, which starts at GEO altitude, is illustrated in 

Figure 4:20, while Figure 4:21 shows the GDOP for the same portion. Figure 4:22 and Figure 4:23 show the 

same quantities for the portion that starts at Moon altitude. The worsening of the relative geometry 

between the receiver and the transmitters over time (i.e., with the altitude, as can be seen in Figure 4:4) is 

clearly visible at GEO altitude, strongly affecting the positioning accuracy. At Moon altitude, as expected, 

the positioning error is very high, almost reaching 14 km, mainly due to huge GDOP values larger than 1000, 

but also due to the processing of weaker signals and then to a stronger receiver noise, which results in less-

accurate pseudorange measurements (see Figure 3:24).  
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Figure 4:20 Single-epoch least-squares 3D position error for the considered portion that starts at GEO 
altitude. 

 

Figure 4:21 GDOP for the considered portion that starts at GEO altitude. 
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Figure 4:22 Single-epoch least-squares 3D position error for the considered portion that starts at Moon 
altitude. 

 

Figure 4:23 GDOP for the considered portion that starts at Moon altitude. 

Note that the WeakHEO tests have not been carried out over the full MTO duration as it lasts almost 5 days 

and at the time of our study the receiver platform did not include the algorithm required to acquire new 

signals or reacquire previously acquired signals.  It is also important to keep in mind that the current 

WeakHEO receiver is only a proof of concept and thus not the final device ready to operate in a lunar 

mission, for which clearly more and longer tests will be required. 

4.3 Conclusions  

Following the previous feasibility studies of GNSS as a navigation system to reach the Moon, this chapter 

described the proof of concept of the GPS L1 C/A “WeakHEO” receiver for lunar mission, wholly developed 

in the last two years. After highlighting the characteristics of the GPS L1 C/A signals for the considered MTO, 

which were identified in the previous chapter, the requirements and constraints in the receiver design were 

defined. Afterwards, the general receiver architecture was described, providing a more detailed description 

of the acquisition, tracking and navigation modules. These modules were designed specifically for use with 
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the dynamic environment and signal conditions seen in high-altitude space applications, and the 

architecture presented is capable of performing acquisition, tracking, data synchronization and 

demodulation down to a level of 15 dB-Hz, confirming the theoretical analysis conducted in Chapter 3. This 

is verified on the hardware with tests using representative RF signals produced by a GNSS simulator. The 

computation of a navigation solution was possible in all the considered portions of the considered MTO, 

confirming that, as concluded in Chapter 3, 15 dB-Hz allows for the processing of at least the four strongest 

signals. The navigation performance when using a single-epoch least-squares estimator is coarse, as 

expected from the simulations carried out in Chapter 3, thus requiring a further filtering. Indeed, an orbital 

filter will be implemented and tested in different configurations, as described in the next chapters.  
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5 Orbital filter design and 

architecture 
As discussed in Chapter 3 and assessed in Chapter 4, although weak, GNSS signals from the side lobes of the 

GNSS transmitters antennas or from the spill-over of the main lobe can still be acquired and tracked 

successfully for high Earth orbits up to Moon altitude. As already mentioned, similar results were obtained 

in other studies such as [56], [76] and [90], thus confirming the feasibility of using GNSS as a navigation 

system to reach the Moon. At the same time, such studies as well as Chapter 3 and Chapter 4 have also 

highlighted how coarse a GNSS stand-alone non-filtered navigation solution at Moon altitude can be. 

Indeed, the higher the receiver is flying above the GNSS constellation, the weaker the GNSS received signals 

are (thus affecting the number of visible satellites and the pseudorange accuracy from the visible ones) and 

the larger the Geometric Dilution Of Precision (GDOP) is (resulting in lower positioning accuracy). 

On another hand, a spacecraft is constrained to move along a certain trajectory by the orbital forces acting 

on it. If GNSS observations are filtered through an orbital dynamics mathematical model that is able to 

predict the observations themselves, the achievable navigation accuracy can be much higher. This kind of 

data fusion is commonly known as “orbital filter”, which fuses GNSS observations with the prediction of the 

space dynamics and generally leads to better solutions than what can be achieved by using a single-epoch 

least-squares estimator.  

While several research papers, such as [2], [91], [92] and [93], have already described the use of an orbital 

filter for LEO, this chapter describes the implementation of a GNSS-based orbital filter specifically designed 

for lunar missions. A relevant characteristic of such a filter is that it makes use of an adapting tuning along 

the whole MTO, function of the GNSS measurements prediction, which as seen in Chapter 3, strongly varies 

depending on the relative position between the receiver and the GNSS satellites.  

The analysis is carried out for two configurations of the filter:  in the first configuration, denoted “position-

based”, the measurement inputs of the filter are the single-epoch least-squares GNSS positions and velocity, 

while in the second configuration, denoted “range-based”, the measurement inputs are the raw GNSS 

observations, pseudoranges and pseudorange rates.  

Section 5.1 introduces the estimation method used in the filter, while section 5.2 describes the position-

based and the range-based configurations. Sections 5.3 and 5.4 define respectively the state vector and the 

measurement vector. Section 5.5 characterizes the spacecraft dynamics model implemented. Sections 5.6 

and 5.7 describe the implemented observation functions and observation matrix. Section 5.8 characterizes 

the computation procedure of the state transition matrix and section 5.9 describes the adaptive filter tuning 

strategy that has been implemented and adopted. 

The contents of this chapter were published in the journal papers [21] and [22]. 

 

5.1 Estimation method 

GNSS-based navigation of an orbiting vehicle is essentially an orbit determination problem. As introduced 

in section 1.2, orbit determination consists essentially of a set of mathematical propagation techniques for 

predicting the future positions of orbiting objects (such as moons, planets, and spacecraft) from different 

kinds of observations. As time progresses, because of the inevitable errors of modelling the orbital 
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perturbations, the actual path of an orbiting object tends to diverge from the predicted path and a new 

orbit determination using new observations is needed to re-calibrate the propagation of the orbit. In our 

problem, the observations are the GNSS measurements.  

As an estimation method, here, a dynamic approach has been adopted, and one of the best-known methods 

of sequential linear estimation has been used, the Kalman filter. 

However, the orbit determination problem is characterized by a non-linear dynamical system.  Furthermore, 

if the measurement inputs of the filter are the pseudorange and pseudorange rates, while the outputs are 

position and velocity, the measurements model is also non-linear.  Then, the non-linear extension to the KF, 

known as the extended Kalman filter (EKF), has been adopted, which linearizes the system matrix about the 

state vector estimate and the observation matrix about the state vector estimate prior to the measurement 

update.  

Table 5:1 reports the EKF algorithm, where ���� is the true state vector at time �, �­��� is the continuous 

system noise vector, Ä��� is the continuous system noise distribution matrix, ��¢| is the a priori state estimate 

at a time step Î, 	��¢|cß  is the a posteriori state estimate at a time step Î-1, �¢|c is the state transition matrix 

at a time step Î-1, Á¢| is a priori estimate error covariance at a time step Î,	Á¢|cß  is a posteriori estimate 

error covariance at a time step Î-1, �¢|c is the discrete process noise covariance a time step Î-1, �¢  is the 

discrete measurement noise covariance at a time step Î, �¢  is the observations matrix at a time step Î, �¢ 

is the Kalman gain at a time step Î,  �¢  is the measurement vector at a time step Î,	J���¢|� is observation 

function of the state used to predict the measurement, h�¢| is the innovation measurement vector at a time 

step k, and = is a unit matrix. 

 

Quantity Formulation 

System dynamic model �A ��� = 	�����, �� + Ä����­��� 
Predicted state vector ��¢| = ��¢|cß + « 	���, ��	/�¢

¢|c  

Predicted system noise covariance matrix Á¢| = 
¢|cÁ¢|cß 
¢|c[ + �¢|c 

Kalman gain matrix �¢ = Á¢|�¢[y�¢Á¢|�¢[ + �¢z|c
 

Corrected state estimate ��¢ß = ��¢| +�¢y�¢ − J���¢|�z= ��¢| +�¢h�¢| 

Corrected system noise covariance matrix 

(Joseph form) 

Á¢ß = �= −�¢�¢�Á¢|�= −�¢�¢�[+�¢�¢�¢[ 

Table 5:1 EKF algorithm [25]. 

According to [25] the state transition matrix can be approximated as:  

 
¢|c ≈ -��
��æù�	 ≅ �9 + �¢|c�­�,								 (5:1) 
where �­ is the propagation interval and  

 �¢|c = �	��, �¢��� ������
��
 (5:2) 
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is the linearized system matrix about the a posteriori state vector estimate at time �¢|c. As described later, 

here the matrix  �¢|c is computed adopting the complex-step derivative approximation, described in [94] 

and [95]. 

More details about the EKF algorithm can be found in Appendix A. 

 

5.2 Integration in the position domain and in the range 

domain 

In this study, the performance of a GNSS-based orbital filter is investigated and compared for two different 

input configurations.  The “position-based “ configuration uses the GNSS single-epoch least-squares position 

and velocity solution as input of the filter; the integration is done in the position-domain and can be 

considered as “loose integration” between GNSS and an orbital forces model. The “range-based” 

configuration uses pseudorange and pseudorange rate measurements as inputs of the filter, and the single-

epoch least-squares algorithm is replaced by an eight-state Kalman filter that computes the user’s position 

and velocity and the receiver’s clock offset and drift. In this latter case, we may talk about “tight integration” 

between GNSS and an orbital forces model, since it is done in the range-domain. 

In both configurations, due to dissimilar error characteristics, the achievable accuracy is higher than what 

would be obtainable using a GNSS receiver or an orbital propagator alone. The position-domain integration 

includes a stand-alone GNSS receiver that is still independent (fault-tolerant system), thus it is simpler and 

has a clearer approach, since the measurements provided by the receiver are position and velocity obtained 

from pseudorange and pseudorange rate observations by means of a least-squares estimator. In this 

configuration, the GNSS input cannot provide any estimation if fewer than four GNSS satellites are available. 

However, it can provide a higher continuity of the solution using the orbital propagator alone as interpolator 

between GNSS observations. The range-domain integration is more complex and requires a less transparent 

approach, but it provides a higher availability of the total system because fewer than four GNSS satellites 

can be used to provide a navigation solution. Nevertheless, it is important to observe that in both 

configurations, as shown in Chapter 6, the navigation solution can be used to provide an aiding to the GNSS 

signal-processing engine in order to improve its performance and thereby improve the GNSS solution’s 

availability.  

 

5.3 State vector 

The state vector � ∈ {��, �@} contains the set of parameters describing the system. For the position-based 

orbital filter, the state vector ��	contains the position and velocity components of the receiver: 

 �� = iB E G . 5 �j[ (5:3) 
   

For the range-based orbital filter, the state vector �@	is composed of eight elements: the position and 

velocity components of the receiver as well as the receiver’s clock offset À and drift ÀA :  
 �@ = iB E G À . 5 � ÀA j[ (5:4) 
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5.4 Measurement vector 

For the position-based orbital filter, the measurement vector � ∈ {��, �@}, can be written as: 

 �� = ��¹����¹���� (5:5) 

where �¹��� and �¹��� are respectively the position and velocity vectors computed through a least-squares 

estimator.  

For the range-based orbital filter, the measurement vector is: 

 

 �@ = ��¹����A ¹���� (5:6) 

 

where �¹��� and �A ¹��� are respectively the pseudoranges and pseudorange rates of the available GNSS 

satellites. 

 

5.5 Spacecraft dynamics model 

In KF estimation, measurements are fused with a process model in order to obtain an optimal estimation. 

This section focuses on the set of differential equations that are used to model the process and then the 

dynamics of a spacecraft on the way to the Moon. 

All the following formulations are expressed with respect to the ECI reference frame. 

The orbital propagator used in the orbital filter numerically integrates the acceleration components of the 

space vehicle, given by the 2nd order, nonlinear differential equations of motion. 

 

 ��@, �� = @� �@, �� = ���@, �� + �^�@, �� + �µ�@, �� + �^@��@, �� (5:7) 
 

where 

�    =  dynamical time @  =  inertial position vector ��  =  acceleration due to Earth’s gravity �^  =  acceleration due to the Sun �µ  =  acceleration due to the Moon �^@�  =  acceleration due to solar radiation pressure 
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Figure 5:1: Earth-Moon transfer orbit propagator. 

On the one hand, a mathematical model of the orbital perturbations has to be flexible, able to propagate 

accurately the motion of a spacecraft at the different altitudes of a MTO in order to increase the accuracy 

of the dynamics estimation and then to increase the orbital filter efficiency. Clearly, the more details about 

the spacecraft and the perturbations that affect its motion that are modelled, the more accurate the 

estimation of its orbital dynamics will be. On the other hand, modelling all the possible details without any 

moderation criteria would significantly affect the computation burden, which could be too high for the 

available onboard resources. As usually happens whenever a physical phenomenon has to be modelled, a 

trade-off between accuracy and computational burden has to be faced. Here, the proposed solution to this 

trade-off is to use three different process models, each model more appropriate than the others at 

modelling only some of the all perturbations, based on the altitude of the receiver. This results in an orbital 

propagator that is adaptive as a function of the altitude and lowers the computational burden. Indeed, as 

can be seen in Figure 3.1 of [96], only a very small increase in accuracy is achieved by modelling the solar 

radiation pressure acceleration accurately for a spacecraft flying in LEO where the atmosphere resistance 

induces a much stronger acceleration, or modelling the spherical harmonics of the Earth’s gravitational 

potential when the receiver is close to the Moon. This small accuracy increase in the dynamics estimation 

at the expense of a much higher computational burden it not worthwhile. 

The main acceleration that affects the motion of a spacecraft orbiting the Earth is given by Newton’s law, 

which defines the Keplerian orbit [96]: 

 @� = −	��⊕@	s = − �⊕@	s  (5:8) 

 

here @  is the position vector of the spacecraft and 	  is its module, which represents the distance of the 

vehicle from the center of the Earth; �⊕ is the Earth’s planetary parameter, equal to the product of the 

gravitational constant  � and the mass of the Earth �⊕ (according to [96], equal to 398600.4405	kms/sd). 
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Different accelerations that perturb the Keplerian orbit are included in the model for three different 

configurations: 

1. below 9600 km from the center of the Earth, spherical harmonics of Earth gravitational 

potential up to 6th degree and 6th order; 

2. between 9600 km and 50 000 km, spherical harmonics up to 2nd  degree and 2nd  order, the 

solar radiation pressure (SRP) and the gravitational perturbations due to the Sun and the Moon; 

3. above 50 000 km, SRP and lunar and solar third-body perturbations. 

 

This is also schematized in Table 5:2. 

Configurations Modelled Perturbations @	 < 	 !""	#$ � spherical harmonics of Earth’s gravitational potential up to 6th  
degree and 6th  order  !""	#$	 ≤ @≤ %"	"""	#$ 

� spherical harmonics up to 2nd degree and 2nd order 
� solar radiation pressure (SRP) 
� gravitational perturbations due to Sun and Moon @	 > %"	"""	#$ � 1st order Earth gravity 
� SRP 
� gravitational perturbations due to Sun and Moon 

Table 5:2 Configurations of the process model as a function of the distance from the Earth’s center 	. 

 

Note that, although the atmospheric drag at low altitude has a significant effect on satellite orbits, it is not 

modelled. This is because the benefit in the navigation solution’s accuracy obtainable by including the drag 

in the process is not considered to be worth the computational cost required computing the local density. 

Indeed, since the drag perturbation depends on the local atmospheric density, the use of accurate models, 

such as the Jacchia-Roberts model [96], is required to properly model the atmospheric drag.  In addition, 

the GPS stand-alone performance is very accurate in LEO. 

5.5.1 Geopotential 

In Newton’s law, an unperturbed Keplerian motion is assumed, which also implies that the total mass of the 

Earth is concentrated in its center, origin of the considered coordinate system. 

For a more realistic model, the following equivalent expression, which involves the gradient of the 

corresponding gravitational potential ', can be used to express the acceleration of a spacecraft at @. 

 @� = ∇' (5:9) 

where 

 ' = �⊕	  (5:10) 

As stated in [96], this expression for the potential may easily be generalized to an arbitrary mass distribution 

by including all the contributions due to individual mass elements /2 = 	f�^�/s^. 

 ' = �«f�^�	/s^
|@ − ^|  

(5:11) 

where f�^� is the density at some point ^ inside the Earth, and |@ − ^| denotes the distance of the 

spacecraft from such point. 
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In order to evaluate the integral in equation (5:11), the inverse of the distance can be expanded in a series 

of Legendre polynomials of degree 0 and order 2. The complete derivation assessed in section 3.2 of [96], 

leads to the following formulation of the gravity potential, here adopted: 

 ' = �⊕P⊕* *���¿Í�¿ + )�¿+�¿��
¿�(

,

��(  
(5:12) 

 

where 

• P⊕ is the Earth radius, here assumed equal to 6 371 km. 

• The coefficients ��¿ and )�¿ describe the dependence on the Earth’s mass distribution. 

Coefficients with 2 = 0 are called zonal coefficients. They describe the part of the gravitational 

potential that does not depend on the longitude. All )�( are null. The other coefficients are 

commonly known as sectorial (2 < 0) and tesseral (2 = 0). Because the internal mass 

distribution of the Earth is unknown, the coefficients ��¿ and )�¿ cannot be calculated, but they 

have been determined in an indirect way, i.e. from satellite tracking observations, Earth surface 

gravimetry and altimetry data [96].  Table 3.2 of [96] reports the JGM-3 (Joint Gravity Model 3) 

normalized gravitational coefficients up to degree and order 20 from [97]. 

• Í�¿ and +�¿  can be computed with the following recursive relations from [96]: 

 

 Í¿¿ = �22 − 1� -BP⊕	d Í¿|c,¿|c − EP⊕	d +¿|c,¿|c.
+¿¿ = �22 − 1� -BP⊕	d +¿|c,¿|c + EP⊕	d Í¿|c,¿|c.

 

(5:13) 

 

 Í�¿ = 20 − 10 − 2 ⋅ GP⊕	d Í�|c,¿ − 0 + 2 − 10 − 2 ⋅ P⊕d	d Í�|d,¿
+�¿ = 20 − 10 −2 ⋅ GP⊕	d +�|c,¿ − 0 + 2 − 10 − 2 ⋅ P⊕d	d +�|d,¿

 

(5:14) 

 

 

Equations (5:14) hold also for 0 = 2 + 1, if Í¿|c,¿ and +¿|c,¿ are zero. Moreover,  

 Í(( = P⊕	+(( = 0  
(5:15) 

 

In order to calculate all Í�¿ and +�¿, firstly zonal terms Í�( are obtained from equations (5:14) by 

setting 2 = 0. All the +�( are zero. Then, equations (5:13) bring to the first tesseral terms Ícc and 

+cc. Hence, a recursion process is used to compute the higher terms. 

 

Therefore, the acceleration, which is the gradient of the gravity potential, is given by [96]: 



GNSS-Based Navigation for Lunar Missions 

120 

 

B��¿ =
noo
p
ooq

��P⊕d /−��(Í�ßc,c0, 3$	2 = 0��P⊕d 12 iy−��¿Í�ßc,¿ßc − )�¿+�ßc,¿ßcz +
+ �0 − 2 + 2�!�0 − 2�! y��¿Í�ßc,¿|c + )�¿+�ßc,¿|c	zj, 3$	2 > 0

 

(5:16) 

 

 

E��¿ =
noo
p
ooq

��P⊕d /−��(+�ßc,c0, 3$	2 = 0��P⊕d 12 iy−��¿+�ßc,¿ßc + )�¿Í�ßc,¿ßcz +
+ �0 − 2 + 2�!�0 − 2�! y)�¿Í�ßc,¿|c − ��¿+�ßc,¿|c	zj, 3$	2 > 0

 

(5:17) 

 

 G��¿ = ��P⨁d ⋅ /�0 − 2 + 1� ⋅ �−��¿Í�ßc,¿ − )�¿+�ßc,¿�0 (5:18) 

 

 

5.5.2 Third body perturbing acceleration 

According to [96] , the acceleration of a satellite due to a third perturbing mass � is:  

 @� = � � ^ − @
|^ − @|s − ^

|^|s� (5:19) 

 

where � is the planetary parameter of the perturbing mass �, @ and ^ represent the geocentric position 

vectors of the satellite and �, respectively. 

According to [98], if @ is small compared to ^, equation (5:19) is not suitable for either analytical studies or 

numerical integrations. Several methods are available to circumvent this difficulty. One of these, presented 

in [98], simply rewrites equation (5:19) in such a way that no loss of significance results in the calculation of 

the disturbing acceleration. This is given by the following relation. 

 @� = − �/s i@ + $�3�^j (5:20) 

where  

 $�3� = �1 + 3�s − 1�1 + 3�s + 1 = 3 3 + 33 + 3d�1 + 3�s + 1 (5:21) 

 

 3 = @ ⋅ �@ − 2^�^ ⋅ ^  (5:22) 

and � = ^ − @. In order to get the gravitational perturbation of the Sun or of the Moon, the planetary 

parameter � and the position vector ^ must be those of the Sun or of the Moon. As stated in [96] and [99], 
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the planetary parameters for the Sun and the Moon are, respectively, equal to 132712440018	kms/sd and 4902.80080	kms/sd.  

Note that the coordinates of the Sun, Moon and planets are based on Jet Propulsion Laboratory (JPL) 

Development Ephemeris DE421. The planetary and lunar ephemeris DE421 are updated estimates of the 

orbits of the Moon and planets provided in 2009 [100].  

5.5.3 Solar radiation pressure 

The perturbing effect of the SRP on satellite orbits depends on satellite mass and surface area. By assuming 

that the normal vector (to the reference surface area) points in the direction of the Sun, the acceleration 

due to SRP is simply given by [96]: 

 	� = −�:�a 4� 4'd�� − 	�d ^ − @� − 	 (5:23) 

where 4 is the reference area, � is the mass of the spacecraft, �a is the radiation pressure coefficient 

defined as �a = 1 + k, with k that denotes the fraction of incoming radiation that is reflected. �:  is the 

radiation pressure acting on a satellite that is located at a distance of 1 4' (where 4' denotes the Earth-

to-Sun distance expressed in kilometers), and the vector ^ − @ represents the position vector of the Sun 

with respect to the satellite. 

5.5.4 Orbital propagator accuracy 

Figure 5:2 shows the 3D position error over time of the full MTO when only the orbital propagator is used, 

which means that the position is estimated only by integrating twice the equation of the dynamics (5:7). A 

typical drift affects the propagation reaching almost 300 km of error at the end of the MTO. It is important 

to note that both GNSS and the orbital propagator systems, if used individually, provide a very coarse 

accuracy (see Figure 6:1 and Figure 5:2). Because of the drifting error, the orbital propagator would provide 

a meaningless positioning at the end of the MTO. However, the position estimation of both systems is 

characterized by a different error distribution in such a way that, as will be shown in Chapter 6, their fusion 

can result in a significant improvement of the accuracy of each considered individually. 

  

Figure 5:2. Orbital propagator 3D position error over time for the full MTO. 
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5.6 Observation functions 

In the position-based filter, the predicted observations of position and velocity of the spacecraft are directly 

outputted by the filter, and no other transformation of those is required. Thus, the observation functions 

are the identity functions of position and velocity of the spacecraft. 

 �¥| = =i�|		�|j5 (5:24) 
where = is the identity matrix. 

The GNSS receiver provides 0 measurements of pseudorange f and pseudo-range rate fA  from 0 different 

transmitting satellites. In the range-based filter, these measurements are predicted by the following 

observation functions of the state vector [24]: 

 f|l = xyB­&bl − B|zd + yE­&bl − E|zd + yG­&bl − G|zd + À| (5:25) 

 

 fA|l = y�^�6� − �|z ⋅ �|l + ÀA| (5:26) 
 

In equation (5:25), iB­&bl E­&bl G­&blj[ denotes the position vector of the ith GNSS satellite that is 

transmitting the signal (estimated by means of the ephemeris), iB| E| G|j[ = �|	  is the user’s 

predicted position vector, and À| is the receiver’s predicted clock offset. In equation (5:26), �^�6 and �|are, 

respectively, the velocity vector of the transmitting GNSS satellite and the velocity vector of the spacecraft, ÀA| represents the predicted clock’s drift, and �|l  is the predicted line-of-sight (LOS) unit vector from the 

user to the ith GNSS satellite. 

The predicted observation vector �|consists of 20 elements: 

 �| = J��|� = ifc| fd| ⋯ f�| fAc| fAd| ⋯ fA�|j[ (5:27) 
 

5.7 Observation matrix 

The observation matrix � at a time step Î is defined as the Jacobian of the observation functions defined in 

equations (5:25) and (5:26): 

 �¢ = �J���
�� ������
 = �����

�� ������
 								 (5:28) 

For the position-based orbital filter, the measurements vector includes the same physical quantities that 

define the state vector, position and velocity, in fact:  

 �� = �¥�� = iB E G . 5 �j[ (5:29) 
 

Hence, the observation matrix is equal to a 6th  order identity matrix: 
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�¥ =
���
���
1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1��

���
 
 

(5:30) 

 

For the range-based orbital filter, the measurement vector contains pseudoranges and pseudorange rates, 

and the state vector also includes the receiver’s clock initial bias and drift.  

As described before, the state vector of the range-based filter includes the position and velocity of the 

spacecraft, and the receiver’s clock offset and drift. The partial derivatives of equation (5:25) with respect 

to position vector @, and clock offset À, are given by: 

 �fl|�@ = i�Ql �Rl �Slj (5:31) 

 �fl|�À = 1 (5:32) 

 

where i�Qu �Ru �Suj[ represents the LOS vector between the receiver and the jth satellite.  

Note that the pseudorange observable in equation (5:25) is not a function of the spacecraft velocity and 

receiver’s clock drift. Similarly, the pseudorange rate observable in equation (5:26) is not a function of the 

clock offset. As a result, the partial derivatives of the pseudorange with respect to the velocity and the clock 

drift, as well as the partial derivatives of the pseudorange rate with respect to the clock offset, are all null. 

The dependence of the pseudorange rate on the position can be instead considered negligible.  In fact, for 

an Earth user, a 1	m position error has an impact on the psudorange rate of only ~5 K 10|Þ	m	s|c [25] and 

then even less during most of the MTO. Indeed, as shown in Figure 4:4, for most of the total travel time 

during the MTO (more than 99%), the distance between the receiver and the GNSS transmitters is larger 

than the distance between an Earth receiver and the GPS transmitters. Hence, the partial derivative of the 

pseudorange rate with respect to the position is assumed to be null. The partial derivatives of the 

pseudorange rate with respect to the velocity vector �, and clock’s drift ÀA , are  

 �fAu|�� = i�Qu �Ru �Suj (5:33) 

 �fAu|
�ÀA = 1 (5:34) 

 

At each instant of time, the receiver provides 0 measurements of pseudorange and pseudorange rate 

corresponding to 0 visible satellites. 

Thus, it corresponds to the following 20 K 8 matrix. 

 

�¢ =
���
���
���
�Qc �Rc �Sc 1 0 0 0 0�Qd �Rd �Sd 1 0 0 0 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮�Q� �R� �S� 1 0 0 0 00 0 0 0 �Qc �Rc �Sc 10 0 0 0 �Qd �Qd �Sd 1⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮0 0 0 0 �Q� �R� �S� 1���

���
�� 
 

(5:35) 
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It is important to note that one advantage of using the navigation solution as the observation is that there 

is no linearization error in the computation of the observation partial derivatives with respect to the states 

since the state vector is identical to the measurements vector. If pseudoranges and pseudorange rates are 

used as observations, a larger linearization error may affect the filter estimation in case of lower output 

rates of the measurements, e.g. as in the case of the WeakHEO receiver described in Chapter 4, which 

provides the measurements only every 10 s.   

5.8 State transition matrix computation 

The state transition matrix � is required to compute the predicted system noise covariance matrix. As 

shown in equation (5:1), � is a function of the system matrix �, which is linearized about the state vector 

estimate (see equation (5:2)). To compute the system matrix � linearized about the state vector estimate ��ß, the complex-step derivative approximation is adopted. This method has been investigated in many 

works such as [94] and [101]. 

Let us denote ℑ{$�B + 3ℎ�}	the imaginary part of a function $ of a complex variable �B + 3ℎ� . According to 

the previous references, the first derivative of a scalar function $�B� is 

 $′�B� = ℑ{$�B + 3ℎ�}ℎ + 
�ℎd� (5:36) 

 

where ℎ is the step size. If 	 is a vector of 2 functions of 0 variables, the Jacobian matrix is defined by 

 

�Q =
���
���
���$c�Bc �$c�Bd … �$c�B��$d�Bc �$d�Bd … �$d�B�⋮ ⋮ ⋮ ⋮�$¿�Bc �$¿�Bd … �$¿�B���

���
�� 
 

(5:37) 

 

and the complex approximation is given by 

 

�Q = 1ℎℑ �$c�� + 3ℎ³c� $c�� + 3ℎ³d� … $c�� + 3ℎ³��$d�� + 3ℎ³c� $d�� + 3ℎ³d� … $d�� + 3ℎ³��⋮ ⋮ ⋮ ⋮$¿�� + 3ℎ³c� $¿�� + 3ℎ³d� … $¿�� + 3ℎ³¿�� 
(5:38) 

where ³l  is the ith column of an 0 -order identity matrix, $l  is the ith function of the vector 	 and � 

represents the variables’ vector. In this case, the vector 	 is the total acceleration	� of the space vehicle 

(see equation (5:7)) and � is the state vector. 

This method is easy to implement, it does not require a large computational burden, and it is characterized 

by small linearization errors. Indeed, a comparison of the position’s components obtained by integrating 

the modelled dynamics of equation (5:7), with those obtained by using the state transition matrix shows 

linearization errors, at most, of a few millimetres, when using ℎ = 10|d(.  This is illustrated in Figure 5:3. 

Here, the state is propagated for one second by numerical integration of the equation of motion starting 

from an initial condition. The errors are computed by comparing this propagated state with the one 

obtained by means of the state transition matrix. 
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Figure 5:3. Validation of the complex-step derivative approximation: error in position that results from 
linearization. 

 

5.9 Adaptive tuning 

A Kalman filter computes an optimal estimate by weighting the process and the measures through their 

variance-covariance matrices. As seen in Chapter 3, during a MTO, once the receiver is above the GNSS 

constellations, the GNSS accuracy strongly decreases with the altitude: both pseudorange error and GDOP 

increase as the receiver moves further from the GNSS constellation. Therefore, if the variance-covariance 

matrix of the measurements � is kept constant, the filter cannot be tuned properly during the full trajectory. 

Figure 5:4 shows the position-domain filtered GPS solution accuracy when the covariance matrix of the 

measurements � is set as constant and tuned for the LEO portion of the trajectory, while Figure 5:5 shows 

the performance obtained when � is set as constant but tuned for the last part of the trajectory. In the first 

case, when the tuning is optimized for LEO, the Kalman gain is computed by weighting the measures (more 

accurate in LEO) more than the process; hence, the estimation error at higher altitude approximately equals 

the measurements error. In the second case, the filter is tuned as it would operate at higher altitude; and it 

is clear from Figure 5:5 that, while at high altitude the filter strongly reduces the measurement error, in LEO 

the estimation error is even larger. 
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Figure 5:4 Orbital filtered position-based GPS solution error when no adaptivity is used: the � matrix is 
tuned to work well at low altitude. 

 

Figure 5:5 Orbital filtered position-based GPS solution error when no adaptivity is used (zoom on the first 
40 000 s): the � matrix is tuned to work properly at high altitude. 

The adaptive strategy adopted here for the position-based orbital filter is illustrated in Figure 5:6. From the 

estimated state computed at the previous time-step, the filter estimates the GDOP and the noise on both 

pseudorange and pseudorange rate measurements. 

The discrete process noise covariance matrix has been defined constant over time, as: 

 

 � = /3�1y�Qd, �Rd, �Sd, �md, �âd, �<dz	 (5:39) 
 

where �Qd, �Rd, �Sd and �md, �âd, �<d  are, respectively, the variance of the position components and of the 

velocity components, set by adjusting their values by trial until satisfactory performance was achieved. The 

discrete measurement noise covariance has been defined as a function of the measurement quality as 

follows: 
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 �¢ = /3�1 º�=d¢ , �=d¢, �=d¢, �=Ad¢, �=Ad¢ , �=Ad¢¼ 	 ∙ ��
�¢  (5:40) 

 

where �=d¢ and �=Ad¢ are, respectively, the average variance value at time step Î of the estimated 

pseudorange error and the average variance value of the estimated pseudorange rate error for the 0 GNSS 

satellites available at time step Î, while ��
�¢  is the estimated GDOP value at time step Î.  The variance �=dl¢for the ith GPS satellite is estimated, assuming a constant variance for GNSS broadcast clock, broadcast 

ephemeris, atmospheric delay, multipath and receiver noise and considering the thermal noise code 

tracking jitter �b¸;;  function of the carrier-to-noise ratio �/�( (see equation (3:12)). The variance �=Adl¢   is 

computed from the Doppler tracking jitter �£ , as a function of �/�( (see equation (6:3) for a standard PLL 

or equation (28) in [102] for a FLL). Indeed, at Moon altitude, where the signals are very weak, their variance 

can be much higher, as described in section 3.5.1.  
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Figure 5:6 Adaptive implementation in the position-based orbital filter.  

In the case of the range-based orbital filter, since the pseudoranges and pseudorange rates are directly 

processed in the filter, the GDOP does not appear in the computation of the �¢  matrix. However, as stated 

previously, the GDOP can be very high, resulting in very large position error peaks. In order to remove these 

large error peaks, as shown in Figure 5:7, the orbital filter makes a check of the GDOP computed by means 

of the estimated state and, if it exceeds a threshold N (a value of 1500 has been set after tuning), the 

estimation will rely only on the orbital propagation. Corresponding to GDOP peaks higher than the 

threshold, the measurements are considered unreliable and the orbital propagator is used to bridge the 

consequent outage. This is not statistically optimal, but for the very short time intervals of the GDOP peaks, 

it provides higher accuracy.  
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The discrete process noise covariance has been defined to be constant over time as for the position-based 

case, but for the range-based orbital filter, it contains also the variance of the clock offset �¾bd  and clock drift �¾bAd : 

 

 � = /3�1y�Qd, �Rd, �Sd, �¾bd , �md, �âd, �<d , �¾bAd z	 (5:41) 

 

The discrete measurement noise covariance matrix as a function of the measurements variance is: 

 �¢ = /3�1 ��=dc¢, �=dd¢, �=ds¢, . . , �=d�¢, �=Adc¢ , �=Add¢, �=Ads¢ , . . , �=Ad�¢� (5:42) 
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Figure 5:7 Adaptive implementation in the range-based orbital filter. 

In general, any measurement is better than none, especially when a measurement is more accurate than 

what can be obtained by integrating the dynamics model only. However, as Figure 5:8 shows, for a given 

tuning configuration, for short time intervals, propagation alone can sometimes provide higher accuracy 

than processing measurements. For every set of measurements, even if not accurate, there will exist a 

combination of covariance matrices tuning that will prevent the performance from worsening when using 

the available measurements. However, the adaptivity of the � matrix implemented in the range-based 

configuration concerns the pseudorange and pseudorange rate observations and not the geometry. 

Although the tuning is adapted dynamically to the measurement quality, it does not ensure optimal tuning 

when the relative user/satellite’s geometry quality suddenly has a worsening peak (GDOP case). 
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This is why, in case of a peak due to a GDOP peak, for a given covariance matrices tuning, it can be easier to 

just rely on the orbital propagation for a short time interval, as long as the drift of the pure propagation 

does not overcome the error that would result by processing the measurements during the GDOP peak.  

 

 

Figure 5:8 Positioning orbital filter performance when using fewer than four measurements. 

 

5.10 Conclusions 

The adopted orbital determination strategy makes use of a dynamic approach, which filters the GNSS 

observations collected onboard the spacecraft through a model of the orbital forces acting on it. This is 

commonly known as orbital filter. In this chapter, the implementation of the orbital filter was described, 

considering two configurations; one in which the single-epoch least-squares position and velocity GNSS 

solution is filtered and one in which the pseudoranges and the pseudorange rates are filtered. The filter is 

based on EKF and is characterized by an adaptive tuning of the covariance matrix � of the measurements. 

The model implemented for each orbital perturbation was described as well as the different combinations 

of orbital perturbations used in three different altitude ranges. 

The following chapter reports the achievable performance of the filter, in both its configurations, when 

processing different signals. 
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6 Orbital filter performance 
Following the definition of the considered reference trajectory, this chapter includes a description of the 

performance of the Orbital Filer, when it processes both simulated and real GNSS observations.   

More specifically, in section 6.2, the performances achieved when filtering simulated observations from 

different GNSS signals are reported, while in section 6.3, the performances attained when filtering real 

observations provided by the WeakHEO receiver prototype (described in Chapter 4) are given. In order to 

highlight the benefit of its use, the achieved orbital filter performances are compared to the ones that would 

be obtained in the same scenario by using a simple single-epoch least square estimation of the GNSS 

measurements.  

 

6.1 Reference trajectory 

The same reference trajectory for the receiver defined in section 4.1.2 (a direct MTO) has been considered 

here for carrying out the following tests, and again as previously, modelled by our Spirent simulator. 

 

6.2 Orbital filter performances using simulated 

observations 

This section firstly includes the description of how the considered GNSS observations are modelled (in 

section 6.2.1) and a summary of the simulations setup (in section 6.2.2). Afterwards, (in section 6.2.3) the 

Orbital filter tests results are reported, obtained by filtering simulated GPS L1 C/A observations, modelled 

as they would be provided by the space-borne WeakHEO receiver prototype (described in Chapter 4). In 

addition to consider the case of GPS L1 C/A only, the performance achievable by using a dual constellation 

receiver that processes both signals from GPS and from Galileo, are simulated as well and reported (in 

section 6.2.4).  

 

6.2.1 GNSS observations models 

In this section, the GNSS observations models are described; in particular, section 6.2.1.1 describes the 

model of the GPS observations, while section 6.2.1.2 describes the model of the combined GPS-Galileo 

observations.  

The SimGEN software of our Spirent 8000 simulator was used to model the gain pattern of both the 

transmitting and receiving antennas for both GPS and Galileo observations, exactly as was done for the 

simulations in Chapter 3, in order to correctly reproduce the GNSS signal powers �a  at the receiver position 

. This was necessary in order to differentiate the power level of the signals coming from the side lobes of 

the transmitting antennas from the signals transmitted from the main lobe. The transmitter’s antenna 

patterns were modelled in the same way as described in section 3.1.4. 

Regarding the receiving antenna, as done in the previous chapters, an antenna gain of 10	dBi at the receiver 

was assumed for both GPS and Galileo signals. 
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As stated in Chapter 3, for the considered MTO, the minimum receiver sensitivity required to acquire and 

track at least the four most powerful signals from the GPS satellites simultaneously is about −168.5	dBm 

(at least four satellites are required to compute the navigation solution). Therefore, by considering a 

receiver antenna gain of 10	dBi, here we considered a receiver sensitivity of −159	dBm (both for GPS and 

Galileo signals), taking a 0.5 dB conservative margin.  

Using equation (3:3), the sensitivity value of –159 dBm corresponds to 15 dB-Hz. 

Table 6:1 reports all the assumptions, which are described in sections 6.2.1.1 and 6.2.1.2. 

 Summary of the Assumptions 

 

Reference trajectory 

of the receiver 

Direct MTO defined and modelled as described in section 4.1.2  

  

Receiver 

characteristics 

Sensitivity −159	dBm 

 Antenna gain 10	dBi 
 Initial clock offset À in 2 

10	km 

 Initial clock drift ÀA  in 2/� 

100	m/s 

GPS L1 C/A 

observations 

Number of GPS 
satellites 

31 

 Availability Available only if �a 	≥ −169	dBm 

 Model of power 
received at the 
receiver position �a  

According to equation (3:1) and the minimum 
transmitted power levels specified for GPS L1 C/A in 
Table 3:1 

  3D antenna pattern modelled as described in section 
3.1.4 

 User equivalent range 
error �·:V:  

Root sum square of the different range error 
contributions in Table 6:2 

Galileo E5 

(E5aQ+E5bQ) 

observations 

Number of Galileo 
satellites 

27 

 Availability Available only if �a 	≥ −169	dBm 

 Model of power 
received at the 
receiver position �a  

According to equation (3:1) and the minimum 
transmitted power levels specified for Galileo 
E5aQ+E5bQ in Table 3:1 

  3D antenna pattern modelled as described in section 
3.1.4 

 User equivalent range 
error �·:V:  

As for GPS L1 C/A, except for the error induced by the 
space segment (the SISRE), which has been set to 0.65	m 

Table 6:1 Summary of the simulation assumptions. 

 

6.2.1.1 GPS observations 

The GPS L1 C/A signals were assumed to be transmitted by 31 GPS satellites (in Chapter 3 only 24 GPS 

satellites were considered), with a realistic power level at the receiver position, according to equation (3:1) 

and the minimum transmitted power levels specified in Table 3:1. 
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In our simulations, the pseudorange and pseudorange rate observables from the visible ith signals are 

modelled according to the GPS theory presented in [24] as follows: 

 fl = xyB­&bl − Bmzd + yE­&bl − Emzd + yG­&bl − Gmzd + À + -		�	�=l (6:1) 

 

 fAl = y�^�6l − �_z ⋅ �l + ÀA + -		�	�=A l (6:2) 

 

In equation (6:1), iB­&bl E­&bl G­&blj[ denotes the position vector of the ith GPS satellite that is 

transmitting the signal, iBm Em Gmj[ is the user’s position vector, and À is the receiver’s clock offset in 

meters. An arbitrary initial clock offset of 10	km (about 3.3 ∙ 10|Þ	s) was assumed. In equation (6:2), �^�6l  
and �_ are, respectively, the velocity vector of the ith transmitting GPS satellite and of the spacecraft, ÀA  
represents the clock’s drift expressed as range-rate bias (in m/s), and �l  is the line-of-sight (LOS) vector 

from the user to the ith GPS satellite. A clock drift of ÀA = 100	m/s was considered (note that this is a 

conservative value as a more precise clock such as an OCXO can achieve a frequency variation of about one 

part in 10cc over a second, corresponding to a range-rate bias on the order of 3	m/s [25]). Both the position 

and velocity of the GPS satellites and of the receiver are provided by the Spirent’s simulator.  

Pseudorange observables are affected by systematic and non-systematic errors denoted as  -		�	�= in 

equation (6:1), which can be classified into: 

• Signal-in-Space Ranging Error (SISRE), which includes satellite clock error and broadcast satellite 

ephemeris error 

• Atmospheric delay 

• Multipath effect 

• Receiver error 

According to [24], these errors can be assumed as white Gaussian noise with a certain standard deviation 

(although this is not strictly true, it is sufficient for this analysis), as summarized in Table 6:2 and described 

below. The overall error that affects pseudoranges can thus be described by the user equivalent range error 

(�·:V:), defined as the root sum square of the different range error contributions in Table 6:2. 

 

Error source ±²	³@@´@	�$� 

Signal-in-Space Ranging Error (SISRE) 0.5 
Ionospheric delay 7	3$	ℎ < 1000	km 

Receiver error and resolution �0.1d + �b¸;;d�c d»  

Multipath 0.2 

Table 6:2 GPS L1 C/A code error budget.	ℎ denotes the altitude of the spacecraft, and �b¸;; denotes the 
DLL code thermal noise jitter that depends on the received �/�(. 

 

Following [103], for the GPS constellation, we have considered a value of 0.5 m for the transmitter’s clock 

and broadcast ephemeris errors, often described as Signal-in-Space Ranging Error (SISRE) [104].  
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When the receiver is located above 1000	km, which is the edge of the ionosphere [24], the GPS signals may 

cross the ionosphere only when they are transmitted by satellites which are on the other side of the Earth. 

In this case the ionosphere layer could be crossed twice with a consequently greater delay of the signals. 

However, as already discussed in section 3.3, when the receiver is far enough from the Earth (i.e. in most of 

the MTO up to 384 400 km), it rarely receives signals that, transmitted from GNSS satellites at MEO altitudes 

of roughly 19 000 – 23 000 km altitude, cross the  ~19–23 times smaller ionosphere layer. Therefore, in this 

study, the ionosphere delay residual of 7	m [24] is modelled only when the receiver is below the altitude of 

the ionosphere, while, when the receiver is above the ionosphere, pseudoranges from satellites whose LOS 

crosses the ionosphere (and thus the troposphere situated below) are discarded. Furthermore, in this 

simulation, when the receiver is below the upper bound of the ionosphere, the signals never pass through 

the troposphere, so the troposphere is neglected. 

Typical modern GNSS receivers on Earth have values for the pseudorange noise and resolution error of 

approximately 0.1 m or less (1�) in nominal conditions [24].  However, as already seen in Chapter 3, for very 

weak signals such as those seen when operating above the GPS constellation, the noise value can be much 

higher.  The DLL code thermal noise jitter �b¸;;  has been modelled as a function of the �/�(, according to 

equation (3:12), setting all the related parameters according to the value used for the WeakHEO receiver 

(specified in Chapter 4).  Then, as we can see in Table 6:2, the computed DLL code thermal noise jitter �b¸;;  

has been added to the constant value of 0.1 m, conservatively taking into account other possible error 

sources, to form the total contribution of receiver noise and resolution.  

Modern GNSS receivers obtain pseudorange rate observables by evaluating the Doppler shift of the received 

frequency. As stated in [24], pseudorange rates may be computed simply by multiplying the Doppler shift 

with the wavelength of the signal carrier. This is done here; hence, the pseudorange rate error -		�	�=A  in 

equation (6:2) is due to the error in the frequency estimation. In particular, Doppler frequency estimations 

(and then pseudorange rates) are also affected by thermal noise, which is assumed here to be the only 

source of error. According to [102], for instance, assuming a standard PLL, the standard deviation of the 

Doppler tracking jitter is  

 �£ = 1gå Ú��/�( �1 + 12g�/�(�	>	�/� ? (6:3) 

An equivalent formula when using a FLL can be found in [102].  

Note that the velocity can also be obtained taking successive phase measurements when they are available 

and differentiating with time, giving a more accurate measure, which is less sensitive to the tracking loop 

jitter. 

Stand-alone GPS L1 C/A least-squares positioning solution 

Figure 6:1 highlights the performance of the GPS L1 C/A stand-alone receiver, in terms of 3D position error 

when a least-squares estimator is used to compute the position from the pseudorange observations. The 

3D position error increases as the spacecraft gets closer to the Moon, reaching peaks of more than 50	Î2, 

which clearly does not satisfy even the required positioning accuracy of less than 1 km (3�) for transfers to  

lunar libration orbits [105].  

On the one hand, the increasing error trend is due to pseudorange error, which grows because of the 

increasing code tracking thermal noise, as shown in Figure 6:2, which plots the pseudorange error as a 

function of the altitude, computed  by considering the observations of one of the 12 channel outputs of the 

Spirent simulator. This is due mainly to �/�(, which becomes lower and lower as the distance from the 

transmitting satellites increases. In fact the pseudorange error, in particular the code tracking thermal jitter 

range error, strictly depends on the �/�(, as shown in equation (3:12). On the other hand, the very high 
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peaks in the 3D position error are due to the corresponding peaks of the GDOP as shown by comparing 

Figure 6:1 with Figure 6:3, which provides the GDOP as a function of altitude. In particular, such 

discontinuities of the GDOP can be explained by the following two considerations. First, because of the 

limited number of channels supported (12 per GNSS constellation), the simulator selects only the 12 

strongest signals, without taking into account whether they are transmitted by satellites, leading to a bad 

geometrical distribution; second, as explained above, a signal may suddenly be discarded by the positioning 

algorithm because it starts to cross the ionosphere, with a sudden impact on the GDOP. 

 

 

Figure 6:1 3D positioning error, for GPS L 1 C/A, as function of the altitude. 

 

 

Figure 6:2 GPS L1 C/A Pseudorange error as a function of the altitude, for the observations corresponding 
to one of the 12 channel outputs of the Spirent simulator. Note that different satellites are simulated at 

different times within a given channel. 
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Figure 6:3 GDOP as function of the altitude. 

6.2.1.2 GPS-Galileo combined observations 

In order to investigate the performance achievable when using a GPS-Galileo combined constellation, we 

processed the observables obtained from the wideband Galileo E5aQ +E5bQ pilot signals in addition to the 

GPS L1 C/A signal, as done in Chapter 3. In particular, we selected the Galileo E5 pilot signals, as their 

chipping rate is ten times higher than that of the E1 signals, thus leading to a reduced tracking error in the 

ranging measurements. Additionally, the use of the pilot channels enables very long coherent integration 

times, which is desired in very high sensitivity scenarios (as the coherent integration time for data channels 

is typically limited to one bit duration to avoid the losses incurred by the bit transitions). Note also that, 

once a pilot channel is successfully tracked, it is easier to acquire and estimate the navigation data bits from 

the data channel since both channels are fully synchronized.  

The E5 (E5aQ+E5bQ) signals were assumed to be transmitted by all the nominal 27 Galileo satellites, with a 

realistic power level at the receiver position, according to equation (3:1) and the minimum transmitted 

power levels specified in Table 3:1. 

All the other assumptions for the error budget on pseudorange and pseudorange rate measurements from 

the Galileo E5a+E5b signals correspond to the same assumptions presented in the previous section for GPS 

L1 C/A, except for the error induced by the space segment (the SISRE), which has been set to 0.65	2 

following [104].  

 

6.2.2 Orbital filter simulations steps 

For both the position-based filter and the range-based filter, the simulation consists of six steps: 

1. Filter initialization. According to Kalman filter theory, at time zero, both the covariance matrix of 

the estimated state �(| and the a priori state B(| are initialized from known data. This data is 

commonly obtained from the first fix of the GNSS receiver (the unfiltered solution). Then, in order 

to pass from pseudoranges to position and from pseudorange rates to velocity, an un-weighted 

single-epoch least-squares algorithm is used. 

2. Measurements. Once the initialization is completed, the filtering loop can start. At each instant of 

time, pseudoranges �¢and pseudorange rates �A ¢are computed by using equations (6:1) and (6:2), 

respectively, from the true ranges and ranges rate provided by the SimGEN software. The visible 
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and available satellites are selected based on the corresponding signal power level at the receiver 

position �a  provided by the SimGEN software, according to equation (3:1) defined in section 3.1.4. 

Each signal is considered available if its power level at the receiver is higher than the threshold of 

–169 dBm (assuming –159 dBm receiver sensitivity and 10	/Ú3 receiver antenna gain). 

3. Estimation of the GNSS observations errors and GDOP. Estimations of pseudorange and 

pseudorange rate errors and GDOP are computed by using the estimated receiver position, 

predicted GNSS satellites’ positions (from the corresponding decoded ephemeris) and estimated 

received power levels at the receiver position. 

4. Measurements Covariance matrix. Pseudorange and pseudorange rate errors and GDOP estimates 

are used to update the variance-covariance matrix of the measurements �. As seen in section 5.9 

in equation (5:40), this is a 6�ℎ order square matrix for the position-based orbital filter, which 

includes the ensemble average value of the estimated pseudorange errors and pseudorange rate 

errors corresponding to each available GNSS satellite, multiplied by the relative estimated GDOP. 

For the range-based filter, as shown in equation (5:42), � is a 20 order square matrix, where 0 is 

the number of available satellites. In this case, the GDOP does not have any impact on the 

measurements, unlike the position-based filter architecture where the GDOP is directly used to 

compute �. 

5. EKF filtering. At this point, the EKF can estimate the state and its output is used as input for the 

following estimation (see Table 5:1 and, for more details, section A.1.7 of the appendix). 

6. Computation of errors. Once the filtering loop is over and the trajectory is estimated, the errors 

can be computed by comparing the estimation to the reference trajectory.  

 

6.2.3 GPS L1 C/A based orbital filter performance  

Figure 6:4 illustrates the accuracy achieved by using the implemented position-based orbital filter, in terms 

of 3D position error, when using the GPS L1 C/A signals. In the last 5 hours and 45 minutes of the MTO (i.e. 

the last portion where the error does not drift significantly, which starts approximately at 376 200 km 

altitude), the standard deviation of the error is approximately 304 2 (1�). 

For the same GPS L1 C/A signals, Figure 6:5 displays the 3D velocity error of the position-based orbital 

filtered solution.  In the last 5 hours and 45 minutes of the MTO, the standard deviation is about 31.8	,2/� 

(1��. 

Figure 6:6 shows the achievable 3D position error when processing the GPS L1 C/A signals, but using the 

range-based orbital filter. The maximum error is about 260	2, more than two orders of magnitude less than 

the maximum error obtained with the stand-alone GPS receiver. For the last 5 hours and 45 minutes of 

orbit, the standard deviation is 80.5	2 (1��.  
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Figure 6:4 3D normalized position error obtained with the GPS position-based orbital filter. 

 

 

 

Figure 6:5 3D normalized velocity error obtained with the GPS position-based orbital filter. 
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Figure 6:6 3D normalized position error obtained with the GPS range-based orbital filter. 

  

Figure 6:7 3D normalized velocity error obtained with the GPS range-based orbital filter. 

The position accuracy achievable with the range-based orbital filter is more than 5 times better than with 

the position-based filter. Figure 6:7 illustrates the 3D velocity error of the range-based orbital filtered 

solution, with a standard deviation of approximately 9.51	,2/� (1��. As expected and discussed above, 

using the pseudorange and pseudorange rate as direct inputs is more efficient. The improvement in 

accuracy is highlighted in Figure 6:8 and Figure 6:9, where the error of the position-based and the range-

based configurations are plotted in the same figure, respectively, for the position estimation and for the 

velocity estimation. Similar results were obtained in [56], for a MTO with a minimum � �(⁄  = 15 dB-Hz and 

with a minimum � �(⁄  = 10 dB-Hz.  
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Figure 6:8 Comparison between the positioning accuracy achievable using the position-based and the 
range-based orbital filter (OF). 

 

 

 

Figure 6:9 Comparison between the velocity accuracy achievable using the position-based and the range-

based orbital filter (OF). 

 

As discussed previously, Doppler shift and Doppler rate, which affect the carrier frequency of the signal, can 

be estimated using the navigation solution provided by the orbital filter. 

By definition, the Doppler shift is computed as 

 Δ$ = −$[, ⋅ 	A (6:4) 

where Δ$ is the Doppler shift, $[ is the transmitted frequency (e.g. 1575.42 MHz for GPS L1), , is the speed 

of light, and 	A denotes the range rate. The Doppler shift is estimated by using the estimated range rate 	Aª­bl¿&bª¾  from the navigation solution: 
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 Δ$ª­b@¿&bª¾ = −$[, ⋅ 	AA ª­bl¿&bª¾ = −$[, ��aª¡,ª­bl¿&bª¾ ∙ �ª­bl¿&bª¾� (6:5) 

 

where �aª¡,ª­bl¿&bª¾  and �ª­bl¿&bª¾   are respectively the estimated relative velocity and the estimated LOS 

between the receiver and the transmitter of the ith signal. 

As well as the Doppler shift, the orbital filter can also provide an estimation of the average Doppler rate in 

the time interval �¢ßc − �¢, as follows: 

 Δ$A ª­bl¿&bª¾ = Δ$ª­bl¿&bª¾��¢ßc� − Δ$ª­bl¿&bª¾��¢��¢ßc − �¢  (6:6) 

 

By considering, for example, one of the 12 channel outputs of Spirent for the last 5 hours and 45 minutes 

of orbit, the GPS L1 C/A range-based orbital filtered solution can predict the Doppler shift and Doppler rate 

with an error of about 0.061	�G  and 0.039	�G/� standard deviation (1�� respectively, as illustrated for 

whole trajectory in Figure 6:10 and Figure 6:11. 

 

Figure 6:10 Doppler shift estimation error for the first channel output of Spirent, of the GPS L1 C/A range-

based orbital filter. 
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Figure 6:11 Doppler rate estimation error for the first channel output of Spirent, of the GPS L1 C/A range-

based orbital filter.  

 

6.2.4 GPS-Galileo based orbital filter performance  

Figure 6:12 illustrates the improvement achievable in availability when processing signals from a GPS-

Galileo combined constellation (GPS L1 C/A – Galileo E5) and Figure 6:13 the consequent reduction of the 

GDOP as compared to using GPS only. As a combined result of better availability and smaller GDOP, the 

performance in the position estimation is improved too, as shown in Figure 6:14, where the 3D position 

error of the range-based orbital filter is illustrated. During the last 5 hours and 45 minutes of the simulation, 

the standard deviation of the 3D position error is approximately 9	2 (1��; one order of magnitude less than 

that obtained in the single constellation case (see Figure 6:6).  

 

 

Figure 6:12 GNSS availability for a single GPS constellation and for a GPS-Galileo combined constellation, 
for a sensitivity of –159 dBm. 
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Figure 6:13 GDOP for a single GPS constellation and for a GPS-Galileo combined constellation, for a 
sensitivity of –159 dBm. 

 

 

 

 

Figure 6:14 3D position error obtained with the GPS-Galileo range-based orbital filter. 

Figure 6:15 shows the velocity estimate accuracy improved too in terms of 3D velocity error. In the last 5 

hours and 45 minutes of trajectory, we obtained about 3.5	,2/� (1��, much better than the GPS only based 

orbital filter.   
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Figure 6:15. 3D velocity error obtained with the GPS-Galileo range-based orbital filter. 

The improvements in the navigation solution lead to a better estimation of the Doppler shift and Doppler 

rate as well, as shown in Figure 6:16 and Figure 6:17, with an error of 0.041	�G and 0.012	�G/� (1�� 

respectively during the last 5 hours and 45 minutes of considered trajectory.  

  

 

Figure 6:16. Doppler shift estimation error for the first channel output of Spirent: GPS-Galileo range-based 
orbital filter. 
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Figure 6:17. Doppler rate estimation error for the first channel output of Spirent: GPS-Galileo range-based 
orbital filter. 

Adding Glonass and Beidou (as future GNSS receivers probably will do) should further improve the GDOP. 

Table 6:3 summarizes the statistical properties of the orbital filter error in the different configurations and 

in case of GPS use only and GPS-Galileo combined use, as well as of the GPS-based least squares error in the 

last 5 hours and 45 minutes of the considered MTO. 

 

 3D-pos (m) 3D-vel (m/s) ^6�	AB 12.7 K 10s 139.0 µ³�C	AB 8.89 K 10s 97.4 ^6�	Ã��´^ 304.0 0.318 µ³�C	Ã��´^ 423.3 0.442 ^6�	Ã��@ 80.5 0.0951 µ³�C	Ã��@ 101.3 0.143 ^6�	Ã��@ßÄ�D 9.0 0.035 µ³�C	Ã��@ßÄ�D 10.3 0.043 

Table 6:3 Statistical properties (standard deviation (std) and mean) in the last 5 hours and 45 minutes of 

the considered MTO of: the GPS-based least squares error (LS), of the orbital filter error when using only 

GPS for the position-based configuration (
�¥¤­) and for the range-based configuration (
�¥a), of the 

orbital filter error when using also Galileo for the range-based configuration (
�¥aß¹&¡). 
 

6.3 Orbital filter performances using the WeakHEO 

receiver 

This section presents the results obtained by filtering the real WeakHEO receiver observations. 

For such tests, the receiver was connected to our GNSS Spirent GSS8000 simulator in order to collect real-

time hardware-in-the-loop (HIL) observations, which were then post-processed by the navigation module.   
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For the same reasons as explained in section 4.2.3, the HIL tests using the WeakHEO receiver were not 

carried out over the full 5 days’ MTO duration due to limited simulation capabilities, but only for shorter 

portions of it. Here the filtered position and velocity solutions are reported for the portions defined in 

section 4.2.3 .   

Note that the full MTO test was performed in post-processing by simulating the WeakHEO pseudorange and 

pseudorange rate measurements (see Figure 6:4 and Figure 6:5) to assess the orbital filter performance. 

However, several HIL tests, performed for the same portion and for different potions of the full MTO, 

allowed us to determine that a test duration of one hour is long enough to let the orbital filter converge. 

Thus, HIL tests for several representative portions of 1 h durations were performed to assess the acquisition, 

tracking, data decoding, and finally navigation performance (as reported in section 4.2) of the WeakHEO 

receiver for the signals encountered in a lunar mission.  

Furthermore, in order to highlight the effectiveness of the orbital filter, the single-epoch least-squares 

solution and the solution obtainable using only the orbital propagator are also illustrated for comparison. 

For the portion of the MTO that starts at GEO altitude, Figure 6:18 and Figure 6:19 illustrate the ECI 3D 

position and velocity accuracy, respectively, of a single-epoch least-squares (LS) solution, a pure propagated 

(Pp) solution (obtained by propagating only the initial condition through the orbital forces model), and the 

position-based orbital filtered (OF) solution (which integrates by means of the developed adaptive EKF the 

LS together with the Pp solution). Six GPS satellites are tracked in this portion. The LS solution is, as 

expected, very noisy due to the noise that affects pseudorange measurements, and it increases with the 

altitude because of the increasing GDOP (see Figure 6:20). In contrast, the Pp position solution has a 

significant drift due to the error in the initial condition; in fact, after about 250 s the position error reaches 

50 m as expected because of the initial 0.2 m/s error in the initial velocity (0.2 m/s K 250 s = 50 m). The OF 

solution is several times more accurate; the GPS measurements prevent the orbital propagation solution 

drifting, while the orbital propagation smooths the GPS solution.  

 

 

Figure 6:18 3D position error for the considered portion which starts at GEO altitude for the single-epoch 
least-squares (LS) solution (in blue); the orbital filtered (OF) solution (in red); and the pure propagated 

(Pp) solution (in green). 
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Figure 6:19 3D velocity error for the considered portion which starts at GEO altitude for the single-epoch 
least-squares (LS) solution (in blue); the orbital filtered (OF) solution (in red); and the pure propagated 

(Pp) solution (in green). 

 

Figure 6:20 GDOP during the MTO portion that starts at 36 000 km altitude. 

 

Figure 6:21 and Figure 6:22 illustrate the same quantities but for the MTO portion at Moon altitude. In this 

case as well, the benefit of the orbital filter is even more significant since the OF solution is more than one 

order of magnitude more accurate than the LS solution. Four GPS satellites are tracked in this portion. 
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Figure 6:21 3D position error for the considered portion at Moon altitude for the single-epoch least-
square (LS) solution (in blue); the orbital filtered (OF) solution (in red); and the pure propagated (Pp) 

solution (in green). 

 

 

Figure 6:22 3D velocity error for the considered portion at Moon altitude for the single-epoch least-
squares (LS) solution (in blue); the orbital filtered (OF) solution (in red); and the pure propagated (Pp) 

solution (in green).  
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Figure 6:23 GDOP during the MTO portion at Moon altitude. 

 

For the portion at Moon altitude, which is the most critic portion, Figure 6:24 and Figure 6:25 respectively 

display the Doppler shift and Doppler rate estimation error using the orbital filter solution.  

 

Figure 6:24 Error of the Doppler estimated by the orbital filter in the portion at the Moon altitude. 
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Figure 6:25 Error of the Doppler rate estimated by the orbital filter in the portion at the Moon altitude. 

 

6.4 Conclusions 

For the considered MTO, the positioning error achievable by using a least-squares estimator of the available 

GPS observations was simulated to quantify what the accuracy of a non-filtered stand-alone GPS L1 C/A 

receiver would be during the whole trajectory.  As expected, once the receiver is flying above the GPS 

constellation, the positioning error increases with the altitude because of a decreasing accuracy of the GNSS 

measurements. This is due to weaker signals and a worsening of the relative geometry between the receiver 

and transmitters (higher GDOP). Without any kind of filtering, tens of km errors with peaks higher than 50 

km were observed in simulation at Moon altitude, assuming a GPS L1 C/A receiver capable of tracking signals 

down to –159 dBm. The implementation of the orbital filter was described, highlighting the importance of 

its adaptive architecture that takes into account the decreasing accuracy of the GNSS observations when 

the receiver is orbiting above the GNSS constellation on the route to the Moon. Simulation results showed 

a significant improvement of the positioning accuracy when using the orbital filter, in both the position-

based and range-based configurations. The range-based configuration appears to be more efficient; the 

peaks of the error have been reduced to about 260 m by filtering the same GPS L1 C/A observations used 

for the least-square estimations. Tens of cm/s were obtained for the velocity estimation. The position and 

velocity estimations were also used to estimate Doppler shift and Doppler rate, very useful to aid the signal 

processing module of the GNSS receiver; the Doppler shift and Doppler rate estimation errors have a 

standard deviation of 0.06 Hz and of 0.04 Hz/s, respectively, at Moon altitude.  Finally the improvements 

achievable when using observations from a GPS-Galileo combined constellation were investigated.  

Significant further improvements were attained in positioning, velocity, Doppler shift and Doppler rate 

estimation when using the two constellations concurrently. In order to validate the system experimentally, 

the orbital filter effectiveness was tested using measurements provided by our GPS L1 C/A spaceborne 

WeakHEO receiver, assessing a significant improvement of the accuracy in two portions of the considered 

MTO; in particular at Moon altitude the accuracy achieved is a few hundred meters, similar to what was 

obtained when simulating the GPS L1 C/A observations.  
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7 Orbital filter aiding of the GNSS 

receiver 
In Chapter 4, the WeakHEO receiver was introduced, while in Chapter 5 the orbital filter implementation, 

which processes the observations provided by a GNSS receiver to further improve the position and velocity 

determination, was described. In Chapter 6, we observed that the filtered navigation solution can provide 

very accurate estimations of Doppler shift and Doppler rate affecting the carrier of the incoming GNSS 

signals. Indeed, Figure 6:10 and Figure 6:11 have shown the accuracy of the orbital filter estimation of, 

respectively, Doppler and the Doppler rate, when processing GPS L1 C/A signals, while Figure 6:16 and 

Figure 6:17 have shown the same accuracy estimation, but when adding also the processing of Galileo E5 

signals. 

As also proposed in [56] and [76], this information can then be used as a valuable aiding for the signal-

processing engine.  

This is investigated in this chapter, which aims at describing the aiding estimation from the orbital filter 

solution and the benefits of using it, as aiding of the GNSS signal processing module, and in particular of the 

WeakHEO receiver. Section 7.1 introduces the aiding computation from the orbital filter solution, while 

section 7.3 describes the use of the aiding for the acquisition and tracking modules. 

Part of the material presented in this chapter was published in [23]. 

 

7.1 Orbital filter aiding architecture 

Figure 7:1 illustrates the relation between different subsystems in case of orbital filter aiding of the GNSS 

receiver. The pseudorange � and pseudorange rate �A  measurements and the kinematics of the GNSS 

satellites (position @¹���,­â and velocity �¹���,­â computed from the ephemeris) are inputs of an orbital 

filter and are processed as described in Chapter 5 to provide a filtered navigation solution. The estimates of 

this solution, together with the kinematics of the GNSS satellites, are also used to compute the estimated 

carrier frequency $%&, carrier frequency rate of change $%&A  and list of the visible GNSS satellites. 
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Figure 7:1 Relation between different subsystems in case of orbital filter aiding of the GNSS receiver. 

 

7.2 Aiding estimation from the filtered solution 

Equations (6:5) and (6:6) in Chapter 6, respectively, describe how the Doppler shift and the Doppler rate 

affecting one signal are estimated from the navigation solution and from the knowledge of the kinematics 

of the GNSS satellite from which the signal is transmitted. 

The list of the GNSS satellites in the LOS (that means of the signals to be searched) can be easily predicted 

by considering the position estimation of the receiver and propagating the GNSS satellite position at the 

same epoch by means of the available almanac or ephemeris. 

Note that the orbital filter can also be used to estimate the receiver’s clock offset so long as a single GNSS 

satellite is tracked.  This is achieved simply by comparing the Doppler estimated from the orbital filter to 

the frequency of the satellite tracked.  

 

7.3 Use of aiding for the acquisition and tracking modules 

Here we describe how the orbital filter is used to aid the acquisition and the tracking modules. 

7.3.1 Acquisition aiding 

Clearly, the list of the GNSS satellites in the LOS has the benefit of reducing the PRN dimension of the 

acquisition search space, reducing the acquisition time. 

Let us consider the WeakHEO receiver to test the efficiency of the acquisition aiding from the orbital filter. 

As described in Chapter 4, the WeakHEO receiver is assumed to be a stand-alone receiver, with an orbital 

filter integrated and a low rate communication interface to the spacecraft platform.  Therefore, only aiding 
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from the orbital filter is considered so the receiver can work autonomously processing signals down to 15 

dB-Hz.  Knowledge of the full navigational data sequence is not assumed and data wipe-off is not used in 

any of the following tests. 

Note that in [76] the use of Doppler aiding for a GNSS receiver for lunar missions is shown for signal levels 

in the range of 5 to 10 dB-Hz.  However, perfect synchronization and wipe-off of the navigational data 

sequence are assumed, allowing the acquisition to use coherent integrations beyond the data bit boundary.   

In Chapter 4, the acquisition and tracking capability of the WeakHEO receiver was tested at multiple points 

across the MTO, which was defined in section 4.1.2.  Here, we concentrate on the acquisition of signals only 

at Moon altitude, which corresponds to the most critical portion of the MTO, where, as seen in Chapter 3, 

the GNSS signals are very weak, but are affected by Doppler shifts and Doppler rates much larger than on 

the Earth. 

For a stand-alone receiver, some aiding can still be obtained from the navigation result. The a priori 

knowledge consists of: 

o Position (from the last-known position stored in memory) 

o Time (from the real-time clock) 

o Reference frequency (since the receiver oscillator offset is determined by the navigation solution) 

o Approximate GNSS satellite positions and velocities (calculated from the almanac data stored in 

memory). 

Therefore, the frequency search uncertainty for the acquisition depends mainly on the time uncertainty, 

receiver velocity and position uncertainties, and almanac uncertainty, which will be discussed below. 

Time uncertainty 

By time, we mean the time of week (TOW) from the navigation data. This can be delivered as the GPS week 

and seconds of the week. When the receiver is tracking at least one satellite above 15 dB-Hz, the time can 

be decoded and considered to be known within 1 s.  The rate of change of the Doppler frequency is up to 4 

Hz/s according to Figure 4:7. Therefore, for 1 s of error in time, the corresponding error in the Doppler 

estimation is up to 4 Hz.  Once a navigation fix is achieved, as we are using a stable OCXO, our time 

knowledge will not drift quickly in periods of poor GNSS visibility (around 1 ms/day) and so is likely to be 

much better. 

Receiver velocity uncertainty 

According to simulation results, when the GPS solution is not filtered through any orbital forces model, the 

receiver velocity uncertainty can reach approximately 700 m/s at Moon altitude, which means that the 

corresponding frequency uncertainty is 700 m/s / 0.19 m = 3684 Hz (0.19 m being the wavelength of the L1 

C/A signal). 

Receiver position uncertainty 

According to our simulations, when the GPS solution is not filtered through any orbital forces model, the 

receiver position uncertainty can reach peaks of 80 km at Moon altitude (neglecting a few higher peaks). 

Using the equations given in section 3.6.5 of [66], the corresponding frequency uncertainty is 

(3800 m/s × 80 km) / (380 000 km × 0.19 m) = 4.2 Hz, where 3800 m/s is the GPS satellite speed, 
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380 000 km is the distance between the Earth and the Moon, and 0.19 m is the wavelength of the L1 C/A 

signal. 

Almanac uncertainty 

The precision of the ephemeris is very high, so the frequency uncertainty induced by the ephemeris can be 

ignored. According to section 3.6.6 of [66], if the almanac data are used for frequency assistance, the 

frequency uncertainty is 60 Hz. 

Total search uncertainty 

According to the analysis above, the total frequency uncertainty is about ±3692 Hz. 

Then, the time to search the entire frequency search space would be reduced from 647.5 s (see equation 

(4:2)) to: 

 gÓ,c = 9.5 + 296 ∙ 237.5 ∙ 10|s = 79.8	s (7:1) 
  

While for the second step acquisition, it would be reduced from 61 s (see equation (4:3)) to: 

 gÓ,d = 9.5 + 26 ∙ 237.5 ∙ 10|s = 15.7	s (7:2) 
 

In the WeakHEO receiver, the acquisition parameters used to achieve a sensitivity of 15 dB-Hz are given in 

Table 4:2.  The maximum tolerable Doppler rate error is defined as corresponding to the Doppler rate, which 

implies a shift of one frequency bin during the accumulation time.  Using typical derivations from [76] and 

[24], the detection threshold is chosen such that the probability of detection is theoretically 0.95 at 15 dB-

Hz and probability of false alarm is 10-3. 

Final bit synchronization and navigational data decoding is performed after the acquisition stage. 

The success rate of the acquisition engine with Doppler and Doppler rate aiding from the orbital filter across 

signals with different carrier-to-noise density ratios (� �(⁄ ) is shown in Figure 4:14.  For the results of the 

same figure, 25 trials were performed at each signal level and the success rate was recorded for the 

acquisition, bit synchronization and data decoding stages.  The simulator output power is also displayed in 

Figure 4:14.  The navigation data is decoded by averaging across 40 repeated frames of data.  The parity of 

each word is checked and the time of the week used to determine whether decoding was successful. 

We can observe that the results of Figure 4:14 are slightly worse but within 1 dB of the expected 

performance from theoretical analysis.  Clearly, the receiver is limited by its ability to synchronise and 

decode the navigation data before the acquisition limit is encountered.  Despite this, at 15 dB-Hz the 

receiver is still able to acquire and decode the navigational data with a success rate of around 60% for each 

attempt. 

7.3.2 Tracking aiding 

To demonstrate the potential benefit of Doppler aiding to the receiver’s tracking loops, a conventional 

frequency locked loop (FLL) is used.   

With no knowledge of the data bits, the normalised arctangent cross product over dot product Costas type 

discriminator from [25] is used.  When operating with very weak signal conditions, the denominator (the 
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dot product) needs to be limited or filtered to avoid singularities.  For our FLL implementation we use a 

moving average filter of the dot product over 0 correlations as follows. 

 ��¢ = ��¢|c + 10 y9�,¢|c9�,¢ + E�,¢|cE�,¢ − ��¢|cz 
(7:3) 

where 9� and E� are the in-phase and quadrature accumulations from the receiver’s correlator.  In the tests 

that follow, we use 0 = 150 with an accumulation time �& = 20	ms. The normalised discriminator is then 

formed as 

 h$�%&,¢ = 12#�& �	,��0 ¯y9�,¢|cE�,¢ − 9�,¢E�,¢|cz K /F��¢ ° 
(7:4) 

where /F is the estimated sign of the data bit estimated from the dot product of the current and previous 

correlations 

 /F = �310y9�,¢|c9�,¢ + E�,¢|cE�,¢z (7:5) 

 

A second-order FLL filter is then implemented following [25] where the estimates of Doppler frequency ∆$�%& 

and Doppler rate ∆$A�%& are updated as follows 

 ∆$�%&,¢ß = ∆$�%&,¢| + Ò%£ch$�%&,¢∆$A�%&,¢ß = ∆$A�%&,¢| + Ò%£d�& h$�%&,¢ 

(7:6) 

The loop gains are set to achieve the desired loop response and carrier loop bandwidth Ú;_+Û  as follows 

[106] 

 Ò%£c = 3.4Ú;_+Û�&Ò%£d = 2.04yÚ;_+Û�&zd 
(7:7) 

 

Currently, an offline version of the orbital filter is available to run the tests, and future work will allow for 

real-time operation within the WeakHEO processor.  However, we can assess the benefit to tracking using 

stored IF data from the WeakHEO receiver’s RF front-end during the Moon altitude scenario. 

The rate at which Doppler aiding can be provided to the tracking loops depends on how often the orbital 

filter can be iterated by the onboard processor.  Here we have tested update rates of 1 s and 10 s of the 

orbital filter. 

When Doppler aiding is available, a technique called “vector hold tracking” is used from [107].  This 

technique is well suited to this operational scenario, and where there are a few stronger GNSS signals it can 

aid the weaker ones along with the orbital filter.  When the signal level is estimated to be under a certain � �(⁄  threshold (15 dB-Hz in our case), the estimated Doppler from the tracking loop is compared with that 

of the orbital filter.  If the difference is greater than a threshold (in our case 3.125 Hz, one quarter of the FLL 

pull-in range), the orbital filter Doppler is used. 

Following the update, the estimates are predicted forward to the next iteration by  

 ∆$�%&,¢ßc| = ∆$�%&,¢ß + ∆$A�%&,¢ß �&∆$A�%&,¢ßc| = ∆$A�%&,¢ß  
(7:8) 
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The carrier NCO is then updated as 

 $F%&,�+*,¢ßc = $WÛ + ∆$�%&,¢ßc|  (7:9) 

 

where $WÛ  is the intermediate frequency chosen in the receiver’s RF front-end. 

The code tracking loop of the receiver is a first-order loop aided by the carrier loop [25] and uses a 

bandwidth of 0.1 Hz. 

Figure 7:2 shows the expected FLL jitter and a conservative loss of lock threshold for the FLL, assuming 

thermal noise is the only error source.  This indicate that in the presence of navigation data flips we may 

need to use bandwidth as low as 0.2 Hz to operate at 15 dB-Hz. 

To test the tracking threshold during the Moon altitude scenario, the signal level was progressively reduced 

during the scenario to below 12 dB-Hz.  Figure 7:3 and Figure 7:4 show examples of the frequency tracking 

error of PRN 26 during the scenario with FLL bandwidths of 0.5 Hz and 0.2 Hz, repectively.   

 

Figure 7:2 FLL jitter versus � �(⁄ . 

The FLL with 0.5 Hz bandwidth loses lock at around 15 dB-Hz and the 0.2 Hz bandwidth around 13 dB-Hz.  

Also shown is the same data set reprocessed with aiding from the orbital filter at 1 s and 10 s update rates.  

In both cases the 1 s update rate from the orbital filter shows a significant improvement on the stand-alone 

tracking.   

In order to find the accuracy required by the tracking we artificially introduce random errors.  With a Doppler 

aiding accuracy of 1 Hz (1σ) and a 1 s update rate, tracking is sustained down to 11 dB-Hz and the error is 

maintained well within the FLL pull-in range (±12.5 Hz).  This performance is repeated across the other 

satellites in our Moon altitude simulation scenario. 
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Figure 7:3 Frequency errors of tracking PRN 26 with 0.5 Hz bandwidth FLL and orbital filter aiding. 

 

Figure 7:4 Frequency errors of tracking PRN 26 with 0.2 Hz bandwidth FLL and orbital filter aiding. 

Figure 7:5 shows the effect of worsening the accuracy of the Doppler aiding from the orbital filter.  It can be 

seen that with a 1 s update rate, Doppler accuracy of around 1 Hz (1�) is required to maintain frequency 

tracking within the pull-in range of the FLL. 

We also performed the same tests with the true Doppler errors produced by the orbital filter when 

operating the WeakHEO receiver in the Moon altitude scenario shown in Figure 7:6.  Figure 7:5 shows the 

frequency tracking errors for five PRNs with realistic errors from the orbital filter.  Here, the orbital filter 

aiding rate is every 10 s due to the output rate of the current WeakHEO platform. The frequency errors are 

generally maintained within the FLL pull-in range with a few excursions at 11 dB-Hz.  This matches 

expectations from Figure 7:4, and further improvement would be anticipated with a 1 s update rate. 

Aiding the receiver in this manner can allow it to track through dips and nulls in the transmit antenna pattern 

and therefore provide greater availability of satellites.  More extensive testing with the orbital filter running 
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in real time is planned to see if even weaker signals can be tracked and used for navigation.  The use of data-

less pilot channels should also be considered as these can remove squaring losses in the tracking and provide 

a wider pull-in range without the need for knowledge of the full navigation data bit sequence.  

 

 

  

Figure 7:5 Frequency errors of tracking PRN 26 with different aiding accuracies. 

  

Figure 7:6 Frequency errors of PRNs in the Moon altitude scenario aided by the orbital filter. 

time (s)

120 240 360 480 600 720 840

F
re

q
u

e
n

c
y
 E

rr
o

r 
(H

z
)

-25

-20

-15

-10

-5

0

5

10

15

20

25 4Hz error std 1s update

2Hz error std 1s update

1Hz error std 1s update

21 dB-Hz 17 dB-Hz 15 dB-Hz 13 dB-Hz 11 dB-Hz 15 dB-Hz 21 dB-Hz



159 

7.4 Conclusions 

As assessed before in Chapters 3 and 4, at Moon altitude, in order to compute a 3D position from GPS 

observations, the GPS receiver has to be capable of acquiring and tracking signals down to -168.5 dBm, 

affected by Doppler shifts and Doppler rates of up to 20 kHz and up to 3 Hz/s, and therefore requiring a very 

high-sensitivity architecture but also robustness against high dynamics. In order to simultaneously provide 

the required robustness and sensitivity, a Doppler shift and Doppler rate aiding is necessary. In addition, the 

list of available PRN is also clearly valuable, since it removes the necessity for the receiver to generate the 

local replica for all the PRN of the full constellation. 

In this chapter, the orbital filter aiding architecture was illustrated and described. The benefits of using the 

orbital filter aiding in acquisition and tracking was then assessed. The acquisition engine was tested when 

the implemented aiding is used, showing an achieved sensitivity of 15 dB-Hz. The tracking engine was also 

tested for the different aiding accuracies of 4 Hz, 2 Hz and 1 Hz (the latter corresponds to the achieved 

accuracy for the WeakHEO receiver using the implemented orbital filter, as seen in section 6.3) and update 

rates of 10 s and 1 s; the combination of 1 Hz accuracy with a 1 s update rate allows for tracking down to 11 

dB-Hz. 

  



GNSS Based Navigation for Lunar Missions 

160 

  



GNSS Based Navigation for Lunar Missions 

161 

8 Preliminary design of a 

GNSS/INS/Star Tracker 

integration 
This chapter describes the preliminary design and implementation of a more advanced GNSS-based 

navigation architecture, which, in addition to the orbital filter, includes the integration of INS and of a Star 

Tracker. The following study was, in part, published in [108]. Section 8.1 defines the architecture of the 

integration; section 8.2 summarizes the related implementation; section 8.3 reports a simulated example 

of achievable performance; and section 8.4 highlights the limitation of the current INS technology in High 

Earth Orbits. 

8.1 Integration architecture 

In the designed architecture shown in Figure 8:1, an Inertial Measurement Unit (IMU) provides 

position	@W��, velocity �W�� and attitude		�W�� through the mechanization of their measurements, with high 

output rate (flow line in yellow), equal to or higher than 50 Hz. A Star Tracker is an optical device that 

measures the positions of stars using photocells or a camera [109] and from such observations, it estimates 

the attitude. By using the Star Tracker in conjunction with a precise time reference (provided by the GNSS 

receiver) and the IMU device consisting of gyroscopes and accelerometers (inertial navigator), the onboard 

processor can correct many of the inertial navigator errors, in particular the inertial navigator's gyroscopes 

errors that result in attitude drift. In this architecture, the Star Tracker measures accurately the attitude ��[ 

with lower rate and calibrates (flow line in orange) the higher rate INS attitude estimation (provided by the 

gyros), otherwise affected by drift and angular random walk. The inertial navigation solution calibrated by 

the Star Tracker (@W��, �W��) is then integrated via an EKF to the lower rate GNSS measurements of 

pseudorange f, pseudorange rate fA , position @¹���,­â  and velocity �¹���,­â of the GNSS satellites (outputted 

by the GNSS satellites kinematics calculation from ephemeris and transmit time). The GNSS/INS integration 

rate corresponds to the GNSS output rate (lower than for the INS). The GNSS/INS integration output includes 

the integrated navigation solution and some corrections (i.e. receiver clock bias and receiver clock drift) that 

are fed back to the GNSS receiver. Then the integrated navigation solution is filtered by an orbital forces 

model through an orbital filter (described in Chapter 5).  Hence, the integrated filtered navigation solution 

is used as feedback to calibrate the inertial navigation propagation, otherwise affected by unavoidable 

drifts.  

The inertial position and velocity solution is initialized by the standalone GNSS solution, while the inertial 

attitude solution is initialized by the stand-alone Star Tracker solution. 

The calibrated inertial solution is used to provide the aiding to the GNSS receiver, as discussed in Chapter 7, 

but with higher input rate.   

The most accurate solution is the integrated filtered navigation solution, output of the orbital filter. 

However, the calibrated inertial navigation solution is available with higher rate, although it may be less 

accurate depending on the amount of error accumulated (drift) since the last calibration performed by 

means of the last available orbital filter output. 
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The architecture is designed to provide a continuous and complete navigation solution (position, velocity 

and attitude) as the output of a single unit. The considered INS brings a direct improvement in the navigation 

performance since it reduces the standard deviation of the GNSS error, it enables high output rate, it has a 

high low-term accuracy in the high dynamics of LEO, and it ensures a solution when fewer than four GNSS 

satellites are available. On the other hand, the use of GNSS receiver and Star Tracker absolute 

measurements, although with lower output rate, stops the accumulation of both the inertial and orbital 

propagator errors, a drawback of dead-reckoning systems.  

The orbital filter block of Figure 8:1 has been described in Chapter 5 and its performances have been 

reported in Chapter 6. The following sections, describe the GNSS/INS/Star Tracker integration, defined by 

the dashed green line in Figure 8:1. Section 8.2 describes the implementation, while section 8.3 illustrates 

some preliminary results of the navigation performance. 
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Figure 8:1: Block scheme of the architecture of the GNSS/INS/Star Tracker integrated system. 

 

 

8.2 GNSS/INS/Star Tracker integration implementation 

As the aim of this study was to carry out a preliminary design only, the IMU and Star Tracker were not 

developed. These two subsystems were modelled in Matlab in order to test the whole multi-sensor 

integrated navigation system in post-processing mode on a computer. 

An aviation grade INS was selected, as a reasonable compromise between performance, dimensions and 

cost. 
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Table 8:1 reports the specifications of the modelled IMU subsystem, according to the values proposed in 

[25]. 

For this study, we considered the “Blue Canyon Technologies Nano-Star Tracker”, a precise 3-axis stellar 

attitude determination in a micro-package, which allows high performance attitude determination for very 

small satellites like CubeSats. With a nominal power consumption equal to or less than 0.5 W and a very 

small volume of 10 × 6.73 × 5 cm3 (with baffle) [110], this attitude sensor can reasonably be integrated with 

an IMU and a GNSS receiver in a single small unit. The attitude estimation of this sensor were modelled in 

Matlab by considering its datasheet [110], in particular a bore-sight accuracy of 6″ and a roll axis accuracy 

of 40″. 

 

 

Quantity (unit) Values 

Accelerometer biases x,y,z (G�) 

 

i30 −45 26j 
Gyro biases �°/H� i−0.0009 0.0013 −0.0008j 

 

Accelerometer scale factor and cross coupling errors 

(ppm) M 100 −120 80−60 −120 100−100 40 90 N 

 

Gyro scale factor and cross coupling errors (ppm) M8 −120 1000 −6 −600 0 −7 N 

 

Accelerometer noise root PSD yG�/√I�z 

 

20 

Gyro noise root PSD  y°/√Hz 0.002 

 

Accelerometer quantization level �$/JK� 

 

5 ∙ 10|Þ 

Gyro quantization level �LMN/J� 1 ∙ 10|Ü 

Table 8:1 IMU specifications according to the values proposed in [25]. 

Pseudorange and pseudorange rate measurements from the GNSS receiver, the position and velocity of the 

corresponding GNSS satellites from ephemeris and transmit time and inertial navigation solution are input 

into the EKF to be processed. First, the inertial navigation solution is used together with the GNSS satellites 

positions and velocities, to predict the GNSS pseudorange and pseudorange rate measurements. Then, in 

one complete cycle, the EKF fuses predicted pseudoranges and pseudorange rates (from the INS/Star 

Tracker) with measured pseudoranges and pseudorange rates (from the GNSS) and estimates the kinematic 

of the spacecraft, the IMU biases, the GNSS receiver clock offset and bias. The navigation integration is thus 

performed in the range domain with the GNSS receiver output rate. Simultaneously, the inertial solution, 

although corrected only when the EKF output is updated, is available with a higher rate and high accuracy 

(within one EKF cycle) and is then used to predict the signals frequency as aiding in tracking and acquisition. 

According to [25], range-domain integration with inertial aiding of the GNSS tracking loops is described as 

“Ultra Tightly Coupled (UTC) GNSS/INS integration”. 

Table 5:1 shows the Kalman filter algorithm used in the integration algorithm. 
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Here again the general EKF formulations introduced for the transition matrix in equation (5:1), for the 

system matrix in equation (5:2) and for the observation matrix in equation (5:28) are valid. 

Regarding the state vector, it can be written as 

 � = /hO h� h@ P& P¦ hf%¹��� hfA%¹���0[  (8:1) 

 

Where: 

 

hO is the attitude error, h� is the velocity error, h@ is the position error,  

P&  are the accelerometer biases, 

P¦ are the gyros biases, hf%¹��� is the receiver clock offset, hfA%¹��� is the receiver clock drift. 

 

The measurement vector is 

 � = ��¹����A ¹����	 (8:2) 

Where: 

�¹��� are the pseudoranges of the available GNSS satellites, �A ¹��� are the pseudorange rates of the available GNSS satellites. 

 

The measurement innovation vector includes the differences between the GNSS measured pseudorange 

and pseudorange rates and the corresponding values predicted by the corrected inertial navigation solution 

at the same time of validity, by using the estimated receiver clock offset and drift, and navigation data-

indicated satellite positions and velocities.  

The matrices �¢|c,	�¢|c,	�¢,�¢  were implemented according to Chapter 14 of [25]. 

 

8.3 GNSS/INS/Star Tracker simulated performance 

In order to validate the algorithm proposed, and to verify the expected performance improvements 

achievable by integrating the GNSS receiver and INS in the pseudo-range domain, some preliminary tests 

were performed. In order to evaluate individually the benefit in positioning when integrating the INS and 

the Star Tracker, the GNSS/INS/Star Tracker integrated navigation solution was simulated, not considering 

the orbital filter. Figure 8:2 shows an example of the 3D position error when a GPS L1 C/A receiver is 

travelling in the defined trajectory during the first 2900 s (from an altitude of 600 km to approximately an 

altitude of 13 500 km), where all the GPS observations have been modelled according to Table 6:1. As 

expected, the integrated solution is smoothed and less noisy; the errors larger than 8 m of the least-squares 

solution are reduced to less than 2 m. This result show the benefit of integrating INS with GNSS; however, 
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as discussed in the following section, using INS for space navigation is not always possible with the currently 

available technology. 

 

Figure 8:2 3D position error when the receiver is travelling in the defined trajectory during the first 2900 s 
for a single-epoch least-squares (LS) solution and for a GPS/INS/Star Tracker integrated solution. 

8.4 INS for High Earth Orbits 

In High Earth Orbit, above a certain altitude, the atmospheric resistance is negligible or totally absent (as 

shown in Figure 3.1 of [96]) and the only non-gravitational acceleration that can be measured (when a 

spacecraft orbits in free fall) is the Solar Radiation Pressure (SRP). SRP in Earth orbit is on the order of 10–

5 N/m2 [96]. If we consider a spacecraft with a surface area of 1 m2 and a mass of 100 kg, the effect of the 

SRP is approximately an acceleration of 10–7 m/s2. Following a conducted research, most performant IMUs 

available on the market for space application (costs ~300-700 k€) have an accuracy on the order of 20-50 

micro-g (~10–4 m/s2). Thus, SRP is not observable with the current IMU technology since it has an accuracy 

of three orders of magnitude below the requirement. Actually, some ultra-sensitive accelerometers have 

been developed for specific space missions with much higher sensitivity that even reaches nano-g, but they 

are still in the research stage, or often they have high power consumption, high volume and a big mass, 

and/or they are not available on the market as they are themselves the payload of a space mission [111]. 

For these reasons, it is not reasonable to consider such ultra-sensitive devices as sensors to be integrated 

with a GNSS receiver, which has to be autonomous and flexible, a cost-sensitive alternative navigation 

system to the expensive space navigation that usually relies on ground stations.  

However, during launch, in very low Earth orbits or also at higher orbits during powered space flight, INSs 

can be used because their sensitivity can be sufficient to sense the atmospheric resistance (at about 300 km 

of altitude the drag can be in the order 10–3 m/s2 [96]) and the accelerations induced by the thrusters. 

A commercial INS can thus be considered as sensors to be integrated with a space GNSS receiver only during 

powered flight and for very low Earth orbits, where the accelerations due to the thruster or to the 

atmospheric resistance are strong enough to be measured by the INS technology currently available on the 

market. 
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8.5 Conclusions 

In the designed architecture, a GNSS receiver, an INS and a Star Tracker are integrated in the kinematic 

domain, to provide not only position and velocity, but also attitude and angular velocity of the vehicle and 

then its full kinematic state. The GNSS receiver is used as absolute reference to calibrate the position and 

velocity provided by an IMU. This IMU, a Star Tracker and an orbital filter (already described in Chapter 5) 

can provide a GNSS assistance for the tracking and acquisition modules of the GNSS receiver. The Star 

Tracker measurements are used to align and calibrate the attitude outputted by the INS (integration of the 

gyros measurement). As already seen in Chapter 5, the integrated GNSS/INS/Star Tracker solution can be 

fused via a Kalman filter with an onboard orbital forces model that takes into account the orbital trajectory 

constraints. 

While the efficiency of the orbital filter was already showed and discussed in Chapter 6, here in this chapter, 

preliminary simulations have also showed an improvement of the navigation performance when making 

use of a GNSS/INS/Star Tracker integration, with a sensitive smoothing of the positioning error (from above 

8 m to less than 2 m in LEO). The use of INSs can improve the navigation performance, but their integration 

is much more complex and expensive than the implementation of an orbital filter. Therefore the INSs can 

be added to the orbital filter but they should not replace it. 

Moreover, although the GNSS/INS integration would benefit the whole navigation system, on the current 

market, there are not enough sensitive IMUs able to measure the very small proper accelerations above 

LEO. For this reason, the architecture proposed in this chapter cannot be fully used in High Earth Orbits in 

unpowered flight.  
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9 Conclusions 
Chapter 1 introduced the two key concepts of GNSS for space navigation up to the Moon and of Orbit 

Determination, also providing a short presentation of the first and of the most recent Moon missions, and 

highlighting the current increasing interest in future Moon missions. The main research goal of 

implementing an onboard autonomous GNSS-based navigation system for lunar missions was characterized 

by the definition of the required research steps to be achieved, which are essentially the research objectives 

and corresponds to the topic of each chapter of the manuscript. In the same introductory chapter the 

benefit of this research work was put in evidence, and the produced contributions to journals and 

conference publications were listed. 

Chapter 2 provided the basics and the principles of GNSS, helpful to the understanding of the main contents 

of the research work. 

Chapter 3 described the achievement of the first research step: investigation of the potential use of a GNSS 

receiver for very High Earth Orbits, in particular for a generic transfer orbit with its perigee in LEO and 

apogee at Moon altitude. Estimated received power levels, Doppler shifts and Doppler rates, pseudorange 

errors and GDOP were presented. The study conclusion is that using a double GNSS constellation increases 

the GNSS observations availability and also reduces the GDOP, which is extremely large the further the 

receiver is above the GNSS constellations. In addition, wideband signals such as the L5/E5 band signals 

should be used to measure the pseudoranges, in order to reduce the thermal noise code tracking error, 

which is large for very weak signals. Above the GNSS constellations, the small part of signals that cross the 

ionosphere should be discarded to not introduce ionospheric error in the estimated solution, or in 

alternative a second signal from each GNSS satellite should be processed. The theoretical analysis for the 

acquisition and tracking processes of the L5/E5 band signals showed that a sensitivity of –169 dBm can be 

achieved, but an external frequency aiding such as coming from an orbital filter or from other sensors is 

necessary to reduce the frequency bandwidth. The estimation of the expected navigation performance 

based on the expected GDOP and the expected ranging error for the tracking of the L5/E5 band signals from 

the GPS-Galileo combined constellation showed that for the considered trajectory a pure unfiltered GNSS 

position solution would have an error below 700 m, neglecting the ionosphere delay. The study reported in 

Chapter 3 was presented at the 65th International Astronautical Congress in Toronto, Canada (see [112]), 

and was also published in the Elsevier journal Acta Astronautica (see [19]). 

Chapter 4 described the proof of concept of the GPS L1 C/A “WeakHEO” receiver for lunar missions, wholly 

developed in the last two years at the ESPLAB by the GNSS team. Aiming at the development of a receiver 

that could actually be used in the short term, although a more efficient signals combination has been 

identified in Chapter 3, only the GPS L1 C/A signals were considered, as they were the only GNSS civilian 

signals transmitted by a complete constellation at the time of this research study, among the preselected 

signals defined in section 3.1.1. The characteristics of the GPS L1 C/A signals were once again assessed for 

a more specific MTO, part of a lunar mission, confirming the results obtained in Chapter 3. The requirements 

and constraints of the receiver design have been accordingly defined. The overall receiver architecture has 

been described, detailing the acquisition, tracking and navigation modules. These modules were conceived 

to be specifically used in the signal, ranging and geometry conditions seen in a MTO. The assessed results 

showed the successful acquisition, tracking, data synchronization and demodulation down to a level of 15 

dB-Hz. This was verified in hardware-in-the-loop tests using representative RF signals generated by our 

Spirent simulator. When using a single-epoch least-squares estimator, at Moon altitude, the navigation 

performance was poor, as expected, mainly due to the very large GDOP, thus requiring a further filtering. 
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The study described in Chapter 4 was presented at the ION GNSS+ 2014 in Tampa, Florida and published in 

the MDPI journal Sensors (see [20]) in 2016. 

Chapter 5 detailed the adopted dynamic approach, which makes use of a filter of the GNSS observations 

collected onboard the spacecraft, based on a model of the orbital forces acting on it. Commonly known as 

orbital filter, its implementation was described, considering two configurations: one in which the single-

epoch least-squares position and velocity GNSS solution is filtered (position-based) and one in which the 

pseudoranges and the pseudorange rates are filtered directly (range-based). The filter is based on an EKF 

and is characterized by an adaptive tuning of the covariance matrix � of the measurements. The filter adopts 

different combinations of orbital perturbations in three different altitude ranges. Each orbital perturbation 

model was described. 

In Chapter 6, the performances obtained using the orbital filter designed in Chapter 5, when filtering 

modelled GNSS observations (for GPS L1 C/A signals and for their simultaneous use with the Galileo E5aQ 

+E5bQ signals) and also filtering real GPS L1 C/A observations provided by the WeakHEO receiver when 

connected to our Spirent simulator, were reported and discussed. First, the realistic models used to simulate 

the GNSS observations were presented. Second, in order to quantify what would be the accuracy of a non-

filtered stand-alone GPS L1 C/A receiver during the whole MTO and then to quantify the improvements 

achieved using the orbital filter, the positioning error achievable by using a least-squares estimator of the 

available GPS L1 C/A observations was simulated. Due to weaker signals and a worsening of the relative 

geometry between the receiver and transmitters (higher GDOP), as expected, when the receiver is orbiting 

above the GPS constellation, the positioning error increases with the altitude, reaching peaks higher than 

50 km. The performance is much worse than the 700 m estimated in Chapter 3, because only the GPS L1 

C/A signal was considered, and the sensitivity was assumed to be –159 dBm, unlike in Chapter 3 where 

tracking of the L5/E5 frequency band from both GPS and Galileo down to –169 dBm was considered.  

Simulations results with modelled observations, showed a significant improvement of the positioning 

accuracy when using the orbital filter, in both the position-based and range-based configurations. The latter 

configuration seems to be more effective, reducing the position error peaks to about 260 m when filtering 

GPS L1 C/A observations at Moon altitude. Tens of cm/s were obtained for the velocity estimation. In 

addition, the derived Doppler shift and Doppler rate estimation errors have a standard deviation of 0.06 Hz 

and of 0.04 Hz/s, respectively at Moon altitude.  Finally the improvements achievable when using combined 

GPS L1 C/A and Galileo E5aQ +E5bQ observations were also investigated, resulting in further significant 

improvements in positioning, velocity, Doppler shift and Doppler rate estimation.  

By using measurements provided by our GPS L1 C/A spaceborne WeakHEO receiver, a significant 

improvement of the navigation performance was reached as well, compared to the performance reported 

in Chapter 4 for a non-filtered single-epoch least-squares solution. In particular at Moon altitude an accuracy 

of a few hundred meters was achieved, similar to what was obtained when simulating the GPS L1 C/A 

observations.  

The contents of Chapters 5 and 6 have were in part published in the Journal of Navigation (Cambridge 

Journals) in 2015 (see [21]) and in the International Journal of Space Science and Engineering, of 

Inderscience (see [22]). Part of the results obtained for the WeakHEO receiver were published in the MDPI 

journal Sensors [20]. 

Chapter 7 described in greater detail the architecture of the aiding from the orbital filter to the signal 

processing engine; in particular the list of the available signals and the estimated Doppler shift and Doppler 

rate affecting the carrier frequency of the signals at the receiver position. The benefit of using such aiding 

in the most critical part of the considered MTO, at Moon altitude, was then assessed. The performance of 
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the aided acquisition engine was tested, showing an achieved sensitivity of 15 dB-Hz. The tracking module 

was also tested for the different aiding accuracies of 4 Hz, 2 Hz and 1 Hz (the latter corresponds to the 

achieved accuracy for the WeakHEO receiver using the implemented orbital filter, as seen in section 6.3) 

and update rates of 10 s and 1 s. The combination of 1 Hz accuracy with a 1 s update rate allowed for tracking 

down to 11 dB-Hz. This study was presented at the ION ITM 2016 in Monterey, California (see [23]). 

Chapter 3 summarized a preliminary study of a more advanced multi-sensor navigation architecture, 

conceived to provide not only position and velocity, but also attitude and angular velocity of the vehicle and 

then its full kinematic state. In the designed architecture, a GNSS receiver, an IMU and a Star Tracker were 

integrated to provide navigation with high rate, driftless and also in scenarios where the number of GNSS 

satellites falls below four or even in case of total GNSS outage. Although more advanced and, in principle, 

more effective than the use of an orbital filter alone, this GNSS/INS/Star Tracker architecture was studied 

only preliminarily, since it cannot practically be fully used in High Earth Orbits in unpowered flight.  Indeed 

it can only be tested in simulation, assessing only its theoretical effectiveness, since the INSs currently 

available on the market are not sensitive enough to measure the very small proper accelerations above LEO.  

9.1 Achieved results 

Each research objective was achieved: 

1. Feasibility study of GNSS as a navigation system to reach the Moon. The potential use of GNSS as 

navigation system above the GNSS constellation and for lunar missions was theoretically assessed, 

peer-reviewed and published in [19]. 

2. Design and implementation of a GNSS receiver proof of concept capable of providing GNSS 

observations up to Moon altitude. The WeakHEO receiver proof of concept has been developed 

and its successful functioning at Moon altitude was assessed carrying out hardware-in-the–loop 

tests. This research work was peer-reviewed and published in [20]. 

3. Design and implementation of a GNSS-based OD unit, able to significantly improve the navigation 

accuracy achievable using GNSS observations. An adaptive orbital filter was designed and 

implemented, tested in several input configurations and with several combinations of signals, 

assessing the improvement of the achievable navigation performance and then its successful 

functioning. The obtained results and the detailed implementation were peer-reviewed and 

published in [21] and [22]. 

4. Implementation and testing of the orbital filter aiding for the signal processing engine: The benefit 

of using an aiding provided by the orbital filter for the signal processing engine was demonstrated, 

peer-reviewed and published in [23]. 

5. Additional minor achievement: Preliminary design of a more advanced GNSS/INS/Star Tracker 

integration for lunar mission, published in [108]. 
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9.2 Future development 

The performance of the overall designed and developed OD unit will be further improved in the new version 

of the WeakHEO receiver, where the available hardware resources will be increased, allowing for the 

integration of the navigation module into the processor within the FPGA. This will allow the orbital filter to 

provide aiding to the acquisition and tracking modules at a high rate to improve performance. In addition, 

the iteration rate of the navigation output will be increased from 0.1 Hz to 1 Hz and the number of tracking 

channels increased from 6 to at least 12. Furthermore, in the future the processing of other frequencies and 

of signals from other GNSS constellations will be also considered to further improve the overall 

performance.  

The preliminary architecture proposed in Chapter 3, will be also implemented and tested by considering 

maneuvers of the spacecraft, at different altitudes, in order to better assess its efficiency.  

Other methods for improving the navigation accuracy will be investigated. In particular:  

• Strategies to improve ranging accuracy will be analyzed; 

• Advanced techniques to improve the processing of the range observations, will be investigated 

deeper, i.e., a reduced dynamic approach and also an Unscented Kalman filter may be considered. 
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Appendix A : Kalman filter based 

estimation 
The Kalman filter is an estimation algorithm invented in 1960, by the Hungarian-born American electrical 

engineer and mathematician Rudolf Emil Kalman [113]. Its first practical application was for integrating an 

inertial navigator with airborne radar [114].  Rather than a filter, it is a Bayesian estimation technique. Given 

an initial set of estimates, the algorithm works recursively, updating its estimates as a weighted average of 

the previous ones and of the latest new measurement data values [25].  The Kalman filter is a very effective 

and versatile procedure to estimate the state of a system with uncertain dynamics, combined with noisy 

sensor outputs [114].  

The following sections about the Kalman filter theory mainly summarize the very good description provided 

in [25]. However, more detailed and complete description can be found in many different books as [26], 

[114] as well as [25]. 

In the first section A.1 all the elements involved in the Kalman filter algorithm are shortly described. The 

extensions to the Nonlinear Kalman filter are introduced in section A.2. In section A.3 some implementation 

issues are briefly discussed. 

A.1 Elements of the Kalman filter 

Figure A:1 shows the Kalman filter algorithm elements.  Each of the elements are described in the following 

sections. 

System Model
Measurement 

Model

Measurement 
Vector and 
Covariance

State Vector 
and 

Covariance

Kalman Filter Algorithm

True System

 

Figure A:1 Elements of the Kalman filter. 

A.1.1 State vector 

The state vector is the set of parameters that describe a system, known as states of the system, which are 

estimated by the Kalman filter. As in section (5:4), for most of the navigation applications, the state vector 
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consists of kinematics information that define the translational and/or rotational state of the system. When 

the state vector includes the estimate of absolute properties of the system (for navigation e.g. position, 

velocity, attitude and angular velocity), is known as total-state implementation. While, when it includes the 

estimate of the errors in a measurement made by the system for the same properties, is known as error-

state implementation, or also complementary filter. Note that it is also possible to include total state and 

error state in the same state vector. 

Note that systematic error sources and Markov processes which affect the states or the measurements have 

to be part of the state vector because the Kalman filter assumes that all the errors that are not modelled as 

states are white noise. 

A.1.1.1 State vector residual 

The state vector residual h� can be defined as the difference between the true state vector �  and the 

Kalman filter estimates ��, therefore:   

 h� = � − �� (A:1) 
 

It represents the errors that remains in the system after that the Kalman filter estimates have been used to 

correct it.  By reversing the sign of the state vector residuals, the errors in the state estimates are obtained. 

A.1.2 Error covariance matrix 

The error covariance matrix Á is defined as the “expectation of the square of the deviation of the state 

vector estimate from the true value of the state vector” [25]: 

 Á = ©���� − �����− ��[� = ©�h�h�5� (A:2) 
 

The elements of Á  of the diagonal are defined as the variances of the state estimates, while their square 

roots as the uncertainties. The off-diagonal elements are the covariances of the state estimates, 

representing the correlations between the errors among  the different state estimates.  

This matrix describes the uncertainties in the Kalman filter estimation of the states and how the errors of 

such estimation are each other correlated. 

A.1.3 System model 

The system model, often known as process model describes how the states change over time. One of the 

principal assumption of the Kalman filter is basically that the time derivative of the state is a linear function 

of the state and of white Gaussian noise sources: 

 �A ��� = �������� + Ä����^��� (A:3) 
Where:  

• � is the system matrix, Ä is the system noise distribution matrix. They are always known functions, 

which are derived from the known properties of the system.  

• �^ is the system noise vector, that includes a number of independent random noise sources, 

assumed to be zero-mean Gaussian distributed. 
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A basic assumption of Kalman filters is that the errors of the system model are either systematic1, white 

noise2, or Markov processes3. However, they can also be integrals or linear combinations. For instance, a 

random walk process is essentially integrated white noise, instead a constant acceleration is the integral of 

a velocity error that grows over time. 

Error sources modeled as part of the state vector are assumed to be systematic errors, Markov processes, 

or in alternative their integrals. Kalman filter also assumes all noise sources to be white, indeed Markov 

processes have a white noise component. All the error sources that are not modelled as states are assumed 

white noise. 

 

A.1.3.1 Transition Matrix  

Indicated as �, it defines how the state vector changes over time as a function of the modelled dynamics 

of the system. It is different for each Kalman filter application and it is normally function of the time interval 

between consecutive filtering iterations and of other parameters. If such parameters change with time, the 

transition matrix has to be recalculated on each iteration. In a normal linear Kalman filter the transition 

matrix is never function of any component of the state vector, otherwise, the system model would not be 

linear.  

The expectation operator Q can be applied to the system equation (A:3), in order to obtain an estimate of 

the system states,. The expectation value of the true state vector ���� corresponds to the estimated state 

vector �����, while the expectation value of the system noise vector �^(t) is null, since the noise is assumed 

to be of zero mean. ���� and Ä��� are always known functions. 

Thus, according to [25], taking the expectation of (A:3) and treating ����	over the interval between  � − �­ 

and �: 

 ����� ≈ -B�������­����� − �­� (A:4) 
 

                                                                 

1 systematic errors. Constant, 100% time-correlated. 
 
2 white noise sequence  �l���. Sequence of random variables with a zero mean distribution, uncorrelated 

in the time. Thus,	©y�l�uz = �<d , 3 = R and   ©y�l�uz = 0	, 3 ≠ R  , where © is the expectation operator and �<d  is the variance. 
 
3 Gauss-Markov sequences. They are quantities that vary slowly with time compared to the update 

interval, as linear function of their previous values and as a white Gaussian noise. A first-order Gauss-Markov 
sequence may be modelled as a function only of its previous value and noise. For example, a first order 
Markov process with an exponentially decaying auto-correlation function B¿l  is described by 	
TQUV
Tb = QUVæUV +�l  , where � is the time and �¿l  is the correlation time. 
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where �­ is the propagation time or sampling time. 

 

In the discrete Kalman filter: 

 ��¢| = 
¢|c��¢|cß  (A:5) 
 

The discrete and continuous forms of the Kalman filter are equivalent, by considering that ��¢  corresponds 

to ����¢� and   ��¢|c to ����¢ − �­�. 

Hence, 

 
¢|c = -B���¢|c�­� (A:6) 
that usually is computed as a power-series expansion of the system matrix � and propagation interval �­. 

Given the dynamic coefficient matrix � of a continuous time system, with first order truncation: 

 

 
¢|c ≈ �= + �¢|c�­� (A:7) 
 

Note that different truncations may be used, depending on the magnitude of the states, length of 

propagation interval and available error margins [25]. 

 

A.1.4 Measurement vector 

The measurement vector	�  is composed by measurements of properties of the system that are function of 

the state vector. Indeed for example, if the system property is the position, the measurement vector could 

include ranging measurements or directly the position measurement. It can be model as sum of a 

deterministic function J�B�	and of noise �¿  as follows: 

 � = J�B� +�¿ (A:8) 

A.1.4.1 Measurement innovation 

Indicated as h�|  , it is the difference between the true measurement vector and the one predicted from 

the previous state vector estimate (which corresponds to the previous measurement update): 

 h�| = �− J���|� (A:9) 

A.1.4.2 Measurement residual 

Indicated as  h�ß , it is the difference between the true measurement vector and the one predicted from 

the updated state vector estimate: 

 h�ß = � − J���ß� (A:10) 
Note that some authors may use the term residual to indicate the innovation. 
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A.1.5 Measurement noise covariance matrix 

The Kalman filter assumes that the measurement errors are white Gaussian noise, which means that they 

have zero-mean distribution and they are uncorrelated in time. The measurement noise covariance matrix � describes the noise of the measurements in terms of statistics, modelling their standard deviation. It is 

defined as the expectation of the square of the measurement noise:  

 � = ©��¿�¿[� (A:11) 
 

The diagonal elements of � correspond to the variance of each measurement, while the off-diagonal ones 

describe the correlation between the different components of the measurement noise. For most of the 

navigation application	� is diagonal matrix since each component of the measurement vector is 

independent. 

A.1.6 Measurements model 

In order to use a set of available measurements to update the state vector, it is required to know how the 

measurements change with the states. This means that is a function of the measurement model is needed. 

In a standard Kalman filter (linear), the measurement vector, ���� is modeled as a linear function of the true 

state vector, ����, and the white noise sources,	�µ���. 

���� = �������� +�µ��� 

If the measurements are taken at discrete intervals: 

�¢ = �¢�¢ +�µ¢  

where ���� is the measurement matrix and is obtained from the known properties of the system. 

 

A.1.6.1 Measurement matrix 

The measurement matrix � defines the linear relation between the measurement vector and the state 

vector. Note that in a standard Kalman filter, the measurements are assumed to be a linear function of the 

state vector. Indeed: 

 J���|� = ���| (A:12) 
 

Often, the measurement matrix can change over time, then it has to be calculated on each iteration.  

A.1.7 Kalman filter algorithm 

In the error-state implementation, all state estimates are initialized to be equal to zero, while in a total-state 

implementation, the states are normally initialized by the user. The covariance matrix is generally initialized 

by the designer and it indicates the initial confidence in the filter estimates. 

The iterative algorithm includes the following 10 steps [25]: 

1. Calculate the transition matrix 
¢|c between the time Î − 1 and Î. 

2. Calculate the system noise covariance matrix  W¢|c  at time Î − 1. 
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3. Propagate the state vector estimate from    ��¢|cß  at time Î − 1 to  ��¢| at time Î. 

4. Propagate the error covariance matrix from 	Á¢|cß   at time Î − 1 to Á¢| at time Î. 

5. Calculate the measurement matrix  I¢  at time Î. 

6. Calculate the measurement noise covariance matrix X¢ at time Î. 

7. Calculate the Kalman gain matrix Y¢  at time Î.   

8. Formulate the measurement �¢ = J���¢|� at time Î. 

9. Update the state vector estimate from  ��¢| to  ��¢ß. 

10. Update the error covariance matrix from  Á¢| to  Á¢ß. 

The first four steps define the system-prediction phase or system-propagation phase of the Kalman filter, 

which makes use of the system model, while the remaining steps define the update-phase. Table A:1 

summarizes the standard KF algorithm [113]. Note that the normal form to compute the corrected system 

noise covariance matrix involves subtraction and can result in loss of symmetry and positive definiteness 

due to rounding errors; while the Joseph’s form avoids this at expense of computation burden. 

Predicted state vector ��H| = 
H|±��H|±ß  

Predicted system noise covariance matrix Á¢| = 
¢|cÁ¢|cß 
¢|c[ + W¢|c 

Kalman Gain matrix Y¢ = Á¢|I¢[�I¢Á¢|I¢[ + X¢�|c 

Corrected state estimate ��¢ß = ��¢| + Y¢��¢ − J���¢|�	� = ��¢| + Y¢h�¢| 

Corrected system noise covariance matrix (normal 

form) 

Á¢ß = �= − Y¢I¢�Á¢| 

Corrected system noise covariance matrix (Joseph 

form) 

Á¢ß = �= − Y¢I¢�Á¢|�= − Y¢I¢�[ + Y¢X¢Y¢[  

Table A:1 Kalman filter algorithm.  

Figure A:2 illustrates the concept of estimate correction using Kalman gain.  

 

Corrected 
Estimate

Predicted 
Estimate

Kalman Gain
Noisy 

Measurement
Predicetd 

Measurement

��Î+ ��Î− YÎ  �Î  J���Î−�  

 

Figure A:2 Corrected state estimate. 

A.2 Nonlinear Kalman filter 

In a standard Kalman filter, the system model is assumed to be linear. Clearly, this is not always the case for 

real systems, where often the relation between the state and its derivative is nonlinear. This is the case for 

the position and velocity of a space vehicle indeed, as can be observed in section 5.5. Thus, the system 

model is represented by: 
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 �A ��� = 	������ + Ä����^��� (A:13) 
 

The system model is also assumed to be linear in the standard Kalman filter, but in case of GNSS 

measurements, the relation between the measurement and the states is highly nonlinear as well, as it can 

be observed in section 5.6. Thus, the measurement model is represented by: 

 ���� = J������ +�µ��� (A:14) 
 

According to [25], a nonlinear versions of the Kalman filter are: 

• Extended Kalman filter (EKF), where: 

 �¢|c = T	���
T� Z�����
��   and      �¢ = TJ���

T� Z�����
 = T����
T� Z�����
  

 

(A:15) 

The system is linearized about ��¢|cß  and the measurement is linearized about ��¢|. 

• Linearized Kalman filter (LKF), where: 

 �¢|c = T	���
T� Z����
�ü   and      �¢ = TJ���

T� Z����ü  

 

(A:16) 

The system and measurement matrices are linearized about a predetermined state vector	[\. 

• Higher order nonlinear algorithms which do not linearize the error covariance propagation and 

update. 

These include the Unscented Kalman filter (UKF). More details can be found in [25], [26] and [114]. 

 

A.3 Implementation issues 

In this section, the practical implementation issues are discussed. These include tuning and stability, 

numerical issues, and synchronization. 

A.3.1 Tuning and Stability 

The selection by the designer of the elements values of the following three matrices is an operation 

commonly known as “tuning” of the Kalman filter: 

• the system noise covariance matrix  W¢  

• the measurement noise covariance matrix �¢  

• the initial values of the error covariance matrix Á(ß. 

It is very important to perform the tuning correctly.  

The most critical parameter in Kalman filtering tuning is the ratio of Á¢| X¢⁄  , as it determines the Kalman 

gain Y¢. 
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If Á¢| X¢⁄  is underestimated, the Kalman gain will be too small with a much slower convergence of the states 

to their true value than required.  In addition, the response of the state estimates to changes in the system 

will be slower. Contrariwise, if Á¢| X¢⁄  is overestimated, the Kalman gain will be too large and the estimates 

will rely too much on the measurements and their noise will have too much influence on the estimate. This 

may result in unstable or biased state estimates. 

It may also be necessary to increase the value of the elements in X in order to account for time correlation 

in the measurements noise (typically due to synchronization or band-limiting errors). Therefore, a good 

tuning strategy is to set Á(ßand W¢  and then change X¢ by trial to find the smallest values that gives stable 

state estimates. If this does not result in a satisfactory performance, then Á(ßand W¢   are modified as well.  

 

A.3.2 Algorithm design 

The computational burden of a Kalman filter grows with the number of components of the state vector 0, 

measurement vector 2, and system vector �, as shown in Table A:2. 

Kalman filter Process Equation Multiplications Required 

System propagation phase   

State propagation  0d 

Covariance propagation  20d 

System noise distribution matrix computation  20� 
Measurement-update phase   

Kalman gain calculation  220d +2d0 

Matrix inversion  ~2s 

State vector update  220 

Covariance update  20d + 0s 

Table A:2 Multiplication and additions in the Kalman filter Processes. 

As it can be observed from the previous table, when the number of states is very large the propagation and 

update of the covariance require the largest processing capacity. On the other hand, when the 

measurement vector is larger than the state vector, it is the Kalman gain computation to have the largest 

process load. 

The interval between the updates of the measurements therefore, may be limited by the processing power. 

Several strategies can be adopted to limit the computation burden; some of them are described in [25]. 

 

A.3.3 Numerical issues 

In case of Kalman filter implemented on a computer, its precision is limited by the number of bits that are 

used to process and store each parameter. Then, the fewer bits are used, the larger will be the rounding 

errors for each computation.  

While the Kalman filter’s measurement update process correct the rounding errors effect on many of the 

state estimates, there are no corresponding corrections instead on the error covariance matrix Á. In this 

case, the distortion of the matrix Á  increases with the running time and with the iteration rate and for large Á matrix errors also the Kalman gain matrix � is distorted. 
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If an element of the Kalman gain matrix has a wrong sign, then a state estimate can diverge from its truth . 

Therefore, it is required that the Kalman filter implementation is designed and implemented in such a way 

to minimize computational errors in the error covariance matrix. Especially, Á must always be positive 

definite (i.e., it has a positive determinant). 

The simplest and most reliable strategy for minimizing rounding errors is the use of high precision 

arithmetic; for example, the Kalman filter can be implemented with double precision (64-bit) arithmetic 

instead of single precision (32 bit). However, this results in an increase of processing load unless a 64-bit 

processor is used [25].  

Other more complex method are proposed in [25]. For instance, in the method used in Chapter 5, the 

formulation of the Á matrix is modified to have greater symmetry than the standard form. This is certainly 

a robust solution, but it requires more than twice the processing capacity [25]. 

A.3.4 Handling data lags 

Different types of navigation system are characterized by different data lags between the time of validity of 

each sensor measurements, and the time when the filtered navigation solution based on such 

measurements is outputted. 

Poor time synchronization can be mitigated lowering the Kalman gain; however, it is much more efficient 

to synchronize the measurement data. 

In order to synchronize the date, one method is to store the outputs from the faster system, e.g. INS. Once 

an output is received from the slower system, e.g. a GNSS receiver, the output from the faster system 

corresponding to the same time of validity is taken from the store and used as a synchronized measurement 

input of the Kalman filter. 

In general, it is more efficient to interpolate the data in the store rather than use the closest point in time. 
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