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We develop a microscopic theory of sound damping due to Landau mechanism in dilute gas with Bose conden-
sate. It is based on the coupled evolution equations of the parameters describing the system. These equations
have been derived in earlier works within a microscopic approach which employs the Peletminskii-Yatsenko
reduced description method for quantum many-particle systems and Bogoliubov model for a weakly nonideal
Bose gas with a separated condensate. The dispersion equations for sound oscillations were obtained by lin-
earization of the mentioned evolution equations in the collisionless approximation. They were analyzed both
analytically and numerically. The expressions for sound speed and decrement rate were obtained in high and
low temperature limiting cases. We have shown that at low temperature the dependence of the obtained quan-
tities on temperature significantly differs from those obtained by other authors in the semi-phenomenological
approaches. Possible effects connected with non-analytic temperature dependence of dispersion characteristics
of the system were also indicated.
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1. Introduction

The study of mechanisms of sound damping in a Bose-Einstein condensate (BEC) has a long history.
Calculation of the sound damping rate in systems with BEC is a rather complicated theoretical problem.
First expressions for damping rate in such systems have been apparently obtained in IEL ] for the spa-
tially homogeneous case.

The direct experimental observation of BEC 1351 has stimulated a great number of works devoted to
various aspects of this phenomenon (see, for example, , B] and references therein). A number of papers,
both theoretical and experimental, deal with the problem of propagation and damping of excitations in
Bose gases with the presence of condensate [B—Iﬂ].

It is currently assumed that the Landau damping is the most probable mechanism of sound relax-
ation in the so-called trapped Bose condensates. This mechanism consists in collisionless absorption of
oscillation energy by quanta of elementary excitations @—lﬂ]. In this regard, recall that the existence of
specific collective excitations in a gas with BEC has been known since the pioneering work of Bogoliubov
[@]. In this paper, a special perturbation theory was proposed for a weakly non-ideal and spatially ho-
mogeneous Bose gas with condensate in which the repulsive interaction acts between atoms. This theory
predicts the elementary excitation spectrum for such system at zero temperature. At small wave vectors,
it coincides with the spectrum of sound oscillations in a condensed Bose gas.
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The first work, which proposed a method to calculate the sound damping rate in trapped BEC due to
Landau mechanism, is apparently the paper ] (see also [|1_A|]). The approach developed by the authors
uses the perturbation theory and is based on the calculation of the difference in probabilities between
emission and absorption of quanta of oscillations by elementary excitations in a system. It should be
noted that trapped condensates represent a spatially inhomogeneous system. This fact essentially compli-
cates analytical calculations. The method of ,] was shown to be suitable for numerical calculations
of sound damping in a trapped condensate (see the same paper). For a spatially homogeneous BEC, this
method has provided analytical formulae for damping according to Landau mechanism , |E]. In this
case, the authors reproduced the results obtained in [EL ].

It should be stressed that the formulae of , ] (and, hence, the results of [EL ]) can be obtained by
another method involving the kinetic equation for distribution function of elementary excitations (see,
e.g., ﬂa]). In other words, the semi-phenomenological approach to the calculation of the damping rate,
shown in [Ia], is equivalent to the method of [IE, ]. It was inter alia indicated in [IE, |E]. However, it
is clear that in the most general case, the mere use of kinetic equation for excitations is insufficient. The
system should be described by the coupled evolution equations which take into account the mutual effect
of condensate density, phase (or superfluid velocity) and distribution function of elementary excitations.
A consistent derivation of a system of coupled equations can be achieved using a microscopic approach,
proceeding from the first principles. This problem was solved in [IE, |E, @, ] within a microscopic
approach based on the reduced description of quantum many-particle systems llﬂ, |2_A|] and Bogoliubov
model for a weakly non-ideal Bose gas with condensate [IE]. The synthesis of the approaches elaborated
in ] and ] made it possible to obtain in , ] the kinetic equation for distribution function of
elementary excitations coupled with the evolution equations for condensate density and superfluid mo-
mentum. Note that the validity of such a system of equations is confirmed by its controlled derivation
within the framework of special perturbation theory with weak interparticle interaction. Furthermore,
the following fact speaks in favour of the mentioned coupled equations: they have been employed in
, ] to derive hydrodynamic equations of a superfluid in which the smallness of the difference be-
tween superfluid and normal velocities is not taken into account. As this difference tends to zero, the
obtained equations are reduced to the well-known Khalatnikov hydrodynamic equations (see e.g. ]).
Also note that evolution equations from [18, 19] were in fact reproduced in [IE] in another microscopic
approach. This circumstance was mentioned in [IE] with an appropriate reference link.

Notwithstanding the above considerations, the equations of ,] have not yet been used to study
the propagation and damping of sound in a dilute gas with BEC. However, the same considerations allow
us to hope that the correct solution of evolution equations found in ] should lead us to the correct
expression for sound damping rate in a gas with BEC. The present paper is devoted to the study of a colli-
sionless mechanism of sound damping in dilute gases with BEC on the basis of general dynamic equations
of such systems obtained in [@] from the first principles. As will be seen later, the results obtained in the
present work significantly differ in some cases from those of IEL ] and, consequently, of , ] (see also
27-29]). For example, in the present study it is shown that in the collisionless approximation the sound
damping rate at low temperature is quadratic on temperature, y ~ T2, whereas the results of [E|, , |E]
give y ~ T* dependence.

2. Kinetics of spatially inhomogeneous Bose gas with the presence of
condensate

Constructing spatially inhomogeneous Bose gas kinetics, authors of ] started from the Liouville
equation for the statistical operator p(t)

iap(t) _

a1 (H,p (1), (2.1)

where H = Hy + V is Hamiltonian of the system, consisting of the ideal gas Hamiltonian Hp

. 1 5 09" (r) 0v (x)
fy=—
0 2mfd d orr  Org

(2.2)
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and binary interaction Hamiltonian V'

., 1 3 3 s+ P - -
V:5fd rfd Ry x+Ry " mV(RDY @y x+R). 2.3)

Equation 2.I) is written in the units in which Planck’s constant 7 is equal to unity. In the formulae
2.2), 2.3) m is boson mass, V (|R|) is binary interaction potential, which depends only on the distance
between particles, and 1p+ (r), ¥ (r) are field operators. The quasiparticle distribution function fp (r, 1),
the order parameter v (r, t) = |Spp ()% (r) | and the superfluid velocity vy (r, ) = m™! % ImInSpp (1) (r)
were selected as parameters to describe weakly non-ideal Bose gas with condensate in kinetic stage of
system evolution in [19].

Using the method of reduced description [IZ_AI] combined with the special perturbation theory IIE]
made it possible to obtain in [@] the following system of equations for the parameters fp (r,0),w(r, ) and
vk (r, £). Since the general form of equations from [IE] is not required in the present paper, we introduce
it here in collisionless approximation:

dfp Ofp 0 dfp 0

o 0 mv- 22 % e, =0,

ot “argope PV " apear e MV oW

on 0 ov, 0 (12

J— —_— :0, —_— _— 4 — h y :0, 2-4
ot "o U ot +0rk{ y Hhlf ”)} @4

where instead of description parameter y(r, £) we have introduced a new variable n(r, £), that is conden-
sate density [Iﬂ]
w2, 0 = n(r, 1), 2.5)

and the quantities £p (12,v) and h ( f n) are given by expressions:

ep (M, V) =wp (M) +p-V, h(f,n)= i<vp€—p>+ﬁ<%>+ho(n)+o(/l4),

m wp 2m p
1 1 Ep— W ap—w
ho(m)=— Y —— vy 2R 4y, 2P p)+m, 2.6)
Vpz02m Wp wWp m
where
2
wp () ={e, [£p+2,6p(n)]}1/2, ap(n)=¢ep+Pp(n), Spfzp—m, Bp (M) =vpn, 2.7
and the following notations were also introduced
1 .
(Ap) = Wfd3pprp, Vo =Vp=o, Vp sfd3RV(|R|)exp (-ip-R), (2.8)

where Ay is an arbitrary function of p.

Let us recall that the basis of Bogoliubov equilibrium state theory of Bose gas in the presence of
interaction is the assumption that ¢ ~ 17!, see [18], where quantity A characterizes the smallness of the
interaction between the particles, V (|R]) ~ A2. Furthermore, it is believed that the order of magnitude of
y (1, t) does not change after differentiation v (r, f) with respect to r, dy (r, t) /0 ~ A~1. In the formulae
2 D-@2.6), the notation o (A") means the quantity in order of magnitude of A”.

We emphasize once again that in our paper we study the mechanism of collisionless sound damping
in a gas with a BEC (Landau mechanism). For this reason, in equations @2.4)-(2.6) we have omitted the
terms associated with the presence of interparticle collision term. The explicit form of the collision term
for quasiparticles can be found in , ]. Here, we note only the fact that the quasiparticle collision term
Ly (f, w) vanishes by substituting the stationary Bose distribution function fl?

() =0, =[] 2.9)

with the chemical potential of quasiparticles being equal to zero; here T is temperature in energy units.
The chemical potential having vanished reflects the fact that the number of quasiparticles is not con-
served during collisions , 1.
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3. Sound dispersion equations in diluted gas with BEC

To investigate the propagation of sound in gas with BEC, we linearize coupled equations 2.4), 2.6),
(2.]) with respect to spatially homogeneous equilibrium state according to the following formulae

n(r, t) = nO + ﬁ(r, t)’ V(l', t) :fl(r’ t)) fp(r, t) = fl(,) +f~p(r) t)’

no > a0l fy > 1fx ol 3.1

where ng = ng (T) is the equilibrium value of the condensate density in the system at the temperature
T. The equilibrium value of the velocity vy is considered to be equal to zero in the second formula of
@D Thus, the velocity [¥(r, t)| is supposed to be of the order of magnitude of 7(r, ) and fp (r, t). Then,
the equilibrium distribution function of quasiparticles pursuant to is given by the expression

fo= [eXp(w—Tp) —1]_1. (3.2)

In this formula, like in all subsequent expressions, we omit the index “0” in the designation of
the equilibrium value of wg = wp (np) to avoid encumbering the computations. Note that the quantity
h ( 10, nﬁeﬁned by represents the chemical potential of atomic Bose gas p = h(f 0 no) (see in this
regard ,@]).

Deviations of the corresponding quantities from their equilibrium values were denoted by 7i(r, 1),
V(r, 1) and fp(r, 0).

The equations of motion for these variables can be represented as follows:

iﬁ(r H+n i17(1‘ N=0
ar 09r, £ 0T

J vo 0 . f R
D)+ =m0+ | dBpKy— Fyr, 1) =0,
5, Pk 1) markn(r ) p parkfp(r )

Oflg’ 0 Vp€p
— — |p-V(r, )+
Opy Org p-v(r 1) w

if(r t)+aﬂif(r £ - ]| =0 (3.3)
ot T apr or P e ‘

where we have introduced the following notation

_ 1 ep(vo+2vp)+vpvono
2m2m)3 wp '

Kp (3.4
Recall that in the present paper, the Planck constant 7 is considered to be equal to unity. Note also

that while deriving equations (3.3), we have discarded the terms that are higher than the first order of

magnitude A. The circumstance of stating that ng ~ 172 or L.e. vpng ~ A° was taken into account.
Proceeding further to the Fourier transform of the quantities 7i(r, £), V(r, ), fp(r, t) in equations (.3)

as provided by formula
o0

i, 1) = f dw f d3q el (q, ), (3.5)

—00

where Z (r, t) should be understood as either of the considered quantities, we obtain

wn(q,0) = nyq-v(q,o),

v
wvi(qw) = qukn(q,w) +qrA(q ),

dwp Oflg’ Vp€Ep
— 222 £ (qo) = —gi =2 |p-v(q0) + 2L n(qw)|, 3.6
(w qkapk)fp(q ) Gicg, P v(q )+ oy n(q,0) (3.6)
where we denote [see (3.3), (3.2)]
(s ~ 1 f 5 €p (Vo +2vp) +vpvono
A@)= [ dpfp(a0) K= 5 [ d'pfy(0.0) p 37
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In the formulae G.6), . in Fourier transforms of the quantities 7i(r, 1), V(r, 1), fp (r, t) we omit the
’tilde’ sign. Further expressing the values n(q,w) and v (q, w) from the first two equations of in terms
of A(q,w),

2

noq Wk

niqo)=————=A(qo), viqw) = Alq o), (3.8
w? —12q? W — 12>
the third equation of (3.6) can be written in the form
dwp dwp 0fy p-quwp +Vpe,pnoq?
w—qr=— W) =—qr=— = Alqw), 3.9
( T opi ) fo(@:0) = =ax Opr 0wy wp (w? - U2 q?) (@)

where u,, is referred to as speed of zero sound in Bose gas

Yoo

U = (3.10)

m

As is readily seen, equation subject to (3.7 is an integral equation for distribution function
Fourier transform f; (q, ). The solution of this equation can be represented as in (301:

ofy P qQuwyp + VpEpnog?
,w) =B, S(w-q-uy)—q-u,—= P_P7P Alq,w), (3.11)
fp(q ) P(q) ( q P) q pawpwp(wz—ung)(w—q-upﬂo) (q )
where we have introduced the following notation:
Owp
u, = E’ (3.12)

and By (q) is an arbitrary function, which is required to impose the following restriction: the distribution
function f;,(r, £), calculated in accordance with @10, and B.TI) should be small compared with the
equilibrium distribution function f.

It implies also from that Bp (q) must satisfy the following relation:

By, (q) = Bp(-q). (3.13)

We denote the whole valid set of such functions by Byp (q), where ¢ is a continuous or discrete sym-
bolic parameter such that the functions By (q) = Byp (q) may depend on o. The reason for introducing
this index may consist, for example, in the following: the set of functions Bgyp (q) should be sufficient to
build an arbitrary value for the distribution function fp (r, t) at the initial time ¢ = 0 (in this context see
also I@]).

Formula (3.TI) permits to find the value A(q,w) in terms of B,p (q) functions:

Ao (q,0) = By (q,0) el (q o), (3.14)
where ( )
1 3 VohoVp+é€p Vo+2vp
By (4.0)= 5o [ @' - Bop ()5 (- q-uy) (315
and
1 af? q-up [vonevp + €, (Vo +2vp)|
w=1l+—— | d®p—L(q- + 2 P L P 3.16
E(q C()) 2m(2”)3f pawp (q pwwp Vpé‘pﬂoé] )w% (wz—ung) (a)—qup+10) ( )

The expression (ZII) for the given values fp, (q,») subject to GID-(I6 can now be represented in
the form:

afl? P quop + Vpepngg*

Uy — B, LW, 3.17
1 up(')wp wp (0% - U2 ¢?) (w — q-up +i0) o(@o). G17)

fop (@) =Bop (@) 8 (0—q-up) +&7' (q0)
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We note that in case of charged particles gas, the quantity ¢ (q, ) [see 18]
e(q ) =€ (q0)+iez (q ) (3.18)

represents complex dielectric permittivity of the system (see e.g., [IZ_AI]). It is known that the presence of
an imaginary term in dielectric permittivity indicates the energy dissipation of electromagnetic waves
with dispersion relation that should be obtained from the equation

€(q,wo (q) —iyq) =0. (3.19)

Moreover, the wave decrement yq is determined by an imaginary part £ (q, ) of the value ¢(q, ).
For this reason, weakly damped oscillations in the system

|wo (q)| > vq (3.20)

can exist if only
le1(q 0)| > |e2 (q.0)], (3.21)
besides, as the consequence of ZI8)-G2D (see in this regard [26,27]), the frequency w (q) can be found
from the equation
e1(qwo(q)) =0 (3.22)

and the damping rate yq is given by expression

d¢1 (q,0)

™ e2(q,wo0(q))- (3.23)

w=wo

Yq=

Despite the fact that in the present paper we investigate a neutral system, the existence of longitudinal
oscillations is also associated with the existence of zeros of the function & (q, w). In this case, there is a
complete analogy with the mentioned case of longitudinal oscillations in systems of charged particles.
That is, the structure of solution (3.17) is such that weakly damped waves may also be excited in the
system investigated, in accordance with (3:8) and (3.5), and the dispersion law is determined by (3.19)-
(B21). As we shall show in the following section, such waves would represent sound waves in weakly
nonideal Bose gas with condensate. The value y4 obtained according to (317)-(:20) will determine the
damping of sound in the system investigated.

4. Sound damping rate in dilute Bose gas with condensate
To solve this problem it is necessary to determine real ¢; (q,w) and imaginary ¢ (q,w) parts of the
quantity € (q, ). For this purpose in the expression we use formula

1
x+1i0

= Pl —imé (x), 4.1)
X

where the symbol P means that the further integration is taken in the sense of Cauchy principal value. Af-
ter some hackneyed transformations one can obtain the following expressions for &1 (q,w) and &> (q, w):

5 af;,) q-up (q-pwwp +vpepnog?) [Vonovp +&p (vo +2vp)]
sl(q,w):1+73 fd p— PRI ,
2m (2m) Owp wh (w? - u5q?) (w—q-up)
ofy [vonovp +€p (Vo +2vp) |
_ Tw 3 °Jp 2y 1Y070Vp T Ep (Vo p
2(q.0) __2m(2n)3fd pﬂ(q'pwwpwpg'gnoq ) W2 (02— 12q?) Plo-amy). 42

Further calculations are not possible without specifying the explicit form of v, that is the Fourier
transform of interaction potential V (|R|) [see (Z.3), @.8)]. To simplify calculations it is often accepted to
replace the interaction potential V (|R|) by the following effective potential (see [IE, B])

4
V(IR)=vesR), vo= ”n‘; 4.3)
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where ag is the so-called s-wave scattering length (for details see lla]). Thus, we have vp = vq. Taking it
into account, we have wp = w, and the value u,, [see 2.7), B.I2)] can be expressed in the form

ow £y + Voo
ungup, upsa—pzp—ﬁ. 4.4)
p p Wp m

Formulae and (@.4) enable us to perform integration in over the angle between vectors q
and p, and then &; (q, ) can be represented in the form

o0 0
Vo dpp?* 0fp ( b 2 2 2
’ = 1- ~ +
1(q.0) 472 (wz—ung)of wh 0w mupw @pTEpthd
w+qu
x (novo +3¢) (1— 2;) ln‘# ) (4.5)
u, |w-qup

After the same angle integration, the second expression of can be written as follows:

[e )

e (q,w) __ Vow f

8nm (w? — u3q?) J

0
dpp® 0fp (ﬂwzwp +£pv0n0q2) (novo+3¢p)0 (qup—lwl),  (4.6)
w5 up 0wp \ Uup

where 6 (x) is Heaviside step function.

We now determine, following works , @], the sound damping rate in the case of low (T <« vgng)
and high (T > vgony but T < T,) temperatures. To study the case of low temperatures it is convenient
to use the variable z = w, /T in the integration in and (£8). The variables p, €p, Up in terms of the
variable z can be expressed using the w), explicit expression @D and @4). After carrying out rather
cumbersome but necessary calculations, the result can be summarized as follows:

(o)
F afo +
e1(qo) = 1- 5 fdz ) (Z)g(q,w,z) 1- @ 1 ’w quov (2) ,
a(w? - uiq?) ) 0z 2quov(z)  |w—qugv(2)
F T 0%
i z
&g w) = - dz ,w,z2) —0(quov (2) —|wl),
2(q,0) za(wz—uqu)of 5, sla )quov(z) (quov(2) - lwl)
1
0
= ) 4.7
@ = o= 4.7
where functions g (¢, ,z) and v (z) are given by:
V2V \/1+a2z2—1(3\/1+a222—2)
_ 2 2 2.2 > 2 2 2 2
g(qwz) = @) [q u0(1+az v1+az)+waz],
2VI+ @22V 1+ 222 -1
vz = \/—\/ +acz V1+d?z ’ “.8)
az
and the following notations were introduced [recall u still given by (3.10)]:
a= T F= 1vmzu— 2 noas (4.9)
" vong’ T2 O 0T g Ve .

Deriving the last formula of it is necessary to use the expressions (3.10) and (£.3). The quantity
npas, is referred to as gas parameter, see ﬂa, B]. That is, in diluted gases the following relation should be

satisfied:
noas, < 1. (4.10)
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It is easy to verify that the values ¢; (g, w) and €2 (g, w) can be represented as functions of one dimen-
sionless variable s= w (q) /uoq

B v af(2) s s+v(z a)
al)=1- (Z—I)Ofdz 0z g(52) 1_21/(z,a) s—vz,a)|l’
_aFs [ 3f'2) g(s,2)
eg(s)——za(sz_l)ofdz 52 U(Z’a)ﬂ(v(z,a)—lsl), (4.11)

where

NV \/1+a2z2—1(3\/1+a2z2—2)

z(1+a?z?)

(l+a222— v1+azzz+sza2z2), (4.12)

8(s,2) =
and for these functions the symmetry conditions are valid
e1(s)=e1(=9), &) =e(=9. (4.13)

Expressions (3.22) and (3.23) that determine the dispersion and decrement (or increment) of small
oscillations in the system investigated, can be written in the following form by taking into account (Z.11):

wo (q)
= 0’ = y =
€1 (o) So o Yq = Uoq

-1
021(s) ) (4.14)

0s

£2(9) (

$=S80

As is easily seen, these oscillations have linear spectrum. In virtue of (Z11) and @I4) the structure of
dispersion equation is such that the unknown value s, which determines the oscillation frequency as a
function of wave vector, does not depend on wave vector itself.

In accordance with and (4.14), the dependence of oscillation frequency wg on wave vector ¢ in
this system should be determined by the solution of equation

FT. af'Q
2—1=—f Z
o aodz P

S0
2V (2)

So+ v (2)
So— Vv (2)

1-—

. (4.15)

g (S0, 2)

We note that dispersion equation is similar to the dispersion equation of zero sound in a normal
Fermi liquid, (compare e.g., with the corresponding formula in 130). Further, taking into account this
equation, to calculate the derivative O¢; (s)/ds appearing in @.14), the damping rate y,; can be presented
as follows:

X 0
Ya _ 7 _Fso [, 0f(2)g(%0.2),

ug 2 ab(sy) J 0z v (v(2)=Isol), (4.16)
where
24 T 0
b(s0) = [(52 BRI LO) Efdzaf (2) [ 8(s0,2) _0g(s0,2)
s s=So S0 a 5 0z So dso
® 0
+ﬁ ifdzaf (2) g (s0,2) In So+ v (2) @17
2a |dsp / 0z v(2) so—v(2)

We emphasize that the above mentioned expressions (I.7)-(.17) are exact, despite the fact that we
have modified them to the form suitable to study the low temperature regime.

As is readily seen, equation in the general case can be solved only by numerical methods. Fig-
ure[fshows the dependence s (a) [see EII) and (4.9)] obtained as a result of numerical solution of equa-
tion for F =1073. It is evident that the function s(a) behaves nonmonotonously as a changes. At
low a region (the case of low temperature), an increase of the function is observed. At the point a = 0.43
it reaches maximum, and then s(a) decreases monotonously as a increases, and in the point a = 0.847
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Figure 1. (Color online) Dependence of dimensionless speed of sound s(a) = wg (¢, a)/ upq on tempera-
ture [dimensionless quantity a, see (£9)] obtained by a numerical solution of for F =102 (solid
line). Dots shows the intersection with line s =1 (dashed one) in points @ = 0 and a = 0.847.

s(a) it is equal to unity again. As mentioned above, the increase of the value a is restricted at least to the
critical temperature, see (Z9). At zero temperature (a = 0) we deal with a classical zero sound in Bose
system, because s = 1, and hence wg (q) = upq due to (Z.II). This result is naturally expected. However,
we note once again that at the point a = 0.847 there also holds s = 1 and the frequency of sound in dilute
gas with Bose condensate is again equal to the frequency of zero sound in such a system. The fact that we
discovered had not been mentioned in the literature. This may be due to the use of the evolution equa-
tions of the system in the present work, that were obtained within the microscopic approach, as well as
due to the numerical solution of the dispersion equations. Whatever the case is, the very existence of the
second point of a sound dispersion curve with s = 1, that is a = 0.847 (or T = 0.847 vong) for F = 1073,
requires an individual physical interpretation. Some more comments regarding this point will be given
below.

In the regions of low (T < vgng) and high (T > vong but T < T,) temperatures a solution of
can be expressed in analytical form. Thus, one can obtain analytical expressions for the quantity y4 in
two limiting cases. To do it, as we shall see, one need to involve a numerical analysis as an auxiliary
technique.

Consider first the case of low temperatures. By virtue of inequality (low temperature regime, as men-
tioned above)

T
a= <1
Vono

(4.18)

and the rapid decrease of the function f0 (z) as z — oo [see (A7), functions g(q,w,z) and u(z) can be
expanded in power series of az in @ID-EI3):

g(s,2) = a’z?

1 3
s+ 5), v(z)~1+ Eazzz. (4.19)

As will become apparent from the subsequent formulae, such an expansion corresponds to the devel-
opment of perturbation theory with respect to a small parameter a. Taking into account the expansions
(4.19), the dispersion equation (4.15) can be written as:

(o0]
1 of0 so+1+3a2z2%
az(s§+—)fdzz2 /(@ 0 8
2 0z
0
q

20 (2)

Il
lao]

2
sg—1

’

so—1-3a2z?

S0 (4.20)

23004-9



Yu. Slyusarenko, A. Kruchkov

In the region of small a, i.e., low temperatures, as we have seen in figure[] s ~ 1. That is to say, the
value §s = s — 1 should be much less than unity, |6s| <« 1. Therefore, the equation admits further

simplification
o0
3 afo 1 1
0s~ —FazfdzzZM (1 ——In2+-In
4 0z 2 2
0

When F <« 1 and a < 1 [see @), @ID)] the solution of @2I) can exist only in the §s < a® <« 1 do-
main. This inequality makes it possible to neglect the value 6 s within the logarithm term in the integrand
in @.ZI) as the first approximation of perturbation theory. As a result, we obtain

2

) , @.21)

3
6s—=a’z
8

6s=Fa’d, &s=s-1, (4.22)

where the notation d is

o)
3 z?e* (1 1. 3,,
d:—fdzm(gan—l—Elngaz). (423)

Formula (4.22) is also confirmed by numerical calculations. Figure [2] shows the dependence d (§'s),
ds=s—1, computed according to expression (£21)

3
5s—=—a’z?

1 1
d(as)——fd ﬁ(—an—l——ln
1?2 \2 2 8

) , (4.24)

4.408 - N 4

&

i

=]

N
T

’
/
1

4.406 - ~. 1

integral value

4.405 S :

4.404 S E

L L L L L L L L L L L L L L L L L L L L 14

0.0000 0.00002 0.00004 0.00006 0.00008 0.0001
Js parameter

Figure 2. Dependence d (6 s) plotted numerically according to (4.24) for a = 0.1.

As can be seen from figure[Z] the equality d (6s) = d =~ 4.4 for a = 0.1 holds up to the second decimal.
As a consequence, in the expression for d that is given above, the dependence on ds can be neglected.

Then, one can derive:
2

d= —%lna— 1.27, (4.25)

where the second term was calculated numerically, and, deriving the first term, the following integral

value was used:
2
dz —.
f - 1)2 3

Thus, the solution shows the followmg dependence of the sound frequency in dilute gas with BEC
on the low temperature range:

T
w0 ()= +10q(1+Fatd),  a=—— 1. @.26)
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Figure 3. (Color online) Analytical dependence of dimensionless speed of sound s = wq (q, a)/ Upq on
temperature (dimensionless quantity a) in case of low temperatures, plotted according to expressions
@22, for F; =3-107%, F, =1073 and F3 = 1.5- 1073 respectively.

Analytical dependence s(a) in case of a < 1 in accordance with and (£.27) is shown in figure
for three different values of F. Note that sound speed temperature corrections in a gas with BEC were
also obtained in [27]. In contrast to our results that are shown by formulae @.25), @.28), corrections in
llﬂ] have s ~ a*1n a temperature dependence.

The damping rate of sound in BEC calculated according to formulae (Z16), @17 and using (£19),
(4.22)-(.26) in the first order approximation with respect to a is given by a fairly simple expression

3 5/2 2
b/ b4 T
Y :ﬁz—Fazz—\/noagc(—) : (4.27)
8 2 Voo

If we assume that at low temperatures [see (ZI8)] all the Bose gas is in condensate , ], ny (T) =
ng (0) = ng, the quadratic dependence of decrement y, on temperature follows from @Z6). This be-
haviour of sound decrement at low temperatures significantly differs from that given in [EL , 1d]. In
these papers the value y, is known to depend on temperature in low-temperature regime as T*. This
circumstance, as well as the above mentioned difference in 6s temperature dependence, is clearly the
consequence of our using the evolution equations of the system studied, derived in microscopic approach
from the first principles. The quadratic dependence of y, on temperature shows that sound damping in
dilute Bose gas with condensate can occur faster than it was expected before.

Figure [ shows the dimensionless damping rate Yqlwo (q) at low temperatures (low values of a) plot-
ted for F = 1073. The solid line reflects the behaviour of dimensionless decrement that follows from the
analytical expression @27). The dotted line shows the dependence y,/wo(q) on the temperature ob-
tained as a result of numerical calculations based on formulae @I5)-@I7. It is evident that analytical
expression (#.27) with good accuracy coincides with the damping rate temperature dependence in a di-
lute gas with BEC in a rather wide range of low temperatures.

Here, we should make the following remark. The experimental data (see [E, BI] and [@—@]) show that
under the present experimental conditions, the criterion a = (T /vono) < 1 is not generally realized. For
example, approximate estimates of the parameter a obtained in accordance with typical experimental
conditions of the mentioned studies, show the following circumstance. This parameter takes on the value
a ~ 2 for 8Rb [35], a ~ 23 for 23Na [4], a ~ 58 for 'H [32]. To perform these estimates, the scattering
length values were taken from lla]. The exceptions are the data of [Iﬁ] and [@]: for “Li we have a = 0.5
133] and for !33Cs accordingly a ~ 0.8 [36]. Therefore, to observe the effect of sound damping in dilute
gas with BEC at low temperatures, the most promising are experimental conditions in ﬂﬁ, 1.

Experimental conditions in other studies are rather close to the limiting case contrary to (£I8), that
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Figure 4. (Color online) Dependence of dimensionless damping rate y4/wo on temperature [dimen-
sionless quantity a, see @.I8)]. Solid line represents the analytical approach given by Z27) and dot-
dashed line represents numerical calculation in accordance with (ZI5)-@I7). Both lines were plotted
for F = 1073, Dashed vertical line indicates the region where analytical formula works with good
accuracy.

is the case of high temperatures. For this reason, we now consider, as in , |E], another limiting case

T
a=s——>1, T<Te.. (4.28)
Voho
As before, we assume here that £, ~ vonp. Then, from it follows that w, (np) < T. In this case,
the following limiting expression for the distribution function fg (wp) can be used (see, in this regard

and [12,113))
0 T
f (wp) = . €p~Vonp, wp(ng) < T. (4.29)
p
To simplify the further calculations in and (4.6), it is convenient to change the integration vari-
able p to variable z, that is introduced in accordance with the formula
2
_r _
2mvong

As a result of the change of integration variable, we obtain the following expressions:

e1(s)=1- Fa fdz (s,2) |[1— s nLv(z) (4.30)
BT (-1 i 20(2) |s—v(@|] :
where now we have introduced the notations
V2@z+1) [z(s?+1) +252 +1] z+1
(s,2) = . v@= V22—, (4.31)
§ Vz(z+1) (z+2)2 Vz+2

and the quantities F and a are still defined by and (@10).
From the condition &; (sp) = 0 [see (2.19), (3.23), @.26), @.30)], written when sy (a) = +[1+6s(a)],
|6s| < 1, in the form of

55—Fafdz (3z+1)(2z+3) [1_ 1 n 1+v(z)+6s]
- S Vezz 22 | 0@ [1-v@ 45|l
os(a)=s(a)—-1, (4.32)
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it follows that equation has a solution if only Fa < 1 [but a > 1 see {@.28)]. There is no analytical
solution to this equation. However, the numerical analysis reveals that the result of integration with
respect to z in the right-hand side of formula almost does not depend on §s if |0s| < 1. In this
regard, the solution of in case of |0 s| < 1 can be written as follows:

0s=—Fad,, Fa<x1, (4.33)
where the constant d» is given by

3 Vz+2
2V2(z+1)

VZz+2+V2((z+1)
Vz+2-V2((z+1)

; (Bz+1)(2z+3)
/ V2z2(z+1)(z+2)2

dy = ~ 3.97. (4.34)

n
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0.98 |- 1
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temperature

Figure 5. (Color online) Analytical dependence of the dimensionless sound speed s = wy (q, a)/uoq on
temperature (dimensionless quantity a) in case of high temperatures, plotted according to expressions
@33, @33 for F; =3-107%, F, =1073 and F3 = 1.5- 1073 respectively.

Analytical dependence s(a) in case of @ > 1 in accordance with (£33) and (4.34) is shown in figure
for three different values of F.

The value b (s) required in accordance with (I6), (Z.17) to calculate the damping rate of sound at
high temperatures [see [@.28)] is given by:

0€1 (8)
0s

2 X 2
ss@+1  Fa V% (2)

= d ,
w=wo So (@) So (@) ; 28(%0(@,2)

b(s) = [(52—1)

sa(a)—v?(z,a)

Fa [ & 0g(s0(a), z)
so(a) J 0so (a)

so(a)+v(z,a)
So(a)—v(z,a)

__So(a)
2v(z,a)

) (4.35)

where the functions g(s,z)and v (z) are still defined by @.31), and so (a) is given by while tak-
ing (£.33) into account. One can verify that the first term only yields the main contribution to b (s). The
damping rate y, of sound in BEC, calculated according to formulae using (£.35), in the main ap-
proximation with respect to Fa [see (Z.33)] indicates a linear dependence on temperature:

Yo Yq m(®+6)
wo(q)  uoq 8

and that is a well known result (see for example , , |E]). Deriving (4.36), the following integral was
used

Fa, (4.36)

Bz+1)(2z+3) _ 7+6
VZ(z+1)2(z+2)32 2
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Formula (£36) using 3.10), (.3), (£.9) can be written as

T+6
Ya= g~ ascTq. (4.37)

It should be mentioned that this expression differs prima facie from that given in , , ], where
3
Ya= ?asch- (4.38)

However, it is easy to verify that the numerical factors in (Z.37) and (.38) coincide with two signif-
icant digits. Note that in [IE, |E] it was also indicated that the formula (4.38) obtained therein slightly
differs in a numerical factor from a similar formula of the previous studies. In our case, the method used
to obtain formula 37 differs greatly from the approaches used in 112,191 to derive @38). This is what
really caused the difference (although small) in formulae (£.37) and (£.38).

0.12 T T T T T
0.10
0.08

0.06

damping rate

0.04

0.02

0.00

temperature

Figure 6. (Color online) Dependence of dimensionless damping rate y4/wq on temperature [dimension-
less quantity a, see (£.28)] in the case of high temperatures. The solid line shows the dependence given by
and the dashed one reveals the result of numerical computing based on the formulae @I5)-@I7.
Both lines were plotted for F = 1073,

Figure[6lshows the dependence of dimensionless damping rate y,/wo (g) at high temperature region
[a= (T/vong) > 1 and T < T¢] plotted for F = 1073, It is apparent that the graph plotted according to
formula or (@37 (solid line) nearly coincides with the graph obtained by numerical computations
based on formulae (. 15)-(.17) (dashed line). As it follows from figure[] the condition of sound existence
in a dilute gas with BEC, (yq/wo) « 1, is well satisfied even in the region where a ~ 30. Naturally, one
should be confident that in a particular physical system, the condition T < Tt is also satisfied in this range
of a.

5. Conclusion

We have reported the main results related to the construction of microscopic theory of sound damp-
ing due to Landau mechanism in a dilute gas with Bose condensate. The analytical expressions of prop-
agation velocity and damping rate of sound in a dilute gas with Bose condensate in the limiting cases of
high and low temperatures were obtained. It was shown that at high temperatures these expressions co-
incide with those obtained previously by other authors in various phenomenological approaches. At low
temperatures, the behaviour of collisionless sound decrement obtained in the present paper, significantly
differs from the same decrement obtained by other authors. In our opinion, the distinction is caused by
our use of evolution equations that were obtained in the microscopic approach from the first principles.

We now make a significant remark. At first glance, the presence of general equations @.I4)-@.17)
makes it possible to find the parameters of propagation and damping of sound in the present system in
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any temperature range (i.e., for all values a), at least numerically. Meanwhile, figure[Bland figure[ldo not
display the data for the ‘intermediate’ temperature range, that is from a = 0.7 to a = 1.4. This is caused
by the following circumstance. We have already mentioned that in this range of values of a there are no
analytic methods for solving dispersion equations (Z.14)-(Z.17). But as it turned out, in this temperature
range, the numerical methods, at least those we have used, also become uncontrollable. Hence, one can-
not trust its results. This is supposed to be due to the fact that in this interval of a, the point a = 0.847 is
located. Recall that it is the point where the value of sy (a) = wo (g, a) /uoq [see @ID] is equal to unity.
As it was mentioned earlier, the same value s gains also at the point a = 0 (zero sound). It is that very
neighbourhood of a = 0.847 that gives huge oscillations of sound damping rate in the received outcome
of numerical computations with insignificant changes of the value a. However, one cannot be sure that
these oscillations of the damping rate reflect a real physical picture. The reason for doubting the out-
come lies in the mentioned uncertainty in this temperature range of the numerical methods used in the
present paper. Numerical calculations are poorly controlled due to the slow convergence of integrals in
EI5)-@1D as the manifestation of non-analytic dependence on temperature of the dispersion charac-
teristics of the system in the neighbourhood of the point a = 0.847. Apparently, a more detailed study of
the behaviour of a decrement (or maybe even an increment!) of sound in the neighbourhood of this point
requires the use of more sophisticated numerical methods. The authors intend to address this issue soon.

In this regard, the results in @] are also of interest, where propagation and absorption of the trans-
verse breathing mode of an elongated BEC were investigated experimentally in 8’Rb vapour. The authors
of the mentioned study, attempting to measure the damping rate of these modes at the temperature ap-
proximately equal to 40 + 60 nK, had found that the behaviour of the perturbation amplitude in this
temperature region differs significantly from the behaviour of the amplitude of a damped sinusoidal sig-
nal. The presence of such a phenomenon was suggested to be explained due to nonlinear effects in the
propagation of the modes studied in the system. We also would like to draw attention to the fact that
temperature range 40 + 60 nK corresponds to the values of quantity a in terms of the present paper that
are in the 0.7 + 1.0 range. The value of a is naturally calculated according to formula and using the
values of the physical characteristics of the system [Iﬂ]. In other words, in the mentioned case [Iﬁ], it
deals with the nearest neighbourhood of the point a = 0.847 where the nonanalytic dependence of the
dispersion characteristics on temperature is revealed.

In conclusion, we note a good correlation of our theory in the case of high temperature region with
the experimental data I]ﬁ]. As can be seen from figure[7] the results of numerical calculations based on
formulae @I5)-@ID for F =3-107* [see @] are in satisfactory concordance with the experimental
data [Iﬁ]. Experimental data reveal the same good fit with the dependence given by formula (Z.386).

The authors are naturally aware of the fact that a direct comparison of the results of the present

T T T T T
0.004 g
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)
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§ ©
o0 ©®
=]
R
g 0.002 |- ® g
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© ()
0.001 | g
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Figure 7. (Color online) The dependence of dimensionless damping rate y4/wq on temperature (dimen-
sionless quantity a). The solid line displays the result of numerical computation for F = 3- 104 based on
expressions @I5)-@I7. Diamonds reproduce the experimental points taken from [33].
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paper with the experimental data I@] can hardly be considered entirely correct. At least, the reason
is that the authors of [@] have to deal with the trapped BEC. However, such a comparison once again
demonstrates the validity of the statement [IE, |E] that the linear dependence of the sound damping rate
on temperature should occur in the case of trapped BEC.

Noting the qualitative similarity in particular cases of our results with the experimental ones, we

especially emphasize once again that we do not claim to microscopically describe the damping of sound
in trapped BEC. This specific case requires a cardinal modification of the whole theory, and it is the issue
the authors are currently working on.
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Mpo 6e33iTKHEHHEBMIA MeXaHi3M 3aracaHHs 3BYKy B
po3pia>keHux 603e-rasax i3 KOHAEHCAaTOM

}0.B. CntocapeHko™, O.+0. Kptoukos?

L IHCcTUTYT TeopeTnyHoi ¢isnkm im. O.1. Axiesepa, HHL, XPTIL, Byn. AkagemiuHa, 1, 61108 Xapkis, YkpaiHa
2 XapkiBCbKW HaLioHanbHWIA yHiBepcuTeT iM. B.H. KapasiHa, nn. CBo6oaw, 4, 61077 Xapkis, YkpaiHa

MobyaoBaHO MiKPOCKOMiYHY TEOpito 3aracaHHA 3BYKY 3a MexaHi3MoM JlaHAay y po3pifkeHuUX rasax i3 6ose-
KOHAeHcaTOM. B ocHoOBY Teopii 6yn0 3aknazeHo NoB's3aHi piBHAHHA eBOoAtOLi A1 NapamepiB onucy CUCTeMU.
Lli piBHAHHA 6yno BMBeAeHO Yy 6iNbLL paHHIX po6oTax y MiKpOCKONIYHOMY MiAXO0A, Lo 6a3yeTbCA Ha BUKOPUC-
TaHHi MeToAy CKOPOUYEHOro OMmMcy KBaHTOBMUX CUCTeM baraTbox YacTMHOK (MeTog MeneTMMHCbKOro) Ta Mojeni
BorontoboBa ans cnabko HeigeanbHOro 603e-rasy 3 BUAINEHUM KOHAeHCaTOM. OTPYMaHO PiBHAHHA Aucnepcii
3BYKOBUX KO/MMBaHb y CUCTEMI, L0 BMBYAETLCS, LUASXOM JliHeapu3aLii 3a3HayeHNX piBHAHb eBOtoLi y 6e3-
3iTKHEHHEBOMY HabnKeHHI. [poBeeHO aHani3 PiBHAHb AMCNepCii, Ak YMCeNbHO, Tak i aHaniTMYHoO. OgepxxaHo
aHaNTUYHI BUpa3un ANS LIBUAKOCTI PO3MOBCIOKEHHS 11 KoedillieHTa NOrIMHAHHSA 3BYKY B PO3PiAXEHMNX rasax
i3 603e-KOHAEHCATOM Y rPaHNYHUX BUMaAKaxX BEIVKNX Ta Manaux Temnepatyp. HaMu npogemMOHCTPOBaHO, LU0
B 06/1aCTi Manux TemnepaTtyp TemnepaTypHa 3aiexXHiCTb 3HalileHUX BeNYMH CYTTEBO BiAPI3HAETLCA Bij TUX,
LLI0 OTPMMaHI paHille iHWMY aBToOpaMun B HamiBpeHOMEHONOTiYHMX NigxoAax. BkazaHO Ha MOXAMBI epekTw,
MOB'A3aHi 3 HeaHaMITMYHMU 3aNeXHOCTAMUN ANCMEPCiAHNX XapaKTepUCTK CUCTEM Bij TemMnepaTypu.

KnrouoBi cnoBa: po3pigxerHuii 603e-ras, 6o3e-eiiHLUTeliHiBCbka KoHAeHcayis (BEK), mikpockoniuHa Teopis,
3BYK, MexaHi3m JlaHgay, ANCNepCiviHi CiBBIAHOLLEHHS, LLUBUAKICTL 3BYKY, MOKa3HWK 3aracaHHsi
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