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Abstract

Sparse matrices are favorable objects in ma-
chine learning and optimization. When such
matrices are used, in place of dense ones,
the overall complexity requirements in opti-
mization can be significantly reduced in prac-
tice, both in terms of space and run-time.
Prompted by this observation, we study a
convex optimization scheme for block-sparse
recovery from linear measurements. To ob-
tain linear sketches, we use expander matri-
ces, i.e., sparse matrices containing only few
non-zeros per column. Hitherto, to the best
of our knowledge, such algorithmic solutions
have been only studied from a non-convex
perspective. Our aim here is to theoretically
characterize the performance of convex ap-
proaches under such setting.

Our key novelty is the expression of the re-
covery error in terms of the model-based
norm, while assuring that solution lives in the
model. To achieve this, we show that sparse
model-based matrices satisfy a group version
of the null-space property. Our experimen-
tal findings on synthetic and real applications
support our claims for faster recovery in the
convex setting — as opposed to using dense
sensing matrices, while showing a competi-
tive recovery performance.

1 Introduction

Consider the sparse recovery problem in the linear set-
ting: given a measurement matrix X € R"*? (n < p),
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we seek a sparse vector 3* € RP that satisfies a set of
measurements y = X3* or finds a solution in the feasi-
ble set {8 : |ly — XB|2 < ||€|l2}, when noise & € R”
is present. This problem is closely related to compres-
sive sensing [11, 9] and the subset selection problem
[27], as well as to graph sketching [1] and data stream-
ing [25].

Typically, the analysis included in such task focuses
on investigating conditions on X and the recovery al-
gorithm A to obtain estimate 8 = A(XB* + &) that
yields a guarantee:

18" = Bl < C1lIB" = Billgs + Calléllyr- (1)

Here, B} denotes the best s-sparse approximation to
B* for constants C1,Cy > 0and 1 < g < ¢ <27, 5].
This type of guarantee is known as the ¢, /¢4, error
guarantee.

Without further assumptions, there is a range of re-
covery algorithms that achieve the above, both from
a non-convex [24, 21, 23] and a convex perspective
[10, 5]. In this work, we focus on the latter case.
Within this context, we highlight ¢;-minimization
method, also known as Basis pursuit (BP) [10], which
is one of the prevalent schemes for compressive sensing:

Hgn IBll1 subject to: y = X3. (2)
Next, we discuss common configurations for such prob-
lem settings, as in (2), and how a priori knowledge can
be incorporated in optimization. We conclude this sec-
tion with our contributions.

Measurement matrices in sparse recovery: Con-
ventional wisdom states that the best compression per-
formance, i.e., using the least number of measurements
to guarantee (1), is achieved by random, indepen-
dent and identically distributed dense sub-gaussian
matrices [8]. Such matrices are known to satisfy
the £,-norm restricted isometry property (RIP-q) with
high-probability. That is, for some d; € (0,1) and
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V s-sparse 3 € R? [6, 5]:

(1 =058l < IXBlIg < A+ )85 (3)

In this case, we can tractably and provably approxi-
mate sparse signals from n = O (slog (p/s)) sketches
for generic s-sparse signals. Unfortunately, dense ma-
trices require high time- and storage-complexity when
applied in algorithmic solutions.

On the other hand, in several areas, such as data
stream computing and combinatorial group testing
[25], it is vital to use a sparse sensing matrix X, con-
taining only very few non-zero elements per column
[18, 5]. In this work, we consider random sparse matri-
ces X that are adjacency matrices of expander graphs;
a precise definition is given below.

Definition 1.1. Let a graph (p,n,&) be a left-reqular
bipartite graph with p left (variable) nodes, n right
(check) nodes, a set of edges & and left degree d. If,
any S C {1,...,p} with |S| = s < p and for some
es € (0,1/2), we have that the set of neighbours of
S, T(S), satisfy |T(S)| > (1 — €5)d|S|, then the graph
is called a (s, d, €)-lossless expander graph. The
adjacency matriz of an expander graph is denoted as
X € {0,1}"*? and is called as expander matrix.

In the above, the attribute |T'(S)| > (1 — €5)d|S| is
known as the expansion property, where €5 < 1 [20].
As [5] states, expander matrices satisfy the RIP-1 con-
dition if Vs-sparse vector 3 € RP, we have:

(1= 2e)d||B]lx < [XB]l1 < d[|B]]1- (4)

Since the recovery algorithms typically use X and its
adjoint X” as subroutines over vectors, sparse ma-
trices have low computational complexity, even in the
convez case (2), without any loss in sample complexity
n = 0O (slog(p/s)); see Section 7 for some illustrative
results on this matter. Along with computational ben-
efits, [5] provides recovery guarantees of the form (1)
for BP recovery where ¢ = q2 = 1.

Model-based sparse recovery: Nevertheless, spar-
sity is merely a first-order description of 8* and in
many applications we have considerably more informa-
tion a priori. In this work, we consider the k-sparse
block model [29, 3, 22]:

Definition 1.2. We denote a block-sparse structure
by M = {G1,...,Gn} where G; C [pl,|Gi| = g for
i=1,....M,GNG; =0, i # j, and M is the total

!There exist structured dense matrices that achieve bet-
ter time and storage complexity, as compared to random
Gaussian matrices; see [26] for discussion on subsampled
Fourier matrices for sparse recovery. However, sparse de-
sign matrices have been proved to be more advantageous
over such structured dense matrices [5].

number of groups. Given a group structure M, the k-
sparse block model is defined as the collection of sets

My ={Gi,,...,Gi.} of k groups from M.

We consider block-sparse models such that UgepmG =
{1,...,p} and g = p/M where M is the number of
groups. The idea behind group models is the iden-
tification of group of variates that should be either
selected or discarded (i.e., set to zero) together. Such
settings naturally appear in applications such as gene
expression data [30] and neuroimaging [13].

As an indicator of what can be achieved, Model-
based Compressive Sensing [4], leverages such mod-
els with dense sensing matrices to provably reduce
the number of measurements for stable recovery from
O (kglog (p/(kg)) to O (kg + klog(M/k)) using non-
convex schemes?; see [14] for a more recent discussion
and extensions on this matter. Along this research
direction, [17] and [2] propose non-convex algorithms
for equally-sized and variable-sized block-sparse sig-
nal recovery, respectively, using sparse matrices. To
show reduction in sampling complexity, X is assumed
to satisfy the model RIP-1 [17]:3

(1= 2em,)dl|Bll < IXBIx < d||B]]1, ()

Vk-block-sparse vector B € RP, where €4, represents
the model-based expansion constant.

1.1 Contributions

Restricting error guarantees to only variations of stan-
dard £, /¢4,-norms might be inconvenient in some ap-
plications. Here, we broaden the results in [16] to-
wards having non-standard ¢, distances in approxima-
tion guarantees. To the best of our knowledge, this
work is the first attempt for provable convex recovery
with approximate guarantees in the appropriate norm
and using sparse matrices. Similar results — but for
a different model — for the case of dense (Gaussian)
sensing matrices are presented in [12].

In particular, in Section 4, we provide provable error
guarantees for the convex criterion:

min |l subject to: y =X, (6)

where || - |[2,1 is the £ 1-norm; see next Section for
details. Our key novelty is to provide ¢2 1 /2,1 approx-

imation guarantees using sparse matrices for sensing;

2Most of the non-convex approaches known heretofore
consider a (block) sparse constrained optimization crite-
rion, where one is minimizing a data fidelity term (e.g., a
least-squares function) over cardinality constraints.

3While probabilistic constructions of expander matrices
satisfying model RIP-1 coincide with those of regular RIP-1
expander matrices, the model-based assumption on signals
(3 in (5) results into constructions of expanders X with less
number of rows and guaranteed signal recovery.
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see Section 5. In practice, we show the merits of using
sparse matrices in convex approaches for (6), both on
synthetic and real data cases; see Section 7.

2 Preliminaries

Scalars are mostly denoted by plain letters (e.g. k, p),
vectors by lowercase boldface letters (e.g., x), matri-
ces by uppercase boldface letters (e.g., A) and sets by
uppercase calligraphic letters (e.g., S), with the ex-
ception of [p] which denotes the index set {1,...,p}.
Given a set S in item space Z such that § C Z, we
denote its complement by Z \ S; we also use the no-
tation S¢, when the item space is clearly described by
context. For vector B € RP, B35 denotes the restric-
tion of B onto S, ie., (Bg)i = B; if i € S and 0
otherwise. We use |S| to denote the cardinality of a
set S. The ¢, norm of a vector x € RP is defined as

1/
Il = 327y laf?) 7.

The /5 ;-norm: The first convex relaxation for block-
sparse approximation is due to [29], who propose group
sparsity-inducing £ 1 convex norm:

18

20 5= Y willBgll2, wi >0.

geM

The /5 1-norm construction follows group supports ac-
cording to a predefined model M and promotes spar-
sity in the group level. We assume all the w; = 1, but
may be otherwise for a more general setting [19].

Given a vector w € R?, we define Mj, as the best k-
block sparse index set according to:

MG € argmin [|w — Wy, |21
M CM

3 Problem statement

To properly set up the problem and our results, con-
sider the following question:

QUESTION: Let M be a predefined and known a priori
block sparse model of M groups of size g and k > 0
be a user-defined group-sparsity level. Consider X €
{0,1}"P (n < p) be a known (k- g, d, e, ) expander
sparse matriz, satisfying model-RIP-1 in (5) for some
degree d > 0 and epq,, € (0,1/2). Assume an unknown
vector 3% € RP is observed through y = XB3*. Using
criterion (6) to obtain a solution B such thaty = X3,
can we achieve a constant approximation of the form:

1B = B*ll21 < C1 - [B* = Bigllza, C1 >0,

where M3, contains the groups of the best k-block
sparse approximation of 3% ¢

4 Main result

In this section, we answer affirmatively to the above
question with the following result:

Theorem 4.1. Let X € {0,1}"*? be a (k-g, d, em,)
expander, satisfying model-RIP-1 (5) for block sparse
model M, as in Definition 1.2. Consider two vectors
B*,B € R? such that XB* = X3, where 3" is un-

known and B is the solution to (6). Then, ||B|l21 <
187|221 and:
18" = Bl < — ey 18" — By
21> Ter, 9 M li2,1-
T 1=2en,

In other words, Theorem 4.1 shows that, given a
proper sparse matrix X satisfying the model-RIP-1
(5) for structure M, the ¢ ;-convex program in (6)
provides a good block-sparse solution B € RP. Next,
we also state a corollary to the theorem above for the
more realistic noisy case.

Corollary 4.2. Assume_the setting in Theorem 4.1
and let two vectors 3*,3 € RP such that || X(8* —
B)Hl = v > 0, where 8" is unknown and B s the
solution to (6). Then, ||Bll2.1 < |8 |21 and:

18° = Bllas € —r - 18" = By o
T T 2em,
Y
S e
1—26_/\/%

5 Proof of Theorem 4.1

Let us consider two solutions to the set of linear equa-
tions XB* = y = X3, where 8,8 € RP and let
X € {0,1}"*? be a given expander satisfying (5). We
define z = B — B* € ker(X) since X8 = X8* =
X (B - 5*) —o0.

Using the group model formulation, each vector ,@, Ich
can be decomposed as: 3 = deM Bg and B* =

Sgen B, where supp(Bg) = G, supp(85) = G, VG €
M; moreover, assume that 3 # 3*. Thus, given the
above decompositions, we also have:

2=B-p =3 (Bo-85)= > 2. (O

Gem Gem

where supp(zg) = G. By assumption, we know that
1B%l12,1 = |IB]|2,1- Using the definition of the || - |21,
we have:

Do UIBsl = Y IBgllz= > llzg + Bl (8)

geM geM geM
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Denote the set of k groups in the best k-block sparse
approximation of 8* as Mj. Then,

> 18512

GgeM

> > llzg +B5lla+ Y llzg + 85l
GeM; GeEM\ M,

> > 18l > llzalls
GeMg GeM;

+ > lzglz— D 118G
GeM\M;, GeM\M;,

=D 85l =2 > 185l
GeM GEM\M;,

+ 3 lzgllz =2 Y llzglle 9)
GeMm GeM;,

where the first equality is due to the block-sparse
model and the first inequality is due to the triangle in-
equality. To proceed, we require the following Lemma;
the proof is based on [5].

Lemma 5.1. Let z € RP such that Xz = 0 and z =
> gem Zg, where supp(zg) € G,VG € M. Then,

2em, + 9
Z lZgll2 < ﬁ Z zg |2, (10)

GeM; M gem

where epq,, € (0,1/2) denotes the model-based expan-
sion parameter of expander matriz X € {0,1}"*P.

Proof. Following [5], we assume the following de-
composition of p indices, according to M: Due to
the non-overlapping nature of M, we split coordi-
nates in p into k-block sparse index sets /\/12 =

XML M2, ..., ML such that (i) each M., VI,
has k groups (except probably M}), (ii) each group
G € M} has g indices and (iii) there is ordering on
groups such that:

lzglla > l|lzg |2, VG € Mk, VG € M sit. 1 <q.

Since z € ker(X), we have 0 = || Xzl||;. Moreover,
we denote as I'(M3) the set of indices of the rows of
X that correspond to the neighbours of left-nodes in
M7; see Figure 1. Thus, without loss of generality, we
reorder the rows of X such that the top | Ugea: G|
rows are indexed by I' (M})—the union of the set of
neighbors of all G € Mj. Given the above partition,
we denote the submatrix of X composed of these rows
as Xr, such that

Xr
X =
X

;)

Figure 1: Representation of neighbours of left-nodes,
indexed by the k-group sparse set Mj.

Thus, we have:

0= |Xzl: = |Xrzlh = |Xr- ) 2zl

geM
=IXr- | > zg+ Y. zg|lh
GeMm; GEM\M;
=IXr- | > zg+ D oz |l
GeM) GeM\MY
>|Xr- Y ozglh =X Y zglh
geMy GeM\M,

By using the model-RIP-1 property (5) of X on the
input vector deMg zg we have:

IXr- > zgli=1X- ) 2zl

geM? GeMy
> (1= 2epm,)-d- | Y zgls
geM?
= (1-2epm,)-d- Y llzglh
geM?
> (1=2epm,)-d- Y zgll
gemMy

where the first equality is due to Xre 'deMg zg =0,

the second equality due to the non-overlapping groups
and the last inequality since ||8]|1 > ||B]]2, V8 € RP.
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Therefore, we have:

0> (1—2en,)-d- Y lzgllz = IXr > zolh

gemMy ge M\ MY
>(1=2epm,)d- Y lzglla— Y [ Xrzglh
Gem? ge M\ MY
= (1 —2em)d- D7 Nl =32 3o >

gem) 121 gem! (i,5)€€
i€g
jer
> (1—2eam,)-d- Y |zgll2
Gem?y
— > |# edges (i,5) :

1>1

i€eG,jel, Ge M

- max max|(ZQ) |
gem! i€g

The quantity |# edges (i,7) : i € G,j € T,G € M|

further satisfies:

|4 edges (i,7) : i€G,j €T, Ge M|
= [D(M) NT(M})]

2 DM+ [TMY)] = [PME) UT (M)

<d- M| +d- M| — T(MP)UT(M])|
<2 -k-g— DM UT (ML)

()

< 2d-k-g—d(1l—epn, )| MLUM,

(44%)
< 2d-k-em,-g

where (7) is due to the inclusion-exclusion principle,
(i) is due to the expansion property and, (iii) is due
to |G| =g, VG € M.

Thus, the above inequality becomes:

0> (1—2em,)-d- D |zgll2
gemMy

—2d - k- em, -gz max max |(zg):|
151 M, €9

Let G! .. denote the group that contains the maxi-

mizing index tmax such that:

[(zg)il-

argmax
i€G s.t. GeM,

Zmax e

Then:
0> (1—2€nq,)-d- Y lzgll2
gem

—2d-k-emy g l1zgrloo
1>1

However, due to the ordering of fo-norm of groups:

gt , Nloo <llzg: . 2
< min zg]ls
eml
1
<t Y sl
gemi?

we further have:

0> (1—2en,)-d- Y |zgll
Gem?y

~2dkeeagd 0y o sl

121" el

> lzall —2d-en, -9 Y lzglla

gem) gem

> (1—2enm,)-d

which leads to:

> Mgl <~ ML

GemMy

Z g2

Using (10) in (9), we further have:

0>-2 > Blla+ D llzgl-
geM\ MY GeEM
4e .
- MQ’; > =gl =
Mk gem
> |\Zg||2< 46M — > 1Bl
gem T i- 2eMk GeM\ MY

which is the desired result.

6 Comparison to state-of-the-art

To justify our theoretical results, here we compare with
the only known results on convex sparse recovery us-
ing expander matrices of [5]. We note that, in [5], no
apriori knowledge is assumed, beyond plain sparsity.

We start our discussion with the following remark.

Remark 6.1. In the extreme case of g = 1, Lemma
5.1 is analogous to Lemma 16 of [5]. To see this, ob-
serve that ||zgll2 = |(z):| for g =1, where |G| =1 and
G=ie M ore M.

We highlight that, as g grows, feasible values of €xq, —
0, i.e., we require more rows to construct an expander
matrix X with such expansion property. For simplic-
ity, in the discussion below we use € = €y, inter-
changeably, where the type of € used is apparent from
context.



Convex block-sparse linear regression with expanders — provably

Figure 2: Feasibility regions for our approach and [5]
as a function of € and g variables.

In the case where we are oblivious to any, a-priori
known, structured sparsity model, [5] prove the follow-
ing error guarantees for the vanilla BP formulation (2),
using expander matrices:

~ 2
18" =Bl £ —F——
1—4- 1—2e¢

8" =B85l (A1)

where S C [p] such that [S| = [ Ugenm; Uiegil; i.e., we
are looking for a solution of the same sparsity as the
union of groups in the block-sparse case. In order to
compare (11) with our result, a naive transformation
of (11) into ¢2,; terms leads to:

~ 2
18" = Bllaa < 722

— 4. £
4 1—-2¢

8" = B ll2a- (12)

To define the conditions under which (12) is valid, we
require:

1-4 >0=¢€<1/6,

1—2e
i.e., € is independent of g, while in our case, we have:

€-9g 1 (gzl )
0 (=6,
12 "7 <321 +29) /6);

i.e., our analysis provides weaker bounds with respect
to the range of € values such that the error guarantees
is meaningful; see also Figure 2.

1-4.

However, as already mentioned, (12) is oblivious to
any model M: the solution B does not necessarily be-
long to M. This fact provides degrees of freedom to
obtain better approximation constants. Nevertheless,
this does not guarantee 3 € M, considering only sim-
ple sparsity. Section 7 includes examples that highlight
the superiority of ¢5 ;-norm in optimization.

7 Experiments

We start our discussion (i) with a comparison between
£,- and {5 ;-norm convex approaches, when the ground

truth is known to be block sparse, and (i7) with a com-
parison between dense sub-Gaussian and sparse sens-
ing matrices in (6), both w.r.t. sampling complexity
and computational complexity requirements. We con-
clude with the task of recovering 2D images from com-
pressed measurements, using block sparsity.

Solver. To solve both ¢1- and ¢3 ;-norm instances (2)
and (6), we use the primal-dual convex optimization
framework in [28], that solves (2) and (6) — among
other objectives, by using ideas from the alternat-
ing direction methods of multipliers. Using the same
framework for solution, we obtain more accurate and
credible comparison results between different problem
settings.

1 0 1

v f;-norm Basis Pursuit

v f;-norm Basis Pursuit
~9--£5-norm Basis Pursuit
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Figure 3: Average probability of successful recovery,
as a function of the total number of observations, over
10 Monte Carlo iterations. Top panel: (3* is gener-
ated from a normal distribution. Bottom panel: (3*
is generated from a Bernoulli distribution. /3 ;-norm
solver requires much less number of measurements for
successful recovery, compared to £1-norm solver.

l1- vs. /{3 -norm. In this experiment, we verify
that a priori structure knowledge helps in recovery. To
show this in the convex domain, consider the following
artificial example. Let y = X3* be the set of obser-
vations, where 8* € R’ is a k-block sparse vector,
for £ = 8. Here, we assume a block-sparse model M
with M = 100 non-overlapping groups. Observe that
g =p/M = 10.

Both for ¢1- and 3 ;-norm cases, X € R™*? is designed
as an expander, with degree d = [22 - log(M)/g] = 11,
complying with our theory. Further, we make the con-
vention X :=1/a- X.

We consider two cases: (i) 3* is generated from a
Gaussian distribution and (i4) 8* is generated as a
binary signal € {£1}. In both cases, 8* is normalized
such that ||3*]|]2 = 1. For all cases, we used the same
algorithmic framework [28] and performed 10 Monte
Carlo realizations. Figure 3 shows the average proba-
bility for successful recovery as a function of the total
number of measurements observed; we declare a suc-
cess when ||B3—8"]|2 < 1075. It is apparent that know-
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ing the model a priori can guarantee recovery with less
number of observations.

Sub-Gaussian vs. sparse sensing matrices in
{3 1-norm recovery. Let us focus now on the /g ;-
norm case. For this setting, we perform two exper-
iments. First, we consider a similar setting as pre-
viously; the only difference lies in the way we gener-
ate the sensing matrix X. We consider two cases: (i)
X ~N(0,1/n-1) and (i7) X is a sparse expander ma-
trix, again with degree d = [22 - log(M)/g] = 11. Here,
we only use the ¢ 1-norm solver. Figure 4 depicts some
results. We observe that expander matrices perform
worse — as a function of the total number of measure-
ments required for successful recovery. Nevertheless,
using sparse matrices is still considerably competitive
to dense Gaussian matrices.

01} Using expanders matrices| |
Using Gaussian matrices

0L—F

50 100 150 200 250 300 350 400

Number of measurements

Figure 4: Average probability of successful recovery, as
a function of the total number of observations, over 10
Monte Carlo iterations. Expander matrices perform
worse but competitive to dense Gaussian matrices.

Now, to grasp the full picture in this setting, we scale
our experiments to higher dimensions. Table 1 sum-
mons up the results. All experiments were repeated
for 10 independent realizations and the table contains
the median scores. For p = {104, 2-10%,5- 104, 105}7
the total number of non-overlapping groups in M was
M = {10%,2-10%5-10%,5- 103}, respectively. The
column cardinality is selected as d = [22 - log(M)/g].
For each p, the block sparsity ranges as k € {3,...,6}.
In all cases, n = [0.4 - p].

One can observe that using sparse matrices in this set-
ting results into faster convergence — as in total time
required for stopping criterion to be met. Meanwhile,
the solution quality is at least at the same levels, com-
pared to that when dense Gaussian matrices are used.

Finally, we highlight that, for p = 10°, since M does

Model HB — B2 Time (sec)

p k-g Gaus. Exp. Gaus. Exp.
300 8.6e-07 3.3e-06 24.3 5.8

10000 400 8.2e-06 3.4e-06 27.5 6.2
500 8.6e-06 3.2e-06 27.8 6.0

600 8.6e-06 3.4e-06 31.2 7.6

300 8.1e-07 3.4e-06 95.5 18.5

20000 400 8.1e-06 3.3e-06 79.4 16.4
500 8.5e-06 3.4e-06 83.9 15.8

600 8.5e-06 3.5e-06 91.3 18.9

300 8.2e-06 3.3e-06 419.3 49.6

50000 400 8.1e-06 3.4e-06 432.8 45.8
500 8.5e-06 3.6e-06 436.0 52.9

600 8.4e-06 3.5e-06 435.4 51.1

600 8.1e-06 9.4e-06 1585.5 55.1

100000 800 8.1e-06 9.5e-06 1598.2 54.5
1000 8.4e-06 9.4e-06 1600.6 56.2

1200 8.1e-06 9.3e-06 1648.0 55.6

Table 1: Summary of comparison results for recon-
struction and efficiency. Median values are reported.
As a stopping criterion, we used 18i+1 = Bill2/jg,, || <
10~ where 3, is the estimate at the i-th iteration. In
all cases, n = [0.4 - p].

not increase, the number of non-zeros d per column
decreases (i.e., d = 7 while d > 11 in all other cases).
This results into a small deterioration of the recovery
quality; though, still comparable to the convex coun-
terpart.* Meanwhile, the time required for conver-
gence in the expander case remains at the same levels
as when p = 5-10%; however, the same does not apply
for the dense counterpart. This constitutes the use of
expander matrices appealing in real applications.

Block sparsity in image processing. For this ex-
periment, we use the real background-subtracted im-
age dataset, presented in [15]. Out of 205 frames, we
randomly selected 100 frames to process. Each frame
is rescaled to be of size 2% x 28 pixels. Each pixel
takes values in [0,1]. We observe y = X3 where
B* € [0,1]7, p = 26, is the ground-truth vectorized
frame and, X is either sparse or dense sensing matrix,
designed as in the previous experiments.

For the purpose of this experiment, we set up an upper
wall time of 10* seconds (i.e., 2.8 hours) to process
100 frames for each solver. This translates into 100
seconds per frame.

Due to the nature of the dataset, we can safely assume
that nonzeros are clustered together. Thus, we assume

4Observe that in most configurations, expander matri-
ces find a solution closer to B*, compared to the dense
setting, except for the case of p = 10°, where we decrease
the number of zeros per column.
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representative examples of subtracted frame recovery from compressed measurements.

Here, n = [0.3- p] measurements are observed for p = 26, Block sparse model M contains groups of consecutive

indices where g = 4. Right panel: Accumulative computational time required to process 100 frames.

Overall,

using Gaussian matrices in the ¢ ;-norm case, DECOPT required almost 2.8 hours (upper bound), as compared
to 0.55 hours when X is a sparse expander matrix. Thus, while Gaussian matrices is known to lead to better
recovery results if no time restrictions apply, sparse sensing matrices constitute an appealing choice in practice.

group models M where groups are constituted of con-
secutive column pixels and the p indices are divided
in consecutive groups of equal size g = {4,8,16}. No
other parameters are required — this is an advantage
over non-convex approaches, where a sparsity level is
usually required to be known a priori. All experiments
are repeated 10 independent times for different X'’s.

Figure 5 shows some representative results. Left panel
illustrates the recovery performance for different set-
tings — £1- vs. {3 ;-norm and Gaussian vs. sparse ma-
trices X; results for other configurations are presented
in the appendix. The first row considers a “simple” im
age with a small number of non-zeros; the other two
rows show two less sparse cases. While for the “sim-
ple” case, solving {3 ;-norm minimization with Gaus-
sian matrices lead to better recovery results — within
the time constraints, the same does not apply for the
more “complex” cases. Overall, we observe that, given
such time restrictions per frame, by using expander
matrices one can achieve a better solution in terms of
PSNR faster. This is shown in more detail in Figure 5
(right panel); see also the appendix for more results.

8 Conclusions

Sparse matrices are favorable objects in machine learn-
ing and optimization. When such matrices can be
applied in favor of dense ones, the computational re-
quirements can be significantly reduced in practice,
both in terms of space and runtime complexity. In
this work, we both show theoretically and experimen-
tally that such selection is advantageous for the case

of group-based basis pursuit recovery from linear mea-
surements. As future work, one can consider other
sparsity models, as well as different objective criteria.
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9 Appendix

Here, we report further results on the 2D image recov-
ery problem. We remind that, for the purpose of this
experiment, we set up an upper wall time of 10* sec-
onds (i.e., 2.8 hours) to process 100 frames for each
solver. This translates into 100 seconds per frame.

9.1 Varying group size g

For this case, we focus on a single frame. Due to its
higher number of non-zeros, we have selected the frame
shown in Figure 6. For this case, we consider a roughly
sufficient number of measurements is acquired where
n = [0.3 - p]. By varying the group size g, we obtain
the results in Figure 6.

9.2 Varying number of measurements

Here, let g = 4 as this group selection performs better,
as shown in the previous subection. Here, we consider
n take values from n € [{0.25,0.3,0.35,0.4} - p]. The
results, are shown in Figure 7.
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Figure 6: Results from real data. Representative examples of subtracted frame recovery from compressed
measurements. Here, n = [0.3 - p] measurements are observed for p = 216, From top to bottom, each line
corresponds to block sparse model M with groups of consecutive indices, where ¢ = 4, g = 8, and g = 16,
respectively. One can observe that one obtains worse recovery as the group size increases; thus a model with

groups g = 4 is a good choice for this case.



Convex block-sparse linear regression with expanders — provably

{1 + Gaus. l2,1 + Exp. la1 + Gaus.
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Figure 7: Results from real data. Representative examples of subtracted frame recovery from compressed
measurements. Here, we consider a block sparse model fixed, with g = 4 block size per group. From top to
bottom, the number of measurements range from [0.25 - p] to [0.4 - p], for p = 2!6. One can observe that one
obtains better recovery as the number of measurements increases.



