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ABSTRACT
Industry and academia are continuously becoming more data-driven
and data-intensive, relying on the analysis of a wide variety of het-
erogeneous datasets to gain insights. The different data models and
formats pose a significant challenge on performing analysis over a
combination of diverse datasets. Serving all queries using a sin-
gle, general-purpose query engine is slow. On the other hand, us-
ing a specialized engine for each heterogeneous dataset increases
complexity: queries touching a combination of datasets require an
integration layer over the different engines.

This paper presents a system design that natively supports het-
erogeneous data formats and also minimizes query execution times.
For multi-format support, the design uses an expressive query alge-
bra which enables operations over various data models. For mini-
mal execution times, it uses a code generation mechanism to mimic
the system and storage most appropriate to answer a query fast. We
validate our design by building Proteus, a query engine which na-
tively supports queries over CSV, JSON, and relational binary data,
and which specializes itself to each query, dataset, and workload
via code generation. Proteus outperforms state-of-the-art open-
source and commercial systems on both synthetic and real-world
workloads without being tied to a single data model or format, all
while exposing users to a single query interface.

1. INTRODUCTION
The ongoing data explosion is leading to a major overhaul in a

range of scientific and business domains. Practitioners have evolved
into data scientists, relying heavily on data analysis over an increas-
ing number of datasets. Besides relational tables, semi-structured
hierarchical data formats have become the state of the art for data
exchange. In addition, scientists use domain-specific formats and
external structured files containing data modeled as tables, hierar-
chies, and/or arrays. Users execute widely different analysis tasks
over all these data types. Heterogeneity, both in data and in query
workload, significantly affects the way data analysis is performed.

Meaningful data analysis depends on combining information from
numerous heterogeneous datasets: data-intensive domains such as
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sensor data management and decision support based on web click-
streams involve queries over data of varying models and formats.
Users that want to perform analysis over heterogeneous datasets
can use a database engine that supports multiple use cases, but this
approach is expensive because such engines are typically overly
generic and hard to optimize for all cases. Therefore, users typi-
cally settle for a dedicated, specialized system for each of their use
cases [51]. Each of these two extremes either offers i) extensive
functionality and expressiveness, or ii) minimizes response times
in a particular scenario, but not both. Hence, performing analysis
effortlessly and efficiently remains an open problem.

One proposed solution is to flatten the different datasets into the
relational model and load them in an RDBMS [50]. Data types such
as hierarchies, however, are not a natural fit for tables. Another al-
ternative is the data federation of heterogeneous data sources [17,
23]. The dominant approach in this case is packaging together mul-
tiple query engines, using the appropriate one for each specialized
scenario, and relying on a middleware layer to integrate data from
different sources. Thus, besides the challenge of data integration,
users face a system integration issue, which increases complexity.
Alternately, data analysis frameworks [8, 53] keep data in a “data
lake” regardless of its format. Native support for rich data models
in these systems is typically limited because it complicates system
architecture and query optimization. Queries over complex data
therefore incur a performance penalty. An encompassing design
choice of the previous approaches is that all datasets have to be
fully ingested and converted into a default format per system, ei-
ther as a pre-loading step or during query answering. This process
adds an additional upfront cost per query. Finally, ViDa [33] envi-
sions effortlessly abstracting data out of its form and manipulating
it regardless of the way it is stored or structured. This is a promising
direction, but ViDa only proposes an abstract system blueprint.

This paper presents a system design that bridges the conflicting
requirements for generality in analysis and minimal response times.
The design supports both relational as well as nested data by using
an expressive, optimizable query algebra that is richer than the re-
lational one. The algebra allows combining data of heterogeneous
models and produces data-model-conscious query plans. We cou-
ple this powerful query algebra with on-demand adaptation tech-
niques to eliminate numerous query execution overheads. Specifi-
cally, our design is modular, with each of the modules using a code
generation mechanism to customize the overall system across a dif-
ferent axis. First, to overcome the complexity of the broad algebra,
we avoid the use of general-purpose abstract operators. Instead, we
dynamically create an optimized engine implementation per query
using code generation. Second, to treat all supported data formats
as native storage, we customize the data access layer of the sys-
tem based on the underlying data at query time. Finally, to mimic
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the storage that better fits the current workload, we materialize in-
memory caches and treat them as an extra input. The shape of each
cache is specified at query time, based on the types of data accessed
and the query workload trends. Overall, the originally distinct mod-
ules collapse into a unified, specialized query engine at runtime.

We validate our design by building Proteus, an analytical query
engine that queries heterogeneous datasets without converting them
to a homogeneous form. Proteus couples a general query interface
with the execution times of a system that has been specialized for a
specific query, data, and workload instance. Proteus currently sup-
ports CSV, JSON, and relational binary data. Its modularity makes
it extensible; adding support for more formats is straightforward.

Contributions. The contributions of this work are the following:

• We present a system design principle that offers i) generality in
analysis and ii) minimal response times. To achieve this, the de-
sign couples i) a query algebra that supports both relational and
nested data with ii) on-demand customization mechanisms that
collapse all layers of the system architecture at query time. The
final result is a highly-optimized specialized engine per query.

• Based on our design, we implement Proteus, a full-fledged ana-
lytical query engine that queries CSV, JSON, and relational bi-
nary data transparently and efficiently. Proteus uses code gen-
eration to specialize its entire architecture per query and to craft
caching structures of different shapes to adapt to the workload.

• We show that Proteus outperforms state-of-the-art open-source
and commercial solutions in a mix of workloads. We perform
a fine-grained evaluation over TPC-H data using multiple data
representations; Proteus performs as if it has been designed for
each use case. We also execute a challenging real-world work-
load over a mix of diverse datasets, in which Proteus is ∼ 3× to
9× faster than the state-of-the art alternatives.

2. RELATED WORK
A large body of work proposes a variety of solutions for the prob-

lem of querying heterogeneous data and efficient query processing
in general. This section surveys related work and highlights how
Proteus pushes the state-of-the-art even further.

Data Federation. To cope with data heterogeneity, data federa-
tion approaches perform analysis over diverse data sources without
placing all data in a single system [18, 20, 54]. In recent years,
the dominant approach has become bundling together multiple sys-
tems, each with a different query engine, and using the most appro-
priate engine for each scenario. These polystore systems initially
combined Hadoop with an RDBMS [3, 22]. Newer proposals [17,
23] bundle more engines to better fit more use cases. To treat multi-
ple engines as one, the overall solution uses middleware to perform
cross-system query optimization, query splitting, data exchange be-
tween systems, etc. Thus, besides data integration, system integra-
tion becomes a concern which complicates data analysis.

To address this concern, ViDa [33] envisions effortlessly ab-
stracting data out of its form and manipulating it regardless of its
structure. This paper advances the goals of ViDa by materializ-
ing a modular system design for queries over heterogeneous data.
The distinct modules of the design collapse at query time, eventu-
ally resulting in a specialized implementation per query. We cou-
ple this architecture with ad hoc storage structures to adapt to the
query workload. Finally, we evaluate design choices extensively
over Proteus, a mature system implementation.

Raw Data Processing. Asking queries over raw data is an emerg-
ing paradigm [30]. NoDB [5] makes an RDBMS raw-data-aware.
SDS/Q [13] and SCANRAW [21] perform parallel analysis over a
scientific file format. RAW [32] generates code to make raw data

accesses cheaper. Most systems focus on a specific format; RAW
does discuss multiple formats, but flattens hierarchies because it is
a relational engine. Instead, Proteus natively operates over various
data models and formats, also generating an engine per query.

Native Engine Support. Commercial systems like System RX
and XML DB are hybrids offering native support for both rela-
tional and XML data. System RX [11] uses XML-specific storage,
an XQuery compiler, and XML indexes. XML DB [41] calibrates
XML storage between CLOBs and objects “shredded” to rows. Or-
acle [38] and SAP [16] also discuss extending an RDBMS with
a JSON datatype. The processing primitives of these approaches
target particular formats (e.g., relations and XML), while Proteus
customizes itself for a multitude of formats on demand; its opera-
tors are by design agnostic to the underlying data for extensibility.

Encoding Schemes. Various works advocate “shredding”: flat-
tening hierarchies and storing them in multiple tables [14, 50].
MonetDB [14] uses specialized data encodings, join methods, and
storage for XML data. Argo [19] proposes similar encoding schemes
for JSON. Shredding approaches pay a penalty to reconstruct com-
plex objects because multiple joins are required to re-stitch an ob-
ject. Finally, Sinew [52] and PostgreSQL use a custom binary se-
rialization for JSON. Instead of fitting data to the query engine,
Proteus specializes itself based on the data and query types. It op-
erates natively over the original data instead of loading data using
complex encodings. If needed, Proteus can materialize data subsets
of interest into caches to emulate different encodings dynamically.

(SQL-on-)Hadoop & Cloud Systems. Multiple systems have
been built over Hadoop or a similar distributed runtime environ-
ment to query heterogeneous datasets [1, 7, 8, 12, 44]. Jaql [12]
and Pig Latin [44] are query languages for semi-structured nested
data, and both get translated to MapReduce jobs. Spark SQL [8] in-
troduces relational processing support over (semi-)structured data.
Nested datatypes are again treated as objects that are opaque to the
optimizer. Finally, Dremel [40] flattens nested data into columns.

Our work is applicable to the engines of these frameworks. For
example, most of these systems use data serializers such as Avro to
fully transform input datasets into a format they can process. Pro-
teus, however, relies on input plug-ins that process only the data
needed, and calls them at different steps of execution to judiciously
convert input values, unnest nested structures, etc. Using plug-
ins that are tightly integrated with the rest of the engine instead
of “black boxes” that blindly ingest data can benefit these systems.

Code Generation. Runtime code generation has become an es-
tablished mechanism, used by several relational engines [6, 34, 36,
43, 45, 49]. HIQUE [36] generates cache-conscious code via code
templates. HyPer [43] uses the LLVM compiler [37] to generate
low-level machine code. LegoBase [34] goes through numerous
rewriting (“staging”) steps to generate C code. Proteus follows
the HyPer paradigm and relies on LLVM too. Proteus is more ex-
pressive than relational code-generated engines because it supports
multiple data models and transformations between them. More-
over, Proteus treats each supported data format as its native storage
and adapts to incoming queries better because it makes dynamic
decisions about its data access mechanisms, “tuple” structure, and
cache organization, all of which are predefined in other systems.

3. AN EXPRESSIVE QUERY ALGEBRA
We want to enable queries over a multitude of data models, hid-

ing the underlying heterogeneity. Thus, our query algebra must
treat all supported data types as first-class objects in terms of both
expressive power and optimization capabilities, instead of consid-
ering richer types as BLOB-like values which are opaque to the
query optimizer. Existing approaches follow two main directions
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Operator
Name

Select (Outer)
Join

Reduce Nest (Outer)
Unnest

Operator
Symbol

σp(X) X 1p Y
X 1p Y

∆
⊕/e
p Γ

⊕/e/ f
p/g µpath

p (X)

µpath
p (X)

Superscript p: Filtering Expression e: Output Expression

& Subscript f : Groupby Expression g: Non-nullable Expression

path: Field to unnest ⊕: Output Collection/Aggregate

Table 1: The operators of the nested relational algebra.

to deal with the data model variety. Each of them, however, sacri-
fices either generality or query performance.

The first approach involves building an entire system with a spe-
cific data model in mind and specialized to the use case at hand. A
prominent example is the use of column-oriented DBMS for ana-
lytical relational workloads. Following the same trend, systems like
CouchDB and MongoDB emerged for semi-structured data. Given
that they are optimized for non-relational cases, they impose a num-
ber of restrictions for more “traditional”, relational-like workloads.
For example, data entries are assumed to be de-normalized as self-
contained objects, so joins are challenging to express. Because
each specialized system supports only a specific type of input effi-
ciently, users resort to system integration, i.e., having a dedicated
system for each of their dataset types and using a mediation layer
over them to handle cross-dataset queries.

The second approach is to extend an established system with sup-
port for additional data types, e.g., adding support for JSON to an
RDBMS. The extension is typically inefficient: A proper extension
would add explicit query operators to support the new types of data,
which requires significant engineering effort, as well as extending
the (relational) model to which every system component adheres.
Due to these constraints, commonly only functions that access and
manipulate the new complex data are introduced, and the system’s
optimizer remains unaware of the new data type particularities.

We use a third, different approach to allow queries across data
of various models: We leverage a unifying data model and a pow-
erful query language internally. Proteus is built around the monoid
comprehension calculus [24] because this calculus supports various
data collections (e.g., bags, sets, lists, arrays) and arbitrary nestings
of them. The monoid calculus and its corresponding algebra are
optimizable and allow transformations across data models, hence
Proteus can produce multiple types of output. The calculus is also
expressive enough for other query languages to be mapped to it as
syntactic sugar: For relational queries over flat data (e.g., binary
and CSV files), Proteus supports SQL statements, which it desug-
arizes to comprehensions. For more powerful manipulations of flat
data (e.g., outputting results that contain nestings) and for queries
over datasets containing hierarchies and nested collections (e.g.,
JSON arrays), Proteus currently exposes a query comprehension
syntax to the user; Example 3.1 presents a query using this syntax.

For each incoming query, the first step is translating it to a cal-
culus expression. The calculus expression is then rewritten to an
algebraic tree of a nested relational algebra [24]. This algebra re-
sembles the relational one, and relational optimization techniques
are applicable to it. On top of that, it offers first-class support for
operations related to unnesting of queries over nested data. The
operators of the nested relational algebra are depicted in Table 1.
The selection, join, and outer join operators are identical to their
relational counterparts. Reduce and nest are overloaded versions
of the relational projection and the grouping operator respectively.
Finally, the unnest and outer unnest operators “unroll” a collection
field path that is nested within an object.

✂
☛�✁✄☎✆☞✝✞✟✠✆✡✝✌�✍✎✠✏✝✌�✍✎✑

✒

✓✔✕✖✗✘

✙✚

✛✙✜✢ ✣✤

✥✦✧ ★✩✪✫✬✭✮✯

★✧ ✰✱✮ ✲ ✳✴
✵

✓✶✕✷

✙✸

✥✹✧ ✺✮✭✥✻✯✯✮✫

✛✙✼✢ ✽✤
✙✚✾ ✿❀ ❁ ✽✾ ✿❀

Figure 1: Query involving unnest operators: Without them, the op-
erators higher in the tree would have to process BLOBs repeatedly
every time they need a nested value.

Example 3.1: Suppose we have a dataset comprising sailors and
a dataset comprising ships. Each sailor has an id field and a children
field which contains a list of (name,age) pairs for the sailor’s chil-
dren. Each ship entry has a name field and a personnel field which
contains a list of sailor identifiers. The query “For each Sailor, re-
turn his id, the name of the Ship on which he works, and the names
of his adult children” is expressed in the calculus as follows:
for { s1 <- Sailor, c <- s1.children, s2 <- Ship,

p <- s2.personnel, s1.id = p.id, c.age > 18 }
yield bag (s1.id, s2.name, c.name)

The resulting plan for this query is depicted in Figure 1. Two unnest
operators handle explicitly the nestings in the data.

Overcoming Complexity. Using a rich data model and lan-
guage/algebra for queries over complex data was proposed when
OODBs and XML appeared [24, 25, 55]. Rich models and al-
gebras, however, lost traction due to their complexity. The more
complex an algebra is, the harder it becomes to evaluate queries
efficiently: Dealing with complex data leads to complex opera-
tors, sophisticated yet inefficient storage layouts, and costly pointer
chasing during query evaluation. To overcome all previous limita-
tions, we couple a broad algebra with on-demand customization.

4. THE ARCHITECTURE OF PROTEUS
Proteus is a query engine designed from scratch to enable fast

queries over heterogeneous datasets. To provide generality, Proteus
uses an algebra which can model operations across different types
of data, thus offering expressive power and rewriting opportuni-
ties for queries targeting complex data. To also minimize response
time, Proteus creates a new query engine instantiation on-demand
per query via code generation. Furthermore, Proteus customizes its
storage structures to adapt them to the workload. The result is a
custom, highly-optimized engine, expressed in machine code and
operating over a data representation that suits user analysis.

Figure 2 depicts the components of Proteus. The Query Parser
handles incoming queries, which are then rewritten to a physical
plan by the Query Optimizer. Algebraic Operators encapsulate
data model heterogeneity; they express the plan of a query and co-
ordinate code generation. Expression Generators generate code for
expression evaluation when requested by an operator. Input Plug-
ins encapsulate data format heterogeneity; they consider source-
specific optimizations and generate code that accesses any required
data. They also provide statistics and costing formulas per data
source. Output Plug-ins generate code that handles operator output
and cache creation along with the Memory & Caching Managers.

Query Optimization. Systems which process heterogeneous
data face the following challenges: First, queries over hierarchi-
cal data typically involve many levels of nesting, which increases
execution overheads. Second, unless an optimizer has access to
data statistics, it may produce suboptimal plans. Proteus uses a
three-step approach to address these issues: First, when a user asks
a query, Proteus parses and normalizes it, performing operations
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Figure 2: Proteus architecture.

such as selection pushdown and unnesting multiple types of nested
queries. Then, Proteus rewrites the query to a nested relational al-
gebra. The algebraic representation is amenable to relational-like
optimizations and further unnesting. Finally, after a number of rule-
based rewrites, the optimizer considers cost-based transformations;
it follows a bottom-up strategy and relies on gathered statistics to
perform access path selection and join re-ordering. Its difference
from traditional optimizers is that statistics and costing of data ac-
cesses are provided by the input plug-ins relevant per query.

On-demand Query Engine. The operators of traditional query
engines are hard-coded to a database-specific input data format for
efficiency. Proteus is designed to treat each data format as native
storage. To cope with data heterogeneity, Proteus masks data com-
plexity from the operators by using an input plug-in per data format.
Each plug-in exposes a uniform interface that the rest of the engine
uses to consume data values. The algebraic operators process in-
put either by calling expression generators or via direct interaction
with an input plug-in. This separation of concerns makes Proteus
extensible: adding a plug-in suffices to support a new data format.

The operators of Proteus call output plug-ins to handle the cre-
ation of output and the materialization of any required intermediate
results during query execution. Proteus also uses the output plug-
ins to define caching structures, which it populates as a side-effect
of execution to adapt to the overall workload. Once materialized,
Proteus treats caches as an additional input dataset.

For each query, Proteus uses a code generation mechanism to
collapse the layered architecture of the engine – the dashed part of
Figure 2 – into a specialized piece of code. Each of the components
produces low-level machine code that Proteus combines to form a
program serving the currently processed query. Specifically, once
the optimizer has produced a physical plan, Proteus traverses it re-
cursively until it finds the datasets to access (i.e., the leaf nodes).
It then triggers the appropriate input plug-ins to generate code ac-
cessing data. As the recursion is returning control to the root node
of the plan, Proteus generates code for every visited operator. Each
visited operator may (re-)trigger input and output plug-ins to pro-
cess its input and/or materialize its output.

Memory Manager. Whenever a system component requests a
memory block to read/write, the Memory Manager handles the re-
quest. The Manager distinguishes between input files and caching
structures: It memory-maps input files, treating all input data as if it
is memory-resident, and delegates paging to the OS virtual memory
manager. As for caching structures, Proteus pins them in a memory
arena, and uses an LRU variation to evict them when appropriate.

Implementation Scope. Proteus targets read-only and append-
like analytical workloads. This study focuses on full dataset scans
and excludes value-based indexes, as they are an orthogonal opti-
mization which is straightforward – yet optional [10] – to imple-
ment. In case of data updates, Proteus currently drops and rebuilds
any affected parts of existing auxiliary structures (e.g., caches).

5. ON-DEMAND QUERY ENGINES
Ideally, a system must allow diverse queries over heterogeneous

datasets, but also perform as if it has been designed for a specific

use case – even better, as if it is hard-coded to serve a specific query:
For analytical queries over flat (e.g., binary, CSV) data, the system
must be as fast as an analytical relational engine. For hierarchical
data, it must be as fast as a document store.

The nested relational algebra of Proteus enables querying com-
plex data types and considers them as first-class citizens during
query optimization. It also facilitates query unnesting – a com-
mon issue when input data is nested. Dealing with complex data
and query operators, however, comes at increased cost.

Even when dealing with the strictly relational operators of an
RDBMS, interpreting the query plan is costly. A source of over-
head is the ubiquitous Volcano iterator model [27], which enables
pipelining and exposes a single interface for all operators, but com-
plicates control flow and introduces multiple function calls per tu-
ple processed (e.g., each operator calling getNextTuple()). Another
factor is the variety of datatypes that each operator must be able to
process: An operator must trigger different code paths depending
on whether its arguments are i) integers, ii) floats, iii) some com-
bination, etc. To support this behavior, operators use control flow
statements and (virtual) function calls in their code, which leads to
increased branching in the critical path of execution.

This interpretation overhead [36, 43], stemming from function
calls and control flow statements that disrupt the instruction pipeline,
affects pipelined query execution negatively. Intuitively, the nested
relational algebra operators face similar issues. Even worse, they
have to i) support additional, more complex types of input, and
ii) perform extra work compared to their relational counterparts.
For example, besides the selection and join operators, many addi-
tional operators of the nested relational algebra have an embedded
filtering step (e.g., unnest, reduce). The additional complexity fur-
ther increases the interpretation overhead.

One way to remove the interpretation overhead is to use a block-
oriented, operator-at-a-time execution model, as columnar engines
typically do [15]. The block-oriented model, however, introduces
materialization overhead per operator. This cost would be more se-
vere for Proteus compared to traditional relational systems because
of the more complex datatypes to be materialized. Even worse,
Proteus serves datasets whose contents rarely reside in explicit data
blocks, so every query would pay an upfront cost to materialize
input blocks. Instead of processing data blocks, Proteus pipelines
data through its operators, but also minimizes interpretation over-
head by customizing itself when it receives a query based on i) the
query requirements and ii) the datasets the query touches.

5.1 An Engine per Query
Traditional pipelined query engines execute a query by interpret-

ing its physical plan and invoking multiple general-purpose opera-
tors for each input tuple. Proteus removes interpretation overhead
by traversing the query plan only once and generating a custom im-
plementation of every visited operator. Proteus thus uses control
flow mechanisms such as datatype checks only during the single
traversal, and avoids the per-tuple penalty that a static pipelined
engine incurs. Once all plan operators have been visited, Proteus
blends the generated code stubs into a hard-coded query engine im-
plementation which is expressed in machine code.

Proteus uses LLVM [37] to generate low-level code, which it
compiles at runtime. LLVM is a collection of compiler infrastruc-
ture which offers frontends for languages such as C/C++ and For-
tran. In its core, LLVM translates these languages into an interme-
diate representation (IR) resembling assembly code: the LLVM IR.
LLVM then compiles the IR into actual machine code based on
the underlying hardware. Proteus generates LLVM IR because
i) it is strictly-typed and less error-prone than macro-based C++
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✂
☛�✁✄☎

✞✆

✝✟✠✡

OID Plugin

Buffer Plugin

Buffer Plugin

1 while(!eof(A)) {

2 addToBuffers

6 }

3 if(eval(e))  {

5 }

4 sum += 1

7 return sum

Figure 3: Example of a query plan and of the generated (pseudo-)
code. Once the scan operator places needed fields in virtual buffers,
they are used to evaluate the filtering expression.

code, ii) it compiles much faster than macro-based C++ code, and
iii) LLVM offers rewrite passes such as dead code elimination that
optimize the generated IR. In summary, Proteus uses LLVM as
a plan rewriting mechanism, and performs one extra step com-
pared to traditional query engines: It rewrites the physical algebraic
plan – an abstract, high-level IR – into the imperative, low-level
LLVM IR which is amenable to compiler-centric optimizations [2].

After parsing and optimizing a query, Proteus traverses the phys-
ical plan of the query in post-order depth-first-search (DFS). When
visiting a node of the plan, Proteus i) visits the node’s children to
produce the code corresponding to their functionality, ii) generates
the physical implementation corresponding to the current node, and
iii) returns control to the node’s parent to continue the code gener-
ation process. The recursive traversal terminates when it reaches
a leaf node (a scan operator). Proteus then generates a code stub
that, when executed, will launch a scan over a dataset. In each
scan iteration, the generated code will access a “record” from the
data and place the fields needed for the rest of the plan in virtual
memory buffers. The virtual buffers can be thought of as local vari-
ables placed in the stack frame. To maximize locality, the LLVM
compiler promotes buffer contents to CPU registers when possi-
ble. Therefore, subsequent operators referencing values that ex-
ist in register-backed buffers experience minimal access times and
fully pipeline data. Once Proteus has generated code stubs for a
leaf node, it shifts control to the node’s parent, also passing along
pointers to the virtual buffers and to the currently “hollow” parts
of the overall query code that need to be filled in next. The same
process continues until control returns to the root node.

Figure 3 depicts a plan for the query SELECT COUNT(*) FROM A
WHERE e, along with a high-level description of the resulting code.
The scan of relation A results in the generation of a “hollow” while-
loop. The code for the ending condition of the loop (line 1), as well
as for populating virtual buffers with the fields necessary to answer
the query (line 2), is injected by an input plug-in that allows the
data-format-agnostic scan operator to interface with dataset A re-
gardless of how it is stored. Then, the selection operator generates
a hollow if block, whose outcome depends on the evaluation of the
expression e (line 3) in each iteration. Proteus retrieves the values
required to evaluate e from the virtual buffers. The reduce operator
calculates the final result by incrementing a counter, which it then
outputs. The result of the physical plan traversal is not a number
of standalone operator implementations: It is a minimal, special-
ized piece of code representing an entire query, with operator logic
tightly stitched together to ensure pipelined query execution. This
type of execution minimizes intermediate query results, maximizes
code and data locality, and reduces register pressure.

Proteus also uses pre-existing (i.e., not generated) C++ code for
some of its functionality. Proteus wraps these operations in C++
functions and calls them when appropriate from the generated code.
For example, the Memory and Caching Managers do not generate
code. In another case, Proteus uses hash-based algorithms for the
join and grouping operators, namely variations of the radix hash
join algorithm [39] adapted from [9]. While parts of the join imple-

Input Plug-in Methods
generate() hashValue() unnestInit()
readValue() flushValue() unnestHasNext()
readPath() unnestGetNext()

Table 2: The input plug-in API of Proteus

mentation are indeed generated at runtime, other parts, like cluster-
ing the materialized entries based on their hash values, are wrapped
in a C++ function. This function is only called once per join side,
so the overhead of making the function call is minimal.

Implementation. The layers of Proteus that parse, rewrite, and
optimize queries are expressed in Scala and output a physical query
plan. The layers that traverse the query plan and trigger code gen-
eration using LLVM are written in C++. When Proteus receives
a query, it generates stubs of LLVM IR, which it stitches together
during the traversal of the physical query plan and puts into a single
function. Within milliseconds, LLVM compiles the IR of the func-
tion into actual machine code based on the underlying hardware.
The result is a library which Proteus calls to serve the query.

5.2 A Custom Data Access Layer per Query
The operators of Proteus access a dataset either by triggering

an expression generator to produce code for the evaluation of an
algebraic expression, or by directly calling the corresponding input
plug-in. This separation of concerns ensures extensibility.

Expression Generation
Proteus places values from each dataset it touches into virtual mem-
ory buffers, which the query operators use to evaluate expressions
of the nested relational algebra. For example, if Proteus has pop-
ulated buffers with fields a.sal and a.bonus, it can evaluate the fil-
tering expression of the operator σsal+bonus<3000. The physical op-
erators assign the evaluation of algebraic expressions to an expres-
sion generator. In the example of Figure 3, an expression generator
produces the code to calculate the result of eval(e) at line 3, and
injects it as the condition in the if statement. Similar generators are
used when hashing an expression and when flushing out the query
output. A useful property of this separation is that the operators
are agnostic to the underlying data models/formats/properties. The
operators are oblivious to whether a value in the memory buffers
belongs to an array, is nested, or is not fully materialized yet; all
they require is that the expression generators inject the appropriate
code for expression evaluation at the code spots they designate.

Input Plug-ins
Proteus masks the details of the underlying data values from the
query operators and the expression generators. To interpret data
values and generate code evaluating algebraic expressions, Proteus
uses input plug-ins. Each input plug-in is responsible for gener-
ating data access primitives for a specific file format. Proteus cur-
rently uses input plug-ins for CSV, JSON, and relational binary data
(both row-oriented or column-oriented).

Table 2 lists the API that every input plug-in exposes. Calls
to a plug-in can be made by i) a scan operator populating virtual
memory buffers (the generate() call), ii) an unnest operator looping
through a nested collection (unnestInit() etc.), or iii) an expression
generator calculating an expression. In the third case, readValue()
provides a field’s value to the expression generator, and readPath()
returns a pointer to a data object’s field. Consecutive calls to read-
Path() are used to access nested fields.

When a scan operator calls an input plug-in, the plug-in gener-
ates code that customizes the data access layer of Proteus based on
i) the current query requirements and ii) the characteristics of the
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Figure 4: Example of a structural index for a JSON object.

dataset to be accessed: its schema, format, and contents. Using this
information, Proteus generates code that performs fewer and more
efficient data accesses than a general-purpose scan operator. An ex-
ample of exploiting the query requirements is the following: Dur-
ing query rewriting, Proteus pushes field projections down to the
scan operators so that it pays to extract only the fields necessary.
To perform these selective accesses, a general-purpose scan oper-
ator would use a loop that checks whether each field is needed for
the query, thus introducing branches in the critical path of execu-
tion. Instead, Proteus generates code processing only the required
data fields. Proteus also uses the dataset schema to avoid unnec-
essary control logic such as datatype checks – it generates specific
access primitives for integer fields, nested fields, etc. The overall
code generated for scanning data resembles a hard-coded program.

Specializing per Dataset Format. Proteus generates code that
considers the particularities of each data format. For binary re-
lational data, an input plug-in generates code reading the memory
positions of the required data fields. For more verbose or richer for-
mats, Proteus uses more sophisticated access methods. The com-
mon denominator of all input plug-ins is that for every data object /
“tuple” they access, they produce an object identifier (OID), which
they forward to the query operators. As an example, for flat data
the OID is a row counter. Using an entry’s OID, an expression gen-
erator can invoke the corresponding input plug-in at a later point in
execution to access a value needed for an expression’s evaluation.

Apart from creating an OID, Proteus calibrates how eager / lazy
the generated access primitives are (i.e., which values to place in
memory buffers apart from the OID, whether to eagerly convert a
value to a binary serialization, etc.). Proteus supports lazy plug-
in behavior because eagerly populating memory buffers may prove
unnecessarily expensive. When performing a path query over nested
objects or data unnesting, Proteus avoids eagerly serializing a com-
plex object only to process a subset of it: Instead, Proteus uses
structural information for the data in order to navigate in the dataset
and to access only the values necessary to provide a result. In addi-
tion, in many cases Proteus delays data conversion because it may
prove to be unnecessary (e.g., because of some selection filtering
out results). Another scenario is applying different materialization
policies in relational workloads. To allow for this flexible behavior
and enable a field’s reconstruction at any point, Proteus maintains
plug-in information for each field value in its memory buffers. For
every such value, the corresponding plug-in uses rules to specify
how lazily to process it based on criteria such as its data type and at
which point of the query it is used, and generates appropriate code.

Structural Indexes. The input plug-ins of Proteus use auxiliary
structures to reduce the navigation cost associated with verbose
data formats, for which every access requires substantial parsing
effort. These structural indexes store positional information about
fields in the datasets instead of actual data values. Their entries
are addressable by OID, so that all plug-ins have uniform behavior.
For CSV datasets, structural indexes store the binary positions of a
number of data columns in each row [5]. Proteus stores the position
of every Nth field of the file (e.g., if N=10, it stores the positions of
the 1st, 11th, ... fields). When looking for a field, Proteus locates
the closest indexed field position and starts seeking from that point.

Structural indexes for JSON require a more involved process be-
cause of the inherent complexity of the JSON format, which al-

lows arbitrary levels of nesting and field order, as well as optional
fields. When Proteus accesses a JSON file for the first time, it val-
idates the JSON input. During validation, Proteus populates an
index per JSON object with structural information. The resulting
structural index serves two goals: It reduces the parsing effort for
subsequent accesses to the file, and minimizes the interpretation
overhead stemming from the schema flexibility of JSON data.

Each entry of a JSON structural index captures information about
a token (e.g., a field name, an array, etc.) contained in a JSON ob-
ject: its binary starting and ending positions in the file, as well as
its type. To serve requests for a data field, the JSON input plug-
in finds its corresponding token entry in the structural index. The
plug-in then forwards the entry identifier – which acts as an OID –
to the operator / expression generator that requested it.

The structural index described so far corresponds to “Level 1” of
the example in Figure 4. The first index entry, labeled “{}”, keeps
the starting and ending positions of the overall JSON object, the
second entry keeps the positions of token a, and so on. Intuitively,
if a dataset contained multiple objects similar to the one depicted
and a query requested field a from each one, the JSON plug-in
would follow the same process for each object: Return the second
entry of the object’s corresponding structural index. Nevertheless,
there is no guarantee that field a comes before field b, b before c,
etc. in every object of the dataset. Thus, Proteus would have to
sequentially scan each object’s index and compare the label of the
wanted field with the one currently visited.

To remove this overhead, Proteus introduces “Level 0” to the
structural index. “Level 0” comprises an associative array which
maps field names to their corresponding positions in “Level 1” of
the index. The shaded values in Level 1 are now redundant and thus
removed. The JSON plug-in finds a field’s position via a lookup to
the associative array. The use of Level 0 reduces data access costs
and offers determinism despite the semi-structured JSON nature.

Proteus also registers nested records in Level 0. In Figure 4, by
storing a pointer to field c.d.d1, dereferencing occurs in one step
instead of multiple ones. Nested collections are treated otherwise:
Notice that fields e and f , which correspond to the contents of a
nested (array) collection, are omitted from Level 0. JSON struc-
tural indexes opt against maintaining pointers to array contents be-
cause Proteus has an explicit Unnest operator to handle nested col-
lections. The code path of Unnest applies the same action to every
nested element, therefore it is unaffected by schema flexibility.

Specializing per Dataset Contents. The more information Pro-
teus obtains about a dataset, the more aggressive optimizations it
performs: An input plug-in can craft an optimized code path suit-
able only for a specific file instance. In the case of JSON data,
schema flexibility introduces overhead even when using a structural
index, because Proteus has to store more bookkeeping information
per indexed entry, and generate more complex code to process it.
There are many scenarios, however, such as the case of machine-
generated data, where every object in a dataset has the same fields
in the same order. Proteus can verify whether this case holds while
creating a structural index, and drop Level 0 because the lookup
process is now deterministic: It is sufficient to maintain the sizes of
any variable-length structures (i.e., JSON arrays) met and combine
them with fixed schema information to deterministically compute
the exact positions of relevant structural index entries. The result
is a more compressed structural index and an efficient code path
for lookups. In a similar optimization, if a CSV file contains fixed-
length entries, Proteus deterministically computes field positions
and injects them in the code instead of using a structural index.

Enabling Cost-based Optimizations. Proteus uses a metadata
store to maintain statistics per data source, namely dataset cardi-
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nalities and min/max values per attribute, and delegates statistics
collection to each input plug-in. The statistics collection process is
fine-tuned to avoid introducing execution overheads. Specifically,
Proteus refrains from generating code for statistics gathering in ev-
ery query to avoid bloating the minimal generated code. Instead,
it collects statistics in three ways: First, Proteus collects statistics
during the first (cold) access to a dataset, because I/O masks the
overhead of statistics gathering. Second, when the plan contains
a blocking operator (e.g., a join), the relevant input plug-in injects
code that profiles the materialized values all at once. Finally, a dae-
mon process periodically triggers statistics-gathering queries when
the system is idle – a methodology followed by multiple DBMS.
Regarding costing, each input plug-in uses different cost formulas,
which it instantiates with data statistics to provide cost estimates to
the query optimizer. Delegating source-specific work to a “wrap-
per” per source is also popular with federated systems [46, 47].

Proteus allows plug-in developers to calibrate statistics gathering
and costing. The baseline option is to use predefined, hard-coded
estimates in place of statistics-based computations (e.g., assume
that the default selectivity of a predicate is 10%), as well as text-
book cost formulas. Proteus offers such a skeleton for every input
plug-in by default because it has been shown to have satisfying
results [46]. Regarding statistics, Proteus allows developers to ad-
just/change the sampling function to be called during cold queries
and result materialization. The function specifies the type of sam-
pling to be used, and on which fields the statistics-gathering mecha-
nism should focus on. Regarding costing, the developer can change
the provided cost formulas with more suitable ones for her needs.

Adding More Inputs. Adding support for more inputs is straight-
forward. For each new input, what is required is to code in an input
plug-in which implements the methods of Table 2. A developer can
use plain C++ instead of the lower-level LLVM API, since Proteus
can directly call C++ functions. Of course, using the LLVM API
leads to minimal, more efficient code; the plug-in developers decide
how to calibrate ease of development and high performance based
on their requirements. The same trade-off applies when integrating
Proteus with existing data stores such as an RDBMS: A plug-in can
either i) issue SQL queries to the DBMS, or ii) directly access the
proprietary binary data format that the DBMS uses internally.

6. ADAPTING STORAGE TO WORKLOAD
Proteus dynamically populates data caches as a side-effect of

query execution to adapt to the workload trends. These caches can
be viewed as dynamic materialized views [35], following the data
recycling principle [31, 42] of automatically caching results during
query evaluation for possible reuse in the future. Proteus deals with
complex models and formats, so the importance of reuse is even
higher because of the effort needed to re-access the data involved
and recompute the expressions that queries require. Since users ex-
press a range of queries over a variety of data, the caches must facil-
itate each diverse workload, adapting to serve it efficiently. There-
fore, instead of having a predefined structure, the caches adapt to
the types of queries asked. Depending on the query workload, the
caching structures can resemble i) pages filled with tuples in a sys-
tem’s buffer pool, ii) binary columns accessed by a columnar en-
gine, iii) nested objects serialized in a binary format, etc.

Proteus can cache any expression supported by the nested rela-
tional algebra. Each query may trigger the population of caches
of different shapes – caches of different shapes can even be built
at different phases of the same query. For example, a query sub-
tree processing hierarchical data may benefit from a different cache
type than the query part touching relational tables. Some expres-
sion types that Proteus can cache are the following:

• Field projections (rel.attrA).
• Arithmetic expressions ((rel1.salary+ rel2.bonus)∗12).
• New record constructions (< rel.attrA, tree.attrB.attrB1 >).
Proteus uses caching primarily to benefit queries over non-binary,
verbose sources such as CSV. By caching data entries in a more
compact binary format, neither parsing nor data conversions are re-
quired to access them. Caching is also beneficial when a different
data layout is more suitable for the workload than the one currently
used by a dataset [6, 28]. Proteus is flexible enough to allow differ-
ent caching policies depending on the expected workload type.

Implementation. The algebraic operators are oblivious to which
expressions are to be cached and which of the input values they
process is actually served from caches. When Proteus has to ma-
terialize data (e.g., during a join), or the physical plan contains a
caching operator, Proteus assigns the task to an output plug-in that
specifies i) the expression to be cached, ii) what the serialization
format will be, and iii) the “degree of eagerness” to be used during
caching. For example, when dealing with variable-length string en-
tries, it might be sufficient to cache their binary starting positions,
or even the OID of the entry to which they belong. Different types
of workloads benefit from different policies across these axes.

Output plug-ins trigger cache construction similarly to expres-
sion evaluation: For each data entry, an expression generator pro-
duces code which evaluates the expression to be cached and places
the result in a consecutive memory block. Proteus exposes the data
cache as an additional input. As with the rest of the datasets, Pro-
teus accesses the cached data using a dedicated input plug-in.

Building Caches. Proteus triggers cache creation i) implicitly, as
a by-product of an operator’s work, or ii) explicitly, by introducing
caching operators in the query plan. Implicit caching exploits that
some Proteus operators materialize their inputs: nest and join are
blocking and do not pipeline data. Especially for joins, Proteus uses
a radix hash-join variation, which materializes both input sides. It
is thus important to re-use populated data structures and avoid re-
building them, especially if the data originated in a verbose data
format for which accesses are expensive.

For explicit caching, Proteus can place buffering operators at any
point in the query plan. An explicit caching operator calls an out-
put plug-in to populate a memory block with data. Then, it passes
control to its parent operator. Creating a cache adds an overhead to
the current query, but it can also benefit the overall query workload:
When accessing verbose formats like JSON, it is advisable to avoid
re-accessing the original data whenever possible. Even when using
auxiliary structures to navigate in the file, there are still additional
costs. After locating a required field, the input plug-in typically
needs to convert it to a binary form. In addition, verbose objects
pollute CPU caches with unneeded information. Each field that
Proteus needs is located at an arbitrary position in the file. When
Proteus places it in a CPU cache line, the rest of the line is typically
filled with an unneeded part of the overall JSON object. Dealing
with compact, packed binary caches greatly improves data locality.
Therefore, if a cached field ends up being re-used, the benefit from
avoiding these data accesses and computations is significant.

Cache Matching. For every cache that Proteus populates, the
Caching Manager stores the physical plan corresponding to the
cache and uses it as a search key during cache matching. Proteus
considers the available caches right before generating code for a
query. The cache/view matching process resembles that of [42, 48].
Proteus treats the physical plan as a DAG, where each node corre-
sponds to a physical operator, and traverses it in bottom-up fashion.
The Caching Manager traverses each stored plan simultaneously
with the traversal of the current plan. For every node of the DAG
visited, Proteus probes the Manager for nodes in the cached plans
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that can be used instead. For a node in the current query to fully
match a node in a cached plan, i) they must both perform the same
operation (e.g., selection), ii) have the same arguments (i.e., eval-
uate the same algebraic expressions), and iii) their children nodes
must match each other respectively. Whenever the Manager finds a
match, Proteus applies the same process recursively until it reaches
the root of a cached plan. If successful, Proteus rewrites the plan
to use the cache. Besides full matches, Proteus considers partial
matching: If Proteus has cached the intermediate results (i.e., the
hash tables) of A ./ B, then the newly arrived query A ./ C can re-
use the hashtable built for A if it uses the same join key. Future
work includes adding support for subsumption [26, 48], i.e, identi-
fying that the cached tree σx>0(A) can replace the current sub-tree
σx>10(A) as long as we re-apply the x > 10 predicate.

In summary, rewriting scenarios include replacing i) a sub-tree of
the plan (e.g., a scan and a subsequent unnest operator), ii) a single
operator (e.g., a scan), or iii) a part of an operator (e.g., one of the
already materialized sides of a radix hash join). Code generation
is an enabler for such rewrites of varying granularity, because it
allows Proteus to generate code only for the necessary operations.

Cache Policies. Selecting which views to materialize is a well-
studied research problem [29]. Proteus applies different material-
ization policies depending on the workload characteristics. Proteus
benefits significantly when it places caching operators close to the
leaf nodes of the plan in order to convert input (raw) values to a
binary format. A reason is that raw data access is a major over-
head when querying heterogeneous datasets. In addition, the sim-
pler an operator tree corresponding to a materialized result is, the
more upcoming queries will be able to re-use it and benefit from
it. Therefore, the Caching Manager currently focuses on ways to
fully replace a costly access path instead of materializing the result
of a complex query sub-tree; applying more sophisticated policies
and studying their effect [4, 29] is part of our future work. Proteus
thus opts for straightforward first-come-first-served caching poli-
cies, and eagerly caches values read from CSV and JSON files.
Proteus caches primitive values found in files containing hierar-
chies to avoid re-navigating through them, especially if the involved
objects are deeply nested. Proteus also caches fields used as filter-
ing predicates. On the contrary, Proteus avoids caching variable-
length string fields from CSV and JSON files, which may be ver-
bose and pollute the caches. Regarding cache eviction, Proteus uses
a data-format-biased version of LRU, favoring data from inputs that
are more costly to access (where JSON �CSV � Binary).

7. EXPERIMENTAL EVALUATION
We evaluate Proteus using i) synthetic benchmarks to isolate the

performance of common query operations, and ii) a challenging
real-life spam email analysis workload provided by Symantec.

Experimental Setup. We compare Proteus against a) systems
that at some point were extended to support richer data models, and
b) systems specialized for a specific scenario by design. Specifi-
cally, we compare i) PostgreSQL 9.4.1, ii) commercial DBMS X,
iii) MonetDB 11.19.9, iv) commercial DBMS C, and v) MongoDB
3.0.3. PostgreSQL and DBMS X are row stores that support both
relational and JSON data; they showcase how a generic system per-
forms in the two diverse cases. We configure DBMS X to use its
“main memory accelerator”, therefore it keeps data in memory us-
ing a custom memory-friendly layout. MonetDB and DBMS C are
read-optimized column stores, designed to efficiently support rela-
tional analytical queries, which recently added JSON support. Fi-
nally, MongoDB is a specialized system for JSON data, for which
it uses a binary serialization (BSON). PostgreSQL supports both
a binary (jsonb) and a character-based JSON serialization; we use

jsonb because of its efficiency. The other systems treat JSON as
a subtype of VARCHAR. Neither the systems we compare against
nor Proteus make assumptions about field order in the JSON files.

We run all experiments on a dual socket Xeon Haswell CPU E5-
2650L (12 cores per socket @ 1.80 GHz), equipped with 64 KB L1
cache and 256 KB L2 cache per core, 30 MB L3 cache shared, 256
GB RAM, and 2TB 7200 RPM SATA 3 disk storage. The operating
system is Red Hat Enterprise Linux 7.1. Proteus uses LLVM 3.4
to generate custom code with the compilation time being at most
∼ 50 ms per query. We run all systems in single-threaded mode.

7.1 Specializing the Query Engine on Demand
This experiment isolates the performance of typical query oper-

ations over both hierarchies and relations. We use JSON and re-
lational binary data, and examine a range of query templates with
10%, 20%, 50%, and 100% selectivity.

We use the TPC-H lineitem and order tables as input, using
scale factors 10 (SF10 - 60M lineitem tuples, 15M order tuples)
and 100 (SF100 - 600M lineitem tuples, 150M order tuples). We
shuffle each file’s contents to avoid potential optimizations that ex-
ploit interesting orders and can introduce noise to the experiments.
To test performance over JSON data, we convert the TPCH-SF10
tables into a 20GB JSON file for lineitems and a 3.5GB file for or-
ders, and load them in all the systems we compare against. As an
indication of storage size, PostgreSQL requires 27GB to store the
JSON version of lineitem, and MongoDB requires 30GB. Proteus
natively operates over the JSON files and builds a structural index
during the first data access. Index size is ∼ 21% of the JSON file
for lineitems and ∼ 15% for orders, and its construction is signifi-
cantly faster than loading the data in the other systems (e.g., ∼ 4×
faster than MongoDB). For experiments over binary data, we load
the TPCH-SF100 version in PostgreSQL, DBMS X, MonetDB, and
DBMS C. Proteus operates over binary column files similar to the
ones of MonetDB. All systems operate over warm OS caches. Un-
less otherwise specified, the adaptive caching of Proteus is deacti-
vated. The data types are numeric fields (integers and floats).

Projections. For queries projecting a varying number of fields,
we use three variations of the following query template:
SELECT AGG(val1),...,AGG(valN) FROM lineitem WHERE
l_orderkey < [X] . The first two variations compute COUNT
and MAX respectively. The third variation computes four aggre-
gations (COUNT and MAX).

Figure 5 plots results for the JSON version (SF10). Proteus is the
fastest system because its lightweight generated code path makes it
more efficient for the CPU-intensive task of processing JSON en-
tries. In addition, contrarily to PostgreSQL, Proteus does not treat
JSON objects as bulky BLOB data; it uses the structural index to re-
trieve the information it needs from each object, which it then feeds
in the query pipeline without “polluting” the CPU caches with the
verbose JSON object any further. As for the other systems, JSON
access is expensive for DBMS X because it uses a character-based
encoding. MongoDB is competitive with PostgreSQL only for the
COUNT query. As the number of aggregates to compute increases,
PostgreSQL outperforms MongoDB. JSON support is still imma-
ture in MonetDB, which results in suboptimal performance. Sim-
ilarly, DBMS C underperforms in all our experiments over JSON
data. For this reason, and because some of the benchmarked oper-
ators are either work-in-progress (e.g., unnest) or not yet supported
efficiently (e.g., using a JSON field in a GROUP BY clause re-
quires a costly workaround for MonetDB), we exclude MonetDB
and DBMS C from the other experiments with JSON data.

Figure 6 presents results for the queries over binary data (SF100).
MonetDB and DBMS C are faster than PostgreSQL and DBMS X
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Figure 5: Projection-intensive queries over JSON data.
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Figure 6: Projection-intensive queries over binary relational data.

because the analytical query template we study is suitable for column-
oriented engines (i.e., a small subset of the relation is accessed).
For selective COUNT queries, DBMS C is the fastest system be-
cause it sorts the input during data loading; given that the query has
a predicate on the sorting key, DBMS C exploits it to skip many
data entries while answering the query. In addition, this query does
not project any attributes, therefore DBMS C does not incur any tu-
ple reconstruction cost. For less selective instances of the COUNT
query and for the other more complex queries, Proteus is faster
than DBMS C and MonetDB; their columnar operators produce in-
termediate results (i.e., fully materialize their output), thus paying
a materialization cost for the columns involved. The materializa-
tion cost increases further as queries become less selective; Proteus
pipelines data instead. In addition, the resulting code of Proteus is a
tight, minimal while-loop which only contains an if block evaluat-
ing the selection condition. The importance of generating minimal
code is highlighted in the COUNT query (left side of Figure 6). The
code is minimal enough for the effect of the branch predictor to be
visible. When selectivity reaches 100%, very few mispredictions
occur, therefore the query becomes faster for Proteus, although in-
tuitively Proteus does more work to calculate the aggregate value.

Selections. To test queries with multiple selection predicates, we
use three variations of the following template: SELECT COUNT(*)
FROM lineitem WHERE val1<[X] AND ... AND valN<[Z] .
The examined queries include one, three, and four predicates in the
WHERE clause respectively.

Figure 7 presents the results over JSON data (SF10). Proteus
has to convert the values it needs on the fly, whereas PostgreSQL
and MongoDB operate over a binary serialization. Still, Proteus is
faster than the other systems across the whole experiment because
once it has extracted the values it needs, it reduces the rest of the
CPU overheads significantly. Besides pipelining, Proteus consults
its structural index to pinpoint needed fields, thus reducing navi-
gational cost in the file. These benefits become more apparent for
less selective queries. DBMS X is the slowest system because of
its character-based JSON encoding. Compared to Figure 5, Mon-
goDB closes the gap on PostgreSQL and Proteus because the cur-
rent query template projects out a count instead of more complex
aggregates which MongoDB does not compute as efficiently.

In the case of binary data presented in Figure 8, the outcome is
similar to the one for projection queries. Proteus is faster in the
majority of cases because it pipelines data through all operators.
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Figure 7: Selection queries over JSON data.
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Figure 8: Selection queries over binary relational data.

MonetDB and DBMS C operators materialize their output, which
becomes more expensive as selectivity moves towards 100%.

Joins & Unnests. To test joins, we use three variations of the fol-
lowing template: SELECT AGG(o.val1),...,AGG(o.valN) FROM
orders o JOIN lineitem l ON (o_orderkey = l_orderkey)
WHERE l_orderkey < [X]. The first two variations compute one
aggregation, COUNT and MAX respectively, while the third varia-
tion computes two aggregations (COUNT and MAX).

Document stores such as MongoDB lack first-class support for
join operations, under the assumption that JSON data is typically
denormalized (i.e., any joins are pre-materialized). We therefore
include one more variation of a COUNT query over denormalized
JSON data; each order object now contains an array with the lineit-
ems that correspond to it, so the query has to unnest these JSON
arrays instead of performing a join.

Figure 9 plots the results for the JSON case. Proteus is faster
than the other systems because of i) its minimal generated code,
ii) its lightweight JSON access path, and iii) the efficiency of the
radix hash join algorithm it uses, which explains the larger perfor-
mance gap from PostgreSQL compared to the previous query types.
For MongoDB, we implement the join logic in a map-reduce-like
query. MongoDB is unsuitable for such operations, which explains
its poor performance; we only list its results for the first query as an
indication. On the contrary, in the “Unnest” case, MongoDB out-
performs PostgreSQL and DBMS X, which rely on built-in func-
tions to perform data unnesting instead of an explicit query oper-
ator. Proteus is faster because its generated code involves almost
no data conversions; besides evaluating a predicate, the code only
increases a counter for each element of the nested lineitem arrays.

For joins over binary data, the query template is ideal for DBMS C
and DBMS X. As seen in Figure 10, DBMS C is the fastest system
for selective queries because it exploits the fact that it sorts the data
on the filtering key at loading time and thus skips multiple entries.
In addition, it performs sideways information passing: it applies the
filter on orderkey to both sides of the join, thus reducing the pairs to
be joined. DBMS X also performs sideways information passing,
thus closing the gap with the column stores and Proteus compared
to previous queries. For less selective queries, Proteus is the fastest
system because DBMS X and DBMS C prune fewer tuples. To fur-
ther study performance, we measure performance counter statistics
for MonetDB and Proteus because they use the same query plan
without the additional optimizations. For a join with 20% selec-
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Figure 9: Join and unnest queries over JSON data.
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Figure 10: Join and unnest queries over binary relational data.

tivity, Proteus had 40× fewer dTLB (data Translation Lookaside
Buffer) misses, 10× fewer last-level-cache (LLC) misses, and 2×
fewer branches encountered, leading to fewer branch mispredic-
tions. These factors contribute to faster response times for Proteus.

Aggregations. To test queries that group results, we use three
variations of the following template: SELECT AGG(val1),...,
AGG(valN) FROM lineitem WHERE l_orderkey<[X] GROUP
BY l_linenumber. Figures 11 and 12 present results for queries
calculating one, three, and four aggregate values. Proteus uses a
radix-hash-based grouping implementation, so the results for JSON
data (SF10) are similar to the join use case, with Proteus outper-
forming the rest. For the first query over binary data (SF100), Mon-
etDB exploits an optimization to perform the grouping without ex-
plicitly calculating a count: It calculates the count by returning the
size of each corresponding bucket in the hashtable it populates to
perform the grouping. Therefore, it gradually becomes faster than
Proteus when only a count is computed. DBMS C also has a head-
start because it skips data based on the orderkey value. For queries
with additional aggregates, Proteus is the fastest system.

Gauging the Effect of Caches. In the previous experiments,
the caching feature of Proteus was deactivated. To quantify the
speedup that Proteus can achieve by enabling caching, we instan-
tiate the previous “projection” and “selection” templates for JSON
and vary selectivity from 10% to 100%. Figure 13 plots the results.
The first query applies a selection predicate and projects four fields.
The “Baseline” dotted line is the Proteus configuration used in the
previous experiments. In its “Cached Predicate” variation, the val-
ues used in the query’s selection predicate are already cached by
a previous query. The second query evaluates four predicates and
then calculates a count. Its “Cached Predicate” version reads the
values to evaluate the most selective predicate from the caches. In
both queries, cache size is ∼ 1.2% of the JSON file.

For the projection template, caching JSON values brings a high
benefit. By touching the JSON file only to access the qualifying
values to be projected, Proteus achieves a speed-up of up to 15×
for selective queries. As selectivity reaches 100%, Proteus avoids
fewer accesses of the JSON file, therefore the speedup is lower. We
observe significant speedup for the selection template as well. The
speedup is smaller than in the case of the projection query, because
even though the projection-intensive query is more expensive than
the selection-intensive one in its baseline version, both of them end
up having the same execution time under “Cached Predicate”. In
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Figure 11: Aggregate queries over JSON data
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Figure 12: Aggregate queries over binary relational data

0
5

10
15

10 20 50 100 10 20 50 100

Projection Template Selection Template

Sp
e

e
d

u
p

Selectivity Factor (%)

Cached Predicate

Baseline

Figure 13: Effect of caching on i) a projection query and on b) a
selection query over JSON data.

other words, there are some constant costs (e.g., structural index
navigation) which define the minimum execution time.

Summary. Proteus is competitive with specialized systems for
different operations regardless of the underlying data models and
formats. We also saw the additional benefits brought by caching,
which we investigate further in the next section.

7.2 Adapting to a Real-world Workload
We now evaluate Proteus using a workload obtained from Syman-

tec, which performs analysis over data derived from spam e-mails.
The data silo of Symantec periodically receives batches of JSON
files, collected through worldwide-distributed spam traps. Each file
contains information about spam e-mails, such as the mail body
and its language, its origin (IP address, country), and the bot re-
sponsible for it. These files are the input to the data mining work-
flows of Symantec; classification and clustering are performed over
them, through which each mail is assigned to a class per classifica-
tion criterion. In every iteration of the workflow, output is stored
in comma-separated-values (CSV) files containing an identifier of
each e-mail, various assigned classes, etc. Finally, data is trans-
formed and loaded in an RDBMS, with the use of which further
calculations are made. This process is repeated for every new batch
of JSON files: In each repetition, “fresh” JSON and CSV files have
to be loaded in a DBMS and queried along with pre-existing data.

Analyzing this data involves queries over combinations of the
datasets. We compare three possible solutions, for which we use
i) an RDBMS that has been extended to support richer data mod-
els, ii) an RDBMS for flat data and a document store for hierar-
chies, and iii) Proteus, which reshapes itself based on each query.
For approach I, we use PostgreSQL because it utilizes the most effi-
cient JSON encoding out of the general-purpose systems we tested.
For approach II, we use the combination of the specialized systems
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Figure 14: For a spam analysis workload, Proteus outperforms the other systems in the majority of queries due to i) its lightweight,
specialized-on-demand code paths, and ii) the caches it builds as a side-effect of query execution.

DBMS C and MongoDB, along with a mediating layer on top of
them to facilitate cross-format queries and data exchange.

The input comprises a 20GB JSON file of 28M objects with ar-
bitrary field order, a 22GB CSV file of 400M records, and a 95GB
database table of 500M records. PostgreSQL and MongoDB load
the JSON data prior to querying it. PostgreSQL requires 22GB to
store the binary JSON encoding, and MongoDB requires 30GB.
Proteus builds a structural index during its first access to the JSON
file; its size is ∼ 24% of the file. DBMS C and PostgreSQL load the
CSV data prior to querying it. Proteus again builds a structural in-
dex during the first access, storing the position of every 5th field; its
size is ∼ 17% of the file. Regarding binary storage, Proteus oper-
ates over binary column files similar to the ones of MonetDB. Pro-
teus caching is enabled in this experiment. The experiment starts
with the OS cache containing the binary table, and none of the sys-
tems having accessed the CSV nor the JSON data yet.

We launch a workload of 50 queries sequentially, and progres-
sively query a variety of the datasets. The queries perform selec-
tions, 2- and 3-way joins, unnests of JSON fields, result groupings,
and aggregate computations. Projectivity ranges from 1 to 9 fields,
and selectivity from ∼ 1% to 25%. We group together queries ac-
cessing the same datasets. We show the results in Figure 14.

Q1-Q8 touch the binary dataset. For Q1-Q7, Proteus is the fastest
approach, which corroborates the findings for selection and group-
ing queries over TPC-H data. Q8 has a very selective predicate on
the field used by DBMS C to sort the input data, therefore DBMS C
skips a large part of the dataset and is slightly faster than Proteus.

Q9-15 touch the CSV dataset. For DBMS C and PostgreSQL, the
execution time of Q9 includes the loading time of the CSV dataset.
Proteus answers queries over the original data, also building a struc-
tural index during Q9 and caching any fields it converts to answer
the query. Q9 takes Proteus 440 seconds less than DBMS C, and
880 seconds less than PostgreSQL. DBMS C is faster than Pro-
teus in Q11 because it operates over binary data, whereas Proteus
converts data fields on-the-fly and pays to cache them for further
use. Indeed, Proteus partially serves Q12 from its caches. On the
other hand, Q12 also has a filtering predicate on a string field. Pro-
teus opts not to cache string fields, whereas DBMS C performs
dictionary encoding of string values during loading and exploits it
in Q12; still, both systems have similar performance. Q13 is also
heavy on string-based operations, which explains why DBMS C is
faster. For Q14 and Q15, Proteus is the fastest approach because of
the binary caches it populates and its minimal generated engine.

Q16-Q25 touch the JSON dataset, so MongoDB becomes active.
For Q16, all systems behave as in Q9: Proteus exploits that the
JSON dataset is accessed for the first time, and caches data aggres-
sively since the caching cost is masked by I/O and the structural
index construction. Q16 takes Proteus 600 seconds less than Mon-
goDB, and 800 seconds less than PostgreSQL. For Q17, Proteus
uses its caches to speed-up execution significantly. For Q18 and
Q21, caches are less useful because the queries involve string fields

Load
CSV

Load
JSON

Middle-
ware

Q39 Queries
(Rest)

Total

PostgreSQL 1019 792 0 2226 7468 11505
DBMS-C
&MongoDB

711 1067 43 29 1810 3660

Proteus 0 0 0 17 1231 1248

Table 3: Execution time per Symantec workload phase.

which Proteus extracts and processes from the JSON file at query
time. Using a policy of caching strings would benefit Proteus in the
short term, but it would also pollute the caches with string objects.
Still, Proteus is slightly faster than the other systems. For the rest of
the queries, custom code generation combined with judicious data
conversions and adaptive caching make Proteus faster.

Q26-Q30 join binary and CSV data. The materialization over-
head of DBMS C is insignificant because these queries are very
selective. Still, Proteus is faster for Q26 and Q27. Likewise, it is
barely noticeable for Proteus that Q28 includes predicates on string
fields of the CSV file. DBMS C is faster for Q29 because Proteus
again has to access a string field in the CSV file, and at the same
time DBMS C skips multiple data entries because of a filtering
predicate on its sorting key. In general, both DBMS C and Proteus
offer competitive performance for this query range. Finally, Q31-
Q35 join binary and JSON data, Q36-Q40 join CSV and JSON, and
Q41-Q50 join all three datasets. Q39 is very expensive for Post-
greSQL because it picks a sub-optimal, nested-loop-based plan.
Proteus is consistently the fastest system for two reasons: First, as
discussed in Section 7.1, customizing the query engine gives sig-
nificant performance benefits. Second, Proteus adaptively caches
accessed values, thus after some point it largely operates over its
binary caches, instead of the verbose CSV and JSON datasets.

At the end of the workload, the cache size for the CSV data is
∼ 30% of the CSV file. The cache size for the JSON data is only
∼ 2.5% of the JSON file. JSON caches are more compact because
although the number of CSV and JSON fields of interest is almost
the same, the JSON file contains 28 million verbose JSON objects
to be partially cached, whereas the CSV file contains 400 million
narrow tuples. Interestingly, the JSON caches are more impactful
for the workload because of the increased access cost for the JSON
dataset. Therefore, if we were to drop any caches to adhere to a
tighter memory budget, we would start from the ones for CSV data.

Aggregate Performance. Table 3 presents the accumulated ex-
ecution time spent in each workload step. Proteus is 9.12× faster
than using an RDBMS with added support for richer data mod-
els (PostgreSQL) and 2.9× faster than the approach of packaging
together multiple query engines and using the appropriate one for
each specialized scenario (DBMS C & MongoDB). We isolate Q39
because it is an outlier for PostgreSQL that highlights the problem
of extending existing systems without deeply integrating support
for the added data models and formats. Q39 performs a join be-
tween the CSV and JSON datasets. PostgreSQL, however, treats
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JSON data as a BLOB-like datatype, which is essentially opaque to
its optimizer. The result is that the optimizer chooses an expensive
nested-loop join. If we exclude Q39 from the aggregated execution
time, Proteus is still 7.4× faster than PostgreSQL. Finally, even
if we focus completely on execution time and exclude any other
overheads from the workflow (e.g, data loading cost, overhead of
middleware layer), Proteus still is the fastest system overall.

Summary. Proteus flexibly accesses a real-life workload of het-
erogeneous datasets while being as fast as a specialized system per
use case. Besides being fast regardless of its input, Proteus achieves
an additional speed-up by adapting to the workload through caching
structures built as a side-effect of querying.

8. CONCLUSION
Data analysis solutions over heterogeneous data have always in-

volved a trade-off: be flexible and serve diverse datasets at the cost
of performance, or be rigid and specialized for a specific scenario,
thus leading users to employ a different system per use case.

This paper presents a system design that exposes heterogeneous
datasets under a single interface, while exhibiting the response times
of a system specialized per use case. The design couples i) an ex-
pressive query algebra which masks data heterogeneity with ii) on-
demand customization mechanisms which produce a new system
implementation per query. Based on this design, we build Proteus,
a query engine that natively supports CSV, JSON, and relational bi-
nary data, and specializes its entire architecture to each query and
the data that it touches via code generation. Proteus also customizes
its caching component, specifying at query time how these caches
should be shaped to better fit the overall workload.

Proteus serves efficiently synthetic and real-world workloads: it
outperforms state-of-the-art open-source and commercial approaches
without being tied to a single data model or format, all while oper-
ating transparently across heterogeneous data. Its ability to morph
per query opens multiple opportunities for further optimizations.
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