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1 Proof of Theorem 1
Theorem 1. Let t > 0, and δ ∈ (0,1). We have |ρ̂T −ρT | ≤ t with probability exceeding
1−δ as long as

M ≥ ln(2/δ )

2t2 . (1)

Moreover, when the prior distributions are data-independent (i.e., pT (θ |x) = pT (θ)), the
condition in Eq. (1) becomes

NM ≥ ln(2/δ )

2t2 . (2)

Proof. Our main ingredient for proving this result is Hoeffding’s inequality. We recall this
inequality as follows:

Theorem 2 (Hoeffding’s inequality). Let (Xi, i ≥ 1) be a sequence of independent random
variables such that 0≤ Xi ≤ 1. If X̄n =

1
n (X1 + · · ·+Xn), then for all t > 0

P({|X̄n−E(X̄n)| ≥ t})≤ 2exp
(
−2nt2) .

Case (a). We start our proof by considering the case where the prior distribution does not
depend on the image: pT (θ |x) = pT (θ), to establish the result in Eq. (2). We have:

ρT =
∫

x

∫
θ

pcl(`(x)|x,θ)pT (θ)pd(x)dθdx,

ρ̂T =
1
M

M

∑
j=1

1
N

N

∑
i=1

pcl(`(x j)|x j,θi) :=
1
M

1
N

M

∑
j=1

N

∑
i=1

Z j,i.

The random variables θi and x j are independent, hence {Z j,i}( j,i) are pairwise independent.
Note moreover that Z j,i ∈ [0,1], and that E(Z j,i) = ρT for any j, i. Hence, by applying
Hoeffding’s inequality, we obtain

P(|ρ̂T −ρT | ≥ t)≤ 2exp(−2NMt2).
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Setting δ = 2exp(−2NMt2), we obtain the desired result in Eq.(2).

Case (b). We now consider the general case where the the prior distribution pT (θ |x) depends
on the image, and our goal is to establish the result in Eq. (1). We have:

ρT =
∫

x

∫
θ

pcl(`(x)|x,θ)pT (θ |x)pd(x)dθdx,

ρ̂T =
1
M

M

∑
j=1

1
N

N

∑
i=1

pcl(`(x j)|x j,θi) :=
1
M

1
N

M

∑
j=1

N

∑
i=1

Z j,i.

In this case, the random variables Z j,i and Z j,i′ might be dependent (for i 6= i′), as θi and θi′

are only conditionally independent. We therefore introduce the random variable

Wj =
1
N

N

∑
i=1

Z j,i,

and note that {Wj} j are pairwise independent, as the random variables {x j} are chosen in-
dependently. Note moreover that E(Wj) = E(Z j,i) = ρT , and that Wj ∈ [0,1]. We apply
Hoeffding’s inequality for Wj and obtain

P(|ρ̂T −ρT | ≥ t)≤ 2exp(−2Mt2).

By setting δ = 2exp(−2Mt2), we obtain the desired result in Eq.(1).

2 Additional experimental description and illustrations

2.1 MNIST handwritten digits
In this experiment, the nuisance set T is the set of affine transformations. We parametrize
each element T with a vector θ ∈ R6. We impose a Gaussian prior pT (·|x) = N (1,Σ),
where 1 denotes the identity transformation, and Σ denotes the covariance matrix. We set the
covariance matrix in order to penalize large changes in the appearance of the image. The
covariance therefore naturally depends on the image x, since, for example, the appearance
of a circular image is not altered under the action of rotations. To define the notion of
appearance change, we follow a similar approach to that of [1, 2, 3]. We quantify the
change in appearance between two elements θ0 and θ1 in T using the geodesic distance on
the manifold of transformed samples {Tθ x : θ ∈ T }. This distance can be written

d(θ0,θ1) = inf
γ

∫ 1

0

√
γ(t)T Gγ(t)γ(t)dt, (3)

where the infimum is taken over all C1 curves γ that satisfy γ(0) = θ0 and γ(1) = θ(1), and
G denotes a Riemannian metric on the manifold T [2]. When θ1 is in the neighborhood of
θ0, we can approximate the matrix Gγ(t) (for any t) by Gθ0 , provided Gγ(t) is slowly varying
with γ(t). By assuming a constant Gγ(t) = Gθ0 = G, the distance in Eq. (3) can be computed
in closed-form. It is easy to see that when Gγ(t) is constant, we have

d(θ0,θ1) =
√
(θ1−θ0)T G(θ1−θ0).
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We naturally set the prior distribution on T in order to penalize large variations in the ap-
pearance of the image, by defining

pT (θ |x) ∝ exp
(
−αd(1,θ)2)= exp

(
−(θ −1)T

Σ
−1(θ −1)

)
,

with Σ−1 = αG, and α is a parameter controlling the “magnitude” of the transformation. In
that sense, our prior distribution hence penalizes changes in appearance of the image, and
favors nuisance regions that do not significantly distort the data.

We show in Fig. 1 transformed versions of arbitrary MNIST images with nuisance sam-
ples drawn from the prior pT (θ |x), for α = 100,50,10.

Figure 1: Original images are shown in row 1. Samples drawn from prior distribution
with α = 100 [row 2, mild transformations], α = 50 [row 3, medium transformations], and
α = 10 [row 4, severe transformations].

2.2 Natural images & face recogntion

In Fig. 2, we show samples from the prior distribution pT (θ) (the prior is independent of x
here), when T is the set of piecewise affine transformations, for randomly taken images in
the ILSVRC 2012 validation set.

Figure 2: Transformed versions of images taken from the ILSVRC 2012 validation dataset.



4 FAWZI, FROSSARD: MEASURING THE EFFECT OF NUISANCE VARIABLES

References
[1] D. Donoho and C. Grimes. Image manifolds which are isometric to euclidean space.

Journal of mathematical imaging and vision, 23(1):5–24, 2005.

[2] A. Fawzi and P. Frossard. Manitest: Are classifiers really invariant? In British Machine
Vision Conference (BMVC), pages 106.1–106.13, 2015.

[3] M. Wakin, D. Donoho, H. Choi, and R. Baraniuk. The multiscale structure of non-
differentiable image manifolds. In Optics & Photonics 2005, pages 59141B–59141B.
International Society for Optics and Photonics, 2005.


