
Managing Identities Using Blockchains and CoSi
Eleftherios Kokoris-Kogias, Linus Gasser, Ismail Khoffi,

Philipp Jovanovic, Nicolas Gailly, Bryan Ford
EPFL

1. INTRODUCTION
Nowadays we have to identify ourselves to different ser-

vices and devices, either by a login/password or in the case
of SSH, with a public key. Often the same public-key is reg-
istered with different services and thus it is easy to track
the user across different platforms. To enhance privacy, the
user should use a separate SSH-keypair for each service, but
this is difficult to manage. The goal of our system is to
enable the user to use multiple accounts across his devices
and to relieve some of these difficulties. This is applicable
in multiple systems like PGP [2], or SSH [9], but we fo-
cus for the moment on SSH because it is widely-used both
for connecting a user’s different machines (via remote login
and scp) and for identifying the user (e.g., github). Specif-
ically, we address the cases where the user (a) rotates keys
for security purposes, (b) introduces new key-pairs in her
online-presence, and (c) revokes key-pairs that she can no
longer access.
The most straightforward way to use SSH is to create

one SSH-key and copy it to every other device. However,
controlling this one key enables an attacker to compromise
all the user’s devices. On the contrary, the recommended
practice [6] is to create one key per host and to limit the
damage an attacker can do when compromising one of the
user’s devices, by configuring the key’s privileges to be a
subset of the root privileges. A drawback is that this practice
requires a user to update the access lists of numerous servers,
or to delegate this to centrally managed services [1].
We combine collective signing [8] and blockchains [5, 3]

to create a secure and easy-to-use, decentralized SSH-key
management system. The SSH management is done by a
cothority [8] that maintains a list of authoritative keys of
the user. Whenever a change is needed, due to key rotation
or lost/new devices, the user initiates an update where the
cothority contacts the devices that control the keys and gets
a signed approval of the new block. If a threshold (typically
three or four) of devices agree on the change then the cothor-
ity transmits the individual signatures and the block which
is then collectively signed by the cothority. This signature
signifies the agreement of the cothority on witnessing enough
proof that the keys should change and models a forward link,
making the blockchain doubly-linked.

2. SYSTEM ARCHITECTURE
Figure 1 illustrates the architecture of the system. The

Manager-Devices are devices that the user can physically
access, like laptops, and phones. They are authoritative
for managing the user’s identity by proposing new data to
be included in the blocks. In our use-case, this data con-
sists of public SSH-keys. However, the managers are not al-
ways available and/or accessible, thus they cannot be used
to serve new blocks to the clients, or manage the distributed
coordination. To mitigate this problem we assume the ex-
istence of publicly reachable servers forming a cothority [8],
that provides blockchain management as a service. When-

Figure 1: System architecture

ever the user wants to add, remove or rotate some keys she
creates a new update-request that is sent to the Cothority-
Servers and gets signed by a threshold of managers (creating
a forward link). Finally, Clients are remote servers, IoT de-
vices, or services (e.g. github) that the user wants to access.
They download and verify blocks from the cothority in order
to automatically update their access lists. If they are online
they are notified at the moment of creation, otherwise they
randomly poll a cothority server when they get online.

The basic data-structure of the system is the Identity-
Blockchain, which is made of blocks that store the SSH-
keys of the user’s devices. The blockchain is doubly-linked,
its backward links are used for ordering between the blocks
and are cryptographic hashes of the previous block. Future
blocks do not exist at the time of block creation, thus for-
ward links cannot be represented as cryptographic hashes in-
corporated into the block’s hash (like backward links). They
are retroactively added inside the block. In order to enable
the secure creation of forward links we employ digital sig-
natures. Whenever a new block is requested the cothority
creates a new block containing the new data and a back-
ward link to the current head. Afterwards, a threshold of
managers sign the new block with their current key thereby
creating a forward link from the current to the new block,
which makes the latter also the new head of the chain. That
way, they delegate the trust from their old keys to the new
ones and a client following the chain can easily verify each
step it is taking, without depending on an intermediary for
the validity of the retrieved information.

3. SECURITY CONSIDERATIONS
Our system enables the user to follow best practices [6]

with her SSH-keys without the need to manually manage
them or completely outsource their managment. Existing,
centralized solutions create targets for attackers as they al-
low them to directly inject new public SSH-keys. Our solu-
tion has no central authority that can be abused, and even if
the cothority is compromised they can only DoS the system,
because they are unable to produce forged blocks without
holding a threshold of the managers’ private keys. Further-



more, an attacker holding only one private SSH-key is not
able to modify the access list of the clients, since he needs a
threshold of these keys to propose a valid new block. We can
further enhance the security of the system by introducing a
two-factor login, especially for keys with increased rights, so
that even in the case of a compromised manager device the
attacker would not be able to log in to any of the clients.
One attack the system is vulnerable to, is a freeze-attack

on behalf of the cothority, but this is mitigated by the fact
that the servers holding the blockchain are randomly chosen.
We also define a maximum epoch of a block, so that if a client
sees that there is no new block, he can assume a freeze-attack
is happening and take necessary actions.
Finally, we expect most of the manager-devices to not be

accessible via SSH (which is the case for phones and tablets),
but if a device is accessible via SSH, the private keys of the
device should be password protected, so that the attacker
cannot remotely open them and control the corresponding
private key of this device too.

4. IMPLEMENTATION & EVALUATION
Our implementation of the cothority1 supports all oper-

ations described here. It has been tested to run with up
to 32’000 instances and can sign new blocks in a matter
of seconds. In practice different subsets of the cothority
will be chosen to handle different identity-blockchains. The
manager-devices are handled by a program that implements
all functionalities needed to communicate with the identity-
blockchain service on the cothorities. A manager-device pro-
poses a change to the blockchain which is transmitted by the
cothority to the other manager-devices and has to be con-
firmed by a threshold of them. The clients have a list of
identity-blockchains that they follow. In the case where a
client missed several updates, he will receive all blocks nec-
essary to prove that the update is trustworthy.
Every manager-device that wants to confirm a change

needs to download the list of public keys, which is up to 1kB.
The confirmation-signature on this list is about 64 bytes
and has to be sent to the cothority. Once the cothority has
signed a new list and appended it to the blockchain, there
is an overhead of 256 bytes for the hash, the signature, and
other configuration-fields for the blockchain. When a client
downloads the new list it also has to download that over-
head and then needs to verify that the signature is correct.
This verification uses a Schnorr-signature with the aggre-
gate public key of the cothority and as such is lightweight,
even in the case of a large number of cothority-servers. The
overall overhead is minimal and the system can be used by
resource constrained devices (e.g., in IoT), too.

5. FROM SSH TO IDENTITY MANAGEMENT
We implemented the SSH-Key Management as an illustra-

tive example, but we envision a larger Identity Management
system, where a user can manage not only his SSH-keys, but
also PGP keys or keys that can be used to contact him in
an end-to-end encryption messaging system, without dele-
gating the management of them to the messaging platform’s
operator.
We are currently implementing such an identity manage-

ment system based on CONIKS [4], but changing it from
a name-to-key resolver to a name-to-distributed-identity re-
solver. A user can provide the ID of his blockchain and a
way to retrieve it (e.g., the IP address of the cothority).

1https://www.github.com/dedis/cothority

Anyone wanting to contact the user can then retrieve the
block and verify its validity (like the clients of Fig. 1 do).
Furthermore, he can request and verify all the intermedi-
ate blocks, between the last known identity of the user and
the one retrieved, to verify consistency. As far as privacy is
concerned, we use all the privacy features of CONIKS (the
keys are hashed so a client can retrieve a block only through
knowledge of the keys, the ID can be encrypted by a sym-
metric key if the user does not want to be publicly reachable,
etc.). Additionally, we add the option that parts of the block
can be encrypted with another symmetric key so that some-
one could communicate with the user leveraging the publicly
available key but would need to request the symmetric key
to get more sensitive information out. However, once he has
this key, any updates to these parts are easy to follow; there
is also a next-key field so that the user can rotate symmet-
ric keys efficiently. Finally, we have already added Collective
Signing [8] on the STRs of the Identity Providers, so that
hashchain forks are pro-actively eliminated and the user is
fully secured without contacting multiple auditors (which
can be hard in censorship-prone locations).

With the above system we are planning to build, easy-
to-use PGP messaging. We decouple the blockchain’s uses
to internal, for updating access lists, and external for fol-
lowing the identities. The cothority helps the user manage
per-device SSH/PGP keys internally, and collectively gen-
erates the public-facing PGP-key (which is used to contact
the user), using threshold signatures. This key is created via
secret sharing [7], and a threshold of servers are needed to
reconstruct it. Now each device not only has one SSH-key,
but also one PGP key, while the user publicly announces
the PGP key of the cothority. When a PGP encyrpted mes-
sage arrives, the user authorizes its decryption by signing
approval with an internally used key. However, if a manager-
device is compromised, the attacker can temporarily use that
to authorize the signing or decryption of messages until the
attack is detected. Once detected the attacker loses access,
and the composite public-facing PGP key remains uncom-
promised. This increases both security of private commu-
nications, since the PGP key is not copied to every device,
and usability, since a lost device does not lead to the key’s
rotation.

For privacy-conscious users the same method can be used
for SSH-keys, as well. They can have their actual SSH-keys
only for internal use and create multiple external blockchains,
that contain cothority-produced keys. This way they will be
able to use the cothorities as a proxy to connect to different
services pseudonymously and make it harder for colluding
services to track their online actions.

6. REFERENCES
[1] Authentication System privacyIDEA, May 2016.
[2] M. Elkins. Mime security with pretty good privacy. 1996.
[3] E. Kokoris-Kogias et al. Enhancing Bitcoin Security and

Performance with Strong Consistency via Collective Signing. In
25th USENIX Conference on Security Symposium, 2016.

[4] Melara et al. CONIKS: Bringing key transparency to end users.
In 24th USENIX Conference on Security Symposium, 2015.

[5] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System,
2008.

[6] NIST. Security of Interactive and automated Access
Management Using Secure Shell (SSH), chapter 5.1.2. 2015.

[7] A. Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

[8] E. Syta et al. Keeping Authorities “Honest or Bust” with
Decentralized Witness Cosigning. In 37th IEEE Symposium on
Security and Privacy, 2016.

[9] T. Ylonen and C. Lonvick. The secure shell (ssh) protocol
architecture. 2006.

https://www.privacyidea.org
http://arxiv.org/abs/1602.06997
http://arxiv.org/abs/1602.06997
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-melara.pdf
https://bitcoin.org/bitcoin.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.7966.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.7966.pdf
http://dedis.cs.yale.edu/dissent/papers/witness-abs
http://dedis.cs.yale.edu/dissent/papers/witness-abs

	Introduction
	System Architecture
	Security Considerations
	Implementation & Evaluation
	From SSH to Identity Management
	References

