UAV Sensor Orientation with Pre-calibrated Redundant IMU/GNSS Observations

Philipp Clausen Martin Rehak Jan Skaloud

Geodetic Engineering Laboratory TOPO, EPFL, Switzerland

8. June, 2016 Dreiländertagung Bern

What's on the menu

What

- Are the needs?
- Are the challenges?
- Photogrammetric System
 - Airplane
 - Camera
 - Inertial sensors
- Calibration of IMUs
 - Deterministic errors
 - Stochastic errors
- Results

Conclusion

Motivation

Challenges

- Trajectory usage
 Input to bundle adjustment
- Good trajectoryLow-cost MEMS sensors
- Short initialization time
 - Roll/pitch -> accelerometer
 - Yaw from magneto/accel
- Alignment refinement
 - Needs time, flight is short!
- Better initialization
 - Needs sensor calibration
- Position -> less GCPs in block <u>125 29</u>
 Attitude -> needed in corridor

TOPO Plane - structure

- Custom build
- 150 Euro frame (MAVinci)
- 1630 x 1700 mm
- Operational weight 2.8 kg
- Endurance of 40 min with 600 g payload
- Flying speed 16-20 m/s
- Pixhawk autopilot

TOPO Plane - payload

TOPO Plane - payload

- Redundant-IMU (A)
 - FPGA board
 - 1-4 x MEMS IMU
 - 250 1000 Hz
 - 0.2 W
 - 24x14x9 mm
 - **6** g

Camera (B)

- Sony NEX 5R camera (16 Mpx)
- 16 mm lens (used in test)
- synchronization module (flash)

□ GNSS

ÉCOLE POLYTECHNIQU FÉDÉRALE DE LAUSANN

- multi freq., PPS, Event
 - GPS/Glonass L1/L2 antenna

System & sensor calibration

Guerrier, S., Skaloud, J., Stebler, Y. Victoria-Feser, M.-P. Wavelet-variance-based estimation for composite stochastic processes, **Journal of the American Statistical Association**, 108(503): 1021-1030.

8

System & sensor calibration

- GNSS antenna body frame (IMU)
- Camera body frame

Multi-position IMU calibration

- Deterministic errors
- Scale factor, non-orthogonality, and bias
- Measurements l
- \Box True values g

$$\begin{bmatrix} l_x \\ l_y \\ l_z \end{bmatrix} = \begin{bmatrix} 1+S_x & 0 & 0 \\ -\theta_{yz} & 1+S_y & 0 \\ \theta_{zy} & -\theta_{zx} & 1+S_z \end{bmatrix} \cdot \begin{bmatrix} g_x \\ g_y \\ g_z \end{bmatrix} + \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}$$

Condition on the compensation process

$$g_x^2 + g_y^2 + g_z^2 - |g|^2 = 0$$

Accelerometer data in multi-orientation

□ Norm of static signal at different orientations

Accelerometer data in multi-orientation

□ Norm of static signal at different orientations

Property	IMU 0	IMU 1	IMU 2	IMU 3
b _x [mg]	6.764	5.945	11.397	-0.997
b _y [mg]	16.225	4.198	1.538	28.220
b _z [mg]	-0.871	-2.507	-2.058	-5.372

Each accelerometer has different bias value (switch-on)

In this example this corresponds to ~2 degree of initial error in roll/pitch

$$\alpha = \arcsin\left(\frac{bias}{g}\right)$$

Dataset

Comparison of mapping precision

Absolute attitude

	Accuracy						
Dataset	Mean	ChP [mr	m] [px]	RMS ChP [mm] [px]			
	Х	Y	Z	Х	Y	Z	
Indirect SO	68 1.5	8 0.2	-664 14.8	16 0.4	145 3.2	1171 26	
ISO Ap Aa Un calib	13 0.3	26 0.6	74 1.6	26 0.6	37 0.8	87 1.9	
ISO Ap Aa Pre calib	14 0.3	25 0.6	64 1.4	28 0.6	35 0.8	78 1.7	

Note on attitude usage

- Absolute: requires boresight determination/calibration
- Relative: no pre-calibration necessary

Dataset		Accuracy						
		Mean ChP [mm] [px]			RMS ChP [mm] [px]			
		Х	Y	Z	Х	Y	Z	
IMU 0	ISO Ap A a	14 0.3	25 0.6	64 1.4	28 0.6	35 0.8	78 1.7	
	ISO Ap R a	14 0.3	24 0.5	45 1.0	27 0.6	36 0.8	65 1.4	
IMU 1	ISO Ap A a	7 0.2	26 0.6	85 1.9	21 0.5	37 0.8	98 2.2	
	ISO Ap R a	8 0.2	26 0.6	73 1.6	21 0.5	37 0.8	88 2.0	
IMU 2	ISO Ap A a	8 0.2	25 0.6	66 1.5	26 0.6	35 0.8	82 1.8	
	ISO Ap R a	7 0.2	24 0.5	58 1.3	25 0.6	35 0.8	74 1.6	
IMU 3	ISO Ap A a	6 0.1	27 0.6	56 1.2	23 0.5	37 0.8	73 1.6	
	ISO Ap R a	3 0.1	25 0.6	37 0.8	23 0.5	36 0.8	59 1.3	

Conclusion

D MAV

- An affordable mapping tool => important: image/camera quality
- Usage of navigation sensors / good trajectory
 - Imagery: optional, increases efficiency (less or none GCPs)
 - Laser: necessary
- IMU / attitude
 - Important for corridor mapping
 - Calibration -> improves initialization -> important in abs. attitude
 - R-IMU: lower noise level & -> improved relative attitude

Questions

REHAK, M. & SKALOUD, J., 2016: Applicability of new Approaches of Sensor Orientation to Micro Aerial Vehicles. ISPRS ICWG III/I Annals of ISPRS Congress, Prague.

