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Provisions for punching shear design of reinforced concrete 
slabs are usually calibrated on the basis of results from tests on 
isolated specimens that simulate the slab zone within the points of 
contraflexure around a column. However, the punching behavior 
of interior slab-column connections in actual continuous slabs 
without transverse reinforcement may be influenced by the effects 
of moment redistribution and compressive membrane action, which 
can lead to higher punching strengths and lower deformation 
capacities compared to those in isolated specimens. This paper 
discusses these behavioral differences on the basis of experiments 
performed on symmetric edge-restrained slabs and investigates 
available test data by means of a numerical model. A simplified 
calculation method (based on the Critical Shear Crack Theory) 
that accounts for these effects is also proposed. The calculation 
model shows consistent agreement with the results of the numer-
ical evaluation and is sufficiently simple to be used in design and 
assessment.

Keywords: compressive membrane action; continuous slab; interior 
slab-column connection; Model Code 2010; moment redistribution; 
punching shear.

INTRODUCTION
Rules for punching shear design and assessment of 

reinforced concrete members in common codes of prac-
tice (including the most recent ACI 3181) are often based 
on empirically derived formulas. These formulas are fitted 
using the results of available experiments that are mostly 
performed on axisymmetric isolated slab specimens 
supported on a small column stub. These specimens model 
the negative (hogging) moment area around a column, 
support, or loading point (isolated from the rest of the 
continuous slab), where the only redistribution possible is 
that between radial and tangential moments. Although such 
tests are affordable and relatively easy to perform, results of 
experiments2-7 and nonlinear analyses8-10 of slabs with rota-
tional and in-plane edge restraints have shown that isolated 
test specimens may not suitably model the behavior and 
strength of actual continuous slabs. This is caused by the fact 
that continuous slabs exhibit two phenomena that cannot 
appear in isolated specimens, namely redistribution between 
negative (hogging) and positive (sagging) moments and 
compressive membrane action (CMA), which may increase 
the flexural and punching capacity of the slab.

Redistribution between hogging and sagging 
moments

The distribution of bending moments in a continuous slab 
is normally calculated using linear-elastic finite element 
analysis or other methods that assume linear-elastic slab 
response. Due to this assumption, the size of the hogging 
moment area is independent of the load level and can be used 
as a basis for choosing the size of isolated punching speci-

mens. However, due to cracking of concrete and yielding of 
reinforcement, the flexural response of reinforced concrete 
slabs is actually nonlinear and the location of the line of 
moment contraflexure (at distance rs from the center of the 
column in Fig. 1(a)) varies with the level of load, as redistri-
bution between hogging and sagging moments takes place. 
This effect can be experimentally studied only through 
testing of either continuous slabs or specimens with rota-
tional edge restraints that model a prototype continuous 
slab up to the midspan symmetry line. As punching shear 
strength is affected by cracking and deformations of slab-
column connections, redistribution of moments also has an 
influence on the shear capacity of the connection. Only a few 
analytical models for punching address this effect.8,11

Compressive membrane action (CMA)
CMA is a phenomenon where normal forces develop in 

the slab if its lateral expansion, caused by flexural cracking, 
is restrained. The actual flexural strength and stiffness of 
such structures is thus significantly enhanced compared to 
the predictions of a typical flexural analysis where the occur-
rence of in-plane forces is neglected. Simple and rational 
calculation models12-14 (acknowledged in some codes of 
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Fig. 1—Behavior of actual slabs: (a) redistribution between 
hogging and sagging moments in continuous slabs; (b) 
tangential tension ring arising in continuous slab due to dila-
tion of cracked regions; and (c) influence of normal stress on 
moment-curvature response of reinforced concrete element.
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practice15) have been developed on the basis of the theory 
of plasticity to account for CMA in the cases where the slab 
is confined between perfectly rigid horizontal supports or 
where the stiffness of confining elements can be estimated.16

CMA also arises in continuous slabs without external 
confining elements when the lateral expansion of cracked 
concrete around the column is restrained by the surrounding 
slab that is still uncracked (Fig. 1(b)).8,17 A zone with tangen-
tial tensile forces (tension ring) forms in the uncracked (and 
therefore stiffer) part of the slab. This induces compressive 
stresses in the hogging moment area that increase its flexural 
strength and stiffness (Fig. 1(c)). In this paper, this effect is 
called self-confinement, as it is provided by the surrounding 
continuous slab itself. This effect appears fully only in the 
perimeter of internal columns unless the slab has openings 
close to the column connection. It also appears partially in the 
case of edge columns but does not appear in corner columns.

Punching of flat plates
According to experimental observations and theoret-

ical considerations,18-21 the punching capacity of a slab-
column connection is dependent on the state of flexural 
deformations in the slab in the vicinity of the connection. 
These approaches allow examining the effects of CMA 
and moment redistribution on the punching behavior by 
considering their influence on the flexural deformations, 
which in turn influence the punching strength. In this 
paper, such analysis will be performed by using the Critical 
Shear Crack Theory (CSCT).21 According to this approach, 
the punching strength is influenced by the widths of flex-
ural cracks around the column that propagate to the shear- 
carrying diagonal compression strut (Fig. 2(a)). The width of 
this crack is assumed to be proportional to the product of the 
maximum slab rotation ψ and the effective depth of the slab 
d. Based on this assumption, the following failure criterion 
was proposed21

	 V b d f d
d d

R 0 c

g0 g

= ⋅
+ ⋅

+

9

1 15 ψ
 

	 (U.S. customary units: psi, in.)	

(1)

For SI units (N, mm), the constant 9 is replaced by 0.75. 
Punching failure is predicted to occur when the applied load 
causes a rotation ψ (that can be determined with any physi-
cally based calculation method) that results in a failure load 

calculated with Eq. (1). This load level VR is graphically 
represented at the intersection of the load-rotation curve and 
the failure criterion curve in Fig. 2(b). The failure criterion 
accounts for size effect by normalizing the product (ψ · d) 
with a factor (dg0 + dg), where dg is the maximum aggre-
gate size and dg0 = 16 mm (5/8 in.) is a reference aggregate 
size. More details about the background of this theory can be 
consulted elsewhere.22 The CSCT is also used as a basis of 
punching shear provisions in fib Model Code 2010.23

RESEARCH SIGNIFICANCE
Flexural behavior and punching shear strength of an 

actual slab may be significantly influenced by redistribution 
between hogging and sagging moments and compressive 
membrane action that can occur around interior columns in 
continuous flat plates, but not in typical isolated punching 
test specimens. In this paper, these effects are studied on 
the grounds of experiments on edge-restrained interior 
slab-column specimens. Based on an axisymmetric numer-
ical model, a new simplified expression is proposed that, in 
combination with the failure criterion of the CSCT, allows 
accounting for the enhanced punching shear strength of inte-
rior slab-column connections in continuous plates.

BEHAVIOR OF ISOLATED AND CONTINUOUS SLABS
The flexural behaviors (described by load-rotation 

curves) of a one-way member (a double cantilever beam), 
an isolated two-way slab specimen, and a continuous slab 
(or a slab with flexural edge restraints) under vertical loads 
are compared in Fig. 3. The curves are calculated using an 
axisymmetric numerical model proposed by Einpaul et al.8 
and do not account for CMA. All the compared elements 
have the same thicknesses and flexural reinforcement ratios. 
The beam (Fig. 3(b)) and the isolated slab (Fig. 3(d)) have 
identical values of shear slenderness (rq/d, where rq is the 
distance from the load application point to the support). 
The model of the continuous slab is subjected to uniformly 
distributed loading and extends to the midspan symmetry 
line, where the slab rotation is required to be zero. The span 
of the continuous slab L (Fig. 3(f)) is such that the size of the 
elastic hogging moment area matches the size of the isolated 
slab (rs = 0.22L). The punching load associated with the flex-
ural capacity of each slab (Vflex) can be found with yield line 
method with the kinematic mechanisms shown in Fig. 3(b), 
(d), and (f). The isolated slab has higher flexural capacity 
than the beam due to the radial plastic hinges that activate 
the reinforcement in the whole slab (Fig. 3(e)). In turn, the 
continuous slab has higher flexural capacity than the isolated 
slab due to a circular plastic hinge that also activates the 
sagging reinforcement (Fig. 3(g)). It is worth noting that the 
stiffnesses of the different contributions are not equal and 
the rotation ψy at which Vflex is reached varies for the three 
cases (Fig. 3(a)). Due to the lower stiffness of the sagging 
mechanism, the load-rotation curves for the isolated and 
continuous slabs are similar until the first yielding of the 
hogging reinforcement. After that, however, the stiffness 
of the hogging mechanism starts to decrease and the differ-
ence between the response of the isolated and the contin-
uous slabs becomes more significant. After full yielding of 

Fig. 2—Approach of CSCT: (a) stress fields and cracks in 
vicinity of column; and (b) determination of punching load 
according to CSCT.
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the hogging reinforcement, the load on the continuous slab 
can still increase, although with lower stiffness than in the 
previous phase, as the additional load is only being resisted 
by the sagging reinforcement.

The axisymmetric numerical model can also be used to 
investigate the influence of CMA. For that purpose, a second 
boundary condition in the midspan symmetry line can be set 
either for dilation (for a fully confined slab that is laterally 
restrained between stiff elements) or for in-plane force (for 
continuous flat plate systems with no external restraints). 
In a fully confined slab (Curve 5 in Fig. 4(a)), very large 
in-plane stresses are generated in the column region due to 
the development of a compression arch between the stiff 
lateral supports (Fig. 4(b)). As a consequence, the flexural 
capacity of such slabs depends primarily on the depth of the 
slab and the elastic modulus of concrete but is less signifi-
cantly influenced by the reinforcement ratios.14 Therefore, 
the stages where first the hogging and then the sagging rein-

forcement were activated if CMA was neglected (Fig. 3) 
cannot be distinguished in confined slabs.

Self-confinement can be modeled by requiring that the 
in-plane stress in the slab at the midspan symmetry line be 
zero. In this case, the compressive stress around the slab-
column connection develops as a function of the stiffness 
of the tension ring (Fig. 4(b)). This stress is lower than in 
the fully confined case and due to this, the load-rotation 
response of self-confined slabs is less stiff than that of fully 
confined slabs (Curve 4 in Fig. 4(a)).

EXPERIMENTAL INVESTIGATION
Most punching tests found in literature have been 

performed on isolated slab specimens that model the hogging 
moment area of an actual continuous slab. The shear force 
can be applied by either loading the column while the slab is 
supported along its edges or by applying the load at the slab 
edges and supporting the specimen on a column in the center. 
This type of slab specimens only allows for redistribution 
between radial and tangential hogging moments (Fig. 3(e)). 
To also permit redistribution between hogging and sagging 
moments (that changes the location of the line of moment 
contraflexure as shown in Fig. 1(a)), multi-span slabs3 or 
members with in-plane and/or rotational restraints along 
the slab edges4,5 have to be tested. One such test, previously 
unpublished, was performed by the second author at the 
University of Alberta (Canada) as a part of an experimental 
study on the punching shear behavior of strengthened/reha-
bilitated concrete slabs.24 Test results using the same setup, 

Fig. 3—Comparison of beam, isolated slab, and continuous 
slab with equal shear slenderness factors (rq/d): (a) normal-
ized shear stress-slab rotation curves; (b) flexural failure 
mechanism of beam; (c) distribution of bending moments 
in beam at flexural limit; (d) failure mechanism of isolated 
slab; (e) bending moments in isolated slab at flexural limit; 
(f) failure mechanism of continuous slab; and (g) bending 
moments in continuous slab at flexural limit.

Fig. 4—Influence of full confinement and self-confinement 
on response of continuous slab: (a) load-rotation relation-
ships; and (b) development of in-plane compressive forces 
as function of slab rotation.
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performed by Choi and Kim,7 and an experimental campaign 
by Clément et al.25 on specimens with moment applied at the 
edges, are also analyzed to evaluate the influence of CMA 
and edge restraints on the punching capacity of slabs.

Test specimen
Test Slab ER1-VS was square with a side length of 4.2 m 

(13.8 ft), thickness h = 152 mm (6.0 in.), and had a measured 
average effective depth d = 109 mm (4.3 in.) and 119 mm 
(4.7 in.) for top and bottom reinforcement, respectively. The 
slab had 400 mm (15.7 in.) square column stubs in the center 
protruding 300 mm (11.8 in.) above and 330 mm (13.0 in.) 
below the slab. Mean cylinder (152 x 304 mm [6 x 12 in.]) 
concrete strength at the time of testing was 29.8 MPa 
(4320 psi) and maximum aggregate size 19 mm (3/4 in.).

The slab flexural reinforcement was designed to comply 
with the requirements of ACI 318-7126 in terms of minimum 
slab thickness and amount of reinforcement as well as 
distribution of design flexural moments (using the direct 
design method) and per CSA A23.3-9427 in terms of cutoff 
points, development length, and integrity steel. Top rein-
forcement (refer to Fig. 5) consisted of 15M (As = 200 mm2 
[0.31 in.2]) and 10M (As = 100 mm2 [0.16 in.2]) bars (with 
yield strengths of 428 and 441 MPa [62 and 64 ksi], respec-
tively). The top reinforcement was concentrated in the center 
of the slab so that the reinforcement ratio varied from 0.92% 
within column-wide strips to 0.25% close to the edges. The 
bottom reinforcement was more uniformly distributed; the 
reinforcement ratio was 0.25%, except in the column strips, 
where two 15M (As = 200 mm2 [0.31 in.2] each) integrity 
bars were placed. However, only half of the bottom bars 
were continuous along the whole slab with the other half 
being cut in the middle. All bottom bars were developed with 
180-degree hooks, whereas the top bars had straight ends.

Test setup
Rotations of the edges of the test slab were restrained by a 

system consisting of four steel square hollow columns bolted 

down to the slab along each side and connected at the top 
with steel tie rods (Fig. 6). The load was applied by jacking 
up the central column stub and restraining the displacement 
in 16 equally loaded points.

Prior to the start of the test, the edge restraining system 
was prestressed to provide a moment distribution similar to 
that in a corresponding continuous slab under self-weight 
(assuming that the sections where the steel columns were 
fixed represented span center lines). Then, the test slab was 
brought up to punching failure after imposing five load 
cycles. The cyclic loading intended to simulate conditions in 
an actual slab due to service loads.

Test results
A detailed description of the test and the slab response is 

given by Ospina et al.24 The first observed cracks were flex-
ural cracks that formed on the slab top surface at a load of 
96 kN (21 kip), barely above the self-weight of the slab and 
the testing apparatus (89 kN [20 kip]). The cracks formed 
along the two centermost bars of the topmost reinforcement 
layer. These cracks progressed from the column toward outer 
slab regions followed by similar cracks along the other axis 
and reached the edge of the slab at approximately 260 kN 
(58 kip). This point can be seen as a change in the slope 
of the load-deflection curve (Fig. 7(a)). The first yielding of 
top reinforcement according to strain gauge measurements 
was observed around the column at 386 kN (87 kip) and the 
first yielding of bottom bars occurred at 448 kN (101 kip). 
A sudden punching failure took place at a load of 542 kN 
(122  kip). The crack pattern after the failure is shown in 
Fig. 7(b).

Comparison of test results to numerical model
The behavior of Test Specimen ER1-VS was compared 

to the response calculated with the numerical model.8 The 
geometry of the slab (including the distribution of reinforce-
ment) was assumed to be axisymmetric and top and bottom 
reinforcement ratios constant over the whole slab (Fig. 8). 
The influences of rotational edge restraint and CMA were 
analyzed separately by performing two analyses. At first, 

Fig. 5—Reinforcement layout of specimen. (Note: Dimen-
sions in mm; 1 mm = 0.0394 in.)

Fig. 6—Test setup. (Dimensions in mm; 1 mm = 0.0394 in.)
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a simpler model was considered that did not account for 
in-plane forces and deformations. The only applied edge 
condition was edge rotation (that was required to correspond 
to the measured value). Therefore, only the effect of redistri-
bution between sagging and hogging moments was modeled. 
In the second model, the influence of axial deformations due 
to cracking of concrete and consequent membrane forces 
(with their influence on axial deformations) were taken into 
account as well. The second edge condition applied was that 
the axial force at the edge of the slab was required to be zero 
(actually, a negligibly small axial compression equal to the 
force in the tension ties was present in the tested slab).

Figure 9 shows the resulting load-deflection curves 
from the two analyses together with the observed response 
curve. Prior to first flexural cracking (predicted at 91 kN 
[20 kip]), dilation of the slab is zero and no membrane force 
is generated. Therefore, in this range, both models predict 
the same response. After cracking, the cracked portion of 
the slab starts to dilate but the dilation is restrained by the 
uncracked part of the slab around it. Thus, in the model with 
CMA, a tension ring develops close to the edge of the slab. 
This induces compressive forces in the hogging moment 

area, which stiffens the response compared to the model 
without CMA. At 325 kN (73 kip), stresses in the tension 
ring reach the tensile strength of concrete over the whole 
slab thickness, leading to through-cracking of the tension 
ring. After this, the rate of increase of compressive stress 
in the hogging moment area decreases significantly. The 
tangent stiffnesses of the curves are similar, but the second 
model shows considerably smaller deformations at a given 
level of load. Yielding of top reinforcement at the face of 
the column is predicted at 350 kN (79 kip) in the first model 
and at 440 kN (99 kip) in the second. Punching failure is 
predicted to occur at the intersection between the response 
curve and the failure criterion of the CSCT21 (Eq. (1)) at 
420 kN (97  kip) when CMA is neglected and at 475 kN 
(110 kip) when CMA is accounted for. The actual punching 
failure occurred at 542 kN (122 kip), slightly higher than 
predicted, possibly due to the effect of compressive stresses 
in the punching perimeter that are not accounted for in the 
failure criterion.

A comparison between the observed and predicted 
load-deflection curves in Fig. 9 shows a very good agree-
ment between the experimental results and the calculation 
that includes the CMA effect. Differences between the 
predicted and observed cracking and yielding loads can 
be explained by the differences between the axisymmetric 
simplification of the numerical model and the actual geom-
etry, where column corners, orthogonal layout of reinforce-
ment, and load application points can cause concentrations of 
stresses and deformations. Local stress concentrations may 
also explain the observed yielding of bottom reinforcement, 

Fig. 7—Specimen ER1-VS: (a) load-deflection response; 
and (b) cracking pattern after punching failure.

Fig. 8—Axisymmetric numerical model of ER1-VS.

Fig. 9—Comparison of measured and predicted response 
(Slab ER1-VS).
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although the numerical model does not predict it before the 
punching failure.

The numerical model predicts the formation of a thor-
oughly cracked tension ring along the perimeter of the spec-
imen. This effect explains the observed propagation of top 
surface radial cracks to the specimen’s edge, even though 
the measured edge rotation is small and thus the tangential 
moment should not cause cracking. The cracks at the edge 
of the slab at rather low levels of load indicate that a tensile 
axial force is present in the cross section.

Comparison with other tests
Choi and Kim7 performed three punching tests on slabs 

with rotationally restrained edges using the same test setup 
as described previously. In their slabs, the reinforcement was 
designed to provide similar flexural strength for all the spec-
imens. However, the selected ratios between the amounts of 
hogging and sagging reinforcement varied significantly, from 
3.5:1 to 1:1 (Table 1). Despite this variation, the observed 
punching strengths for the three specimens were similar. 
This observation contradicts the predictions of empirical 
design models (such as the one used in Eurocode 2 punching 
provisions28) that have been established on the basis of 
isolated elements considering only the influence of hogging 
reinforcement. For the slabs tested by Choi and Kim,7 the 
increase of the amount of sagging reinforcement and CMA 
were sufficient to compensate for the decrease of hogging 
moment capacity and provide similar punching shear 
strengths in spite of the very different hogging reinforce
ment ratios. It should be noted that the experimental failure 
loads were consistently lower than predicted, likely due to 
the influence of the cyclic loading sequence; all specimens 
failed during cycling the applied load between 80 and 100% 
of the maximum load (even a low number of cycles at load 
levels close to the shear capacity is known to noticeably 
reduce the shear strength29).

Clément et al.25 performed four tests on square 3 x 3 m 
(9.8  x 9.8 ft) slabs with thickness of 250 mm (9.8 in.) 
(Table  1). Sagging moment was applied at the edges of 
specimens by means of stiff L-shaped steel elements and 
hydraulic jacks between them (refer to Fig. 10(a)). Shear 
force was applied close to the edge of the slab with a separate 
set of jacks. The moment was increased proportionally to the 
shear force up to a previously defined limit.25 The numerical 

model predicts the response of the slab with a very satis-
factory precision (Fig. 10(b)). It can also be noted that the 
effect of CMA is less significant in this test series due to the 
smaller extent of the sagging moment area and therefore 
a narrower tension ring. A parametric analysis with vari-
able edge moment and a comparison to the test results25 
on Fig. 10(c) show that for this series, the edge moment 
has a significant influence on the punching strength and the 
effect of CMA becomes more significant with increasing 
edge moment. In addition, due to the beneficial influence of 
edge moment (sagging moment in actual slabs) and CMA, 
punching strength of continuous slabs is less dependent on 
the hogging reinforcement ratio than in the case of isolated 
specimens without edge restraints (refer to the decreasing 
gap with increasing edge moment between the curves for  
ρ = 1.64% and 0.84% in Fig. 10(c)).

More comparisons between the numerical model and 
results of experiments with different kind of test setups3,6 
can be consulted elsewhere.8

SIMPLIFIED ANALYTICAL MODEL
Load-rotation relationship based on isolated 
specimens

According to the CSCT, the punching strength of a slab-
column connection can be found where a suitable load- 
rotation curve intersects the failure criterion (Eq. (1)). For 
continuous or confined plates, the load-rotation curve can be 
calculated using the presented numerical model. However, 
for practical applications, a simplified approach is needed. 
For isolated slab-column connections, Muttoni21 proposed 
a formula for approximating the load-rotation curve on the 
basis of equilibrium equations and compatibility conditions30

	 ψ = ⋅ ⋅








1 5
3 2

.
r
d
f
E

V
V

s y

s flex

	 (2)

For practical purposes, the distance between the center of 
the column and the line of moment contraflexure rs can be 
estimated using elastic calculations (for slabs with regular 
bays, a good estimate is rs ≈ 0.22L, where L is bay span) and 
the ratio V/Vflex may be replaced by mS,hog/mR,hog, where mS,hog 
is the average hogging moment in the support strip used for 
dimensioning reinforcement according to a linear-elastic 

Table 1—Comparison of test parameters and results of tests by Ospina et al.,24 Choi and Kim,7 and 
Clément et al.25

Slab ρhog, % ρsag, % fc,cyl, MPa (psi) VR,test/b0d√fc, √MPa (√psi) VR,pred/b0d√fc, √MPa (√psi)

ER1-VS24 0.92 0.14 29.8 (4320) 0.469 (5.65) 0.411 (4.95)

MRA7 1.06 0.31 37.0 (5370) 0.345* (4.15) 0.433 (5.21)

MRB 0.83 0.43 30.5 (4420) 0.327* (3.94) 0.427 (5.14)

MRC 0.58 0.57 34.6 (5020) 0.335* (4.03) 0.409 (4.92)

PC125 0.84 1.06 44.0 (6380) 0.574 (6.92) 0.520 (6.26)

PC2 1.64 1.05 45.3 (6570) 0.658 (7.92) 0.550 (6.62)

PC3 0.83 2.19 43.8 (6350) 0.632 (7.61) 0.647 (7.79)

PC4 1.65 2.00 44.4 (6440) 0.691 (8.31) 0.660 (7.94)
*Cyclic tests.
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calculation (for inner columns, it can be approximated as 
V/8) and mR,hog is the corresponding flexural strength

	 ψ = ⋅ ⋅








1 5
3 2

. ,

,

r
d
f
E

m
m

s y

s

S hog

R hog
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A possible approach for performing a more refined 
calculation is adopting values for the parameter rs and the 
ratio mS,hog/mR,hog that account for moment redistribution 
due to nonlinear behavior and compressive in-plane forces. 
Figure 11 shows the values of rs and the in-plane compres-
sive stress −σ (that increases the flexural strength mR,hog) 
in self-confined slabs depending on slab rotation ψ (using 
the numerical axisymmetric model of Einpaul et al.8). The 
development of rs is shown in Fig. 11(a) through (c) for 
various amounts of hogging and sagging reinforcement, as 
well as using different values for concrete tensile strength 
fct. It can be seen that the line of moment contraflexure is 

close to the elastic approximation of rs = 0.22L only in the 
elastic phase before cracking and also in the phase where 
both hogging and sagging moment areas are cracked and 
the stiffnesses are therefore similar. The size of the hogging 
moment area decreases when its stiffness is smaller than 
that of the sagging moment area—either when only the 
hogging moment area is cracked or when the hogging 
reinforcement has reached yielding (at large rotations). 
Therefore, the isolated approach with rs = 0.22L according 
to linear calculation provides a safe estimate that may be 
conservative for low hogging reinforcement ratios or large 
slab rotations.

The compressive in-plane stress −σ (Fig. 11(d) through 
(f)) only appears after the concrete cracks due to hogging 
moments in the vicinity of the column. With increasing slab 
rotation, crack widths increase, thus increasing the confining 
stresses generated by dilation of the cracked slab portion. 
The stress level is therefore highly dependent on slab rota-
tion. In this regard, CMA is different from the influence of 
prestressing that delays concrete cracking and where stress 
level is not very significantly influenced by slab deforma-
tions. The compressive stress is lower in the case of higher 
hogging reinforcement ratios because then the dilation of 
the slab is lower (Fig. 11(d)). The compressive stress is 
also strongly influenced by the tensile strength of concrete 
because the cracking and stiffness of the tension ring around 
the hogging moment area is affected by tensile behavior of 
reinforced concrete members.

Figures 11(g) through (i) show a comparison between the 
load-rotation curves of isolated specimens (dotted lines) and 
self-confined continuous slabs (continuous lines), calcu-
lated in both cases with a nonlinear axisymmetric model 
for isolated slabs21 but using the rs values from Fig. 11(a) 
through (c) as element sizes and accounting for the effect 
of in-plane compression shown in Fig. 11(d) through (f) on 
flexural response in the case of continuous slabs. The CSCT 
failure criterion is shown with dashed lines. It can be seen 
that the differences between continuous and isolated slabs are 
larger in the case of low amounts of hogging reinforcement. 
This can be explained by two phenomena. First, the isolated 
approach overestimates the size of the hogging moment area 
in slabs with low hogging reinforcement ratios (Fig. 11(a)). 
Second, due to neglecting the compressive force −σ (which 
is larger in slabs with low amount of hogging reinforcement, 
as shown in Fig. 11(d)), flexural strength of the hogging 
moment area is also underestimated. The amount of sagging 
reinforcement can be seen to have a lower influence on the 
load-rotation response than the amount of hogging reinforce
ment (Fig. 11(h)).

Load-rotation relationship for self-confined 
continuous slabs

On the basis of comparing slab rotations at the onset of 
a flexural plateau in an isolated slab (ψy,isol in Fig. 3(a)) and 
in a continuous self-confined slab (ψy,s-c in Fig. 4(a)), the 
load-rotation relationship of Eq. (3) is modified by reducing 
the rotations with respect to isolated specimens by a factor 
(1 – 2mcr/mR,hog)

Fig. 10—Tests by Clément et al.25: (a) moment application 
frame; (b) comparison between test results and numerical 
model; and (c) punching strength of specimen depending on 
applied edge moment.
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In Eq. (4), the influence of the tensile strength of concrete 
on the behavior of self-confined slabs (refer to the reduction 
of slab rotation with increasing fct in Fig. 11(i)) is accounted 
for by considering the concrete cracking moment mcr, 

which should be calculated using a value of concrete tensile 
strength that can be activated by tension stiffening of the 
tension ring in the crack development stage (normally the 
average value fctm can be used23). As the assumptions used to 
derive the equation are only valid when the hogging moment 
capacity mR,hog is clearly larger than the cracking moment 
mcr, a minimum value for the factor (1 – 2mcr/mR,hog) is set 
to 0.4.

Equation (4) accounts both for the changes in the loca-
tion of the line of moment contraflexure as well as the influ-
ence of CMA. This equation is thus valid for self-confined 
slabs without any external restraining elements. If a slab is 

Fig. 11—Parametric analysis on continuous self-confined slabs in comparison to isolated specimens: (a) through (c) influence 
of ρhog (%), ρsag (%), and fct (MPa) on position of line of moment contraflexure; (d) through (f) influence of ρhog (%), ρsag (%), 
and fct (MPa) on development of compressive stresses in perimeter of column; and (g) through (i) influence of ρhog (%), ρsag (%), 
and fct (MPa) on load-rotation curves. (Note: 1 MPa = 145 psi.)
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confined between stiff horizontal supports, its rotation can be 
smaller than that of a self-confined slab. On the other hand, 
stiff horizontal supports may also restrain concrete shrinkage 
and cause tensile in-plane strains or concrete cracking in 
the slab that can reduce or completely hinder the effect of 
CMA. These tensile stresses can be accounted for in design 
by reducing the tensile strength of concrete that decreases 
the cracking moment in Eq. (4). In these cases, the load- 
rotation relationship may still account for possible redistri-
bution between hogging and sagging moments (Curve 3 in 
Fig. 4(a)). However, considering that without CMA the stiff-
ness of the sagging mechanism is lower than the stiffness of 
the hogging mechanism, using Eq. (3) (that Eq. (4) tends to 
with mcr → 0) can give a suitable approximation (refer to 
Curve 3 in Fig. 3(a)).

Comparison between simplified and numerical 
approaches

Figure 12 compares the punching strengths of self-confined 
slabs calculated with Eq. (4) with those determined using 
load-rotation relationships from the numerical model. 
Predictions for corresponding isolated specimens (radius 
of specimens 0.22L, load-rotation curve determined with 
Eq. (2)) are also shown. All the strengths are calculated in 
combination with the failure criterion given by Eq. (1). The 
punching strength estimate of ACI 318 is also shown.

Figures 12(a) and (b) show the influence of hogging 
reinforcement ratio on the punching capacity of slab-column 
connections. Experiments on isolated specimens have 
shown that increasing the amount of hogging reinforcement 
increases the punching strength. Following this observation, 
flexural reinforcement ratio in the vicinity of the column 
is taken into account in the punching provisions of several 
codes of practice23,28 (although it is neglected in ACI 3181). 
The present analysis indicates, consistently with the exper-

Fig. 12—Comparison of punching strengths calculated with load-rotation relationships from Model Code 2010 (dashed line), 
proposed expression (continuous line), and numerical model (dotted line): (a) and (b) influence of hogging reinforcement ratio; 
(c) influence of sagging reinforcement ratio; (d) influence of slab slenderness with constant h (slenderness effect); (e) influence 
of effective depth with constant slenderness (size effect); and (f) influence of column size.
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imental observations of Choi and Kim,7 that the amount 
of hogging reinforcement has a lower influence on the 
punching capacity in continuous slabs than in isolated speci-
mens. This can be explained by the fact that the influence of 
CMA and the contribution of sagging reinforcement are both 
more significant in the case of low amounts of hogging rein-
forcement, considerably increasing the flexural stiffness of 
such slabs (as seen by comparing the continuous and dotted 
load-rotation curves in Fig. 11(g)). The proposed formula 
for continuous self-confined slabs (Eq. (4)) increases the 
predicted punching shear strength of slabs with low rein-
forcement ratios and can be of particular interest for assess-
ment of existing slabs. The constant punching shear strength 
used in ACI 3181 is seen to be conservative for all the consid-
ered reinforcement ratios.

The amount of sagging reinforcement has an important 
influence on the flexural strength but a significantly lower 
impact on the stiffness of a continuous slab (Fig. 11(h)). 
This is explained by the fact that the in-plane force in the 
tension ring (that induces CMA in the hogging moment area) 
is normally governed by tensile stresses of concrete and not 
by the amount of reinforcement in the tension ring. There-
fore, the stiffness enhancement of the slab on lower levels 
of load is not significantly affected by the sagging reinforce-
ment ratio. Thus, as shown in Fig. 12(c), the influence of this 
parameter on punching strength is limited and neglecting it 
in the simplified formula (Eq. (4)) is justified.

Figures 12(d) through (f) show the influence of different 
geometrical parameters on the punching shear strength of 
self-confined slabs in light of the proposed model. The slen-
derness effect21 that exists in isolated specimens is shown to 
be also present in continuous slabs in Fig. 12(d). According to 
this, when the slab depth and column size are kept constant, 
the punching shear strength of the slab-column connection 
decreases with increasing the slab span. The influence of size 
effect in the analyzed models (with respect to slab depth) is 
shown in Fig. 12(e). The depth of the slab as well as slab 
span are varied (with a constant slab slenderness L/h = 28), 
while the column size is kept constant. It can be seen that 
the unitary shear strength of the control section decreases 
as d increases. Accounting for the size effect is especially 
important for the cases where predictions for actual struc-
tures are made on the basis of experiments performed on 
reduced-scale models. The proposed approach considers 
the size effect similarly to Model Code 201023 because it is 
taken into account in the failure criterion of CSCT (Eq. (1)). 
ACI 3181 does not account for the size effect and provides 
conservative predictions for thinner slabs.

Figure 12(f) shows the influence of column size on 
the punching shear strength. Whereas the total punching 
capacity of a slab-column connection increases with column 
size, the unitary strength on the control perimeter decreases 
according to the CSCT because a higher total load leads 
to larger rotations and wider cracks around the column 
(note that the column size does not influence slab rotation 
in the simplified Eq. (3) and (4)). The difference between 
the numerical and the simplified models is caused by the 
assumption made in the simplified approaches that the size 

of the hogging moment area is independent of column 
size (rs = 0.22L). In the numerical model, rs increases with 
increasing column size, leading to larger rotations and lower 
unitary punching strengths. In the punching provisions of 
ACI 318,1 the influence of column size on the unitary shear 
strength is only accounted for very large columns (providing 
a transition from two-way to one-way shear strength), which 
is outside of the range of the present parametric study. For 
small columns, the predictions of ACI 318 are conservative.

SUMMARY AND CONCLUSIONS
Experimental, numerical, and analytical studies on 

punching strength of interior flat slab-column connections 
without transverse reinforcement indicate that:

1. As confirmed by experimental evidence, the response of 
continuous flat slabs is influenced by the effects of redistribu-
tion between hogging and sagging moments and compressive 
membrane action (CMA), often leading to smaller deforma-
tions and higher punching capacities than observed in the 
specimens that represent isolated hogging moment areas.

2. The proposed axisymmetric nonlinear numerical model 
can accurately predict the flexural response of test slabs with 
restrained edge rotations. Using this model in combination 
with the failure criterion of CSCT provides a good estimate 
of a slab’s punching shear capacity.

3. Edge-restrained specimens are better suited for modeling 
punching behavior of continuous flat plates than isolated test 
specimens. Presented experiments and their comparison to a 
numerical model provide evidence of CMA in test specimens 
with rotational restraint but without in-plane confinement.

4. The development of empirical design formulas for 
punching shear using test results from isolated slabs is 
believed to be conservative. However, the provisions for 
more precise calculations (such as for assessment of existing 
structures) should take into account the experimental and 
analytical evidence obtained from tests on slabs with flex-
ural edge restraints.

5. The load-rotation curve of Model Code 2010 can be 
easily modified to take into account the stiffness and strength 
enhancement due to moment redistribution and CMA in 
self-confined continuous slabs. A simplified code-like 
formula is presented that leads to results that are similar to 
the ones obtained from the numerical analysis.
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NOTATION
As	 =	 cross section area of reinforcing bar
b0	 =	 perimeter of critical section at d/2 from column
c	 =	 side length or diameter of column
d	 =	� effective depth of slab (distance from tension reinforcement 

to extreme compressed fiber)
dbot	 =	 effective depth of bottom reinforcement of slab
dg	 =	 maximum diameter of aggregate
dg0	 =	 reference aggregate size (16 mm [0.63 in.])
dtop	 =	 effective depth of top reinforcement of slab
Es	 =	 modulus of elasticity of reinforcement
fc	 =	 average compressive strength of concrete (cylinder)
fct	 =	 tensile strength of concrete
fctm	 =	� mean value of tensile strength of concrete (taken as fctm = 

0.3fc
2/3 [MPa], fctm = 1.6fc

2/3 [psi], according to Model Code 
2010, if not shown otherwise)

fy	 =	 yield strength of reinforcement
h	 =	 slab thickness
L	 =	� distance between axes of columns in continuous slab (slab 

span)
m	 =	 bending moment per unit width
mcr	 =	 cracking moment per unit width
mR	 =	 moment capacity per unit width
mR,hog	 =	 hogging moment capacity per unit width
mR,sag	 =	 sagging moment capacity per unit width
mrad	 =	 radial bending moment per unit width
mS,hog	 =	 acting hogging moment per unit width due to applied load
mS,sag	 =	 acting sagging moment per unit width due to applied load
nedge	 =	� in-plane applied force at edge of slab specimen, per unit 

width
rc	 =	 column radius
rq	 =	� distance between center of column and point of application 

of load
rs	 =	� distance between center of column and line of moment 

contraflexure
rslab	 =	� distance between center of column and symmetry line in 

midspan of slab
V	 =	 shear force
Vflex,beam	 =	 shear force in center of beam at flexural capacity
Vflex,cont	 =	 shear force at flexural capacity of continuous slab
Vflex,isol	 =	 shear force at flexural capacity of isolated slab
Vflex,s – c	 =	� shear force at flexural capacity of self-confined continuous 

slab, CMA accounted for
VR	 =	 punching shear capacity
w	 =	 maximum vertical displacement (deflection) of slab
ρ	 =	 flexural reinforcement ratio
ρhog (ρtop)	 =	 hogging (top) reinforcement ratio
ρsag (ρbot)	 =	 sagging (bottom) reinforcement ratio
σ	 =	 average axial stress in cross section
χ	 =	 curvature
χy	 =	 curvature at onset of flexural yielding
ψ	 =	 rotation of slab at line of moment contraflexure
ψedge	 =	 rotation of edge of slab specimen
ψR	 =	� rotation of slab at line of moment contraflexure at punching 

failure
ψs – c	 =	 rotation of self-confined slab at line of moment contraflexure
ψy,beam	 =	 rotation of beam at flexural limit
ψy,isol	 =	 rotation of isolated slab at flexural limit
ψy,cont	 =	 rotation of continuous slab at flexural limit, without CMA

ψy,s – c	 =	� rotation of self-confined continuous slab at flexural limit, 
with CMA
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