
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. F. Nobile, président du jury
Prof. V. Panaretos, directeur de thèse

Prof. Ph. Stark, rapporteur
Prof. S. Wood, rapporteur

Prof. A. Davison, rapporteur

Uncertainty quantification in unfolding elementary particle 
spectra at the Large Hadron Collider

THÈSE NO 7118 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 22 JUILLET 2016

 À LA FACULTÉ DES SCIENCES DE BASE
CHAIRE DE STATISTIQUE MATHÉMATIQUE

PROGRAMME DOCTORAL EN MATHÉMATIQUES 

Suisse
2016

PAR

Mikael Johan KUUSELA





“If everybody tells you it’s possible,

then you are not dreaming big enough.”

— Bertrand Piccard and André Borschberg,

while crossing the Pacific Ocean

on a solar-powered aircraft

To my parents





Acknowledgements

I would first and foremost like to sincerely thank my advisor Victor Panaretos for the opportu-

nity of carrying out this work as a member of the Chair of Mathematical Statistics at EPFL and

for his tireless support and advice during these past four years. The opportunity of doing a PhD

that combines statistical research with an intriguing applied problem from CERN was truly

a dream come true for me and these years have indeed been very exciting and intellectually

satisfying. I believe that during this work we have been able to make important contributions

to both statistical methodology and to data analysis at the LHC and all this would not have

been possible without Victor’s continuous support.

Throughout this work, I have served as a Statistics Consultant on unfolding issues for the

Statistics Committee of the CMS experiment at CERN. This interaction has significantly im-

proved my understanding of the statistical issues that are pertinent to LHC data analysis and

I hope that my contributions to the committee’s work have improved the way unfolding is

carried out at the LHC. I would like to thank the Statistics Committee members, and especially

Olaf Behnke, Bob Cousins, Tommaso Dorigo, Louis Lyons and Igor Volobouev, for stimulating

discussions, which have often provided me with new insights and research directions. I am

also grateful to Volker Blobel, Mikko Voutilainen and Günter Zech for very helpful discussions

about unfolding.

During autumn 2014, I was visiting Philip Stark at the Department of Statistics at the University

of California, Berkeley. I am extremely grateful to Philip for agreeing to host me and to Victor

for providing the opportunity for this visit. I would especially like to thank Philip for taking

the time to discuss strict bounds confidence intervals with me. It was these discussions and

the support of both Philip and Victor that eventually led to the work described in Chapter 7 of

this thesis.

During this work, I have had the great opportunity of discussing research questions with many

outstanding statisticians. Besides Victor and Philip, I would especially like to thank Anthony

Davison, Peter Green, George Michailidis and Simon Wood for discussions that were very

helpful for this work.

I would also like to thank Fabio Nobile, Victor Panaretos, Anthony Davison, Philip Stark and

Simon Wood for agreeing to evaluate this thesis as members of my thesis committee and

i



Acknowledgements

for providing insightful feedback on this work. I am also grateful to my colleagues Anirvan
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Abstract

This thesis studies statistical inference in the high energy physics unfolding problem, which is

an ill-posed inverse problem arising in data analysis at the Large Hadron Collider (LHC) at

CERN. Any measurement made at the LHC is smeared by the finite resolution of the particle

detectors and the goal in unfolding is to use these smeared measurements to make non-

parametric inferences about the underlying particle spectrum. Mathematically the problem

consists in inferring the intensity function of an indirectly observed Poisson point process.

Rigorous uncertainty quantification of the unfolded spectrum is of central importance to

particle physicists. The problem is typically solved by first forming a regularized point estima-

tor in the unfolded space and then using the variability of this estimator to form frequentist

confidence intervals. Such confidence intervals, however, underestimate the uncertainty,

since they neglect the bias that is used to regularize the problem. We demonstrate that, as a

result, conventional statistical techniques as well as the methods that are presently used at

the LHC yield confidence intervals which may suffer from severe undercoverage in realistic

unfolding scenarios.

We propose two complementary ways of addressing this issue. The first approach applies to

situations where the unfolded spectrum is expected to be a smooth function and consists

in using an iterative bias-correction technique for debiasing the unfolded point estimator

obtained using a roughness penalty. We demonstrate that basing the uncertainties on the

variability of the bias-corrected point estimator provides significantly improved coverage

with only a modest increase in the length of the confidence intervals, even when the amount

of bias-correction is chosen in a data-driven way. We compare the iterative bias-correction

to an alternative debiasing technique based on undersmoothing and find that, in several

situations, bias-correction provides shorter confidence intervals than undersmoothing. The

new methodology is applied to unfolding the Z boson invariant mass spectrum measured in

the CMS experiment at the LHC.

The second approach exploits the fact that a significant portion of LHC particle spectra are

known to have a steeply falling shape. A physically justified way of regularizing such spectra is

to impose shape constraints in the form of positivity, monotonicity and convexity. Moreover,

when the shape constraints are applied to an unfolded confidence set, one can regularize the

length of the confidence intervals without sacrificing coverage. More specifically, we form
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Abstract

shape-constrained confidence intervals by considering all those spectra that satisfy the shape

constraints and fit the smeared data within a given confidence level. This enables us to derive

regularized unfolded uncertainties which have by construction guaranteed simultaneous

finite-sample coverage, provided that the true spectrum satisfies the shape constraints. The

uncertainties are conservative, but still usefully tight. The method is demonstrated using

simulations designed to mimic unfolding the inclusive jet transverse momentum spectrum at

the LHC.

Keywords: bias-variance trade-off, deconvolution, empirical Bayes, finite-sample coverage,

high energy physics, iterative bias-correction, Poisson inverse problem, shape-constrained

inference, strict bounds confidence intervals, undersmoothing.
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Résumé

Cette thèse traite de l’inférence statistique dans le cas du problème d’unfolding en physique

des hautes énergies, qui est un problème inverse mal posé apparaissant lors de l’analyse des

données au Grand collisionneur de hadrons (Large Hadron Collider (LHC) en anglais) au

CERN. Toutes les mesures prises au LHC sont perturbées à cause de la résolution finie des

détecteurs de particules et l’objectif du unfolding est d’utiliser ces mesures corrompues afin

de faire de l’inférence non-paramétrique sur le spectre sous-jacent des particules. D’un point

de vue mathématique, le problème consiste à inférer la fonction d’intensité d’un processus de

Poisson ponctuel observé indirectement.

La quantification rigoureuse de l’incertitude du spectre unfoldé est d’une importance ma-

jeure pour les physiciens. Le problème est typiquement résolu en formant tout d’abord un

estimateur ponctuel régularisé dans l’espace unfoldé et en utilisant par la suite la variabilité

de cet estimateur afin de former des intervalles de confiance fréquentistes. Cependant, de tels

intervalles sous-estiment l’incertitude puisqu’il néglige le biais introduit lors de la régulari-

sation du problème. Nous démontrons qu’il en résulte que les techniques conventionnelles

en statistique ainsi que les méthodes qui sont présentement utilisées au LHC produisent des

intervalles de confiance qui peuvent présentés de sérieux problèmes de sous-couverture pour

des scénarios réalistes d’unfolding.

Nous proposons deux façons complémentaires afin d’aborder ce problème. La première

approche s’applique aux situations pour lesquelles on s’attend à ce que le spectre soit une

fonction lisse et elle utilise une technique itérative de correction du biais afin de réduire le

biais de l’estimateur ponctuel unfoldé obtenu en pénalisant la rugosité. Nous démontrons

qu’en basant les incertitudes sur la variabilité de l’estimateur ponctuel qui a été corrigé, la

couverture est significativement améliorée, et il en découle seulement une augmentation

modeste de la longueur des intervalles, et ce, même lorsque la quantité de correction du biais

est choisie en fonction des données. Nous comparons les intervalles de confiance obtenus

avec la méthode itérative de correction du biais à une autre méthode de réduction du biais

basée sur le sous-lissage, et nous trouvons que dans plusieurs situations, la correction du biais

produit des intervalles de confiance plus courts que ceux obtenus par l’autre méthode. La

nouvelle méthodologie est appliquée afin de faire l’unfolding du spectre de masse invariante

du boson Z mesuré à l’expérience CMS au LHC.
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Résumé

La seconde approche exploite le fait qu’une portion significative des spectra de particules

du LHC sont connus pour décroître de façon très raide. Une manière de régulariser de tels

spectra, justifiée par la physique, est d’imposer des contraintes sur leur forme telles que la

positivité, la monotonocité et la convexité. De plus, lorsque les contraintes de forme sont

appliquées à un ensemble de confiance unfoldé, il est possible de régulariser la longueur

des intervalles de confiance sans pour autant sacrifier la probabilité de couverture. Plus

précisément, nous formons des intervalles de confiance en considérant tous les spectra qui

satisfont les contraintes de forme et qui ajustent les données pour un niveau de confiance

donné. Ceci nous permet d’obtenir des incertitudes régularisés qui ont par construction une

probabilité de couverture simultanée garantie pour des échantillons de taille finie, à condition

que le vrai spectre satisfasse les contraintes de forme. Les incertitudes sont conservatrices,

mais elles ont tout de même une longueur qui est utile en pratique. La méthode est démontrée

à l’aide de simulations qui ont été conçues afin d’imiter l’unfolding du spectre de quantité de

mouvement transversale des jets inclusifs au LHC.

Mots-clés : Bayes empirique, compromis biais-variance, correction itérative du biais, cou-

verture pour des échantillons de taille finie, déconvolution, inférence sous des contraintes

de forme, intervalles de confiance à bornes strictes, physique des hautes énergies, problème

inverse de Poisson, sous-lissage.
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Notation and abbreviations

Notation

1A(·) indicator function of the set A

‖ ·‖w
p weighted �p -norm, ‖x‖w

p = ‖diag(w )x‖p

bias(θ̂) bias of the estimator θ̂, bias(θ̂) = Eθ(θ̂)−θ

C k (E) the space of functions from E to R with k continuous derivatives

cov(X ) covariance matrix of the random vector X

δx (·) Dirac measure at x

diag(a) diagonal square matrix whose diagonal elements are given by the vector a

Eβ(X ) expectation of random vector X under parameter β

In×n identity matrix of size n ×n

K † Moore–Penrose pseudoinverse of the linear operator K

K −1(A) preimage of the set A under mapping K

Nd
0 d-dimensional natural numbers including 0

N (μ,Σ) multivariate normal distribution with mean μ and covariance Σ

φ(·) standard normal probability density function

Φ(·) standard normal cumulative distribution function

Pβ(A) probability of event A under parameter β

Poisson(λ) d-variate probability distribution whose components are independent

and Poisson distributed with parameters λi , i = 1, . . . ,d

Rd+ positive d-dimensional real numbers, Rd+ = {x ∈Rd : xi ≥ 0, i = 1, . . . ,d
}

RI Cartesian exponentiation of R with respect to index set I , RI =∏i∈I R

SE(θ̂) standard error of the estimator θ̂, SE(θ̂) = (var(θ̂)
)1/2

σmax(A) the largest singular value of the matrix A

V ∗ algebraic dual space of the vector space V

var(X ) variance of the random variable X

X ∼ PX the random variable X follows the distribution PX

Xn
a.s.−→ X the sequence of random variables Xn converges almost surely to X

X a∼ PX the random variable X follows approximately the distribution PX

X (1), . . . , X (n) i.i.d.∼ PX the random variables X (1), . . . , X (n) are independent and identically

distributed with distribution PX

zα α-quantile of the N (0,1) distribution
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Abbreviations
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CV cross-validation
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1 Introduction

The Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research, is

the world’s largest and most powerful particle accelerator. Located near Geneva, Switzerland,

this machine was built to study some of the most profound questions about the physical

universe, such as the origin of mass, the nature of dark matter and the asymmetry between

ordinary matter and antimatter. This is done by colliding two beams of protons, traveling at

speeds very close to the speed of light, and then studying the particles that emerge from these

collisions. The collision events are recorded using massive underground particle detectors,

resulting in data streams of the order of 100 terabytes per second. These data are then analyzed

using a variety of statistical techniques with the aim of obtaining new insight into the physical

world. The LHC datasets are not only enormously large, but also have complex internal

structure. As a result, the statistical analysis of these data poses major, and sometimes unique,

computational and methodological challenges.

This thesis focuses on a particular data analysis task arising at the LHC called the unfolding

problem (Prosper and Lyons, 2011; Cowan, 1998; Blobel, 2013; Zech, 2016). Let X be some

physical quantity of interest studied at the LHC experiments. This could, for example, be

the momentum, invariant mass or production angle of particles. Whenever we make a mea-

surement of X , the limited resolution of the particle detectors causes us to observe a noisy

version Y of this quantity. The noisy value Y is called a smeared or folded version of X . The

smearing causes the observed, detector-level spectrum of Y to be a blurred version of the

true, particle-level spectrum of X . The unfolding problem is then to use observations from

the smeared spectrum to make inferences about the actual physical spectrum of X . This is

illustrated in Figure 1.1.

The main challenge in unfolding is that it is an ill-posed statistical inverse problem (Kaipio

and Somersalo, 2005; Engl et al., 2000). This means that even though the mapping K from

the true space into the smeared space is well-behaved, the inverse mapping K −1 (or more

generally the pseudoinverse K †) is unstable with respect to statistical fluctuations in the

smeared observations. In other words, within the statistical uncertainties, the smeared data

can be explained by the actual physical solution but also by a large family of wildly oscillating

1



Chapter 1. Introduction

Smeared spectrum

Folding←−−−
Unfolding−−−−→

True spectrum

Figure 1.1: The finite resolution of particle detectors causes the observed particle spectra to be
smeared versions of the true physical spectra. The unfolding problem is to use the smeared
spectrum to make inferences about the true physical spectrum.

unphysical solutions, and the smeared observations alone cannot distinguish among these

alternatives.

Physical solutions can nevertheless be obtained by introducing additional a priori information

about physically plausible spectra. This is called regularization and statistically corresponds

to reducing the variance of the unfolded point estimator by introducing a small amount

of bias. Two complementary ways of regularizing the unfolding problem are studied in

this work. In the first one, we use the knowledge that most physical spectra are smooth

functions. We do this by employing a roughness penalty that discourages large oscillations

and encourages physically more plausible smooth solutions. In the second one, we rule

out unphysical solutions by imposing physically motived shape constraints in the form of

positivity, monotonicity and convexity. Such shape constraints are particularly well-suited to

unfolding so-called steeply falling spectra, which decay rapidly over many orders of magnitude

and which are commonplace in LHC data analysis.

Mathematically, both the true observations X and the smeared observations Y can be mod-

eled as realizations of two interrelated Poisson point processes. The particle spectra then

correspond to the intensity functions of these processes. Denoting the true intensity by f and

the smeared intensity by g , the two are related by g = K f , where the mapping K represents

the response of the particle detector. As such, unfolding is an example of a Poisson inverse

problem (Antoniadis and Bigot, 2006; Reiss, 1993) and closely related to deconvolution in

optics and image reconstruction in positron emission tomography.

A feature that however distinguishes unfolding from many other inverse problems is the need

for rigorous uncertainty quantification in the unfolded space. Indeed, a simple point estimate

of the unfolded spectrum is of little use to a particle physicist who wishes to use the spectrum

to, for example, test theory predictions, compare and combine different experiments and

extract further theoretical parameters. To properly carry out these tasks requires the ability

to quantify the uncertainty of the unfolded spectrum. Indeed, one could say that in most

physics analyses the main scientific output are the uncertainties and the point estimate is only

of secondary interest. In this work, we understand uncertainty quantification as the task of

2



constructing frequentist confidence intervals in the unfolded space and providing appropriate

statistical methodology for doing this is the main goal of this thesis. Such intervals can then be

used as the statistical starting point for the above mentioned more complex inferential tasks.

It turns out that uncertainty quantification in unfolding is a highly nontrivial problem that

touches upon several key research topics in contemporary statistics, including post-selection

inference (Berk et al., 2013), construction of adaptive nonparametric confidence intervals

(Low, 1997) and uncertainty quantification in penalized regression problems, such as lasso

regression (Javanmard and Montanari, 2014) and spline smoothing (Ruppert et al., 2003,

Chapter 6). The main issue is that most existing uncertainty quantification techniques build

the confidence intervals based on the variability of the regularized point estimator. This

underestimates the uncertainty and results in confidence intervals that may suffer from

serious undercoverage, since the bias that is used to regularize the problem is ignored. But

one cannot simply widen the confidence intervals by an amount corresponding to the bias

since this amount is unknown. Neither can one simply remove all the bias since this would

unregularize the problem and lead to unacceptably large uncertainties.

Given this background, the main contributions of this thesis can be stated as follows:

1. We demonstrate that both existing uncertainty quantification techniques used in LHC

data analysis as well as standard frequentist and Bayesian approaches can severely under-

estimate the uncertainty in the unfolded space, leading to major frequentist undercover-

age in realistic unfolding scenarios (Sections 4.2 and 6.3). This happens because existing

techniques fail to adequately account for the bias.

2. We propose using an iterative bias-correction technique (Kuk, 1995; Goldstein, 1996) for

reducing the bias of roughness-penalized point estimators in order to obtain improved

uncertainty quantification in the unfolded space (Section 6.2). We demonstrate that the

resulting confidence intervals can attain nearly nominal coverage with only a modest

increase in interval length (Sections 6.3, 6.4.5 and 6.5). The coverage is improved as the

bias is reduced, but the small amount of residual bias that remains is enough to regularize

the interval length.

3. We compare the iterative bias-correction to an alternative debiasing technique based on

undersmoothing and find that, in several realistic situations, the bias-corrected confi-

dence intervals are shorter than the undersmoothed intervals (Sections 6.4.5 and 6.5).

4. We propose a novel data-driven procedure for choosing the amount of debiasing in un-

certainty quantification (Section 6.4). The method is applicable to both bias-corrected

and undersmoothed confidence intervals. Even when the amount of debiasing is cho-

sen in a data-driven way, both methods attain nearly the desired target coverage, but

bias-correction produces shorter confidence intervals than undersmoothing. Both de-

biased intervals are orders of magnitude shorter than unregularized intervals and only

moderately longer than non-bias-corrected intervals, which tend to suffer from major

undercoverage (Sections 6.4.5 and 6.5).
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5. We propose a novel way of regularizing the problem of unfolding steeply falling spectra

using shape constraints. Following the strict bounds methodology of Stark (1992), we apply

the shape constraints directly to an unregularized unfolded confidence set. This enables

us to derive regularized unfolded confidence intervals with guaranteed simultaneous

finite-sample frequentist coverage, provided that the true spectrum satisfies the shape

constraints (Chapter 7).

Secondary contributions of this work include formulation of the unfolding problem using Pois-

son point processes (Section 3.1), statistical description of the existing unfolding techniques

(Section 4.1), the proposal of using empirical Bayes estimation to choose the regularization

strength (Section 5.3.1), comparison of empirical Bayes and cross-validation for choosing the

regularization strength (Section 5.4.3), extension of the strict bounds methodology of Stark

(1992) to Poisson noise (Section 7.3), introduction of a new way of imposing and discretizing

monotonicity and convexity constraints in strict bounds (Section 7.3) and the proposal of

using the single-component Metropolis–Hastings algorithm of Saquib et al. (1998) to sample

unfolded posterior distributions (Section A.1).

The rest of this thesis is structured as follows. Chapter 2 provides background on the LHC

and the role that unfolding plays in the analysis of LHC data. Chapter 3 sets the stage for the

rest of the thesis: it provides the appropriate statistical model for unfolding using Poisson

point processes, explains how we discretize the problem, formalizes how the uncertainty is

quantified using frequentist confidence intervals and introduces the unfolding test scenarios

that are used in the simulation studies through this work. Chapter 4 provides an overview of

the statistical methodology that is currently used to solve the unfolding problem at the LHC

and demonstrates that the existing methods can suffer from severe undercoverage. Chap-

ters 5 and 6 investigate in detail uncertainty quantification when the true spectrum is expected

to be a smooth function. We follow the standard practice of first constructing roughness

penalized point estimates and then using these point estimates to construct confidence in-

tervals. Chapter 5 explains how these point estimates are formed and focuses in particular

on the choice of the regularization strength. Chapter 6 then explains how to use the point

estimates to construct confidence intervals. We review a number of standard frequentist and

Bayesian constructions and demonstrate that all these approaches can suffer from severe

undercoverage when applied to the unfolding problem. We then introduce the iteratively

bias-corrected confidence intervals and demonstrate that they yield significantly improved

coverage performance. This chapter also provides the comparison between bias-corrected

and undersmoothed intervals and applies the new methodology to unfolding the Z boson

invariant mass spectrum measured in the CMS experiment at the LHC. The shape-constrained

strict bounds confidence intervals are studied in Chapter 7, where we also apply the resulting

methodology to a simulated dataset designed to mimic unfolding the inclusive jet transverse

momentum spectrum in the CMS experiment. Chapter 8 closes the thesis with discussion and

conclusions. The appendices provide further technical details and simulation results.

Out of the main contributions of this work listed above, items 1, 2 and 5 appear in the journal
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article Kuusela and Panaretos (2015) and in the preprint Kuusela and Stark (2016), and the

present text is partially based on those papers. In particular, Chapters 5 and 6 are an extended

version of Kuusela and Panaretos (2015) and Chapter 7 is based on Kuusela and Stark (2016).

Also Sections 2.1 and 3.1 in particular borrow heavily from Kuusela and Panaretos (2015), while

Chapter 4 extends the results of Kuusela and Stark (2016). Some of the secondary contributions

have also partially appeared in the author’s MSc thesis Kuusela (2012).

All the simulation studies presented in this thesis were implemented by the author in

MATLAB R2014a.
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2 Unfolding at the Large Hadron Col-
lider

This chapter puts this work into context by providing background on the LHC experiments

and on the role that unfolding plays in the statistical analysis of their data. We first describe in

Section 2.1 how LHC experiments detect particles and other physical phenomena. We then

provide in Section 2.2 an overview of the statistical methods that are used in LHC data analysis,

while the role of unfolding is described in Section 2.3.

2.1 Overview of LHC experiments

The Large Hadron Collider (LHC) is a circular proton-proton collider located in a 27 km long un-

derground tunnel at CERN near Geneva, Switzerland. With a center-of-mass energy of 13 TeV

(the electron volt, eV, is the customary unit of energy in particle physics, 1 eV ≈ 1.6 ·10−19 J),

the LHC is the world’s most powerful particle accelerator. The protons are accelerated in

bunches of billions of particles and bunches moving in opposite directions are made to collide

inside four large particle detectors called ALICE, ATLAS, CMS and LHCb. The bunches collide

every 25 ns, resulting in some 40 million collisions per second in each detector, out of which

the few hundred most interesting ones are stored for further analysis. This results in datasets

of the size of roughly 30 petabytes per year, which are stored and analyzed using a global

network of supercomputing centers.

Out of the four experiments, ATLAS and CMS are multipurpose detectors capable of per-

forming a large variety of physics analyses ranging from the discovery of the Higgs boson to

precision studies of quantum chromodynamics. The other two detectors, ALICE and LHCb,

specialize in studies of lead-ion collisions and b-hadrons, respectively. In this section, we

provide an overview of the CMS experiment, but similar principles also apply to ATLAS and, to

some extent, to other high energy physics experiments.

The CMS experiment (CMS Collaboration, 2008), an acronym for Compact Muon Solenoid, is

situated in an underground cavern along the LHC ring near the village of Cessy, France. The

detector, weighing a total of 12 500 tons, has a cylindrical shape with a diameter of 14.6 m
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Figure 2.1: Illustration of the detection of particles at the CMS experiment (Barney, 2004).
Each type of particle leaves its characteristic trace in the various subdetectors. This enables
the identification of different particles and the measurement of their energies and trajectories.
Copyright: CERN, for the benefit of the CMS Collaboration.

and a length of 21.6 m. The construction, operation and data analysis of the experiment is

conducted by an international collaboration of over 4000 scientists, engineers and technicians.

When two protons collide at the center of CMS, their energy is transformed into matter in

the form of new particles. A small fraction of these particles are exotic, short-lived particles,

such as the Higgs boson or the top quark. Such exotic particles are the focal point of the

scientific interest of the high energy physics community. They decay almost instantly into more

familiar, stable particles, such as electrons, muons or photons. Using various subdetectors,

the energies and trajectories of these particles can be recorded in order to study the properties

and interactions of the exotic particles created in the collisions.

The layout of the CMS detector is illustrated in Figure 2.1. The detector is immersed in a 3.8 T

magnetic field created using a superconducting solenoid magnet. This magnetic field bends

the trajectory of any charged particle traversing the detector. This enables the measurement of

the particle’s momentum: the larger the momentum, the less the particle’s trajectory is bent.

CMS consists of three layers of subdetectors: the tracker, the calorimeters and the muon

detectors. The innermost detector is the silicon tracker, which consists of an inner layer of

pixel detectors and an outer layer of microstrip detectors. When a charged particle passes

through these semiconducting detectors, it leaves behind electron-hole pairs and hence

creates an electric signal. These signals are combined into a particle track using a Kalman

filter in order to reconstruct the trajectory of the particle.
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The next layer of detectors are the calorimeters, which are devices for measuring energies

of particles. The CMS calorimeter system is divided into an electromagnetic calorimeter

(ECAL) and a hadron calorimeter (HCAL). Both of these devices are based on the same general

principle: they are made of extremely dense materials with the aim of stopping the incoming

particles. In the process, a portion of the energy of these particles is converted into light in a

scintillating material and the amount of light, which depends on the energy of the particle, is

measured using photodetectors inside the calorimeters. The ECAL measures the energy of

particles that interact mostly via the electromagnetic interaction, in other words, electrons,

positrons and photons. The HCAL, on the other hand, measures the energies of hadrons, that

is, particles composed of quarks. These include, for example, protons, neutrons and pions.

The HCAL is also instrumental in measuring the energies of jets, which are collimated streams

of hadrons produced by quarks and gluons, and in detecting the so-called missing transverse

energy, an energy imbalance caused by non-interacting particles, such as neutrinos, escaping

the detector.

The outermost layer of CMS consists of muon detectors, whose task is to identify muons

and measure their momenta. Accurate detection of muons was of central importance in

the design of CMS since muons provide a clean signature for many exciting new physics

processes. This is because there is a very low probability for other particles, with the exception

of the non-interacting neutrinos, to pass through the CMS calorimeter system. For example,

the four-muon decay mode played an important role in the discovery of the Higgs boson

(CMS Collaboration, 2012b).

The information of all CMS subdetectors is combined (CMS Collaboration, 2009) to identify the

stable particles (muons, electrons, positrons, photons and various types of hadrons) produced

in each collision event; see Figure 2.1. For example, a muon will leave a track in both the

silicon tracker and the muon chamber, while a photon produces a signal in the ECAL without

an associated track in the tracker. The information about these individual particles is then

used to reconstruct higher-level physics objects, such as jets or missing transverse energy.

2.2 Statistics at the LHC

This section gives a brief overview of statistical techniques that are used in LHC data analysis.

Cowan (1998) and Cranmer (2015) provide accessible introductions to statistical data analysis

in high energy physics, while Behnke et al. (2013) provides a more in-depth treatment, includ-

ing various more technical aspects. Good sources of information are also the proceedings of

the PHYSTAT conference series Prosper et al. (2008) and Prosper and Lyons (2011). ATLAS and

CMS Collaborations (2011) is a key reference on the statistical methodology that was used in

the search for the Higgs boson at the LHC; see also van Dyk (2014).

Physics analyses at the LHC can be broadly speaking divided into two categories which we

shall call discovery analyses and measurement analyses. In the first case, one is performing

a search for some new particle or phenomenon and the aim is to use LHC data to establish

9



Chapter 2. Unfolding at the Large Hadron Collider

whether such new physics exists or not. Examples of such analyses include the discovery of

the Higgs boson (ATLAS Collaboration, 2012a; CMS Collaboration, 2012b) and searches for

dark matter and extra dimensions (CMS Collaboration, 2012a). In measurement analyses,

on the other hand, one is interested in studying in detail the properties of some physical

phenomenon whose existence has already been previously established. Examples include

studies of the properties of the W boson (ATLAS Collaboration, 2012b) and the top quark

(CMS Collaboration, 2012d), to name just a few. Somewhat different statistical methods

are used in discovery and measurement analyses, but, irrespective of the analysis type, the

statistical methods that are used at the LHC fall predominantly under the frequentist paradigm

of statistics (Lyons, 2013).

The main statistical tools for discovery analyses are hypothesis tests and one-sided confidence

intervals. To illustrate this, let us consider the following simplified model of a single-channel

discovery analysis:

y ∼ Poisson(b +μs), (2.1)

where y is the event count in the experiment, b ≥ 0 is the expected number of background

events from known physics processes, s > 0 is the expected number of signal events from

the new physics process and μ≥ 0 is a signal strength modifier. Hence, μ= 0 corresponds to

the absence of new physics and μ= 1 to the predicted strength of the new signal. Then the

search for the new phenomenon boils down to testing the null hypothesis H0 : μ= 0 against

the alternative H1 : μ= 1. The p-value of this test is typically converted to the scale of Gaussian

standard deviations (σ) and, by convention, one calls a p-value corresponding to 3σ evidence

for the new phenomenon, while 5σ constitutes a discovery of the new phenomenon. Most

discovery analyses also form a one-sided 95 % confidence interval [0,μ] for μ, where μ is called

an upper limit for μ. If the 95 % upper limit μ< 1, then one concludes that the phenomenon

can be excluded at 95 % confidence level.

In reality, the statistical models that are used in discovery analyses involve several search

channels. Moreover, both the background prediction b and the signal strength s depend on

some nuisance parameters ξ, b = b(ξ) and s = s(ξ), and the proper handling of these nuisance

parameters in the hypothesis test and in the upper limit is one of the key statistical challenges

in this type of analyses. Another challenge concerns multiple testing, or the look-elsewhere-

effect (Gross and Vitells, 2010). For example, in the search for the Higgs boson, the hypothesis

test was performed separately for each value mH of the Higgs mass and both non-multiplicity-

corrected local p-values and multiplicity-corrected global p-values were reported. In the case

of most LHC discovery analyses, the sensitivity of the search (i.e., the power of the hypothesis

test) is optimized by employing machine learning techniques (Bhat, 2011), typically in the

form of either neural networks or boosted decision trees.

In measurement analyses, the appropriate statistical tools are point estimators and confidence

intervals and sets. Most of these analyses are performed in a parametric mode, where some
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theory-motivated parametric model is fitted to LHC data. The statistical model is typically of

the form

y ∼ Poisson
(
μ(θ)

)
, (2.2)

where y ∈ Nn
0 are binned observations (see Section 3.2) and the Poisson mean μ ∈ Rn+ is

parameterized by some parameter θ ∈Rp , p 
 n, which is of scientific interest. The Poisson

distribution follows from the fact that most LHC data can be modeled using Poisson point

processes (see Section 3.1). The task is then to both estimate θ and to quantify its uncertainty.

In most cases, θ can be estimated simply using the maximum likelihood estimator (MLE)

and confidence intervals and sets can be obtained from standard MLE asymptotics. A simple

extension of this procedure, where the maximum likelihood fit is performed using unbinned

data, is also commonly used at the LHC.

Measurement analyses are also where unfolding is employed. In essence, unfolding can be

seen as a generalization of problem (2.2) to a situation where the physical parameter-of-

interest is no longer finite-dimensional. In that case, the problem becomes ill-posed and

maximum likelihood fits and asymptotics are no longer viable. As we will see, the estima-

tion problem needs to be regularized and this makes uncertainty quantification extremely

challenging. We next proceed to explain why unfolding is needed in LHC measurement anal-

yses in the first place and the rest of this thesis is then devoted to providing methods for

solving the problem, with a particular emphasis on how to quantify the uncertainty of the

unfolded solution.

2.3 Unfolding in LHC data analysis

The need for unfolding stems from the fact that any quantity measured at the LHC detectors

is corrupted by stochastic noise. Let X be the true physical value of some quantity observed

in the detector. Then the actual recorded value of this quantity, say Y , is a slightly perturbed

version of X . That is, the conditional distribution of Y given X , p(Y |X ), is supported on a

continuum of values around X . For instance, let E be the true energy of an electron hitting

the CMS ECAL. Then the observed value of this energy follows to a good approximation the

Gaussian distribution N
(
E ,σ2(E )

)
, where the variance satisfies (CMS Collaboration, 2008)(

σ(E )

E

)2

=
(

S�
E

)2

+
(

N

E

)2

+C 2, (2.3)

where S, N and C are fixed constants.

The effect of this smearing is that the observed spectrum of particles is “blurred” with respect

to the true physical spectrum. This becomes an issue for many measurement analyses, where

the scientific goal is to infer this true spectrum and, as a result, the analyses need to use

unfolding to “undo” the smearing. This would be a simple task if a physics-driven parametric
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model were available for the true spectrum, but unfortunately in most measurement analyses

parametric assumptions are either considered too strong or no well-justified parametric model

exists and regularized nonparametric inferences are needed instead.

Unfolding is used annually by dozens of LHC measurement analyses. Examples include studies

of the characteristics of jets (CMS Collaboration, 2012c, 2013b) as well as the properties of

the W boson (ATLAS Collaboration, 2012b) and the top quark (CMS Collaboration, 2012d,

2013c), to name just a few. Unfolding has recently also been used to measure differential cross

sections associated with the Higgs boson (CMS Collaboration, 2016). In the early phases of

this work, we used the CERN Document Server (https://cds.cern.ch/) to survey all papers

published by the CMS Collaboration in year 2012 in order to understand how often unfolding

is used in LHC data analysis. That year, CMS published a total of 103 papers out of which

16 made direct use of unfolding. Many more also indirectly relied on unfolded results for

example through parton distribution functions (Forte and Watt, 2013), which are estimated

using simultaneous fits to several unfolded spectra (NNPDF Collaboration, 2015). We expect

similar statistics to also hold for the other three LHC experiment.

A pertinent question is whether unfolding, and the challenges related to it, could be avoided

altogether by simply performing the analysis in the smeared space (Lyons, 2011). The answer

to this question depends on what the ultimate goal of the analysis is and how the results are

expected to be used. Unfolding is needed at least when the purpose of the analysis is one of

the following:

• Comparison of experiments with different responses: The only direct way of compar-

ing the spectra measured in two or more experiments with different resolution functions

is to compare the unfolded spectra.

• Input to a subsequent analysis: Certain tasks, such as the estimation of parton distribu-

tions functions or the fine-tuning of Monte Carlo event generators, are typically easiest

to carry out using unfolded input spectra.

• Comparison with future theories: When the spectra are reported in the unfolded space,

a theorist can directly use them to compare with any new theoretical predictions which

might not have existed at the time of the original measurement. (This justification

is controversial since alternatively one could publish the detector response and the

theorist could use it to smear their new predictions. One counterargument is that it

is not straightforward to publish and communicate all the systematic uncertainties

affecting the detector response.)

• Exploratory data analysis: The unfolded spectrum could reveal features and structure

in the data which are not considered in any of the existing theoretical models.

These considerations ultimately boil down to the question of what is the best way of commu-

nicating the information contained in LHC data so that the format is most useful for further

scientific use. Arguably, the ideal solution would be to use the unfolded space, but existing
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unfolding techniques (see Chapter 4) do not provide a reliable way of doing this. The aim of

this work is to contribute towards improving the situation by providing unfolding methodology

with better statistical performance and guarantees.
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3 Preliminaries

This chapter lays the foundations for the rest of this work. We first introduce and justify in

Section 3.1 the appropriate forward model for unfolding based on indirectly observed Poisson

point processes. Section 3.2 then explains different ways of discretizing this model. Section 3.3

defines the various forms of frequentist confidence intervals that we aim to construct in this

work and explains why such intervals yield useful uncertainty quantification. We close the

chapter by introducing in Section 3.4 the unfolding scenarios that are used in the simulation

studies throughout this thesis.

3.1 Forward model for unfolding

Most data in experimental high energy physics can be modeled as a Poisson point process

(Cranmer, 2015). Let E ⊆ R be a compact interval and V a space of (sufficiently regular)

functions on E . Then the random measure M on state space E is a Poisson point process (Reiss,

1993) with a positive intensity function f ∈V if and only if:

(i) M(B) ∼ Poisson(λ(B)) with λ(B) =∫B f (s)ds for every Borel set B ⊆ E ;

(ii) M(B1), . . . , M(Bn) are independent for pairwise disjoint Borel sets Bi ⊆ E , i = 1, . . . ,n.

In other words, the number of points M(B) observed in the set B ⊆ E follows a Poisson

distribution with mean
∫

B f (s)ds and point counts in disjoint sets are independent random

variables.

The appropriate statistical model for unfolding in an indirectly observed Poisson point process,

where the Poisson process M represents the true, particle-level spectrum of events. The

smeared, detector-level spectrum is represented by another Poisson process N with state

space F ⊆R. We assume that F is a compact interval and denote by W the space of (sufficiently

regular) functions on F . Let g ∈W be the intensity function of N . The intensities f and g are

related by a bounded linear operator K : V →W so that g = K f . In what follows, we assume K
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to be a Fredholm integral operator, that is,

g (t ) = (K f )(t ) =
∫

E
k(t , s) f (s)ds, (3.1)

with a sufficiently regular integration kernel k. Throughout this work, we assume that k is

known, although in practice there is usually some amount of uncertainty associated with it;

see the discussion in Chapter 8. The unfolding problem is then to make inferences about the

true intensity f given a single observation of the smeared Poisson process N .

This Poisson inverse problem (Antoniadis and Bigot, 2006; Reiss, 1993) is ill-posed in the sense

that, for most realistic forward operators K , it is possible for true intensities f which are very

far apart in V to map into smeared intensities g which are very close to each other in W . From

the perspective of point estimation, this means that the naïve approach of first estimating g

using, for example, a kernel density estimate ĝ and then estimating f using f̂ = K †ĝ , where K †

is the pseudoinverse of K , is unstable with respect to the Poisson fluctuations of ĝ . Indeed, in

most cases, the pseudoinverse K † is an unbounded, and hence discontinuous, linear operator

(Engl et al., 2000). From the perspective of uncertainty quantification, the ill-posedness means

that the set of those solutions f ∈V which are consistent with our smeared observations need

not be bounded, resulting in possibly arbitrarily large uncertainties.

To better understand the physical justification and meaning of this model, let us consider the

unfolding problem at the point level. Denoting by Xi the true, particle-level observations,

the Poisson point process M can be written as M =∑τ
i=1δXi (Reiss, 1993, Section 1.2), where

δXi is a Dirac measure at Xi ∈ E and τ, X1, X2, . . . are independent random variables such that

τ ∼ Poisson(λ(E)) and the Xi are identically distributed with probability density f (·)/λ(E),

whereλ(E ) =∫E f (s)ds. In the case of LHC data, the total number of points τ can be assumed to

be Poisson distributed by the law of rare events and the observations X1, X2, . . . are independent

since individual collision events are independent.

When the particle corresponding to Xi passes through the detector, the first thing that can

happen is that it might not be observed at all because of the limited efficiency and acceptance

of the device. Mathematically, this corresponds to thinning of the Poisson process (Reiss,

1993, Section 2.4). Let Zi ∈ {0,1} be a variable indicating whether the point Xi is observed

(Zi = 1) or not (Zi = 0). We assume that τ, (X1, Z1), (X2, Z2), . . . are independent and that the

pairs (Xi , Zi ) are identically distributed. Then the thinned true process is given by M∗ =∑τ
i=1 ZiδXi =

∑ξ
i=1δX ∗

i
, where ξ = ∑τ

i=1 Zi and the X ∗
i are the true points with Zi = 1. The

thinned process M∗ is a Poisson point process with intensity function f ∗(s) = ε(s) f (s), where

ε(s) = P (Zi = 1|Xi = s) is the efficiency of the detector for a true observation at s ∈ E .

For each observed point X ∗
i ∈ E , the detector measures a noisy value Yi ∈ F . We assume

the noise to be such that the the smeared observations Yi are independent and identically
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distributed. The probability density of Yi is given by

p(Yi = t ) =
∫

E
p(Yi = t , X ∗

i = s)ds =
∫

E
p(Yi = t |X ∗

i = s)p(X ∗
i = s)ds. (3.2)

It follows from this that the smeared observations Yi constitute a Poisson point process

N =∑ξ
i=1δYi , whose intensity function g is given by

g (t ) =
∫

E
p(Yi = t |X ∗

i = s)ε(s) f (s)ds. (3.3)

We hence identify that the kernel k in Equation (3.1) is given by

k(t , s) = p(Yi = t |X ∗
i = s)ε(s). (3.4)

By the definition of X ∗
i and ε(s), this can also be written as

k(t , s) = p(Yi = t |Xi = s, Xi observed)P (Xi observed|Xi = s). (3.5)

Notice that if we are in the special case where k(t , s) = k(t − s), then unfolding corresponds to

a deconvolution problem (Meister, 2009) for Poisson point process observations.

3.2 Discretization

LHC data are typically analyzed in a binned form where the Poisson point processes are

discretized using a histogram. This is done both for convenience and for computational

reasons. Indeed, in many analyses, there may be billions of observations and treating them

individually would not be computationally feasible.

In the case of unfolding, it is natural to carry out the histogram discretization for the smeared

space F , and this is indeed done in most unfolding techniques, including the ones studied in

this work. Let {Fi }n
i=1 be a partition of the smeared space F consisting of n histograms bins of

the form

Fi =
⎧⎨⎩[Fi ,min,Fi ,max), i = 1, . . . ,n −1,

[Fi ,min,Fi ,max], i = n,
(3.6)

where Fi ,max = Fi+1,min, i = 1, . . . ,n−1. Let us furthermore denote by yi the number of smeared

observations falling on interval Fi , that is, yi = N (Fi ), i = 1, . . . ,n. Since N is a Poisson point

process, it follows that the histogram of smeared observations y = [
y1, . . . , yn

]T consists of

independent and Poisson distributed event counts. The expected value of these counts is

given by μ= [∫F1
g (t )dt , . . . ,

∫
Fn

g (t )dt
]T. Using Equation (3.1), we find that the components

of the smeared mean μ are related to the true intensity f by

μi =
∫

Fi

g (t )dt =
∫

Fi

∫
E

k(t , s) f (s)ds dt =
∫

E
ki (s) f (s)ds, i = 1, . . . ,n, (3.7)
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where ki (s) = ∫Fi
k(t , s)dt . We assume here that k and f are sufficiently regular so that the

order of integration can be changed. Notice that at this stage we have incurred a loss of

information by replacing the individual observations by the bin counts yi , but we have not

made any implicit assumptions regarding the true intensity f .

The situation is less straightforward with regard to the discretization of the true space E . The

problem is that relating the smeared mean μ directly to a histogram discretization of the

true process M requires making assumptions about the shape of f inside the true bins. The

following sections describe some options that are available for treating the true space E .

3.2.1 Semi-discrete formulation

The most straightforward option is to simply not discretize the problem further. That is, we

consider a semi-discrete problem formulation where the smeared space is discretized using a

histogram, but the true intensity f is treated as an object of the infinite-dimensional function

space V . The semi-discrete forward mapping from f to μ is then given by

K : V →Rn , f 
→μ= [K1 f , . . . ,Kn f
]T, (3.8)

where the functionals Ki are given by Equation (3.7),

Ki : V →R, f 
→μi =
∫

E
ki (s) f (s)ds. (3.9)

The corresponding statistical model is

y ∼ Poisson(μ), with μ=K f , (3.10)

and the notation is taken to imply that the components of y are independent. Our task is then

to make non-parametric inferences regarding f under this model. We use this semi-discrete

formulation in Chapter 7, when we construct shape-constrained confidence intervals for

functionals of f .

3.2.2 Spline discretization

A common approach in non-parametric regression problems is to effectively turn the infinite-

dimensional problem (3.10) into a finite-dimensional one by considering a basis expansion

of f in the form f (s) =∑p
j=1β jφ j (s), where {φ j }p

j=1 is a finite dictionary of basis functions.

Since the true spectra f are typically expected to be smooth functions, a particularly attractive

representation for f is provided by using splines (de Boor, 2001; Schumaker, 2007; Wahba,

1990). Let Emin = s0 < s1 < s2 < ·· · < sL < sL+1 = Emax be a sequence of L +2 knots in the true

space E = [Emin,Emax]. Then an order-m spline with knots si , i = 0, . . . ,L +1, is a piecewise

polynomial, whose restriction to each interval [si , si+1), i = 0, . . . ,L, is an order-m polynomial

(that is, a polynomial of degree m −1) and which has m −2 continuous derivatives at each
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−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 3.1: B-spline basis with L = 9 interior knots on the interval [−1,1].

interior knot si , i = 1, . . . ,L. An order-m spline with L interior knots can be written as a linear

combination of p = L+m basis functions. In this work, we employ the spline discretization

in Chapters 5 and 6, where we focus on order-4 cubic splines which consist of third degree

polynomials and are twice continuously differentiable.

Various basis systems {φ j }p
j=1 can be used to express splines of arbitrary order. We focus on the

B-spline basis B j , j = 1, . . . , p, which consists of spline basis functions of minimal local support

(de Boor, 2001). This basis has good numerical properties and is also conceptually simple in

the sense that each basis coefficient β j controls the value of f only locally on the support of B j .

Figure 3.1 illustrates the B-spline basis. We use the MATLAB Curve Fitting Toolbox (Mathworks,

2014a) to construct, evaluate and perform basic operations on B-splines. These algorithms

are based on recursive use of lower-order B-spline basis functions; see de Boor (2001).

When we plug the B-spline basis expansion f (s) =∑p
j=1β j B j (s) into Equation (3.7), we find

that the smeared means are given by

μi =
p∑

j=1

(∫
E

ki (s)B j (s)ds

)
β j =

p∑
j=1

Ki , jβ j , i = 1, . . . ,n, (3.11)

where we have denoted

Ki , j =
∫

E
ki (s)B j (s)ds, i = 1, . . . ,n, j = 1, . . . , p. (3.12)

Hence unfolding reduces to inferring the spline coefficients β in the Poisson regression

problem

y ∼ Poisson(μ), with μ= Kβ. (3.13)

This forward model is correct if the true intensity f is indeed a spline with the knot sequence

{si }L+1
i=0 . For other smooth functions, the model is only approximately correct and the severity

of the approximation error depends on how well f can be represented using a spline. If f
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is non-smooth, then other types of basis expansions may be more appropriate than splines.

For example, if f is known to contain sharp spikes, then a wavelet basis expansion could be

considered. However, such situations seem to be rare in HEP unfolding applications.

Since any Poisson intensity function is known to be positive, we would also like to constrain

the B-spline f (s) =∑p
j=1β j B j (s) to be a positive function. This can be done by requiring that

β ∈R
p
+ = {x ∈Rp : xi ≥ 0, i = 1, . . . , p

}
. (3.14)

Since the B-spline basis functions B j are positive, this is a sufficient condition for the positivity

of f . However, this is not in general a necessary condition for the positivity of f (except for

order-1 and order-2 B-splines). Restricting ourselves to the family of B-splines induced by the

constraint β ∈ R
p
+ hence entails a reduction in the family of spline functions available to us

in comparison to all positive splines (de Boor and Daniel, 1974), but, given the shape of the

B-spline basis functions (see Figure 3.1), this reduction is unlikely to be restrictive in practice.

Also other qualitative shape constraints can be easily imposed on the B-spline basis (Pya and

Wood, 2015). For example, a sufficient condition for f to be decreasing is

β j+1 −β j ≤ 0, j = 1, . . . , p −1. (3.15)

Similarly,

β j+2 −2β j+1 +β j ≥ 0, j = 1, . . . , p −2 (3.16)

is a sufficient condition for f to be convex, provided that the knots are uniformly spaced.

O’Sullivan (1986, 1988) was one of the first authors to employ regularized B-splines in statistical

applications. The approach was later popularized by Eilers and Marx (1996) in the form of

P-splines where a difference penalty is applied to the basis coefficients β j . The use of B-splines

in the HEP unfolding problem was pioneered by Blobel (1985). Also the recent contributions

by Dembinski and Roth (2013) and Milke et al. (2013) use splines to discretize the unfolding

problem. However, none of these techniques is presently widely used in LHC experiments.

3.2.3 Histogram discretization

The discretization that is used in most LHC unfolding analyses directly relates the smeared

mean histogram μ to a histogram discretization λ of the true Poisson point process M . Let

{E j }p
j=1 be a partition of the true space E consisting of p histogram bins of the form

E j =
⎧⎨⎩[E j ,min,E j ,max), j = 1, . . . , p −1,

[E j ,min,E j ,max], j = p,
(3.17)
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with E j ,max = E j+1,min, k = 1, . . . , p−1. The histogram of expected number of true events within

each true bin E j is then given by

λ=
[∫

E1

f (s)ds, . . . ,
∫

Ep

f (s)ds

]T

. (3.18)

The elements of μ and λ are related by (Cowan, 1998, Chapter 11)

μi =
∫

E
ki (s) f (s)ds =

p∑
j=1

∫
E j

ki (s) f (s)ds =
p∑

j=1

∫
E j

ki (s) f (s)ds∫
E j

f (s)ds
λ j =

p∑
j=1

Ki , jλ j , (3.19)

where the elements of the smearing or response matrix K are given by

Ki , j =
∫

E j
ki (s) f (s)ds∫
E j

f (s)ds
, i = 1, . . . ,n, j = 1, . . . , p. (3.20)

Equivalently, the (i , j )th element of K is the probability that an event in the true bin E j

propagates to the smeared bin Fi (Kuusela, 2012, Proposition 2.11),

Ki , j = P (Y ∈ Fi |X ∈ E j ), (3.21)

where X is a true particle-level event and Y is the corresponding smeared detector-level event.

The corresponding statistical model then becomes

y ∼ Poisson(μ), with μ= Kλ, (3.22)

and the goal of unfolding is to make inferences about λ given a realization of y .

Notice that each element Ki , j depends on the shape of f within the true bin E j . Intuitively,

the distribution of true events within E j has an effect on the probability of finding these

events within the smeared bin Fi . The dependence on f will cancel out only if f is constant

within E j , in which case Ki , j = 1
E j ,max−E j ,min

∫
E j

ki (s)ds (notice that this corresponds to taking

f to be an order-1 spline with the knots placed at the boundaries between the true bins; see

Section 3.2.2). The more f deviates from a constant within E j , the larger its effect on Ki , j . This

dependence is particularly strong for steeply falling spectra, where f may change by several

orders of magnitude within E j .

In real LHC analyses, f is obviously unknown. Most analyses address this by replacing f in

Equation (3.20) by an ansatz f MC obtained using a Monte Carlo (MC) event generator, and

this is also the approach we follow in Chapter 4 when we study existing unfolding techniques.

In other words, unfolding is performed using using the response matrix K MC with elements

K MC
i , j =

∫
E j

ki (s) f MC(s)ds∫
E j

f MC(s)ds
, i = 1, . . . ,n, j = 1, . . . , p, (3.23)

21



Chapter 3. Preliminaries

instead of the actual response matrix K . The resulting statistical model y ∼ Poisson(K MCλ) is

correct only if f MC is proportional to f within each true bin E j . When this is not the case, the

model is only approximately correct, and the more the shape of f MC deviates from that of f

within the true bins E j , the larger the modeling error. The situation can be alleviated by using

smaller true bins E j , but the drawback is that this increases the dimension of λ and hence

increases the ill-posedness of the problem.

It is sometimes argued that the unfolding problem should be regularized by increasing the size

of the true bins E j (Zech, 2011). In the present formulation, this only superficially circumvents

the ill-posedness of the problem since with wide bins the Monte Carlo dependence of K MC

becomes increasingly acute. However, in the formulation that we develop in Chapter 7, the

true bins can be made arbitrarily large, while avoiding the Monte Carlo dependence altogether.

3.3 Uncertainty quantification using frequentist confidence inter-

vals

A central goal in this work is to quantify our uncertainty regarding the intensity function f

using frequentist confidence intervals. The aim of this section is to define what we mean by this

(Section 3.3.1) and to explain how to interpret and use the resulting intervals (Section 3.3.2).

3.3.1 Confidence intervals in unfolding

Let θ = H f be some real-valued feature of f that we are interested in, with the functional

H : V →R relating f to the quantity of interest θ. Unless explicitly stated, H need not be linear.

Let α= (0,1) and let y ∼ Poisson(K f ), where K is the semi-discrete forward mapping from

Section 3.2.1. Then a frequentist confidence interval for θ with confidence level (or coverage

probability) 1−α is a random interval
[
θ(y),θ(y)

]
that satisfies

P f
(
θ ∈ [θ(y),θ(y)

])≥ 1−α, ∀ f ∈V. (3.24)

In other words, under repeated sampling of y , the random intervals
[
θ(y),θ(y)

]
must cover

the true value of θ at least 100× (1−α) % of the time, and this must hold true for any true

intensity f . Constructing confidence intervals for a given fixed f is trivial—the challenging

part is to provide a construction where (3.24) is satisfied for any f in V , or at least in a large

subset of V . (Indeed, the author has on several occasions witnessed a situation where a Monte

Carlo ansatz f MC is used to construct confidence intervals and the coverage is then checked

for data y generated by this same spectrum f MC, when the check should be done for one or

more spectra that are different from f MC. Such error can be surprisingly difficult to spot in

complex data analysis situations.)

In practice, we are often interested in multiple features of f . Let {θi }i∈I be a collection of

quantities of interest, where θi = Hi f with Hi : V → R for each i ∈ I . Then the confidence
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3.3. Uncertainty quantification using frequentist confidence intervals

statement can either be pointwise or simultaneous with respect to the index set I . More

specifically, we call a collection of random intervals
[
θi (y),θi (y)

]
, i ∈ I , pointwise confidence

intervals for {θi }i∈I with confidence level 1−α if

P f
(
θi ∈

[
θi (y),θi (y)

])≥ 1−α, ∀i ∈ I , ∀ f ∈V. (3.25)

The intervals
[
θi (y),θi (y)

]
, i ∈ I , are called simultaneous confidence intervals for {θi }i∈I with

confidence level 1−α if

P f
(
θi ∈

[
θi (y),θi (y)

]
,∀i ∈ I

)≥ 1−α, ∀ f ∈V. (3.26)

In the latter case, the 100× (1−α) % coverage probability concerns the whole collection of

intervals
[
θi (y),θi (y)

]
, i ∈ I , simultaneously, while in the former case the coverage statement

is made for each index i ∈ I separately.

It is sometimes more natural to view a collection of 1−α simultaneous confidence intervals

for {θi }i∈I as the Cartesian product
∏

i∈I
[
θi (y),θi (y)

]
in which case we call this subset of RI

a 1−α simultaneous confidence set or, when these is no risk of confusion, simply a 1−α

confidence set for {θi }i∈I ∈ RI . A confidence set may also be a more general subset of RI .

More specifically, a random set C (y) ⊆ RI is a 1−α confidence set for {θi }i∈I if it holds that

P f
(
{θi }i∈I ∈C (y)

)≥ 1−α, ∀ f ∈V .

If the index set I is finite, then pointwise intervals can always be conservatively adjusted

to satisfy a simultaneous confidence statement. Namely, let
[
θi (y),θi (y)

]
, i = 1, . . . , p, be a

collection of 1−α′ pointwise confidence intervals for {θi }p
i=1. Then

P f
(
θ1(y) ≤ θ1 ≤ θ1(y), . . . ,θp (y) ≤ θp ≤ θp (y)

)≥ 1−
p∑

i=1

(
1−P f

(
θi (y) ≤ θi ≤ θi (y)

))
(3.27)

≥ 1−
p∑

i=1
α′ = 1−pα′, (3.28)

where we have used the inequality P
(⋂

i Ai
) ≥ 1−∑i

(
1−P(Ai )

)
. We hence see that if we

construct p pointwise confidence intervals at confidence level 1− α
p , then their simultaneous

coverage probability is at least 1−α. This is called Bonferroni correction of the pointwise

confidence intervals.

The functionals that we specifically consider in this work are either point evaluators, Hs f =
f (s), s ∈ E , or integrals over bins, Hi f = ∫Ei

f (s)ds, i = 1, . . . , p, where the bins Ei are of the

form (3.17). In the former case, we are interested in 1−α pointwise confidence bands for f ,

that is, collections of random intervals
[
f
¯

(s; y), f̄ (s; y)
]
, s ∈ E , that satisfy

P f
(

f
¯

(s; y) ≤ f (s) ≤ f̄ (s; y)
)≥ 1−α, ∀s ∈ E , ∀ f ∈V. (3.29)
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This is the setup we study in Chapter 6. (In practice, the confidence bands are computed on a

grid of s values, but this grid can be made arbitrarily dense.) The latter case corresponds to

forming confidence intervals
[
λi (y),λi (y)

]
, i = 1, . . . , p, for the expected true histogram λ ∈Rp

defined in Equation (3.18), and this is the setup we study in Chapters 4 and 7. We consider

these intervals both in their pointwise (or rather, binwise) form,

P f
(
λi ∈

[
λi (y),λi (y)

])≥ 1−α, ∀i ∈ 1, . . . , p, ∀ f ∈V , (3.30)

and in their simultaneous form,

P f
(
λ ∈ [λ1(y),λ1(y)

]×·· ·× [λp (y),λp (y)
])≥ 1−α, ∀ f ∈V. (3.31)

In the rest of this work, we mostly write confidence intervals for θ in the form
[
θ,θ

]
omitting

the y dependence. It is however important to keep in mind that, in the frequentist definition of

a confidence interval (3.24), it is the interval
[
θ,θ

]
that is random and the quantity of interest

θ is fixed. This is in contrast with a Bayesian credible interval satisfying P
(
θ ∈ [θ,θ

]∣∣y)≥ 1−α,

where θ is random and the interval
[
θ,θ

]
is fixed.

3.3.2 Interpretation and use of frequentist confidence intervals

We now discuss the interpretation of frequentist confidence intervals and explain why they are

useful in carrying out a number of statistical tasks. We treat this question generically without

particular reference to the unfolding problem. We focus on the case of univariate confidence

intervals, but the discussion can be easily generalized to confidence sets.

Let θi be some quantity of interest and let
[
θi ,θi

]
be a 1−α confidence interval for θi . For

simplicity, we assume that the coverage probability of the interval is exactly 1−α, that is,

P
(
θi ∈

[
θi ,θi

])= 1−α. Let us assume that we make n independent repetitions of the measure-

ment for θi and let us denote the confidence interval of the j th repetition by
[
θi , j ,θi , j

]
. Then

the interpretation that is most often given to frequentist confidence intervals is that, when n is

large enough, 100× (1−α) % of the intervals
[
θi , j ,θi , j

]
, j = 1, . . . ,n, will cover the true value

of θi .

However, in practice, most scientific experiments are only done once. For example, if θi is the

mass of the Higgs boson, then for the foreseeable future, we only have one particle accelerator

where this value can be measured. For this reason, an interpretation that the author finds

more attractive is to consider the implications of frequentist coverage for multiple quantities

of interest. Let {θi }m
i=1 be a collection of m quantities of scientific interest. In the case of

high energy physics, these could, for example, be the mass of the top quark, the branching

ratio of the Z → l+l− decay mode, the value of the strong coupling constant, the value of

the weak mixing angle and so forth. If the measurements of each θi are independent and

if m is large enough, then frequentist coverage implies that 100× (1−α) % of the intervals[
θi ,1,θi ,1

]
, i = 1, . . . ,m, will cover their corresponding true values θi , i = 1, . . . ,m. In other
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words, if we make a large number of independent measurements of different quantities of

interest θi , then 100× (1−α) % of our inferences are correct in the sense that the resulting

confidence interval covers the corresponding true value of θi . For example, if all the intervals

published by LHC experiments were 95 % confidence intervals and if all the measurements

were in mutually exclusive channels, then, in the long run, 95 % of these results would be

correct in the sense that the published interval covers the actual physical value of the corre-

sponding quantity. (In practice the situation is more complicated as systematic uncertainties

introduce correlations between measurements.) This interpretation of frequentist confidence

intervals is advocated, for example, by Wasserman (2004, Section 6.3.2).

More rigorously, let Zi , j = 1
{
θi ∈

[
θi , j ,θi , j

]}
be the indicator variable showing whether the

interval
[
θi , j ,θi , j

]
covers θi . Then, for every i , j , we have that Zi , j ∼ Bernoulli(1−α) and,

assuming that both the different measurements and the repetitions of the same measurement

are independent, the Zi , j are i.i.d. random variables with mean μ= E
(
Zi , j

)= 1−α. Then, by

the strong law of large numbers,

#
{

Zi , j = 1
}n

j=1

n
= 1

n

n∑
j=1

Zi , j
a.s.−→μ= 1−α, when n →∞. (3.32)

That is, the fraction of intervals that cover θi when the i th measurement is repeated n times

converges almost surely to 1−α as n →∞. This corresponds to the conventional interpretation

of frequentist confidence intervals. But we also have that

#
{

Zi ,1 = 1
}m

i=1

m
= 1

m

m∑
i=1

Zi ,1
a.s.−→μ= 1−α, when m →∞. (3.33)

That is, as the number of measurements m grows, the fraction of intervals
[
θi ,1,θi ,1

]
, i =

1, . . . ,m, that cover their corresponding quantity of interest θi , i = 1, . . . ,m, converges almost

surely to 1−α. This leads to the alternative interpretation of the intervals via coverage in

independent measurements of unrelated quantities of interest. This is illustrated in Figure 3.2.

A frequentist 1−α confidence interval for θi is useful for carrying out a number of statistical

tasks. By the duality between confidence intervals and hypothesis tests, a test that rejects

the null hypothesis H0 : θi = θi ,0 when θi ,0 ∉
[
θi ,θi

]
has significance level α (e.g., Casella and

Berger, 2002, Theorem 9.2.2). In other words, we can perform a hypothesis test by simply

checking whether the null value θi ,0 is contained within the interval
[
θi ,θi

]
. Two or more

independent confidence intervals for the same quantity of interest θi can also be combined

by making an appropriate multiplicity correction and then considering the intersection of the

multiplicity-corrected intervals. For example, a simple calculation shows that if
[
θi ,1,θi ,1

]
and[

θi ,2,θi ,2
]

are two independent confidence intervals for θi with confidence level
�

1−α, then

their intersection is a 1−α confidence interval for θi . Furthermore, confidence intervals and

more generally confidence sets with appropriate multiplicity corrections can be propagated to

further analyses using a construction similar to the one outlined later in Section 7.2. To enable
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Figure 3.2: Frequentist confidence intervals imply coverage not only for independent rep-
etitions of the same measurement, but also for independent measurements of unrelated
quantities of interest {θi }.

this kind of use, it can be helpful to publish confidence intervals at all possible confidence

levels in the form of a confidence distribution (Xie and Singh, 2013).

3.4 Test scenarios

We close this chapter by introducing the two unfolding scenarios that will be primarily used

in the simulation studies throughout this thesis. The first corresponds to a case where it

is reasonable to assume the spectrum to be a smooth function and is primarily used in

Chapters 5 and 6. The second corresponds to a situation where the spectrum is most naturally

regularized using shape constraints and is primarily studied in Chapter 7. Both cases are also

used in Chapter 4 to demonstrate the shortcomings of existing unfolding methods.

3.4.1 Test setup 1: Two peaks on a uniform background

The first test case we consider consists of two Gaussian peaks on top of a uniform background.

Such an intensity resembles situations where invariant mass peaks are observed on top of

some background events. More specifically, we let the intensity of the true process M be

f (s) =λtot

{
π1N (s|−2,1)+π2N (s|2,1)+π3

1

|E |
}

, s ∈ E . (3.34)

where λtot = E(τ) =∫E f (s)ds > 0 is the expected number of true observations and |E | denotes

the length of the interval E . The mixing proportions πi sum to one and are set to π1 = 0.2,
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π2 = 0.5 and π3 = 0.3. We consider the sample sizes λtot = 1 000, λtot = 10 000 and λtot = 50 000,

which we call the small, medium and large sample size cases, respectively. We take both the

true space E and the smeared space F to be the interval [−7,7]. We assume the smeared

intensity g to be given by the Gaussian convolution

g (t ) = (K f )(t ) =
∫

E
N (t − s|0,1) f (s)ds, t ∈ F. (3.35)

This corresponds to a situation where the true points Xi are smeared by additive standard

Gaussian noise, that is, Yi = Xi +εi , where Xi and εi are independent and εi ∼ N (0,1). Points

that are smeared beyond the boundaries of F are discarded from the analysis. The resulting

true intensity f and smeared intensity g in the case of the medium sample size are shown in

Figure 3.3(a). Notice that in classical deconvolution theory (Meister, 2009) this setup belongs to

the most difficult class of deconvolution problems since the Gaussian noise has a supersmooth

probability density function.

We discretize the smeared space F using a histogram of n = 40 equal-width bins. For the

experiments of Chapter 4, we discretize the true space E as described in Section 3.2.3 using a

histogram of p = 30 equal-width bins. In Chapters 5 and 6, we use the spline discretization

described in Section 3.2.2. More specifically, we discretize the true space E using cubic B-

splines with L = 26 uniformly placed interior knots corresponding to p = L + 4 = 30 basis

coefficients.

3.4.2 Test setup 2: Inclusive jet transverse momentum spectrum

We use the inclusive jet transverse momentum spectrum (CMS Collaboration, 2011, 2013b)

as an example of a steeply falling particle spectrum. A jet is a collimated stream of energetic

particles. Observing a jet in an LHC particle detector signifies that a quark or a gluon was

created in the proton-proton collision. By the theory of quantum chromodynamics, quarks

and gluons cannot exist as isolated objects. They will hence create other particles from the

vacuum around them in a process called hadronization, and the end result of this process is

a stream of particles in the form of a jet. The inclusive jet transverse momentum spectrum

is the average number of jets as a function of their transverse momentum pT, that is, their

momentum in the direction perpendicular to the proton beam. The transverse momentum

pT is measured in units of electron volts (eV). Measurement of this spectrum constitutes an

important test of the Standard Model of particle physics and provides constraints on the free

parameters of the theory.

Our aim is to provide a simulation setup that mimics unfolding the inclusive jet pT spectrum

in the CMS experiment (CMS Collaboration, 2008) at the LHC. We generate the data using the

particle-level intensity function

f (pT) = LN0

( pT

GeV

)−α (
1− 2�

s
pT

)β
e−γ/pT , 0 < pT ≤

�
s

2
, (3.36)
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Figure 3.3: Illustration of the unfolding scenarios that we consider in our simulation studies.
Figure (a) shows the intensity functions for the two peaks on a uniform background test setup
and Figure (b) for the inclusive jet transverse momentum spectrum. The first case serves
as an example of a spectrum that is naturally regularized using a roughness penalty, while
the second case is an example of a steeply falling spectrum, which can be regularized using
shape constraints.

where L > 0 is the integrated luminosity (a measure of the amount of collisions produced in the

accelerator, measured in units of inverse barns, b−1),
�

s is the center-of-mass energy of the

proton-proton collisions and N0, α, β and γ are positive parameters. This parameterization

was used in early inclusive jet analyses at the LHC (CMS Collaboration, 2011) and is motivated

by physical considerations. For example, the
(
1− 2�

s
pT

)β
term corresponds to a kinematic

cut-off at pT =
�

s
2 .

Let p ′
T denote the smeared transverse momentum. When the jets are reconstructed using

calorimeter information, the smearing can be modeled as additive Gaussian noise, p ′
T = pT+ε,

where ε|pT ∼N
(
0,σ(pT)2

)
with the variance σ(pT)2 satisfying (cf. Equation (2.3))(

σ(pT)

pT

)2

=
(

N

pT

)2

+
(

S�
pT

)2

+C 2, (3.37)

where N , S, and C are fixed positive constants (CMS Collaboration, 2010). The smeared

intensity is then given by the convolution

g (p ′
T) =

∫
E
N
(
p ′

T −pT
∣∣0,σ(pT)2) f (pT)dpT, p ′

T ∈ F. (3.38)

Hence the forward kernel is given by k(p ′
T, pT) = N

(
p ′

T − pT
∣∣0,σ(pT)2

)
and the unfolding

problem becomes a heteroscedastic Gaussian deconvolution problem.

At the center-of-mass energy
�

s = 7 TeV and in the central part of the CMS detector, realistic

values for the parameters of f (pT) are given by N0 = 1017 fb/GeV, α= 5, β= 10 and γ= 10 GeV

and for the parameters of σ(pT)2 by N = 1 GeV, S = 1 GeV1/2 and C = 0.05 (M. Voutilainen,
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personal communication, 2012). We furthermore set L = 5.1 fb−1, which corresponds to

the size of the CMS 7 TeV dataset collected in 2011. We let the true and smeared spaces be

E = F = [400 GeV,1000 GeV] and partition both spaces into n = p = 30 equal-width bins of the

form (3.6) and (3.17). The resulting intensity functions are illustrated in Figure 3.3(b).
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This chapter provides an overview of the statistical methods that are presently used at the

LHC for solving the unfolding problem. The focus is on the methods that are implemented

in the ROOUNFOLD software framework (Adye, 2011), which is the unfolding software that is

most commonly used by LHC analyses. We explain in Section 4.1 that the problem is currently

regularized by biasing the solution towards a Monte Carlo ansatz of the unknown intensity

function f . The uncertainty of the solution is then quantified by using the variance of the

regularized point estimator, ignoring the regularization bias. We demonstrate in Section 4.2

that this may lead to serious underestimation of the uncertainty, resulting in confidence

intervals whose coverage probability can be much smaller than expected.

An accessible introduction to the statistical methodology used in HEP unfolding is given in

Cowan (1998, Chapter 11). Blobel (2013) and Zech (2016) provide thorough reviews of current

unfolding methodology and literature. Many statistical issues pertinent to unfolding at the

LHC are also discussed in the proceedings of the unfolding workshop at the PHYSTAT 2011

conference (Prosper and Lyons, 2011).

4.1 Existing unfolding methodology

4.1.1 Overview

The unfolding methods that are presently used in LHC data analysis consist predominantly of

those methods that are provided in the ROOUNFOLD (Adye, 2011) software framework. These

methods are:

(i) Bin-by-bin correction factors;

(ii) Matrix inversion;

(iii) SVD variant of Tikhonov regularization (Höcker and Kartvelishvili, 1996);

(iv) TUNFOLD variant of Tikhonov regularization (Schmitt, 2012);
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(v) D’Agostini iteration with early stopping (D’Agostini, 1995).

All these methods use the smeared histogram y ∼ Poisson(μ) to estimate λ, the histogram

version of the true spectum f , defined by Equation (3.18).

The bin-by-bin correction factor method (Cowan, 1998, Section 11.3) relates μ and λ, which

are assumed to share the same binning, by estimating the binwise ratios Ci =λi /μi using a

Monte Carlo event generator and a detector simulation software. Unfolding is then performed

with the help of these Monte Carlo correction factors C MC
i =λMC

i /μMC
i by estimating the true

histogram using λ̂i = C MC
i yi . This approach gives correct results only if the Monte Carlo

simulation is performed using the correct, but obviously unknown, true spectrum. As such,

the results have an extremely strong dependence on the MC ansatz, which makes it practically

impossible to rigorously quantify the uncertainty associated with an unfolded spectrum

obtained using bin-by-bin corrections. This is by now well-recognized by the LHC experiments

and the method has been largely phased out in LHC data analysis, at least within the CMS

collaboration. Historically the method has however been extensively used for example at the

HERA experiments at DESY, at the Tevatron experiments at Fermilab and also in early LHC

data analysis at CERN.

The other methods provided in ROOUNFOLD relate μ and λ using the full response matrix

K MC as described in Section 3.2.3. This yields the statistical model y ∼ Poisson
(
K MCλ

)
. Also

here the response matrix depends on the MC ansatz, but the dependence is not as strong as

in the bin-by-bin method, which effectively replaces the full response matrix by a diagonal

approximation. For brevity, we omit the superscript in K MC in the rest of this chapter, but it is

worth keeping in mind that when histogram discretization is used the forward model is only

approximate.

The matrix inversion method estimates λ using the relation μ = Kλ by simply plugging in

y for μ and then inverting the response matrix, that is, λ̂= K −1 y . This approach obviously

requires that K be an invertible square matrix. Furthermore, since there is no regularization,

the approach gives sensible results only if K is well-conditioned. This happens if the width of

the forward kernels ki (s) is small in comparison to the size of the true bins E j , in which case

the response matrix becomes almost diagonal. If this is the case for true bins that are small

enough so that the MC dependence of K can be safely neglected, then the unfolding problem

is trivially solved using the matrix inverse. However, in most cases, the response matrix K is

badly ill-conditioned, in which case the solution corresponding to the matrix inverse contains

large, unphysical oscillations and some form of regularization is needed.

Two types of regularized unfolding are implemented in ROOUNFOLD and widely used in LHC

data analysis. The first approach regularizes the problem with the help of a Tikhonov-type

penalty term which biases the unfolded solution λ̂ towards λMC, a Monte Carlo prediction of
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the true histogram,

λMC =
[∫

E1

f MC(s)ds, . . . ,
∫

Ep

f MC(s)ds

]T

. (4.1)

The second approach uses an expectation-maximization iteration to find the maximum likeli-

hood estimator (MLE) of λ and regularizes the problem by stopping the iteration prematurely

before convergence to the MLE. The iteration is started from λMC and hence the early stop-

ping introduces a bias towards the MC prediction. The following sections describe these

approaches in greater detail.

4.1.2 Tikhonov regularization

The Tikhonov regularized techniques (Tikhonov, 1963; Phillips, 1962) estimate λ by solving

λ̂= argmin
λ∈Rp

(
(y −Kλ)TΣ̂−1(y −Kλ)+2δP (λ)

)
, (4.2)

where Σ̂= diag(y+), with y+,i = max(1, yi ), is an estimate of the covariance Σ of y , δ> 0 is a

regularization parameter and P (λ) is a penalty term that regularizes the otherwise ill-posed

problem by penalizing physically implausible solutions. Here the first term is a Gaussian

approximation to the Poisson likelihood under the model y ∼ Poisson(Kλ) and, as such,

Tikhonov regularization can be regarded as approximate penalized maximum likelihood

estimation; see Section 5.2. The regularization strength δ controls the relative importance

of the data-fit term (y −Kλ)TΣ̂−1(y −Kλ) and the penalty term P (λ). Various data-driven

procedures for selecting δ have been proposed; see Sections 4.2 and 5.3. We also note that

there does not appear to be a standard way of handling zero event counts in the estimation

of the covariance Σ. In this work, we simply replace the zero counts by ones, but this detail

has little to no impact on our results as we always consider situations where the probability of

obtaining a zero count is very small.

Two variants of Tikhonov regularization, which differ in their choice of P (λ), are commonly

used at the LHC. In the singular value decomposition (SVD) variant (Höcker and Kartvelishvili,

1996), the penalty term is given by

P (λ) =

∥∥∥∥∥∥∥∥∥∥
L

⎡⎢⎢⎢⎢⎣
λ1/λMC

1

λ2/λMC
2

...

λp /λMC
p

⎤⎥⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥∥

2

2

, (4.3)

where λMC = (
λMC

j

)p
j=1 is the Monte Carlo prediction of λ given by Equation (4.1) and the

33



Chapter 4. Current unfolding methods

matrix L is given by

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1

1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.4)

This corresponds to a discretized second derivative with reflexive boundary conditions (Hansen,

2010). In other words, the method favors solutions where the second derivative of the binwise

ratio of λ and λMC is small. The method is named after the singular value decomposition

following the numerical procedure used by Höcker and Kartvelishvili (1996), but the use of the

SVD is by no means essential in the method—once δ and the form of P (λ) are fixed, the same

unfolded solution can be obtained using various numerical procedures.

The other form of Tikhonov regularization available in ROOUNFOLD, and also as a standalone

software package, is the TUNFOLD variant (Schmitt, 2012). In this case, the penalty term is of

the form

P (λ) = ‖L(λ−λ0)‖2
2, (4.5)

where, by default, λ0 =λMC and various choices are available for L, including, but not limited

to, the identity matrix, the discretized first derivative and the discretized second derivative. In

other words, by default, both implementations of Tikhonov regularization introduce a bias

towards a Monte Carlo ansatz of λ and this bias can be sizable even in cases where the MC

dependence of the response matrix K is small.

With a calculation similar to Sections 5.2.3 and 5.2.4, one can easily show that, for the SVD

penalty (4.3), the solution of (4.2) is given by

λ̂= (K TΣ̂−1K +2δL̃TL̃
)−1K TΣ̂−1 y , (4.6)

where L̃ = L diag(λMC)−1. Similarly, for the TUNFOLD penalty (4.5), the estimator is given by

λ̂= (K TΣ̂−1K +2δLTL
)−1(K TΣ̂−1 y +2δLTLλ0

)
. (4.7)

Notice that both estimators are available in closed form and, if we ignore the data-dependence

of Σ̂ (and possibly also the data-dependence of an estimator of δ), the SVD solution is a linear

transformation of y and the TUNFOLD solution an affine transformation of y .

Both methods quantify the uncertainty of λ̂ using 1−α Gaussian confidence intervals (see
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Section 6.1.3) given by[
λ̂ j − z1−α/2

√
v̂ar

(
λ̂ j
)
, λ̂ j + z1−α/2

√
v̂ar

(
λ̂ j
)]

, j = 1, . . . , p, (4.8)

where z1−α/2 is the 1−α/2 standard normal quantile and v̂ar
(
λ̂ j
)

is the estimated variance

of λ̂ j . The intervals are typically computed at 68.3 % confidence level, that is, with z1−α/2 = 1.

Using its linearity, the covariance of the SVD estimator can be estimated with

ĉov
(
λ̂
)= (K TΣ̂−1K +2δL̃TL̃

)−1
K TΣ̂−1K

(
K TΣ̂−1K +2δL̃TL̃

)−1
. (4.9)

Similarly, for TUNFOLD, we can estimate

ĉov
(
λ̂
)= (K TΣ̂−1K +2δLTL

)−1
K TΣ̂−1K

(
K TΣ̂−1K +2δLTL

)−1
. (4.10)

The variances in Equation (4.8) are then estimated using the diagonal elements of the co-

variance matrix, v̂ar
(
λ̂ j
)= ĉov

(
λ̂
)

j , j . Notice that in SVD the MC prediction λMC affects both

the length and the location of the confidence intervals, while in TUNFOLD it only affects the

location of the intervals.

4.1.3 D’Agostini iteration

The D’Agostini method (D’Agostini, 1995) solves the unfolding problem iteratively. Given a

starting point λ(0) > 0, the (t +1)th step of the iteration is

λ(t+1)
j =

λ(t )
j∑n

i=1 Ki , j

n∑
i=1

Ki , j yi∑p
k=1 Ki ,kλ

(t )
k

. (4.11)

This method can be derived as an expectation-maximization (EM) iteration (Dempster et al.,

1977) for finding the MLE of λ in the Poisson regression problem y ∼ Poisson(Kλ), λ≥ 0. The

derivation is given, for example, in McLachlan and Krishnan (2008, Section 2.5) or Kuusela

(2012, Section 4.1.2); see also Section 5.3.1 for a brief description of the EM algorithm. The

standard EM convergence theorems of Wu (1983) are not directly applicable to the D’Agostini

iteration, but Vardi et al. (1985, Theorem A.1) show that the iteration (4.11) converges to an

MLE of λ, that is, λ(t ) t→∞−→ λ̂MLE, where λ̂MLE ∈ R
p
+ is a global maximizer of the likelihood

function

L(λ; y) = p(y |λ) =
n∏

i=1

(∑p
j=1 Ki , jλ j

)yi

yi !
e−

∑p
j=1 Ki , jλ j , λ ∈R

p
+. (4.12)

The convergence result holds even when the MLE is not unique (that is, when K does not have

full column rank).

Regularization is achieved by stopping the iteration (4.11) prematurely before convergence to
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the MLE. Denoting the number of iterations by T , the regularized point estimator is λ̂=λ(T ).

The effect of this is to create a bias towards λ(0), the starting point of the iteration, and the

number of iterations T serves as a regularization strength controlling the bias-variance trade-

off of the solution. In the ROOUNFOLD implementation of the method, the starting point is

the MC prediction, λ(0) =λMC, where λMC is given by Equation (4.1).

ROOUNFOLD quantifies the uncertainty in the D’Agostini iteration using the Gaussian con-

fidence intervals (4.8) with z1−α/2 = 1 and with the variance v̂ar
(
λ̂ j
)

estimated using error

propagation. That is, by using a linearized approximation of the iteration (4.11), the covariance

of λ(t+1) can be estimated (Cowan, 1998, Section 1.6) using

ĉov
(
λ(t+1))= J (t+1) Σ̂ (J (t+1))T, (4.13)

where J (t+1) is the Jacobian of λ(t+1) evaluated at y and Σ̂ = diag(y+) is an estimate of the

covariance of y . Denote ε j =∑n
i=1 Ki , j and M (t )

i , j =
λ(t )

j

ε j

Ki , j∑p
k=1 Ki ,kλ

(t )
k

. Then the elements of the

Jacobian are given by (Adye, 2011)

J (t+1)
j ,i =

∂λ(t+1)
j

∂yi
= M (t )

i , j +
λ(t+1)

j

λ(t )
j

J (t )
j ,i −

p∑
k=1

n∑
l=1

yl
εk

λ(t )
k

M (t )
l , j M (t )

l ,k J (t )
k,i , (4.14)

where J (0)
j ,i = 0 for all j , i . The variances are then estimated using the diagonal elements

of the covariance, v̂ar
(
λ̂ j
) = ĉov

(
λ̂
)

j , j = ĉov
(
λ(T )

)
j , j . As usual, this estimate ignores the

data-dependence of T . It should also be mentioned that the error propagation procedure

in D’Agostini (1995, Section 4) omits the last two terms in Equation (4.14) and hence under-

estimates the variance of λ̂ (Adye, 2011). This has been corrected in ROOUNFOLD, which

calculates the variance using the full Jacobian (4.14).

The iteration (4.11) has been discovered independently in various fields where the experi-

mental data consist of Poisson counts. The first authors to derive the method seem to have

been Richardson (1972) in optics and Lucy (1974) in astronomy. In these fields, the iteration is

typically called the Richardson–Lucy algorithm. Shepp and Vardi (1982), Lange and Carson

(1984) and Vardi et al. (1985) apply the method to image reconstruction in positron emission

tomography. In HEP, the method was popularized by the work of D’Agostini (1995), but it was

already studied earlier by Kondor (1983) and Mülthei and Schorr (1987a,b, 1989). See also the

recent review by Zech (2013). In the HEP community, the D’Agostini iteration is sometimes

called “Bayesian” unfolding since D’Agostini (1995) derives the iteration using a repeated

application of Bayes’ theorem. However, this does not correspond to the way statisticians

usually understand Bayesian inference. The author’s position is that the iteration is best

understood as a fully frequentist technique for finding the (regularized) MLE of λ and should

not be called “Bayesian”.
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4.2. Undercoverage of the unfolded confidence intervals

4.1.4 Other methods

Several other methods, which we review here briefly, have also been proposed for solving the

HEP unfolding problem. RUN (Blobel, 1985, 1996) is a penalized maximum likelihood method

(see Section 5.2.2) with a roughness penalty and B-spline discretization of the unfolded space.

TRUEE (Milke et al., 2013) is a C++ implemenation of RUN. ARU (Dembinski and Roth,

2013) is similar to RUN, but uses an entropy penalty instead of a second derivative penalty.

Volobouev (2015) proposes an approach similar to Silverman et al. (1990) where the EM

iteration is smoothed on each step of the algorithm. Smoothing is also considered in the

original paper by D’Agostini (1995), but by default ROOUNFOLD does not smooth the EM

iteration (Adye, 2011). Choudalakis (2012) proposes to solve the problem using Bayesian

inference, but does not address the choice of the regularization strength.

4.2 Undercoverage of the unfolded confidence intervals

The two most common regularized unfolding methods in current use at the LHC are the

SVD variant of Tikhonov regularization (Höcker and Kartvelishvili, 1996) and the D’Agostini

iteration (D’Agostini, 1995) with early stopping. As explained in Section 4.1 both of these

methods are regularized by biasing the solution towards a Monte Carlo prediction λMC of

the true histogram λ. In this section, we demonstrate that if the uncertainty of the unfolded

solution is quantified using the Gaussian confidence intervals of Equation (4.8), which is

essentially what is implemented in current unfolding software (Adye, 2011; Schmitt, 2012),

then the resulting confidence intervals may suffer from serious undercoverage. This happens

because the confidence intervals ignore the bias from the regularization and discretization of

the problem. In our simulations, we use fairly small bins in the true space and hence the first

effect is the dominant one. With larger bins, the discretization bias would also contribute to

the undercoverage.

We study the coverage of the methods using 1 000 independent replications of the two un-

folding scenarios described in Section 3.4. In each case, we take the MC ansatz f MC, which

is used to compute the smearing matrix in Equation (3.23) and the MC prediction λMC in

Equation (4.1), to be a slightly perturbed version of the unknown true spectrum f . For the two

peaks on a uniform background test case (Section 3.4.1), we consider the medium sample size

λtot = 10 000 and use the MC ansatz

f MC(s) =λtot

{
π1N

(
s
∣∣−2,1.12)+π2N

(
s
∣∣2,0.92)+π3

1

|E |
}

, (4.15)

where λtot and πi , i = 1, . . . ,3, are set to their correct values. In other words, we assume that

the MC event generator predicts a spectrum where the left peak is slightly wider and the

right peak slightly narrower than in f . For the inclusive jet transverse momentum spectrum

(Section 3.4.2), we assume that the MC spectrum is given by Equation (3.36) with the parameter

values N0 = 5.5 ·1019 fb/GeV, α = 6 and β = 12, with the rest of the parameters set to their
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correct values. In other words, we take the MC spectrum to fall off slightly faster than f in

both the power-law and the energy cut-off terms. The value of N0, which has little effect on

the results, is chosen so that the overall scale of f MC is similar to f .

The coverage probability of the unfolded confidence intervals depends strongly on the reg-

ularization strength, which in the SVD method is controlled by the parameter δ and in the

D’Agostini method by the number of iterations T . Figure 4.1 shows the empirical simultaneous

coverage of Bonferroni-corrected 95 % Gaussian confidence intervals as a function of the regu-

larization strength for the two methods and for the two peaks on a uniform background test

setup. (We plot the Bonferroni-corrected simultaneous coverage instead of the binwise cover-

age in order to be able visualize the effects on a single graph. If the binwise coverage is correct,

it implies that the Bonferroni-corrected simultaneous coverage is correct; see Section 3.3.1.)

With SVD unfolding, weak regularization yields nominal coverage, but, as the regularization

strength is increased, the coverage eventually drops to zero. With D’Agostini iteration, the

effect is qualitatively similar, with the difference that even with weak regularization (i.e., with

a large number of iterations) the empirical coverage appears to be slightly below the nominal

value of 95 %. The most likely explanation for this is that the linearization in Equation (4.13)

becomes inaccurate with a large number of iterations. Figure 4.2 shows the same experiments

for the inclusive jet transverse momentum spectrum. Also in this case the coverage varies

between zero and the nominal value depending on the choice of the regularization strength

(here also D’Agostini seems to eventually attain nominal coverage).

An obvious question to ask is where along the coverage curves of Figures 4.1 and 4.2 do typical

unfolding results lie? Unfortunately it is impossible to tell as the answer depends on the quality

of the MC predictions f MC and the way the regularization strength is chosen. There currently

exists no standard way of choosing the regularization strength in LHC data analysis and many

analyses make the choice using various non-standard heuristics. For example, ROOUNFOLD

documentation (Adye, 2011) recommends simply using four iterations for the D’Agostini

method, and many LHC analyses indeed seem to follow this convention. There is, however,

no principled reason for using four iterations which in our simulations would result in serious

undercoverage for the two peaks on a uniform background test setup and zero simultaneous

coverage for the inclusive jet transverse momentum spectrum; see Figures 4.1(b) and 4.2(b).

To obtain an idea of the coverage performance when the regularization strength is chosen

in a principled data-driven way, we study the empirical coverage of the methods with the

regularization strength chosen using weighted cross-validation as described in Section 5.3.3.

Figures 4.3 and 4.4 show the binwise coverage of the resulting 95 % Gaussian confidence

intervals (without multiplicity correction) and the simultaneous coverage of the corresponding

Bonferroni-corrected intervals. The former figure is for the two peaks on a uniform background

test setup and the latter for the inclusive jet transverse momentum spectrum (in both cases,

the D’Agostini runs where the cross-validation score was still decreasing after 20 000 iterations

were discarded from the analysis; there were 4 such runs in the first case and 3 in the second

case). We see that in both test cases and for both unfolding methods the confidence intervals
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Figure 4.1: Empirical simultaneous coverage of Bonferroni-corrected 95 % Gaussian confi-
dence intervals as a function of the regularization strength for the two peaks on a uniform
background test setup. Figure (a) shows the coverage for the SVD variant of Tikhonov regular-
ization and Figure (b) for the D’Agostini iteration. The error bars are the 95 % Clopper–Pearson
intervals and the nominal confidence level is shown by the horizontal dotted line. With strong
regularization, both methods undercover substantially.
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Figure 4.2: Same as Figure 4.1, but for the inclusive jet transverse momentum spectrum.

suffer from substantial undercoverage. In the two-peak case, the undercoverage is the worst

around the larger peak on the right, while, in the case of the steeply falling jet transverse

momentum spectrum, the undercoverage occurs mostly in the tails of the spectrum. By

varying the Monte Carlo prediction f MC, one can easily obtain even further reductions in the

coverage.

Some caution should however be exercised in interpreting these findings in the context of

existing LHC unfolding results. Namely, the current LHC practice is to treat the Monte Carlo

model dependence as a systematic uncertainty of the unfolded result. A common way to take

this uncertainty into account is to compute the unfolded histograms using two or more Monte

Carlo event generators and to use the observed differences as an estimate of the systematic
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Figure 4.3: Empirical binwise and simultaneous coverage of the 95 % Gaussian confidence
intervals for the two peaks on a uniform background test setup when the regularization
strength is chosen using weighted cross-validation. Figure (a) shows the coverage for the SVD
variant of Tikhonov regularization and Figure (b) for the D’Agostini iteration. The simultaneous
coverage is given for Bonferroni-corrected intervals. The uncertainties are the 95 % Clopper–
Pearson intervals and the nominal confidence level is shown by the horizontal dotted line.
Both methods suffer from severe undercoverage.
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Figure 4.4: Same as Figure 4.3, but for the inclusive jet transverse momentum spectrum.

uncertainty. The success of this approach obviously depends on how well the Monte Carlo

models represent the space of plausible truths and on whether the true f is in some sense

“bracketed” by these models.

We conclude that the coverage of the existing unfolding methods is a delicate function of

the Monte Carlo prediction f MC, the size of the true bins E j , the choice of the regularization

strength and the way these factors are taken into account as systematic uncertainties. With

some luck, the coverage may be close to the nominal value, but there is ample room for error.

In general, it seems very difficult, if not impossible, to provide rigorous statistical guarantees

for these methods, especially when the regularization relies so heavily on a specific ansatz of

the unknown intensity function f .
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5 Point estimation of smooth spectra

The construction of confidence intervals for smooth spectra typically proceeds in two steps:

one first forms a regularized point estimate of the spectrum and then uses the variability of

this estimator to quantify the uncertainty of the solution. In order to do this, we need to make

the following choices:

(i) Which regularized point estimator f̂ to use?

(ii) How to choose the regularization strength?

(iii) How to use the variability of f̂ to form confidence intervals?

In this chapter, we focus on the first two questions. We first explain in Section 5.1 how a priori

information about smoothness can be introduced using a Bayesian smoothness prior. We

then present in Section 5.2 various Bayesian and frequentist unfolded point estimators and

draw connections between the two paradigms. In Section 5.3, we focus on the crucial question

concerning the choice of the regularization strength and present empirical Bayes, hierarchical

Bayes and cross-validation techniques for making this choice. We argue in favor of empirical

Bayes and support our argument with a simulation study presented in Section 5.4.

5.1 Regularization using a smoothness prior

Let us consider the spline discretization of the unfolding problem (see Section 3.2.2) leading

to the forward model

y ∼ Poisson(Kβ), (5.1)

where the spline coefficients β ∈ R
p
+ in order to enforce the positivity constraint and the

elements of K are given by

Ki , j =
∫

Fi

∫
E

k(t , s)B j (s)ds dt , i = 1, . . . ,n, j = 1, . . . , p. (5.2)
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Chapter 5. Point estimation of smooth spectra

In the Bayesian framework, inferences concerning β are based on the posterior distribution,

whose density is given by

p(β|y ,δ) = p(y |β)p(β|δ)

p(y |δ)
= p(y |β)p(β|δ)∫

R
p
+

p(y |β′)p(β′|δ)dβ′ , β ∈R
p
+. (5.3)

Here p(y |β) is the Poisson likelihood function given by

p(y |β) =
n∏

i=1

(∑p
j=1 Ki , jβ j

)yi

yi !
e−

∑p
j=1 Ki , jβ j , β ∈R

p
+, (5.4)

and p(β|δ) is the density of the prior distribution which is used to regularize the otherwise

ill-posed problem and which may depend on some hyperparameter δ. The denominator

p(y |δ) is the marginal density of the smeared observations y . Seen as a function of δ, it may

also be understood as the likelihood of the hyperparameter δ in which case it is called the

marginal likelihood function.

When we have a priori information that the true intensity f should be smooth, the prior p(β|δ)

should be chosen to reflect this. In this work, we consider the Gaussian smoothness prior

p(β|δ) ∝ exp
(−δ‖ f ′′‖2

2

)= exp

(
−δ
∫

E

{
f ′′(s)

}2 ds

)
(5.5)

= exp

⎛⎝−δ∫
E

{(
p∑

j=1
β j B j (s)

)′′}2

ds

⎞⎠ (5.6)

= exp
(−δβTΩβ

)
, β ∈R

p
+, δ> 0, (5.7)

where Ω is a p ×p matrix whose elements are given by Ωi , j =
∫

E B ′′
i (s)B ′′

j (s)ds. The probability

mass of this prior is concentrated on positive intensities whose curvature ‖ f ′′‖2
2 is small. In

other words, the prior favors smooth solutions.

The hyperparameter δ controls the concentration of the prior distribution and serves as a

regularization strength that controls the trade-off between smooth solutions and fidelity to the

data. For large values of δ, the prior is concentrated near the origin resulting in strong regular-

ization, while, for small values of δ, the prior becomes nearly flat on R
p
+ which corresponds to

weak regularization. The choice of an appropriate value of δ is explored in Section 5.3.

5.1.1 Proper smoothness prior using boundary conditions

The prior defined in Equation (5.7) is improper. Indeed, the rank of the matrix Ω is p −2

corresponding to the two-dimensional null space of the second derivative operator. Take for
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5.1. Regularization using a smoothness prior

example β= a1 with a > 0. Then

p(β|δ) ∝ exp

⎛⎝−δ∫
E

{(
a

p∑
j=1

B j (s)

)′′}2

ds

⎞⎠= exp(0) = 1, ∀a > 0, (5.8)

where we have used the property that for B-splines
∑p

j=1 B j (s) = 1, ∀s ∈ E . In other words, the

prior density is constant in the direction of the vector 1 and cannot be normalized in this

direction.

In principle, this is not an issue, since the posterior density p(β|y ,δ) would still be proper.

Indeed, Kuusela (2012, Proposition 5.3) showed the following result:

Proposition 5.1. Consider the likelihood p(y |β) given by (5.4) and assume that Ki , j > 0, ∀i , j .

Let q(β|δ) ≥ 0 be an unnormalized, possibly improper prior density for β depending on hyper-

parameter δ. Then the unnormalized posterior q(β|y ,δ) = p(y |β)q(β|δ) is normalizable, that

is,
∫
R

p
+

q(β|y ,δ)dβ ∈ (0,∞), if the prior density function is bounded and its support is a subset of

R
p
+ of strictly positive Lebesgue measure.

The problem, however, is that, for an improper prior, it becomes difficult to interpret p(y |δ) as

a marginal likelihood. Indeed, if p(β|δ) is improper, we have

∑
y∈Nn

0

p(y |δ) = ∑
y∈Nn

0

∫
R

p
+

p(y |β)p(β|δ)dβ (5.9)

=
∫
R

p
+

∑
y∈Nn

0

p(y |β)p(β|δ)dβ=
∫
R

p
+

p(β|δ)dβ=∞ (5.10)

and p(y |δ) is not a proper probability density. The interchange of summation and integration

is allowed here by the monotone convergence theorem since the summands p(y |β)p(β|δ)

are positive for each y ∈Nn
0 . As we are particularly interested in empirical Bayes procedures

that rely on the marginal likelihood p(y |δ), we prefer to use a smoothness prior that can be

properly normalized in order to avoid any undesired complications.

To obtain a normalizable smoothness prior, we replace the matrix Ω in Equation (5.7) by an

augmented version ΩA, whose elements are given by

ΩA,i , j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ωi , j +γL, if i = j = 1,

Ωi , j +γR, if i = j = p,

Ωi , j , otherwise,

(5.11)

where γL,γR > 0 are fixed constants. In other words, we add the constant γL to the first element

on the diagonal and the constant γR to the last element on the diagonal. The augmented

matrix ΩA is positive definite and hence defines a proper prior density.

This change can be justified by imposing Aristotelian boundary conditions (Calvetti et al.,
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Chapter 5. Point estimation of smooth spectra

2006) on f . The idea is to condition on the boundary values f (Emin) and f (Emax) and then

introduce additional hyperpriors for these values. Since f (Emin) =β1B1(Emin) and f (Emax) =
βp Bp (Emax), we can equivalently condition on β1 and βp . Assuming that β1 and βp are

independent in the hyperprior, the smoothness prior becomes

p(β|δ) = p(β2, . . . ,βp−1|β1,βp ,δ)p(β1|δ)p(βp |δ), β ∈R
p
+, (5.12)

with p(β2, . . . ,βp−1|β1,βp ,δ) ∝ exp
(−δβTΩβ

)
. It is convenient to take the hyperpriors to be

the truncated Gaussians

p(β1|δ) ∝ exp
(
−δγLβ

2
1

)
, β1 ≥ 0, (5.13)

p(βp |δ) ∝ exp
(
−δγRβ

2
p

)
, βp ≥ 0. (5.14)

The prior is then given by

p(β|δ) ∝ exp
(−δβTΩAβ

)
, β ∈R

p
+, (5.15)

where the elements of ΩA are given by Equation (5.11).

In addition to defining a proper smoothness prior, the Aristotelian boundary conditions

provide further regularization on the boundaries. Namely, Equations (5.13) and (5.14) can be

understood to penalize large values of f on the boundaries. As a result, the construction helps

to keep the variance of the unfolded intensity under control near the boundaries.

5.2 Regularized point estimators

In this section, we introduce various regularized point estimators motivated by the Bayesian

framework described in Section 5.1. We present the estimators in decreasing order of com-

putational complexity. The price to pay for this increasing computational tractability is a

decreasing fidelity to the original Bayesian formulation. In the author’s experience, one can

also expect the quality of the unfolded point estimates to roughly follow the order in which

the estimators are presented here, with the posterior mean typically giving the best point

estimation performance. However, for reasonable sample sizes and for a fixed regularization

strength δ, the differences between these estimators tend to be rather small in practice.

5.2.1 Posterior mean estimation

The most common Bayesian point estimate is the posterior mean

β̂PM = E
(
β|y ,δ

)=∫
R

p
+
βp(β|y ,δ)dβ. (5.16)
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5.2. Regularized point estimators

The use of the posterior mean can be justified using a decision-theoretic argument: namely,

the posterior mean minimizes the posterior expected loss under the �2 loss function L(β, β̂) =
‖β− β̂‖2

2 (Bernardo and Smith, 2000, Proposition 5.2). Heuristically, it is a point estimate that

corresponds to the center of mass of the posterior distribution.

In practice, the posterior mean cannot be obtained in closed form for the unfolding problem.

The problem is that, for the Poisson likelihood function (5.4), the denominator of Bayes’ rule

in Equation (5.3) and the integral in Equation (5.16) are intractable high-dimensional integrals.

A numerical approximation can nevertheless be obtained using Markov chain Monte Carlo

(MCMC) sampling (Robert and Casella, 2004), where the main idea is to construct a Markov

chain on R
p
+ whose equilibrium distribution is the posterior p(β|y ,δ). An approximation of

the posterior mean can then be obtained as the empirical mean of a realization of this Markov

chain. Under regularity conditions for the MCMC sampler, one can show that the empirical

mean converges almost surely to the true posterior mean as the length of the chain tends to

infinity (Tierney, 1994, Theorem 3).

It turns out that the basic MCMC samplers are not well-suited for the unfolding problem: the

Gibbs sampler is computationally inefficient since no fast algorithms exist for sampling from

the non-standard full posterior conditionals; and, for the multivariate Metropolis–Hastings

sampler, it is difficult to find good proposal distributions since the posterior tends to have very

different scales for different components of β. To overcome these difficulties, we adopt the

single-component Metropolis–Hastings (also known as the Metropolis-within-Gibbs) sampler

of Saquib et al. (1998, Section III.C). Denoting β−k = [
β1, . . . ,βk−1,βk+1, . . . ,βp

]T, the sam-

pler replaces the full posterior conditional of the Gibbs sampler p(βk |β−k , y ,δ) with a more

tractable approximation (Gilks et al., 1996; Gilks, 1996). One then samples from this approxi-

mate full posterior conditional and corrects for the approximation error using a Metropolis–

Hastings acceptance step. In our case, we approximate the full posterior conditionals using

either truncated Gaussians or the exponential distribution. The details of the sampler are

given in Appendix A.1.

5.2.2 Maximum a posteriori and penalized maximum likelihood estimation

Another common Bayesian point estimator is the maximum a posteriori (MAP) estimator

β̂MAP = argmax
β∈Rp

+

p(β|y ,δ) (5.17)

corresponding to the mode of the posterior density. The decision-theoretic justification for

the MAP estimator is that it arises as the limit of decisions minimizing the posterior expected

loss for the 0-1 loss function Lε(β, β̂) = 1
{‖β− β̂‖2 > ε

}
as ε→ 0 (Bernardo and Smith, 2000,

Proposition 5.2). Heuristically, the MAP estimator is sensitive to the height of the posterior

probability density and it can differ substantially from the center of posterior probability mass

given by the posterior mean β̂PM in cases where the posterior is multimodal or skewed.
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Chapter 5. Point estimation of smooth spectra

Notice that

β̂MAP = argmax
β∈Rp

+

log p(β|y ,δ) = argmax
β∈Rp

+

(
log p(y |β)+ log p(β|δ)

)
(5.18)

= argmax
β∈Rp

+

(
l (β; y)−δβTΩAβ

)= β̂PMLE, (5.19)

where l (β; y) = log p(y |β) is the log-likelihood of β. This shows that the MAP estimator

β̂MAP with the Gaussian smoothness prior coincides with the penalized maximum likelihood

estimator (PMLE) β̂PMLE with the roughness penalty βTΩAβ. In other words, the Bayesian

and frequentist solutions of the problems are the same. This shows that in ill-posed inverse

problems the two paradigms are closely related and a Bayesian prior can be understood as a

frequentist penalty term, and vice versa.

The MAP/PMLE solution is easier to compute than the posterior mean since obtaining the

estimator involves solving a non-linear optimization problem instead of computing a high-

dimensional integral. The estimator can be computed using standard non-linear programming

techniques (see, e.g., Nocedal and Wright (2006) and Bazaraa et al. (2006)) or using the problem-

specific one-step-late expectation-maximization algorithm (Green, 1990a,b).

5.2.3 Positivity-constrained Gaussian approximation

A further computational simplification can be obtained by using a Gaussian approximation

to the Poisson likelihood in the MAP/PMLE solution. For large intensities, the smeared

histogram y is approximately Gaussian

y a∼ N (Kβ,Σ), (5.20)

where the covariance is given by Σ= diag(Kβ). In practice, we estimate the covariance using

Σ̂= diag(y+), where y+,i = max(1, yi ) in order to guarantee that Σ̂ is positive definite.

The log-likelihood function can hence be approximated using

l (β; y) = log p(y |β) ≈−1

2
(y −Kβ)TΣ̂−1(y −Kβ)+C , β ∈R

p
+, (5.21)

where C is a constant that does not depend on β. Plugging this into Equation (5.19) yields the

Gaussian approximated point estimator

β̂G+ = argmax
β∈Rp

+

(
−1

2
(y −Kβ)TΣ̂−1(y −Kβ)−δβTΩAβ

)
(5.22)

= argmin
β∈Rp

+

(
(y −Kβ)TΣ̂−1(y −Kβ)+2δβTΩAβ

)
. (5.23)

Let Σ̂−1 = M TM and ΩA = N TN be the Cholesky factorizations of Σ̂−1 and ΩA. The estimator
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5.2. Regularized point estimators

can then be rewritten as

β̂G+ = argmin
β∈Rp

+

(
‖MKβ−M y‖2

2 +‖
�

2δNβ‖2
2

)
(5.24)

= argmin
β∈Rp

+

∥∥∥∥∥
[

MK�
2δN

]
β−

[
M y

0

]∥∥∥∥∥
2

2

. (5.25)

This is a positivity-constrained least-squares problem. The problem cannot be solved in

closed form, but there exist efficient algorithms for obtaining the solution iteratively in a finite

number of steps. In this work, we compute the estimator β̂G+ using the MATLAB function

lsqnonneg, which uses the NNLS algorithm described in Lawson and Hanson (1995, p. 161).

5.2.4 Unconstrained Gaussian approximation

A further simplification can be obtained by dropping the positivity constraint in Equation (5.23).

The resulting estimator is

β̂G = argmin
β∈Rp

(
(y −Kβ)TΣ̂−1(y −Kβ)+2δβTΩAβ

)
. (5.26)

We recognize that this form corresponds to the well-known techniques of Tikhonov regular-

ization (Tikhonov, 1963; Phillips, 1962) and ridge regression (Hoerl and Kennard, 1970). The

optimization problem can again be rewritten as

β̂G = argmin
β∈Rp

∥∥∥∥∥
[

MK�
2δN

]
β−

[
M y

0

]∥∥∥∥∥
2

2

, (5.27)

which is a standard unconstrained least-squares problem. Since the matrix

[
MK�
2δN

]
has full

column rank, the solution is given by

β̂G =
([

MK�
2δN

]T[
MK�
2δN

])−1[
MK�
2δN

]T[
M y

0

]
(5.28)

= (K TM TMK +2δN TN
)−1

K TM TM y (5.29)

= (K TΣ̂−1K +2δΩA
)−1

K TΣ̂−1 y . (5.30)

The matrix operations needed to compute β̂G are many orders of magnitude faster than

running the MCMC to obtain β̂PM. If we ignore the data-dependence of Σ̂ (and possibly also

the data-dependence of an estimator of δ), the estimator β̂G has the added benefit of being a

linear function of y , while the other estimators considered here are nonlinear in y .
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5.3 Choice of the regularization strength

The regularization strength δ controls the bias-variance trade-off of the unfolded estimator

and has a major impact on the solution. The appropriate choice of this parameter is of central

importance in order to obtain reasonable solutions. In this section, we introduce various

data-driven ways of choosing δ motivated by both Bayesian and frequentist ideas. The focus

will be on choices that primarily aim to provide good point estimation performance.

5.3.1 Empirical Bayes

We first consider empirical Bayes (EB) estimation of the hyperparameter δ. Carlin and Louis

(2009, Chapter 5) provides an extensive introduction to empirical Bayes methods, while for

example Wood (2011) and Ruppert et al. (2003, Section 5.2) study empirical Bayes selection of

the regularization strength in semi- and non-parametric regression models. This approach

can be understood as a hybrid between the frequentist and Bayesian paradigms. The main

idea is to use the marginal likelihood L(δ; y) = p(y |δ) to perform maximum likelihood esti-

mation of δ. In other words, we seek to estimate δ using the marginal maximum likelihood

estimator (MMLE)

δ̂MMLE = argmax
δ>0

L(δ; y) = argmax
δ>0

p(y |δ) = argmax
δ>0

∫
R

p
+

p(y |β)p(β|δ)dβ. (5.31)

The estimated regularization strength δ̂MMLE is then plugged into any of the point estima-

tors described in Section 5.2 to obtain the unfolded solution. Notice that, by the bijective

equivariance property of maximum likelihood estimators (see, e.g., Panaretos (2016, Propo-

sition 3.17)), the empirical Bayes approach is invariant to bijective transformations of the

hyperparameter δ.

The main challenge in this construction is the computation of δ̂MMLE. Since the marginal

likelihood is given by an intractable integral, one cannot directly evaluate, let alone maximize,

the objective function in Equation (5.31). One could consider Monte Carlo integration in the

form of

p(y |δ) ≈ 1

S

S∑
s=1

p(y |β(s)), β(1), . . . ,β(S) i.i.d.∼ p(β|δ), (5.32)

but this does not work well in practice since most of the β(s)’s fall on regions of the parameter

space where the likelihood p(y |β(s)) is numerically zero.

These issues can be circumvented using the expectation-maximization (EM) algorithm (Demp-

ster et al., 1977; McLachlan and Krishnan, 2008) to find the MMLE. The EM algorithm is a

widely applicable technique for computing maximum likelihood estimates. Let L(θ; y) = p(y |θ)

be a likelihood function that we seek to maximize and assume that for algorithmic or nu-

merical reasons this is difficult to accomplish. Let z be some unobserved latent variables
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chosen in such a way that the likelihood function L(θ; y , z) = p(y , z |θ) can be easily maximized.

Using standard EM terminology, we call y the incomplete data and (y , z) the complete data.

The algorithm then alternates between the expectation step (E-step) and the maximization

step (M-step). In the E-step, one computes the conditional expectation of the complete-data

log-likelihood given the observations y and the current iterate θ(t ),

Q(θ;θ(t )) = E
(
l (θ; y , z)

∣∣y ,θ(t ))= E
(
log p(y , z |θ)

∣∣y ,θ(t )) , (5.33)

where l (θ; y , z) = logL(θ; y , z) = log p(y , z |θ). In the subsequent M-step, one then obtains the

next iterate by maximizing this conditional expectation with respect to the parameter θ,

θ(t+1) = argmax
θ

Q(θ;θ(t )). (5.34)

The resulting iteration is guaranteed to increase the incomplete-data likelihood, that is,

L(θ(t+1); y) ≥ L(θ(t ); y) for all t = 0,1,2, . . . (Dempster et al., 1977, Theorem 1). Under fur-

ther regularity conditions, it can be shown that the sequence of iterates θ(t ), t = 0,1,2, . . . ,

converges to a stationary point of the incomplete-data likelihood (Wu, 1983).

In our case, the incomplete-data likelihood is given by the marginal likelihood L(δ; y) = p(y |δ)

and we take (y ,β) to be the complete data. The complete-data log-likelihood is then given by

l (δ; y ,β) = log p(y ,β|δ) = log p(y |β)+ log p(β|δ). (5.35)

On the E-step, we need to evaluate the conditional expectation

Q(δ;δ(t )) = E
(
l (δ; y ,β)

∣∣y ,δ(t ))= E
(

log p(y ,β|δ)
∣∣y ,δ(t )) (5.36)

= E
(

log p(β|δ)
∣∣y ,δ(t ))+const, (5.37)

where the constant does not depend on δ. Notice that here the expectation is taken over the

posterior p(β|y ,δ(t )). On the M-step, we then maximize this expectation with respect to δ to

obtain the next iterate,

δ(t+1) = argmax
δ>0

Q(δ;δ(t )) = argmax
δ>0

E
(

log p(β|δ)
∣∣y ,δ(t )). (5.38)

Here the E-step still involves an intractable integral

E
(

log p(β|δ)
∣∣y ,δ(t ))=∫

R
p
+

p(β|y ,δ(t )) log p(β|δ)dβ, (5.39)

which this time around can be computed using Monte Carlo integration. We simply need

to sample
{
β(s)

}S
s=1 from the posterior p(β|y ,δ(t )) using the single-component Metropolis–

Hastings algorithm described in Appendix A.1 and the value of the integral is then approxi-
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mately given by the empirical mean

E
(

log p(β|δ)
∣∣y ,δ(t ))≈ 1

S

S∑
s=1

log p(β(s)|δ), β(1), . . . ,β(S) ∼ p(β|y ,δ(t )). (5.40)

Monte Carlo integration is better behaved here than in Equation (5.32) since the sample is

from the posterior instead of the prior and hence most of the β(s)’s lie within the bulk of

prior density p(β|δ). The logarithm also helps to stabilize the computations. Since we have

replaced the E-step by a Monte Carlo approximation, the resulting iteration is typically called

a Monte Carlo expectation-maximization (MCEM) algorithm (Wei and Tanner, 1990; Casella,

2001). A similar algorithm has been used in tomographic image reconstruction by Geman and

McClure (1985, 1987) and Saquib et al. (1998).

To summarize, the MCEM iteration for finding the MMLE is given by:

E-step: Sample β(1), . . . ,β(S) from the posterior p(β|y ,δ(t )) and compute

Q̃(δ;δ(t )) = 1

S

S∑
s=1

log p(β(s)|δ). (5.41)

M-step: Set δ(t+1) = argmax δ>0 Q̃(δ;δ(t )).

This algorithm admits a rather intuitive interpretation: In the E-step, the posterior sample{
β(s)

}S
s=1 summarizes our current best understanding of β given the hyperparameter value δ(t ).

This sample is then plugged into the prior and in the M-step the hyperparameter is updated

so that the prior matches the posterior sample as well as possible.

For the Gaussian smoothness prior given by Equation (5.15), the M-step is available in closed

form. The prior density is given by

p(β|δ) =C (δ)exp(−δβTΩAβ), β ∈R
p
+, (5.42)

where C (δ) = δp/2
/∫

R
p
+

exp(−βTΩAβ)dβ is a normalization constant. Hence the log-prior is

log p(β|δ) = p

2
logδ−δβTΩAβ+const, (5.43)

where the constant does not depend on δ. Substituting this into Equation (5.41), we find that

the maximizer on the M-step is given by

δ(t+1) = 1
2

pS

∑S
s=1 (β(s))TΩAβ(s)

. (5.44)

Algorithm 1 summarizes the resulting MCEM iteration for finding the marginal maximum

likelihood estimator δ̂MMLE. To facilitate the convergence of the MCMC sampler, we start the

Markov chain from the posterior mean of the previous iteration. Devising a good stopping

rule for the MCEM iteration is non-trivial because of the Monte Carlo error associated with
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Algorithm 1 MCEM algorithm for finding the MMLE

Input:
y — Smeared data
δ(0) > 0 — Initial guess
NEM — Number of MCEM iterations
S — Size of the MCMC sample
βinit — Starting point for the MCMC sampler

Output:
δ̂MMLE — MMLE of the hyperparameter δ

Set β̄=βinit;
for t = 0 to NEM −1 do

Sample β(1), . . . ,β(S) ∼ p(β|y ,δ(t )) starting from β̄ using the single-component
Metropolis–Hastings sampler described in Appendix A.1;

Set δ(t+1) = 1/
(

2
pS

∑S
s=1 (β(s))TΩAβ

(s)
)
;

Compute β̄= 1
S

∑S
s=1β

(s);
end for
return δ̂MMLE = δ(NEM);

the iterates δ(t ) (Booth and Hobert, 1999). Because of this, we run the algorithm for a fixed

number of iterations NEM and verify the convergence graphically.

5.3.2 Hierarchical Bayes

The fully Bayesian way of handling the unknown regularization strength δ is to use a Bayesian

hierarchical model. This hierarchical Bayes (HB) approach places a hyperprior p(δ) on the

hyperparameter δ and then performs Bayesian inference for both β and δ using the joint

posterior

p(β,δ|y) = p(y |β)p(β|δ)p(δ)

p(y)
. (5.45)

As such, this approach does not simply consider a single value of δ but instead a distribution

of probable values of δ. The marginal posterior of the spline coefficients β is obtained by

integrating out the hyperparameter

p(β|y) =
∫
R+

p(β,δ|y)dδ. (5.46)

We then use the mean of the marginal posterior E(β|y) as a point estimator of β. This is again

in practice computed as the empirical mean of an MCMC sample from the posterior.

Notice that the marginal posterior (5.46) corresponds to simply using p(β) =∫R+p(β|δ)p(δ)dδ

as the prior in the original Bayes’ rule (5.3). So hierarchical Bayes can be understood as

weighting the contributions of the smoothness priors p(β|δ) for different δ with the weights
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Chapter 5. Point estimation of smooth spectra

given by the hyperprior p(δ). When seen from this perspective, the choice of δ is entirely driven

by the hyperprior p(δ) instead of the observations y . The main difficulty in hierarchical Bayes

indeed concerns the selection of the hyperprior and the approach is known to be sensitive

to this non-trivial choice (Gelman, 2006), an observation confirmed by our simulations in

Section 5.4.2.

In this work, we consider hyperpriors of the form

p(δ) ∝ 1[L,∞)(δ)δa−1e−bδ, (5.47)

where a, b and L are parameters chosen in such a way that the density can be normalized.

This includes as special cases the Pareto(−a,L) distribution (a < 0, b = 0 and L > 0) and the

Gamma(a,b) distribution (a > 0, b > 0 and L = 0). The hyperprior family (5.47) is conditionally

conjugate. Indeed, the full posterior conditional for δ is given by

p(δ|β, y) = p(δ|β) ∝ p(β|δ)p(δ) (5.48)

∝ 1[L,∞)(δ)δp/2+a−1 exp
(−(βTΩAβ+b)δ

)
, (5.49)

which has the same form as Equation (5.47). When p/2+a > 0 and βTΩAβ+b > 0, p(δ|β, y)

is the Gamma(p/2+a,βTΩAβ+b) distribution truncated to the interval [L,∞). This makes

it straightforward to incorporate sampling from the joint posterior (5.45) into the single-

component Metropolis–Hastings sampler. We loop over all the unknowns and for each βk

use the sampler described in Appendix A.1 given the current value of δ, while for δ we simply

sample from the truncated Gamma distribution (5.49) given the current value of β.

5.3.3 Weighted cross-validation

The most common frequentist technique for choosing the regularization strength δ is to use

cross-validation (CV) (Stone, 1974). The approach is based on choosing δ to minimize the

prediction error

E
(
(y∗ − μ̂)TΣ−1(y∗ − μ̂)

)= E

(
p∑

i=1

(y∗
i − μ̂i )2

var(y∗
i )

)
, (5.50)

where y∗ is a new smeared observation, μ̂= K β̂ is an estimate of the smeared mean histogram

μ= Kβ and Σ= cov(y∗) = cov(y) is the diagonal covariance matrix of the smeared observa-

tions. Here β̂ = β̂(δ) may be any of the unfolded point estimators discussed in Section 5.2.

The covariance is included in the prediction error to account for the heteroscedasticity of

the problem.

The prediction error (5.50) can be estimated using weighted leave-one-out cross-validation
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5.3. Choice of the regularization strength

(Green and Silverman, 1994, Section 3.5.3)

CV
(
δ
)= n∑

i=1

(
yi − μ̂−i

i

)2

y+,i
, (5.51)

where μ̂−i
i is an estimate of the i th smeared bin obtained without using the smeared ob-

servation yi in that bin and the denominator y+,i = max(1, yi ) is an estimate of the variance.

More specifically, μ̂−i
i = kT

i β̂
−i , where kT

i is the i th row of K and β̂−i is the

unfolded solution obtained using K −i = [k1, . . . ,ki−1,ki+1, . . . ,kn]T as the smearing matrix,

y−i = [y1, . . . , yi−1, yi+1, . . . , yn]T as the smeared data and δ as the regularization strength. The

CV estimate of δ is then the minimizer of the CV criterion (5.51), δ̂CV = argmin δ>0 CV
(
δ
)
.

Notice that cross-validation chooses δ to optimize the prediction error in the smeared space

and not the estimation error in the unfolded space. As such, it will not necessarily guarantee

optimal unfolding performance. Wood (2011) suggests that (generalized) cross-validation

may be more variable and more susceptible to overfitting than empirical Bayes. This happens

because the optimum of the CV objective function tends to be less pronounced than that of

the EB objective. Reiss and Ogden (2009) provide a theoretical comparison of the two methods

and conclude that empirical Bayes tends to be more stable and less prone to issues with local

optima. Our simulation results in Section 5.4.3 support these findings.

Evaluation of the cross-validation criterion (5.51) requires computing n point estimates for

each value of δ. Hence, minimization of this function is in practice too slow for the posterior

mean β̂PM and the MAP/PMLE estimator β̂MAP/β̂PMLE. In our simulations in Section 5.4.3,

we use the positivity-constrained Gaussian approximation β̂G+ to compute the CV criterion.

An even faster solution would be provided by the unconstrained Gaussian approximation β̂G,

since, for estimators of the form (5.30), one can show (Green and Silverman, 1994, Section 3.5.3)

that the CV criterion is given by

CV
(
δ
)= n∑

i=1

1

y+,i

(
yi − μ̂i

1−Hi ,i

)2

, (5.52)

where H = K
(
K TΣ̂−1K +2δΩA

)−1
K TΣ̂−1. Notice that in this case only one point estimate

needs to be computed for each value of δ.

5.3.4 Other methods

In this work, we focus on empirical Bayes, hierarchical Bayes and cross-validation techniques

for choosing δ. Nevertheless, several other methods, some of which we mention here for

completeness, have also been proposed in the literature. The TUnfold software (Schmitt,

2012) implements the L-curve technique of Hansen (1992) as well as a heuristic that aims

to minimize the correlations in the unfolded space. Volobouev (2015) proposes to use the

Akaike information criterion (Akaike, 1973, 1974) with a correction for the finite sample size.
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Chapter 5. Point estimation of smooth spectra

Other potential methods include the Morozov discrepancy principle (Morozov, 1966) and

goodness-of-fit testing in the smeared space (Veklerov and Llacer, 1987).

5.4 Simulation study

In this section, we perform simulation studies comparing empirical Bayes, hierarchical Bayes

and cross-validation in the two peaks on a uniform background test setup described in Sec-

tion 3.4.1.

5.4.1 Convergence studies for empirical Bayes

We first verify the convergence of the MCEM iteration. In all the experiments described in this

thesis, we start the MCEM iteration from δ(0) = 1 ·10−5 and run it for NEM = 30 iterations. We

use the single-component Metropolis–Hastings sampler to generate S = 1 000 post-burn-in

observations from the posterior. As the starting point of the sampler, we use the positivity-

constrained least-squares spline fit to the smeared data without unfolding. That is, βinit =
minβ≥0 ‖K̃β− y‖2

2, where K̃ is given by Equation (5.2) with k(t , s) = δ0(t − s) with δ0 denoting

the Dirac delta function. Unless otherwise indicated, the boundary hyperparameters are set

to γL = γR = 5.

Figure 5.1(a) illustrates the convergence of the MCEM iteration for the different sample sizes.

We find that in each case 30 iterations is sufficient for the convergence of the algorithm and

that the convergence appears to be the faster the larger the sample size. The Monte Carlo

variation of the estimates is also small. For the small, medium and large sample sizes, the

algorithm converged to the hyperparameter estimates δ̂MMLE = 2.2 ·10−4, δ̂MMLE = 1.2 ·10−6

and δ̂MMLE = 4.1 ·10−8, respectively.

Figure 5.2 shows a realization of the unfolded intensities f̂ when the spline coefficients

are estimated using the mean E(β|y , δ̂MMLE) of the empirical Bayes posterior p(β|y , δ̂MMLE),

obtained by plugging the estimated hyperparameter δ̂MMLE into Equation (5.3). We find that

in each case the unfolded point estimator captures the two-peak shape of the true intensity.

Unsurprisingly, the quality of the point estimate improves with increasing sample size. We

also note that the estimates appear to be biased downwards near the larger peak. A central

theme in Chapter 6 will be the development of confidence bands around these solutions and

accommodating this bias will play a key role in our discussion.

To further study how empirical Bayes point estimation behaves as a function of the sample

size, we repeat the experiment on a logarithmic grid of sample sizes ranging from λtot = 5 000

up to λtot = 100 000. For each sample size, we unfold 200 independent realizations of the

smeared data y and estimate the mean integrated squared error (MISE) of f̂ as the sample
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Figure 5.1: Convergence studies for empirical Bayes unfolding in the two peaks on a uniform
background test setup. Figure (a) illustrates the convergence of the Monte Carlo expectation-
maximization (MCEM) iteration and shows that the algorithm converges faster for larger
sample sizes. Figure (b) shows the convergence of the mean integrated squared error (MISE)
as the expected sample size λtot grows. The error bars are 95 % confidence intervals and the
dotted straight line is a least-squares fit to the convergence curve.

mean of the integrated squared errors

ISE =
∫

E

(
f̂ (s)− f (s)

)2 ds. (5.53)

As λtot →∞, one would expect the MISE to diverge, but MISE/λ2
tot should converge to zero,

and this is indeed what we observe in Figure 5.1(b).

In the classical problem of deconvolving a density function smeared by Gaussian noise, the

optimal convergence rate of the MISE is of the order (logn)−k (Meister, 2009), where n is the

number of i.i.d. smeared observations and k > 0 depends on the smoothness of the true density.

Our setup differs slightly from the classical one in the sense that we observe a realization of a

smeared Poisson point process and try to estimate the intensity function of the correspond-

ing true process. We also perform the estimation on a compact interval, which introduces

boundary effects near the end points of the interval. Nevertheless, one could conjecture that

MISE/λ2
tot converges at the rate (logλtot)−k , in which case the values in Figure 5.1(b) should

fall on a straight line with slope −k. This indeed appears to approximately be the case: the

MISE/λ2
tot values seem to follow fairly well the line with slope −k =−5.67, which is also shown

in the figure. However, in a more careful inspection, it appears that the convergence curve

may have a slightly convex shape. There are two potential explanations for this: either the

beginning of the curve is not yet in the asymptotic regime or the convergence rate is slightly

slower than (logλtot)−k . If the rate is indeed slower than expected, this might be due to the

fact that we have kept the dimension of the spline basis fixed when increasing λtot. As a result,

the discretization error from the spline fit should eventually slow down the convergence rate.
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Figure 5.2: Unfolded intensities f̂ in the two peaks on a uniform background test setup, when
the regularization strength is estimated using the marginal maximum likelihood estimator
δ̂MMLE and the spline coefficients are estimated using the mean of the resulting empirical
Bayes posterior E(β|y , δ̂MMLE).
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5.4.2 Comparison of empirical Bayes and hierarchical Bayes

In this section, we compare the performance of empirical Bayes (EB) and hierarchical Bayes

(HB) in point estimation of f . For hierarchical Bayes, the point estimate is the mean E(β|y)

of the marginal posterior (5.46), and, for empirical Bayes, we use the mean of the empirical

Bayes posterior E(β|y , δ̂MMLE). The performance of the point estimates is quantified using the

integrated squared error (ISE) defined by Equation (5.53).

We consider hierarchical Bayes with the following uninformative hyperpriors:

(a) Pareto(1,10−10);

(b) Pareto(1/2,10−10);

(c) Gamma(0.001,0.001);

(d) Gamma(1,0.001).

All of these are nearly flat for some transformation of δ. Indeed, hyperprior (a) is nearly

uniform for 1/δ, (b) for 1/
�
δ, (c) for log(δ) and (d) for δ. Hyperprior (c) is often used in the

literature; see, for example, Browne and Draper (2006), Ruppert et al. (2003, Section 16.3) and

Young and Smith (2005, Section 3.8). Gelman (2006) however argues that (b) should provide

better results. Hyperprior (a) is studied, for example, by Browne and Draper (2006). One

could also naïvely expect (d) to be a sensible choice, as it is nearly flat for the untransformed

hyperparameter δ itself. Notice that all of these hyperpriors are proper probability densities

guaranteeing that the joint posterior (5.45) is also proper.

We study the performance of the methods for 1 000 repeated observations of the two peaks

on a uniform background test setup (Section 3.4.1). The hierarchical Bayes MCMC sampler

was started from (βinit,δ(0)). The remaining parameters were set to the same values as in

Section 5.4.1.

Figure 5.3 shows boxplots of the pairwise relative ISE differences (ISEHB,i − ISEEB,i )/ISEEB,i

between the two methods for the different hyperpriors. Positive values in the figure indicate

that HB incurred a larger error than EB. When tested using the Wilcoxon signed-rank test, the

differences between the methods for sample sizes λtot = 1 000 and λtot = 10 000 are statistically

significant at any reasonable significance level, except for hyperprior (c) with λtot = 10 000,

which is only significant at the 2 % level (two-sided p-value 0.011). For sample sizeλtot = 50 000,

the differences are statistically significant at the 5 % level for hyperpriors (a)–(c), but not for

hyperprior (d), where the two-sided p-value is 0.50.

Figure 5.3 enables us to make a number of observations. Firstly, there are fairly large differ-

ences between the different hyperpriors, especially when there is only a limited amount of

data available. For λtot = 1 000, the median performance of HB ranges from 17 % better to 30 %

worse than EB, depending on the hyperprior used. The performance is generally better for

hyperpriors that favor small values of δ. In particular, hyperprior (d) tends to regularize too
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Figure 5.3: Relative pairwise integrated squared error differences between empirical Bayes
and hierarchical Bayes with the hyperpriors (a) Pareto(1,10−10), (b) Pareto(1/2,10−10),
(c) Gamma(0.001,0.001) and (d) Gamma(1,0.001). The numbers below the boxplots show
the median relative differences. Positive values indicate that the error of hierarchical Bayes
was larger than that of empirical Bayes.
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strongly. Secondly, as the sample size grows, the performance of the methods becomes in-

creasingly similar. For λtot = 50 000, there is little difference between the different hyperpriors

and between EB and HB. Thirdly, EB is in each case competitive with HB and the superiority of

the two methods depends on which HB hyperprior is used. The performance of EB is similar to

hyperprior (c) which seems to be the most common choice in HB literature (see the beginning

of this section). Most importantly, EB achieves this performance without making any extra

distributional assumptions about δ.

We conclude from this that, especially for small sample sizes, the performance of HB is indeed

sensitive to the choice of the hyperprior, while EB achieves comparable performance without

the need to make this choice. Furthermore, as discussed in Section 5.3.2, it is difficult to

interpret HB as making a data-driven choice of δ. Instead, the choice is fully driven by the

hyperprior p(δ) and some hyperpriors are better suited for each particular situation that

others. For example, there are no guarantees that hyperprior (a) would always lead to best

performance. On the other hand, the choice of δ in EB is fully data-driven. For these reasons,

we prefer to primarily focus on EB instead of HB techniques in the reminder of this work.

5.4.3 Comparison of empirical Bayes and cross-validation

In this section, we compare empirical Bayes and cross-validation by unfolding 1 000 repeated

observations of the two peaks on a uniform background test setup (Section 3.4.1). We esti-

mate the spline coefficients using the positivity-constrained Gaussian approximation β̂G+
(Section 5.2.3) with the regularization strength δ chosen using either weighted cross-validation

(Section 5.3.3) or marginal maximum likelihood estimation (Section 5.3.1). The CV criterion

(5.51) is minimized by performing a grid search on logδ between [−35,0].

Figure 5.4 shows boxplots of the integrated squared error for the two methods and for the

different sample sizes. We observe that the median performance of CV is slightly better

for λtot = 1 000, but, for larger sample sizes, EB leads to better median performance. More

strikingly, we find that the variability of the CV estimates is much larger for each sample size

and that there is in particular a long tail of very poor CV estimates (notice that the plot is

on a log scale; on a linear scale, the tail is so long that the boxplots are barely visible). To

obtain further insight into this evident instability of the CV estimates, Figure 5.5 shows the

estimated hyperparameter values δ̂ for the two methods. We see that the CV estimates are

much more variable than the EB estimates and that there is in particular a long tail of small

hyperparameter values leading to the large ISE values seen in Figure 5.4. In other words, CV

tends to overfit the data in a non-negligible number of cases. For each sample size, there is

also a cluster of estimates at log(δ̂CV) =−35, which was the lower bound of the search grid. In

those cases, the minimum of the CV criterion is most likely situated at even smaller values

of δ. The EB estimates, on the other hand, appear to be well-clustered around a reasonable

value of δ without the heavy tail of the CV estimates.

These findings are fully consistent with those of Wood (2011, see in particular Figure 1), who
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Figure 5.4: Integrated squared errors for weighted cross-validation and empirical Bayes in the
two peaks on a uniform background test setup, with the spline coefficients estimated using
the positivity-constrained Gaussian approximation β̂G+ .

compares the CV and EB objective functions and finds that EB tends to have a much more

pronounced optimum, leading to increased protection against overfitting and less variable

estimates. We are not able to directly compare the objective functions since the marginal

likelihood p(y |δ) cannot be evaluated for our model, but Figure 5.5 indicates that also in our

case the EB objective is better-behaved than the CV objective. Notice also that we are not

able to guarantee that the MCEM iteration converges to a global optimum of the marginal

likelihood, but, even if some of the estimates were local optima, the algorithm as a whole

appears to be much more stable than cross-validation. For these reasons, we use empirical

Bayes instead of cross-validation to choose δ in the remainder of this work.
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Figure 5.5: Estimated regularization strengths δ̂ for weighted cross-validation (CV) and empir-
ical Bayes (EB) in the two peaks on a uniform background test setup.
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6 Uncertainty quantification for smooth
spectra

In this chapter, we study unfolded uncertainty quantification when then true spectrum f is

known to be a smooth function. In other words, we aim to construct confidence bands around

unfolded point estimates, such as the ones shown in Figure 5.2. When constructing interval

estimates, we use the regularized point estimation techniques developed in Chapter 5 as our

starting point.

Our focus in this chapter is on 1−α pointwise confidence bands. That is, we aim to form a

collection of random intervals
[

f
¯
(s; y), f̄ (s; y)

]
which, for any s ∈ E , α ∈ (0,1) and intensity

function f ∈ V , satisfy P f
(

f
¯
(s; y) ≤ f (s) ≤ f̄ (s; y)

) ≥ 1−α. In practice, it is very difficult to

satisfy this inequality for all f and all s, unless we have strong a priori information about the

smoothness of f (Low, 1997; see also Section 7.2). So we can at best hope to form confidence

bands whose coverage probability does not fall much below 1−α.

We first describe in Section 6.1 a number of conventional interval estimates that are often

treated in the non-parametric regression literature. We then introduce in Section 6.2 an

iterative technique for constructing bias-corrected confidence intervals. We use a simulation

study in Section 6.3 to demonstrate that, due to the inherent bias of the regularized point

estimates, the conventional interval estimates can suffer from drastic undercoverage, while

the iteratively bias-corrected intervals yield close-to-nominal coverage with only a modest

increase in interval length. We then analyze in Section 6.4 a simplified version of the unfolding

problem, where the point estimates are linear functions of the smeared data and the noise

is Gaussian, and use this setup to develop a data-driven way of choosing the number of

bias-correction iterations. In that section, we also compare the iterative bias-correction to an

alternative debiasing method based on undersmoothing and find that, at least in the test cases

we have looked at, bias-correction yields shorter intervals than undersmoothing. Section 6.5

explains how the data-driven bias-correction can be applied to the full unfolding problem.

These techniques are then applied in Section 6.6 to unfolding the Z boson invariant mass

spectrum as measured in the CMS experiment at the Large Hadron Collider.
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6.1 Conventional interval estimates

In this section, we introduce various standard interval estimates that are often treated in the

literature. We will later demonstrate in Section 6.3 that all these intervals tend to suffer from

major undercoverage in the unfolding problem. This happens because the intervals fail to

properly account for the bias that is introduced to regularize the ill-posed problem.

6.1.1 Empirical Bayes credible intervals

For each s ∈ E , the empirical Bayes posterior p(β|y , δ̂MMLE) induces a posterior distribution

for f (s) through the transformation

f (s) =
p∑

j=1
β j B j (s). (6.1)

The 1−α empirical Bayes credible interval for f (s) is then simply the interval whose endpoints

are the α/2 and 1−α/2 quantiles of this posterior. The MCMC sample
{
β(s)

}S
s=1 can be trivially

transformed to a sample from the posterior of f (s) by applying the transformation (6.1) to

each posterior observation β(s). The credible interval is then computed using the empirical

quantiles of this posterior sample.

The empirical Bayes credible intervals are wider than purely frequentist constructions, such as

those presented in Sections 6.1.3–6.1.5, which are based on the variability of the point estima-

tor β̂. This is because the intervals include an extra component of uncertainty corresponding

to the prior p(β|δ̂MMLE). One can argue that this extra width accounts for the bias of β̂. Indeed,

when there is no smearing, the noise is Gaussian and there are no constraints on β, one can

show (Ruppert et al., 2003, Section 6.4; Hastie and Tibshirani, 1990, Section 3.8.1) that the

empirical Bayes intervals replace the standard error of f̂ (s) by√
var

(
f̂ (s)

)+E
(
bias2

β

(
f̂ (s)

)∣∣δ̂MMLE

)
, (6.2)

where the expectation is taken with respect to the prior p(β|δ̂MMLE). Here the second term

quantifies the “average bias” of f̂ (s). The end result is that, subject to conditions on the choice

of the regularization parameter, one expects the average coverage probability to be close to

the nominal value (Nychka, 1988; Wahba, 1983):

1

m +1

m+1∑
i=1

P f
(

f
¯

(si ; y) ≤ f (si ) ≤ f̄ (si ; y)
)≈ 1−α, (6.3)

where {si }m+1
i=1 is a grid of values in the true space. For these reasons, the empirical Bayes

intervals are often studied in the non-parametric regression literature; see, for example,

Ruppert et al. (2003, Section 6.4), Wood (2006a) and Marra and Wood (2012).
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This discussion highlights an obvious limitation of the empirical Bayes intervals. Namely,

average coverage of the type of Equation (6.3) does not give guarantees about pointwise

coverage. Indeed, in practice, the intervals tend to undercover in areas of non-negligible bias

and overcover for the rest of the function (Ruppert and Carroll, 2000), a finding supported by

our simulation studies in Section 6.3.

6.1.2 Hierarchical Bayes credible intervals

The fully Bayesian solution to uncertainty quantification in unfolding is to use hierarchical

Bayes credible intervals. These are defined the same way as the empirical Bayes credible

intervals of Section 6.1.1, except that now one considers the intervals induced by the marginal

posterior p(β|y) given in Equation (5.46).

The hierarchical Bayes intervals are often argued to improve upon the empirical Bayes intervals

by also taking into account the uncertainty concerning the choice of the hyperparameter δ

(Ruppert et al., 2003, Sections 6.4 and 16.3). However, in practice, the performance of the

intervals depends on the choice of the hyperprior p(δ) and, as we will see in Section 6.3, the

intervals suffer from the same issues concerning the bias as the empirical Bayes intervals.

Hierarchical Bayes intervals have been studied in the literature for several models that are

related to unfolding. Examples include Weir (1997) with applications in tomography and

Fahrmeir et al. (2004), who compare HB and EB intervals in generalized additive models and

find their coverage performance to be roughly the same.

6.1.3 Gaussian confidence intervals and bootstrap resampling

Let β̂ be any of the point estimators discussed in Section 5.2. Most frequentist uncertainty

quantification techniques are based on using the variability of β̂ as a measure of its uncer-

tainty. Assume that β̂ is approximately unbiased and Gaussian, that is, β̂ a∼N (β,V ), for some

covariance matrix V . Then f̂ (s) = ∑p
j=1 β̂ j B j (s) = c Tβ̂, where c = [B1(s), . . . ,Bp (s)]T, is also

approximately unbiased and Gaussian, f̂ (s) a∼N (c Tβ,c TV c), with f (s) = c Tβ. Hence we have

the approximate pivot

f̂ (s)− f (s)�
c TV c

a∼N (0,1). (6.4)

Inversion of this pivot leads to the confidence interval[
f̂ (s)− z1−α/2

√
c TV c , f̂ (s)+ z1−α/2

√
c TV c

]
(6.5)

=
[

f̂ (s)− z1−α/2

√
var

(
f̂ (s)

)
, f̂ (s)+ z1−α/2

√
var

(
f̂ (s)

)]
, (6.6)
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with approximate coverage probability 1−α,

P f

(
f̂ (s)− z1−α/2

√
var

(
f̂ (s)

)≤ f (s) ≤ f̂ (s)+ z1−α/2

√
var

(
f̂ (s)

))≈ 1−α. (6.7)

This shows that in some cases it can indeed be reasonable to base the uncertainties on the

variability of a point estimator.

There are however a number of reasons why this approach might fail for unfolding. Firstly,

even if β̂ was approximately unbiased and Gaussian, the covariance V and hence the variance

var
(

f̂ (s)
)

is usually unknown. Secondly, due to the Poisson noise and the positivity constraint,

the distribution of β̂ tends to be asymmetric, especially for components that correspond to ar-

eas where the true intensity f (s) is small. Thirdly, and most importantly, regularization makes

the estimator β̂ biased and this bias is not taken into account by the Gaussian interval (6.6).

These issues can be addressed using bootstrap resampling (Efron and Tibshirani, 1993; Davi-

son and Hinkley, 1997). Let us first consider the unknown variance var
(

f̂ (s)
)

and postpone

the discussion of asymmetry and bias to the following sections. The basic idea is the fol-

lowing: Imagine we had a sample of point estimators f̂ (s). Then we could easily estimate

the variance of f̂ (s) using the sample variance and replace var
(

f̂ (s)
)

in (6.6) by this estimate.

Obviously such sample is not available to us, but, if we knew μ= Kβ, we could generate one

by resampling new observations y∗ from the y∗ ∼ Poisson(μ) distribution. The key idea in

(parametric) bootstrapping is to replace the unknown μ by an estimate μ̂ and then carry out

the resampling from the y∗ ∼ Poisson(μ̂) distribution. In our case, a reasonable estimator of μ

is the MLE μ̂= y . High energy physicists typically call bootstrap resamples “toy experiments”

or “toy data”.

To be more specific, bootstrap estimation of the variance of f̂ (s) proceeds as follows:

1. Resample y∗(1), . . . , y∗(RUQ) i.i.d.∼ Poisson(μ̂).

2. For each r = 1, . . . ,RUQ, compute the estimator f̂ ∗(r )(s) corresponding to y∗(r ).

3. Estimate var
(

f̂ (s)
)

using the sample variance of
{

f̂ ∗(r )(s)
}RUQ

r=1. Denote the resulting

estimate by v̂ar∗
(

f̂ (s)
)
.

The bootstrap version of the Gaussian confidence interval (6.6) is then obtained by replacing

var
(

f̂ (s)
)

with the bootstrap variance estimate v̂ar∗
(

f̂ (s)
)
. The resulting interval is[

f̂ (s)− z1−α/2

√
v̂ar∗

(
f̂ (s)

)
, f̂ (s)+ z1−α/2

√
v̂ar∗

(
f̂ (s)

)]
. (6.8)

For computational reasons, we keep the regularization strength δ fixed to its original value

δ̂ = δ̂(y) when computing the resampled estimator f̂ ∗(r )(s). The effect of this is that the

bootstrap sample
{

f̂ ∗(r )(s)
}RUQ

r=1 does not include the variability caused by the data-driven

choice of δ.
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Notice that for the unconstrained Gaussian approximation β̂G of Section 5.2.4 we can obtain

an estimate of var
(

f̂ (s)
)

without using the bootstrap. Ignoring the data-dependence of Σ̂ and δ̂,

the covariance of β̂G is given by

V = cov
(
β̂G
)= (K TΣ̂−1K +2δ̂ΩA

)−1
K TΣ̂−1 cov(y)Σ̂−1K

(
K TΣ̂−1K +2δ̂ΩA

)−1
. (6.9)

We can hence estimate this using

V̂ = ĉov
(
β̂G
)= (K TΣ̂−1K +2δ̂ΩA

)−1
K TΣ̂−1K

(
K TΣ̂−1K +2δ̂ΩA

)−1
, (6.10)

which leads us to estimate the variance of f̂ (s) in (6.6) using v̂ar
(

f̂ (s)
)= c TV̂ c .

6.1.4 Bootstrap percentile intervals

Bootstrap percentile intervals provide a way of handling asymmetries in f̂ (s) by considering ap-

proximate 1−α confidence intervals of the form
[

f̂ ∗
α/2(s), f̂ ∗

1−α/2(s)
]
. Here f̂ ∗

α/2(s) and f̂ ∗
1−α/2(s)

are the empirical α/2 and 1−α/2 quantiles of the bootstrap sample
{

f̂ ∗(r )(s)
}RUQ

r=1 obtained

using the procedure described in Section 6.1.3.

The method can be motivated (Davison and Hinkley, 1997, Section 5.3.1) as follows: Suppose

f̂ (s) has an asymmetric sampling distribution around f (s) and assume that there exists

a transformation φ = m( f (s)), with m increasing, such that the sampling distribution of

φ̂ = m( f̂ (s)) is symmetric around φ. In other words, the distribution of φ̂−φ is symmetric

around zero. Denoting the α/2 and 1−α/2 quantiles of this distribution by qα/2 and q1−α/2,

we have

1−α= P f
(
qα/2 ≤ φ̂−φ≤ q1−α/2

)
(6.11)

= P f
(−q1−α/2 ≤φ− φ̂≤−qα/2

)
(6.12)

= P f
(
qα/2 ≤φ− φ̂≤ q1−α/2

)
(6.13)

= P f
(
φ̂+qα/2 ≤φ≤ φ̂+q1−α/2

)
, (6.14)

where the third equality follows from the symmetry of the distribution. We do not know the

quantiles qα/2 and q1−α/2, but we can estimate them using the quantiles of φ̂∗ − φ̂, where φ̂∗

is a bootstrap replication of φ̂. In other words, qα/2 ≈ φ̂∗
α/2 − φ̂ and q1−α/2 ≈ φ̂∗

1−α/2 − φ̂, where

φ̂∗
α/2 and φ̂∗

1−α/2 are the empirical α/2 and 1−α/2 quantiles of the bootstrap sample
{
φ̂∗(r )

}RUQ

r=1 .

Substituting these into Equation (6.14), we find

1−α≈ P f
(
φ̂∗
α/2 ≤φ≤ φ̂∗

1−α/2

)
(6.15)

= P f
(
m−1(φ̂∗

α/2) ≤ m−1(φ) ≤ m−1(φ̂∗
1−α/2)

)
(6.16)

= P f
(

f̂ ∗
α/2(s) ≤ f (s) ≤ f̂ ∗

1−α/2(s)
)

. (6.17)

As a result,
[

f̂ ∗
α/2(s), f̂ ∗

1−α/2(s)
]

provides an approximate 1−α confidence interval for f (s).
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Notice that the final interval does not require us to know the transformation m.

The main problem with this approach is that the required transformation m may not exist. In

particular, this approach cannot be used to correct for the bias in f̂ (s). To see why, assume

that the distribution of f̂ (s) is centered around f (s)+b, where b is the bias. One could then try

to use the transformation φ= m( f (s)) = f (s)−b, but this would center φ̂ around f (s) instead

of the required value φ.

6.1.5 Basic bootstrap intervals

Basic bootstrap intervals quantify the uncertainty of f̂ (s) using approximate 1−α confidence

intervals of the form
[
2 f̂ (s)− f̂ ∗

1−α/2(s), 2 f̂ (s)− f̂ ∗
α/2(s)

]
. These intervals can be used to partially

account for the bias of f̂ (s).

The basic interval is based on estimating the quantiles of f̂ (s)− f (s) using the bootstrap

(Davison and Hinkley, 1997, Section 5.2). Let qα/2 and q1−α/2 be the α/2 and 1−α/2 quantiles

of f̂ (s)− f (s). Then

1−α= P f
(
qα/2 ≤ f̂ (s)− f (s) ≤ q1−α/2

)
(6.18)

= P f
(

f̂ (s)−q1−α/2 ≤ f (s) ≤ f̂ (s)−qα/2
)

. (6.19)

The bootstrap estimates of the quantiles are given by qα/2 ≈ f̂ ∗
α/2(s) − f̂ (s) and q1−α/2 ≈

f̂ ∗
1−α/2(s)− f̂ (s). Substituting these into Equation (6.19), yields

P f
(
2 f̂ (s)− f̂ ∗

1−α/2(s) ≤ f (s) ≤ 2 f̂ (s)− f̂ ∗
α/2(s)

)≈ 1−α. (6.20)

Hence
[
2 f̂ (s)− f̂ ∗

1−α/2(s), 2 f̂ (s)− f̂ ∗
α/2(s)

]
is an approximate 1−α confidence interval for f (s).

To enable this approach to probe the bias of f̂ (s), we need to employ a bootstrap sampling

scheme which is different from the one introduced in Section 6.1.3. Since the smeared

data y can be parameterized using either the smeared mean μ or the spline coefficients β,

there are at least two reasonable ways of obtaining the bootstrap replicates y∗. In Sec-

tions 6.1.3 and 6.1.4, we used y∗ ∼ Poisson(μ̂) with μ̂ = y , but an alternative procedure

would be to use y∗ ∼ Poisson(K β̂). It is easy to see that if the former procedure was used,

then the distribution of f̂ ∗(s)− f̂ (s) would not capture the bias of f̂ (s), but, with the latter

procedure, the bias is partially included. In an attempt to account for the bias, we will hence

construct the basic intervals using the sampling scheme y∗ ∼ Poisson(K β̂), although we will

see in Section 6.3 that in practice the performance of the resulting intervals leaves much room

for improvement.
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6.1.6 Other bootstrap intervals

Several methods have been proposed for improving the performance of bootstrap confidence

intervals. We mention in particular the BCa intervals of Efron (1987), with BCa standing for

bias-corrected and accelerated. The BCa intervals modify the quantiles used in percentile

intervals to account for the bias of f̂ (s) and the dependence of var
(

f̂ (s)
)

on f (s). We consid-

ered using BCa intervals to improve upon the basic and percentile intervals, but in practice we

found that a better strategy is to directly correct the point estimator β̂ for the bias instead of

correcting the bootstrap percentiles; see Section 6.2. The reason is that this allows us to form

confidence intervals that also account for the uncertainty of the bias-correction. Furthermore,

in the presence of a significant bias, the BCa intervals would be formed using quantiles that

are very far in the tails of the bootstrap distribution and hence difficult to estimate accurately

using simulations.

A rather different approach consists in changing the way the bootstrap resampling is per-

formed. Beran (1995), for example, studies the problem of constructing a confidence ball

for μ ∈ Rn in the model y ∼ N (μ, I ), with the ball centered at the James–Stein estimator

μ̂JS = (
1− (n −2)

/‖y‖2
2

)
y and its radius calibrated using the bootstrap to yield the desired

coverage probability. He shows that the calibration should not be done using y∗ ∼N (μ̂JS, I )

or y∗ ∼ N (y , I ). Instead, the resampling scheme should be y∗ ∼ N (μ̂CL, I ), where μ̂CL is a

modified James–Stein estimator, with the property that ‖μ̂CL‖2 estimates ‖μ‖2 well. In our

case, this would correspond to centering the confidence intervals around f̂ , but calibrating

their length based on some modification of β̂. However, it is not immediately clear how β̂

should be modified to obtain accurate bootstrap calibration and the location of the resulting

intervals would in any case be suboptimal because of the bias in f̂ .

6.2 Iteratively bias-corrected percentile intervals

When the variability of a regularized point estimator β̂ is used to construct confidence intervals,

the intervals either ignore or only partially account for the bias of the estimator. This is the

case for all the intervals discussed in Section 6.1 and we will see in Section 6.3 that this

translates into poor coverage performance. In this section, we propose solving this problem

by iteratively bias-correcting β̂ and then basing the intervals on the variability of the bias-

corrected estimator β̂BC instead of the original estimator β̂. This approach has analogies with

the work of Javanmard and Montanari (2014), who use debiasing to quantify the uncertainty

in �1-regularized lasso regression.

At first it may seem counterintuitive that debiasing the point estimator β̂ could yield improved

uncertainty quantification—the bias is after all needed to regularize the ill-posed problem

and reducing the bias should increase the variance of the estimator. However, as illustrated in

Figure 6.1, the optimal bias-variance trade-off is different for point estimation and uncertainty

quantification. Each iteration of the bias-correction procedure will shift the balance towards

69



Chapter 6. Uncertainty quantification for smooth spectra

(a) Unbiased (b) Optimal point estimation (c) Optimal UQ

Figure 6.1: Bias-variance trade-off for point estimation and uncertainty quantification. The
unbiased estimator in Figure (a) has a large variability illustrated by the shaded region and
needs to be regularized by introducing a bias. Optimal bias-variance trade-off for point esti-
mation tends to look like Figure (b), where the variability is not a good measure of uncertainty.
Figure (c) illustrates a better bias-variance trade-off for uncertainty quantification where the
balance is shifted towards the direction of less bias and more variance. Now the variability
provides a good measure of uncertainty with better coverage than in Figure (b) but smaller
size than in Figure (a).

the direction of less bias and more variance and by doing so will improve the coverage of the

intervals at the expense of increased interval length. Indeed, for uncertainty quantification,

there is a trade-off between the coverage and the length of the confidence intervals. The results

of this chapter however indicate that, by stopping the bias-correction iteration early enough,

it is possible to balance the coverage-length trade-off in such a way that the intervals have

nearly nominal coverage with only a modest increase in interval length. In other words, the

iterative bias-correction is able to remove so much of the bias that the coverage is close to

the nominal value, but the small amount of residual bias that remains is enough to regularize

the interval length. A similar phenomenon has been observed by Javanmard and Montanari

(2014) in debiased lasso regression.

6.2.1 Iterative bootstrap bias-correction

Our debiasing procedure is based on a repeated application of the bootstrap bias-correction.

Kuk (1995) and Goldstein (1996) have used a similar iterative bias-correction technique in

generalized linear mixed models with an emphasis on point estimation, while Cornillon et al.

(2013, 2014) employ the approach to improve the predictive performance of linear nonpara-

metric smoothers. We are however not aware of previous applications of the procedure to

uncertainty quantification in ill-posed inverse problems.

Let β̂ be any of the unfolded point estimators considered in Section 5.2. The bias of β̂ is given

by bias(β̂) = Eβ(β̂)−β, where Eβ(·) denotes the expectation when the observations y follow

the Poisson(Kβ) distribution. The conventional bootstrap bias estimate (Davison and Hinkley,

70



6.2. Iteratively bias-corrected percentile intervals

1997) replaces the unknown parameter β by its estimate β̂. Denoting the observed value of β̂

by β̂(0), the bootstrap bias estimate is given by

b̂ias
(0)

(β̂) = E
β̂(0) (β̂)− β̂(0), (6.21)

where in practice the expectation is estimated using simulations. The bias-corrected estimator

is then obtained by subtracting the estimated bias,

β̂(1) = β̂(0) − b̂ias
(0)

(β̂). (6.22)

This is not a perfectly unbiased estimator since in Equation (6.21) the unknown parameter β

was replaced by the estimate β̂(0). But since β̂(1) should be less biased than β̂(0), we could hope

to obtain a better estimate of the bias by replacing β̂(0) in Equation (6.21) by β̂(1). This leads to

a new bias estimate

b̂ias
(1)

(β̂) = E
β̂(1) (β̂)− β̂(1), (6.23)

with the corresponding bias-corrected point estimate

β̂(2) = β̂(0) − b̂ias
(1)

(β̂). (6.24)

The same logic leads us then to replace β̂(1) in Equation (6.23) by β̂(2) and so on. The result is

the following iterative bootstrap bias-correction procedure:

1. Estimate the bias: b̂ias
(t )

(β̂) = E
β̂(t ) (β̂)− β̂(t ).

2. Compute the bias-corrected estimate: β̂(t+1) = β̂(0) − b̂ias
(t )

(β̂).

For nonlinear estimators β̂, the expectation E
β̂(t ) (β̂) will in practice have to be computed by

resampling RBC i.i.d. observations from the Poisson(K β̂(t )) distribution. For computational

reasons, we do not resample the regularization strength δ when computing the expectation

but instead keep it fixed to its original value δ̂. We also enforce the positivity constraint by

setting any negative entries to zero. The resulting bias-correction procedure is summarized in

Algorithm 2. Notice that the procedure is fully generic in the sense that it does not depend on

the specific forms of the point estimates β̂ and δ̂. The choice of the number of bias-correction

iterations NBC is discussed in Sections 6.4.3 and 6.5.

6.2.2 Percentile intervals from the bias-corrected point estimator

Let β̂BC denote the bias-corrected estimate of the spline coefficientsβ obtained using NBC bias-

correction iterations and let f̂BC(s) =∑p
j=1 β̂BC, j B j (s) be the corresponding intensity function

estimate. Since f̂BC should be less biased than f̂ , we can use the techniques presented in

Sections 6.1.3–6.1.5 with f̂BC to obtain improved confidence intervals. Since in most cases f̂BC

is not be available in closed form, we need to resort to a double bootstrap: We first resample
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Algorithm 2 Iterative bootstrap bias-correction

Input:
β̂(0) — Observed value of the estimator β̂
δ̂ — Estimated value of the regularization strength δ

NBC — Number of bias-correction iterations
RBC — Size of the bootstrap sample

Output:
β̂BC — Bias-corrected point estimate

for t = 0 to NBC −1 do

Sample y∗(1), y∗(2), . . . , y∗(RBC) i.i.d.∼ Poisson(K β̂(t ));
For each r = 1, . . . ,RBC, compute the estimator β̂∗(r ) using y∗(r ) as the smeared data and
δ̂ as the regularization strength;

Compute b̂ias
∗(t )

(β̂) = 1
RBC

∑RBC
r=1 β̂

∗(r ) − β̂(t );

Set β̂
′(t+1) = β̂(0) − b̂ias

∗(t )
(β̂);

Set β̂(t+1) = max
(
β̂

′(t+1),0
)
, where the maximum is taken element-wise;

end for
return β̂BC = β̂(NBC);

new i.i.d. observations y∗(r ),r = 1, . . . ,RUQ, and compute the corresponding regularized point

estimates β̂∗(r ). We then run the iterative bootstrap bias-correction (Algorithm 2) for each

of these to obtain a bootstrap sample of bias-corrected spline coefficients β̂∗(r )
BC along with

the corresponding intensity function estimates f̂ ∗(r )
BC . We can then use one of the bootstrap

interval estimates discussed in Sections 6.1.3–6.1.5 to construct an approximate confidence

interval for f (s) based on
{

f̂ ∗(r )
BC (s)

}RUQ

r=1 . We again keep δ fixed to its original estimated value δ̂

throughout this procedure.

The simplest approach would be to use the bootstrap version of the Gaussian confidence

interval given in Equation (6.8). However, preliminary simulations showed that the Gaussian

intervals suffer from slight undercoverage in areas where the true intensity f (s) is small. This is

due to the skewness of the sampling distribution of f̂BC(s) caused by the positivity constraint.

As explained in Section 6.1.4, this kind of asymmetries can be taken into account using the

1−α bootstrap percentile intervals
[

f̂ ∗
BC,α/2(s), f̂ ∗

BC,1−α/2(s)
]
, where f̂ ∗

BC,α/2(s) and f̂ ∗
BC,1−α/2(s)

denote the empirical α/2 and 1−α/2 quantiles of
{

f̂ ∗(r )
BC (s)

}RUQ

r=1 . The percentile intervals were

indeed found to yield better coverage performance than the Gaussian intervals and, as a

result, we will primarily use them to quantify the uncertainty of f . The resulting uncertainty

quantification procedure is summarized in Algorithm 3.
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Algorithm 3 Iteratively bias-corrected percentile intervals

Input:
y — Smeared data
δ̂ — Estimated value of the regularization strength δ

NBC — Number of bias-correction iterations
RBC — Size of the bootstrap sample for bias-correction
RUQ — Size of the bootstrap sample for uncertainty quantification

Output:[
f
¯

(s), f̄ (s)
]

— Iteratively bias-corrected 1−α percentile interval for f (s)

Sample y∗(1), y∗(2), . . . , y∗(RUQ) i.i.d.∼ Poisson(μ̂) with μ̂= y ;
for r = 1 to RUQ do

Compute the estimator β̂∗(r ) using y∗(r ) as the smeared data and δ̂ as the regularization
strength;
Compute β̂∗(r )

BC using Algorithm 2 with NBC bias-correction iterations, RBC bootstrap

replicates and regularization strength δ̂;
Compute f̂ ∗(r )

BC (s) =∑p
j=1 β̂

∗(r )
BC, j B j (s);

end for
return

[
f
¯

(s), f̄ (s)
]= [ f̂ ∗

BC,α/2(s), f̂ ∗
BC,1−α/2(s)

]
;

6.3 Comparison of iterative bias-correction with conventional in-

terval estimates

In this section, we perform a simulation study comparing the following unfolded confidence

intervals:

(i) Iteratively bias-corrected percentile intervals (Section 6.2.2) induced by either the poste-

rior mean β̂PM (Section 5.2.1) or the positivity-constrained Gaussian approximation β̂G+
(Section 5.2.3);

(ii) Bootstrap percentile intervals (Section 6.1.4) induced by β̂G+ ;

(iii) Basic bootstrap intervals (Section 6.1.5) induced by β̂G+ ;

(iv) Empirical Bayes credible intervals (Section 6.1.1);

(v) Hierarchical Bayes credible intervals (Secction 6.1.2) for the four hyperpriors studied in

Section 5.4.2.

We compare the methods using the two peaks on a uniform background test setup of Sec-

tion 3.4.1. For methods (i)–(iv), the regularization strength δ is chosen using the MMLE as

described in Section 5.3.1. The boundary hyperparameters as well as the parameters of the

MCMC sampler and the MCEM iteration are set as in Sections 5.4.1 and 5.4.2. The number

of bias-correction iterations is set to NBC = 15, NBC = 10 and NBC = 5 for the small, medium

and large sample size cases, respectively. In method (i), the bias estimates are obtained using
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RBC = 10 bootstrap observations and the bootstrap confidence intervals in methods (i)–(iii)

are formed using a bootstrap sample of size RUQ = 200. All the intervals are formed at 95 %

pointwise confidence level and all coverage studies are performed using 1 000 independent

replications.

Figure 6.2 shows the iteratively bias-corrected percentile intervals induced by the posterior

mean β̂PM for the different sample sizes. We observe that the bias-corrected point estimator

f̂BC is able to capture the two peaks of the true intensity f better than the posterior mean. The

price to pay for this is an increased wiggliness of f̂BC, especially near the boundaries of the

true space E . The percentile intervals induced by f̂BC also capture the shape of f well and, for

these particular realizations, cover the true value of f throughout the spectrum.

Depending on the number of bias-correction iterations used, computing the intervals shown

in Figure 6.2 took 14–39 hours on a quad-core 2.7 GHz Intel Core i5 processor, with the outer

bootstrap loop parallelized to the four cores of the setup. This is too long to perform a meaning-

ful coverage study for these intervals. In order to get a handle on the coverage probability of the

iteratively bias-corrected intervals, we use a computational simplification, where we replace

the posterior mean β̂PM with the positivity-constrained Gaussian approximation β̂G+ , whose

computation is orders of magnitude faster than running the MCMC for the posterior mean.

The iteratively bias-corrected percentile intervals induced by β̂G+ are shown in Figure 6.3. By

comparing these intervals with those of Figure 6.2, we conclude that there is little difference

between using β̂PM and β̂G+ to form the intervals. The main difference is that the intervals

constructed using β̂G+ appear to be somewhat more wiggly near the tails of f , which is also

where the Gaussian approximation deviates most from the underlying Poisson distribution.

Given the overall similarity of the two intervals, we expect the coverage performance of the

intervals induced by β̂G+ to be similar to those induced by β̂PM.

Figure 6.4(a) compares the empirical coverage of the iteratively bias-corrected percentile

intervals based on β̂G+ to the alternative methods in the case of the medium sample size.

We find that the coverage of the bias-corrected intervals is close to the nominal value 95 %

throughout the spectrum. The alternative bootstrap methods, on the other hand, suffer from

severe undercoverage. The non-bias-corrected percentile intervals in particular fail to cover

the truth at the larger peak at s = 2, where their empirical coverage is 0.327 (0.298, 0.357)

(95 % Clopper–Pearson interval). The Bayesian constructions, on the other hand, overcover

for most of the spectrum, but, in the area around s = 2, where the bias is the largest, also these

intervals suffer from undercoverage. Interestingly, the coverage of the bias-corrected intervals

does not seems to suffer from the fact that the regularization strength δ was kept fixed to

δ̂MMLE throughout the bootstrap computations.

To get further insight into the iterative bias-correction, we show in Figure 6.4(b) the empirical

coverage of the bias-corrected intervals induced by β̂G+ for various choices of the number of

bias-correction iterations NBC. Notice that for NBC = 0 these are simply the standard percentile

intervals. For one bias-correction iteration, we already observe a major improvement in the
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Figure 6.2: Iteratively bias-corrected percentile intervals induced by the posterior mean β̂PM,
and the corresponding point estimates, in the two peaks on a uniform background test setup.
The regularization strength is chosen using the MMLE and the number of bias-correction
iterations is (a) 5, (b) 10 and (c) 15, depending on the sample size λtot. The intervals are formed
for 95 % nominal pointwise coverage.
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Figure 6.3: Iteratively bias-corrected percentile intervals induced by the positivity-constrained
Gaussian approximation β̂G+ , and the corresponding point estimates, in the two peaks on a
uniform background test setup. The regularization strength is chosen using the MMLE and
the number of bias-correction iterations is (a) 5, (b) 10 and (c) 15, depending on the sample
size λtot. The intervals are formed for 95 % nominal pointwise coverage.
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coverage, with more iterations further increasing the coverage. To obtain nearly nominal

coverage, NBC = 10 or more iterations is needed in this particular case. The price to pay

for this improved coverage is an increase in the length and wiggliness of the intervals. This

is illustrated in Figure 6.5, where a realization of the bias-corrected intervals is shown for

different amounts of bias-correction iterations. Crucially, we observe that, even with a fairly

large number of bias-correction iterations, the interval length is only modestly increased,

while, at the same time, there is a significant improvement in the coverage performance. For

example, at NBC = 10, where the coverage is close to the nominal value, the bias-corrected

intervals are only moderately longer than the standard percentile intervals, which suffer from

significant undercoverage.

These effects become much more pronounced when the sample size is reduced. Figure 6.6

shows the empirical coverage of the different methods for λtot = 1 000. We observe that in

this case both the Bayesian intervals and the standard bootstrap intervals suffer from drastic

undercoverage. All these methods fail in particular at the larger peak at s = 2, where the

empirical coverage of the conventional methods is less than 50 %, with non-bias-corrected

percentile intervals in particular having close to zero coverage. The bias-corrected percentile

intervals with NBC = 15 bias-correction iterations also have undercoverage at s = 2, but their

empirical coverage 0.863 (0.840, 0.884) is still significantly better than that of the alternative

methods. Moreover, with more bias-correction iterations, the coverage of the bias-corrected

intervals would be further improved. With NBC = 50 iterations, the coverage would be close to

the nominal value, but obviously the interval lengths will also be longer, although still fairly

reasonable for this particular realization (see Figures B.7(b) and B.9 in the appendix).

Figure 6.7, which shows a realization of the different intervals for λtot = 1 000, helps us better

understand the observed coverage performance of each interval type (the hierarchical Bayes

intervals for the Pareto(1/2,10−10) and Gamma(0.001,0.001) hyperpriors, which are not shown

in the figure, lie between the two hierarchical Bayes intervals that are shown). The percentile

intervals, which only quantify the variability of f̂ , fail to cover since they completely ignore the

sizeable bias in f̂ . The width of the basic intervals is similar to that of the percentile intervals,

but they are shifted to account for the bias. However, the effect is not large enough to yield

adequate coverage performance. The empirical Bayes credible intervals are wider than the

percentile intervals and, as explained in Section 6.1.1, this extra width can be understood to

partially accommodate the bias, but clearly even wider intervals would be needed to fully

account for the bias. For hierarchical Bayes, the location and width of the intervals depends

on the choice of the hyperprior. The weaker the regularization implied by the hyperprior,

the better the coverage and the longer the intervals. However, even for the Pareto(1,10−10)

hyperprior, the intervals are not wide enough to fully accommodate the bias. Finally, the

bias-corrected intervals account for the bias much better than the other methods, but are also

longer and more wiggly than the alternative constructions. Out of the intervals shown, the

bias-corrected intervals provide the most realistic measure of the unfolded uncertainty, while

the other methods underestimate the uncertainty.
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Figure 6.4: Coverage studies in unfolding the two peaks on a uniform background test setup
with sample size λtot = 10 000. Figure (a) compares the empirical coverage of the iteratively
bias-corrected percentile intervals induced by β̂G+ to the alternative empirical Bayes (EB),
hierarchical Bayes (HB) and bootstrap intervals. The number of bias-correction iterations
is set to 10 and the regularization strength is chosen using the MMLE, expect for HB where
four different uninformative hyperpriors are considered. Figure (b) shows the coverage of the
bias-corrected intervals when the number of bias-correction iterations is varied between 0
and 50. All the intervals are for 95 % nominal pointwise coverage shown by the horizontal line.
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Figure 6.5: Iteratively bias-corrected percentile intervals induced by β̂G+ in the two peaks on a
uniform background test setup with λtot = 10 000 as the number of bias-correction iterations
is varied. The true intensity is shown by the dashed line, the point estimate corresponding
to β̂G+ by the solid line and the bias-corrected point estimate by the dotted line. The intervals
have 95 % nominal pointwise coverage.
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Figure 6.6: Same as Figure 6.4(a), but for sample size λtot = 1 000 and NBC = 15 bias-correction
iterations.

The full results of the simulations carried out in this section are provided in Appendix B.1. In

particular, the appendix shows that, in the large sample size case with λtot = 50 000, the itera-

tively bias-corrected intervals again attain close-to-nominal coverage, while the conventional

bootstrap intervals still undercover. The Bayesian intervals also continue to overcover, but in

this case also their coverage at s = 2 is at or above the nominal value of 95 %.

6.4 Iterative bias-correction for linear estimators and Gaussian data

To gain further insight into iteratively bias-corrected uncertainty quantification, we study in

this section an analytically more tractable simplification of the problem where the data y

follow a Gaussian distribution and the estimator β̂ is a linear function of y . In this case, we can

write down in closed form both the bias-corrected estimators β̂(t ) and the coverage probability

of the associated Gaussian confidence intervals. This leads us to propose a data-driven way of

choosing the number of bias-correction iterations NBC. We also consider undersmoothing

as an alternative to bias-correction and present some empirical evidence suggesting that

bias-correction tends to provide shorter confidence intervals than undersmoothing.

6.4.1 Iterative bias-correction for linear estimators

In this section, we investigate the iterative bias-correction procedure described in Section 6.2.1

in the case where the estimator β̂ is a linear function of the data y , that is, β̂= Ay , for some

p ×n matrix A. We also assume that n ≥ p and that the expectation of y is a linear function
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Figure 6.7: A single realization of (a) the iteratively bias-corrected percentile intervals with 15
bias-correction iterations, (b) the empirical Bayes (EB) credible intervals, (c)–(d) the hierar-
chical Bayes (HB) credible intervals for the two extremal hyperpriors, (e) the basic bootstrap
intervals and (f) the standard bootstrap percentile intervals in unfolding the two peaks on a
uniform background test setup with sample size λtot = 1000. Intervals (a), (e) and (f) are based
on the positivity-constrained Gaussian approximation β̂G+ . Also shown are the corresponding
point estimates f̂ (solid lines) and the true intensity f (dashed lines). In Figure (a), also the
bias-corrected point estimate f̂BC (dotted line) is shown. All the intervals are formed for 95 %
nominal pointwise coverage.
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of the unknown β, that is, Eβ(y) = Kβ, for some n ×p matrix K . This is the case for example

in the Poisson regression model (5.1) that pertains to unfolding. Besides the linearity of the

expectation, we do not make further distributional assumptions regarding y in the present

section.

The bias estimate on the t th step of the iteration is given by

b̂ias
(t )

(β̂) = E
β̂(t ) (β̂)− β̂(t ). (6.25)

Under the stated assumptions, this becomes

b̂ias
(t )

(β̂) = A E
β̂(t ) (y)− β̂(t ) = AK β̂(t ) − β̂(t ) = (AK − I )β̂(t ). (6.26)

Notice that the bias estimate is available in closed form without the need for bootstrap resam-

pling. It follows that the corresponding bias-corrected estimator is given by

β̂(t+1) = β̂(0) − b̂ias
(t )

(β̂) = β̂(0) − (AK − I )β̂(t ). (6.27)

Let J (t ), t = 0,1,2, . . . , be the sequence of p ×p matrices defined by

J (0) = I , (6.28)

J (t ) = I + (I − AK )J (t−1), t = 1,2, . . . (6.29)

We proceed to show that β̂(t ) = J (t )β̂(0) for every t = 0,1,2, . . . The claim obviously holds for β̂(0).

Now assume that β̂(t ) = J (t )β̂(0). Then

β̂(t+1) = β̂(0) − (AK − I )J (t )β̂(0) = (I + (I − AK )J (t ))β̂(0) = J (t+1)β̂(0), (6.30)

and the claim follows by induction. Dropping the superscript in β̂(0), we conclude that the

bias-correction iteration is given by

β̂(t ) = J (t )β̂, t = 0,1,2, . . . , with J (0) = I , J (t ) = I + (I − AK )J (t−1), (6.31)

where β̂ is the original non-bias-corrected point estimate of β.

We have the following result:

Proposition 6.1. Assume that AK ∈Rp×p is invertible and consider the iteration J (t ) = T
(

J (t−1)
)
,

t = 1,2, . . . , defined by Equation (6.29). Then it holds that:

(a) J = (AK )−1 is the unique fixed point of the iteration;

(b) If ‖I −AK ‖ < 1, for some matrix norm ‖·‖ that satisfies ‖M N‖ ≤ ‖M‖‖N‖, then J (t ) t→∞−→ J

in the metric induced by ‖ ·‖.
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Proof.

(a) Any fixed point must satisfy J = T (J ) = I + (I − AK )J . That is, AK J = I , whose unique

solution is J = (AK )−1.

(b) For all p ×p matrices X and Y , we have

‖T (X )−T (Y )‖ = ‖I + (I − AK )X − I − (I − AK )Y ‖ (6.32)

= ‖(I − AK )(X −Y )‖ ≤ ‖I − AK ‖‖X −Y ‖. (6.33)

Hence, T is a contraction if ‖I − AK ‖ < 1. The result then follows from the Banach

fixed-point theorem (see, e.g., Theorem 5.1-2 and Corollary 5.1-3 in Kreyszig (1978)).

The bias-corrected point estimate β̂BC = J β̂ = (AK )−1β̂ = (AK )−1 Ay corresponding to the

fixed point J is indeed unbiased:

Eβ

(
β̂BC

)= (AK )−1 A Eβ(y) = (AK )−1 AKβ=β. (6.34)

Hence, if ‖I − AK ‖ < 1, the bias-correction iteration for linear estimators converges to the

unbiased estimator β̂BC = (AK )−1 Ay . If A and K are both invertible square matrices, then

β̂BC = K −1 y .

The condition ‖I −AK ‖ < 1 can be interpreted as a requirement that A be sufficiently close to a

left inverse of K . The condition is satisfied for example for Tikhonov regularization (Tikhonov,

1963; Phillips, 1962) and ridge regression (Hoerl and Kennard, 1970), with

β̂= (K TK +2δI
)−1K T y . (6.35)

To see this, let K = U SV T be the singular value decomposition of K with S =
[

S̃

0

]
∈ Rn×p ,

where S̃ = diag(σ1, . . . ,σp ) ∈ Rp×p contains the singular values σ1 ≥ σ2 ≥ ·· · ≥ σp ≥ 0 of K .

Then

AK = (K TK +2δI
)−1K TK (6.36)

= (V S̃2V T +2δI
)−1V S̃2V T (6.37)

=V
(
S̃2 +2δI

)−1S̃2V T (6.38)

and hence

I − AK =V
(

I − (S̃2 +2δI
)−1S̃2)V T. (6.39)

As a result, the singular values of I − AK are given by 1− σ2
i

σ2
i +2δ

= 2δ
σ2

i +2δ
, i = 1, . . . , p, and the
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2-norm of I − AK is

‖I − AK ‖2 =σmax(I − AK ) = 2δ

σ2
p +2δ

≤ 1, (6.40)

where the inequality is strict if σp > 0, that is, if K has full rank. Proposition 6.1 then shows

that the bias-correction iteration converges to the estimator

β̂BC = (AK )−1 Ay = (K TK
)−1(K TK +2δI

)(
K TK +2δI

)−1K T y = (K TK
)−1K T y , (6.41)

provided that K has full rank. Notice that this is simply the least-squares estimator of β.

6.4.2 Coverage for Gaussian observations

When the observations y follow a Gaussian distribution and the estimator β̂ is a linear function

of y , we can write down in closed form the coverage probability of the Gaussian confidence

intervals described in Section 6.1.3. This is given by the following result:

Proposition 6.2. Assume y ∼ N (Kβ,Σ), where Σ ∈ Rn×n is a known covariance matrix and

K ∈ Rn×p . Let β̂ = Ay with A ∈ Rp×n be a linear estimator of β and let θ̂ = c Tβ̂ be the corre-

sponding estimator of the quantity of interest θ = c Tβ. Then the confidence interval

[
θ, θ

]= [θ̂− z1−α/2

√
var

(
θ̂
)
, θ̂+ z1−α/2

√
var

(
θ̂
)]

(6.42)

=
[
θ̂− z1−α/2

√
c T AΣATc , θ̂+ z1−α/2

√
c T AΣATc

]
(6.43)

has coverage probability

Pβ

(
θ ≤ θ ≤ θ

)=Φ

(
bias

(
θ̂
)

SE
(
θ̂
) + z1−α/2

)
−Φ

(
bias

(
θ̂
)

SE
(
θ̂
) + zα/2

)
, (6.44)

where bias
(
θ̂
)= Eβ

(
θ̂
)−θ = c T(AK − I )β is the bias of θ̂, SE

(
θ̂
)=√var

(
θ̂
)=�

c T AΣATc is the

standard error of θ̂ and Φ is the standard normal cumulative distribution function.

Proof. The sampling distribution of the estimator θ̂ = c Tβ̂= c T Ay = (ATc)T y is given by

θ̂ ∼N
(
(ATc)TKβ, (ATc)TΣ(ATc)

)=N
(
c T AKβ,c T AΣATc

)
. (6.45)

Hence the bias and the standard error of θ̂ are given by

bias
(
θ̂
)= c T AKβ−c Tβ= c T(AK − I )β, SE

(
θ̂
)=√c T AΣATc . (6.46)

The coverage probability is

Pβ

(
θ ∈ [θ, θ

])= 1−Pβ

(
θ ∉ [θ, θ

])= 1−Pβ

(
θ ≤ θ

)−Pβ

(
θ ≥ θ

)
. (6.47)
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Here the latter term is given by

Pβ

(
θ ≥ θ

)= Pβ

(
θ ≥ θ̂+ z1−α/2

√
c T AΣATc

)
(6.48)

= Pβ

(
θ̂−c T AKβ�

c T AΣATc
≤ θ−c T AKβ�

c T AΣATc
− z1−α/2

)
(6.49)

= Pβ

(
θ̂−c T AKβ�

c T AΣATc
≤−bias

(
θ̂
)

SE
(
θ̂
) − z1−α/2

)
(6.50)

=Φ

(
−bias

(
θ̂
)

SE
(
θ̂
) − z1−α/2

)
, (6.51)

where we have used the fact that θ̂−c T AKβ�
c T AΣATc

∼N (0,1).

An analogous calculation shows that

Pβ

(
θ ≤ θ

)= Pβ

(
θ ≤ θ̂− z1−α/2

√
c T AΣATc

)
= 1−Φ

(
−bias

(
θ̂
)

SE
(
θ̂
) − zα/2

)
. (6.52)

Hence

Pβ

(
θ ∈ [θ, θ

])=Φ

(
−bias

(
θ̂
)

SE
(
θ̂
) − zα/2

)
−Φ

(
−bias

(
θ̂
)

SE
(
θ̂
) − z1−α/2

)
(6.53)

=Φ

(
bias

(
θ̂
)

SE
(
θ̂
) + z1−α/2

)
−Φ

(
bias

(
θ̂
)

SE
(
θ̂
) + zα/2

)
. (6.54)

Notice that this result holds for any linear point estimator β̂, including the iterative bias-

correction described in Section 6.4.1. In our case, the quantity of interest θ = c Tβ is the point

evaluator for a B-spline, θ = f (s) =∑p
j=1β j B j (s) = c Tβ, with c = [B1(s), . . . ,Bp (s)

]T.

We see from Equation (6.44) that the coverage is a function of the ratio of the bias and the

standard error of θ̂. Denoting this ratio by γ= bias
(
θ̂
)
/SE

(
θ̂
)
, the coverage is given by

C (γ) =Φ
(
γ+ z1−α/2

)−Φ
(
γ+ zα/2

)
. (6.55)

For γ= 0, that is, for zero bias, we obviously obtain the nominal coverage,

C (0) =Φ (z1−α/2)−Φ (zα/2) = 1− α

2
− α

2
= 1−α. (6.56)

The coverage is symmetric around γ= 0,

C (−γ) =Φ
(−γ+ z1−α/2

)−Φ
(−γ+ zα/2

)
(6.57)

=Φ
(−γ− zα/2

)−Φ
(−γ− z1−α/2

)
(6.58)

=Φ
(
γ+ z1−α/2

)−Φ
(
γ+ zα/2

)=C (γ). (6.59)
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This shows that there is no difference in the coverage performance between positive and

negative biases.

The derivative of C (γ) is given by

C ′(γ) =Φ′ (γ+ z1−α/2
)−Φ′ (γ+ zα/2

)=φ
(
γ+ z1−α/2

)−φ
(
γ+ zα/2

)
, (6.60)

where φ is the standard normal probability density function. By the symmetry of φ, the sign of

C ′(γ) is given by

C ′(γ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
> 0, if γ< 0,

= 0, if γ= 0,

< 0, if γ> 0.

(6.61)

Since C (γ) is continuous, this shows that the maximum coverage is attained for γ= 0 and that

the coverage reduces monotonically from the nominal value 1−α as |γ| grows. That is, for

any non-zero amount of bias, the coverage will be strictly less than 1−α. Our key empirical

observation is that in ill-posed inverse problems there are biased estimators β̂ such that the

coverage of the interval (6.43) is only slightly below 1−α, but the interval length is still orders

of magnitude shorter than that of an unbiased estimator.

6.4.3 Data-driven iteratively bias-corrected intervals

We have seen in Section 6.4.1 that for linear estimators β̂= Ay the bias-correction iteration is

given by β̂(t ) = J (t )β̂= J (t ) Ay , with J (t ) given by Equation (6.31). Since β̂(t ) is linear in y , the

coverage of the Gaussian intervals (6.43) induced by β̂(t ) is given by Equation (6.44), provided

that y is Gaussian. We also know by Section 6.4.2 that in order to obtain nominal 1−α coverage

we would need to run the iteration until convergence to an unbiased estimator, which would

inflate the interval length. At the same time, we have seen in Section 6.3 that, as long as the

iteration is stopped sufficiently early, the iteratively bias-corrected intervals can yield coverage

which is close to the nominal value while maintaining reasonable interval length.

Putting these observations together, we propose the following strategy for choosing the num-

ber of bias-correction iterations NBC:

At each iteration t , use Equation (6.44) to estimate for all quantities of interest

θi = c T
i β the coverage C (t )

i of the Gaussian intervals (6.43) induced by β̂(t ) and stop

the iteration once the smallest estimated coverage Ĉ (t ) = min
i

Ĉ (t )
i is greater than

1−α−ε, for some positive tolerance ε.

In our case, the quantities of interest {θi } are the point evaluators θi = f (si ) =∑p
j=1β j B j (si ) =

c T
i β, with ci =

[
B1(si ), . . . ,Bp (si )

]T, on a fine grid of values {si }m+1
i=1 in the true space.
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The proposed criterion means that we concede that we are not able to obtain exactly the

nominal coverage 1−α using the intervals (6.43), but we instead try to guarantee that, for all

practical purposes, the coverage is close enough to 1−α. For example, if 95 % intervals have in

reality 94 % coverage, this would be considered satisfactory in most situations.

Notice also that the criterion does not necessarily lead to undercoverage. For example, if the

aim is to obtain intervals with 95 % coverage, one could use 99 % intervals with ε = 0.04 to

obtain 95 % intervals, provided that one can reliably estimate the coverage probability.

One could also argue that the proposed criterion simply turns the problem of choosing

NBC into the problem of choosing ε. While this is certainly a valid argument, it should be

emphasized that ε gives a direct handle on the coverage probability of the intervals. After

fixing ε, one can expect to obtain confidence intervals with coverage close to 1−α−ε, while

fixing NBC does not have such a clear meaning.

The main challenge with the proposed approach concerns the fact that the coverage probabil-

ity (6.44) depends on

bias
(
θ̂(t )

i

)= c T
i (J (t ) AK − I )β, (6.62)

where θ̂(t )
i = c T

i β̂
(t ) is the estimator of θi = c T

i β induced by β̂(t ). This bias is obviously unknown

and needs to be estimated. A first idea would be to simply estimate the bias by plugging in

the non-bias-corrected estimate β̂(0). However, as we have seen, this tends to underestimate

the bias. As a result, the coverage is overestimated, the bias-correction iteration is stopped

too early and the actual coverage is less than 1−α−ε. A second idea would be to plug in the

current bias-corrected estimate β̂(t ) and to estimate the bias of θ̂(t )
i using

b̂ias
(
θ̂(t )

i

)= c T
i (J (t ) AK − I )β̂(t ). (6.63)

The problem with this approach is that, as the bias-correction iteration proceeds, the bias

estimates and hence the coverage estimates become increasingly noisy. The problem is

aggravated by the fact that we take a minimum of the estimated coverages over the grid {si }m+1
i=1 .

Indeed, the estimated coverages based on (6.63) often increase for the first few bias-correction

iterations and then suddenly start to decrease, while the actual coverage continues to improve.

This leads us to propose the following procedure: We estimate the coverage based on (6.63)

and check if the estimated coverage increased in comparison to the previous iteration. If the

estimated coverage decreased, we conclude that the bias estimate has become too noisy to be

reliable and estimate the bias by plugging in the previous estimate of β instead. Denoting this

previous estimate by β̂(T ), we then estimate the bias from that point onwards using

b̂ias
(
θ̂(t )

i

)= c T
i (J (t ) AK − I )β̂(T ), t > T, (6.64)

keeping the estimate of β fixed to β̂(T ).

87



Chapter 6. Uncertainty quantification for smooth spectra

The resulting procedure for choosing the number of bias-correction iterations NBC is summa-

rized in Algorithm 4. The data-driven bias-corrected intervals with target coverage 1−α−ε

are then those induced by β̂BC = β̂(N̂BC), where N̂BC is the estimated number of bias-correction

iterations. Section 6.4.5 demonstrates that this approach performs reasonably well in practice.

6.4.4 Data-driven undersmoothed intervals

An alternative approach for addressing the issue of bias in nonparametric confidence intervals

is to employ undersmoothing (Hall, 1992). Let β̂δ be a regularized point estimator of β

depending on regularization strength δ. Undersmoothing consists in debiasing the estimator

by choosing δ to be smaller than the value that leads to optimal point estimation performance.

As in the case of iterative bias-correction, the confidence intervals induced by the variability of

the undersmoothed point estimator β̂US will have improved coverage at the cost of increased

interval length.

Although undersmoothing has been extensively studied from a theoretical perspective, there

exist few, if any, data-driven ways of choosing the amount of undersmoothing (Hall and

Horowitz, 2013). Notice, however, that the data-driven procedure we introduced in Sec-

tion 6.4.3 can also be adapted to undersmoothing. Namely, let β̂δ = Aδy be a linear estimator

of β, where the matrix Aδ depends on the regularization strength δ. Then Proposition 6.2

can be used to write down for each δ the coverage probability of the Gaussian confidence

intervals (6.43) induced by β̂δ. We can then estimate this coverage probability as explained

in Section 6.4.3 and choose the largest δ for which all estimated coverage probabilities are

greater than 1−α−ε for some tolerance ε > 0. Denote this value by δ̂US. The data-driven

undersmoothed confidence intervals are then those induced by β̂US = β̂δ̂US
.

We compare in Section 6.4.5 the performance of undersmoothing and iterative bias-correction

in a number of deconvolution scenarios. We find that, at least in the situations that we

have investigated, iterative bias-correction provides better performance in the sense that,

for a given coverage probability, the iteratively bias-corrected intervals are shorter than the

undersmoothed intervals. Interestingly, our conclusions are opposite to those of Hall (1992),

who recommends undersmoothing instead of bias-correction in the context of kernel density

estimation. Due to a number of differences between our setup and that of Hall (1992), it is

rather difficult to pinpoint the exact reason for our differing findings, but one likely explanation

is that the intervals used by Hall (1992) do not account for the variability of the bias estimate,

while our intervals take this effect into account.
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Algorithm 4 Data-driven choice of the number of bias-correction iterations

Input:
y — Smeared data following the N (Kβ,Σ) distribution
A — The mapping from the data y to the non-bias-corrected estimator β̂, i.e., β̂= Ay
1−α ∈ (0,1) — Nominal coverage
ε> 0 — Tolerance

Output:
N̂BC — Estimated number of bias-correction iterations for target coverage 1−α−ε

Set β̂(0) = Ay ;
Estimate the minimum coverage

Ĉ (0) = min
i

[
Φ

(
b̂ias

(
θ̂(0)

i

)
SE
(
θ̂(0)

i

) + z1−α/2

)
−Φ

(
b̂ias

(
θ̂(0)

i

)
SE
(
θ̂(0)

i

) + zα/2

)]
,

where SE
(
θ̂(0)

i

)=√c T
i AΣATci and b̂ias

(
θ̂(0)

i

)= c T
i (AK − I )β̂(0);

Set J (0) = I ;
Set t = 0;
Set FIXED = FALSE;
while Ĉ (t ) < 1−α−ε do � Iterate until estimated coverage larger than 1−α−ε

Set t ← t +1;
Set J (t ) = I + (I − AK )J (t−1);
Set β̂(t ) = J (t ) Ay ;
Estimate the minimum coverage

Ĉ (t ) = min
i

[
Φ

(
b̂ias

(
θ̂(t )

i

)
SE
(
θ̂(t )

i

) + z1−α/2

)
−Φ

(
b̂ias

(
θ̂(t )

i

)
SE
(
θ̂(t )

i

) + zα/2

)]
,

where SE
(
θ̂(t )

i

)=√c T
i J (t ) AΣ

(
J (t ) A

)Tci and

b̂ias
(
θ̂(t )

i

)={c T
i (J (t ) AK − I )β̂(t ), if FIXED = FALSE,

c T
i (J (t ) AK − I )β̂(T ), if FIXED = TRUE;

if Ĉ (t ) < Ĉ (t−1) and FIXED = FALSE then � Estimated coverage decreased
Set FIXED = TRUE;
Set β̂(T ) = β̂(t−1);
Re-estimate the minimum coverage

Ĉ (t ) = min
i

[
Φ

(
b̂ias

(
θ̂(t )

i

)
SE
(
θ̂(t )

i

) + z1−α/2

)
−Φ

(
b̂ias

(
θ̂(t )

i

)
SE
(
θ̂(t )

i

) + zα/2

)]
,

where SE
(
θ̂(t )

i

)=√c T
i J (t ) AΣ

(
J (t ) A

)Tci and b̂ias
(
θ̂(t )

i

)= c T
i (J (t ) AK − I )β̂(T );

end if
end while
return N̂BC = t ;
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6.4.5 Simulation study

6.4.5.1 Experiment setup

We demonstrate the ideas presented in Sections 6.4.1–6.4.4 using a deconvolution setup, where

we have n independent observations from the model

yi = g (ti )+ei , ei ∼N (0,σ2), (6.65)

where

g (t ) =
∫

E
k(t , s) f (s)ds, t ∈ F, (6.66)

with k(t , s) = k(t − s) =N (t − s|0,1). We set E = F = [−7,7] and let the observation points ti

consist of a uniform grid of n = 40 points. We also assume that f vanishes on the boundary

of E , that is, f (−7) = f (7) = 0, and that f can be can be represented using a basis of p = 30

cubic B-splines, f (s) =∑p
j=1β j B j (s). A basis that imposes the boundary constraints can be

obtained by constructing the usual B-spline basis for L = 28 uniformly placed interior knots

and dropping the first and the last basis functions. We then have that

g (ti ) =
∫

E
k(ti , s) f (s)ds =

p∑
j=1

β j

∫
E

k(ti , s)B j (s)ds =
p∑

j=1
Ki , jβ j , (6.67)

with Ki , j =
∫

E k(ti , s)B j (s)ds. This leads to the model

y ∼N (Kβ,σ2I ), (6.68)

where the noise level σ> 0 is assumed to be known.

We consider the noise levels σ= 0.001, 0.005 and 0.025 and the following two true functions f :

f1(s) =N (s|0,1); (6.69)

f2(s) =π1N (s|−2,1)+π2N (s|2,1), (6.70)

with π1 = 0.3 and π2 = 0.7. The first consists of a single Gaussian peak and the second

is a Gaussian mixture model with two peaks. Notice that f2 is similar to the test setup of

Section 3.4.1, but without the uniform background component. These functions are not

strictly speaking zero at s =−7 and s = 7, but for all practical purposes we can assume this to

be the case and restrict our attention to estimators that satisfy these boundary constraints.

This setup simplifies the actual unfolding problem in the following ways:

1. The observations y follow a Gaussian distribution instead of a Poisson distribution,

which significantly simplifies the problem as most formulas that were not available for

Poisson noise can now be written down in closed form;
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2. The variance of y is assumed to be homoscedastic and known, which simplifies the

construction of both point and interval estimators;

3. There is no positivity constraint, which further simplifies the construction and compu-

tation of the estimators;

4. The value of f at the boundaries is assumed to be known, which leads to a trivial

boundary condition;

5. The forward mapping is not integrated over bins in the smeared space.

We later demonstrate in Section 6.5 that, despite these simplifications, the conclusions of the

present section carry over to the full unfolding problem.

6.4.5.2 Estimators

As in Section 5.1, we regularize the problem using the smoothness prior

p(β|δ) ∝ exp
(−δβTΩβ

)
, β ∈Rp , δ> 0, (6.71)

where Ωi , j =
∫

E B ′′
i (s)B ′′

j (s)ds. When the boundary values are fixed, Ω has full rank p and there

is no need to use the augmented form (5.11). It is convenient to reparameterize the problem in

terms of γ= 2δσ2. The prior then becomes p(β|γ) ∼ N
(
0,
( γ

σ2 Ω
)−1

)
. When both the prior and

the likelihood are Gaussian and there is no positivity constraint, the posterior is also Gaussian

and is given by

p(β|y ,γ) ∼N
((

K TK +γΩ
)−1K T y ,σ2(K TK +γΩ

)−1
)

. (6.72)

In this case, the posterior mean, the maximum a posteriori estimator and the penalized

maximum likelihood estimator all coincide and are given by

β̂= (K TK +γΩ
)−1K T y . (6.73)

Notice that this is linear in y .

The marginal distribution of y is also Gaussian and is given by

p(y |γ) ∼N

(
0,σ2

(
I + 1

γ
KΩ−1K T

) )
. (6.74)

As a result, the marginal log-likelihood of γ is available in closed form and is given by

l (γ; y) = log p(y |γ) =−1

2

[
log det

(
I + 1

γ
KΩ−1K T

)
+ 1

σ2 y T
(

I + 1

γ
KΩ−1K T

)−1

y
]
+const,

(6.75)

where the constant does not depend on γ. We again estimate the regularization parameter γ
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using the marginal maximum likelihood estimator (see Section 5.3.1),

γ̂MMLE = argmax
γ>0

l (γ; y) = argmax
γ>0

log p(y |γ). (6.76)

The maximizer cannot be solved in closed form, but can be easily found numerically by

performing a grid search in logγ.

6.4.5.3 Results

Let us first focus on the one-peak function f1 and the intermediate noise level σ = 0.005.

We start by computing the point estimator β̂ = (
K TK + γ̂MMLEΩ

)−1K T y corresponding to

the MMLE. We then apply iterative bias-correction and undersmoothing to β̂, form the corre-

sponding 95 % Gaussian confidence intervals (6.43) for f (s) and compute their actual coverage

probability (ignoring the variability of γ̂MMLE) using Equation (6.44). Figure 6.8 shows the

coverage probability as a function of the interval length at s = 0, that is, at the top of the peak,

where the coverage problems are the most severe. This figure enables us to make a number

of key observations. Firstly, the coverage-length curves for both debiasing methods have a

strongly concave shape. In other words, one can obtain significant improvements in coverage

with only a modest increase in interval length. For example, within the range shown in the

figure, the coverage improves from the MMLE value 0.42 to nearly the nominal value 0.95,

but the interval length increases only by a factor of three. To put this in perspective, the

unregularized intervals with γ= 0 have nominal coverage but length 19476, which is six orders

of magnitude larger than the length of the MMLE intervals 0.030. Secondly, bias-correction

appears to be more powerful than undersmoothing in the sense that, for a given coverage

probability, the bias-corrected intervals are shorter than the undersmoothed intervals. To the

author’s best knowledge, this phenomenon, which occurs in all of our test cases, has not been

observed before.

We next investigate the data-driven choice of the number of bias-correction iterations and

the amount of undersmoothing. We use the tolerance ε = 0.01. That is, we aim to use the

nominal 95 % intervals to obtain 94 % coverage. Figure 6.9 shows the minimum estimated bias-

corrected coverage over 500 grid points for the different methods discussed in Section 6.4.3.

The methods differ in the way they estimate the bias that is needed to estimate the cover-

age. The curve labeled “β̂(0)” estimates the bias by plugging in for β the non-bias-corrected

estimate; the curve labeled “β̂(t )” estimates the bias by always plugging in for β the current

bias-corrected estimate; and the curve labeled “β̂(T )” estimates the bias by plugging in for β

the current bias-corrected estimate until the estimated coverage starts to decrease at which

point the estimate of β is fixed to the previous value β̂(T ). The actual coverage is shown by

the curve labeled “β”. We then use each of these methods to estimate the number of bias-

correction iterations NBC needed to obtain the target coverage 1−α−ε= 0.94. As discussed

in Section 6.4.3, the first method overestimates the coverage and chooses N̂BC = 1 iteration,

when at least 7 iterations would be needed to obtain the target coverage. The second method
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Figure 6.8: Coverage-length trade-off for iterative bias-correction and undersmoothing for
the one-peak function f1 and noise level σ= 0.005. Both methods start from the non-bias-
corrected point estimator where the regularization strength is chosen using the MMLE and
then debias this estimator to obtain improved coverage.
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Figure 6.9: Estimated coverage as a function of bias-correction iterations for the one-peak
function f1 and noise level σ= 0.005. The nominal coverage is shown by the horizontal solid
line and the target coverage by the horizontal dashed line. The number of iterations is chosen
based on the point where the estimated coverage exceeds the target coverage. See the text for
a description of the different estimates. The actual coverage is shown by the blue curve.
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fails to achieve the target coverage since after 3 iterations the bias estimate becomes too noisy

and the estimated coverage starts to decrease. The third method chooses N̂BC = 6 iterations,

which is one iteration short of the optimal value. (For this particular realization, the procedure

chose a slightly unconservative number of iterations. However, on average, the procedure

tends to be more on the conservative side for this noise level.) These results look qualitatively

similar for undersmoothing and the other test scenarios—although for a very large amount of

noise, the third method also underestimates the number of iterations needed to obtain the

target coverage. In the rest of our simulations, we use the third method to choose the amount

of debiasing.

Figure 6.10 shows a realization of the non-bias-corrected intervals, the iteratively bias-corrected

intervals and the undersmoothed intervals with a data-driven choice of the amount of bias-

correction and undersmoothing. The debiased intervals are wider than the non-bias-corrected

ones, but only with a modest amount. We also see that the undersmoothed intervals are slightly

wider and more wiggly than the iteratively bias-corrected intervals, which is consistent with

our observations in Figure 6.8.

The empirical coverage and mean length of the different intervals under repeated sampling of

1 000 independent observations is shown in Figure 6.11. The curves labeled “data” are fully

data-driven and the curves labeled “oracle” estimate γ with the MMLE, but use the true value

of β to estimate the required amount of bias-correction and undersmoothing. The figure also

shows the coverage and length of the non-bias-corrected intervals when γ is chosen using

the MMLE or by minimizing the mean integrated squared error, which again requires oracle

knowledge of β. The debiased oracle intervals obviously achieve the target coverage 94 %

and this is effectively also the case for the data-driven debiased intervals. The data-driven

intervals are slightly longer than the oracle intervals, which can be attributed to the fact that

the data-driven procedure occasionally selects a conservative amount of bias-correction and

undersmoothing. We also observe that the undersmoothed intervals are consistently longer

than the bias-corrected ones, even though both intervals have similar coverage performance.

This difference is present also in the oracle intervals and is hence not an artifact of the plug-in

estimate of the coverage. We also see that both non-bias-corrected intervals have shorter

length but suffer from severe undercoverage. Notice that the undercoverage of the intervals

induced by the MMLE is not due to a failure of β̂ as a point estimator. Indeed, the MISE

optimal point estimator has even worse coverage performance than the one corresponding to

the MMLE. This shows in a striking way that optimality in point estimation is different from

optimality in interval estimation.

These results are summarized in Table 6.1, which shows that the mean length of the data-driven

iteratively bias-corrected intervals is approximately 13 % shorter than the mean length of the

undersmoothed intervals. The table also includes the results for the low noise level σ= 0.001

and the high noise level σ = 0.025 situations. With σ = 0.001, the data-driven debiased

intervals attain the 94 % target coverage and there is little difference between iterative bias-

correction and undersmoothing. With σ= 0.025, the data-driven debiased intervals fall slightly
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Figure 6.10: Data-driven confidence intervals for the one-peak function f1 and noise level
σ = 0.005. The regularization strength is chosen using the MMLE and the amount of bias-
correction and undersmoothing using the procedure described in Sections 6.4.3 and 6.4.4.
The intervals have 95 % nominal coverage and 94 % target coverage.
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Figure 6.11: Empirical coverage and mean length of the data-driven bias-corrected (BC),
undersmoothed (US) and non-bias-corrected intervals for the one-peak function f1 and noise
level σ= 0.005. The curves labeled “data” are fully data-driven and the curves labeled “oracle”
use knowledge of f1 to choose the amount of debiasing. The non-bias-corrected results are
given for both the MMLE choice of the regularization strength as well as for the choice that
minimizes the MISE. The intervals have 95 % nominal coverage and 94 % target coverage.
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Table 6.1: Empirical coverage at s = 0 (the location of the peak) and mean interval length
(averaged over both s and the sampling variability) for the one-peak function f1. The results are
shown for bias-corrected (BC), undersmoothed (US), non-bias-corrected (MMLE & MISE) and
unregularized intervals with 95 % nominal coverage and 94 % target coverage. The debiased
intervals are either fully data-driven or use oracle knowledge of f1 to choose the amount of
debiasing. The uncertainties given in the parentheses are 95 % confidence intervals.

Noise level Method Coverage at s = 0 Mean length

σ= 0.001 BC (data) 0.936 (0.919, 0.950) 0.047 (0.045, 0.049)
BC (oracle) 0.939 (0.922, 0.953) 0.028 (0.028, 0.028)
US (data) 0.947 (0.931, 0.960) 0.047 (0.044, 0.049)
US (oracle) 0.942 (0.926, 0.956) 0.029 (0.029, 0.029)
MMLE 0.817 (0.792, 0.841) 0.017 (0.017, 0.017)
MISE 0.402 (0.371, 0.433) 0.011
Unregularized 0.956 (0.941, 0.968) 8063

σ= 0.005 BC (data) 0.932 (0.915, 0.947) 0.079 (0.077, 0.081)
BC (oracle) 0.937 (0.920, 0.951) 0.064 (0.064, 0.064)
US (data) 0.933 (0.916, 0.948) 0.091 (0.087, 0.095)
US (oracle) 0.949 (0.933, 0.962) 0.070 (0.070, 0.070)
MMLE 0.478 (0.447, 0.509) 0.030 (0.030, 0.030)
MISE 0.359 (0.329, 0.390) 0.028
Unregularized 0.952 (0.937, 0.964) 40316

σ= 0.025 BC (data) 0.865 (0.842, 0.886) 0.132 (0.129, 0.134)
BC (oracle) 0.939 (0.922, 0.953) 0.155 (0.155, 0.155)
US (data) 0.881 (0.859, 0.900) 0.171 (0.165, 0.177)
US (oracle) 0.945 (0.929, 0.958) 0.171 (0.171, 0.171)
MMLE 0.193 (0.169, 0.219) 0.062 (0.062, 0.062)
MISE 0.374 (0.344, 0.405) 0.072
Unregularized 0.946 (0.930, 0.959) 201580

short of the target coverage, but perform still significantly better than the non-bias-corrected

intervals induced by the MMLE, which for this noise level fail catastrophically. In each case,

the regularized intervals are several orders of magnitude shorter than the unregularized ones.

Table 6.2 shows the same results for the two-peak function f2. The general conclusions from

these results are similar to those of the one-peak situation. We notice however that in this

case at noise level σ= 0.001 the bias-corrected intervals seem to be slightly longer than the

undersmoothed ones, while in all other test cases the undersmoothed intervals have been

longer. This perhaps suggests that in low-noise situations, where little debiasing is needed, the

full bias-correction iterations are too coarse and undersmoothing benefits from the possibility

of making finer adjustments. Nevertheless, on a coverage-length plot similar to Figure 6.8,

bias-correction still lies above undersmoothing.
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Table 6.2: Empirical coverage at s = 2 (the location of the larger peak) and mean interval
length (averaged over both s and the sampling variability) for the two-peak function f2. The
results are shown for bias-corrected (BC), undersmoothed (US), non-bias-corrected (MMLE
& MISE) and unregularized intervals with 95 % nominal coverage and 94 % target coverage.
The debiased intervals are either fully data-driven or use oracle knowledge of f2 to choose the
amount of debiasing. The uncertainties given in the parentheses are 95 % confidence intervals.

Noise level Method Coverage at s = 2 Mean length

σ= 0.001 BC (data) 0.960 (0.946, 0.971) 0.040 (0.038, 0.041)
BC (oracle) 0.951 (0.936, 0.964) 0.026 (0.026, 0.026)
US (data) 0.958 (0.944, 0.970) 0.038 (0.036, 0.040)
US (oracle) 0.947 (0.931, 0.960) 0.025 (0.025, 0.025)
MMLE 0.845 (0.821, 0.867) 0.014 (0.014, 0.014)
MISE 0.235 (0.209, 0.263) 0.009
Unregularized 0.942 (0.926, 0.956) 8063

σ= 0.005 BC (data) 0.934 (0.917, 0.949) 0.065 (0.064, 0.067)
BC (oracle) 0.931 (0.913, 0.946) 0.053 (0.053, 0.053)
US (data) 0.923 (0.905, 0.939) 0.076 (0.073, 0.078)
US (oracle) 0.933 (0.916, 0.948) 0.058 (0.057, 0.058)
MMLE 0.612 (0.581, 0.642) 0.027 (0.027, 0.027)
MISE 0.539 (0.508, 0.570) 0.025
Unregularized 0.963 (0.949, 0.974) 40316

σ= 0.025 BC (data) 0.859 (0.836, 0.880) 0.112 (0.110, 0.114)
BC (oracle) 0.941 (0.925, 0.955) 0.129 (0.129, 0.129)
US (data) 0.852 (0.828, 0.873) 0.149 (0.144, 0.154)
US (oracle) 0.943 (0.927, 0.957) 0.139 (0.139, 0.139)
MMLE 0.132 (0.112, 0.155) 0.051 (0.051, 0.051)
MISE 0.582 (0.551, 0.613) 0.070
Unregularized 0.939 (0.922, 0.953) 201580

These same experiments were repeated with the smearing kernel in Equation (6.66) re-

placed by the Laplace distribution with zero mean and unit variance, k(t , s) = k(t − s) =
Laplace(t −s|0,1/

�
2). The conclusions from the Laplace experiments were analogous to those

of the Gaussian experiments. The main difference was that the Laplace smearing seems less

sensitive to noise than the Gaussian smearing. For example, at σ= 0.025, the empirical cover-

age was almost at the target value 94 % for both debiasing methods and both test scenarios.

This difference is hardly surprising since the Laplace distribution is an example of an ordinary

smooth density and as such should lead to more tractable deconvolution problems than the

supersmooth Gaussian distribution (Meister, 2009).

For the case of Gaussian smearing, the full simulation results for the different scenarios are

given in Appendix B.2.
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6.5 Unfolding with data-driven bias-correction

In this section, we demonstrate how to apply the ideas presented in Section 6.4 to the full

unfolding problem. One could in principle use the bootstrap to calibrate the iteratively

bias-corrected percentile intervals based on either the posterior mean β̂PM or the positivity-

constrained Gaussian approximation β̂G+ to yield 1−α− ε coverage. This would be done

by resampling new observations y∗ and using these to check the coverage of the intervals

for different numbers of bias-correction iterations NBC. However, this would mean three

layers of bootstrap resampling: one for estimating the bias, one for constructing the intervals

and one for calibrating the coverage of these intervals. While this is in principle doable, the

procedure would in practice be computationally extremely demanding. For this reason, we

opt for a computationally more tractable approach based on the unconstrained Gaussian

approximation described in Section 5.2.4.

Throughout this section, we use the MMLE as described in Section 5.3.1 to estimate the regu-

larization strength δ. If we ignore the data-dependence of Σ̂ and δ̂MMLE, the unconstrained

Gaussian estimator is linear in y , β̂G = Ay , with A = (
K TΣ̂−1K +2δ̂MMLEΩA

)−1
K TΣ̂−1. We

then know by Section 6.4.1, that the corresponding iteratively bias-corrected estimator is

given by β̂(t ) = J (t )β̂G = J (t ) Ay , where J (t ) = I +(I −AK )J (t−1) and J (0) = I . The 1−α iteratively

bias-corrected Gaussian confidence intervals for θi = f (si ) =∑p
j=1β j B j (si ) = c T

i β induced by

this estimator are

[
θi , θi

]= [θ̂i − z1−α/2

√
v̂ar

(
θ̂i
)
, θ̂i + z1−α/2

√
v̂ar

(
θ̂i
)]

(6.77)

=
[
θ̂i − z1−α/2

√
c T

i J (t ) AΣ̂
(

J (t ) A
)Tci , θ̂i + z1−α/2

√
c T

i J (t ) AΣ̂
(

J (t ) A
)Tci

]
, (6.78)

where θ̂i = c T
i β̂

(t ). If we assume that the sample size is large enough that the distribution of

y is close enough to the Gaussian N (Kβ,Σ̂) and again ignore the data-dependence of Σ̂ and

δ̂MMLE, then Proposition 6.2 can be used to write down the coverage of the interval (6.78). We

can then use Algorithm 4 to estimate this coverage and choose the number of bias-correction

iterations NBC to yield the target coverage 1−α− ε. An analogous approach can also be

implemented for data-driven undersmoothed Gaussian intervals as described in Section 6.4.4.

We demonstrate the performance of these data-driven debiased intervals by unfolding the

two peaks on a uniform background test setup described in Section 3.4.1 and also studied

in Sections 5.4 and 6.4.1. The MMLE of the regularization strength was obtained as in Sec-

tion 5.4.1 and the boundary hyperparameters were also set to the same values as in that

section. The number of bias-correction iterations was chosen to give 94 % target coverage for

the nominal 95 % intervals. The estimated number of bias-correction iterations was N̂BC = 16,

N̂BC = 16 and N̂BC = 12 for the small, medium and large sample size cases, respectively (the

same number of iterations for the small and medium sample size is a coincidence; on av-

erage a larger number of iterations is taken for the small sample size than for the medium

sample size). For undersmoothing, the respective estimated regularization strengths were
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Table 6.3: Empirical coverage at s = 2 (the location of the larger peak) and mean interval
length (averaged over both s and the sampling variability) in unfolding the two peaks on a
uniform background test setup using data-driven iteratively bias-corrected, undersmoothed
and non-bias-corrected Gaussian confidence intervals induced by the unconstrained Gaussian
estimator β̂G. The regularization strength was chosen using the MMLE and the intervals
have 94 % pointwise target coverage and 95 % nominal coverage. The uncertainties in the
parentheses are 95 % confidence intervals.

Sample size Method Coverage at s = 2 Mean length

λtot = 50 000 Bias-corrected 0.937 (0.920, 0.951) 2111 (2041, 2181)
Undersmoothed 0.924 (0.906, 0.940) 2291 (2189, 2393)
Non-bias-corrected 0.557 (0.526, 0.588) 737 (736, 739)

λtot = 10 000 Bias-corrected 0.918 (0.899, 0.934) 500 (489, 510)
Undersmoothed 0.919 (0.900, 0.935) 633 (605, 661)
Non-bias-corrected 0.342 (0.313, 0.372) 198 (197, 198)

λtot = 1 000 Bias-corrected 0.805 (0.779, 0.829) 68.9 (67.6, 70.2)
Undersmoothed 0.855 (0.832, 0.876) 99.5 (95.9, 103.1)
Non-bias-corrected 0.047 (0.035, 0.062) 29.2 (29.0, 29.3)

δ̂US = 3.0·10−6, δ̂US = 3.4·10−8 and δ̂US = 2.1·10−9, which should be compared with the MMLE

values δ̂MMLE = 2.2 ·10−4, δ̂MMLE = 1.2 ·10−6 and δ̂MMLE = 4.1 ·10−8.

The resulting data-driven iteratively bias-corrected Gaussian intervals are shown in Figure 6.12.

The undersmoothed intervals are given in Appendix B.3, which also provides the Gaussian

intervals induced by the non-bias-corrected estimator β̂G. We find that the data-driven

procedure has reduced the bias of the estimators enough to provide improved uncertainty

estimates especially at the larger peak, while still managing to maintain the length of the

intervals within reasonable limits. The confidence bands are perhaps slightly more wiggly

than desired near the tails of the intensity, which can be partially attributed to the lack of the

positivity constraint in β̂G as well as to the weak boundary constraint employed here.

Figure 6.13 shows the empirical coverage and mean length of these intervals for 1 000 repeated

observations and sample size λtot = 10 000. Analogous plots for the other sample sizes are

given in Appendix B.3 and a summary of these results is given in Table 6.3. The conclusions

that emerge from these results are similar to those of Section 6.4.5. The coverage of the data-

driven debiased intervals is close to the 94 % target coverage, except for the small sample

size, where the intervals have slight undercoverage. In all cases, the coverage of the debiased

intervals is significantly better than that of the non-bias-corrected intervals, which suffer

from drastic undercoverage. As in Section 6.4.5, the bias-corrected intervals are shorter than

the undersmoothed ones. For example, at the medium sample size, the mean length (aver-

aged over both s and the sampling variability) of the bias-corrected intervals is 21 % smaller

than that of the undersmoothed intervals. As a result, we conclude that the bias-corrected
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Figure 6.12: Unfolding of the two peaks on a uniform background test setup using data-
driven iteratively bias-corrected Gaussian confidence intervals induced by the unconstrained
Gaussian estimator β̂G. The intervals have 94 % pointwise target coverage and 95 % nominal
coverage. The regularization strength was chosen using the MMLE.
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Figure 6.13: Empirical coverage and mean interval length in unfolding the two peaks on a
uniform background test setup using data-driven iteratively bias-corrected, undersmoothed
and non-bias-corrected Gaussian confidence intervals induced by the unconstrained Gaussian
estimator β̂G. The sample size was λtot = 10 000 and the regularization strength chosen using
the MMLE. The intervals have 94 % pointwise target coverage (dashed horizontal line) and
95 % nominal coverage (solid horizontal line).
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Figure 6.14: Illustration of the variability of the data-driven iteratively bias-corrected Gaussian
confidence intervals in unfolding the two peaks on a uniform background test setup with
sample size λtot = 10 000. The panels show realizations of the intervals for given percentiles
of the sampling distribution of interval lengths (averaged over s). The intervals have 94 %
pointwise target coverage and 95 % nominal coverage. The figures also show the true intensity
(dashed line), the non-bias-corrected point estimate (solid line) and the bias-corrected point
estimate (dotted line).

intervals should be preferred over the undersmoothed ones for sample sizes λtot = 10 000 and

λtot = 50 000. For the small sample size λtot = 1 000, the situation however is not as clear-cut.

Namely, the bias-corrected intervals are shorter but also seem to undercover more than the

undersmoothed intervals. This is most likely an anomaly caused by the data-based estimate

of the coverage—for an oracle coverage, we would expect by Section 6.4.5 that both methods

attain the 94 % target coverage, with the bias-corrected intervals still remaining shorter than

the undersmoothed ones. Another difference in comparison to Section 6.4.5 is that there

is a significant increase in the interval length near the boundaries of the true space E . This

happens because the boundary constraint here is weaker than that of Section 6.4.5 and could

be addressed by including stronger a prior information about the behavior of f near the

boundary, if such information is available.

It should be noted that there is some amount of variation in the length and wiggliness of

the debiased confidence intervals. The realizations shown in Figure 6.12 are such that the

interval length (averaged over s) is close to the mean interval length (averaged over both s
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and the sampling variability). To get a better sense of the sampling variability of the intervals,

Figure 6.14 shows realizations of the data-driven bias-corrected intervals for given percentiles

of the sampling distribution of interval lengths (averaged over s) for sample size λtot = 10 000.

Analogous plots for the other sample sizes are given in Appendix B.3. We conclude that even

in the more severe cases the length and wiggliness of the intervals remains tolerable.

6.6 Real data demonstration: Z boson invariant mass spectrum

6.6.1 Description of the data

In this section, we demonstrate the uncertainty quantification methodology developed in the

present chapter by unfolding the Z boson invariant mass spectrum measured in the CMS

experiment at the LHC. The Z boson is the carrier of the weak interaction and is produced

in large quantities at the LHC. Once created, it decays almost instantaneously to other types

of particles. Here we consider in particular the decay mode to a positron and an electron,

Z → e+e−. We use the smeared invariant mass spectrum published in CMS Collaboration

(2013a). These data were originally collected to calibrate the CMS electromagnetic calorimeter,

but also constitute an excellent testbed for unfolding since the true intensity f underlying these

data is known with great accuracy from previous experiments and theoretical considerations.

The electron and the positron from the Z decay pass first through the CMS silicon tracker

after which their energies Ei , i = 1,2, are measured in the ECAL; see Section 2.1. Using the

information from these two detectors, one can compute the invariant mass W of the electron-

positron system,

W 2 = (E1 +E2)2 −‖p1 +p2‖2
2, (6.79)

where pi , i = 1,2, are the momenta of the two particles and the equation is written in natural

units where the speed of light c = 1. Since ‖pi‖2
2 = E 2

i −m2
e , where me is the rest mass of the

electron, one can calculate the invariant mass W using only the energy deposits Ei and the

opening angle between the two tracks in the tracker.

The invariant mass W is conserved in particle decays. It is also Lorentz invariant, that is, it has

the same value in every frame of reference. This implies that the invariant mass of the Z boson,

which is simply its rest mass m, is equal to the invariant mass of the electron-positron system,

W = m. As a result, the invariant mass spectrum of the electron-positron pair is directly also

the mass spectrum of the Z boson that produced the pair.

As a result of the time-energy uncertainty principle, the Z boson does not have a unique rest

mass m. Instead, the mass is known to follow the Cauchy (or Breit–Wigner) distribution,

p(m) = 1

2π

Γ

(m −mZ )2 + Γ2

4

, (6.80)
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where mZ = 91.1876 GeV is the mode of the distribution (sometimes simply called the mass

of the Z boson) and Γ = 2.4952 GeV is the full width of the distribution at half maximum

(Beringer et al., Particle Data Group, 2012). Since the contribution of background processes

to the electron-positron channel near the Z peak is negligible (CMS Collaboration, 2013a),

the true intensity f (m) is proportional to p(m) and we can validate the unfolded results by

comparing the shape of the unfolded spectrum to that of p(m).

The Z boson invariant mass m is smeared by the noise in the energy measurements Ei . To a

first approximation, the detector response can be modeled as a convolution with a fixed-width

Gaussian kernel. However, a more realistic response can be obtained by replacing the left tail

of the kernel by a more slowly decaying function in order to account for energy losses in the

ECAL. The resulting response function is the so-called Crystal Ball function (Oreglia, 1980;

CMS Collaboration, 2013a),

CB(m|Δm,σ2,α,γ) =
⎧⎨⎩Ce−

(m−Δm)2

2σ2 , m−Δm
σ >−α,

C
( γ
α

)γ
e−

α2

2
( γ
α −α− m−Δm

σ

)−γ
, m−Δm

σ ≤−α,
(6.81)

where σ,α> 0, γ> 1 and C is a normalization constant chosen so that the function is a proba-

bility density. The Crystal Ball function is a Gaussian density with mean Δm and variance σ2,

where the left tail is replaced by a power law. The parameter α controls the location of the

transition from exponential decay into power-law decay and γ gives the decay rate of the

power-law tail. The integration kernel in Equation (3.1) is then given by

k(t , s) = k(t − s) = CB(t − s|Δm,σ2,α,γ), (6.82)

corresponding to a convolution with the Crystal Ball function (6.81).

The specific dataset we use is a digitized version of the lower left hand plot of Figure 11 in

CMS Collaboration (2013a). These data have center-of-mass energy 7 TeV and correspond to

an integrated luminosity of 4.98 fb−1 collected by the CMS experiment in 2011. The dataset

consists of 67 778 electron-positron events in 100 equal-width bins with smeared invariant

masses between 65 GeV and 115 GeV. Details of the event selection are given in CMS Collabo-

ration (2013a) and the references therein.

We estimate the parameters of the Crystal Ball response by dividing the dataset into two

independent samples by drawing a binomial random variable independently for each bin

with the number of trials equal to the observed bin contents. The bins of the resulting two

smeared histograms are marginally independent and Poisson distributed. Each event had a

70 % probability of belonging to the histogram y used in the unfolding demonstration; the

rest of the smeared events were used to estimate the Crystal Ball parameters.

We estimated the Crystal Ball parameters (Δm,σ2,α,γ) using maximum likelihood on the

full invariant mass range 65–115 GeV. To do this, we assumed that the true intensity f (m) is

proportional to the Breit–Wigner distribution (6.80) and also estimated the unknown propor-
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tionality constant as part of the maximum likelihood fit. The likelihood function was obtained

by substituting Equations (6.80) and (6.82) into Equation (3.7). The maximum likelihood

estimates of the Crystal Ball parameters were

(Δm̂, σ̂2, α̂, γ̂) = (0.56 GeV,(1.01 GeV)2,1.95,1.40). (6.83)

In other words, the smeared events are on average shifted to the right by 0.56 GeV and have

an experimental resolution of approximately 1 GeV. As a cross-check of the fit, the expected

smeared histogram corresponding to the estimated Crystal Ball response was compared to the

smeared observations and the two were found to be in good agreement.

The procedure described here for estimating the forward mapping is similar to what would

be used to estimate the detector response from test beam measurements, but is unrealistic

in the sense that it requires at least partial knowledge of the unknown intensity f . A more

realistic alternative approach would be to use Monte Carlo detector simulations. That is, one

would generate simulated Z → e+e− events and propagate the true invariant masses X MC
i

through a computer model of the CMS detector to obtain the corresponding smeared invariant

masses Y MC
i . One would then use the pairs (X MC

i ,Y MC
i ) to obtain an estimate of the smearing

kernel k(t , s), which could also be nonparametric. However, due to the unavailability of the

required MC sample, we did not pursue such more complex estimates of the forward mapping

in the present work.

6.6.2 Unfolding setup and results

We unfold the Z boson invariant mass spectrum using the n = 30 bins on the interval

F = [82.5 GeV,97.5 GeV]. The resulting subsampled smeared histogram y had 42 475 electron-

positron events. We let the true space be E = [81.5 GeV,98.5 GeV], which extends F by approx-

imately 1σ̂ in order to account for events that are smeared into the observed interval from

outside its boundaries. The true space E was discretized using cubic B-splines with L = 34

uniformly placed interior knots corresponding to p = 38 unknown spline coefficients. This

overparameterization with p > n was found to improve the mixing the MCMC sampler. The

condition number of the resulting design matrix K was cond(K ) ≈ 8.1 ·103, indicating that

the problem is severely ill-conditioned. We used the values γL = γR = 50 for the boundary

hyperparameters.

We first used the MCEM iteration described in Algorithm 1 to obtain the MMLE of the reg-

ularization strength δ. The parameters of the algorithm were set to the same values as

in Section 5.4.1. The algorithm converged in approximately 10 iterations to the estimate

δ̂MMLE = 7.0 ·10−8 with little Monte Carlo variation. We then used Algorithm 4 to obtain an

estimate of the number of bias-correction iterations needed to obtain 94 % target coverage

using the nominal 95 % Gaussian intervals. The choice of the number of bias-correction itera-

tions was based on the unconstrained Gaussian approximation β̂G as described in Section 6.5.

The estimated number of bias-correction iterations was N̂BC = 14.
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Figure 6.15(a) shows the nominal 95 % Gaussian intervals induced by the bias-corrected

estimator β̂BC = J (14)β̂G. By Sections 6.4 and 6.5, we expect these intervals to have close to

94 % pointwise coverage and we indeed observe that the intervals cover the true intensity

f across the whole spectrum. (The proportionality constant of f was obtained using the

maximum likelihood fit described in Section 6.6.1.) The length of the bias-corrected intervals

seems very reasonable given the ill-posedness of the problem, although the intervals are a

bit more wiggly than desired at the tails of the mass peak, but this is the price that one has

to pay in order to obtain good coverage performance at the peak itself. Notice also how the

bias-corrected point estimator f̂BC improves upon the non-bias-corrected estimator at the

peak, where the original estimator clearly underestimates the size of the peak.

We also used Algorithm 3 with N̂BC = 14 iterations to compute the 95 % iteratively bias-

corrected percentile intervals based on the posterior mean β̂PM (see Section 5.2.1). The

regularization strength was set to δ̂MMLE and the same bootstrap sample sizes were used as

in Section 6.3. The resulting intervals, which are shown in Figure 6.15(b), are fairly similar

to the iteratively bias-corrected Gaussian intervals and also cover the true intensity f across

the whole spectrum. However, the percentile intervals are less wiggly at the tails of the Z

peak. This difference is presumably due to the fact that the posterior mean β̂PM imposes the

positivity constraint while the Gaussian approximation β̂G does not. At the same time the

intervals are more rugged than the Gaussian intervals which is due to the finite size of the

bootstrap and MCMC samples. Strictly speaking, we are not able to make claims about the

coverage of these intervals based on our previous experiments. However, given the similarity

of the percentile intervals and the Gaussian intervals especially at the top of the Z peak one

could conjecture that the coverage of these intervals is also close to the target coverage 94 %.

Notice that both of these intervals neglect the uncertainty concerning the data-based deter-

mination of the smearing kernel. While it might be possible to incorporate this uncertainty

into the bootstrap-based intervals, we consider detailed studies of this effect to be beyond the

scope of the present work. In the particular case of the Z boson mass spectrum, we expect

the size of this effect to be small in comparison to the overall uncertainty since a fairly large

amount of data was used to constraint only 5 free parameters (the 4 parameters of the Crystal

Ball kernel and the unknown proportionality constant).
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Figure 6.15: Data-driven iteratively bias-corrected confidence intervals in unfolding the Z
boson invariant mass spectrum measured in the CMS experiment at the LHC. Figure (a) shows
the Gaussian intervals based on the unconstrained Gaussian estimator β̂G and Figure (b)
the percentile intervals based on the posterior mean β̂PM. The number of bias-correction
iterations was calibrated to yield 94 % pointwise target coverage for the Gaussian intervals.
The nominal coverage was 95 % and the regularization strength chosen using the MMLE.
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7 Shape-constrained uncertainty quan-
tification for steeply falling spectra

In this chapter, we study unfolded uncertainty quantification in situations where the true spec-

trum f is known to satisfy qualitative shape constraints in the form of positivity, monotonicity

and convexity. In particular, we construct regularized confidence intervals by exploiting the

fact that a large fraction of LHC spectra are known to be steeply falling. Such spectra are

positive, decreasing and, in most cases, also convex.

Typical examples of steeply falling spectra are the energy and transverse momentum spectra

of particle interactions. Recent LHC analyses that involve unfolding such spectra include the

measurement of the differential cross section of jets (CMS Collaboration, 2013b), top quark

pairs (CMS Collaboration, 2013c), the W boson (ATLAS Collaboration, 2012b) and the Higgs

boson (CMS Collaboration, 2016). More precise measurement of these and other steeply

falling particle spectra is the subject of several ongoing physics analyses at the LHC.

We form shape-constrained confidence intervals using the strict bounds construction described

in Stark (1992). In other words, we form the confidence intervals by considering all those true

intensities f that satisfy the shape constraints and fit the smeared observations y within a

given confidence level. This enables us to form confidence intervals for functionals of f with

guaranteed simultaneous frequentist finite-sample coverage. To the best of our knowledge, this

construction is the first one to yield usefully tight unfolded confidence intervals with rigorous

coverage guarantees.

We first explain in Section 7.1 how shape constraints can be used to regularize the unfolding of

steeply falling spectra. We then give in Section 7.2 an outline of the strict bounds construction,

while Section 7.3 provides details of the construction for shape-constrained unfolding. We

demonstrate the resulting confidence intervals in Section 7.4 by unfolding the steeply falling

inclusive jet transverse momentum spectrum described in Section 3.4.2.
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Figure 7.1: Illustration of using shape constraints to unfold a steeply falling particle spectrum.
The unregularized solution (here a maximum likelihood spline fit) exhibits unphysical oscilla-
tions, but when the solution is constrained to be positive, decreasing and convex, it becomes
almost indistinguishable from the true solution.

7.1 Regularization of steeply falling spectra using shape constraints

A priori shape information provides strong, physically justified regularization for the otherwise

ill-posed unfolding problem. This is illustrated in Figure 7.1, which shows the inclusive

jet transverse momentum spectrum of Section 3.4.2 unfolded with and without positivity,

monotonicity and convexity constraints. The curves in the figure are maximum likelihood

estimates for the spline discretization with L = 16 uniformly placed interior knots and the

shape constraints were applied by imposing Equations (3.14)–(3.16) on the spline coefficients.

The unregularized solution exhibits large unphysical oscillations, while the shape-constrained

solution can be barely distinguished from the true spectrum f . For increasing dimension

of the spline basis, the oscillations in the unregularized solution become even larger, but

the shape-constrained solution remains well-behaved. The spline basis is used here only for

illustration purposes; the shape-constrained uncertainty quantification method developed in

this chapter does not require f to be a spline.

There is an extensive literature on using shape-constraints to regularize non-parametric point

estimates; see, e.g., Robertson et al. (1988) and Groeneboom and Jongbloed (2014). The

seminal work on this topic is by Grenander (1956), who derived the nonparametric maximum

likelihood estimator of a density subject to a monotonicity constraint. However, most of this

work has focused on point estimation of density or regression functions without measurement
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error and using shape constraints to regularize deconvolution-type problems has received

only limited attention, with contributions by Wahba (1982), Stark (1992), Carroll et al. (2011)

and Pflug and Wets (2013). Especially the case of constructing shape-constrained confidence

intervals for indirect observations, which is our main topic of interest in the present chapter,

has been rarely treated in the literature, with the exception of Stark (1992), who provides a

general prescription for constructing shape-constrained finite-sample confidence intervals.

A similar construction is also sketched by Rust and Burrus (1972).

To the author’s best knowledge, monotonicity and convexity constraints have not been previ-

ously used to regularize unfolding of steeply falling particle spectra in high energy physics.

There exists a related line of work in nuclear spectroscopy, where Burrus (1965), Burrus and

Verbinski (1969) and O’Leary and Rust (1986) use a construction similar to ours to construct

positivity-constrained unfolded confidence intervals. However, these authors consider sit-

uations where the true spectrum contains one or more peaks, and hence monotonicity or

convexity constraints would not be appropriate. This is in contrast with differential cross

section measurements at the LHC, where the spectra are typically known to be decreasing and

usually also convex.

7.2 Outline of the strict bounds construction

We form the shape-constrained confidence intervals using the strict bounds construction of

Stark (1992). This is a generic way of forming confidence intervals with guaranteed simultane-

ous coverage for a set of functionals of f given the a priori information that f ∈C , where C ⊆V .

The a priori information we have in mind is that C consists of those functions that satisfy the

desired shape constraints, but, for the present section, C may be any subset of V .

Recall from Section 3.2.1 the semi-discrete statistical model

y ∼ Poisson(μ), with μ=K f , (7.1)

where K : V →Rn , f 
→ [
K1 f , . . . ,Kn f

]T, with the forward functionals K j , j = 1, . . . ,n, given by

Equation (3.9). Given this model, our aim in this section is to form simultaneous confidence

intervals for the vector

λ= [H1 f , . . . , Hp f
]T, (7.2)

where Hk : V → R, f 
→ Hk f , k = 1, . . . , p, are functionals corresponding to features of f that

are of scientific interest. We are particularly interested in functionals Hk that correspond to

the binned means of the true Poisson point process M ,

Hk : V →R, f 
→
∫

Ek

f (s)ds, (7.3)

where the true bins Ek are as in Equation (3.17). The construction of the present section,
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Figure 7.2: Illustration of the strict bounds construction (Stark, 1992). The set Ξ is a 1−α

simultaneous confidence set for μ based on the smeared data y . Its preimage D is a 1−α

confidence set for f . If f ∈ C , then C ∩D is a regularized 1−α confidence set for f . The
extremal values of the functionals of interest over C ∩D yield the strict bound confidence
intervals [λk ,λk ], k = 1, . . . , p, which have conservative 1−α simultaneous coverage for the
quantities of interest λk , k = 1, . . . , p.

however, is valid for any functionals Hk , including, for example, point evaluators Hk f = f (sk ),

derivatives Hk f = f ′(sk ) or nonlinear functionals, such as the location of the mode of f .

The strict bounds construction of confidence intervals for λ is illustrated in Figure 7.2. The

construction proceeds as follows:

1. For α ∈ (0,1), we first form a 1−α simultaneous confidence set for the smeared mean μ

based on the smeared data y . Let us denote this set by Ξ.

2. We then look at K −1(Ξ), the preimage of Ξ under the forward mapping K . This is a

1−α confidence set for the true intensity f in the unfolded space. Let us denote this set

by D , that is, D =K −1(Ξ).

3. We then regularize the confidence set D by intersecting it with the a priori constraints

C ⊆V . Provided that the actual intensity function f satisfies these constraints, the set

C ∩D is a 1−α confidence set for f .

4. We then look at the extremal values of the functionals of interest Hk over C ∩D . That is,

for each k = 1, . . . , p, we compute

λk = inf
f ∈C∩D

Hk f and λk = sup
f ∈C∩D

Hk f . (7.4)

It follows that the set [λ1,λ1]×·· ·× [λp ,λp ] is a 1−α simultaneous confidence set for

λ= [H1 f , . . . , Hp f
]T.
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More formally, we have the following result:

Theorem 7.1 (Stark (1992)). Let μ = K f for K : V → Rn and let Ξ ⊆ Rn be a random set

satisfying P f
(
μ ∈Ξ

)≥ 1−α, ∀ f ∈V . Denote D =K −1(Ξ) and let

λk = inf
f ∈C∩D

Hk f and λk = sup
f ∈C∩D

Hk f for k = 1, . . . , p, (7.5)

where Hk are functionals on V and C ⊆V is such that f ∈C . Then

P f
(
λ ∈ [λ1,λ1]×·· ·× [λp ,λp ]

)≥ 1−α, ∀ f ∈C , (7.6)

where λ= [H1 f , . . . , Hp f
]T.

Proof. By definition, f ∈K −1(Ξ) ⇔K f ∈Ξ⇔μ ∈Ξ. Hence P f (μ ∈Ξ) = P f ( f ∈K −1(Ξ)) =
P f ( f ∈ D). Since P f (μ ∈ Ξ) ≥ 1−α, ∀ f ∈ V , we also have that P f ( f ∈ D) ≥ 1−α, ∀ f ∈ V .

Since C ⊆V ,

P f ( f ∈ D) ≥ 1−α, ∀ f ∈V ⇒ P f ( f ∈ D) ≥ 1−α, ∀ f ∈C (7.7)

⇒ P f
(
{ f ∈C }∩ { f ∈ D}

)≥ 1−α, ∀ f ∈C (7.8)

⇒ P f ( f ∈C ∩D) ≥ 1−α, ∀ f ∈C . (7.9)

We also have

f ∈C ∩D ⇒ inf
f ′∈C∩D

Hk f ′ ≤ Hk f ≤ sup
f ′∈C∩D

Hk f ′, ∀k (7.10)

⇒λk ≤λk ≤λk ,∀k ⇒λ ∈ [λ1,λ1]×·· ·× [λp ,λp ]. (7.11)

Hence

P f
(
λ ∈ [λ1,λ1]×·· ·× [λp ,λp ]

)≥ P f ( f ∈C ∩D) (7.12)

and by Equation (7.9) we have that P f
(
λ ∈ [λ1,λ1]×·· ·× [λp ,λp ]

)≥ 1−α, ∀ f ∈C .

Notice that as long as it is known by physical considerations that f ∈C , then [λ1,λ1]×·· ·×
[λp ,λp ] is a regularized confidence set with guaranteed simultaneous finite-sample coverage.

However, the inequality in Equation (7.12) is generally strict and, as a result, the coverage

probability of [λ1,λ1]× ·· · × [λp ,λp ] is usually strictly greater than 1−α. In other words,

the construction is conservative in the sense that the resulting confidence set may have a

non-negligible amount of overcoverage, but it cannot undercover for any f ∈C .

Notice also that this construction is fully generic in the sense that it does not depend on the

specific form of the constraints C or the functionals Hk . In the rest of this chapter, we use the

construction to form shape-constrained confidence intervals, but in principle the approach

113



Chapter 7. Shape-constrained uncertainty quantification for steeply falling spectra

could also be applied with a smoothness constraint of the form C = {
f ∈ V : ‖ f ′′‖2

2 ≤ τ
}
.

However, the coverage would only be guaranteed if the upper bound τ is known, which is

usually not the case.

With the strict bounds construction, the problem of forming confidence intervals for λ reduces

to solving the optimization problems inf f ∈C∩D Hk f and sup f ∈C∩D Hk f for k = 1, . . . , p. Since

sup
f ∈C∩D

Hk f =− inf
f ∈C∩D

−Hk f , (7.13)

we can without loss of generality focus on the minimization problem. Solving the minimization

problem inf f ∈C∩D Hk f is non-trivial since it involves an infinite-dimensional unknown subject

to an infinite set of constraints. We can nevertheless follow the approach of Stark (1992) to find

a conservative solution for this problem. Namely, we use Fenchel duality to turn the infinite-

dimensional minimization problem into a semi-infinite maximization problem with an n-

dimensional unknown and an infinite set of constraints. We then discretize the constraints in

such a way that any feasible point of the resulting finite-dimensional maximization problem

is guaranteed to yield a lower bound for inf f ∈C∩D Hk f . In other words, any such feasible point

provides a conservative confidence bound, with confidence level at least 1−α.

7.3 Unfolding with shape-constrained strict bounds

In this section, we explain in detail the construction of the shape-constrained strict bounds

for the unfolding problem. In doing so, we extend the existing methodology of Stark (1992) to

handle Poisson noise and present a novel way of imposing and discretizing the monotonicity

and convexity constraints. We first explain in Section 7.3.1 how to use Garwood intervals

to construct the smeared confidence set Ξ. In Section 7.3.2, we use Fenchel duality to turn

the infinite-dimensional primal program inf f ∈C∩D Hk f into a semi-infinite dual program.

Section 7.3.3 derives the explicit form of the dual constraints for different shape constraints

and Section 7.3.4 explains how these constraints can be discretized conservatively so that the

confidence level is maintained for the resulting finite-dimensional optimization problems.

The construction is summarized as a theorem in Section 7.3.5.

From this point onwards, we assume that the functionals Hk are linear and that the constraint

set C is convex. Further assumptions will be stated as we proceed.

7.3.1 Confidence set in the smeared space

The first step of the strict bounds construction is to form the confidence set Ξ for the smeared

mean μ under the model y ∼ Poisson(μ). This is straightforward since the components of y

are independent. For each j = 1, . . . ,n and for α′ ∈ (0,1), let
[
μ

j ,α′ ,μ j ,α′
]

be a 1−α′ confidence
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interval for μ j and assume that the interval depends on y j only. Then

P f
(
μ

1,α′ ≤μ1 ≤μ1,α′ , . . . ,μ
n,α′ ≤μn ≤μn,α′

)= n∏
j=1

P f
(
μ

j ,α′ ≤μ j ≤μ j ,α′
)≥ (1−α′)n . (7.14)

Hence, by settingα′ = 1−(1−α)1/n withα ∈ (0,1), we have thatΞ= [μ
1,α′ ,μ1,α′

]×·· ·×[μ
n,α′ ,μn,α′

]
is a 1−α simultaneous confidence set for μ, that is, P f

(
μ ∈Ξ

)≥ 1−α.

We use the Garwood construction (Garwood, 1936) to form the binwise intervals
[
μ

j ,α′ ,μ j ,α′
]
.

For each bin with a strictly positive event count, the 1−α′ Garwood intervals are

μ
j ,α′ =

1

2
F−1
χ2

(
α′

2
;2y j

)
and μ j ,α′ = 1

2
F−1
χ2

(
1− α′

2
;2(y j +1)

)
, (7.15)

where F−1
χ2 ( · ;k) is the quantile function (i.e., the inverse cumulative distribution function)

of the χ2 distribution with k degrees of freedom. If y j = 0, the upper bound is given by

Equation (7.15), but the lower bound is zero, μ
j ,α′ = 0. The Garwood intervals have guaranteed

1−α′ confidence level, but, due to the discreteness of the Poisson distribution, the actual

coverage probability is strictly greater than 1−α′ for any finite μ j (see Heinrich (2003, Section 6)

for a plot of the coverage probability of these intervals as a function of μ j ).

For the following sections, it will be convenient to write the hyperrectangle Ξ using its

center point ỹ , that is, Ξ = {
ỹ + ξ ∈ Rn : ‖diag(l )−1ξ‖∞ ≤ 1

}
, where, for each j = 1, . . . ,n,

ỹ j =
(
μ

j ,α′ +μ j ,α′
)
/2 and l j =

(
μ j ,α′ −μ

j ,α′
)
/2.

7.3.2 Strict bounds via duality

Our next task is to find a way to compute a conservative value for the lower bound inf f ∈C∩D Hk f .

We follow the approach of Stark (1992) and solve the problem using Fenchel duality (Luen-

berger, 1969, Section 7.12). For the primal problem

v(P ) = inf
f ∈C∩D

Hk f , (7.16)

the Fenchel dual is given by

v(D) = sup
f ∗∈C∗∩D∗

{
inf
f ∈D

f ∗[ f ]+ inf
f ∈C

(Hk − f ∗)[ f ]

}
, (7.17)

where C∗ = {
f ∗ ∈ V ∗ : inf f ∈C (Hk − f ∗)[ f ] > −∞}

, D∗ = {
f ∗ ∈ V ∗ : inf f ∈D f ∗[ f ] > −∞}

and

V ∗ is the algebraic dual space of V , that is, the set of all linear functionals on V . Here the

supremum over an empty set is defined to be −∞. Notice that the Fenchel dual divides the

dependence on C and D into two separate terms.

As shown for example in Stark (1992, Section 5), v(P ) and v(D) satisfy weak duality:
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Theorem 7.2 (Weak Fenchel duality). Let the primal problem v(P ) and the dual problem v(D)

be as in Equations (7.16) and (7.17). Then v(P ) ≥ v(D).

Proof. For any f ∗ ∈V ∗,

inf
f ∈C∩D

Hk f = inf
f ∈C∩D

{
f ∗[ f ]+ (Hk − f ∗)[ f ]

}
(7.18)

≥ inf
f ∈C∩D

f ∗[ f ]+ inf
f ∈C∩D

(Hk − f ∗)[ f ] (7.19)

≥ inf
f ∈D

f ∗[ f ]+ inf
f ∈C

(Hk − f ∗)[ f ]. (7.20)

We have hence established the inequality

v(P ) = inf
f ∈C∩D

Hk f ≥ sup
f ∗∈V ∗

{
inf
f ∈D

f ∗[ f ]+ inf
f ∈C

(Hk − f ∗)[ f ]

}
(7.21)

= sup
f ∗∈C∗∩D∗

{
inf
f ∈D

f ∗[ f ]+ inf
f ∈C

(Hk − f ∗)[ f ]

}
= v(D). (7.22)

Weak duality suffices to guarantee that the solution of dual problem (7.17) provides a conser-

vative confidence bound. However, under further technical regularity conditions, detailed in

Luenberger (1969, Section 7.12) and Stark (1992, Section 10.1), one can also establish strong

duality v(P ) = v(D), in which case there is no slack from solving the dual problem instead of

the primal.

It turns out that the Fenchel dual (7.17) can be written using a finite-dimensional unknown.

Namely, by Stark (1992, Section 5) and Backus (1970), the set D∗ consists of those functionals

that are linear combinations of the forward functionals K j ,

D∗ = { f ∗ ∈V ∗ : f ∗ =ν ·K ,ν ∈Rn}, (7.23)

where ν ·K =∑n
j=1ν j K j . The dual problem hence becomes

v(D) = sup
ν∈Rn :ν·K ∈C∗

{
inf
f ∈D

(ν ·K )[ f ]+ inf
f ∈C

(Hk −ν ·K )[ f ]

}
. (7.24)

By a simple modification of the argument given in Stark (1992, Section 5), we find that the first

term in (7.24) can be expressed in closed form:

Lemma 7.3. Let D =K −1(Ξ), where Ξ= {ỹ +ξ ∈Rn : ‖diag(l )−1ξ‖∞ ≤ 1
}
. Then

inf
f ∈D

(ν ·K )[ f ] ≥νT ỹ −‖ν‖l
1, (7.25)

where ‖ν‖l
1 = ‖diag(l )ν‖1 is the weighted �1-norm. If the forward functionals {K j }n

j=1 are

linearly independent, then (7.25) holds with equality.
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Proof. When f ∈ D ,

(ν ·K )[ f ] =νT(ỹ +ξ) ≥νT ỹ −|νTξ| =νT ỹ −|(diag(l )ν)T(diag(l )−1ξ)| (7.26)

≥νT ỹ −‖diag(l )ν‖1‖diag(l )−1ξ‖∞ ≥νT ỹ −‖ν‖l
1. (7.27)

Hence,

inf
f ∈D

(ν ·K )[ f ] ≥νT ỹ −‖ν‖l
1. (7.28)

To show that this lower bound is sharp, we employ the result of Stark (1992, Appendix A) which

shows that if {K j }n
j=1 are linearly independent, then there exists functions

{
f̃i
}n

i=1 in V such

that K j [ f̃i ] = δi , j , where δi , j is the Kronecker delta, that is, δi , j = 1 if i = j and δi , j = 0 if i �= j .

We shall show that f̃ =∑n
j=1β j f̃ j , where β j = ỹ j − ν j

|ν j | l j , attains the lower bound in (7.28). We

have

K [ f̃ ] =K
[ n∑

j=1
β j f̃ j

]
=

n∑
j=1

β j K [ f̃ j ] =
n∑

j=1
β j e j =

n∑
j=1

(
ỹ j −

ν j

|ν j |
l j

)
e j = ỹ +u, (7.29)

where u = −
n∑

j=1

ν j

|ν j | l j e j and e j ∈ Rn has 1 in the j th position and 0 elsewhere. Since

‖diag(l )−1u‖∞ = 1, we have that K [ f̃ ] = ỹ +u ∈Ξ and hence f̃ ∈ D . Moreover,

(ν ·K )[ f̃ ] =νT(K [ f̃ ]) =νT ỹ +νTu =νT ỹ −
n∑

j=1

ν2
j

|ν j |
l j =νT ỹ −

n∑
j=1

|ν j |l j =νT ỹ −‖ν‖l
1,

(7.30)

and hence f̃ attains the lower bound and the bound is sharp.

We have hence established the inequality

inf
f ∈C∩D

Hk f ≥ sup
ν∈Rn :ν·K ∈C∗

{
νT ỹ −‖ν‖l

1 + inf
f ∈C

(Hk −ν ·K )[ f ]

}
, (7.31)

which holds as an equality under regularity conditions. If the inequality is strict, the right-hand

side still yields a valid conservative bound.

We next characterize the set C∗ under the assumption that C is a convex cone, that is, C is

convex and satisfies that if f ∈C , then γ f ∈C for all γ≥ 0. This is satisfied for all the shape

constraints that we consider. We then have by Stark (1992, Section 6.2) the following result:

Lemma 7.4. Let C be a convex cone. Then the set C∗ = { f ∗ ∈V ∗ : inf f ∈C (Hk − f ∗)[ f ] >−∞}
is

equivalently given by

C∗ = { f ∗ ∈V ∗ : inf
f ∈C

(Hk − f ∗)[ f ] = 0
}= { f ∗ ∈V ∗ : (Hk − f ∗)[ f ] ≥ 0,∀ f ∈C

}
. (7.32)
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The second equality in Equation (7.32) is trivial and the first one follows by noting that if for

any f ∈C , (Hk − f ∗)[ f ] < 0, then (Hk − f ∗)[γ f ] = γ(Hk − f ∗)[ f ] can be made arbitrarily small

by taking γ→∞.

Hence, when C is a convex cone, the dual problem in Equation (7.31) simplifies further and is

given by

sup
ν∈Rn

{
νT ỹ −‖ν‖l

1

}
subject to (Hk −ν ·K )[ f ] ≥ 0, ∀ f ∈C . (7.33)

This is a semi-infinite program with an n-dimensional unknown and an infinite set of con-

straints.

7.3.3 Constraints of the dual program

In this section, we rewrite the dual constraint

(Hk −ν ·K )[ f ] ≥ 0, ∀ f ∈C , (7.34)

in an equivalent form that does not involve f . We do this for functionals Hk of the form (7.3)

and for the following shape constraints:

(P) f is positive, C = { f ∈V : f (s) ≥ 0,∀s ∈ E
}
;

(D) f is positive and decreasing, C = { f ∈V : f (s) ≥ 0∧ f ′(s) ≤ 0,∀s ∈ E
}
;

(C) f is positive, decreasing and convex, C = { f ∈V : f (s) ≥ 0∧ f ′(s) ≤ 0∧ f ′′(s) ≥ 0,∀s ∈ E
}

.

The positivity constraint (P) holds for any Poisson intensity function f , while the monotonicity

constraint (D) and the convexity constraint (C) correspond to shapes that are typically expected

for steeply falling particle spectra.

Let the functional Hk be given by Equation (7.3). Then the left-hand side of the dual constraint

(7.34) can be rewritten as

(Hk −ν ·K )[ f ] = Hk f −
n∑

j=1
ν j K j f =

∫
Ek

f (s)ds −
n∑

j=1
ν j

∫
E

k j (s) f (s)ds (7.35)

=
∫

E

(
1Ek (s)−

n∑
j=1

ν j k j (s)

)
f (s)ds =

∫
E

hk (s) f (s)ds, (7.36)

where 1Ek is the indicator function of Ek and we have denoted

hk (s) = 1Ek (s)−
n∑

j=1
ν j k j (s). (7.37)

The dual constraint hence becomes
∫

E hk (s) f (s)ds ≥ 0, ∀ f ∈C .
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We make the following assumptions concerning the function space V and the integration

kernels k j in Equation (3.9):

(A1) V consists of twice continuously differentiable functions on E , V =C 2(E);

(A2) The forward kernels k j are continuous on E , k j ∈C (E), j = 1, . . . ,n.

Notice that assumption (A2) implies that the functions hk are right-continuous on E . We also

mention that assumption (A1) can be relaxed, at least for the positivity constraint (P) and the

monotonicity constraint (D), but for simplicity we prefer to work with (A1). We then have the

following result:

Lemma 7.5. Assume (A1) and (A2). Then, for the shape constraints (P), (D) and (C), the dual

constraint
∫

E hk (s) f (s)ds ≥ 0, ∀ f ∈C , can be equivalently written as

(P) hk (s) ≥ 0, ∀s ∈ E ; (7.38)

(D)
∫s

Emin

hk (s′)ds′ ≥ 0, ∀s ∈ E ; (7.39)

(C)
∫s

Emin

∫s′

Emin

hk (s′′)ds′′ ds′ ≥ 0, ∀s ∈ E ∧
∫

E
hk (s)ds ≥ 0. (7.40)

Proof. The result for the positivity constraint (P) follows directly. For (D) and (C), the proof

employs integration by parts:

(D) We need to show∫
E

hk (s) f (s)ds ≥ 0, ∀ f ∈C ⇔
∫s

Emin

hk (s′)ds′ ≥ 0, ∀s ∈ E , (7.41)

where C corresponds to the monotonicity constraint (D). Integration by parts gives∫
E

hk (s) f (s)ds =
∫s

Emin

hk (s′)ds′ f (s)

∣∣∣∣Emax

Emin

−
∫

E

∫s

Emin

hk (s′)ds′ f ′(s)ds (7.42)

=
∫

E
hk (s)ds f (Emax)−

∫
E

∫s

Emin

hk (s′)ds′ f ′(s)ds. (7.43)

It is clear from this form that the right-hand side of Equation (7.41) implies the left-hand

side. To show the converse, assume that
∫s∗

Emin
hk (s′)ds′ < 0 for some s∗ in the interior

of E . Then, by the continuity of the integral,
∫s

Emin
hk (s′)ds′ < 0 for all s ∈ (s∗ −δ, s∗ +δ)

for some δ> 0. Let us consider a function d ∈C which is a strictly positive constant on

the interval [Emin, s∗ −δ] and zero on [s∗ +δ,Emax]. Substituting d into Equation (7.43)

yields∫
E

hk (s)d(s)ds =−
∫s∗+δ

s∗−δ

∫s

Emin

hk (s′)ds′d ′(s)ds < 0, (7.44)

which is a contradiction. Hence
∫s

Emin
hk (s′)ds′ ≥ 0 for all s in the interior of E and, by the

continuity of the integral, for all s ∈ E .
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(C) We need to show∫
E

hk (s) f (s)ds ≥ 0, ∀ f ∈C (7.45)

⇔
∫s

Emin

∫s′

Emin

hk (s′′)ds′′ ds′ ≥ 0, ∀s ∈ E ∧
∫

E
hk (s)ds ≥ 0, (7.46)

where C corresponds to the convexity constraint (C). A second application of integration

by parts in Equation (7.43) gives∫
E

hk (s) f (s)ds =
∫

E
hk (s)ds f (Emax)−

∫s

Emin

∫s′

Emin

hk (s′′)ds′′ ds′ f ′(s)

∣∣∣∣Emax

Emin

(7.47)

+
∫

E

∫s

Emin

∫s′

Emin

hk (s′′)ds′′ ds′ f ′′(s)ds (7.48)

=
∫

E
hk (s)ds f (Emax)−

∫Emax

Emin

∫s

Emin

hk (s′)ds′ ds f ′(Emax) (7.49)

+
∫

E

∫s

Emin

∫s′

Emin

hk (s′′)ds′′ ds′ f ′′(s)ds. (7.50)

We see from this expression that the right-hand side of Equation (7.45) implies the

left-hand side. To show the converse, take d ∈ C such that d(s) = a > 0 for all s ∈ E .

Substituting this into the left-hand side implies that we must have
∫

E hk (s)ds ≥ 0. Let

us then assume that
∫s∗

Emin

∫s′
Emin

hk (s′′)ds′′ ds′ < 0 for some s∗ in the interior of E . By

the continuity of the integral, it follows that
∫s

Emin

∫s′
Emin

hk (s′′)ds′′ ds′ < 0 for all s ∈ (s∗ −
δ, s∗ +δ) for some δ > 0. Let us consider a function d ∈ C which is linear and strictly

decreasing on the interval [Emin, s∗ −δ] and zero on [s∗ +δ,Emax]. Substituting d into

Equation (7.50) gives∫
E

hk (s)d(s)ds =
∫s∗+δ

s∗−δ

∫s

Emin

∫s′

Emin

hk (s′′)ds′′ ds′d ′′(s)ds < 0, (7.51)

which is a contradiction. Hence
∫s

Emin

∫s′
Emin

hk (s′′)ds′′ ds′ ≥ 0 for all s in the interior of E

and, by the continuity of the integral, for all s ∈ E .

By substituting hk from Equation (7.37) to the results of Lemma 7.5, we find that the constraints

on ν in the dual problem supν∈Rn

{
νT ỹ −‖ν‖l

1

}
are given by

(P)
n∑

j=1
ν j k j (s) ≤ LP

k (s), ∀s ∈ E ; (7.52)

(D)
n∑

j=1
ν j k∗

j (s) ≤ LD
k (s), ∀s ∈ E ; (7.53)

(C)
n∑

j=1
ν j k∗∗

j (s) ≤ LC
k (s), ∀s ∈ E ∧

n∑
j=1

ν j k∗
j (Emax) ≤ Ek,max −Ek,min, (7.54)
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where

k∗
j (s) =

∫s

Emin

k j (s′)ds′, (7.55)

k∗∗
j (s) =

∫s

Emin

∫s′

Emin

k j (s′′)ds′′ ds′, (7.56)

and the functions LP
k , LD

k and LC
k on the right-hand side are

LP
k (s) = 1Ek (s), (7.57)

LD
k (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, s < Ek,min,

s −Ek,min, Ek,min ≤ s < Ek,max,

Ek,max −Ek,min, s ≥ Ek,max,

(7.58)

LC
k (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, s < Ek,min,
1
2 (s −Ek,min)2, Ek,min ≤ s < Ek,max,
1
2 (Ek,max −Ek,min)2 + (Ek,max −Ek,min)(s −Ek,max), s ≥ Ek,max.

(7.59)

Here LP
k is piecewise constant, LD

k consists of two constant parts connected by a linear part

and LC
k has a constant and a linear part connected by a quadratic part.

We have hence derived explicit expressions for the constraints of the semi-infinite dual

program corresponding to the lower bound λk = inf f ∈C∩D Hk f . We can follow similar rea-

soning to find the dual program corresponding to the upper bound λk = sup f ∈C∩D Hk f =
− inf f ∈C∩D −Hk f . The end result is that λk is bounded from above by the solution (or any

feasible point) of infν∈Rn −{νT ỹ −‖ν‖l
1

}
subject to the constraints

(P)
n∑

j=1
ν j k j (s) ≤−LP

k (s), ∀s ∈ E ; (7.60)

(D)
n∑

j=1
ν j k∗

j (s) ≤−LD
k (s), ∀s ∈ E ; (7.61)

(C)
n∑

j=1
ν j k∗∗

j (s) ≤−LC
k (s), ∀s ∈ E ∧

n∑
j=1

ν j k∗
j (Emax) ≤ Ek,min −Ek,max. (7.62)

Notice that the constraints (7.60)–(7.62) and (7.52)–(7.54) differ only in the sign of the right-

hand side.

7.3.4 Conservative discretization of the dual constraints

We now have explicit expressions for the semi-infinite dual programs corresponding to the

lower bound λk and the upper bound λk . However, these still cannot be easily solved on a

computer due to the infinite set of constraints. In this section, we discretize these constraints

in such a way that the confidence level is preserved. The resulting dual programs have a
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finite-dimensional unknown and a finite number of constraints and can be hence solved using

standard numerical optimization tools.

In order to discretize the constraints, let s1 < s2 < ·· · < sm < sm+1 be a grid on E consisting of

m +1 grid points, with m � p. We assume that s1 = Emin, sm+1 = Emax and that there is a grid

point at each boundary between the true bins {Ek }p
k=1. A first idea would be to simply impose

the constraints on the grid points {si }m+1
i=1 . For example, for the positivity constraint (P), this

would correspond to requiring that

n∑
j=1

ν j k j (si ) ≤±LP
k (si ), i = 1, . . . ,m +1. (7.63)

However, this does not guarantee that the confidence level is preserved. Indeed, the discretized

feasible set would be larger than the original feasible set and the resulting confidence intervals

could be too short.

To guarantee the confidence level, we need to discretize the constraints in such a way that the

discretized feasible set is a subset of the original feasible set. This requires making sure that

the constraints are also satisfied between the grid points {si }m+1
i=1 . We do this in the following

sections by finding on each interval [si , si+1) a convenient upper bound for the left-hand side

of the constraint relations (7.52)–(7.54) and (7.60)–(7.62) and then constraining this upper

bound to be below the right-hand size functions ±LP
k , ±LD

k or ±LC
k .

7.3.4.1 Positive intensities

Let us first consider the positivity constraint (P) and the lower bound λk , where the dual

constraint is given by Equation (7.52). For each j = 1, . . . ,n, let us write ν j = ν+j −ν−j with

ν+j ,ν−j ≥ 0. Then, for every s ∈ [si , si+1), we have the upper bound

n∑
j=1

ν j k j (s) =
n∑

j=1
ν+j k j (s)−

n∑
j=1

ν−j k j (s) (7.64)

≤
n∑

j=1
ν+j sup

ξ∈[si ,si+1)
k j (ξ)−

n∑
j=1

ν−j inf
ξ∈[si ,si+1)

k j (ξ) (7.65)

=
n∑

j=1
ν+j ρi , j −

n∑
j=1

ν−j ρi , j
, (7.66)

where we have denoted ρi , j = supξ∈[si ,si+1) k j (ξ) and ρi , j = infξ∈[si ,si+1) k j (ξ). This bounds the

left-hand side of Equation (7.52) by a constant with respect to s on the interval [si , si+1). Since

the right-hand side LP
k is also constant on [si , si+1), we simply need to enforce

∑n
j=1ν

+
j ρi , j −∑n

j=1ν
−
j ρi , j

≤ LP
k (si ), for i = 1, . . . ,m, to obtain a conservative discretization of (7.52). This

construction is illustrated in Figure 7.3.
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Figure 7.3: Illustration of the conservative discretization of the constraint
∑n

j=1ν j k j (s) ≤ LP
k (s),

for all s ∈ E , using a constant upper bound on each interval [si , si+1).

Let us arrange the scalars ρi , j and ρ
i , j

into the matrix

A =

⎡⎢⎢⎢⎣
ρ1,1 · · · ρ1,n −ρ

1,1
· · · −ρ

1,n
...

. . .
...

...
. . .

...

ρm,1 · · · ρm,n −ρ
m,1

· · · −ρ
m,n

⎤⎥⎥⎥⎦ . (7.67)

Denote

ν̃=
[
ν+

ν−

]
with ν+ =

⎡⎢⎢⎣
ν+1

...

ν+n

⎤⎥⎥⎦ and ν− =

⎡⎢⎢⎣
ν−1

...

ν−n

⎤⎥⎥⎦ , (7.68)

and let bP
k ∈Rm be the vector with components bP

k,i = LP
k (si ) = 1Ek (si ), i = 1, . . . ,m. Then the

discretized dual constraint can be simply written as Aν̃≤ bP
k .

Since ν=ν+−ν− = Dν̃, where D = [In×n −In×n
]
, and

‖ν‖l
1 =

n∑
j=1

l j |ν j | ≤
n∑

j=1
l j (ν+j +ν−j ) = l̃ Tν̃ with l̃ =

[
l

l

]
, (7.69)

we conclude that any feasible point of the linear program

sup
ν̃∈R2n

(DT ỹ − l̃ )Tν̃

subject to Aν̃≤ bP
k ,

ν̃≥ 0,

(7.70)

gives a conservative lower bound for λk subject to the positivity constraint (P). Similarly, any

feasible point of the linear program

inf
ν̃∈R2n

−(DT ỹ − l̃ )Tν̃

subject to Aν̃≤−bP
k ,

ν̃≥ 0,

(7.71)
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yields a conservative upper bound. Notice that, in order to compute the positivity-constrained

confidence intervals, we simply need to solve for each bin two 2n-dimensional linear programs

subject to m +2n inequality constraints.

7.3.4.2 Decreasing intensities

The dual constraints (7.53) and (7.61) corresponding to the monotonicity constraint (D) can

be discretized using an approach similar to Section 7.3.4.1. However, since now the right-

hand side ±LD
k can vary within the intervals [si , si+1), a constant upper bound similar to

Equation (7.66) would be too strong. The strategy we follow instead is to employ a first-order

Taylor expansion of k∗
j in order to obtain a linear upper bound.

For any s ∈ [si , si+1), we have

k∗
j (s) = k∗

j (si )+ (k∗
j )′(ξ j )(s − si ) = k∗

j (si )+k j (ξ j )(s − si ), ξ j ∈ [si , s). (7.72)

This gives the bound

n∑
j=1

ν j k∗
j (s) =

n∑
j=1

ν j k∗
j (si )+

n∑
j=1

ν+j k j (ξ j )(s − si )−
n∑

j=1
ν−j k j (ξ j )(s − si ) (7.73)

≤
n∑

j=1
ν j k∗

j (si )+
n∑

j=1
ν+j sup

ξ∈[si ,si+1)
k j (ξ)(s − si )−

n∑
j=1

ν−j inf
ξ∈[si ,si+1)

k j (ξ)(s − si )

(7.74)

=
n∑

j=1
ν j k∗

j (si )+
n∑

j=1
ν+j ρi , j (s − si )−

n∑
j=1

ν−j ρi , j
(s − si ). (7.75)

In other words, we have established a linear upper bound for
∑n

j=1ν j k∗
j (s) on [si , si+1).

Since LD
k is also linear on each interval [si , si+1), we can simply enforce the constraint at the

endpoints of the interval. By the continuity of LD
k , we require, for each i = 1, . . . ,m, that⎧⎨⎩

∑n
j=1ν j k∗

j (si ) ≤±LD
k (si ),∑n

j=1ν j k∗
j (si )+∑n

j=1ν
+
j ρi , jδi −∑n

j=1ν
−
j ρi , j

δi ≤±LD
k (si+1),

(7.76)

where δi = si+1 − si . In fact, since
∑n

j=1ν j k∗
j (s) is continuous, the first inequality in Equa-

tion (7.76) is redundant and it suffices to simply enforce the second one.

Let Δ= diag
(
{δi }m

i=1

)
, let K ∗ denote the m ×n matrix with elements K ∗

i , j = k∗
j (si ), i = 1, . . . ,m,

j = 1, . . . ,n, and let bD
k ∈ Rm be the vector with elements bD

k,i = LD
k (si+1), i = 1, . . . ,m. Then

(K ∗D +ΔA)ν̃ ≤ ±bD
k gives a conservative discretization of the dual constraints (7.53) and

(7.61), where the matrices A and D are as in Section 7.3.4.1.
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We hence conclude that any feasible point of the linear program

sup
ν̃∈R2n

(DT ỹ − l̃ )Tν̃

subject to (K ∗D +ΔA)ν̃≤ bD
k ,

ν̃≥ 0,

(7.77)

yields a conservative lower bound for λk subject to the monotonicity constraint (D). Similarly,

a conservative upper bound is given by any feasible point of

inf
ν̃∈R2n

−(DT ỹ − l̃ )Tν̃

subject to (K ∗D +ΔA)ν̃≤−bD
k ,

ν̃≥ 0.

(7.78)

Notice that computing the confidence interval again reduces to simply solving two linear

programs with 2n unknowns and m +2n inequality constraints.

7.3.4.3 Convex intensities

In the case of the convexity constraint (C), the right-hand side ±LC
k of the dual constraints

(7.54) and (7.62) is a piecewise quadratic function. As such, the appropriate way of bounding

the left-hand side is to use a quadratic upper bound, which can be obtained by employing a

second-order Taylor expansion of k∗∗
j .

For any s ∈ [si , si+1), we have

k∗∗
j (s) = k∗∗

j (si )+ (k∗∗
j )′(si )(s − si )+ 1

2
(k∗∗

j )′′(ξ j )(s − si )2 (7.79)

= k∗∗
j (si )+k∗

j (si )(s − si )+ 1

2
k j (ξ j )(s − si )2, ξ j ∈ [si , s). (7.80)

This yields the bound

n∑
j=1

ν j k∗∗
j (s) =

n∑
j=1

ν j k∗∗
j (si )+

n∑
j=1

ν j k∗
j (si )(s − si )+ 1

2

n∑
j=1

ν j k j (ξ j )(s − si )2 (7.81)

≤
n∑

j=1
ν j k∗∗

j (si )+
n∑

j=1
ν j k∗

j (si )(s − si )+ 1

2

n∑
j=1

(
ν+j ρi , j −ν−j ρi , j

)
(s − si )2,

(7.82)

where the inequality is obtained as in Equation (7.75). We have hence established a quadratic

upper bound for
∑n

j=1ν j k∗∗
j (s) on [si , si+1) and we need to ensure that this parabola lies below

±LC
k for every s ∈ [si , si+1). In other words, we need to require that

±LC
k (s)−

n∑
j=1

ν j k∗∗
j (si )−

n∑
j=1

ν j k∗
j (si )(s − si )− 1

2

n∑
j=1

(
ν+j ρi , j −ν−j ρi , j

)
(s − si )2 ≥ 0, (7.83)
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for all s ∈ [si , si+1). Since LC
k is quadratic on [si , si+1), the left-hand side in (7.83) is a parabola

and we need to make sure that this parabola is positive on the interval [si , si+1).

Let ai ,k s2 +bi ,k s + ci ,k be the parabola corresponding to the left-hand side of (7.83) and let

s∗i ,k =−bi ,k /(2ai ,k ) be the s-coordinate of its vertex. Then ai ,k s2+bi ,k s+ci ,k ≥ 0, ∀s ∈ [si , si+1),

is equivalent to requiring that⎧⎪⎪⎪⎨⎪⎪⎪⎩
ai ,k s2

i +bi ,k si +ci ,k ≥ 0,

ai ,k s2
i+1 +bi ,k si+1 +ci ,k ≥ 0,

1(si ,si+1)
(
s∗i ,k

)(
ai ,k

(
s∗i ,k

)2 +bi ,k s∗i ,k +ci ,k
)≥ 0.

(7.84)

Here the first two conditions guarantee that the endpoints of the parabola lie above the s-axis,

while the last condition ensures that the vertex is above the s-axis when it is located on the

interval (si , si+1). As before, by the continuity of
∑n

j=1ν j k∗∗
j (s) and LC

k (s), the first condition is

redundant and can be dropped.

Since s∗i ,k depends nonlinearly on ν̃, the conservatively discretized dual program cannot be

expressed as a linear program. Nevertheless, any feasible point of the program

sup
ν̃∈R2n

(DT ỹ − l̃ )Tν̃

subject to ai ,k s2
i+1 +bi ,k si+1 +ci ,k ≥ 0, i = 1, . . . ,m,

1(si ,si+1)(s∗i ,k )(ai ,k (s∗i ,k )2 +bi ,k s∗i ,k +ci ,k ) ≥ 0, i = 1, . . . ,m,

−
n∑

j=1
(Dν̃)j k∗

j (Emax) ≥ Ek,min −Ek,max,

ν̃≥ 0,

(7.85)

yields a conservative lower bound for λk subject to the convexity constraint (C). Here D is as

in Section 7.3.4.1, s∗i ,k =− bi ,k

2ai ,k
and the coefficients ai ,k , bi ,k and ci ,k , which depend on ν̃, are

given by

ai ,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Ai , si < Ek,min,

−Ai + 1
2 , Ek,min ≤ si < Ek,max,

−Ai , si ≥ Ek,max,

(7.86)

bi ,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2Ai si −Bi , si < Ek,min,

2Ai si −Bi −Ek,min, Ek,min ≤ si < Ek,max,

2Ai si −Bi +Ek,max −Ek,min, si ≥ Ek,max,

(7.87)

ci ,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Ai s2

i +Bi si −Ci , si < Ek,min,

−Ai s2
i +Bi si −Ci + 1

2 E 2
k,min, Ek,min ≤ si < Ek,max,

−Ai s2
i +Bi si −Ci − 1

2 E 2
k,max + 1

2 E 2
k,min, si ≥ Ek,max,

(7.88)
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where

Ai = 1

2

n∑
j=1

(
ν+j ρi , j −ν−j ρi , j

)
, (7.89)

Bi =
n∑

j=1
(ν+j −ν−j )k∗

j (si ), (7.90)

Ci =
n∑

j=1
(ν+j −ν−j )k∗∗

j (si ). (7.91)

Similarly, a conservative upper bound is given by any feasible point of

inf
ν̃∈R2n

−(DT ỹ − l̃ )Tν̃

subject to ai ,k s2
i+1 +bi ,k si+1 +ci ,k ≥ 0, i = 1, . . . ,m,

1(si ,si+1)(s∗i ,k )(ai ,k (s∗i ,k )2 +bi ,k s∗i ,k +ci ,k ) ≥ 0, i = 1, . . . ,m,

−
n∑

j=1
(Dν̃)j k∗

j (Emax) ≥ Ek,max −Ek,min,

ν̃≥ 0,

(7.92)

where the coefficients are

ai ,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Ai , si < Ek,min,

−Ai − 1
2 , Ek,min ≤ si < Ek,max,

−Ai , si ≥ Ek,max,

(7.93)

bi ,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2Ai si −Bi , si < Ek,min,

2Ai si −Bi +Ek,min, Ek,min ≤ si < Ek,max,

2Ai si −Bi −Ek,max +Ek,min, si ≥ Ek,max,

(7.94)

ci ,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Ai s2

i +Bi si −Ci , si < Ek,min,

−Ai s2
i +Bi si −Ci − 1

2 E 2
k,min, Ek,min ≤ si < Ek,max,

−Ai s2
i +Bi si −Ci + 1

2 E 2
k,max − 1

2 E 2
k,min, si ≥ Ek,max,

(7.95)

and Ai , Bi and Ci are given by Equations (7.89)–(7.91).

These programs have a linear objective function, but the constraints are nonlinear. The

programs can nevertheless be solved using standard nonlinear programming methods, as long

as some care is taken when choosing the algorithm and its starting point; see Appendix A.2

for details. Notice also that, since any feasible point of these programs gives a conservative

bound, we do not necessarily need to find a global optimum. Instead, it suffices to find a good

enough feasible point.
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7.3.5 Summary

Sections 7.3.1–7.3.4 along with Theorem 7.1 can be summarized as follows:

Theorem 7.6. Let y ∼ Poisson(K f ) with K : V →Rn , f 
→ [
K1 f , . . . ,Kn f

]T, where V =C 2(E)

with E ⊂R a compact interval. Let the forward functionals be given by

K j : V →R, f 
→
∫

E
k j (s) f (s)ds, (7.96)

where k j ∈ C (E), and let the quantity of interest be λ =
[∫

E1
f (s)ds, . . . ,

∫
Ep

f (s)ds
]T

, where

{E j }p
j=1 is a binning of E of the form (3.17). For α ∈ (0,1), set α′ = 1− (1−α)1/n and, for each

j = 1, . . . ,n, let

μ
j ,α′ =

1

2
F−1
χ2

(
α′

2
;2y j

)
and μ j ,α′ = 1

2
F−1
χ2

(
1− α′

2
;2(y j +1)

)
. (7.97)

Let ỹ and l be vectors in Rn with components ỹ j =
(
μ

j ,α′ +μ j ,α′
)
/2 and l j =

(
μ j ,α′ −μ

j ,α′
)
/2,

and denote D = [
In×n −In×n

]
and l̃ = [

l T l T
]T. Let λ(ν̃k ) = (DT ỹ − l̃ )Tν̃k and λ(ν̃k ) =

−(DT ỹ − l̃ )Tν̃k and, for each k = 1, . . . , p, let ν̃lb
k,P, ν̃ub

k,P, ν̃lb
k,D, ν̃ub

k,D, ν̃lb
k,C and ν̃ub

k,C be feasible

points of the programs (7.70), (7.71), (7.77), (7.78), (7.85) and (7.92), respectively. Then

(P) P f
(
λ ∈ [λ(ν̃lb

1,P

)
,λ
(
ν̃ub

1,P

)]× ·· · × [λ(ν̃lb
p,P

)
,λ
(
ν̃ub

p,P

)]) ≥ 1−α, ∀ f ∈ C , where

C = { f ∈V : f (s) ≥ 0,∀s ∈ E
}
;

(D) P f
(
λ ∈ [λ(ν̃lb

1,D

)
,λ
(
ν̃ub

1,D

)]× ·· · × [λ(ν̃lb
p,D

)
,λ
(
ν̃ub

p,D

)]) ≥ 1−α, ∀ f ∈ C , where

C = { f ∈V : f (s) ≥ 0∧ f ′(s) ≤ 0,∀s ∈ E
}
;

(C) P f
(
λ ∈ [λ(ν̃lb

1,C

)
,λ
(
ν̃ub

1,C

)]× ·· · × [λ(ν̃lb
p,C

)
,λ
(
ν̃ub

p,C

)]) ≥ 1−α, ∀ f ∈ C , where

C = { f ∈V : f (s) ≥ 0∧ f ′(s) ≤ 0∧ f ′′(s) ≥ 0,∀s ∈ E
}
.

Notice that the theorem states that the resulting confidence intervals have guaranteed finite-

sample simultaneous coverage, provided that f satisfies the stated shape constraints. The

theorem is written for any feasible point of the conservatively discretized dual programs since,

especially for nonlinear programming, there is no guarantee that the output of a numerical

algorithm is a global optimum. But obviously in practice we wish to find as good a feasible

point as possible, leading to intervals with the least amount of slack. We next proceed to

demonstrate that, even though these intervals are conservative, they can still yield usefully

tight confidence bounds in a realistic unfolding scenario.

7.4 Demonstration: Inclusive jet transverse momentum spectrum

We demonstrate the shape-constrained strict bounds by unfolding the inclusive jet transverse

momentum spectrum described in Section 3.4.2 and also studied in Section 4.2. Here the

true intensity f obviously satisfies the positivity constraint (P) for all values of the transverse
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7.4. Demonstration: Inclusive jet transverse momentum spectrum

momentum pT. It is also decreasing for pT � 2.0 and convex for pT � 2.8. In other words, the

monotonicity constraint (D) and the convexity constraint (C) are satisfied for intermediate and

large pT values, which are the main focus of inclusive jet analyses at the LHC (CMS Collabora-

tion, 2013b). Even without reference to a particular parameterization of the jet pT spectrum,

physical considerations lead us to expect that the spectrum is decreasing for intermediate and

large pT values and convex at least for intermediate pT values.

When computing the strict bounds, we discretize the dual constraints using m +1 = 10p +1

uniformly spaced grid points, which corresponds to subdividing each true bin Ek into 10

sub-bins. The intervals are computed at 95 % simultaneous confidence level. The remaining

parameters are as described in Section 3.4.2. All the experiments were implemented in

MATLAB R2014a; see Appendix A.2 for further details on the implementation.

Figure 7.4 shows the 95 % shape-constrained strict bounds for the inclusive jet pT spectrum.

The true value of λ is shown by the horizontal lines. To enable comparison with the true

intensity f , the binned quantities are converted to the intensity scale by dividing them by

the bin width. The results are shown both on the linear scale and the log scale. We see that

the confidence intervals cover λ in every bin. Notice in particular that the inferences are

well-calibrated also in the tail of the spectrum, even though the intensity varies over three

orders of magnitude. Furthermore, the shape constraints have a major impact on the length of

the intervals. With only the positivity constraint, the intervals are fairly wide (but presumably

still orders of magnitude shorter than unregularized intervals) and the lower bound is zero

at every bin. But, with the stronger monotonicity and convexity constraints, the intervals

become significantly tighter, leading to sharper inferences.

Figure 7.5 shows the dual constraints±LP
10(s), ±LD

10(s) and±LC
10(s) (see Equations (7.57)–(7.59))

and the corresponding optimal solutions
∑n

j=1ν j k j (s),
∑n

j=1ν j k∗
j (s) and

∑n
j=1ν j k∗∗

j (s) at the

10th true bin. We see that, despite the conservative discretization, the optimal solutions can be

very close to the constraints ±LP
10(s), ±LD

10(s) and ±LC
10(s). For the positivity-constrained lower

bound, the optimal solution is to have ν= 0, which is consistent with the lower bound λ10 = 0.

We also compared the conservatively discretized intervals with the potentially unconservative

intervals obtained using the naïve discretization where the dual constraint is only imposed

on the grid points {si }m+1
i=1 as in Equation (7.63). We found that the conservatively discretized

intervals were not much wider then the unconservative ones. For the monotonicity and

convexity constraints, the length difference was less than 1 % in most bins. For the bin where

the difference was the largest, the conservatively discretized intervals were 13.2 %, 2.4 % and

2.0 % longer for the positivity, monotonicity and convexity constraints, respectively. We hence

conclude that the conservative discretization enables us to guarantee the confidence level

without excessively increasing the interval length.

By construction, the simultaneous coverage probability of the confidence intervals in Figure 7.4

is at least 95 %. To verify that this is indeed the case, we computed the intervals for 1 000

independent observations. We found that, for each replication, the intervals covered λ for all
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Chapter 7. Shape-constrained uncertainty quantification for steeply falling spectra
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Figure 7.4: Shape-constrained uncertainty quantification in unfolding the inclusive jet trans-
verse momentum spectrum. Figure (a) shows the 95 % shape-constrained strict bounds
on a linear scale and Figure (b) the same intervals on a log scale. These intervals have by
construction guaranteed finite-sample simultaneous coverage.

130



7.4. Demonstration: Inclusive jet transverse momentum spectrum
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Figure 7.5: The dual constraints ±LP
10, ±LD

10 and ±LC
10 (solid lines) and the corresponding

optimal solutions (dashed lines) for the 10th true bin and for the different shape constraints.
The insets in Figures (e) and (f) show the quadratic part of the constraint in greater detail.
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Chapter 7. Shape-constrained uncertainty quantification for steeply falling spectra

the shape constraints. In other words, the empirical coverage of the intervals is 100 % in this

particular example and the 95 % Clopper–Pearson interval for the actual coverage probability

is [0.996,1.000]. This confirms that the 95 % confidence level is indeed attained, but also

shows that the intervals are conservative in the sense that the actual coverage probability is

much greater than 95 %. This is in stark constrast with the methods that are presently used at

the LHC, which suffer from severe undercoverage in this problem; see Section 4.2.
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8 Concluding remarks

We close with a discussion in Section 8.1, which is followed by a summary of our conclusions

in Section 8.2.

8.1 Discussion and outlook

In this section, we discuss various aspects of this work, with a particular emphasis on areas

where future work is needed and on directions to which the present work can be extended:

Estimation and uncertainty of the forward operator:

Throughout this work, we have assumed that the forward operator K is known, while

in reality it is usually estimated using either simulations or auxiliary measurements

and is hence uncertain. This raises two interesting methodological questions: Firstly,

how should one estimate and quantify the uncertainty of K ? And secondly, how should

one incorporate these estimates into the unfolding procedure? When a trustworthy

parametric model is available for K , which was the case when we considered unfolding

the inclusive jet pT spectrum (Section 3.4.2) or the Z boson invariant mass spectrum

(Section 6.6), then standard parametric techniques can be used to estimate and quantify

the uncertainty of K , and it should be feasible to incorporate the resulting uncertainties

into the bootstrap procedures of Chapter 6 and into the strict bounds construction

of Chapter 7. A significantly more challenging situation arises when nonparametric

estimates of K are needed. In this case, estimation of K essentially becomes a nonpara-

metric quantile regression problem and one is faced with the task of quantifying the

uncertainty of the quantiles and incorporating this uncertainty into either the bootstrap

or the strict bounds confidence intervals.

Further analysis of the iterative bias-correction and the coverage-length trade-off:

The empirical performance of the iteratively bias-corrected confidence intervals raises

several interesting theoretical and methodological questions. For example, in all but one

of our test cases (the minor exception being the two-peak function of Section 6.4.5 with
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noise level σ= 0.001), we have observed that the bias-corrected intervals are shorter

than the undersmoothed intervals, but it would be desirable to be able to establish

analytically what conditions need to be satisfied for this to happen and what factors

influence the size of the difference. This obviously also raises the question of whether

there are other generic methods that yield even shorter intervals for the same amount

coverage. In other words, is there a way to be above the bias-correction curve in a

coverage-length plot, such as the one in Figure 6.8, and would it be possible to derive a

theoretical upper bound for such a curve?

Iterative bias-correction in other applications:

The iteratively bias-corrected bootstrap confidence intervals introduced in Section 6.2

are fully generic in the sense that the basic construction is applicable to any point

estimator or noise model. The only requirement is the ability to sample from the

underlying statistical model. As such, it would be interesting to study how the approach

performs in other situations where uncertainty quantification is hampered by the bias.

In particular, it would be interesting to study whether the approach can be applied to

�1-regularized lasso regression and how it compares to existing debiasing techniques,

such as Javanmard and Montanari (2014), in that situation. Other potential applications

include, for example, scatterplot smoothing (Ruppert et al., 2003), generalized additive

models (Wood, 2006b) and Gaussian processes (Rasmussen and Williams, 2006). Notice

also that the iterative bias-correction is more widely applicable than undersmoothing,

since the latter requires a distinct regularization parameter that controls the size of the

bias, while the iterative bias-correction is also applicable to situations where no such

parameter can easily be identified.

Adaptive roughness penalties:

In some sense, the confidence intervals derived using a simple roughness penalty

fail to attain appropriate coverage because a penalty term of the form ‖ f ′′‖2
2 cannot

accommodate both large and small curvature at the same time. In this work, we solved

the problem by debiasing the point estimates, but a potentially viable alternative would

be to employ a spatially adaptive penalty term (e.g., Ruppert and Carroll, 2000; Pintore

et al., 2006). Such penalties would enable the amount of smoothing to adapt locally

to the shape of the intensity function. The drawback, however, is that typically the

adaptation is controlled by a high-dimensional regularization parameter whose data-

driven choice is even more challenging than the choice of the single regularization

parameter associated with the roughness penalty.

Overcoverage of the strict bounds intervals:

The shape-constrained strict bounds of Chapter 7 are conservative in the sense that their

coverage probability may be much larger than the nominal value. The main reason for

this is the way the infinite-dimensional confidence set C ∩D (see Section 7.2) is turned

into a finite number of confidence intervals. In essence, C ∩D is first mapped through

H : V → Rp , f 
→ [H1 f , . . . , Hp f ]T and then the resulting set H (C ∩D) is bounded by
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the smallest possible �∞-ball. Here the main source of slack is presumably that the

geometry of �∞-balls might not be well-suited for bounding H (C ∩D). There are two

possibilities for reducing this slack. The first possibility (Stark, 1992, Section 10.2) is to

tune the geometry of Ξ so that the geometry of H (C ∩D) is better suited for bounding

with an �∞-ball. The second possibility, which to the author’s best knowledge has not

been proposed before, is to bound H (C ∩D) with some other set, instead of an �∞-ball,

that can be represented and communicated using a finite collection of numbers. For

example, if the geometry of H (C ∩D) resembles a hyperellipsoid, then an efficient way

of bounding it would be to use a weighted �2-ball. Such approach would resemble the

way uncertainties are quantified and communicated in classical well-posed Gaussian

regression problems.

Other types of shape constraints:

In Chapter 7, we considered shape constraints in the form of positivity, monotonicity

and convexity. While the positivity constraint is satisfied for any Poisson intensity

function, not all particle spectra satisfy the monotonicity and convexity constraints.

These would, for example, not be the appropriate shape constraints for the Z boson

invariant mass peak of Section 6.6 or for the intensity function of Section 3.4.1, which

consists of two peaks on a uniform background. A natural way of regularizing these

situations would be to use a unimodality constraint in the first case and a bimodality

constraint in the second case. More generally, it would be useful to generalize the

methodology of Chapter 7 to k-modal intensities (Hengartner and Stark, 1995). Another

useful generalization would be to consider intensities that have a concave part and a

convex part with an unknown changepoint between the two. Such shapes would be

able to handle, for example, the full inclusive jet pT spectrum of Equation (3.36) without

having to focus only on the steeply falling tail.

Regularization using wide bins:

As explained in Section 3.2.3, one cannot simply regularize the conventional unfolding

techniques by increasing the size of the true bins as this would increase the dependence

of the response matrix on the shape of the Monte Carlo prediction f MC inside the bins.

However, with the strict bounds intervals of Chapter 7, there is no such restriction. In

particular, one can use arbitrarily wide bins with the positivity constraint to obtain

regularized unfolded confidence intervals that have guaranteed coverage without mak-

ing any assumptions about f (except that it is regular enough so that all the integrals

are well-defined). This approach would be similar in spirit to that of Burrus (1965).

The drawback, of course, is that, by using wide bins, the resolution with which we probe

the function f decreases and we might end up missing important features of the true

solution.

Use of unfolded confidence intervals:

By the duality between hypothesis tests and confidence intervals, the uncertainties that

we have derived in Chapters 6 and 7 immediately yield a hypothesis test in the unfolded
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space. More specifically, the pointwise confidence bands of Chapter 6 can be used to

test a theory prediction at any single point s ∈ E and, with a multiple testing correction,

also at a finite number of points. The simultaneous confidence intervals of Chapter 7,

on the other hand, directly yield a test for the whole theory prediction without further

multiplicity corrections. For example, the 95 % strict bounds of Figure 7.4 can be used

to perform a test of a theory prediction at 5 % significance level by simply overlaying the

prediction on the confidence envelope and verifying whether it is inside the envelope at

each bin.

As noted in Section 3.3.2, unfolded confidence intervals can also serve as the basis for

more complex inferential tasks. For example, one could envisage using the strict bounds

construction of Section 7.2 with an identity smearing operator to combine two or more

multiplicity-corrected unfolded spectra. With an appropriate choice of the forward

operator, the construction can also be used to extract further physical parameters from

one or more unfolded measurements. A particularly pertinent topic for future research

would be to develop methodology for extracting rigorous parton distribution function

uncertainties (NNPDF Collaboration, 2015) from several unfolded spectra.

8.2 Conclusions

We have shown that unfolded confidence intervals can suffer from serious undercoverage in

realistic unfolding scenarios. This applies to both standard frequentist and Bayesian construc-

tions as well as to the methods that are currently used in LHC data analysis.

This does not happen due to some fault in the regularized point estimators. Instead, optimality

in uncertainty quantification is fundamentally different from optimality in point estimation

and methods that aim to achieve optimal point estimation do not necessarily yield good

uncertainty quantification performance.

There exist at least two ways of obtaining improved unfolded uncertainty quantification. The

first is to debias the regularized point estimators, which can be achieved by either using

iterative bias-correction or through undersmoothing. We have compared the two approaches

and found that, in several situations, bias-correction yields shorter confidence intervals than

undersmoothing. In both methods, the amount of debiasing can be chosen in a data-driven

way in order to approximately reach a given target coverage. For reasonable sample sizes and

noise levels, the debiased intervals can yield nearly nominal coverage with only a modest

increase in interval length.

The second possibility is to impose quantitative shape constraints. If such constraints are

applied directly to an unregularized unfolded confidence set, one can derive usefully tight

unfolded confidence intervals with rigorous finite-sample coverage guarantees. We have

provided a conservative way of doing this, but possibilities exist for reducing the slack of the

intervals.

136
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We conclude that if physically justified shape information is available, then one should use the

shape-constrained intervals with their strong coverage guarantees. When no such information

is available, debiasing methods are still applicable and provide a way of obtaining much more

accurate uncertainty quantification than conventional techniques.
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A Technical details

A.1 Single-component Metropolis-Hastings sampler for unfolding

In this section, we provide a description of the single-component Metropolis–Hastings sampler

that we use for sampling from the posterior p(β|y ,δ) in Chapters 5 and 6. This MCMC sampler

was originally proposed by Saquib et al. (1998, Section III.C) in the context of tomographic

image reconstruction.

For the posterior given by Equation (5.3), the logarithm of the kth full posterior conditional is

given by

log p(βk |β−k , y ,δ) =
n∑

i=1
yi log

( p∑
j=1

Ki , jβ j

)
−

n∑
i=1

p∑
j=1

Ki , jβ j (A.1)

−δ
p∑

i=1

p∑
j=1

ΩA,i , jβiβ j +const := f (βk ,β−k ), (A.2)

where β−k =
[
β1, . . . ,βk−1,βk+1, . . . ,βp

]T
and the constant does not depend on βk . In the

standard Gibbs sampler, one would sample a new point β∗
k from this full conditional given the

current position of the Markov chain β. Unfortunately, sampling from this univariate density

is difficult because of the log-term. We hence take a second-order Taylor expansion of the

log-term in (A.2) around βk , the current value of the kth component, to find

f (β∗
k ,β−k ) ≈d1,k (β∗

k −βk )+ d2,k

2
(β∗

k −βk )2 (A.3)

−δ

(
ΩA,k,k (β∗

k )2 +2
∑
i �=k

ΩA,i ,kβiβ
∗
k

)
+const := g (β∗

k ,β), (A.4)

where

d1,k =−
n∑

i=1
Ki ,k

(
1− yi

μi

)
, d2,k =−

n∑
i=1

yi

(
Ki ,k

μi

)2

, (A.5)
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with μ = Kβ. The approximate full conditional corresponding to g (β∗
k ,β) is a univariate

Gaussian N (mk ,σ2
k ) with mean

mk = d1,k −d2,kβk −2δ
∑

i �=k ΩA,i ,kβi

2δΩA,k,k −d2,k
(A.6)

and variance

σ2
k = 1

2δΩA,k,k −d2,k
. (A.7)

If mk ≥ 0, we sample the new point β∗
k from N (mk ,σ2

k ) truncated to the non-negative real

line. On the other hand, if mk < 0, we sample β∗
k from an exponential distribution Exp(λk )

satisfying the condition

∂

∂β∗
k

log p(β∗
k |β)

∣∣∣
β∗

k=0
= ∂

∂β∗
k

g (β∗
k ,β)

∣∣∣
β∗

k=0
. (A.8)

This gives

λk =−d1,k +d2,kβk +2δ
∑
i �=k

ΩA,i ,kβi . (A.9)

We use the exponential distribution since rejection sampling from the positive Gaussian tail

with mk 
 0 would be computationally demanding. To summarize, the new point β∗
k is

sampled from the approximate kth full posterior conditional given by

p(β∗
k |β) =

⎧⎨⎩N+(mk ,σ2
k ), if mk ≥ 0,

Exp(λk), if mk < 0,
(A.10)

where β∗
k ≥ 0 and N+(mk ,σ2

k ) denotes the truncation of N (mk ,σ2
k ) to [0,∞).

To correct for the use of the approximate full conditional (A.10) instead of the actual full

conditional (A.2), we need to perform a Metropolis–Hastings acceptance step for the proposed

move to β∗
k . Let us denote p(β∗

k |β) = q(β∗
k ,βk ,β−k ) and p(β|y ,δ) = h(βk ,β−k ). Then the

probability of accepting β∗
k is given by (Gilks et al., 1996)

a(β∗
k ,β) = min

{
1,

h(β∗
k ,β−k )q(βk ,β∗

k ,β−k )

h(βk ,β−k )q(β∗
k ,βk ,β−k )

}
. (A.11)

If β∗
k is rejected, the Markov chain remains at its current position β.

The resulting single-component Metropolis–Hastings sampler is summarized in Algorithm 5.

Note that the only free parameters in this MCMC sampler are the sample size S and the starting

point β(1). In particular, there is no tuning parameter to adjust the step size of the sampler.

Instead, the step sizes are automatically adapted to the scale of the full conditionals in the

same way as in the traditional Gibbs sampler.
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Algorithm 5 Single-component Metropolis–Hastings sampler

Input:
β(1) — Starting point
S — Size of the MCMC sample

Output:
β(1),β(2), . . . ,β(S) — MCMC sample from p(β|y ,δ)

Set β=β(1);
for s = 2 to S do

for k = 1 to p do
Sample β∗

k from p(β∗
k |β) given by Equation (A.10);

Compute the acceptance probability a(β∗
k ,β) given by Equation (A.11);

Sample U ∼ Unif(0,1);
if U ≤ a(β∗

k ,β) then
Set βk =β∗

k ;
end if

end for
Set β(s) =β;

end for
return β(1),β(2), . . . ,β(S);

A.2 Implementation details for shape-constrained strict bounds

The optimization problems yielding the shape-constrained strict bounds involve a relatively

high-dimensional solution space, numerical values at very different scales and fairly com-

plicated constraints. As a result, some care is needed in their numerical solution, including

verifying the validity of the optimization algorithms’ output.

For the positivity and monotonicity constraints, where the bounds can be found by linear

programming, we use the interior-point linear program solver as implemented in the linprog

function of the MATLAB Optimization Toolbox (Mathworks, 2014b). To find the convexity-

constrained bounds, we use the sequential quadratic programming (SQP) algorithm as imple-

mented in the fmincon function of the same toolbox.

The optimization problems described in Section 7.3.4 tend to suffer from numerical insta-

bilities when the solver explores large values of ν̃. We address this issue by introducing an

upper bound for ν̃. That is, for each j , we replace the constraint ν̃ j ≥ 0 with the constraint

0 ≤ ν̃ j ≤ M , where M is chosen to be large enough so that the upper bound is not active at the

optimal solution. (Notice that even if the upper bound was active, the solution of the modified

problem would still be a valid conservative confidence bound since the restricted feasible set

is a subset of the original feasible set.) We found that imposing the upper bound significantly

improves the stability of the numerical solvers. In the experiments of this thesis, M is set to

30 for the positivity constraint, 15 for the monotonicity constraint and 10 for the convexity

constraint.
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The solutions found by the optimization algorithms can violate the constraints within a

preset numerical tolerance. This could make the confidence bounds optimistic rather than

conservative. To ensure that this does not happen, we verify the feasibility of the solutions

returned by the optimization algorithms. In case a solution is infeasible, we iteratively scale

ν+ down and ν− up until it becomes feasible. Typically only a limited amount of fine-tuning

of this kind was required to obtain a feasible point.

The SQP algorithm needs to be initialized with a good feasible point. To find one, we first solve

the linear program corresponding to the unconservative discretization (see the beginning of

Section 7.3.4)

n∑
j=1

ν j k∗∗
j (si ) ≤±LC

k (si ), i = 1, . . . ,m +1. (A.12)

We then scale the solution as described above to make it feasible for the conservative dis-

cretization and the result is used as the starting point for SQP.

The implementation described here generally works robustly for unfolding the inclusive jet

spectrum of Section 3.4.2, but occasionally the algorithms return a suboptimal feasible point.

This maintains conservative coverage, but adjusting the tuning parameters of the algorithms

might help finding a better feasible point. For the lower bound, a feasible point can always

be found using ν̃= 0 (yielding the trivial bound of zero), while, for the upper bound, it may

happen that the algorithms do not find a feasible point, in which case the bound should be set

to +∞.
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B Full simulation results

B.1 Full simulation results for Section 6.3

This section provides the full results of the simulation study of Section 6.3. More specifically,

the following pages include coverage studies (the analogue of Figure 6.4) and observed inter-

vals (the analogues of Figures 6.5 and 6.7) for each of the three sample sizes λtot = 1000, 10 000

and 50 000. The results are given in the order of decreasing sample size.
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Figure B.1: Coverage studies in unfolding the two peaks on a uniform background test setup
with sample size λtot = 50 000. Figure (a) compares the empirical coverage of the iteratively
bias-corrected percentile intervals induced by β̂G+ to the alternative empirical Bayes (EB),
hierarchical Bayes (HB) and bootstrap intervals. The number of bias-correction iterations was
set to 5 and the regularization strength chosen using the MMLE, expect for HB where four
different uninformative hyperpriors were considered. Figure (b) shows the coverage of the
bias-corrected intervals when the number of bias-correction iterations is varied between 0
and 50. All the intervals are for 95 % nominal pointwise coverage shown by the horizontal line.
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Figure B.2: A single realization of (a) the iteratively bias-corrected percentile intervals with 5
bias-correction iterations, (b) the empirical Bayes (EB) credible intervals, (c)–(d) the hierar-
chical Bayes (HB) credible intervals for the two extremal hyperpriors, (e) the basic bootstrap
intervals and (f) the standard bootstrap percentile intervals in unfolding the two peaks on
a uniform background test setup with λtot = 50 000. Intervals (a), (e) and (f) are induced by
the positivity-constrained Gaussian approximation β̂G+ . Also shown are the corresponding
point estimates f̂ (solid lines) and the true intensity f (dashed lines). In Figure (a), also the
bias-corrected point estimate f̂BC (dotted line) is given. All the intervals are formed for 95 %
nominal pointwise coverage.
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Figure B.3: Iteratively bias-corrected percentile intervals induced by β̂G+ in the two peaks on a
uniform background test setup with λtot = 50 000 as the number of bias-correction iterations
is varied. The true intensity is shown by the dashed line, the point estimate corresponding to
β̂G+ by the solid line and the bias-corrected point estimate by the dotted line. The intervals
have 95 % nominal pointwise coverage.
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(a) Comparison of coverage performance, λ
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Figure B.4: Coverage studies in unfolding the two peaks on a uniform background test setup
with sample size λtot = 10 000. Figure (a) compares the empirical coverage of the iteratively
bias-corrected percentile intervals induced by β̂G+ to the alternative empirical Bayes (EB),
hierarchical Bayes (HB) and bootstrap intervals. The number of bias-correction iterations was
set to 10 and the regularization strength chosen using the MMLE, expect for HB where four
different uninformative hyperpriors were considered. Figure (b) shows the coverage of the
bias-corrected intervals when the number of bias-correction iterations is varied between 0
and 50. All the intervals are for 95 % nominal pointwise coverage shown by the horizontal line.
This figure is the same as Figure 6.4 in the main text.
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Figure B.5: A single realization of (a) the iteratively bias-corrected percentile intervals with 10
bias-correction iterations, (b) the empirical Bayes (EB) credible intervals, (c)–(d) the hierar-
chical Bayes (HB) credible intervals for the two extremal hyperpriors, (e) the basic bootstrap
intervals and (f) the standard bootstrap percentile intervals in unfolding the two peaks on
a uniform background test setup with λtot = 10 000. Intervals (a), (e) and (f) are induced by
the positivity-constrained Gaussian approximation β̂G+ . Also shown are the corresponding
point estimates f̂ (solid lines) and the true intensity f (dashed lines). In Figure (a), also the
bias-corrected point estimate f̂BC (dotted line) is given. All the intervals are formed for 95 %
nominal pointwise coverage.
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Figure B.6: Iteratively bias-corrected percentile intervals induced by β̂G+ in the two peaks on a
uniform background test setup with λtot = 10 000 as the number of bias-correction iterations
is varied. The true intensity is shown by the dashed line, the point estimate corresponding to
β̂G+ by the solid line and the bias-corrected point estimate by the dotted line. The intervals
have 95 % nominal pointwise coverage. This figure is the same as Figure 6.5 in the main text.
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Figure B.7: Coverage studies in unfolding the two peaks on a uniform background test setup
with sample size λtot = 1 000. Figure (a) compares the empirical coverage of the iteratively
bias-corrected percentile intervals induced by β̂G+ to the alternative empirical Bayes (EB),
hierarchical Bayes (HB) and bootstrap intervals. The number of bias-correction iterations was
set to 15 and the regularization strength chosen using the MMLE, expect for HB where four
different uninformative hyperpriors were considered. Figure (b) shows the coverage of the
bias-corrected intervals when the number of bias-correction iterations is varied between 0
and 50. All the intervals are for 95 % nominal pointwise coverage shown by the horizontal line.
Figure (a) is the same as Figure 6.6 in the main text.
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Figure B.8: A single realization of (a) the iteratively bias-corrected percentile intervals with 15
bias-correction iterations, (b) the empirical Bayes (EB) credible intervals, (c)–(d) the hierar-
chical Bayes (HB) credible intervals for the two extremal hyperpriors, (e) the basic bootstrap
intervals and (f) the standard bootstrap percentile intervals in unfolding the two peaks on
a uniform background test setup with λtot = 1 000. Intervals (a), (e) and (f) are induced by
the positivity-constrained Gaussian approximation β̂G+ . Also shown are the corresponding
point estimates f̂ (solid lines) and the true intensity f (dashed lines). In Figure (a), also the
bias-corrected point estimate f̂BC (dotted line) is given. All the intervals are formed for 95 %
nominal pointwise coverage. This figure is the same as Figure 6.7 in the main text.
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Figure B.9: Iteratively bias-corrected percentile intervals induced by β̂G+ in the two peaks on a
uniform background test setup with λtot = 1 000 as the number of bias-correction iterations is
varied. The true intensity is shown by the dashed line, the point estimate corresponding to
β̂G+ by the solid line and the bias-corrected point estimate by the dotted line. The intervals
have 95 % nominal pointwise coverage.
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B.2 Full simulation results for Section 6.4.5

This section gives the full results for the simulation study of Section 6.4.5. In particular, the

following pages include the equivalents of Figures 6.10 and 6.11 for the one-peak and two-peak

test cases and for the various sample sizes. The results are given first for the one-peak function

f1 of Equation (6.69) and then for the two-peak function f2 of Equation (6.70). For each test

case, the results are given in the order of increasing noise level.
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Figure B.10: Data-driven confidence intervals for the one-peak function f1 and noise level
σ = 0.001. The regularization strength is chosen using the MMLE and the amount of bias-
correction and undersmoothing using the procedure described in Sections 6.4.3 and 6.4.4.
The intervals have 95 % nominal coverage and 94 % target coverage.
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Figure B.11: Empirical coverage and mean length of the data-driven bias-corrected (BC),
undersmoothed (US) and non-bias-corrected intervals for the one-peak function f1 and noise
level σ= 0.001. The curves labeled “data” are fully data-driven and the curves labeled “oracle”
use knowledge of f1 to choose the amount of debiasing. The non-bias-corrected results are
given for both the MMLE choice of the regularization strength as well as for the choice that
minimizes the MISE. The intervals have 95 % nominal coverage and 94 % target coverage.
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Figure B.12: Data-driven confidence intervals for the one-peak function f1 and noise level
σ = 0.005. The regularization strength is chosen using the MMLE and the amount of bias-
correction and undersmoothing using the procedure described in Sections 6.4.3 and 6.4.4.
The intervals have 95 % nominal coverage and 94 % target coverage. This figure is the same as
Figure 6.10 in the main text.
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Figure B.13: Empirical coverage and mean length of the data-driven bias-corrected (BC),
undersmoothed (US) and non-bias-corrected intervals for the one-peak function f1 and noise
level σ= 0.005. The curves labeled “data” are fully data-driven and the curves labeled “oracle”
use knowledge of f1 to choose the amount of debiasing. The non-bias-corrected results are
given for both the MMLE choice of the regularization strength as well as for the choice that
minimizes the MISE. The intervals have 95 % nominal coverage and 94 % target coverage. This
figure is the same as Figure 6.11 in the main text.
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Figure B.14: Data-driven confidence intervals for the one-peak function f1 and noise level
σ = 0.025. The regularization strength is chosen using the MMLE and the amount of bias-
correction and undersmoothing using the procedure described in Sections 6.4.3 and 6.4.4.
The intervals have 95 % nominal coverage and 94 % target coverage.
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Figure B.15: Empirical coverage and mean length of the data-driven bias-corrected (BC),
undersmoothed (US) and non-bias-corrected intervals for the one-peak function f1 and noise
level σ= 0.025. The curves labeled “data” are fully data-driven and the curves labeled “oracle”
use knowledge of f1 to choose the amount of debiasing. The non-bias-corrected results are
given for both the MMLE choice of the regularization strength as well as for the choice that
minimizes the MISE. The intervals have 95 % nominal coverage and 94 % target coverage.
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Figure B.16: Data-driven confidence intervals for the two-peak function f2 and noise level
σ = 0.001. The regularization strength is chosen using the MMLE and the amount of bias-
correction and undersmoothing using the procedure described in Sections 6.4.3 and 6.4.4.
The intervals have 95 % nominal coverage and 94 % target coverage.
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Figure B.17: Empirical coverage and mean length of the data-driven bias-corrected (BC),
undersmoothed (US) and non-bias-corrected intervals for the two-peak function f2 and noise
level σ= 0.001. The curves labeled “data” are fully data-driven and the curves labeled “oracle”
use knowledge of f2 to choose the amount of debiasing. The non-bias-corrected results are
given for both the MMLE choice of the regularization strength as well as for the choice that
minimizes the MISE. The intervals have 95 % nominal coverage and 94 % target coverage.
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Figure B.18: Data-driven confidence intervals for the two-peak function f2 and noise level
σ = 0.005. The regularization strength is chosen using the MMLE and the amount of bias-
correction and undersmoothing using the procedure described in Sections 6.4.3 and 6.4.4.
The intervals have 95 % nominal coverage and 94 % target coverage.
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Figure B.19: Empirical coverage and mean length of the data-driven bias-corrected (BC),
undersmoothed (US) and non-bias-corrected intervals for the two-peak function f2 and noise
level σ= 0.005. The curves labeled “data” are fully data-driven and the curves labeled “oracle”
use knowledge of f2 to choose the amount of debiasing. The non-bias-corrected results are
given for both the MMLE choice of the regularization strength as well as for the choice that
minimizes the MISE. The intervals have 95 % nominal coverage and 94 % target coverage.
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Figure B.20: Data-driven confidence intervals for the two-peak function f2 and noise level
σ = 0.025. The regularization strength is chosen using the MMLE and the amount of bias-
correction and undersmoothing using the procedure described in Sections 6.4.3 and 6.4.4.
The intervals have 95 % nominal coverage and 94 % target coverage.
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Figure B.21: Empirical coverage and mean length of the data-driven bias-corrected (BC),
undersmoothed (US) and non-bias-corrected intervals for the two-peak function f2 and noise
level σ= 0.025. The curves labeled “data” are fully data-driven and the curves labeled “oracle”
use knowledge of f2 to choose the amount of debiasing. The non-bias-corrected results are
given for both the MMLE choice of the regularization strength as well as for the choice that
minimizes the MISE. The intervals have 95 % nominal coverage and 94 % target coverage.
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B.3 Full simulation results for Section 6.5

This section gives the full results of the simulation study of Section 6.5. In particular, the

following pages include a realization of the different intervals as well as the equivalents of

Figures 6.13 and 6.14 for the three sample sizes λtot = 1 000, 10 000 and 50 000. The results are

given in the order of decreasing sample size.
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Figure B.22: Unfolding of the two peaks on a uniform background test setup using Gaussian
confidence intervals induced by the unconstrained Gaussian estimator β̂G. The figure shows
(a) the non-bias-corrected intervals, (b) the data-driven iteratively bias-corrected intervals
and (c) the data-driven undersmoothed intervals. The amount of bias-correction and under-
smoothing is calibrated to give 94 % pointwise target coverage for intervals with 95 % nominal
coverage. The sample size was λtot = 50 000 and the regularization strength chosen using
the MMLE.
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Figure B.23: Empirical coverage and mean interval length in unfolding the two peaks on a
uniform background test setup using data-driven iteratively bias-corrected, undersmoothed
and non-bias-corrected Gaussian confidence intervals induced by the unconstrained Gaussian
estimator β̂G. The sample size was λtot = 50 000 and the regularization strength chosen using
the MMLE. The intervals have 94 % pointwise target coverage (dashed horizontal line) and
95 % nominal coverage (solid horizontal line).
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Figure B.24: Illustration of the variability of the data-driven iteratively bias-corrected Gaussian
confidence intervals in unfolding the two peaks on a uniform background test setup with
sample size λtot = 50 000. The panels show realizations of the intervals for given percentiles
of the sampling distribution of interval lengths (averaged over s). The intervals have 94 %
pointwise target coverage and 95 % nominal coverage. The figures also show the true intensity
(dashed line), the non-bias-corrected point estimate (solid line) and the bias-corrected point
estimate (dotted line).
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Figure B.25: Unfolding of the two peaks on a uniform background test setup using Gaussian
confidence intervals induced by the unconstrained Gaussian estimator β̂G. The figure shows
(a) the non-bias-corrected intervals, (b) the data-driven iteratively bias-corrected intervals
and (c) the data-driven undersmoothed intervals. The amount of bias-correction and under-
smoothing is calibrated to give 94 % pointwise target coverage for intervals with 95 % nominal
coverage. The sample size was λtot = 10 000 and the regularization strength chosen using
the MMLE.
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Figure B.26: Empirical coverage and mean interval length in unfolding the two peaks on a
uniform background test setup using data-driven iteratively bias-corrected, undersmoothed
and non-bias-corrected Gaussian confidence intervals induced by the unconstrained Gaussian
estimator β̂G. The sample size was λtot = 10 000 and the regularization strength chosen using
the MMLE. The intervals have 94 % pointwise target coverage (dashed horizontal line) and
95 % nominal coverage (solid horizontal line). This figure is the same as Figure 6.13 in the
main text.
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Figure B.27: Illustration of the variability of the data-driven iteratively bias-corrected Gaussian
confidence intervals in unfolding the two peaks on a uniform background test setup with
sample size λtot = 10 000. The panels show realizations of the intervals for given percentiles
of the sampling distribution of interval lengths (averaged over s). The intervals have 94 %
pointwise target coverage and 95 % nominal coverage. The figures also show the true intensity
(dashed line), the non-bias-corrected point estimate (solid line) and the bias-corrected point
estimate (dotted line). This figure is the same as Figure 6.14 in the main text.
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Figure B.28: Unfolding of the two peaks on a uniform background test setup using Gaussian
confidence intervals induced by the unconstrained Gaussian estimator β̂G. The figure shows
(a) the non-bias-corrected intervals, (b) the data-driven iteratively bias-corrected intervals
and (c) the data-driven undersmoothed intervals. The amount of bias-correction and un-
dersmoothing is calibrated to give 94 % pointwise target coverage for intervals with 95 %
nominal coverage. The sample size was λtot = 1 000 and the regularization strength chosen
using the MMLE.
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Figure B.29: Empirical coverage and mean interval length in unfolding the two peaks on a
uniform background test setup using data-driven iteratively bias-corrected, undersmoothed
and non-bias-corrected Gaussian confidence intervals induced by the unconstrained Gaussian
estimator β̂G. The sample size was λtot = 1 000 and the regularization strength chosen using
the MMLE. The intervals have 94 % pointwise target coverage (dashed horizontal line) and
95 % nominal coverage (solid horizontal line).
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Figure B.30: Illustration of the variability of the data-driven iteratively bias-corrected Gaussian
confidence intervals in unfolding the two peaks on a uniform background test setup with
sample size λtot = 1 000. The panels show realizations of the intervals for given percentiles
of the sampling distribution of interval lengths (averaged over s). The intervals have 94 %
pointwise target coverage and 95 % nominal coverage. The figures also show the true intensity
(dashed line), the non-bias-corrected point estimate (solid line) and the bias-corrected point
estimate (dotted line).
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