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Abstract

Amongst the substances found in any living organism one of the most central in the
workings of each living cell is deoxyribonucleic acid (DNA). For that reason it has been
the subject of research in many of its aspects. These range from DNA sequencing to
atomistic-level structural analysis. The most well known property of DNA is its coding
function — the fact that it is the carrier of genetic information. It is, however, only a small
fraction of the whole DNA (1% in humans) that is responsible for coding for proteins.
The other functions of DNA such as transcription, replication and recombination are
apparently strongly influenced by mechanical properties of the molecule, i.e. its shape
and flexibility at the length scale of several hundreds of base pairs. These, in turn, differ
with the sequence. Our main goal here is to provide tools that facilitate the analysis of
such sequence-dependent statistical mechanical properties of DNA.

Our considerations concern two recently introduced sequence-dependent models of DNA
mechanics. The first one, called cgDNA, is a discrete, rigid base, nearest neighbour
model with a shifted quadratic energy depending on the internal parameters of the 3D
configuration. In this context we describe a method of maximum entropy fitting that can
be applied in the procedure of extracting cgDNA parameters from molecular dynamics
simulation data. We also introduce a formulation within the cgDNA framework that
allows modelling of long, repeating sequences as well as closed loops of DNA. We apply
this formulation to analyse superhelical structures of the intrinsic shape of such repeating
sequences. Finally a technique for efficiently computing persistence lengths of short
(~ 200 bp long) DNA oligomers using an optimized Monte Carlo code within the cgDNA
model is presented.

The second mechanics model of DNA to be considered is the continuous elastic birod.
In this setting the DNA is modelled as two long, thin elastic rods with local, elastic
interactions. The associated sequence-dependent birod Hamiltonian system has coefficient
functions extracted from the cgDNA model. For this model we address issues concerning
the use of these coefficients in numerical computation. We then describe the bBDNA
software, which provides a graphical user interface for running computations within the
model. We end with a presentation of example results of numerical simulations obtained
using bBDNA and numerical techniques adapted from elastic rod models.

Keywords: DNA mechanics, coarse-grain models, mazximum entropy fit, superhelix,
persistence lengths, Monte Carlo, birods, parameter continuation
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Résumé

Parmi les substances qu’on trouve dans tout organisme vivant, I'une des plus importantes
pour le fonctionnement de chaque cellule est 'acide désoxyribonucléique (ADN). Pour
cette raison, de nombreux aspects de ’ADN sont étudiés. Ceux-ci vont de séquengage
de ’ADN & l'analyse structurale au niveau atomique. Le mieux connu est sa fonction de
codage — le fait qu’il est porteur d’information génétique. Mais seule une petite fraction
de PADN total (1 % chez les humains) code les protéines. Les autres fonctions de 'ADN
telles que la transcription, la réplication et la recombinaison sont apparemment fortement
influencées par les propriétés mécaniques de la molécule, c’est-a-dire sa forme et sa
flexibilité & I’échelle de plusieurs centaines de paires de bases de long. Celles-ci, pour
leur part, dépendent de la séquence de paires de bases. Notre objectif principal ici est
de fournir des outils qui facilitent ’analyse des propriétés mécaniques de 'ADN qui
dépendent de la séquence.

Notre étude porte sur deux modéles récents de la mécanique de I’ADN dépendant de la
séquence. Le premier, appelé cgDNA, est un modéle de bases rigides interagissant avec
les bases voisines les plus proches, avec une énergie quadratique décalée en fonction des
paramétres internes de la configuration 3D. Dans ce contexte, on décrit une méthode
d’ajustement de ’entropie maximale qui peut étre appliquée pour extraire les paramétres
pour cgDNA & partir de données venant de simulations de dynamique moléculaire.
On présente également une formulation qui permet de modéliser de longues séquences
répétitives, ainsi que des boucles fermées de ’ADN, dans le cadre de c¢gDNA. On utilise
cette formulation pour analyser les structures superhélicoidal de la forme intrinseque
de telles séquences répétitives. Enfin, une technique efficace pour calculer la longueur
de persistance des oligomeéres d’ADN courts (~ 200 pb), en utilisant une méthode de
Monte-Carlo optimisée pour le modéle cgDNA est présentée.

Le deuxiéme modéle de la mécanique de ’ADN qu’on considére, est la bi-tige élastique
continue. Dans ce contexte, ’ADN est modélisé comme deux tiges élastiques longues et
minces avec des interactions élastiques locales. Les coeflicients du systéme hamiltonien
dépendant de la séquence qui est associé a la bi-tige sont des fonctions extraites de
modeéle cgDNA. Pour ce modéle, on discute des problémes concernant 'utilisation de ces
coefficients dans les calculs numériques. On décrit ensuite le logiciel BBDNA qui fournit
une interface graphique pour effectuer des calculs avec ce modéle. On termine par des
exemples de résultats des simulations numériques obtenus a 'aide de bBDNA et des
techniques numériques adaptées des modéles de tige élastique.
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Introduction

Standard Watson-Crick B-form DNA molecules consist of two strands of bases or nu-
cleotides: adenine (4), cytosine (C), guanine (G) and thymine (T). There is a correspon-
dence between the bases, namely A pairs with T forming two hydrogen bonds, while G
pairs with C with three hydrogen bonds. Bases are covalently bonded to one of the two
antiparallel sugar-phosphate backbones. The backbones have a direction specified by the
chemical structure of the sugars, referred to as 5* — 3’, which is by convention its reading
direction.

Our efforts are focused on the question of the influence of the base pair composition of
DNA oligomers on their mechanical properties such as flexibility or intrinsic shape. The
importance of these relations at the length scales of tens to several hundreds of base
pairs has been well recognized (see e.g. [BedFurKat1995; OlsGorLul998; VolVol2002;
VirBerHen2004]).

To put our research in a wider context we describe a hierarchy of available models of
DNA mechanics that take into account the effects of sequence (see Figure 1) and present
particular pertinent examples.

— )
Coarse graining — o Interpolation
—_— - _—
-
e
D —— B ——
Embedding -”‘ Discretization
of atoms | gy
| E—
=,
T
-
- Rigid base models Continuous models
At t del
OHHSHE MOdeis (e.g. cgDNA) (e.g. elastic birod)

Figure 1. Hierarchy of DNA coarse graining



Introduction

The most detailed information can be obtained from atomistic models [BevBarByu2004;
DixBevCas2005; PasMadBev2014|, which include every atom of the studied oligomer.
Computations in such models are based on classical Molecular Dynamics (MD) where
interactions between all pairs of atoms are considered. One issue of this kind of formulation
is the difficulty of designing reliable force fields that describe the underlying dynamics. A
comparison of the two most widely used force fields used in the context of B-form DNA
can be found in [PérLanLuqOro2008|. MD simulations are also extremely computationally
intensive, with microsecond simulations for relatively short oligomers (a few tens of base
pairs in length) taking days on contemporary supercomputers. Furthermore the analysis
of the resulting time series (on the order of TB of data) is rather laborious. Nevertheless
MD simulations can provide a source of comprehensive statistics for parametrizing more
coarse grain models.

In discrete coarse grain models of DNA certain groups of atoms, such as base pairs
(e.g. [OlsGorLul998]) are assumed to be rigid. It has been shown that a common
modelling assumption of only nearest neighbour interactions between the rigid bodies is
not very accurate for rigid base pair models [LanGonHef2009]. Hence, here we consider
the discrete rigid base cgDNA model [Pet2012; GonPetMad2013; Pet2012]. c¢gDNA can
be parametrized from statistics of time series of large scale MD simulations such as
[PasMadBev2014|. As a result of coarse graining some of the information is lost, yet
cgDNA was shown to well reproduce ground state statistics of the training set as well as
of independent simulation data [Pet2012; GonPetMad2013].

Continuum formulations can be constructed by interpolating the discrete models. This
need not be considered as yet another coarse graining step (because no information is
lost in interpolation), unless homogenization (or averaging) techniques are additionally
applied to obtain slowly varying continuous constitutive coefficient functions. The great
advantage of a continuum treatment is the possibility to decouple the discretization
used to numerically solve the problem from the actual physical one. Such a continuous
interpolation of the rigid base model has been developed under the name of the elastic birod
model [MoaMad2005] and has recently been extended with a Hamiltonian formulation
and a method of extracting parameter functions from cgDNA |Gra2016].

The contributions of this thesis concern the development of methods and tools for analysing
DNA oligomers using the ¢gDNA model and the elastic birod model. We have structured
the presentation in three parts: first (B) presenting background material, the second (P1)
revolving around discrete DNA modelling using cgDNA, and the third (P2) dedicated to
the continuum birod description.

Chapter B.1 outlines the cgDNA model of [Pet2012; GonPetMad2013; Pet2012|, where each
base is assumed to be a rigid body. The 3D configuration of an oligomer can be described
as a position of a reference point of each base and its orientation. Internal coordinates,
which eliminate an overall rotation and translation of the entire oligomer, are introduced



to describe the configuration. The energy of an oligomer is assumed to be a shifted
quadratic function of the internal coordinate vector w, i.e. U(w) = %('w -w) K (w-w).
It is further assumed that each base interacts only with its 5 nearest neighbours which
implies a particular sparsity structure of the stiffness matrix K. The (sequence-dependent)
stiffness matrix K and ground state configuration vector w for any given oligomer can
be reconstructed using a given parameter set. The cgDNA parameter sets are extracted
from a large data set of molecular dynamics simulation. The parameter estimation
procedure has recently been modified to use the maximum absolute entropy fit introduced
in Chapter P1.1. All of the original contributions of this thesis in the context of cgDNA
are gathered in Part P1.

Chapter B.2 describes methods for solving systems of non-linear algebraic equations with a
scalar parameter A. Parameter continuation method starts from a known regular solution
and computes the one-dimensional branch of solutions passing through it by changing the
parameter 1. A parametrization of the solution branch is required in order to proceed
along the branch. The pseudo-arclength parametrization is described, which allows for
robust traversal of every solution point during continuation, including e.g. fold points,
where the branch “turns back” with respect to the parameter 1. A method of branch
switching is presented, which can be applied at branch points, where another branch of
solutions bifurcates from the one being continued. The parameter continuation method
can be used for solving boundary value problems of ordinary differential equations. Such
problems can be reduced to algebraic systems through discretization. The AUTO-07p
implementation [DoeKelKer1991a; DoeKelKer1991b; DoeChaDer2009| of the presented
method has been chosen for computations in the birod DNA model, presented in Part P2.

Chapter B.3 is an introduction to elastic rod [CosCos1909] and birod [MoaMad2005;
Gra2016| theory. This begins by defining an elastic rod as a long thin object, whose
configurations can be described using a curve of reference points r(s) € R3 and orientations
of its cross sections R = [dl ds dg] € SO(3) (see Figure B.3.1). Balance laws are
presented, which describe the equilibrium conditions on the internal stresses acting across
the cross section at s. The notion of constitutive relations that describe the connection
between strains of the rod and the stresses acting across each cross section is introduced.
A variational formulation of the hyperelastic rod problem is described followed by the
introduction of the Hamiltonian formulation with the particular choice of unit quaternion
representation of the cross section orientation. Two example Boundary Value Problems
(BVP) for the elastic rod system are introduced. In the pulling and twisting BVP the
rod is fixed at one end and vertical loads are applied at the other end (see Figure B.3.2a).
In the closed loop problem the ends of the rod are required to coincide, while the rod
cross sections at both ends are required to share a common ds director vector (see
Figure B.3.2b). An approach to solving these problems using techniques of symmetry
breaking [LiMad1996] (see Figure B.3.4) is presented. The same approach is adapted in
Part P2 to the DNA birod model.



Introduction

A birod, as introduced in [MoaMad2005] and studied in [Gra2016], is a system of
two rods with a common parametrization interacting elastically (see Figure B.3.5). The
configuration of such a system can be described as a rod macrostructure that represents the
appropriate average of the two rods, and a microstructure that gives the relative rotation
and translation between the two strands. Internal coordinates of the macrostructure are
the strains of the average rod. Balance laws of the birod are expressed in terms of the two
rod description. Variational principles are known to exist for all the cases of boundary
conditions used here [Gra2016]. A method of [Gra2016, sec. 4.2] of extracting birod
DNA constitutive coefficients from the c¢DNA model is outlined. Finally a Hamiltonian
formulation in unit quaternions, analogous to the one for rods, is stated.

Part P1 presents original research in the context of the c¢g DNA model.

Chapter P1.1 describes a procedure for maximum entropy fitting for banded covariance
matrices (which can be applied in the case of the sparsity pattern of the c¢gDNA model).
The existence and uniqueness of maximum entropy fits was first shown in [Dem1972]. A
recursive algorithm of completing the covariance to maximize the entropy of the resulting
Gaussian model is given. The main contribution is a simple procedure for constructing the
inverse covariance (or stiffness) of that Gaussian, which vanishes outside the prescribed
sparsity pattern. The presented proof of the result uses only basic concepts of linear
algebra. After the results was obtained it was found it can be recovered from prior results
of [SpeKiil986|, [Laul996, sec. 5.3|] and [JohLun1998| largely couched in significantly
different formulations. Maximum entropy fitting improves the parameter extraction
procedure of cgDNA [GonPetPas|, as confirmed by results presented in Chapter P1.4.

In Chapter P1.2 we introduce a method of describing long oligomers of repeating sequence
(tandem repeats) within the cgDNA model by a particular form of a stiffness matrix K,(S)
and ground state configuration vector w,(S) of the repeated fragment S. Properties of
the new formulation are analysed. The error of approximating the “standard” cgDNA
energy of a finite tandem repeat using the periodic coefficients is evaluated. A numerical
argument is used to show that for any sequence the periodic ground state configuration
vector well approximates the standard cgDNA ground state configuration vector of the
same sequence far (> 5bp) from the ends. The periodic coefficients are also shown to
be well suited for modelling covalently bonded closed loops of DNA (which is used in
Chapter P2.3).

In Chapter P1.3 a method of calculating pitch and radius of superhelices formed by
ground state configurations of DNA tandem repeats in the cgDNA model with periodic
coefficients is shown. The applicability of the procedure is studied. The radius and pitch
returned by the method are shown to be invariant under changing the number M of
repeats of the basal sequence, under cyclic shifts of the sequence and under Watson-Crick
symmetry. An exhaustive study of the superhelical structure of intrinsic shapes of tandem
repeats of all possible sequences of length up to 12 bp is made. Intrinsic shapes of repeats



of fragments of up to 10 base pairs were found to be either very close to straight, or to
form left-handed superhelices. For all fragments of 12 bp the superhelices were found to
be right-handed. In case of repeats of 11 bp long fragments both left- and right-handed
helices were found with an exceptionally wide range of pitches and radii. Two sequences
of particular superhelical structure from the study have been chosen for the pulling and
twisting numerical experiment in Chapter P2.3.

Chapter P1.4 presents a Monte Carlo approach to calculating DNA persistence lengths in
the cgDNA model. An efficient Monte Carlo code cgDNAmc developed for the purpose is
presented as well as results of a number of simulations run with the code.

Part P2 of our considerations is entirely dedicated to the birod model of DNA.

Chapter P2.1 reports two issues encountered while performing parameter continuation in
the birod model with the DNA coefficients of [Gra2016, sec. 4.2]. Bifurcation detection
was found to fail in AUTO-07p for any parameter continuation run in the birod DNA
model. The problem is identified as numerical stiffness of the system. An alternative
bifurcation detection method for AUTO-07p is proposed and implemented. The other
problem is discovered to be related to the pronounced discontinuities of the birod DNA
coefficients at base pairs. This feature of the coefficients brings about the requirement of
excessive discretization that exceeds the number of base pairs of the modelled oligomer
several times. Application of an analogue of the coefficient homogenization technique
of [Gra2016, sec. 7.3| is proposed, and a positive validation of results obtained using it
is presented. All results of birod computations presented herein are performed using
homogenized DNA coefficient.

Chapter P2.2 describes the bBDNA software for computation in the DNA birod model
and visualization of results. Many aspects of the application were modelled on the VBM
package of [Paf1999a; Paf1999b| as well as on the PLAUT04 interface of the AUTO-07p
solver [DoeChaDer2009|. The general structure of the code is outlined together with
a justification of the design decisions. Finally a procedure of symmetry breaking from
straight, inextensible, unshearable, uniform, transversely isotropic rods directly to full
bBDNA birods is outlined. This is an application of an approach used previously in case
of elastic rods [LiMad1996; DicLiMad1996].

The last Chapter P2.3 is dedicated to example results of solving Boundary Value Problems
(BVP) in the birod DNA model using bBDNA. Pulling and twisting BVP experiments
for two superhelical oligomers of Chapter P1.3, and one intrinsically close to straight
sequence of Chapter P1.3 are performed using the interactive computational steering
interface of bBDNA. Subsequently results in the closed loop BVP, obtained through the
automatic symmetry breaking script of Chapter P2.2 are presented.






Background material






B.1 The cgDNA model

This chapter reviews necessary background material. While certain original refinements
are presented here, the material in essence pre-dates this thesis. c¢gDNA is a sequence-
dependent, nearest neighbour rigid base model of the statistical mechanics of B-form DNA
in solution [Pet2012; GonPetMad2013; PetPasGonMad2014]. DNA configurations in the
cgDNA model are expressed in internal coordinates [LanGonHef2009]|, which eliminate an
overall translation and rotation of the DNA fragment. The internal coordinates describe
the relative translational and rotational displacement between bases within a base pair
and between neighbouring base pairs. For any sequence of DNA a free energy minimizing
configuration (called the ground state configuration) together with a stiffness matrix are
predicted by the c¢gDNA model. Using this ground state configuration vector and stiffness
matrix the free energy can then be evaluated for any given configuration of the DNA
oligomer. The sequence dependent parameters for the cgDNA model are extracted from a
large data base of time series of Molecular Dynamics (MD) simulations [BevBarByu2004;
DixBevCas2005; LavZakBev2010]. The MD simulations are constantly being extended
[PasMadBev2014|, which allows ongoing improvement of the cgDNA parameters. The
authors of the model have shown that it well reproduces ground state statistics of MD
simulations at the length scale of a few tens of base pairs.



Chapter B.1. The cgDNA model

B.1.1 Configuration of a DNA oligomer

In the c¢gDNA model each base is modelled as a rigid body. There is no explicit description
of the backbone, although its influence is encoded in the parameters of the model. Each
base of a DNA molecule is described using the the Curves+ [LavMoaMad2009]| version
of the standard Tsukuba frame [OlsBanBur2001]. We denote the ath main strand
base frame (position and orientation of the ath base in the main or reading strand) as
(D}, r}) € SE(3) (see Appendix (A.1) for the notation for rigid body displacements).
Similarly the ath (in the order of the main strand) complementary strand base frame will
be written as (D,,r;) € SE(3). Here the positions and orientations are expressed with
respect to the chosen laboratory frame.

+ +
(Da+2’ I.a+2)

(D;+2’ I‘;+2)

1
(Ha+1a §(ra+1 + ra+2))

+ +
(Da+1’ I.a+1)

(D;H’ rc_H-l)

(Haa %(ra + ra+1))

(D;’ r;) (Da,ﬂra)

Figure B.1.1. A schematic view of base, base pair and junction frames in cgDNA. Here
the reading (Watson) strand is AGT (red, green, blue) and so the complementary (Crick)
strand is TCA. The reading strand base frames (D}, x}) and complementary strand base
frames (D, r,) are indicated in colour. Their SE(3) averages, i.e. the base pair frames
(Dg, 1) cgDNA are shown in light grey. The junction frames (Ha, %(ra + ru+1)) that are
the SE(3) averages of the consecutive base pair frames are marked as dark grey. Note
that the complementary frames are flipped. The figure also presents the convention for
visualizing rigid base representations of DNA oligomers used throughout the thesis. Each
base is visualized as a plate which is the bounding rectangle of centres of all atoms of the
base. The shown configuration is of no particular significance.
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B.1.2. Internal coordinates

B.1.2 Internal coordinates

The model uses internal coordinates (i.e. shape coordinates that are invariant under an
overall translation and rotation of the molecule) |[LanGonHef2009; Pet2012].

Define the relative rotation from the complementary to the main strand:
A, =(D)H'D} e€8S0@3) (B.1.1)

the base pair orientation with respect to the laboratory frame:

D,=D, A, €S8S0@3) , (B.1.2)
and the relative translation between base pairs expressed with respect to the base pair
frame D,:

0a= (D) (xt-r;) €eR® . (B.1.3)

Let r, be the base pair position with respect to the laboratory frame:

1
ru:§(r;+r;) eR3 (B.1.4)

and let L, be the relative rotation between base pair a and a + 1:

L,=D,)"' D,y €803 , (B.1.5)
so that the orientation of the ath junction H, can be defined as:

H,=D,\L, €80@3) . (B.1.6)
The base pair step translational coordinates p, with respect to H, are defined as:

pa= (Hy) (ris1) —1a) €RP . (B.1.7)

In B-form DNA the relative rotations A, and L, in the above definitions are small
(specifically the angle of rotation is much smaller than 7) and so can be parametrized by

Cayley vectors (see Section A.1.1.3):

¥, = cay (Ag) (B.1.8)
0, =cay (L, . (B.1.9)

Configurations with coordinates close to rotations by & are out of the scope of the c¢ DNA
model. Hence the singularity of the Cayley vector parametrization at rotation angles
close to m (see Section A.1.1.3) is not problematic.

11



Chapter B.1. The cgDNA model

Given the above, the six degrees of freedom between bases of the ath base pair are
described by a vector y, = [19,1 Qa]T called the intra base pair coordinates. Similarly,
the six degrees of freedom between bases of the ath junction (i.e. of base pair a and base
pair a + 1) are defined by a vector z, = [6,1 pa]T called inter base pair coordinates. The
conventional name of each coordinate as well as its geometrical interpretation is shown in
Figure B.1.2

Sy o Ny W

Buckle Propeller Opening Tilt Roll Twist
Shear Stretch Stagger Shift Slide Rise

Figure B.1.2. Intra base pair (left) and inter base pair (right) coordinates of the cgDNA
model. Rotational coordinates are in the top row, translational coordinates in the bottom
row. Bases are represented as flat rectangle plates. In each case the respective coordinate
of value 3 is shown. In case of twist, shift and slide additionally the value of 1 in rise is
added for clarity.

Finally the configuration of an entire oligomer of N base pairs is described by a vector of

coordinates:
T
w = [191 01 01 p1 920 6O2p2 ... On.1py1 Uy QN] e RIZN-6
~—_——— —— ——  —(— ———— N
Y1 zZ1 Y2 zZ2 ZN-1 YN
(B.1.10)

called the configuration vector or shape vector.

For reasons detailed in [GonPetMad2013, sec. I1.D] a characteristic scale is introduced:
¢ = 1A for translations and g = % [radians| for rotational variables so that the non-
dimensionalized variables used in the c¢gDNA model are defined as:

1 1
Y, = =9, =59, Qa = 50a = Qa
1 1
6, = Eea =50, Pa = 3Pa = Pa (B.1.11)

and the non-dimensionalized intra y, and inter z, vectors as well as non-dimensionalized
shape vector w can be defined by expressions analogous to (B.1.10).

12



B.1.3. Reconstruction of 3D configuration

B.1.3 Reconstruction of 3D configuration

In what follows we use the notation D, D, and D, to mean the homogeneous coefficients
(see Section A.1.2) of the reading strand base frame, complementary base frame, and the
base pair frame, respectively, so that:

Dt = [D;r I'Z:l , @; =

@ ot 1 or 1 of 1

D, r“l, and D, = {D“ r”l (B.1.12)

with 0 € R?. Homogeneous coordinates are introduced as they allow for clean and
compact notation. The question of efficient numerical realization of the procedures below
is addressed in Section P1.4.2.3.

Given any position and orientation 2 of the first base pair (usually chosen to be the
identity), the entire configuration can be recovered from any given shape vector (B.1.10)
as [LanGonHef2009]:

L, =cay (g0,) (B.1.13a)
L, —tVI
Lo=| " aPa (B.1.13b)
0 1
Das1 = Daly (B.1.13c)
A, = cay (g9,) (B.1.14a)
Aa ﬁ a
gri=| Vot 22 } (B.1.14b)
0 1
e M
B = (VAs)" —5ea (B.1.14c)
0’ 1
DY =D,B} (B.1.14d)
D, =D,B, (B.1.14e)

In the above the notation VA, and v/ L, mean the principal square roots of the respective
rotation matrices, which are interpreted as representing half of the rotation represented
by the matrices themselves (see Section A.1.1.4).

In many applications, e.g. the Monte Carlo simulations presented in Chapter P1.4, it
suffices to reconstruct only the base pair frames (B.1.13) and not the individual base
frames (B.1.14), which is possible for the tree-like connectivity expressed in the decoupling
of (B.1.13) from (B.1.14).

13



Chapter B.1. The cgDNA model

B.1.4 c¢gDNA energy

In the cgDNA model for a given DNA molecule in a heat bath the equilibrium distribution
of its configurations w is assumed to be given by the density:

f e_BU(ﬂ)](E) dw

p(w) = (B.1.15)

where 8 = chLT with kp the Boltzmann constant, T the temperature of the bath, and

n-1 2\ 2 n 2\ 2
B 180, 189,
J= ;(1+ . PNEE . (B.1.16)

a=1

is the Jacobian factor associated with the particular “non-flat” nature of the non-
dimensionalized Cayley vector rotational coordinates [WalGonMad2010].

The internal energy U is assumed to be a shifted quadratic function of the configuration
w i.e.:

U(w) = %(w—@)TK(w—@ (B.1.17)

with the ground state shape vector w € R'?2"76 (energy minimizer) and the symmetric

RU2n=6)x(127=6) " The parameters w and K depend

positive definite stiffness matrix K €
on the base sequence of the particular oligomer. It is clear from (B.1.15) that the
probability density p is the same for any constant shift of the energy U. Hence, without
changing any statistical properties (B.1.17) assumes the energy U (w) of the ground state

configuration to be zero.

A scale of kgT is used to non-dimensionalize the energy U:
1 . ~
U(w) = 5(w-w) K(w-w) (B.1.18)

with K = ,CBLTK . For convenience the - notation will be dropped and the variables will
be assumed to be non-dimensionalized throughout, unless indicated otherwise.

B.1.5 Nearest neighbour assumption

In addition to the rigid base assumption, the cgDNA model also assumes that each base
interacts only with its 5 nearest neighbours (the complementary base, the two bases in the
base pair upstream and the two in the base pair downstream). This implies a particular
18 x 18 overlapping block structure with 6 x 6 overlaps. For an oligomer of sequence
S =XiXo...X,21X, (with X; € {A,C, G, T}) the stiffness matrix K (S) can be constructed

14



B.1.5. Nearest neighbour assumption

by summing diagonal coefficient blocks: K*« € R6%6 that represent stiffness contribution
from intra interactions within ath base pair and K¥«Xe1 ¢ R18X18 that represent stiffness
contribution from inter interactions between all bases in base pairs a and a + 1. The
sequence-dependence of the parameter blocks K*« and K*«*s+1 is an assumption of the
c¢gDNA model independent of the nearest neighbour assumption. An analogous procedure
can be used to compute the so called weighted shape vector a(S) from intra o*« € RS and
inter gXXer1 € R18 coefficients (see Figure B.1.3). The weighted shape vector satisfies the
relation:

a(8) = K($)w(S) (B.1.19)

so that the ground state configuration vector w(S) is computed using a linear solve that
inverts the relation (B.1.19).

Note that the inverse of the stiffness matrix K (S) is dense, so w(S) has a non-trivial
dependence on the entire sequence. Note also that the first and last diagonal 6 X6 block of
K(S) as well as the first 6 and last 6 entries of o(S) are the sum of only two overlapping
blocks/vectors (not three as with the other 6 X 6 overlaps). As a result the parameters
for a given base pair step are different based on whether it appears inside or at an end of
a given oligomer. This gives rise to end effects.

G o
XX
. B, s
24H3 ¢ _
X3 + . = n = K (S)
Xn-1 | | | |
Xn-1XN
XN »n
-
2,

. X2Xs3

X3 + | = n =:o0(S)
Al . £

,,,,, XN—l N .

X |

Figure B.1.3. A sketch showing the procedure of building a cgDNA stiffness matriz K (S)
with its particular sparsity pattern (top) and the weighted shape vector o (S) (bottom) for
an oligomer sequence S = X1X9X3...X,-1X,. Fach cell of the matrix is of dimension 6 X 6
and each cell in the vector is of dimension 6 X 1.
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Chapter B.1. The cgDNA model

B.1.6 c¢gDNA parameter sets

Computations of sequence dependent energies U in the cgDNA model require a set of
mononucleotide ¥, K* and dinucleotide o*¥, K*¥ coefficients for all X,Y € {A, C, G, T}
called a parameter set. The original one called cgDNAparamset1, published together
with the model, was extracted from a large ensemble of full-atom Molecular Dynamics
(MD) simulations data of the ABC collaboration [BevBarByu2004; DixBevCas2005;
LavZakBev2010]. The extraction process has been split into three independent steps.
First a time series of configurations {'w(S)(j )} for each oligomer S is extracted from MD
snapshots using the Curves+ package |[LavMoaMad2009], is assumed to follow a Gaussian
distribution:

1 . =S\TgeS(n, =S
pS(w) = —e (w=0,)" K (w0, ) (B.1.20)
o
and to be ergodic. These assumptions allow one to extract an observed ground state
shape vector w; and an observed covariance (inverse stiffness) matrix (K3)~! as first and
second moments of pS approximated in the standard way from the ensemble of snapshots

{w(S)(j)}.

In the second step, for each simulated oligomer S a stiffness matrix K3, with the 18 x 18
sparsity pattern induced by the nearest neighbour assumption (see Section B.1.5) is
computed. This is done by minimizing the Kullback-Leibler divergence [KulLeil951] (or
maximizing the relative entropy):

S
p"”(w)) dw (B.1.21)

D i) = [ phutwrin
(Ons P2) Ppn(w) In 05 ()

o

between p$, (whose first and second moment are w3, = wS and (K3,)~!, respectively)
and the observed distribution p,.

Finally the parameter set | = (%, KX, oY, K*'} is computed by minimizing the sum
over all oligomers S of Kullback-Leibler divergences

Pr = argglinZD(pSP, Sy . (B.1.22)
N

Each p*;; is defined by the ground state shape vector we(S) and stiffness matrix Kg(S)
constructed from the parameter set # for the oligomer S.

Chapter P1.1 presents an alternative approach to step two that involves maximizing
the absolute entropy. The resulting parameter set labelled as c¢gDNAparamset2 (derived
from the same molecular dynamics data) has proven to have certain advantages over the
original cgDNAparamsetl and was used to produce the results of this thesis.
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B.2 A parameter continuation method for
solving boundary value problems

In this chapter we briefly present elements of the (single) parameter continuation method
of solving systems non-linear algebraic equations as described e.g. in [DoeKelKer1991al
or [Paf1999a]. The method can be used to numerically solve boundary value problems of
ordinary differential equations that are reduced to algebraic systems through discretization
[DoeKelKer1991b|. This approach implemented in the AUTO-07p package, described in
Section B.2.4, has been chosen for computations in the birod model of DNA of [Gra2016|
(briefly outlined in Section B.3.3). The choice was motivated by the fact that previous
versions of AUTO proved to be very useful and robust for computations in symmetry
breaking within elastic rod models [LiMad1996; DicLiMad1996] as well as in the context
of DNA modelling [ManMadKah1996; FurManMad2000].

17



Chapter B.2. A parameter continuation method for solving boundary value
problems

B.2.1 Continuation of solutions

In simple terms single parameter continuation means exploration of the solution space of
a non-linear algebraic system of the form:

F(v; ) =0 , F:R"™ SR
1eR (B.2.1)

for the state variable v by changing the value })f its parameter A. For simplicity in what
follows we introduce the notation x := [v /1] , o the system (B.2.8) can be written as:

F(z)=0 . (B.2.2)

In case of a regular solutions x, of (B.2.2) for which the Jacobian F(x,) has rank n,
there exists a unique one-dimensional branch x(t) = [’U(T) A(T)]T of solutions passing
through x, [DoeKelKer1991a|, where 7 is a chosen parametrization of the branch. The
principle of parameter continuation is to start from a known initial regular solution xq
and compute a nearby solution on the solution branch by a perturbation in A. An entire
set of solutions may be generated by applying this procedure to subsequently computed
solution points. Projections of such a solution set into some subset of system variables,
such as the one shown schematically in Figure B.2.1, will be referred to as bifurcation

diagrams.

=
A

Figure B.2.1. A schematic picture of pseudo-arclength continuation. Two branches of
solutions are indicated as blue lines. xy = x(1y) s the known starting solution. The
black arrow indicates the displacement of At in the direction &g = %w(‘ro). x1 1S the
new solution found in the hyperspace (indicated by the dashed line) orthogonal to &y at
distance At. Additionally a fold x¢ with respect to the parameter A is shown. An example
of a simple singular solution that is a branching point, where two solution branches
cross is also indicated.
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B.2.2. Choice of parametrization

Let p(x(t); ) = 0 be the function that defines the chosen parametrization. The system
that needs to be solved to perform continuation can then be written as:

F(x(r)) =0

B.2.3
p(x(r);7) =0 | )

For a known solution @y = x(19) and &y the next solution &1 = (1 + At) can be found
using Newton iteration:

$[1) =X + AT io
Enf@) | g —_| F=) (B.2.4)
Pz (a:’l ; AT) ! p(:z:’1 ; A‘r)
zit = ot + Azl

The next direction vector 1 can be found after convergence of the Newton method. The
following relation (result of differentiation of (B.2.3) with reference to t) can be used:

0
p-(x1; AT)

Fw(ml)

pm(wl ; AT) (B25)

T]=-—

The direction vector should then be normalized so that |x| = 1.

B.2.2 Choice of parametrization

A crucial question of parameter continuation is the choice of the parametrization function
p(-; -). The most straightforward idea might be to use A, i.e. p(v; 1) = A — 1. However
this method, called natural parametrization, fails at certain points called simple folds .
These are points where F,(xf) has rank n — 1 and F;(xf) is not in its range. It can be
shown that for simple folds %/1 = 0, where 1, is the arclength parametrization of the
curve [DoeKelKer1991al. This means that at such points the branch “turns back” with
reference to A (see Figure B.2.1). There is an extensive theory describing the fact that
fold points are associated with stability exchange, e.g. [Mad1987|.

The AUTO-07p package, presented in Section B.2.4, uses the so called pseudo-arclength
parametrization, which is an approximation to the arclength parametrization p(v; 1) =

@1 to (B.2.2) on a hyperplane perpendicular to &g :=

2
d%'vH + (%/1) — 1 of the branch. Geometrically this method searches for a new solution

d
dr

x( located at distance At (see
Figure B.2.1). This can be written as:

F(a)=0 (B.2.6)
(1 —20) 20 — AT = 0 o

It can be shown that pseudo-arclength continuation works for every regular solution point
x( (including folds) provided that At is sufficiently small [DoeKelKer1991a).
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Chapter B.2. A parameter continuation method for solving boundary value
problems

B.2.3 Singular points and bifurcation detection

An important type of non-regular solutions are simple singular points xs where F,(xs)
becomes singular and Fg(xs) has rank n — 1, so that its null space is two-dimensional.
Note that by differentiating (B.2.2) with respect to T we have Fy(x (1)) (1) = 0 for any
solution x(t) of (B.2.2). Hence the directions @(7) of branches are in the null space of
Fy(x(7)). This further implies that another branch might be bifurcating from the current
one (see an example in Figure B.2.1).

When a simple singular point x4 is reached during continuation the direction of the
current branch xg is already computed as shown before. A method that determines
whether x4 is a branching point (i.e. whether a bifurcating branch exists) is known. If
such a branch exists the method can also compute its direction x/ exactly. This approach,
however, is computationally very expensive. Instead in practical branch switching the
orthogonal direction method is used, where x/ is approximated by a null vector of Fy(x(7))
orthogonal to &g. This may fail if the branches are far from being perpendicular, but is
successful in most cases and is implemented in AUTO-07p.

Let o3 = x(15) be a simple singular point of a branch x(t) and:

(B.2.7)

G(x;1):= [ F@) l

(x—z)Tds— 7

It can be proved that if () and G(x; 7) are sufficiently smooth and det G4 (x(7); 7)
changes sign at T = 1, then xy is a branching point. Hence detection of branching points
can be performed by monitoring the sign of the determinant of the Jacobian G,. This
does not, however, ensure that all bifurcation points are found, because bifurcations can
occur at singular points with a higher even dimensional nullspace where the appropriate
determinant does not change sign.

B.2.4 Solving boundary value problems in AUTO-07p

We now briefly present the AUTO-07p parameter continuation software [DoeChaDer2009].
As mentioned before previous versions of AUTO were successfully used for computations
in the elastic rod, and so the latest version has been chosen for the birod computations

presented in Chapter P2.3.

Amongst other things AUTO-07p allows for solving Boundary Value Problems (BVP) for
systems of Ordinary Differential Equations (ODE) of the form:

d
Eu(t;p)=f(“(t;p);P) ; u(-; ), fG;)eR™
peR™ |
telo1] (B.2.8)
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B.2.4. Solving boundary value problems in AUTO-07p

subject to boundary conditions:
b(u(0; p). u(l; p); p) =0 b(-,-;)eR™ (B.2.9)
where p are the system parameters.

To solve such BVPs the AUTO-07p solver uses the Gauss collocation method to discretize
the system [DoeKelKer1991b|. Branches of continuous piecewise polynomials approxima-
tions ug(t; p) of critical solutions of the BVP are computed using the single parameter
pseudo-arclength continuation described above, applied to the algebraic system that is
the result of discretization.

To solve a BVP in AUTO-07p the user has to provide an ANSI C or Fortran source
file that we will refer to as the problem script. The script defines functions to evaluate
the right-hand side f(-; -) of Equation (B.2.8), the boundary conditions b (-, -; -) of
Equation (B.2.9) and a known starting point ug(-; -). Note that each of those functions
can depend on a number of system parameters each one of which can be used by AUTO-07p
for parameter continuation. This way continuation can be performed both in the system
itself and in boundary conditions. The AUTO-07p package provides shell scripts for
compiling problem scripts with pre-compiled AUTO solver routines into a single binary.

A continuation run involves execution of such a binary with options provided in a file
with the necessary AUTO constants. These AUTO constants control all variable aspects
of a run such as:

e the number n; of discretization mesh intervals and the number m. of collocation
points per interval,

e the solver accuracy,

e the step size and number of steps along a branch of solutions,

e requests of branch switching at bifurcation points,

e what solution to start from (compute a starting point using the function defined in
the AUTO script or read a solution from a solution file),

e requests for reporting solutions with a particular value of one of the system param-
eters (such solutions will be called user requested points),

e stopping conditions including stopping at user requested points.

The continuous piecewise polynomial solutions along a branch computed during a run
are stored subsequently in a solution file. For each solution the state variables as well as
the system parameters of the solution are printed out. The state variables are given as
values of the degree m. polynomial pieces at m. + 1 points in each of the n; discretization
mesh intervals. As a result the values of the state variables of the solution for any value
of t € ]0,1] can be recovered e.g. using the standard Lagrange interpolation method
[PreTeuVetFla2007, sec. 3.2].
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Chapter B.2. A parameter continuation method for solving boundary value
problems

If not specified otherwise the AUTO constants for a run are read from a file called
‘fort.2’, while the default name of the input solution file, from which a pre-computed
starting point can be loaded, is ‘fort.3’. The solutions computed during a run are stored
by default in a file ‘fort.8’. These files are used by the bBDNA software introduced in
Chapter P2.2 as an input-output interface to AUTO-07p.
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B.3 Elements of rod and birod theory

Simple continuum elastic rod models in the form of the worm-like chain have long been
used in statistical mechanics of polymers [KraPor1949; BugFuj1969; Yam1976|. More
sophisticated rod models have subsequently been developed in the particular context
of DNA [Benl1977; Ben1979; MarSig1994; ManMadKah1996; FurManMad2000|. This
chapter begins with a brief introduction of the Cosserat rod theory [CosCos1909]|, which
generalizes all the mentioned models. An example similar to that of [LiMad1996| of
symmetry breaking in the case of closed loops of elastic rods model will be shown. In
Section P2.2.2 an analogous method of symmetry breaking has been shown to be useful
in the birod model.

Finally, we move on to an extension of rod theory called the elastic birod theory, originally
introduced in [MoaMad2005| and further studied in the particular context of DNA
modelling in [Gra2016], where a method of extracting sequence-dependent coefficients for
the continuous birod system from the discrete c¢gDNA model [Pet2012; GonPetMad2013,;
PetPasGonMad2014] is presented. The notations introduced here closely follow those of
|Gra2016].
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Chapter B.3. Elements of rod and birod theory

B.3.1 Cosserat elastic rod theory

Cosserat rod theory models long thin elastic objects, whose configuration can be de-
scribed by a curve in the special Euclidean group G (s) = (R(s), r(s)) € 88(3)]0’L[ (see
Section A.1.2). The translational part r(s) represents the centreline of the rod, while R(s)
describes its cross section (see Figure B.3.1). In our treatment the parameter s €|0, L|
will be the arclength in the unstressed shape of the rod. We define also the directors
{d;(s)} as the columns of the matrix representation of R(s) (see Figure B.3.1), so that:

| | |
R(s) =: |di(s) do(s) ds(s)| . (B.3.1)

As the parameter s varies within |0, L| the rod configuration can be recovered from the

relations:
d%R(s) = R(s) [U(s)™] (B.3.2a)
%r(s) =R(s)V(s) (B.3.2b)

with the notation [-*] of Equation (A.1.22), for a skew matrix associated with the
rotational strain U(s) € R?, which is sometimes referred to as the Darbouz vector, while
V(s) € R? will be called the translational strain.

Jel

Figure B.3.1. An example rod configuration. The first cross section orientation R(0) is
here aligned with the laboratory frame {e;}. In our visualization the tube represents the
centreline r(s) of the rod, while the ribbon indicates the direction ds. This choice was
motivated by the fact, that in the standard Tsukuba framing for DNA this is the stiffer
direction (approximately indicating the backbone of a given base pair).
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B.3.1. Cosserat elastic rod theory

We also introduce the notation:

U(s)

6
vis| €F (B.3.3)

£(s) =

We will henceforth refer to the vector &£(s) as the rod strains.

B.3.1.1 Balance laws

A rod is said to be in equilibrium if the total moment and total force acting on the cross
section at each value of s €|0, L| vanish. In our treatment we will assume that external
loads will only be applied at the ends of the rod. As a result the balance laws of the
internal moment m(s) around r(s) and force n(s) acting across the cross section at s can
be written as:

% (m(s) +1(s) xn(s)) =0 (B.3.4a)
d
&n(s) =0 (B.3.4b)

We also introduce the triples n(s) and m(s) to mean the components of, respectively, the
internal force n(s) and moment m(s) in the local body frame R(s), i.e.:

m(s) = R(s)m(s) (B.3.5a)
n(s) = R(s)n(s) (B.3.5Db)
and the notation:

m(s)

6
iy | €F (B.3.6)

£(s) = [

B.3.1.2 Constitutive relations

We will now introduce the constitutive relations between the rod configuration and
stresses, which define the material properties of the rod. In particular we will consider
the case of local hyperelastic constitutive relations. Locality means that the stresses
{(s) only depend on the local configuration and its derivatives at s. The assumption of
hyperelasticity implies that there exists an energy density function W (£(s); s) : RS - R
with the following form of the constitutive relations:

L(s) =W (E(s);s) . (B.3.7)
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Chapter B.3. Elements of rod and birod theory

B.3.1.3 The rod variational principle

It can be shown that in the particular case of the hyperelastic constitutive relations
(B.3.7) a wariational principle can be applied in all the considered cases of boundary
conditions. Denote the potential elastic energy due to the deformation of the rod by the
functional:

E[§]=f0 W(E(s);s)ds . (B.3.8)

Then, stationary configurations of the energy functional (B.3.8) that satisfy appropriate
boundary conditions also realize the balance laws (B.3.4). In other words the Euler-
Poincaré equations of [Gra2016| for (B.3.8) are equivalent to the balance laws (B.3.4).

B.3.1.4 Hamiltonian formulation of the rod governing equations

It can be shown that for any energy density W (& ; s) strictly convex in € the rod equilibrium
conditions (B.3.4), (B.3.7) admit a Hamiltonian structure. The Legendre transform of the
energy density W, defined as:

H(g5s) = max(§- £ - W(g; o)) (B.3.9)

yields the rod Hamiltonian function. Henceforth we limit our considerations to linear
hyperelastic rods, with a shifted quadratic form of the energy density, namely:

W(£(s); 5) = % (£(5) - €(s)) - K(s) (£(s) - €(5)) (B.3.10)

with s symmetric positive definite stiffness K (s) € R%6 and intrinsic shape E(s) eRS In
this case the Hamiltonian function can be written explicitly as:

H({(s);s) = %as) CH(s)L(s) +E(s) - £(5) (B.3.11)

with the Hamiltonian matrix H(s) = K(s)™'.

B.3.1.5 Unit quaternion representation of the cross section orientation

For computational purposes it is convenient to introduce a unit quaternion parametrization

q(s) (described in more detail in Section A.1.1.2) of the orientation R(s) of the rod cross
T

section. For o = [x1 Xo X3 x4] € R* let the matrices [:I:B] and [acF] be defined as:

X4 —X3 X9 X4 X3 —X92
X3 X4 —X1 —X3 X4 X1

[27] = [27] = . (B.3.12)
—X2 X1 X4 X2 —X1 X4

—X1 —X2 —X3 —X1 —X2 —X3
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B.3.1. Cosserat elastic rod theory

In this setting the Lagrangian of the rod system takes the form:

AN 20a®'q . /
L(g,q', V;s) = w , V:.s|+vqq' ;ds (B.3.13)
0

lq|?

with g’ = %q and v the Lagrange multiplier associated with the pointwise constraint of
constant norm of g(s) (see [LiMad1996] for more detail). The variable conjugate to g(s),
which we will refer to as the impetus, can be expressed as:

2
p(s) = 0y L = —— [q(s)B] duW +vq(s) . (B.3.14)
lg(s)]

The moment m(s) and its coordinates in the body frame m(s) can be recovered from
p(s) and g(s) as:

_lpopr 1l g7
m(s) = 3 [q ] 7! m(s) = 5 [q ] mo. (B.3.15)
The Hamiltonian form of the governing equations in this case is given by:
d d
ar =RV &1’1 =0 (B316a)
d l1r B d 11 B
_ = — P — = — — D . V B 1
4=y "]V h=5]d°|U-Da@:m (B.3.16b)
where from B.3.11 the Hamiltonian version of the constitutive relations reads:
1[qB]" U
UO)| _ g |zla®] )|, |U© (B.3.17)
V(s) R(q)"n(s) V(s)
with R(q) given in Equation (A.1.16), and
| | |
D(q;n) := |9qd1(@)"n 9qd2(q)"n 9gd3(g)"n (B.3.18)

where the expressions for the directors {d;} as functions of q can be recovered from
Equation (A.1.16), so that each dqd; is a 3 X 4 matrix.

Note that a very desirable feature of the Hamiltonian formulation (in contrast to the
Lagrangian description) is that all special cases of rod constitutive relations, including
inextensibility and unshearability, are smooth limits where the appropriate entries of the
Hamiltonian matrix H tend to zero. For example the inextensible, unshearable, straight,
uniform, transversely isotropic rod (as e.g. in [LiMad1996]) is given by the Hamiltonian:

1

£ 0 0
1 0 £ 0 03 ~
HEs)s) =586 | o 0 e+ &4 (B.3.19)
K3
03x3 03x3

with 03x3 € R¥3 a zero block, stiffnesses K; and K3, and E = [0 00 0 O 1]T.
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Chapter B.3. Elements of rod and birod theory

B.3.2 Examples of rod boundary value problems and sym-
metry breaking

Here we will introduce certain Boundary Value Problems (BVP) in the rod system and
discuss certain aspects of solving them through parameter continuation, as described
in Chapter B.2. In particular we will consider two types of BVP that we will call the
pulling and twisting problem (Section B.3.2.2, Figure B.3.2a) and the closed loop problem
(Section B.3.2.3, Figure B.3.2b). Example solutions of birod versions of both of these
problems will be presented in Chapter P2.3.

Figure B.3.2. Schematic pictures of the two chosen rod boundary value problems. The
pulling and twisting example is shown in panel (a). The boundary conditions at s =0 fix
the orientation of the cross section R(0) (partially indicated in the picture by d;(0) and
d2(0)) to a fized rotational offset from the laboratory frame {e;}. The boundary conditions

at s = L ask for the force and moment (in the laboratory frame) to be [O 0 D3]T and

[0 0 mg]T, respectively, i.e. the only applied loads are along the indicated es axis. The
values of n3 and mg can be used for parameter continuation. Panel (b) shows an example
of the closed loop BVP. Here the directors ds(0) and ds(L) are aligned with es and only
a rotation of R(L) around es = d3(0) = d3(L) is allowed. The rotation angle a between
di(0) and di(L) (or in other words between ds(0) and do(L), as indicated) can be used in
parameter continuation.

B.3.2.1 Finding a starting point

First we address the very important issue in solving any BVP using parameter continuation,
which is how to get a starting point. A straightforward approach is to start from a known
solution of a slightly modified problem and use continuation in the formulation to get
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B.3.2. Examples of rod boundary value problems and symmetry breaking

to the problem at hand. As explained e.g. in [LiMad1996], in case of rod problems
the “simplification” may be reduction of complexity of constitutive relations of the rod.
Closed-form solutions are known e.g. for inextensible and unshearable, transversely
isotropic and uniform rods. As a result computation can be started with some “simplified”
uniform constitutive coefficients Eo and Hy, where closed-form solutions are known. The
desired, possibly s-dependent, constitutive coefficients can then be reached through the
following continuation in the Hamiltonian coefficients:

(1-0) & + T E(®s) (B.3.20a)
(1-0)Hy+ o H(s) (B.3.20b)

by increasing the value of the homotopy parameter o from 0 to 1.

It should also be noted that the symmetries of the simple constitutive relations may
introduce non-isolation of solutions to the boundary value problem at fixed parameter
values, which can make computation of solution sets and the symmetry breaking procedure
delicate. Examples are considered later.

B.3.2.2 Pulling and twisting a rod

The pulling and twisting rod BVP, as presented below, is a simple variation of the classic
strut BVP presented in a setting similar to ours e.g. in [LiMad1996; MadManPaf1997]. In
this case we ask one end of the rod (at s = 0) to be clamped with respect to the laboratory
frame, i.e. the centreline position r(0) is fixed at 0 € R3, while the orientation of the
cross section is fixed at a constant rotation from the laboratory frame {e;}. The load
applied to the rod will be a force and a moment acting along the axis es, with transverse
loads set to vanish. Figure B.3.2a presents a schematic picture of the problem.

Concretely the boundary conditions can be written as:

r=[0 0 o] (B.3.21a)
q(0) = qo (B.3.21b)
pa(0) =0 (B.3.21c)
n@)=[0 0 ny (B.3.21d)
1
Slaflwna =0 0 m]’ (B.3.21¢)

where gy represents a given, fixed rotation. The boundary condition (B.3.21¢) removes
the gauge freedom g — p + eq (see [LiMad1996]). The boundary condition (B.3.21e)
fixes the value of the moment m in the laboratory frame (see Equation (B.3.15)) at s = L.
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Chapter B.3. Elements of rod and birod theory

For this BVP the problem of finding a starting point is relatively simple. The important
observation here is that the unstressed configuration of any rod can be computed as
a solution to an appropriate initial value problem. In the particular case of piecewise
constant strains, i.e.:

E(s) = Ei e RS for s € (si,siv1], O0=so<s;i<sy=1L, (B.3.22)
ie{l,...,N} (B.3.23)

and any general, s-dependent Hamiltonian matrix H(s) the solution has a piecewise
helical centreline and is known analytically to be:

r(0)=0 (B.3.24a)
r(s) =r(s;) + R(q(s,-)) rh(s - S, U,-, V,) for s € (s, Si+1] (B.3.24b)
q(0) = qo (B.3.24c)
q(s) = q(s;) qh(s - S, D,) for s € (s;, sit1] (B.3.24d)
n(s)=0eR3 (B.3.24e)
u(s)=0eR* | (B.3.24f)
where R(q) is the rotation matrix associated with the quaternion g (see Equation A.1.16),
and
L sV if |U| =
r V —Cos s—sin —~ B325a
i (I - |“| [ki¥] + TM[k ]) if 0] %0 ( )
[ 00 1] it |U] =
an(s. V) = R (B.3.25b)
[sin (35[0 ki cos (35T))] 16 (0] #0

with k; = % describe the framed helix defined by U and V. The additional rotation of

the configuration by g is associated with the initial condition (B.3.21b).

This special case is pertinent to the DNA coefficients of the birod model of Section B.3.3.3,
where the unstressed shape is exactly piecewise helical.
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B.3.2. Examples of rod boundary value problems and symmetry breaking

B.3.2.3 Closed loops of a rod

Figure B.3.3. Fragments of solution sets of the closed loop boundary value problems for (a)
an ideal and (b) a perturbed rod. The solution sets are presented in the two dimensional
projection of twisting moment ms(L) and a composition of the energy E of (B.3.8) and
[n|. Panel (a) shows the lower energy part of the solution set for an inextensible and
unshearable, uniform, transversely isotropic, intrinsically straight, untwisted rod with
% = 0.78 (computed from averaged DNA data for the sequence s of Section P2.3.2).
FEach point in the bifurcation diagram is a representative of a family of symmetry-related
solutions. The family associated with the solution indicated by the black ball is presented
in Figure B.3.4. DBifurcation points are indicated as blue boxes. Any other apparent
crossing of branches is an artefact of the projection. The structure of the solution set is
described in the main text. In panel (b) the entire set of panel (a) is indicated in green.
When a small perturbation in the constitutive relations is made the highly connected set
breaks into a number of disconnected components indicated in different colours. The
specific perturbation here is the introduction a very localized bend of § in the middle of
the rod. Solutions in the disconnected components are isolated. This panel is analogous to
Figure 6.1 of [LiMad1996].
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Chapter B.3. Elements of rod and birod theory

The second rod BVP that we will consider is the closed loop case as described in
[LiMad1996] and schematically presented in Figure B.3.2b. This formulation has been
shown to be useful in modelling DNA minicircles [ManMadKah1996; FurManMad2000].
In Section P2.3.2 results of applying a similar approach in the birod DNA model will be
presented.

As indicated in Figure B.3.2b, in the closed loop problem we ask for the initial R(0)
and final R(L) cross section orientations to share a common third director vector, i.e.
d3(0) = d3(L). The boundary conditions for this problem read:

r(0) =0 e R3 (B.3.26a)
Im(g(0)) = 0 € R3 (B.3.26b)
14(0) =0 (B.3.26¢)
r(L)=0€eR3 (B.3.26d)
q(L) = [0 0 —sin (%) — COS (%)]T (B.3.26e)

where the imaginary (or vector) part Im(q(0)) of a quaternion is its first three components
(see Equation (A.1.5a)). Again, as in (B.3.21), the boundary condition (B.3.26c) removes
the gauge symmetry of pu(s).

Note that in this setting the loop is closed only in r(s) but can be seen as open in R(s),
as only ds is necessarily continuous. In the context of DNA modelling such solutions will
be referred to as partially closed loops, while the ones where also R(0) = R(L) will be
called fully closed loops.

For this problem closed-form solutions are known only for certain equilibria with multiply
covered circular centrelines in the uniform, straight, transversely isotropic case. Thus
parameter continuation has to be started from a symmetric, non-isolated solution. Basic
knowledge of the structure of the symmetric solution sets, presented below, makes it easier
to understand the symmetry breaking technique. A full discussion of the non-isolation,
as well as techniques of computing solution sets of the symmetric problem with modified
boundary conditions is presented in [ManMad1999].

A symmetric solution set consists of branches of N-covered (N € {1, 2, ...}) planar, circular
solutions, indicated in green in the bifurcation diagram of Figure B.3.3a, that are pairwise
connected with branches of non-planar solutions (indicated in different colours). The
details of the connectivity are discussed e.g. in [LiMad1996|.

As conjectured e.g. in |[LiMad1996| the solution set in the symmetric case is completely
connected (see Figure B.3.3a). This property is lost when the symmetries are broken
through the introduction of more complex constitutive coefficients. That is to say
that the connected solution set splits into a number of disconnected components (see
Figure B.3.3b).
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B.3.2. Examples of rod boundary value problems and symmetry breaking

The families of symmetric planar solutions are related by the register symmetry associated
with rotation of the cross sections locally around d3(s), as shown in Figure B.3.4. This
symmetry is related to the fact the rod is straight and transverse isotropic. In the
examples of this thesis symmetry breaking is started from a chosen representative of such
a symmetry family that lies on the plane (d2(0), d3(0)). Closed form equations of such
solutions for the Hamiltonian (B.3.19) and the twisting angle @ can be found e.g. in
[LiMad1996; DicLiMad1996; ManMad1999]:

0
L
r(s) = cos (M) -1 (B.3.27a)
2Nr sin (él\iﬂs)
sin (%) coS (%)
—sin (N"S) sin (ﬂ)
q(s) = (NT”LS) sin (éL) (B.3.27Db)
coS (%) cos (%)
2NKzam
n(s) = I 0 (B.3.27¢)
0
4K1N7TQ4(S) + 2K301q2(5)
—4K1Nrqs(s) — 2Ksaq1(s) (B.3.27d)

4K1N7rq2(s) + 2K3(Xq4(8)
—4KiNnq,(s) — 2Kzaqs(s)

A starting point of this kind is indicated in the bifurcation diagram of Figure B.3.3a with
a black ball. The exact same solution is indicated with a black ball in the bifurcation
diagram of Figure B.3.4i that presents the procedure of symmetry breaking started from
that point. In this particular case the perturbation in the constitutive coefficients involves
introduction of a bend localized in the middle of the rod. The Hamiltonian stiffness
matrix stays unchanged.
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Chapter B.3. Elements of rod and birod theory

(8) (f) ()

Figure B.3.4. Symmetry breaking in the closed loop rod boundary value problem.
Panel B.3.4i shows a bifurcation diagram of symmetry breaking, while the other panels
show tube-ribbon representations of chosen solutions. The tubes/ribbons are coloured
using the value of lm| (from blue to red). The colour coding of the frames of the panels
matches the one of balls/boxes/crosses in the bifurcation diagram. The symmetry related
family that is the result of the first step of symmetry breaking (see main text) is the green
branch in the bifurcation diagram. The black ball on that branch represents the starting
point of this first computation. This solution was constructed using Equations (B.3.27) so
its centreline lies on the plane (d2(0),ds(0)), as shown in Panel (e). This is the same
solution as the one represented by the black ball in Figure B.3.3a. (Continued on the
following page)
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B.3.2. Examples of rod boundary value problems and symmetry breaking

Figure B.3.4. (Continued from the previous page) The solutions, (f), (h), (a), (b) and
(d) are met in this order in the clockwise traversal of the symmetry family starting from
(e). The centreline of solution (a) lies in the same plane as the one of (e), while the
centrelines of (h) and (d) lie in an orthogonal plane (d1(0), d3(0)). The solutions (f) and
(b), marked with bozes, are the two bifurcation points in coefficients continuation found
on the green branch. The bright blue and orange branches represent the two symmetry
breaking runs ended for o =1 at solutions (g) (a local minimum) and (c) (a saddle point),
marked with the blue and red cross, respectively. Projections of these solutions to the
plain of the intrinsic bend are also shown. The red and blue branches are fragments of the
red and blue components from the bifurcation diagram of Figure B.3.3b, for the desired
constitutive relations.

The procedure begins with computation of the symmetry-related family of solutions for the
starting point. The symmetry family is shown as the green circular branch in Figure B.3.4i.
As illustrated schematically in Figure 5 of [FurManMad2000| in the general case close-by
perturbed stationary solutions exist for only two points in the entire symmetry-related
family. As a result the family can be generated in AUTO-07p by requesting continuation
in the homotopy parameter o of the Hamiltonian coefficients (see Equation (B.3.20)),
using the boundary conditions (B.3.26). This continuation does not change the value of
the homotopy parameter o = 0, but computes the symmetry-related family and reports
the two points where close-by perturbed solutions exist as bifurcation points (bright blue
and orange boxes in Figure B.3.4i).

The following step involves the actual symmetry breaking at the two bifurcation points
found previously. Continuation in the homotopy parameter o is run until the value oo = 1
is reached, and so the desired constitutive relations are attained. The symmetry breaking
branches are the bright blue and orange ones with ends indicated by blue and red cross
in Figure B.3.4i.

Note that in the generic case if symmetry breaking is performed on the single covered
branch below the first bifurcation point one of the two bifurcation points leads to a local
minimum and the other one to a saddle point [FurManMad2000]. This can be seen in
Figure B.3.4. For the local minimum presented in panel (g) the intrinsic bend “helps”
forming the loop, while in case of the saddle point shown in panel (¢) the bend is “inside
out”.

The small portions of the blue and red branches in Figure B.3.4i are fragments of the blue
and red disconnected components in Figure B.3.3b shown in a different protection. They
were computed by continuation in the twist angle a started at the blue and red cross.
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Chapter B.3. Elements of rod and birod theory

Note, that as shown e.g. in [MadManPaf1997; HofManMad2003| in the symmetric
problem stable solutions exist only in the part of the solution set corresponding to the
blue component of the perturbed system, shown in Figure B.3.3a. For that reason to
compute stable stationary points it is probably sufficient to perform symmetry breaking
only in that region.

In Section P2.3.2 we will show that the technique presented above can be used to
break symmetry from symmetric rods of Equation (B.3.27) directly to birods with
sequence dependent DNA constitutive relations, provided that the Hamiltonian form of
the equilibrium conditions is adopted.

B.3.3 Elastic birod theory

In this section we briefly outline the birod theory with the particular application to
DNA modelling in mind. The model was first introduced in [MoaMad2005|, but here
we present the modified version described in [Gra2016] where a Hamiltonian form of
the Euler-Lagrange equations is introduced. In addition [Gra2016| presents a method of
computing continuous birod coefficients starting from the discrete c¢gDNA model [Pet2012;
GonPetMad2013; PetPasGonMad2014| described in Chapter B.1.

Figure B.3.5. An example birod configuration. The first average frame R(0) here is
aligned with the laboratory frame {e;}. Panel (a) shows the configurations of the two
rods, G*(s) = (R*(s),r+(s)) and G~(s) = (R_(s),r_(s)), that constitute the birod. In
panel (b) additionally the average rod is shown as well as the relative rotation P(s) and
translation w(s) = R(s)w(s).
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A birod consists of two rods with local elastic interactions (see Figure B.3.5a). The con-
figurations of the two rods, denoted G*(s) = (R+(s), r+(s)) and G~ (s) = (R_(s), r_(s)),
share a common parametrization s €|0, L|. In the birod setting the configuration is given
by a pair (G (s), P(s)) € (88(3)]0’L[)2. G (s), called the macrostructure, represents the
average rod, while the microstructure P (s) = (P(s), w(s)) € SO(3) x R3 characterizes
the relative translational and rotational displacement of the two rods (see Figure B.3.5b).

In terms of the two rod configurations G*(s) and G~ (s) the birod macrostructure can be
expressed as their S&E(3) average so that:

[V

R(s) = R (s) (R (5)" R*(5)) (B.3.284)

r(s) = %(ﬁ(s) +17(s)) (B.3.28D)

where (-)% denotes the half rotation as discussed in Section A.1.1.4. The microstructure

can be written as:

P(s) = R (s)'R*(s) (B.3.29a)
w(s) = R(s)" (r*(s) =17 () (B.3.29b)

so that P(s) is the relative rotation from R™(s) to R*(s), while w(s) is the relative
translation between r~(s) to r*(s) expressed in the average frame R(s).

The inverse relation from G(s) to G*(s) and G~ (s) reads:

Nj=

R*(s) = R(s)P(s)* (B.3.30a)

r(s) =r(s) + %R(s)w(s) (B.3.30b)

The internal coordinates of the birod macrostructure will be the strains &£(s) of the average
rod defined in equation (B.3.2). For the microstructure we introduce the Cayley vector
representation of the rotational part:

n(s) := cay(P(s)) €R® . (B.3.31)

(where cay(-) is defined in Equation (A.1.35) or equivalently (A.1.38)). The microstructure
coordinates are, then:

L n(s) 6
y(s) = [w(s) eR (B.3.32)
with the derivatives:
P L i _ Un(s) 6
gy (s) = y(s) = Vs € R" . (B.3.33)
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Chapter B.3. Elements of rod and birod theory

B.3.3.1 Balance laws

Similarly to the rod case an equilibrium configuration of a birod has the property that
total moments and forces vanish at each s €]0, L|. To explain the equilibrium equations
of a birod it is useful to treat it as a system of two rods that interact with one another.
In this setting the stresses exerted on each strand by its counterpart can be seen as an
external field for that strand. Let m*(s) be the total moment around the point R*(s) and
n*(s) the total force for the strand +. The balance laws for each strand can be written

as:
%(mi(s) +1%(s) X 0¥ (5)) = €*(s) +1%(s) X £*(s) (B.3.34a)
d o .
=0 (s) =£5(s) (B.3.34b)

where ¢*(s) € R3 is the total external moment density and f*(s) € R? the total external
force density at s exerted by the other strand.

B.3.3.2 Variational formulation and constitutive relations for birods

In the context of the double rod description it can be shown [Gra2016| that variational
principles exist for all cases of boundary conditions treated in this thesis for a local energy
of the form:

L
E‘|G", 6] = fo WG G € E ) ds (B.3.35)

where €~ and &% are the strains of the two strands G~ and G, respectively, while
(g‘)‘l G ™ is the rigid body displacements between the strands.

An equivalent formulation in terms of the birod internal coordinates can be written as:

L
ElG,?(y)| = fo W(y, £y (s), €; s) ds . (B.3.36)

The variables conjugate to n(s), w(s), U, (s) and V(s) will be denoted as m? (s), n? (s),
c?(s) and 7 (s), respectively. These conjugate variables are non-trivially related to the
stresses m*(s), n*(s) and stress densities ¢*(s), £*(s), introduced in the previous section.

The stationary conditions for (B.3.36), equivalent to the balance laws (B.3.34), are:

%(m(s) +1(s) Xn(s)) = 0 %mf’ (s) = c(s) (B.3.37a)
d _ d o o
an(s) =0 dSn (s) =f"(s) (B.3.37b)

with m(s) the total moment around r(s), and n(s) the force acting on the macrostructure.
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B.3.3. Elastic birod theory

In analogy to rods we define m(s) and n(s) as the components of the average rod stresses
expressed in the frame R(s) (see Equation (B.3.5)). Additionally we introduce the

notation:
P . c”(s) P n m? (s) __|m(s)
F(s):= |:fT (S)l gy (s) = [n? (S)l L(s) = {n(s)l (B.3.38)
The birod constitutive relations can be written as:
F(s)=o,W (B.3.39a)
gy (s) = dg2W (B.3.39b)
4(s) = 0eW . (B.3.39¢)

B.3.3.3 DNA birod coefficients

In the particular case of the DNA birod model the energy will be assumed to be a shifted
quadratic function of the birod internal coordinates and the Lagrangian will be assumed
to be of the form:

R L[ () =) y($) =y (s)
Elg,fP(y)]=f £ () =&y ()| K () £ (s) &y ()| ds (B.3.40a)
O | Es)-Es) £(s) - E(s)
1 —~ ~
+5 (¥ -y©) - Ko(y(0) - y(0) (B.3.40D)
1 — —~
+5 () -y W) Ki(yw) -yw) . (B.3.40¢)

where K (s) € R'® is the interior stiffness matrix, Ko, K; € R® will be called boundary
intra stiffness matrices, and E(s), y(s), Ef (s) € RS are the internal variables of the ground
state configuration. All the mentioned values will be collectively referred to as birod
coefficients.

For the energy of the form (B.3.40) birod coefficients for a given DNA oligomer can
be recovered from a parameter set of the cgDNA model [Pet2012; GonPetMad2013,;
PetPasGonMad2014]. The c¢gDNA parameters were chosen as the starting point for
parametrizing the birod model as they have been shown to reproduce well ground state
statistics of molecular dynamics simulations at short length scales.

A method of extracting birod coefficients from the cgDNA model was presented in
[Gra2016, sec. 4.2]. It was shown that the resulting continuum birod energy is consistent
with the discrete energy of c¢DNA up to quadratic terms. Here we present a brief outline
of the method.
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Chapter B.3. Elements of rod and birod theory

Let w = (Y1, 21, Y2, 22, - . ., Yn) be the cgDNA ground state configuration vector of an
oligomer with the sequence X1X3...Xy (see Section B.1.2). Let @1, AU E)N be the base
pair frames reconstructed from w using the procedure of Section B.1.3. A piecewise
helical interpolation E)(N) of D can be defined by introducing a local helical interpolation
between E)n and E),Hl for each junction n. More precisely, for each junction n define:

=0 {D;'D 11} (B.3.41)

o [[Un) <] Vo)
! 0 0

with |V,,(s)| =1, where In{-} is a matrix logarithm of the 4 X 4 matrix of homogeneous

coordinates (see Section A.1.2) of the rigid body motion that is its argument, and h;N) is
the length of the local helix of the junction.

Now the nodes s,(,N) of the parametrization, the reference length L and the helical
~(N
interpolation ™ itself can be defined as:

N-1
s = > (B.3.42a)
k=1
L=s{" (B.3.42b)
™ (sM) =D, (B.3.42¢)
d =~ ~ov, | [Un)*] Vi)
D (=D () [ " ] " forse]sfV s . (B.3.42d)

In case of the microstructure internal coordinates, piecewise linear interpolation is used,

therefore for each junction n we have:

y(s) (1 s_s'(’N)) I =55 [ 3

T ) n
== f; ”"1 (B.3.43)
&y (s) —WIﬁ WIG Yn+l

where I € R%6 is the identity matrix.

At this point we merely state the coefficient fitting method without going into details of
the justification, which can be found in [Gra2016, sec. 4.2|. For vectors u, v € R? define:

1 1
Pi(u)=—— (13 +5 [ux]) (B.3.44)
e ()
Pow) = (I + Qt) 1 () (B.3.45)
LSy = [ % | B.3.46
' [Q(u)2 [v*]|Ps (u) Q(u)2 ( )
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B.3.3. Elastic birod theory

where I3,03 € R¥3 are the identity and zero matrices and Q(u) = cay(u) (of Equa-
tion (A.1.35) or equivalently (A.1.38)).

Let also:
_ R 03
Ad;! = B.3.47
Q [,,,X] R R] ( )
for Q = (r, R) € SE(3) and
s—s¥) s_sM)
(1_ h;zv) )I6 06 hELN) I6
Luw(s)=| —=wls Og ols | (B.3.48)
-1 (1)
0g Ad~ ) i)(N)(S)L”" 0g

With all of the above, the sequence dependent DNA birod coefficients can be computed as:

_ '(1 sV ) . =1 5
y(s) _ hi;N) 6 hle) 6 Yn (B 3 49a)
&y () —=wmls o le | |Ynn
~ (U, (5) ) (V)
$):= |~ forse s, ’,s B.3.49b
£(s) s rse]s™ s )
K(5) = —Lg o ()7
’ h(N) 6,..pn
n
K% 0 0
Kol o 0 o ||z, (s)* (B.3.49¢)
2 X en!ﬁﬂ o
0 0 K n+l
1 X
Ky =5 K" (B.3.49d)
1
K; = 5K"N (B.3.49e)

with the cgDNA parameter set blocks K*¥ € R®18 and K* € RO*6, with U, (s) and Vn(s)
of Equation (B.3.41), where 6, and pn are the cgDNA rotational and translational inter
base pair coordinates of the junction, respectively (see Section B.1.2). The expressions of
Equation (B.3.43) are repeated for completeness.
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Chapter B.3. Elements of rod and birod theory

B.3.3.4 The birod Hamiltonian formulation in unit quaternions

The birod system, just like the rod one, exhibits a Hamiltonian structure. The Hamilto-
nian function in the internal coordinates, for the general hyperelastic case is [Gra2016,
sec. 3.2.8]:

Hly. . ¢:5) = mx {60 €5 -W(y. 67 6:9)) (B.3.50)
.
Here for the first time we introduce the birod Hamiltonian formulation with the unit
quaternion representation of the average cross section in complete analogy to what has
been previously done for elastic rods [LiMad1996; DicLiMad1996; ManMadKah1996] (see
Section B.3.1.5).

In the birod DNA model formulation used in this thesis an alternative, equivalent [Gra2016,
app. A.4] formulation of the Lagrangian (B.3.40) will be used. It is obtained using the
change of variable:

RO = _[Eo)
y(s) = [W(s) =y(s)-y(s) Fr(s) = [ff(s)] (B.3.51a)
z U = = m” (s)
o=y =80 -&® 22 (s) = [ﬁ? (S)l . (B3.51b)
that eliminates the shifts in the microstructure. The Lagrangian then reads:
R | ¥ y(s)
Aorwl= [ | &o | xo| o |o
MRLORYI0 £(s) —&(9)
1 — 1 —
+5¥(0) - Koy (0) +5y(@) - Kiy(@) (B.3.52)
In this particular case the Hamiltonian takes the explicit form:
] o] [3e]
H(Y. 5. §:5) =5 (L5 ()] HE) [ (5)| +E(5) - L(5) (B.3.53)
g(s) g(s)
with the Hamiltonian matrix H (s) € RI®*18:
K)K;'KI - K, -K)K;!
H = (B.3.54)

-K;'KI K;!
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B.3.3. Elastic birod theory

defined as a function of the stiffness matrix K (s) partitioned as:

K K

K =
K! K3

(B.3.55)

with K; € R0 Ky € R®*12 and K5 € R12X12,

Note that by the Sylvester’s law of inertia the signature (the number of positive and the
number of negative eigenvalues) of a matrix is invariant under change of base. As a result
the following change of base of the Hamiltonian matrix:

-IG K K2K3_1K%~ - Ky —K2K3_1 I 0
H=| [ KK K } KT Iy (B.3.56a)
-K! 0
-1, Kgl} (B.3.56b)

(with Is and I;9 the identity matrices of the indicated dimensions) shows that H has six
negative and twelve positive eigenvalues provided that K is positive definite.

Exactly as described in Section B.3.1.5 in the context of rods and using the same notation
we now introduce the unit quaternion parametrization of the average rod cross section
orientation R(s). The birod Hamiltonian system for this choice can be written as (with
explicit s dependence skipped for clarity):

d d
973 [q ] U R [q ] U-D(g;n)V (B.3.57b)
%w =V, %ET = f? (B.3.57¢)
d_  — d _, -
1= Un LTm=c (B.3.57d)

with the Hamiltonian constitutive relations:

(€7 (s)] [ 0 0

—f7(s) w(s) 0

Oy | _prey| ™ || 0 B
V()| HT(TS) 0 o
Us) 5[a%] ne| |U®
| V() | | R(g)"n(s) | (s)]
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Chapter B.3. Elements of rod and birod theory

The (sequence-dependent) DNA coefficients of this system are the Hamiltonian ma-
trix H(s) computed from (B.3.49¢) using Equation (B.3.54) and the strains £(s) =
[D(s) V(s)]T of the intrinsic shape defined in Equation (B.3.49b). The boundary
stiffness matrices of Equations (B.3.49d) and (B.3.49¢) will be used in the definition
of free end microstructure boundary conditions (see Equation (B.3.61)). The intrinsic
internal microstructure coordinates y(s) (see Equation (B.3.49a)) will only be used for
computed solutions to reconstruct the 3D double rod configuration for visualization. The
reconstruction can be done using Equation (B.3.51a), the inverse of (B.3.31) (defined
in (A.1.40) or equivalently in (A.1.36)) and Equation (B.3.30).

Note that the macrostructure and microstructure can be decoupled by setting to zero
the sub-blocks H(l, 12),(13, 18) and H(lg’lg)’(l, 12) (that correspond to —KgKgl and its
transpose in Equation (B.3.54)). The microstructure variables can also be frozen by
asking for the leading 12 x 12 diagonal sub-block H(,12) (1, 12) to vanish. This way rod
computations can be performed within the birod system H(13, 1s),(1,12). In particular the

Hamiltonian:
B 1 3;(8) 012x12 012x6 3;,(8) R
H(y. Ly ¢is)= 5 || 1 SAUEI IO
K%)  0sy
4(s) O6x12 ( 05 )3 02 2 g(s)

(B.3.59)

( with 019x12, Ogx12, 012x6, 03x3 zero blocks of indicated dimensions, a diagonal stiffness

Ki 0 0
block K =0 K; 0 andgz [0 00 00 l]T ) describes an inextensible and

0 0 K
unshearable, straight, uniform, transversely isotropic rod. In fact the rod examples of

Section B.3.2 were computed using AUTO-07p with the same problem script as all of the
birod DNA examples of Chapter P2.3, but with different Hamiltonian coefficients. The
rod computations agree with previously computed solutions.
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B.3.4 Example birod boundary value problems

The Boundary Value Problems (BVP) that will be considered in what follows will simply
be natural extensions of the rod BVP presented in Section B.3.2. This means that
the boundary conditions on the macrostructure will be either the pulling and twisting
conditions of Equation (B.3.21) or the closed loop conditions of Equation (B.3.26). In
this section we will address the question of the microstructure part of the system.

B.3.4.1 Starting point

In all cases the birod starting point will consist of the macrostructure part defined for
each BVP of interest in Section B.3.4 and the shifted microstructure part will be set to

ZEero i.e.:
y(s)=0eR" (B.3.60a)
IP(s)=0eRS (B.3.60b)

In the pulling and twisting BVP this definition is possible because the starting point will
always be chosen as the unstressed shape. The closure condition introduces non-zero
stress in the macrostructure for a closed loop BVP but the starting point will always be an
ideal rod where the macrostructure is decoupled from microstructure. The microstructure
can, then, be unstressed.

B.3.4.2 Microstructure boundary conditions

We will consider two types of microstructure boundary conditions. The first will be
referred to as free-end microstructure boundary conditions, where the microstructure
stresses vanish at the ends. This can be achieved by setting:

{ 2, (0) = Koy(0) (B.3.61a)
~Zy (L) = K. y(L) (B.3.61b)

The other set of microstructure boundary conditions, used in Section P2.3.2, will be
periodic conditions, i.e.:

y(0) =y(L) (B.3.62a)
IAOEFAONS (B.3.62b)
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P1.1 Maximum entropy fitting for covari-
ance matrices with overlapping squares
sparsity

In this chapter we present a maximum entropy fitting procedure that is a core element of
an improved method of parameter fitting [GonPetPas| for the c¢DNA model [Pet2012;
GonPetMad2013; PetPasGonMad2014| introduced in Section B.1.6. More precisely,
consider a covariance matrix C prescribed only within a sparsity pattern of overlapping
diagonal squares. The procedure completes C' to a dense covariance C in such a way that
the inverse C~! vanishes outside the pattern. For any covariance C' and any overlapping
squares sparsity pattern such a completion C exists and is unique [Dem1972]. C is
also the covariance of the Gaussian model with maximum entropy amongst those whose
covariances are equal to C' inside the pattern [Dem1972].

Our main result is a direct way of computing the inverse C~!. This involves local inversion
of appropriate diagonal sub-blocks of C' and is of particular importance in the context
of the cgDNA model. In the second step of parameter fitting (see Section B.1.6) the
simple maximum (absolute) entropy fit is meant to replace the numerical optimization
procedure necessary in case of the maximum relative entropy fit used originally in [Pet2012;
GonPetMad2013; PetPasGonMad2014]. As shown in [GonPetPas| the maximum (absolute)
entropy is a more natural choice for the c¢gDNA parameter fitting. In Chapter P1.4, the
resultant parameter set cgDNAparamset2 (used throughout this thesis) is also shown to
allow for better predictive capabilities of persistence lengths within the c¢gDNA model
than the initial c¢DNAparamsetl.

It should be pointed out that after being stated and proved the presented result for the
inverse covariance C~! was found to be a particular case of prior work of [SpeKiil986],
[Laul996, sec. 5.3] and [JohLun1998| that is stated in rather different languages. The
proof presented here (similar to that of [Laul996, sec. 5.3]) is expressed in terms of
recursive Schur factorization and (unlike the prior works) also provides a method of
constructing C itself.
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Chapter P1.1. Maximum entropy fitting for covariance matrices with
overlapping squares sparsity

P1.1.1 Notation and definitions

Throughout this chapter we use the notation I, 0 for, respectively, identity and null
matrices with size set by context, while indices i, i + 1 etc. run over the implied range for
the expression at hand between all entries of the associated matrix. All square matrices
and matrix partitions are symmetric unless stated otherwise.

Let N denote an index set, i.e. a sub-set of all pairs of indices of an n X n matrix. An
index set with the property that (i, j) e N & (j, i) € N will be called symmetric. We
will also denote by N¢, the set of indices complementary to N. For 1 < p < n denote
by Np and N the corresponding subsets of N, and Ny limited to indices of at most p.
We also introduce the notation [[A]] 5, to mean the subset of elements of the matrix A
defined by N. It should be understood that matrix equalities involving [[:|| v, [[*]] e, OF
[[]] n, bhold only on matrix entries with indices in the associated index set, so for example
relations such as

[Ally, = 1Blly, - [y, #[Bllx,, - [Allye #[Bllye . (PLLD)

are all compatible. Figure P1.1.1 schematically illustrates the notions.

ALy [z 1Al

Figure P1.1.1. An example of a symmetric index set
N={(1,1),(1,3),(3,1),(2,2),(2,3), (3,2), (3,4), (4, 3)} with the complement

N =1{(1,2),(2,1),(1,4),(4,1),(2,4), (4,2),(3,3), (4,4)} and the sub-sets

N3 = and Ny =1{(1,2),(2,1),(3,3)}. Each small

square of the grid represents a single element of a matriz A € R¥4.

For integer numbers 1 <i < j <m, and 1 < k <[ < n, and a matrix A € R™" we write

Aj k Aiks1 - A
Aivlk  Aivlk+l - Al
A = . : . : (P1.1.2)
Aj,k Aj,k+1 - Aj,l

to mean a sub-block of A consisting of elements of the intersection of rows i to j and

columns k to [.
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We will now define the class of overlapping squares index sets. Block tridiagonal is a
simple special case of such an index set where for block size [ in the tridiagonal structure,
the corner set is {is, js} = {(s = 1)l + 1, (s + 1)} which are the top right corners of 2 x 21
diagonal blocks. However, an overlapping block index sets can be more general. Figure
P1.1.2 illustrates a particular overlapping squares index set for a matrix A € R'4*14, The
conditions (P1.1.3) require that the (exterior) corner points {(is, js)}f:1 lie strictly above
the diagonal, with the implied interior corner points {(is, js_l)}f:2 lying on or above the
diagonal. In particular the conditions (P1.1.3) exclude cases of trivial decouplings of the
index set )FVN, which must include all diagonal entries.

W 5
[Allz, [Allx Apy Al E2
Az, E3 A, Ea , Es5

Figure P1.1.2. An example of an overlapping squares index set and the partitioning of Defi-
nition P1.1.2 induced by it for a matriz A € R™14 . Each small cell corresponds to a matriz
entry. The thick lines on the edges of cells away from the principal diagonal link the k =5
corners (indicated by coloured dots) of the corner set { (1,4), (3,7), (4,9), (7,11), (11, 14) }.
The associated overlapping squares index set N corresponds to all entries, or cells, lying
within the black lines. Each overlapping square is indicated in a different colour in the
first panel with overlaps shaded in mixtures of the colours. Note that multiple overlaps,
such as that of Aj|, Ajg), Az or Apy) Ajz), Ay are also allowed. All elements of [[A]] 5.
are those in the striped region. Each one of the subsequent panels illustrates one of the

overlapping diagonal square blocks of the sequence {A[s]}s:1' The 2 X 2 partitioning of

Ajg) 1mplied by Ajs_y) is also marked, with the overlap Ay, | indicated in darker colour.

The striped regions are elements with indices in the index sets Es. Note that is = jy so

that equality is achieved in conditions (P1.1.8), and, as a consequence, blocks Ay and
overlap by only one element.
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Chapter P1.1. Maximum entropy fitting for covariance matrices with
overlapping squares sparsity

More precisely we introduce the following definitions:

Definition P1.1.1. A corner set is a sequence of pairs of indices {(is,js)};‘:1 satisfying

il = 1, is < i5+1 < jSa
js < js+1, jk =n. (P113)
Definition P1.1.2. Let {(is,js)}f:1 be a corner set and A € RIk*Jk. The corner set
defines a symmetric overlapping squares index set N whose indices coincide with all

the indices of matriz entries lying within the k overlapping diagonal sub-blocks { Ay }le
with top right-hand corners given by the corner set. This is to say:

Als) = A1) (o) (P1.1.4)

For s > 2 the overlap between As_y) and A[y implies the 2 X 2 partitioning

A[s] — A[s]l’l A[S]LQ = A(l's,js—l),(l'ﬁjs—l) A(iSajsfl)a(js—l"'l’js) (P115)
Afloy Ags A1) Gsjer) AGea+ 1) (e 41070

J2.2
so that A, , s the overlap.

k
s=1

set N© into a union of disjoint symmetric index sets

For s > 2 the corner set {(is, js)} also introduces a partitioning of the complementary

E=1G,j): 1<i<(@-1) s+ <j<]s
U@ s+ <isj 1<j<@G-D} . (P1.1.6)

Remark P1.1.1. Note that for s > 2 the overlap Ay, between Ay and Afs_q) from
Definition P1.1.2 is a trailing diagonal sub-block of [[A]]ﬁ] (see Figure P1.1.2).
s—1

Remark P1.1.2. [f the overlaps Ay, , from Definition P1.1.2 are all invertible then
each Ay can be written as

S S P o B
with

Q,(A) = (Ajg,) " Ajrs (P1.1.8a)

¥(A) = Ay, (A.,)" (P1.1.8b)
and

Hy(A) = Ay, = Aoy (A0) " Aps (P1.1.9)

The factorization (P1.1.7) is one way of showing the well known result that if additionally
Ajs) 1s wnvertible so 1s Hs(A). The main application of the partitioning of definition
Definition P1.1.2 will be to symmetric positive definite covariance matrices, for which all
the diagonal sub-blocks are invertible.
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Remark P1.1.3. Following the assumptions and notations of Remark P1.1.2 (in partic-
ular invertibility of A[) Equation (P1.1.7) shows that:

i -1
-1 -9 [(Apy,,) ol I o
A - s [s]1.1 P1.1.10
( [5]) 0 T 0 Hs_l _\I;S I ( )
-1 -1
_((A)  + QHTYS -QuH, (P1.1.11)
-H 1Y, H!
and so
B [ -1 -1 _ -1
(Ap) Lo |(Ae) o) QSH_SI s QS{{S (P1.1.12)
0 0 -H Y, H;
where ¥, = Ws(A), Qs = Q;(A) and Hy = Hg(A).
Remark P1.1.4. Fquation (P1.1.6) from Definition P1.1.2 implies that:
NE= & (P1.1.13)
i=2
so that
Nf=NF U, (P1.1.14)

P1.1.2 Existence and uniqueness of sparse maximum en-
tropy fit

Given the notation of the previous section we are now ready to state the following theorem,
which is a reformulation of the result of [Dem1972, p. 160].

Theorem P1.1.1. Let C be a symmetric positive definite matriz and N a general (not
necessarily overlapping squares nor symmetric) index set containing the diagonal. Let
also C(C) be the set of all symmetric positive matrices equal to C within N, specifically:

CIC)={Z: Z=2Z", Z>0, [[Z]|y=I[Cllx}
Then there exists a unique matriz C e C(C) such that its inverse C~! vanishes outside
N:
[ ]y =0

Furthermore C is the matriz with the mazimum determinant of all matrices in C(C):

det (é) = max{det(Z) : Z € C(C))
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Chapter P1.1. Maximum entropy fitting for covariance matrices with
overlapping squares sparsity

Theorem P1.1.1 arises in maximum entropy parameter estimation. In that context C
is a covariance matrix that can be regarded as partially (i.e. within N) observed from
data, and C is the covariance matrix of the Gaussian probability distribution that is
the maximum entropy fit subject to the constraints of the subset of covariances [|C]] 5
being prescribed. In fact the determinant of C is simply related to the entropy of the
associated Gaussian probability distribution [Dem1972].

P1.1.3 Maximum entropy fitting for overlapping squares in-
dex sets

We will now show that in the particular case of a covariance matrix C' and an overlapping
squares index set N there is a simple formula for the inverse covariance C-! of Theo-
rem P1.1.1, involving inverses of only the sub-blocks Cjs and Cjg, . This is the main
result, which can be applied in practical maximum entropy fitting. At the same time we
will provide an explicit, recursive algorithm involving only partial Gaussian elimination by
blocks of C' that yields the covariance matrix C itself. The procedure for the covariance
matrix itself was inspired by the simpler version of tridiagonal matrix completion of
[StrNgu2004]. The procedures are schematically presented in Figures P1.1.3 and P1.1.4,
respectively.

o4



P1.1.3. Maximum entropy fitting for overlapping squares index sets

(a) add (Cpy)) (b) add (Cpy) (c) subtract (Cpy,,) "

N \ 7 N7

-1 1 -1

(d) add (Cliﬂ)

(e) subtract (C[;;qul)i (f) add (C[4])

-1 ] 1

(g) subtract (Cly,, ) (h) add (Cpy) (i) subtract (C|), )

Figure P1.1.3. An ezample of the procedure of Corollary P1.1.1a) for computing the inverse
C1 of the mazimum entropy fit for a covariance matriz C € R¥14 and the overlapping
squares index set of N defined by the corner set {(1,4),(3,7),(4,9), (7,11), (11, 14) }.

The coloured blocks indicate the inverses (C[S])_l of the overlapping square blocks, which

are added. The striped blocks indicate the inverses (C[S]Ll)_l of the overlaps, which are
subtracted.
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Chapter P1.1. Maximum entropy fitting for covariance matrices with
overlapping squares sparsity

(a) fill [[Fy)]],, with [[C]]y, (b) fill the rest of [[Fio)lly, (c) fll[[F)ls, with Fy), Q0
with [[C]],, and its transpose

(d) £ill the rest of [[Fis)]l,,  (e) fll [[Fis)]],, with Fioy,, Q5 (f) fill the rest of [[Flly,

with [[C]], and its transpose with [[C]] ,
(g) fill “‘F<4>H84 with F<3>1_2Q4 (h) fill the rest of (l) fill with F(4>142
and its transpose with and its transpose

Figure P1.1.4. An example of the procedure of Corollary P1.1.1b) for computing the
maximum entropy fit C = F5y for a covariance (and so symmetric positive definite)
matriz C € R and the overlapping squares index set of N defined by the corner set
{(1,4),(3,7),(4,9), (7,11), (11, 14) }. In each step the procedure sets the entries of the
coloured, stripped regions [[Fis)|lg. using the symmetric version of Equation (P1.1.27)
and (P1.1.28), with Qs of Remark P1.1.2 used in Definition P1.1.3. The thick coloured
lines in steps (c), (e), (g) and (i) indicate Fis_1y, , and Fs_1y, ,, which for our symmetric
matriz is equal to (F<s_1>1’2)T, used in Equation (P1.1.27). Note that the result of each
step may depend on values computed in previous steps.

56



P1.1.3. Maximum entropy fitting for overlapping squares index sets

To prove the result we introduce the following recursive formulae that are the basic
building blocks for our algorithm:

Definition P1.1.3. Let C be any matriz and {C[s]}le be a sequence of square diagonal
sub-blocks of C (of Definition P1.1.2), introduced by an overlapping squares index set N.
Assume also that each Ciy and each overlap Ciy), | is invertible (which is true if C is a
covariance matriz).

Define {(I)<s>}f:1 and {F<s>}f:1 to be the sequences of matrices satisfying the following
recursive relations:

1. Fors=1
-1
@) = (Cpy) (P1.1.15)
Fuy = Cy (P1.1.16)

2. Fors > 2, with the notations of Remark P1.1.2 (which is valid given the assumptions
on Cj, and C[S]I,l) the recursive relations can be written as:

(I 0 O o 0][f o o

Oy=[0 I -] " oflo 1 o (P1.1.17)
0 o I]|0o o H'[0o -¥, I
(I o0 o] o][f o o

F E5_1>

=10 I 0 0f(l0 I Q (P1.1.18)
0 ¥, I|]|0 0 H[0 0 I

where ¥y = W(C), Q5 = Q,(C) and Hy; = Hy(C) of Remark P1.1.2.

The following lemma shows certain properties of the sequences {(I)<5>}f:1 and {F<5>}f:1 of
Definition P1.1.3 that are crucial in the proof of our result.

Lemma P1.1.1. Let {(i;, js)}f:1 be a corner set and N the associated overlapping squares
index set. Let {C[s]}le be the sequence of sub-blocks of Definition P1.1.2 of a matrix
C e Rk * Jx with each Cy and Cly, | invertible. Let also {(I)<S>}]s€:1 and {F<s>}f:1 be the
sequences of Definition P1.1.3.

Then each pair of blocks ®y and Fi5y has the following properties:

@ = (F) ™, (P1.1.19a)
[Follg, = [Cllg, (P1.1.19D)
[[(E”)_l“ﬁ;@ =0 . (P1.1.19c¢)
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Chapter P1.1. Maximum entropy fitting for covariance matrices with
overlapping squares sparsity

Proof. The proof is by induction.

For s = 1 all the properties follow straight from the definition of ®y and Fiyy, the
assumption that Cfyj is invertible and the fact that NJC1 is empty.

Suppose now that the properties (P1.1.19) are valid for s — 1.

Given the assumption that ®¢_1y = (Fs_1y) " property (P1.1.19a) for s can be verified
e.g. through direct computation of the matrix product ®yFs using the expressions
(P1.1.18) and (P1.1.17).

The assumption that “F<S—1>”]\7} =[|C]] N, together with Remark P1.1.1 implies that
s—1 s—1
Fs_1y can be partitioned as:

Fis_ Fi_
Fi_ = [ (s=111 (s 1>1,2} ) (P1.1.20)

Equation (P1.1.18) can then be written as:

I 0 o 1?(5—1)1,1 E8—1)1,2 oI 0 O
Fog=10 I O Fis1y,, C[S]M 0|0 I Q
0 v 1 0 0 H(|o 0o I
F<S—1>1,1 F<S—1>1,2 F(S—l)l,zg‘s
= F(S_DQ’1 C (P1.1.21)
_lPS‘F<S—1>2,1 Il

where ¥ = ¥,(C), Q; = Q,(C) and H; = H (C') of Remark P1.1.2.

Equation (P1.1.21) shows that Clg is a trailing diagonal sub-block of Fis. It follows from
Definition P1.1.2 that all elements in [[C]]ﬁ] are only those of [[C”ﬁ] = [[F<s—1>”ﬁj

s s—1 s—1
and of Cls. Hence [[F<s>]];\7; = “C”ﬁ, and the property (P1.1.19b) is also valid for s.

Finally let:

D D
(I)(s—l) — (s=1)1,1 (s=1)1,2 (P1122)
Dis-1)51 Pis-1)2,

be the 2 x 2 partitioning, analogous to (P1.1.20), where ®_1y, , is of the same dimensions
as the overlap Cfy, . Equation (P1.1.17) can be written as:

I 0 0 |[®41y,, Pe1,, O ][I 0 0
(I)<5>= 0 I —QS (I)<s_1)271 (I)<S_1>2’2 0 0 I 0
0 0 I 0 0 H'[|o -¥, I
D1y, , D1y, , 0
= @1y, D1y, + QHY, -QH| . (P1.1.23)
0 ~H'¥T H!

58



P1.1.3. Maximum entropy fitting for overlapping squares index sets

The middle block in the partitioning in equation (P1.1.23) corresponds exactly to the over-
lap Cy}, ,, whose elements all have indices within N. This together with the assumption
that [[®@-1)]]ze = 0 implies that:

Js—1

|

The above 2 x 2 partitioning, which defines the 3 x 3 partitioning of @) in equa-

(I)<S—1>1,1 (I)<S—1)1,2

T -1 =0 . (P1.1.24)
((I)<S—1>1,2) Ds-1),, + QH W

NG
N

tion (P1.1.23), implies that the set of pairs of indices of elements of both zero blocks in
Equation (P1.1.23) is exactly & c N€¢. After Remark P1.1.4 the above reasoning shows
that:

[®]l5 =0 (P1.1.25)
Validity of property (P1.1.19¢) for s, then, follows from Equation (P1.1.25) and the

previously proven property (P1.1.19a) for s. |

From the proof of Lemma P1.1.1 we can write explicit algorithms for computing ®,
and Fiyy of Definition P1.1.3.

Corollary P1.1.1. Procedures for computing the matrices Fyy and ®y of Defini-
tion P1.1.5.

a) The procedure for computing Cc!= @y directly is defined by equation (P1.1.15)
and the following reformulation of equation (P1.1.28) based on Remark P1.1.3:

© 00 O 0 0 0

-1 -1

o= o+ o )| 0 (Cy..) O (P1.1.26)
o o of [0 \7H 0 0 0

where the 3 X3 partitioning is the one of equation (P1.1.23). Note that the recursive
relation for @, depends only on the original values of the overlapping block Ciy

and the overlap Cig As a result of this decoupling, the procedure, which involves

]1,1 :
only inversions of symmetric positive definite matrices, can efficiently be performed

in parallel.

A schematic example is shown in Figure P1.1.3.
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Chapter P1.1. Maximum entropy fitting for covariance matrices with
overlapping squares sparsity

b) The recursive procedure for constructing C = Fiy is given by equations (P1.1.16)
and (P1.1.21). At each step s > 1 elements inside the sparsity pattern are simply
taken from C, while those outside the sparsity pattern, defined by indices in Eg are
replaced by the blocks:

Fis, Q25 and  WsF),, (P1.1.27)

that are transposes of one another in case of symmetric C. Note that Fiy, , and
Fy,, are computed in preceding steps and their values depend only on elements of
the original matriz that lie within the sparsity pattern. In each of the steps Qg and
W can be computed as solutions of the linear systems:

Cioa @ = Cpyppy and  (Cyyppy) ¥! = (Cpn)” (P1.1.28)

]1,2

(see Equation (P1.1.8)). Again for symmetric C we have Qg = ¥I.

A schematic example is shown in Figure P1.1./.

Finally we state the entropy maximization result in the form of the following theorem.

Theorem P1.1.2. Let C be a covariance matriz and N an overlapping squares index
set.

Then the matriz C = Fy of Definition P1.1.3 is the covariance of the mazimum entropy
Gaussian model with |[C| 5 prescribed and the inverse covariance C™' = @y vanishes
outside the pattern.

Proof. The fact that C' is a covariance matrix implies it is symmetric positive definite.
This, in turn, means that the block Cf, and the overlap Cjg), | for each s € {1, ..., k} are
symmetric positive definite (and so invertible). As a result C' satisfies the hypothesis of

Lemma P1.1.1 and so C = Fiy = ((I)<k))_1 satisfies [[6]]7\7 = [[C”ﬁand [[6_1”7\7 =0

Theorem P1.1.1 implies uniqueness of such a fit C , so that it has to be the symmetric
positive definite maximum entropy fit to [|C]] % mi

As mentioned before the main result of the simple maximum entropy scheme of Corol-
lary P1.1.1a) for the inverse covariance can be recognized as a particular case of analogous
results in [SpeKiil986], [Laul996, sec. 5.3] and [JohLun1998|. To the best of our knowl-
edge the forward procedure of Corollary P1.1.1b) of finding the completion C for [Tl %
was previously known only in the simpler case of tri-diagonal matrices [StrNgu2004].

For completeness we also provide a formula for evaluating the determinant of the maximum
entropy fit covariance, which is directly proportional to the value of the entropy of the
Gaussian model whose covariance the fit represents.
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P1.1.4. Application to parameter extraction for the c¢gDNA model

Corollary P1.1.2. Let C be a symmetric positive definite matrix, N an overlapping
squares index set and C' the mazimum entropy fit for |[C||5 of Theorem P1.1.2.

Then:
o — Z.C:l det (C[S])

det (C') = [T, det (C[s]l,l)

(P1.1.29)
with {C[s]}le (the overlapping blocks) and {C[S]1,1}f:1 (the overlaps) of Definition P1.1.2.

Proof. Note that the factorization (P1.1.18) implies that for s > 2

det (Fi5y) = det (Fis-1y) det (Hy) . (P1.1.30)
while equation (P1.1.7) of Remark P1.1.2 shows that

det (Clyj) = det (Cy,, ) det (Hy) . (P1.1.31)

The block Clg), , is symmetric positive definite as a diagonal sub-block of a symmetric
positive definite matrix C. Equation (P1.1.30) can then be rewritten as:

det (C[s])
det (C[s]l’l)

The equality (P1.1.29) is simply the expansion of the recursive relation (P1.1.32) for
Fjy = C with the step for s = 1 given by Equation P1.1.16. |

det (Es)) = det (Es—l)) (P1'1'32)

P1.1.4 Application to parameter extraction for the cgDNA
model

The scheme of Corollary P1.1.1 can be applied to general (non-symmetric and indefinite)
matrices A that satisfy the hypotheses of Lemma P1.1.1. In that case the procedure
yields an invertible completion of [[A]] 5, and its inverse, which is zero outside the sparsity
pattern.

Here, however, we focus on the main application to maximum entropy fitting of inverse
covariances, where constraints on the probability distribution can be expressed as an
overlapping squares sparsity pattern of the inverse covariance.

In particular this can be used for parameter extraction for the c¢gDNAmodel [Pet2012;
GonPetMad2013; PetPasGonMad2014|, summarized briefly in Section B.1.6. The 18 x 18
overlapping squares sparsity pattern of the cgDNA stiffness (inverse covariance) matrix
(see Section B.1.5) can be described using the corner set {(12(3 -1 +1, 125+ 6)}1
where N is the number of base pairs of the modelled oligomer.

1)
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Chapter P1.1. Maximum entropy fitting for covariance matrices with
overlapping squares sparsity

The presented maximum (absolute) entropy fitting procedure of Corollary P1.1.1a) can
be used in the second step of the parameter extraction of Section B.1.6, to replace the
maximum relative entropy fitting used originally [Pet2012; GonPetMad2013; PetPasGon-
Mad2014]|. As argued in [GonPetPas| in this step the entries of the observed covariances
close to the diagonal are much better converged than those further out. This is a possible
reason why the maximum (absolute) entropy fit, which relies only on entries within the
relatively narrow sparsity pattern, is an apparently more natural choice than maximum
relative entropy fit, which uses all entries of covariance.

On a more practical note the direct formula for maximum absolute entropy fitting in
Corollary P1.1.1a) replaces the more complicated and slower numerical optimization

routine of computing the maximum relative entropy fit.

A full discussion of the modified parameter estimation procedure behind cgDNAparamset?2,
which was used to used to generate the results of this thesis, can be found in [GonPetPas].
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P1.2 cgDNA model coefficients for periodic
DNA molecules

(joint work with A. Grandchamp)

Tandem repeats are DNA sequences that consist of multiple (not just two), end-to-end
repeats of a shorter fragment that we will refer to as the basal sequence of the repeat.
Such sequences, are common in nature (e.g. they form 3.9% of the human genome
[PadZelGas2015|) and while they do not, in most cases, code for genes they play a vital
role in the biology of a living cell. They are crucial e.g. for chromosome structure and
cell division [PadZelGas2015]. Multiple diseases are related to instability (expansion) of
such regions in the genome [La Tay2010].

In this chapter we present a new method of modelling such structures within the c¢DNA
model (see Chapter B.1 for a description of the c¢gDNA model as introduced in [Pet2012;
GonPetMad2013; PetPasGonMad2014]). In particular we describe a method of con-
structing what we call a ¢gDNA periodic stiffness matrix and periodic ground state
configuration vector for a basal sequence that characterizes an infinite DNA tandem
repeat of the basal sequence. In contrast a standard cgDNA parameter reconstruction
has end effects, as it physically should. But for periodic sequences far from an end it is
convenient to appropriately eliminate those end effects. The difference of approximating
the standard cgDNA shape vector of a finite tandem repeat using the periodic coefficients
is also evaluated. We finally show that the periodic coefficients introduced in the context
of very long (infinite) linear repeating sequences, can also be used to describe closed loops
of DNA.
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Chapter P1.2. c¢gDNA model coefficients for periodic DNA molecules

P1.2.1 Notation and definitions

Let S =X;Xo...Xy (with X; € {A,C, G, T}) be any DNA sequence (the basal sequence) of
length N. Let Spy = SS... S (the tandem repeat) denote the concatenation of M instances

M
of the basal sequence S. For any such sequence Sy let K(Sy) €

and w(Sy) € R?MN-6 denote the cgDNA stiffness matrix and the ground state con-
figuration vector, respectively, that can be built using the standard cgDNA procedure
(|[PetPasGonMad2014] — see Section B.1.5).

R(IQMN—G)X(IQMN—G)

We now introduce notation helpful in stating and proving our result. As previously, by I,
we mean the identity matrix of dimension n, while 0 will represent a zero matrix (block)

of dimension set by context.

For integers 1 < i <j<m,and 1 <k <1< n, avector v € R” and a matrix A € R"*"

we introduce the notation:
T
V(i j) = [v,- Vigl ... vj] (P1.2.1)

for a sub-vector of v consisting of elements i to j.

/\

Ko, B M Il s M
’l/,l\}(wr o 1) - ’{I}“) ..... o 1
Bl 7 K i 1= e
177(2)' 0'[2]/ - @@) g2]

¥ 3 ml |k 5 0 L
@ W o i b @6l o

I3y B e L
..... Wy |p|oar @@ |m|ow

HKay L | Il ﬁ ' K =] =]

D ——

(a) (b)

Figure P1.2.1. Exzamples of vectors and blocks of Definition P1.2.1. Panel (a) Equations
(P1.2.4) — (P1.2.6) applied to a cgDNA stiffness matriz K (Sy) € RUZNM-6XUZNM=6) =
ground state configuration vector w(Sy) € R12NM=6 and a weighted shape vector o(Sy) €
RIZNM=6 £51 4 sequence S of length N = 3 repeated M = 4 times. The sub-blocks K (Sa)sy
and sub-vectors {I)(SM)<S>, are marked with red. Sub-vectors o (Sm)s) are marked with
blue. Entries of the matriz corresponding to each repeat of S are indicated with green.
Panel (b) Equations (P1.2.7) — (P1.2.9) applied to a periodic c¢gDNA stiffness matriz
K,(Su) € RIZNMXI2NM = o ground state configuration vector wy,(Sy) € R2NM gnd a
weighted shape vector o,(Sy) € RIZNM - (defined below). The colour scheme is analogous
to that of Panel (a). Additionally, the extra “non-local” elements of Kp(SM)<1>, 'wp(SM)<1>,
I(,,(SM)<M> and wP(SM)(M) are shaded in the same way as the elements they are equal to.
Here (and in all subsequent figures of this type in this chapter) each cell of the matriz is
of dimension 6 X 6. Each cell in the vector is of dimension 6 X 1.
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P1.2.1. Notation and definitions

We also write

Aik  Aiks1r o Aid
Airt e Airl k1 o Aisll
Ay =] C (P1.2.2)
A],k A]7k+1 oo A]J

to mean a sub-block of A consisting of elements of the intersection of rows i to j and
columns k to .

To present our result we also introduce the partitionings of cgDNA stiffness matrices
and (weighted) shape vectors depicted in Figure P1.2.1. In particular Figure P1.2.1a
shows an example of vectors and blocks introduced in Definition P1.2.1a) and b) for a
standard cgDNA stiffness matrix K (Sy), a weighted shape vector o(Sy) and a ground
state configuration vector w(Sy), with N = 3 and M = 4. These are used to define the
periodic cgDNA coefficients.

An example of vectors and blocks introduced in Definition P1.2.1c) and d) is shown in
Figure P1.2.1b. These will be useful for treatment of the periodic c¢gDNA parameters as
defined below.

Definition P1.2.1. Given two integer numbers N > 1 and M > 3 define the sequences
of indices {is}M,, {jshily, UM, and {ks})ly, ALY, UYL,

ki =1
ii=12(s— )N + 1 !

ks =12(s =1)N-11 for2<s<M
. I,=12sN+6 forl<s<M-1
Jjs = 12sN

Iy =12MN
Ji=1Js forl<s<M-1 forl<s<M-1
jiy = 12MN 6 1 = 12MN -6

(P1.2.3)

M
a) For any vector u € R1?MN=6 define {u[sl,}szl and {U<s>’}i\i1 to be two sequences of
vectors (see Figure P1.2.1a):

Uls) = U(i, j2) (P1.2.4)

sy = Uk, ) (P1.2.5)

b) For any matriz A € RUZMN-OXUZMN=6) qofine {A<s>/}i\4:1 to be the sequence of blocks
defined as (see Figure P1.2.1a):

Aty = A, i) (k) - (P1.2.6)

65



Chapter P1.2. c¢gDNA model coefficients for periodic DNA molecules

M
c¢) For any vector v € RI?MN define {U[S]}s=1 and {v<s>}£/i1 to be two sequences of
vectors (see Figure P1.2.1b):
Uls] *= V(i js) (P1.2.7)
V(ly-12, Inr)
vy =
V(ky, 1)
V(s) 1= U(ky, I,) fOT’ 2>s>M-1 (P1.2.8)
. V(kn, In)
Umy ==
U(ky, k1+6)

d) For any matriz B € RUZMNIXUZMN) - gofine {B<S>}i\i1 to be the sequence of blocks
defined as (see Figure P1.2.1b):

B, = By, iy+6),(-12, 1) Blir, ir+6), (k1. 1) ]
0 B(i1+6,j1). (k1. 1)
By = Bi.j,). (k. 1) for2>s>M-1
By = B(ias, ju=12). (Rt r) 0 ]
B(jM—12,jM),(kM,lM) B(jM—12,jM),(k1,k1+6)

(P1.2.9)

Note that for any p, g € {1, ..., M} in Definition P1.2.1 the vectors and blocks:

* Uppy With gy,

o Ay with Agy,

e v, With vy,

e B, with By

share no element. On the other hand for s € {1,..., M — 1}

o uy with w1y,

® V() With vy,

e v(1y with v

do share some of the elements. Note also that the vectors v, are all of the same size.
Similarly all the blocks By, are of the same size.

66



P1.2.1. Notation and definitions

P1.2.1.1 The periodic stiffness matrix and weighted shape vector

Definition P1.2.2. For M > 3 let Sy be a tandem repeat of the basal sequenceMS with
the stiffness matriz K (Sy) and weighted shape vector o(Sy). Let {K(SM)<S>,} and

s=1

M
{U(SM)[S]'}S—1 be the sequences of Definition P1.2.1. Thanks to the locality of c¢DNA
stiffness matrices and weighted shape vectors, and due to repeats in the sequence for

m,ne€{2,...,M -1} we have the equality:
Ky (Su) = Ky (Su) =1 K (S) € RUZVXUN+IE) (P1.2.10)
and

Oy (Sm) = Oy (Sy) =2 0(S) € RPV (P1.2.11)

Note that neither Ep(S) nor o ,(S) depends on the number of repeats M, which is indicated
by the notation. We call the vector o,(S) the periodic weighted shape vector of the
basal sequence S.

~

iy

_ I
K, (S) P,(N) K,(S)

Figure P1.2.2. Schematic result of multiplying a matrix R,,(S) on the right by a ma-
triz P,(N) (of Definition P1.2.3) for a sequence S of length N = 4 In particular, the
rearrangement of the sub-blocks coloured with blue and red is indicated.

Definition P1.2.3. For any number N > 1 define the matriz P,(N) as:

(1 0] [0 0 Ip5]
0 Iy Iy 0 0
P,(1):=|Is 0|, P,(N):=|0 Iian-1y6 O| forN>1 . (P1.2.12)
0 16 0 0 Ilg
Is 0] Is 0 0 |

Define the periodic stiffness matrix of a basal sequence S of length N as:
K,(S) := K,(S)P,(N) € RNV (P1.2.13)

with EP(S) of Definition P1.2.2.

Figure P1.2.2 shows example results of multiplying a stiffness matrix Ep (S) on the right
by a matrix P,(N) for a sequence S for N = 4.
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Chapter P1.2. c¢gDNA model coefficients for periodic DNA molecules

P1.2.1.2 Constructing a periodic stiffness matrix and a periodic weighted
shape vector from a parameter set

For any sequence S of length N > 1 the periodic stiffness matrix K,(S) and periodic
weighted shape vector o,(S) can be constructed directly using any given cgDNA parameter
set. Section B.1.6 provides a general description of cgDNA parameter sets. Section P1.1
discusses the cgDNAparamset?2 used to obtain all results in this thesis. The procedure of
building K, (S) and ,(S) is analogous to the procedure of building the standard cgDNA
coefficients by adding the overlapping intra and inter contributions (see Section B.1.5).
The difference is that the periodic coefficients additionally include an extra set of 6 inter
parameters that describe the connection to the next repeat of S. Also extra contributions
K** and g*v*1 that model the coupling to the “upstream” and “downstream” instances

of S in the tandem repeat are added.

The procedure of constructing the periodic coefficients is schematically explained in
Figure P1.2.3 that indicates in particular how the extra inter block K*¥*1 and inter
vector o*¥%1 are included.

XnXy XnXy

2
1 ‘!1K2 =
X
) ‘¥2X3 : - ]
X5 + ) = ) =: K,(S)
i o |
XyoiXy | L
Xy N _n
XnXy XX o
XnXy
2
' + : - : =:0p(S)
- S
XnX, i

Figure P1.2.3. Schematic image of how a periodic stiffness matriz K,(S) and a periodic
weighted shape vector o,(S) can be constructed for a basal DNA sequence S of length
N > 1. Note that the two 6 X 6 end blocks that have double overlap in standard cgDNA
coefficients, here have additional contributions that give triple overlap.
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P1.2.1. Notation and definitions

We now want to study the definiteness of the periodic stiffness matrices built through
the procedure described above using a given cgDNA parameter set. It is required from
a valid cgDNA parameter set that for any sequence S of length N > 2 the constructed
stiffness matrix K (S) (as an inverse of a covariance matrix) is symmetric positive definite
[Pet2012; GonPetMad2013|. Lemma P1.2.1 provides sufficient conditions for valid cgDNA
parameter set so that for any sequence S of length N > 1 the periodic stiffness matrix
K, (S) is also symmetric positive definite.

Lemma P1.2.1. Let P be a valid cgDNA parameter set with the property that for each
mononucleotide step X1 the periodic stiffness matriz K,(X1) is symmetric positive definite
and for each dinucleotide step X1Xo the matriz:

) K% 0 0
K (XiXp) := Kt i _ o 0 o0 (P1.2.14)
0 0 KX

18 also symmetric positive definite. For any such parameter set the periodic stiffness
matriz K,(S) s symmetric positive definite for any sequence S of length N > 1. This
result can be found in [GonPetPas/.

Proof. Let S = X1Xy...X1Xy be any DNA sequence of length N > 2 (the case N =1 is
covered by the hypothesis). The fact that the periodic stiffness matrix K,(S) is symmetric
follows directly from its definition and the symmetry of all stiffness blocks of a valid
parameter set.

Let {is}iv: 1 and { js}év: 1 be two sequences of indices defined as:

. js=12s+6 forse{l,...,N}
is=12(s—-1)+1 (P1.2.15)
jv = 12N

and let © € R'?N be an arbitrary non-zero vector. Note that using the overlapping block
structure of K,(S) we can now rewrite the 12N x 12N quadratic form x - K,(S)x as a
sum of small 18 X 18 quadratic forms as:

N-1
x- K,(S)x = Z (m(is’js) . K% (szs+l)$(is,js))
s=1
+ | P | LR xyxy) | T | (P1.2.16)
T(1,6) 2 L(1,6)

By the hypothesis each such 18 x18 quadratic form is positive definite hence - K, (S)x > 0

for any non-zero x € R2V O

In practice the hypotheses of Lemma P1.2.1 were verified numerically for the cgDNA-
paramset2 used to produce all the results of this thesis. The decomposition (P1.2.16) is
easy to see in Figure P1.2.3.
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Chapter P1.2. c¢gDNA model coefficients for periodic DNA molecules

P1.2.1.3 Computing the periodic ground state configuration vector

For any cgDNA parameter set satisfying Lemma P1.2.1 the periodic ground state configu-
ration vector can be computed by inverting the analogue of the relation B.1.19 of the
standard cgDNA model.

Definition P1.2.4. For any DNA sequence S the periodic ground state configuration
vector of S is defined as:

wp(S) = K, ($)a,(S) (P1.2.17)

where K,(S) is the periodic stiffness matriz and o,(S) is the periodic weighted shape

vector of S.

We will now prove a feature of the periodic ground state configuration vectors that will
be useful for computationally efficient approximation of standard c¢gDNA ground state
configurations of tandem repeats using periodic coefficients.

Lemma P1.2.2. Let S be any sequence of length N and let w,(S) be its periodic ground
state configuration vector. For any number M > 1 the periodic ground state configuration
vector w,(Sm) of the tandem repeat Sy is equal to:

@y(Su) = [ @p(S) Bp(S) ... Bp(S) | =Wp(Su) (P1.2.18)

M

i.e. w,(Syr) can be constructed by concatenating M instances of w,(S).
p 4 g p

Proof. Let K,(Sm), 0,(Su) and w,(Sy) be, respectively, the periodic stiffness matrix,
periodic weighted shape vector and periodic ground state configuration of the tandem
repeat Sy;. Let:

= K,(Su)W,(Sm) - (P1.2.19)

Note that this can be rewritten as M equalities using the vectors and blocks of Defini-
tion P1.2.1¢) and d):

2 = Kp(Sh) oy Wp(Su)y, forl<s<M . (P1.2.20)

Furthermore, thanks to the locality in the definition of K,(Sy) and due to the fact that
the sequence is a tandem repeat of the basal sequence S (which defines the partitioning),
we have for any m,n € {1,..., M}:

Kp(Su) gy = Kp(Sn) y = K p(S) (P1.2.21)
(see Definition P1.2.2).

70



P1.2.1. Notation and definitions

Directly from the definition of w,(Sy) in Equation (P1.2.18), using the P,(N) matrix of
Definition P1.2.3 we have also for any m,n € {1,..., M}:

Wy () g = Wp(Sur) g = Py(N)Wp(S) (P1.2.22)

This, together with Definition P1.2.3 implies that for each s € {1, ..., M} Equation (P1.2.20)
can be rewritten as:

1) = K p($)Py(N)W(S) = Ky(S)Wp(S) = 0p(S) . (P1.2.23)

From the local structure of the periodic weighted shape vector of the tandem repeat Sy,
we therefore have:

T =0,(Su) (P1.2.24)
and so by definition P1.2.4:
K,(Sw)w(Sy) = op(Sm) = Kp(Sy)w,(Su) - (P1.2.25)

Finally from the fact that K,(Sy) is symmetric positive definite, and so non-singular, we
have the equality:

w(Sm) = wy(Sm) - (P1.2.26)

O

The above lemma shows that the periodic ground state configuration vector of a tandem
repeat can be constructed by concatenating the periodic ground state configuration
vector of the basal sequence. Of course if the number M of repeats of the basal sequence
S in the tandem repeat Sy, is large the periodic coefficients can potentially provide a
computationally efficient method of characterizing the tandem repeat. This will be further
investigated in the next section.
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Chapter P1.2. c¢gDNA model coefficients for periodic DNA molecules

P1.2.2 Coefficients of a linear repeating DNA fragment

As mentioned before the the periodic cgDNA coefficients can be seen as characterizing an
infinite tandem repeat. Here we want to estimate how good an approximation they are
for finite tandem repeats.

Consider a finite tandem repeat Sy (M > 3) of the basal sequence S with a cgDNA
stiffness matrix K, ground state configuration vector w and a weighted shape vector o.
The explicit dependence on the sequence will be dropped for the sake of clarity, wherever
it refers to the entire tandem repeat Sp; (e.g. we will use K instead of K (Sy), but keep
writing K, (S)).

Note that the c¢gDNA internal energy (B.1.17) of a linear DNA fragment of sequence Sy,
for any configuration w can be written as:

1 ~ —~
U(w; Sy) = 3 (w-w) K (w-w) (P1.2.27)
1 1 .
=§w~K'w—woK'w+§'w-Kw (P1.2.28)
1 1
=§'w-K'w—w-0'+§'w-0' . (P1.2.29)

Using the notations of Definition P1.2.1 the energy can further be written as:

1 3 1
U(w; Sy) = 5 Z wis) - Ksywsy — Z W) - Os] + 5 Z W - O] - (P1.2.30)
s=1 s=1 s=1

The local structure of the weighted shape vector gives:

oi=0p(S) forne{2,....M-1} . (P1.2.31)
From now on in this section we will only consider periodic deformations in the sense that:

W] = W]y 1= W form,nef{l,...,M} . (P1.2.32)
which, for s € {2,... M — 1}, after Definition P1.2.2 and P1.2.3, gives:

K ywiy = Kp(S)w, (P1.2.33)

and so:

1 1
U(w; SM) = iw[ll/ . K<1y'w<1>r + wy - Kp(S)wp + iw[M], . K(My’w(My

2
- 'w[l], “oy) - (M - 2)wp : Up(S) - 'w[M]/ C O M)
1 18 1_
+ iw[”, SOy + 5 Z W) - Up(S) + iw[M]/ “ O M)
s=2

(P1.2.34)
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P1.2.2. Coefficients of a linear repeating DNA fragment

Let us now define what we will call the average energy of a repeat as:

U(w; Sy) := %U(w;SM) (P1.2.35)
M -2
= S (wp - Kp(S$)w), — 2w,(S) - 0,(S))
1S 1
* o ;wm/ Loy + o(ﬂ) (P1.2.36)
M -2 _
= S (wp - Kp(S)w, = 2w, - 0,(S) + @) - 0p(S))
1S M-2_ 1
+ m ’LU[S]/ . O'p(S) - W’lﬂp . O'p(S) + O (M) . (P1237)

I
[}

N

After Definition P1.2.4 this can further be rewritten as:

U(w; Sy) = Aé—]\f (wp = @p(S)) - Kp(S) (w), — Wp(S))
M-1
+ ﬁ D (B = @y(9)) - 7y(S) + O (%) . (P1.2.38)

s=2

Note that P1.2.38 shows that the accuracy of the periodic approximation:
— 1 _ _
Up(wy:9) = 5 (wp = @,(9)) - Kp(S) (w) - @, (9)) (P1.2.39)

differs from the average energy of a repeat (P1.2.35) only by a constant term, which
depends on how well w,, approximates 17)[3]/ for large M. Unlike the stiffness matrix, which
is localized by construction the standard shape vector has non-local sequence dependence,
which gives rise to end effects (see Section B.1.5). Hence we ask the question:

P1.2.2.1 How important are end effects?

In this sub-section we study how far from the ends of a DNA molecule the end effects
are actually significant. To answer this question we study the error of using the periodic
ground state configuration vector w,(S) of the basal sequence S to approximate the
standard cgDNA ground state configuration vector w(Sy) of a tandem repeat of S.
To evaluate the error we create an ensemble of multiple basal sequences S of lengths
N €{1,2,3,4,5,10, 30, 60, 120}. For lengths N € {1, 2, 3, 4, 5} all possible sequences are
generated. For N € {10, 30, 60, 120} we generate only 1000 random sequences (with equal
probability of each type of base). For each basal sequence in the ensemble we repeat
it M times, so that the resulting tandem repeat Sy is of length 120 bp. For each such
tandem repeat we generate the ground state configuration vector w(Sy;) € RUIZMN=6)
(12MN — 6 = 1434 in each case). For each Sy we also create a vector w,(Sy) =
Wp(Sm) (1. 1omn—6) € RUZMN=6) " Here @,(Sy) is the periodic ground state configuration
of the entire tandem repeat constructed by concatenating M times the periodic ground
state configuration w(S) of the basal sequence.
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Chapter P1.2. c¢gDNA model coefficients for periodic DNA molecules

The semi-logarithmic plots of Figure P1.2.4 show the absolute value of each component
of the difference w(Sy;) — wq(Sy) for all sequences in our ensemble on a semi-log plot.
We note that the magnitude of the error does not depend on N nor on M, but rather on
the distance from either end of the molecule. For all entries further than five base pairs
from either end of the molecule the approximation is accurate up to around 1072. This
suggests that the end effects in the cgDNA model are significant up to five base pairs in
from either end of the molecule. The independence of M also means that the periodic
coefficients are as a good an approximation for non-repeating sequences as they are for
tandem repeats far from the ends.

10 g 10°

1077 1075
10-101 107101
107151 107151
10 20 30 40 50 60 70 80 90 100110 10 20 30 40 50 60 70 80 90 100110
bp bp
(a) (b)

Figure P1.2.4. The absolute value of the difference between each element of the standard
cgDNA ground state configuration vector w(Sy) and its approzimation w4 (Syr) constructed
by repeating instances of w,(S). Panel (a) shows results for all sequences Sy in our
ensemble. Panel (b) shows results only for the 1000 random sequences with N = 120 and
M =1 . The dashed line indicates coefficients five base pairs from either end, where the
error is around 1072, The solid line indicates coefficients 40 base pairs from either end,
which is where the error is below machine double precision (hence the flattening of the
plot). The accuracy does not depend on N nor on M, but on the distance from ether end.

P1.2.3 Coefficients of a closed loop of DN A

Although also important in the case of modelling of long (infinite) linear fragments of
DNA one particular property of the periodic coefficients is easier to explain in the context
of closed loops that, as shown below, can also be modelled using this formalism.

Consider a DNA molecule where the two ends are covalently bonded. In the cgDNA
model the internal energy of such a closed configuration, as compared to that of an open
one, requires an additional term that represents the nearest neighbour interactions of the
last base pair with the first. Note that this is exactly reflected in the periodic coefficients,
shown in Figure P1.2.3.
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P1.2.3. Coefficients of a closed loop of DNA

We will also show that the energy definition through the periodic coefficients does not
depend on where the closed DNA molecule is opened to give a linear sequence. In order
to explain what we mean by that let us first introduce the notation.

Definition P1.2.5. For a given integer number N > 1 define the cyclic right shift
permutation matric:

I
PoNy =] © 12 (P1.2.40)
Iiyn-1y O
and the cyclic left shift permutation matrix:
1 o7 |0 Ipw-1
Py(N) := P (N) =P, (N) = I B (P1.2.41)
12

In the remaining part of this section we will write P, and Py to mean P, (N) and
Py (N).
Now consider the following lemma:

Lemma P1.2.3. Let S = X1Xa...Xy (with X, € {A,C,G, T}) be a given DNA sequence
and S’ = XnX1Xo ... Xy_1 be the DNA sequence that is a cyclic shift of the sequence S to
the right. Let w be a given periodic cgDNA configuration vector of a closed DNA molecule
of sequence S. Finally let w’ := Pyw. The periodic cgDNA energy of w for the sequence
S is the same as the energy of w’ for the sequence S’, or:

Up(w;S) = Up(w’;8") . (P1.2.42)

Proof. To begin with note that using Definition P1.2.5, the local structure of the periodic
coefficients and simple algebra it can be shown that:

{Kp<8>=PoKp<S>P Vs 8,60 = K (8)0u()

0,(8") = Pyop(S')
= Pyw,(S) (P1.2.43)
as a result the energy of w’ for the sequence S’ can be written as:

Up(w';S') = % (w' = @,(8)) - Kp(S") (w = @,(S) (P1.2.44)

= % (PUw - P(){I)p(s)) : PUKp(S)PQ (P()’w — Pu’l/l\Jp(S))

_ % (w—@,($)" PLPOK,(S) (w=,(9))

= % (w—w,(9)) - Kp(S) (w - @,(S)) (P1.2.45)

= U, (w;S) (P1.2.46)
O
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Chapter P1.2. c¢gDNA model coefficients for periodic DNA molecules

Note that the relation w’ = P,w of Lemma P1.2.3 means that the last set of intra and
inter coeflicients of w are moved to the “front” in w’. As a result both vectors can be seen
as describing the same configuration of a given closed DNA molecule: w with respect
to S, while w’ with respect to S’ (a different place of opening of the closed molecule).
Lemma P1.2.3 shows that the periodic cgDNA energy of the molecule is the same using
both descriptions (and, as a consequence, any other cyclic shift of S). In other words
we have shown that the periodic coefficients provide a consistent description of closed
molecules independent of where the molecule is cut to give its linear sequence.

Note that while the above identities are valid for all shifts of periodic configuration
vectors, not all periodic internal coordinate vectors correspond to closed loops as there
are six non-linear, non-local conditions on w guaranteeing that (D;, r;) are appropriately
periodic.

P1.2.4 The structure of periodic cgDNA covariance matri-
ces

A natural question that might arise at this point is whether a maximum entropy fitting
procedure analogous to the one presented in Chapter P1.1 can be constructed for the
sparsity pattern of the periodic cgDNA coefficients. As indicated in Figure P1.2.5 a simple
extensions of the algorithm of Chapter P1.1 involving local inversions of sub-blocks of
the covariance matrix is not a solution.

To analyse the question in a slightly more general context we need to briefly introduce
certain concepts of graph theory. A graph G is called chordal if any cycle of four or more
vertices in G is reducible, i.e. there exist an edge (called a chord) that connects two
vertices of the cycle but is not part of the cycle (the cycle can be split into two shorter
cycles). To our knowledge, to date the most general form of sparsity known to have a
local inversion procedure for maximum entropy fitting has to include the diagonal and be
given by an adjacency matrices of a chordal graphs [SpeKii1986; Laul996; JohLun1998].

However, as schematically shown in Figure P1.2.5¢, graphs associated with the sparsity
pattern of periodic stiffness matrices (for sequences of length N > 4) are not chordal.
Irreducible cycles of length N can be constructed as:

Vi Va
w w
ui < U2

7 I (P1.2.47)
un <
m
Vn
with the sub-sets of vertices V; = {vg;—s, ..., Vg;} indicated in Figure P1.2.5.
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60 L

(b) K, - Kue

NN P

()

Figure P1.2.5. The effect of applying an analogue of the maximum entropy procedure
in case of periodic covariance (inverse stiffness) matriz. Panel (a) shows the sparsity
of periodic c¢gDNA stiffness matrices K, for sequences of length 5. Panel (b) shows the
sparsity of the difference between K, and a matriz Kyg computed numerically by applying
an analogue of the mazimum entropy procedure of Chapter P1.1 to the covariance K;l.
Panel (c) shows a schematic representation of the graph G whose adjacency matriz is
defined by the sparsity pattern of Panel P1.2.5a. Vertex v; in G corresponds to row i and
column i of K, with non-zero elements representing edges in G. The circles and their
intersections represent cliques, i.e. fully connected sub-graphs. Panel (d) indicates the
sub-graph G’ C G whose vertices give rise to irreducible cycles of the kind indicated in
Equation (P1.2.47). The adjacency matriz of G' is given by the sparsity of K, — Kvg
shown in Panel (b).
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Chapter P1.2. c¢gDNA model coefficients for periodic DNA molecules

In the light of the above the existence of a simple local formula for computing the
maximum entropy fit periodic stiffness matrix for a given covariance matrix remains an

open question, although a positive answer seems to be unlikely.
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P1.3 Superhelical structure of DNA tan-
dem repeats

In general, periodic stacking of (close to) identical elements leads to a (close to) helical
structure of the resulting construct [ChoGorMad2006|, hence e.g. the (close to) double
helical structure of DNA. Similarly the concatenation of multiple instances of a DNA
sequence (that we will call the basal sequence) leads to a superhelical shape of the
centreline of the ground state of the resulting DNA tandem repeat.

For that reason multiple consecutive repeats of relatively short fragments (~ 10bp)
have e.g. been used in in vitro experiments, as such an approach allows for engineering
of fragments of a particular intrinsic shape: e.g. left- or right-handed superhelices
[DubBedFur1994| or straight oligomers [BedFurKat1995; GegVol2010], that are also easy
to synthesize |CalDreLuiTra2004, ch. 5|.

In this chapter we present a method of analysing the superhelical structure of the ground
state configurations of DNA tandem repeats using the c¢gDNA model. Given a basal
sequence S of a tandem repeat Sy, the presented procedure yields parameters of the
superhelix traced by the centreline of the repeat such as a pitch and a radius, which are
the same for any number of repeats M.

Finally we present a brief analysis of the results of an exhaustive study of the superhelices
traced by tandem repeats with basal sequence of up to 12 base pairs.
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Chapter P1.3. Superhelical structure of DNA tandem repeats

P1.3.1 The method

In our treatment we will use the periodic cgDNA coefficients of Chapter P1.2. These
coefficients model infinitely long repeating sequences. We have shown that they also
provide a very good approximation of the standard cgDNA ground state configurations
of finite DNA fragments far from the ends. This choice is motivated by some properties
of the periodic coefficients that will be significant in what follows. The procedure is

summarized in Figure P1.3.1.
M

We recall that by a tandem repeat we mean a DNA sequence Sy = SS...S that is a
result of concatenating M > 1 instances of any basal DNA sequence S = X;Xo ... Xy (with
X; € {A,C,G,T}) of length N > 1. Let w,(S) be the periodic ground state configuration
vector of the basal sequence S. Let L,€8E3),ac(l,...N-1} be the homogeneous
coordinates (see Section A.1.2) of the step between base pair a and (a + 1) computed
from w,(S) through the reconstruction procedure described in Section B.1.3. Note that
in the case of periodic coefficients the extra set of inter coefficients gives rise to the extra
base pair step Z n that should be interpreted as the step between the last base pair of S
and the first base pair of the subsequent instance of S in the tandem repeat.

- -

N\

(a) (b)

Figure P1.3.1. A schematic summary of the procedure of computing superhelical pitch and
radius. The blue curves represent the base pair positions r; reconstructed from cgDNA
periodic parameters for 5 repeats of a sequence of length N (see Equation (P1.3.1)). & is
the axis of the rotational displacement D = D ny1 of a single repeat of Equation (P1.5.2).
The green curve of panel (a) indicates the orthogonal projection T; of r; to the plane
perpendicular to & (see Equation (P1.3.4b)). Note that in this particular example the
elevation h =t n41 - € (see Equation (P1.3.4a)) indicated in panel (b) is negative, hence é
points down. Panel (b) indicates also the centre ¢ of Equation (P1.5.9) as a red cross
and the total angle 0y of Equation (P1.5.14). The pitch p can be computed from h and
Oy using Equation (P1.3.15), while the radii as lengths of the displacementsT; =T; — ¢
(see Equations (P1.3.8), (P1.3.9) and (P1.3.12)).
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As shown by Lemma P1.2.2, the periodic ground state configuration vector w,(Sy) of a
tandem repeat can be constructed by simple concatenation of M instances of the ground
state configuration vectors w,(S) of the basal sequence. As a result the homogeneous
coordinates of the rigid body displacement from base pair 1 of a tandem repeat Sy
to base pair m + (n — 1)M, i.e. base pair m in the nth instance of S (n € {1,... M},
m € {1,...N}), can be written as:

D r N n=l 1
D m+n-)M =D mn = I: On;'” n;njl = (n Lk) l_l L
k=1 k=1
m—1
= (D12)"" l—[ Li (P1.3.1)
k=1

with 0 € R?, D ,,., — the relative rotation and r,,., — the relative translation. For brevity
we also introduce the notation:

D r N

D=|r (| =PNa=D12= [1z¢ - (P1.3.2)
k=1
so that
Ditan = D 1ps1 = D" . (P1.3.3)

Most of the time we will use the double index notation D ., reverting to the single index
notation D where it better illustrates the formula at hand.

In what follows we will only consider cases where the resulting superhelices have non-zero
curvature. The other possibilities (i.e. D = I, r =0 and r # 0 parallel to the axis of
rotation of D # I) are discussed in Section P1.3.2.1. We also note that for some (but
not all — see Figure P1.3.4m and P1.3.4n) superhelices very close to straight in the study
of Section P1.3.3 the problem of distinguishing between the superhelix and the primary
DNA double helix is ill-posed. In such cases, called atypical, the method reports pitch
and radius of the primary doublehelix.

Let 6 € (0, n| denote the (right-handed) rotation angle of D and let & denote the axis
of the rotation with the direction implied by 6 (see introduction to Section A.1.1). The
angle is positive and the axis is well defined under our assumptions. The axis also remains
unchanged under the rotation, as discussed in Section A.1.1.1.

Define
Bpn =T - € h:=hio (P1.3.4a)
Tmn =Tmp —Mmné T:i=T192 , (P134b)

so that T ., is the projection of r,,., to a plane perpendicular to & (see Figure P1.3.3).
We will refer to the value of h as the elevation of the fragment. Note that the elevation
can be negative.
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Chapter P1.3. Superhelical structure of DNA tandem repeats

Figure P1.3.2. In both panels R ., are points with coordinates given by the vectors
T m:n respectively. Both panels show the plane perpendicular to the superhelical azxis é
with the azis pointing out of the page; Panel (a) is an ezample illustrating the relations
between the projections T ., and the displacements T .., in their common plane. T 1.,
are shown as a sum of qi.. (see Equation (P1.3.6)). The point C is constructed in
such a way that the triangle R ;1 CR o is isosceles with |A R Cﬁm;2| =0. As a result
|AC§m:2§m;1) = %(n—@). The angle between q pm:1 and qm:2 is 0 (after Equation (P1.3.6))
and so |AC§m;2§m;3| = %(71 —0). This and the fact that |q1.1] = |q1.2| (again from
Equation (P1.53.6)) and |§m:1 C| = |§m:2 C| (by construction) implies that the triangles:
R 1 CR o and R 1o CR 3 are congruent. Iteration of the above reasoning shows that
all R . (for a fivzed m) lie on a circle centred at C. The figure also explains the meaning
of the vectors t ., of Equation (P1.3.8) on an example with n = 3. Panel (b) illustrates
the fact that all helices traced by t,,.., m € {1,..., M} are coaxial. Let C be the centre of
the circle through the projections Ry... Note that |A§m;1§1:11_?1;2| = |A§m;2§1;2§1:3|
and |R11Rm1l = |[R12Rm2| (which follows from Equation (P1.3.5). By construc-
tion also ’ACE1;1E1:2| = |AC§1;2§1:3| and |Cﬁlz1‘ = |CE1:2|, As a result the triangles:
R 1 CR i1 and R o CR o are congruent and so the triangle R1.1 CR .1 is isosceles
with |/R1.2CR 2| = 0. This implies that the points R p.1 and R o lie on a circle centred
at C. Again, by repeating the same argument it can be shown that all the projections R ..
lie on that circle. Thanks to Przemystaw Gtowacki for creating the figures.

A direct computation using (P1.3.1), (P1.3.2) and (P1.3.3) and the above decomposition
of r,,., leads to:

n-2
ron = (Z Dkr) + D" r 0y
k=0
n-2
- ((n —1hé + Z Dkf) + hp1 &+ D"T 0 (P1.3.5)
k=0

and so the step from the mth base pair of the nth instance of S in Sy, to the mth base
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pair of the (n + 1)st instance of S can be written as:

Tmnsl —Tmen =hée + D"'F + D"7,., - D"t
=hé + D"'(T + DTpq — Tmi)
=:hé + qmn
=hée + D" g, (P1.3.6)

and for the first base pair:
qi1 =T . (P1.3.7)

Note that because each T ., lies in the plane perpendicular to the rotation axis & of D,
so does DT ,,.,. As a result also each q,,., is perpendicular to é.

This means all the projections T ,,.. of base pair positions r,,.. can be constructed from
T .1 by subsequently adding the offset q,,.1 rotated in the plane by an extra 6 in
each step. As a result all those base pair positions lie on a circle (see Figure P1.3.2a).
Additionally, a step along & between base pair position r,,., and r,,.,+1 is the same for
any m € {1,...,N}ann e {1,...,M — 1} and is equal to h. All the above shows that
indeed for any m all the mth base pairs of all the instances of S in Sy lie on a helix whose
axis is parallel to e. Furthermore all of those helices have the same pitch. Figure P1.3.2b
shows also that all the helices are coaxial and indicates that the displacement T,,., of
base pair position r,,., from the superhelical axis can be written as:

- 1 1 0\ 4
T'min = _§Qm:n - §C0t (ﬁ)eXQm:n
1
=: —§qm;n + tin (P1.3.8)

so that the common centre ¢ of all the circles that are projections of the helices on a
plane perpendicular to & can be found as:

- T1q = %(F + cot (§) e xT) (P1.3.9)

with the last equality coming from Equation (P1.3.7) and the fact that r1.; =71, =0 (as
translations from the first base pair to itself). Note that the above provides an alternative
formula to compute T ., :

Tmn =Tmn +T11 - (P1.3.10)
Note also that:
ﬁ:m:nl = rf:m:n’| (P1311)

forany me{l,...N} and n,n’ € {1,... M}.
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Chapter P1.3. Superhelical structure of DNA tandem repeats

In particular the values:

Fmax = mer?lz,i...N}{ [T | } and Fmin 1= mer{ri}?N}{ [T |} (P1.3.12)

are the radii of the two cylinders (along &, centred at ¢) encapsulating all the base pair

positions between them.

Let 6,, € (—n, ) be the angle of the right-handed (with respect to &) rotation between
Ty and T o1, (m e {l,... N —1}) that can be calculated as:

— . acos (T pen T st
O =8¢0 ((Tpen XTmstin) - &) ff(‘mlFf ’1"”' n) (P1.3.13)
m:n m+l:n

(the angle is obviously the same for any choice of n € {1,...M}). Note that here we
explicitly exclude the case of 6,, = £r, where the above formula cannot be used (see
Section P1.3.2.2). The sign of the projection of the cross product on the axis & indicates
whether the rotation is right-handed (+) or left handed (—) with respect to the axis. The
angle:

M-1
Oy 1= > 6 (P1.3.14)
k=1
is, then, the total signed angle the base pairs of S trace around é.

Note that the value of h (of Equation (P1.3.6)) is the total elevation along the superhelical
axis é of a single instance of S, while 6y (as defined above) is the total angle, both with
sign. As a result the common pitch of each of the N coaxial helices traced by repeats of
each of the N base pairs of S can be calculated as:

2
po="Zn (P1.3.15)
)
The sign of the pitch as defined above depends on the sign of both h and 6y in such a
way that the pitch is positive for right-handed helices and negative for left-handed helices

(see the discussion of Section P1.3.2.2).

Note that the values of the radii ryin, fmax and p depend only in the basal sequence S
and not on the number M of repeats in the tandem repeat Sy (see Section P1.3.2.3). The
values are also the same for the Watson-Crick complement S of S as well as any cyclic
shift of § (see Section P1.3.2.4).

For completeness we also state here the formulae to compute the curvature x and torsion
7 for a helix with the pitch p and radius r and vice versa (see e.g. |[ChoMad2004]):

r p

K = . r=—1F (P1.3.16a)
r?+ 2nr? + £
K 2rt
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Another quantity that will be useful in the discussion of the study of Section P1.3.3 is
the minimum number of repeats M, of the basal sequence S for which the superhelix of
the tandem repeat Sy, has at least one full turn. This can be computed as:

|

Finally we denote the length (in number of base pairs) of the tandem repeat Sy, by:

2
Oy

} . (P1.3.17)

T=NM, . (P1.3.18)

where N is the length of the basal sequence S.

P1.3.2 Discussion of the method

In this section we will outline certain features of the presented method of calculating
pitch and radius (radii) of the periodic c¢gDNA ground state configuration vector of a
DNA tandem repeat Sy;.

P1.3.2.1 Degenerate helices

The outline of the method was based on the assumption that D # I and r # 0 and r not
parallel to the axis &. Here we briefly discuss the degenerate cases.

First of all note that for D # I and r # 0 and r || & the resulting shape is exactly straight
and twisted.

If D = I the rotation axis is undefined (see Section A.1.1.1). In such a case the DNA
superhelix degenerates to a straight and untwisted configuration, with the direction of
the centerline given by r.

On the other hand if r = 0 the intrinsic shape of the molecule forms a closed loop (with
possible rotational misalignment of the first and last base pair). From Equation (P1.3.5)
it is clear that subsequent instances of the basal sequence in the tandem repeat will only
be rotated and not translated and form petals of a flower-like structure.

In the most degenerate case where both D = I and r = 0 subsequent instances of the
basal sequence in the tandem repeat lie on top of one another.

All of the mentioned cases are extremely unlikely for relatively short basal sequences
(< 100bp) and would require special analysis. None such case has been found in the
comprehensive study of oligomers up to 12 bp long presented in Section P1.3.3.
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Chapter P1.3. Superhelical structure of DNA tandem repeats

P1.3.2.2 Considerations on the angle 6y and chirality of the superhelix

200 200
% 150 150
Z
/
100 100
50 50 2
o,
Z
y 0 0 g—
50 50
0 50 0
0 0
-50 50 =50 _
(a) S4 (A5CACG2)7 (A7GAG2)7
0 0
@ 3
50 50 =§§
N — -
& 100 100 g
= -~
S X
~:.$ >
= -150 -150
=
- -200 -200
-250 -250 o
50 50
0 50
0 0
50 50 50 50
(d) Saﬁ (C) SC7 = (AQTQACQATG2T)7

Figure P1.3.3. Ezamples of sequences for which the superhelices are left-handed (left
column) and right-handed (right column), where the elevation h is either positive (top
row) or negative (bottom row). In all the plots the centre ¢, indicated by the red cross, is
chosen to be the centre of the coordinate system. x-axis is aligned with the displacement
T1.1, the z-axis is chosen to be the rotation axis & and y-azis completes the other two.
The base pair positions T ., are indicated in blue. Their projections T ., to the plane
perpendicular to & are indicated in green. The vector hé is indicated in red. The black
circles, shown for clarity, are of radius rmax. For better perception of length scale a box
visualization of bases has been shown. Each box is the bounding box of centres of all atoms
of the respective base and has a height of 1.5 A. (Continued on the following page)
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P1.3.2. Discussion of the method

Figure P1.3.3. (Continued from the previous page) All sequences have been chosen as
the ones with with 35 A < Fmax < 55 A and the smallest (in absolute value) pitch among
all decanucleotides (S*), undecanucleotides (S”) and dodecanucleotides (S¢). Note, in
particular the difference between Panel (a) and (d). As explained in the text the values
of the radii rmin, 'min and the pitch p are the same for any number of repeats of the
basal sequence, but the sign of h(S*n) (and of 0y (S*n) accordingly) may be different for
different number of repeats M (see Equations (P1.3.21) and (P1.3.22)). The numerical
values characterizing the presented superhelices are given in Table P1.3.1

Sequence p T'min I'max h Oy handedness

N 2791 048

S% -367.02 34.09 36.47 -167.48 2.87 left

Sy 195.39 -3.35

sb 32.04 0.37 .

sb- 539.75  42.94 45.09 99497 961 right

S¢ 33.59 0.56 .

se 374.38 33.04 36.30 935 16 -3.05 right

Table P1.3.1. The numerical values characterizing the sequences of Figure P1.53.53. Note
in particular that the absolute value of the total angle |05 (S%)| is just below m and so it
is the case of (P1.3.22a). On the other hand |0y (S%)| is just above nt, which makes it
(P1.58.22b). The values of rmax, 'min and p are the same for any number of repeats of the
basal sequence.

As already mentioned previously the angle 6y represents the total angle the base pair
positions trace around the superhelical axis, including the direction. The total angle is
signed to be positive under right-handed with respect to the direction of & and, unlike
the angle 6 of the relative rotation D, is not limited to [0, 7|, but can possibly take any
real value. Together with the sign of & (the component of the total elevation introduced
in Equation (P1.3.6)) the sign of 6y is used to recover the handedness of the resulting
superhelix that is encoded in the sign of the pitch p, as discussed before. Figure P1.3.3
and Table P1.3.1 show examples of all 4 possible cases of pairs of sgn (fy) and sgn(h).
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Figure P1.3.4. Schematic pictures of the three categories of loops introduced in the text and
example sequences forming them: category I — left column, category II — middle column,
category III — right column. For each category example sequences from the ensemble of
Section P1.3.3 are given, forming a left-handed (second row) and right-handed (third row)
superheliz. All numbers are in A. As noted in the text no example for category III has
been found in the ensemble. Three closest examples are shown instead (see details below).
FEach picture shows the plane perpendicular to the superhelical axis & with the axis pointing
out of the page and the centre c of the superheliz indicated by a red X. The projections
T ... of base pair positions are indicated in green with + marking T 1.1. The angle 6y traced
by the projections is indicated in red with thicker line indicating double covering. In panel
(a) the two fragments of the loop that contribute the same angle with opposite sign are
indicated by shading. In panel (b) the loop contributes a positive angle < m, while the
contribution from the loop in panel (c) is +2rx. The sequence S® has been chosen as the
one with mazimum value of (Frmax — I'min) 0f all typical (see text) nonanucleotides. The
sequence S8 is the undecanucleotide with the maximal (in absolute value) elevation h. The
sequence S has the minimum radius rmax of all typical superhelices in the ensemble. The
sequence happens to be its own complement. The sequence S¢ has the smallest value of
Fmin = 0.012 A among all left-handed superhelices. In fact the loop belongs to category I
which can be deduced from the angle it traces. The sequence S™ has the smallest value of
Fmin = 0.0037 A among all studied superhelices. Again the angle shows the loop falls into
category III. The sequence S* is an example close to the special case of category II where
the centre of the superhelix lies on the line segment connecting Ty and Ty (see text). The

sequence has been chosen as the one with the largest angle qlla }{|9m|} = 3.1413 (for
mel{l,...N

an oligomer of length N ) in the entire ensemble. The actual category of the loop is I1I.
The sequence S' has the largest radius rmax among all nonanucleotides. This particular
example shows that for any sequence repeated at least M; times (see Equation (P1.3.17))
a loop of category III is formed (apart from possibly any others). S' is the heptanucleotide
with the highest (in magnitude) value of the total angle Oy. The sequence S! has the
largest radius of all atypical superhelices. Panels P1.3.4m and P1.53.4n show a comparison
of tandem repeats of SI (with smallest rmax = 1.55 A of all typical superhelices) and S
(with largest rmax = 3.93 A of all atypical superhelices), respectively. The coloured bozes
as in Figure P1.5.3. The point here is to show that there is no drastic difference between
atypical superhelices and typical ones with small radius (see text). The numerical values
characterizing the superhelices traced by ground state configurations of the presented
sequences are given in Table P1.3.2. Thanks to Przemystaw Glowacki for creating the

figures of panels (a), (b) and (c).
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Chapter P1.3. Superhelical structure of DNA tandem repeats

Note, however, that due to the double-helical secondary structure of B-DNA the pro-

jections T ... of base pair positions (indicated in green in Figure P1.3.3) onto the plane

perpendicular to the axis & of the superhelix may form loops in that plane. The posi-

tion of those loops with respect to the centre ¢ (see Equation (P1.3.9)), as shown in

Figure P1.3.4 is of particular importance. Specifically we separate all the possibilities

into three categories:

I

II

II1

90

¢ lying outside of the loop (left column of Figure P1.3.4). As shown in Figure P1.3.4a,
the total contribution of such a loop to the total angle 6y is 0, as the indicated
two parts of the loop contribute an angle of the same magnitude but opposite
handedness (sign).

¢ lying on the loop (Figure P1.3.4b). This can be seen as a singular border case
of the other two as the minimum radius ry;, goes to 0. The singularity is easy to
see as the contributions to the total angle 6y coming from I loops are 0 and those
coming from III loops are +27 independent of how small the ry;, = € > 0 is. For
loops of category II their contribution to fy can (in principle) be anywhere from 0
to 2m. The fact that rpym = [Tx | = 0 for a given oligomer means that the total angle
0y cannot be computed using formulae (P1.3.13) and (P1.3.14).

It should be noted that this kind of loop is much less likely to be found for relatively
short sequences than I or III. There is no such case among oligomers of length up
to 12. Figures P1.3.4e and P1.3.4h present examples of superhelices with smallest
values of rpin in the ensemble of Section P1.3.3.

A particular type of loops that could also be included in category II are loops
where the centre c lies exactly on the line segment connecting projections T, and
T 11 of subsequent base pairs but is not one of the end points. In such a case the
displacement vectors T and T 41 are collinear and of opposite direction and so the
angle 6y between them is +7. On the other hand in such case the formula (P1.3.13)
for 6,, evaluates to 0, so the presented method cannot be used. Among all oligomers
of length at most 12 there is no such case. Figure P1.3.4k shows an example of a
superhelix with merﬂ?f{m“e’”” = 3.1413 (for an oligomer of length N) which is the

closest to m in the studied ensemble.

c lying inside the loop (right column of Figure P1.3.4). In such a case the loop adds
an entire 27 (or —27, depending on the handedness) to the total angle 6y .

Note that, as shown in Figure P1.3.4f, for any oligomer repeated at least M; number
of times (see Equation (P1.3.17)) a loop of that type (apart from possibly any
others) is formed by the tandem repeat. This is directly related to the discussion of
Section P1.3.2.3, in particular the part of Equations (P1.3.22) relating to 6y and
the invariance of pitch p .

Another very important remark is that for some sequences a loop of this type is
formed over a fragment of as few as 11 bp, i.e. around a single repeat of the double
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helix. In such cases the superhelix is so close to straight that the presented method
simply picks up the primary heliz (of the DNA secondary structure) instead. In such
cases the problem of distingushing between the primary helix and the superhelix is
ill-posed. Due to the singularity that separates category III from I (discussed above)
the method introduces a sharp distinction of such oligomers. In the discussion of
Section P1.3.3 we will refer to such basal sequences as atypical, while the others
will be called typical. As shown in Figures P1.3.4m and P1.3.4n there is no clear
difference in the geometry of atypical superhelices (which all have ry., < 3.93 A)
and typical ones comparably close to straight. In fact, all superhelices with relatively
small rpax (comparable to the size of a base, i.e. ~5 A) can be seen as straight,
despite the fact that the method is able to distinguish the superhelix from the
primary helix. See Section P1.3.3 for further discussion.

Sequence p T'min I'max h 6y  handedness
s4 -153.43 059 437 -28.84 118 left
s° -177.67  0.012 276  -29.37  1.04 left
szi -182.78 491 7.28 _'22081'184 g:gg left
S8 1304.08 545 7.69 36.35 0.18 right
St 35.34  0.0037 2.65 3920 6.97 right
s 34.01 0.60 1.25 -2292 -4.23 right
S/ 308.05 0.52 155 39.65 0.81 right
sk 35.20 0.18 261 -2595 -4.63 right
st 36.05 0.13 393 -2872 -5.01 right

Table P1.3.2. The numerical values characterizing the sequences of Figure P1.3.4.
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Chapter P1.3. Superhelical structure of DNA tandem repeats

P1.3.2.3 Invariance of pitch and radius for different number of repeats

Let D(Sy) be the relative rotation of Equation (P1.3.2) with the axis é(Sy) and angle
0(Sm), 05 (Sy) the total angle, h(Sy) the total elevation and T ,., (Sp) the displacement
from the superhelical axis of the position of the nth instance of base pair m, all defined
for the tandem repeat Sy (M > 1) so that:

D(Sy) = (DS))M = (DSHM . (P1.3.19)

Note that it is clear from the statement of the method that T,,., (Sp) =T 1,1 (S) for any
number of repeats M and so:

rmin(SM) = rmin(s)
Fmax(Spm) = Tmax(S) . (P1.3.20)

On the other hand for different values of N the axes é(Sy) are necessarily parallel (as
eigenvectors — see Section A.1.1.1) but may be of opposite sign. This is due to the fact
that (to avoid ambiguity, as discussed in Chapter A.1) the rotation angle 8(Sy) is defined
only in [0, 7|. As a result:

é(Sm) = é(9)

6S) = ((M - 6(5)) mod 2n) i (M-0(5)) mod 27 < (PL3.21a)

é(Sm) = —€(S)

6(Su) = 21— ((M - 6(S)) mod 2r) it (M-6(S)) mod 2 > x (P1.3.21b)

The direction of the axis affects the sign of each partial angle 6,,(Sy;) of Equation (P1.3.13)
and so the sign of the total angle 6y (Sy). Exactly in the same way it affects the sign of
the elevation h(Sys), so that:

05 (Su) =M -05(S)

S = M H(S) it e(Su)-e(s) =1 (P1.3.22a)
O5 (Sm) =—M -65(S
h%;MA;) : _ﬁ . h%;)) it e(Su)-es)=-1 . (P1.3.22b)
This finally leads to:
p(Sm) M - h(S) = p(S) (P1.3.23)

T M- 6%(S)

Figure P1.3.3 and Table P1.3.1 show an example for the sequence S* = AsCACGy. For S%
of Figure P1.3.3d the absolute value of the total angle is |05 (S%)| is just below 7 and so
we have case (P1.3.22a). For $§; of Figure P1.3.3a, however, |0y (S%7)| is just above 7
which gives (P1.3.22b). The pitch in both cases is the same and equal to p(S%).

The properties (P1.3.20) and (P1.3.23) are desired and important features of the presented
method that show its consistency.
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P1.3.2.4 Invariance of pitch and radius under Watson-Crick symmetry
and cyclic shifts of sequence

The Watson-Crick symmetry of the cgDNA model [Pet2012; GonPetMad2013| assures
that the same values of the radii ryin, 'max and the pitch p are found for the Watson-Crick
complement of S, namely S =XnXn_q...XoX].

What is maybe less evident is that the same three values characterize any cyclic shift
of the basal sequence S. Consider the sequence S" = XyX1X2...Xy-1 (the cyclic shift of
S to the right by one base pair). As indicated by Lemma P1.2.3 the periodic ground
state configuration vector for the sequence S’ can be obtained by simply “moving” the
appropriate set of inter and intra coefficient from the back to the front of the periodic
ground state configuration vector of S. As a result the homogeneous coordinates D’ of
the rigid body displacement from base pair 1 to base pair k for the sequence S’ can be

written as:
, D’ ~
DY = OT{C 1k =LND k-1 (P1.3.24)

with 0 € R3 L as introduced in the previous section and D j_; describing the rigid body
motion from base pair 1 and k — 1 for the sequence S (see Equation (P1.3.1)). Therefore
the rotation D’ := D;v+1 can be written with respect to D := Dy, as:

D'=LyDLY |, (P1.3.25)

with EN the rotational part of EN. The axis of rotation of D’ (and so the superhelical
axis) is simply &’ = Lyé, which can be verified by simple direct calculation.

Let Ly be the rotation matrix associated with Zy so that from Equations (P1.3.25),
(P1.3.5) and (P1.3.6) we have:

IJm:n+1 _r/m:n = LN (r,m:n+1 _rlmsn) (P1326)
= hLyée + Lyqumn (P1.3.27)
= he’ + qu:n . (P1.3.28)

This finally shows that for S’ the displacement along the superhelical axis between
subsequent instances of the same base pair is the same as for S. The helical axis &’ as
well as the shift vectors q’,., for S” are all simply rotated by EN as compared to their
counterparts & and g/,.,, (respectively) for S. Consequently, after Equation (P1.3.8):

T = LT mn (P1.3.29)

m:

so that the formulae (P1.3.13), (P1.3.14) and (P1.3.15) yield the same values for $” and S.

The above observations show that in deed the same values of the radii 7y, max and pitch
p characterize both S and S’ and, as a result, any cyclic shift of those. This conclusion will
facilitate the exhaustive studies of oligomers of given length, as the one of Section P1.3.3,
by substantially limiting the number of cases to be processed.
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P1.3.3 An exhaustive study of relatively short oligomers
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P1.3.3. An exhaustive study of relatively short oligomers

Figure P1.3.5. Scatter plots of pitch p vs. radius rmax of ground state configuration
superhelices for basal sequences of up to 12 bp in length. In each panel a coloured pizel
indicates at least one sequence within the range of pitch and radius of that pizel. In
panels (c), (d), (e) and (f) the intensity of the colour of a pizel grows from dark to
bright with the growing number of sequences represented by the pixel. The table below
gives the number of sequences per pizel that gives the mazimum colour brightness. Note
that the resultant intensity of the colour strongly depends also on the resolution (i.e.
size of the area represented by a single pixel). The sizes of pizels have been chosen for
each panel separately with only panel (¢) and (d) having the same pizel size. The exact
values are given in the table below. Panel (a) shows all cases where the superhelices are
classified as atypical (see text) in the entire ensemble. Note that indicated in black are
superhelices formed by fragments of length 8 < N12. Panel (b) shows all data of octa-
and nonanucleotides in context of subsets of deca- and dodecanucleotides. The purple
region is enlarged in panel (a). Panels (c¢) and (d) show data for all decanucleotides and
dodecanucleotides, respectively. Both have the same scale and pizel size and are directly
comparable. Panel (e) shows a subset of undecanucleotides and indicates the much smaller
ranges of pitch and radius of deca- and dodecanucleotides. The cyan box indicates the area
of panel (c), the purple box the area of panel (d) and the dark grey box — the area of panel
(b). Panel (f) shows the entire range of pitch and radius for undecanucleotides. The cyan
box indicates the area of panel (e).
Panel  (a) M) (and (@) () ()
# of seq. for full colour >1 >1 >5 >5 > 10
pizel size (p X F'max) [A]  0.05%x0.02 1x0.05 1x0.10 10x1 250 x40

length [bp] 8 9 10 11 12
# 4140 14560 52632 190650 699875
# typical 289 9604 51740 190646 690 796
% typical ™% 66% 98% 99.998% 99%

min{p} -113.3 -219.8 -840.0 -97342.0 250.0
max{p} -94.5 1457 -=271.5 70329.3 652.9
median p  -103.5 -172.3 -391.1 860.0 364.1
min{rmax} 1.58 1.65 2.20 2.30 1.55

max{rmax} 3.03 7.28 593.67 19341.56  37.26
median rpax  2.39 3.64 11.65 195.75 10.58

min{ﬂ} 33.75  24.96  9.71  0.000025 10.31

'max

max{ﬂ} 68.21 125.10 292.81 1056.64  199.37

’max

Pl 4318 4677 33.79 5.17 34.63

max

median

Table P1.3.3. Statistics of pitch and radius of all superhelices classified as typical (see
text) formed by tandem repeats of sequences of up to 12 bp in length. Pitches and radii
are reported in A.
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Chapter P1.3. Superhelical structure of DNA tandem repeats

This section presents an exhaustive study of the superhelical structure of ground state con-
figurations of DNA tandem repeats for basal sequences up to 12 bp long. The superhelices
are characterized by the radii ryin and rmax and pitch p computed using the presented
method and the periodic c¢gDNA parameters of Chapter P1.2 with cgDNAparamset2
introduced in Chapter P1.1.

It should be pointed out that our exhaustive study was greatly facilitated by the fact
that rmin, 'max and p are the same for Watson-Crick complements and for any cyclic
shifts of a given sequence, as discussed in Section P1.3.2.3. For example in the case of
dodecanucleotides instead of the complete set of 412 ~ 17M sequences only 699 875 needed
to be processed to get complete statistics.

Figure P1.3.5 presents a global picture of the study as scatter plots of ryax vs p for the
entire ensemble, while Table P1.3.3 gives global statistics. It can be observed that that
the presented method divides all the superhelices in 4 groups:

1. Atypical helices (see discussion of Section P1.3.2.2 for the definition and Fig-
ure P1.3.5a for a scatter plot of all such superhelices); basal sequences of length
under 7bp all form atypical superhelices. It is not surprising that sequences con-
siderably shorter than a single repeat of the double helix give rise to helices very
close to straight. However, as could be inferred from Figure P1.3.5a, the majority
of atypical superhelices in the ensemble (in fact over 90%) are formed by basal
sequences of 8 — 12bp in length. Still, Table P1.3.3 shows that as the number of
base pairs of basal sequences increases the ratio of typical to atypical superhelices
increases as well. In the particular case of 11 bp there are only 4 atypical sequences,
namely: A3GAGA2GTC, AoCTCT2CTCG, A2GoAGACTAG and ACGTCoTCGCG. It should be
pointed out here that the ground state configurations of atypical sequences are, in
general, not significantly closer to being straight in any sense than some typical
superhelices. This has been shown already in the comparison of Figures P1.3.4m
and P1.3.4n. More close to straight examples are given in Figure P1.3.6 and are
discussed further on. Note that in Figure P1.3.6 only the dinucleotides, shown for
reference, are atypical.

For this group of oligomers the reported radii rpax lie between 33.96 A and 36.53 A,
while the pitches p are between 0.85 A and 3.93 A.

An interesting subset of this group are all possible dinucleotides. In particular
Table P1.3.4 presents those sequences in the descending order of the pitch p, which
agrees with ascending order of the total angle fy. This shows that poly-A and
poly-AG are the two most tightly coiled superhelices (those with highest %Z with
N the number of base pairs) of the six, while poly-AT is the most loosely coiled. In
fact poly-A is the most tightly coiled superhelix in the whole ensemble and very
likely the most tightly coiled of all possible superhelices.

Note that there is correlation between these observations about poly-dinucleotides
and the findings of Chapter P1.4. In particular poly-A and poly-AG were found
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P1.3.3. An exhaustive study of relatively short oligomers

to have very high values of persistence length with that of poly-A being by far
the highest of all studied sequences. On the other hand poly-AT has the lowest
persistence length of all the dinucleotides. Furthermore the differences in values of
pitch p can be observed as differences in the period of oscillations of the tangent-
tangent correlation plots of all dinucleotides in Figure P1.4.2a. Also the amplitude
of the oscillations is proportional to the value of pitch.

. Typical oligomers of length 8 — 10 bp; (see Figure P1.3.5b and P1.3.5¢); all such
sequences give rise to left handed superhelices. Note that all typical octanucleotides
have very small radii (under 3.03A) and so they are all very close to straight.
Figure P1.3.68 shows the ground state configuration of the octanucleotide with
the maximum radius (rpax = 3.03 A) for which the superhelix is barely visible. For
nonanucleotides more cases with larger radius and clearer superhelical structure
can be found, e.g. those of S” and S°. Among decanucleotides the majority (just
under 74%) superhelices have ryiy > 5 A, while 43% have ryin > 10 A.

. Typical dodecanucleotides (see Figure P1.3.5d); in this group all the superhelices
are right-handed; similarly to decanucleotides the majority (72%) have rpi, > 5 A
and 34% have rp, > 10 A. However, despite the fact that there is 13 times
more dodecanucleotides than decanucleotides the range of radius is considerable
smaller for the latter group. This can be seen by comparing Figure P1.3.5d with
Figure P1.3.5c or Figure P1.3.6¢ with Figure P1.3.66 and in Table P1.3.3.

. Typical undecanucleotides (see Figure P1.3.5f and Figure P1.3.5¢); This is the most
varied of the four groups. 15% of superhelices in that group are left-handed, while
the others are right-handed (see Figure P1.3.5e). Also the range of pitch is over
110 times greater than that of all the other oligomers in the ensemble, while the
range of radii is over 370 times (!) greater (see Table P1.3.3). For that reason the
ground state configurations of the undecanucleotides with extreme pitch and radius
are not included in the comparison of Figure P1.3.6. To give another perspective,
consider that the decanucleotide S has the highest value of the length T = 270 bp
(see Equation (P1.3.18)) amongst all sequences of all the other groups. That is the
length scale chosen for Figure P1.3.6. On the other hand the maximum T amongst
undecanucleotides is 47 927 bp achieved by the sequence A2C2AT2ACGC with highest
pitch in the entire ensemble. For the oligomer ACACTGCACGT with the maximum
radius the number is 37 587 bp.

AT AC cc CG AG AA
p 35.82 35.72 35.26 34.99 34.22 33.96
Mmax 1.99 1.88 221 1.14 1.09 0.85
0y 1.112 1.126 1.135 1.173 1.206 1.212

Table P1.3.4. The ordering of all poly-dinucleotides induced by the descending order of
the pitch p. Pitches and radii are reported in A, angles in radians. The ordering agrees
with the ascending ordering with respect to the total angle 0y . It is similar to the ordering
by the persistence lengths found for these sequences in Chapter P1.J (see Table P1.4.2).
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Chapter P1.3. Superhelical structure of DNA tandem repeats

Following the argument of [DubBedFur1994| about handedness of tandem repeats of basal
sequences of length close to the DNA helical repeat we conjecture that for c¢DNAparamset2
the helical repeat is within the accepted range of 10 — 11 bp. For that reason all typical
superhelices for basal sequences of under 10 bp are left-handed and all those above 11 bp
are right-handed. The exceptional nature of the undecanucleotides can be explained
e.g. by the supposition that the effective helical repeat of DNA for c¢gDNAparamset? is
closer to 11 bp than to 10 bp. This conjecture is supported by the data of Table P1.3.3
on the value of the ratio %. The extreme minimum at 11 bp indicates that certain

undecanucleotides are very close to forming exact circles (see Figure P1.3.7).

Finally Figure P1.3.8 shows a scatter plot of pitch and radius of superhelices formed by
all palindromic (self-complementary) sequences of length 8, 10 and 12. While among all
39 octanucleotide palindromes only 6 are typical, in case of both decanucleotides and
dodecanucleotides over 90% of the palindromes are typical. These preliminary results
seem to suggest that superhelices formed by palindromic sequences do not stand out from
those formed by all the other sequences (e.g. in being particularly close to straight), but
the question requires further investigation.

(AA) 35
(AG)135 st Ty A O e
(CG)y35 w w Sy

( CcC ) 135 AN o A O O O O N O O A O o W O
(AC)135 WG SR NI o i S NI S L g W

- i N - T ——
(AT)135 LUt b L0 LRl U R U CAT L i L el

834 := (A5GAG)3q s

Sh 34 5= (ALCG3) gy b oo O O S O

8730 := (AgG)zg -
S 0 30 :— (A5 CG 3 ) 30 Ay e o O o O e oW e oA

IH o 10

S%7 := (A5GA3G)gy ¥ 1 o
O i,
e iy,
8427 = (A7GAG)27 %WM@\“ %/”47,//;%‘
SM93 1= (ACoAC3ACAT)gy Mttt ar M B
WM‘ ‘ 5 m\\w‘

A
e

S%3 1= (A2CoACoATGoT) o3 iy, e

Figure P1.3.6. Ground state configurations of superhelices with mazimum (in absolute
value) pitches and radii among octa- (S%, SP) nona- (S?, 8°) deca- (8%, S¢) and dodecanu-
cleotides (S", S%). For reference, ground state configurations of all dinucleotides (including
poly-A and poly-C) are shown as the most uniform of the analysed sequences. The coloured
boxes as in Figure P1.3.3. The ordering of the dinucleotides is that of Table P1.5.4. The
pitches and radit for all other sequences can be found in Table P1.5.8
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’ MMM:‘WM .m@mwﬂ"mﬂ'“‘w
(b)
Figure P1.3.7. Ground state configurations of the undecanucleotide S'1907 = ACAGATACAGCg7
with the smallest ratio rlll = 0.000025 of all sequences in the ensemble (the superhelix

closest to a circle). The coloured boxes as in Figure P1.5.3. Panel (a) show a “side” view
(with the view direction parallel to the plane perpendicular to the helical axis; helical axis
pointing up). Panel (b) shows the view of panel (a) tilted by 30 degrees.
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Figure P1.3.8. A scatter plot of pitch p vs. radius rmax of ground state configuration
superhelices for all palindromic basal sequences of up to 8, 10 and 12 bp in length.
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P1.4 Sequence-dependent persistence lengths
of DNA

(joint work with Jonathan S. Mitchell, Alexandre Grandchamp and Robert S. Manning)

DNA ‘rigidity’ is often expressed as a sequence-averaged, single parameter, namely the
persistence length, which is sometimes informally described as a measure of the length
scale over which correlation between the tangents along a polymer centreline is lost
[Hag1988; RitGilK002009|. Frequently, the persistence length is extracted by interpreting
experimental data with the Kratky-Porod worm like chain (or WLC) model [KraPor1949;
PetMah2010] where the persistence length is one of only two free parameters. There is a
consensus in the literature that the persistence length of DNA is approximately 150 bp,
or 50nm. This value is estimated using diverse experimental techniques, each with their
own assumptions necessary to interpret the data, and often at quite different length
scales [Hag1988; RitGilKo02009|. Consequently the estimate can be regarded as robust,
but not necessarily very precise. When sequence-dependence of a DNA fragment is of
interest, then a description solely in terms of sequence-averaged persistence lengths is too
imprecise [Flo1969; MarOls1988; ThéCouLe Rév1988; SchHar1995; Yam1997].

Consequently, while the WLC has proven extremely successful in interpreting diverse ex-
perimental results for DNA, its application to biological problems that depend significantly
on sequence is precluded by its simplicity. Accordingly there have been many efforts at
developing more detailed, but still coarse grained models. Some such models incorporate
an overall fit to a sequence-averaged persistence length [OlsGorLul1998; SulRomOul2012;
HinFreWhidPab2013|. There are also sequence-dependent, coarse grain models that
predict sequence-averaged persistence lengths, for example 15.2nm [MacSpaliwSch2014],
20 nm [KnoRatSchdPab2007], 96 bp [SayAvsKab2010], and 75 nm [SavPap2010|. Similarly,
estimates of persistence length have been made directly from atomistic MD simulations
of (necessarily) relatively short fragments at the scale 2050 bp, e.g. 80 nm for poly(AT)
and poly(GC) [Maz2006|, and 43 nm for a mixed sequence fragment [NoyGol2012|.
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Chapter P1.4. Sequence-dependent persistence lengths of DNA

We here assess the ability of the c¢gDNA model [Pet2012; GonPetMad2013; PetPas-
GonMad2014|, as summarized in Chapter B.1, to reproduce the sequence-dependent
statistical mechanics properties of B-form double helical DNA, by developing appropriate
Monte Carlo (or MC) sampling methods in order to generate associated ensembles of
configurations. The MC code developed here allows sampling of c¢gDNA Boltzmann
distributions at the scales of tens to thousands of bp. Simulations of sequence-averaged
persistence length yield the estimates of 53.5nm in the sense of Flory (from simulations
at the scale of 1 Kbp), and 160 bp in the sense of apparent tangent-tangent correlation
decay (from simulations at the scale of 200 bp). These estimates have a standard error
of £0.1nm/1bp in the sense of multiple estimates from multiple MC simulations. Error
associated with underlying imprecision in c¢gDNA parameters is harder to assess, but is
likely to be significantly larger. The tangent-tangent persistence length also has a mild
dependence on choices in coarse graining tangents and arc-length.

P1.4.1 Theory

P1.4.1.1 The statistical mechanics of persistence lengths

We will consider two of the classic expectations of polymer physics, see for example
[KraPor1949; F1o1973; Sch1974; DoiEdw1986; Yam1997]|, that depend on a sequence of
frames (r,, D), namely:

(t; - to) (P1.4.1a)
and

(Df(x; —r0)) (P1.4.1b)

where ( - ) denotes the ensemble average, i.e. the expectation of the argument with respect
to an underlying equilibrium measure, tq is a unit vector associated with a specific base
pair labelled with index 0 (usually taken to be away from the physical end of the polymer
to avoid any possible end effect), and t; is the analogous unit vector at the ith base pair
along the polymer. Usually t; is to be interpreted as some approximation to a unit tangent
to the polymer, so that (P1.4.1a) is often described as a tangent-tangent correlation
function. Similarly DOT (r; —rg) are the components of the chord vector between the Oth
and ith base-pair origins expressed in the chosen reference frame Dy. We will call the
expectations (P1.4.1b) Flory persistence vectors, as they were apparently first introduced
in [Flo1973|, see also [MarOls1988; SchHar1995|. Accordingly for each choice of reference
frame Dy, the expectations (P1.4.1a) and (P1.4.1b) are respectively scalar and vector

functions of the index i > 1.
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P1.4.1. Theory

One of the simplest model ensembles in which to compute the expectations (P1.4.1) is
a discrete version of the Kratky-Porod WLC [KraPor1949; Sch1974]. In this model the
polymer is assumed to be a chain of rigid links all of length b, so that any configuration
is described by unit chord vectors t; := %(I'H_l —r;), and the equilibrium measure is
assumed to be Boltzmann with inverse temperature scale B = 1/kgT and free energy
(or Hamiltonian) E = £ ¥¥ (1 - t; - t;41) with B a (constant) bending rigidity parameter.
In particular the minimum energy, or ground, state of the WLC is intrinsically straight
with all tangent vectors parallel. Then provided that the non-dimensional parameter
{p = BB/b is large (compared to 1), it can be calculated analytically that the correlations
(P1.4.1a) are well approximated by the formula

(t; - todwrc = e /. (P1.4.2)

Then the exponential decay scale €, is the persistence length expressed in bp, while
b{, = BB is the dimensional persistence length expressed in the (arc-)length units of b.
Similarly within the discrete WLC model the expectations (P1.4.1b) can be computed to
be

(DY —towac =b 0y [0 0 (1-e70)] (P1.4.3)

provided only that the third column of Dy is chosen to coincide with ty. In fact the
specific functional forms of expressions (P1.4.2) and (P1.4.3) are only exact in the limit
of the continuous WLC, in which the dimensional persistence length BB = bf, stays
constant, while b - 0, N — co, Nb - L, and i b — s € |0, L|. Nevertheless, the simple
approximations (P1.4.2) and (P1.4.3) suffice for our purposes.

For a DNA fragment with sequence S, and motivated by the WLC formula (P1.4.3), we
introduce a Flory persistence length €£(S) as the limiting value of the magnitude (in the
usual Euclidean distance ||-||) of the Flory persistence vector (P1.4.1b) as i — oo, along
with its sequence-averaged version p:

tr(8) = lim [(DF @i =ro))|| . (P1.4.4a)
Cr = lim [[((Dg @i —ro))| (P1.4.4b)

Here the brackets {-} in the second expression denote an additional average over an
ensemble of sequences S; of the average (-) over an ensemble of configurations of a
fragment with fixed sequence. The persistence lengths defined in (P1.4.4) indeed have
the dimension of length, which we will report in nanometers (or nm). For the (sequence-
independent) WLC, €r = b {),.
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Chapter P1.4. Sequence-dependent persistence lengths of DNA

Similarly the WLC chain formula (P1.4.2) motivates the definition of a sequence-dependent
tangent-tangent correlation length €,(S) and its sequence-averaged version Zp:

e ) ~ (g, - tg) (P1.4.5a)
e il ~ (8 - t0)) (P1.4.5b)

where the symbol ~ signifies that, for a given sequence S, €, (S) is computed as the number
of base pairs equal to the (negative reciprocal) of the slope of the straight line through the
origin that is the least squares fit to the plot of In(t; - tg) vs. i. Similarly Zp is computed
via the analogous semi-log plot of the sequence averaged data {{t; - to)} vs. i.

We note that for more realistic DNA free energies than the WLC, there is no a priori
reason to believe that the dimensionless tangent-tangent persistence lengths £,(S) can
be simply related to the Flory persistence lengths ££(S) via the introduction of a single
length scale. Furthermore it is well understood that there are some sequences with
high intrinsic curvature, for example those containing phased A-tracts e.g. [MarOls1988,;
SchHar1995|, for which the exponential fit in (P1.4.5) to obtain £,(S) is an extremely
poor approximation at scales of one or two persistence lengths or shorter (indeed for
some exceptional sequences of moderate length (t; - ty) can even become negative so
that the semi-log plot fit yielding £,(S) has no sense, in contrast to the more robust
definition of €£(S)). However for ‘reasonable’ (i.e. non-exceptional) sequence ensembles
{-} it is believed that the sequence-averaged exponential fit to obtain Zp is a rather good
approximation. Our simulations will confirm these behaviours within the c¢DNA model.

P1.4.1.2 The choice of Monte Carlo observables

We will use Monte Carlo simulations applied to the ¢gDNA model of the free energies
of a number of different sequences in order to generate ensembles that yield numerical
estimates of the expectation functions (P1.4.1). We can then obtain estimates of the
four related notions of persistence length from the ansatzen (P1.4.4, P1.4.5), along with
assessments of the convergence of the norms of the Flory vectors (P1.4.4), and the quality
of the fits in the tangent-tangent cases (P1.4.5).

For the Flory vector ensemble the most natural choice is to take the r; and D; to be the
cgDNA base-pair location and orientation (as defined in Equation (B.1.4) and (B.1.2) of
Section B.1.2), after which the simulations are completely specified.

However, for the tangent-tangent persistence length it remains to make precise the choice
for the unit vectors t;. In contrast to the WLC, because the c¢gDNA model encompasses
fluctuations in the junction translations of shift, slide and rise (see Figure B.1.2), there are
at least two natural choices for t;. One possibility is the base-pair normal, i.e. the third
column of each D;, or equivalently the frame vector most closely aligned with the helical
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axis (see Figure P1.4.1), which, as a matter of convention, will be denoted tE.O]. Another
natural possibility is the unit tangent to the junction chord between two consecutive base
pair origins tgl] = (ri41 —1r;)/ |Iri+1 — ri|| (shown in black in Figure P1.4.1).

As a matter of convention t’gc] (S) will be taken to mean a persistence length of the sequence
S evaluated using the formula (P1.4.5), with k = 0 for the choice of base pair normals
tE.O] and k = 1 for the junction unit vectors till. A comparison between expectations L’[,?]

and the 51[011 has previously been considered in [FatEslEjt2012] and is briefly addressed in

Section P1.4.3.1.
;L .. E:-»
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Figure P1.4.1. A schematic visualization of three central base pairs in the cgDNA ground
state configuration of three icosanucleotides: panel (a) poly(R), panel (b) poly(TA), and
panel (c¢) poly(G). Each nucleotide is represented as a rigid body fit to base atoms that is
visualized as a coloured plate (A red, T blue, G green, C yellow) along with a base normal.
The position and orientation of each base pair frame (light grey) is an appropriate average
of the two associated base frames (for visual clarity each base frame is offset by 0.35nm
toward its backbone from the standard Curves+ definition). The junction chords between
the origins of adjacent base-pair frames are shown in black. Note that the poly(A) sequence
has exceptionally high (propeller) intra base pair rotations, and the junction chords are
closely aligned with the base pair normal, while for both poly(TA) and poly(G) there is a
significant angle between the junction chords and associated base-pair normals. The angle
between the chord and the base pair normal is closely connected to the radius and pitch of
the superheliz formed by repeats of a dimer (see Section P1.5.3).
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P1.4.1.3 Direct Monte Carlo sampling

The ensemble expectation (f) of any function f(w) of the c¢gDNA internal variables can
be approximated as the simple average ﬁ ]]Vi 1 f(w;) over a sequence of configurations w;
that is generated by a Monte Carlo method which appropriately samples the associated
equilibrium distribution p(w) dw. We will consider two specific cases of the probability
density function, a pure Gaussian, or multivariate normal, and a perturbed Gaussian:

p(w) = %e‘ﬁ”‘") : (P1.4.6a)
1
plw)==J (w)e PE) (P1.4.6b)

where E(w) is the shifted quadratic cgDNA energy (B.1.17), B = 1/(kgT) is the inverse
temperature scale, Z is the (explicitly known) normalization constant (or partition func-
tion), and J(w) > 0 is an explicitly known function of w, but now the value of the
associated normalizing constant Z is in general not known. There are several possible
motivations for the generalization (P1.4.6b), for example modelling contributions to the
cgDNA free energy from end-loading terms as in single molecule tweezer experiments, or
modelling multi-well DNA backbone states as described in [PasMadBev2014]|. However we
focus here on a third motivation in which J(w) is a Jacobian factor required |BecEve2007;
LanGonHef2009; WalGonMad2010] by the non-Cartesian nature of any rotational coordi-
nates for the relative rotations between the base pair frames D; (and the base frames D).
In the scaled Cayley vector rotational coordinates adopted within the c¢DNA model it can
be computed explicitly that the appropriate configuration space equilibrium distribution
is of the form (P1.4.6b) with the explicit correction term (B.1.16) (and scales of the
rotational variables of (B.1.11)). Essentially we here wish to be able to assess when the
differences between the two pdfs in (P1.4.6) (with the same sequence-dependent free

energy E(w)) are sufficiently small that attention can be restricted to the simpler case

(P1.4.6a).

One approach to Monte Carlo simulation of multivariate normals such as (P1.4.6a)
involves the Cholesky decomposition of the covariance matrix (e.g. |Gentle2003 |). We
adapt this approach to take advantage of the sparsity structure of the stiffness matrix K,
performing the Cholesky decomposition on K itself:

K=LL", (P1.4.7)

where L is a lower triangular matrix. We can then use the Cholesky factorization to
rewrite the cgDNA energy (B.1.18) as E(y) = %yTy where:

y=LT'(w-w) . (P1.4.8)
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This distribution can be sampled directly as the product of uncoupled univariate normal
distributions:

12n-6 B 1 5
py(y) = 1_[ (ﬂ) e 2V, (P1.4.9)

i=1

For each sample the configuration in the original variables w must first be reconstructed
from the configuration y using (P1.4.8). Then the observables r, and D, must also be
computed from w as described in Section B.1.3. As both of these computations occur at
every draw they should be done efficiently. As described in more detail in Sections P1.4.2.1
and P1.4.2.3, we make full use of the sparsity in the problem, as well as of quaternion
multiplication in the many rotation matrix products.

P1.4.1.4 Metropolis Monte Carlo sampling

To sample the perturbed Gaussian distribution (P1.4.6b) we adopt the following simple
Metropolis algorithm (see [MetRosRos1953] for a similar treatment). For non-Gaussian
distributions of the form (P1.4.6b), a natural implementation of the Metropolis method
involves generating candidate configurations by direct sampling of the Gaussian part of
the distribution and then adding an acceptance/rejection criterion based on the correction
term J(w). Specifically, given a prior configuration with internal-variable vector w, we
follow the direct Monte Carlo procedure from the previous section to generate a new draw
of the configuration vector w* and accept or reject it as follows:

o if J(w*) > J(w), we accept w*

J(w")
J(w
which case we append a new copy of w to our ensemble).

e if J(w") < J(w) we accept w* with probability and otherwise reject it (in

This acceptance criterion is one way of ensuring the crucial property of detailed balance,
which requires that

a(w - w) P(w - w) pyw(w) = a(w” - w) P(w" - w) py(w”), (P1.4.10)

where py is the probability density function (P1.4.6b), a(y — z) is the conditional
probability density in our Metropolis algorithm for choosing state z given prior state y
(which in our scheme is independent of y and equals py(2) from (P1.4.6a)), and P(y — z)

is the probability in our Metropolis algorithm of accepting the new state z given a prior
J(z)

state y (which in our scheme is 1 if J(z) > J(y) and @)

otherwise).
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P1.4.2 Details regarding the cgDNAmc code

This section describes our Monte Carlo implementation in detail. The simulations
described here are not particularly intensive, nevertheless we have taken some efforts to
make cgDNAmccode efficient. Benchmark results presented below were obtained on a
mid-range laptop computer.

P1.4.2.1 Monte Carlo sampling

As described in Section P1.4.1.3, each step of our procedure of direct Monte Carlo
sampling begins with a draw draw y from the distribution (P1.4.9). To make the draw
each component y; is taken as a random number from the normal distribution with mean
0 and standard deviation ﬁ_%. Note that units of the stiffness matrix K in the cgDNA
model are such that 8 = 1. For the sake of efficiency uniform deviates are generated using
the xorshift1024* variant! of the xorshift algorithm [Mar2003] and are subsequently
converted to normal deviates using the ZIGNOR implementation? of the Ziggurat algorithm
[MarTsa2000].

The draw of the internal coordinates w corresponding to y is obtained from Equa-
tion (P1.4.8) by solving:

L'z=y (P1.4.11a)

for z and then setting:

w=z+W . (P1.4.11b)

For efficient sampling, the key property of the Cholesky factorization (P1.4.7) is that if K
has bandwidth m (meaning that all non-zero entries are within m rows of the diagonal,
so for us m = 17), then LT also has bandwidth m [GolVan1996, p. 154]. As a result the
linear solve (P1.4.11a) can be performed very efficiently by an appropriate solver from
LAPACK [AndBaiBis1999| specialized for banded triangular matrices.

One alternative approach to obtain direct sampling would involve a spectral decomposition
of K in place of the Cholesky factorisation, i.e.

K = PDP’, (P1.4.12)

with P orthogonal and D diagonal. Here a similar change of variable y = D:PT (w + W)
can be used so that w = PD_%y + . This has been successfully exploited by Czapla
et al. [CzaSwiOls2006] for the case where K is block diagonal. However in our setting
with a (potentially large) banded K that approach is significantly less efficient, since the

Thttp:/ /arxiv.org/abs/1404.0390
2http://www.doornik.com /research /ziggurat.pdf
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P1.4.2. Details regarding the cgDNAmc code

matrix PD2 would not be sparse, and a dense matrix-vector multiply must be carried out
in the construction of each draw. To give an example a simulation calculating (tE.O] -tgo])
for 1 million configurations of the S* sequence (see Section A.2.2.1) of length 300 bp using
Cholesky decomposition takes just above 3 minutes on a contemporary laptop, while
using spectral decomposition the running time is around 2 hours.

The Metropolis procedure is computationally much more intensive than the direct sampling
possible in the pure Gaussian case. In particular the efficiency of any Metropolis method
depends strongly on the acceptance rate for the given move set, which can be punitively
small. In the particular case of the pdf (P1.4.6b) with the explicit choice (B.1.16) for J,
and the cgDNA energy (B.1.17), the observed acceptance rates depend on the length of
the simulated oligomers. For oligomers of 300 bp the acceptance rate is approximately
37%, which is perfectly acceptable and 10° accepted moves can be generated in 11
minutes on a mid-range laptop computer. For oligomers 5 times as long (1500 bp — as
used for computing the Flory persistence vectors) the acceptance rate drops to just
under 5%, with a corresponding increase in the number of draws required to obtain
convergence. The acceptance criterion involves only the internal coordinates w and the
rejected moves absorb comparatively little computational time because the corresponding
(rn, D,) configurations need not be reconstructed. Nevertheless for a 1500 bp fragment
the achieved performance was 108 accepted moves in 6 hours.

P1.4.2.2 Rigid base pair marginals

We remark that many expectations of interest involve only the inter part of the configu-
ration variable w so that the number of degrees of freedom can be reduced by a half by
computing the marginal distribution for the inter variables. As the original distribution
is Gaussian its marginals are also Gaussian, but the resulting marginal stiffness matrix
is now dense, so that sparse computations can no longer be used. As a consequence a
calculation of <t£)0] -tE.O]) for 1 million configurations of the S* fragment (see Section A.2.2.1)
using the marginal distribution takes around 23 minutes, which is nearly 7 times slower
than generating ensembles in the full w space and discarding all the intra variables.
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P1.4.2.3 Reconstruction of 3D shapes

The first step in calculating our observables for a given configuration vector is reconstruct-
ing a 3D shape of a molecule from a given internal coordinate vector w |LanGonHef2009]
as detailed in Section B.1.3. As mentioned in the previous section, the calculation of
tangent-tangent correlations, arclengths and Flory vectors require only the inter part
of w. As a result we only reconstruct base pair positions r; and orientations D; (Equa-
tion (B.1.13)), which takes only half the time of reconstructing a full 3D configuration
of rigid bases (also Equation (B.1.14)). The mentioned reconstruction procedure, im-
plemented by the cgDNArecon library, involves evaluating half rotations, composing
rotations, applying rotations to vectors and adding vectors.

A careful numerical study of efficiency of different parametrizations of rotations (namely
Cayley vectors, unit quaternions and rotation matrices) implemented as a library called
algebra3d has been performed. The explicit half-rotation formula (A.1.47) for unit quater-
nions proved to be 60% faster than a similar formula (A.1.51) for Cayley vectors. For
rotation matrices, the analogous calculation would require, e.g., an iterative algorithm
of computing the principal square root and so was not considered. As expected, for
composition of rotations, quaternion multiplication (A.1.9) was faster than matrix mul-
tiplication, with our observed difference being 30%. On the other hand, in the case of
applying a rotation to a vector, the standard matrix-vector product was 5 times faster
than a specialized quaternion rotation operator (A.1.20). In fact the fastest way to
apply a rotation given as unit quaternion to a vector was to convert the quaternion to a
rotation matrix first using (A.1.16) (this takes only twice the time of the matrix-vector
product). Efficiency of converting between all three parametrizations was also analysed.
This suggested, for example, that the formula (A.1.35) for computing a rotation matrix
for a given Cayley vector is two times slower than conversion of a Cayley vector to
quaternion using (A.1.41) and subsequent conversion of the quaternion to a rotation
matrix though (A.1.16).

Considerations similar to the above suggested two approaches to the reconstruction
procedure. The first one uses directly the Cayley vectors of the configuration variable w
to calculate half rotations and converts to rotation matrices for all subsequent calculations.
The other one, that finally proved to be 30% faster, begins with converting the Cayley
vectors to quaternions, then computes half rotations using quaternions, and finally converts
quaternions to matrices when rotations need to be applied to vectors.
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P1.4.2.4 Remarks on parallelization

We first note that in c¢gDNAme pseudo-random numbers have to be generated sequentially
to assure correctness and reproducibility of results. Also the reconstruction procedure is
inherently sequential. The conversion of the decoupled normal deviates y to a configuration
vector w, as introduced in Section P1.4.1.3, depends on the underlying LAPACK routine,
which might already be optimized to use available multiple cores, but the c¢ DNAmc
code has no other explicit parallelization. In part this is because each configuration can
be generated and analysed independently of all others, so that the suggested solution
for generating large ensembles is to run multiple independent simulations at the same
time, with a different seed for the pseudo-random number generator in each instance.
By linearity, expectations from multiple runs can be aggregated as a weighted average
with weights proportional to the number of configurations generated in each independent
run. As an example we achieved a 2.4 speed up in this way by running four independent
simulation on a laptop with a dual-core, hyper-threaded CPU.

P1.4.2.5 Run-times of key steps of the algorithm

A simple profile of run times for the key steps of a simulation that calculates three
expectations using 1 million configurations of the 300 bp long S* oligomer (see Sec-
tion A.2.2.1) is presented in Table P1.4.1. The presented results show that the time of
generation of uniform deviates and their tranformation to cgDNA configurations takes
67% of all processing time. Given that some of the fastest available codes are used in
those steps the efficiency of the other computations (i.e. those implemented in cgDNAmc)

are satisfactory.

Operation | Run time [s| % of simulation

Generation of normal deviates y 59.79 29.4%
Transformation (P1.4.11) to w 75.77 37.3%
Shape reconstruction 43.08 21.2%
Calculating <th] . t£0]> 6.79 3.3%
Calculating (& - 6! 10.36 5.1%
Calculating Flory vectors 6.61 3.3%

Other 0.94 0.5%

Entire simulation 203.3 100.00%

Table P1.4.1. A run-time profile of a simulation that calculates expectations using 1
million configurations of the 300 bp S* oligomer (see Section A.2.2.1). The time necessary
to evaluate each expectation is a negligible fraction of the total. The simulation was run
on a contemporary laptop.
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P1.4.3 Results of simulations

P1.4.3.1 The choice of tangent

In the presentation of results we will limit our consideration to the definition /% of the
tangent as the base pair normal. This choice is motivated by the fact that in the case of the
unit chord vector t/*! oscillations of a considerable amplitude due to the intrinsic shape of
the oligomer can be observed in the tangent-tangent correlation plots (see Figure P1.4.2a).
This can substantially impact the linear fit used to estimate the persistence length leading
to low estimates for £, (see Table P1.4.2). In case of tl (Figure P1.4.2b) the amplitude
of the oscillations is much smaller.
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Figure P1.4.2. Comparison of tangent-tangent correlation plots for the two choices of
tangent: the base pair normal tI° and the unit chord vector 1. Note the much higher
amplitude of oscillations introduced by the intrinsic shape in case of t!l.

AT GC AC GG AG AA 54
tp [nm|  47.2 549 555 562 64.0 727 58.3
M bpl 146 166 169 173 192 219 162
M opl 129 153 151 149 175 205 155

At, 11.3% 76% 106% 14.0% 9.0% 6.7% 4.6 %

Table P1.4.2. Numerical values of the Flory persistence length €r and the tangent-tangent
correlation persistence lengths L’LO] and {’Ll] for all poly-dinucleotides. As reference, data
for the sequence S* is shown (see Section A.2.2.1). The sequence has been chosen as

the one with the median value of fg]] over all 161 consecutive fragments of 300 bp in the
genome. For that reason it has been used as a representative average biological sequence
i many of the presented examples.
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P1.4.3.2 Sequence is significant

The four panels of Figure P1.4.3 provide normalized histograms of the values of the
individual Flory €£(S) (P1.4.4a) and tangent-tangent correlation 55)](8) (P1.4.5a) persis-
tence lengths obtained from direct MC simulations of the Gaussian distribution (P1.4.6a)
for two ensembles of sequences. Omne of the ensembles is 1000 random sequences of
length 220 bp with equal probabilities for each of the four possible bases at each index i.
The other consists of two hundred and twenty 220 bp fragments of the A-phage genome
sequence [SanCouHon1982|. (We remark in passing that there are approximately 10!
possible 200-nucleotide sequences.) For each of the selected sequences, the origin base
pair index 0 was chosen to be the 11th actual base pair from one end in order to avoid any
initial end effects, and similarly statistics were not taken from within 10 bp of the distal
end. For the simulations of the Flory persistence length €£(S) in order to obtain good
i — oo convergence in the base pair index i, (see Equation (P1.4.4)), sequence fragments
of approximately 1.5 Kbp are needed, so each sequence was repeated 7 times.
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Figure P1.4.3. Normalized histograms of persistence lengths, ((S;), KLO](SJ-), for 220 bp
fragments from A-phage genome [SanCouHon1982] (left) and with random sequence (right).
The histograms of {r(S;) are generated with bin size 0.5 nm, while those for é’g)] (S;) use
bins of 2 bp. In addition in each panel the associated persistence lengths for the siz distinct
poly-dinucleotide sequences (see Table P1.4.2) are marked with coloured circles (the colour
coding same as in Figure P1.4.2). The harmonic means of {r(S;) for the A and random

ensembles are, respectively, 55.7 nm and 55.6 nm and of 51[!?] (Sj) 159 bp and 160 bp.
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The histograms indicate that there is strong sequence dependence of both €g(S) and
fg)](S) with at most small differences between the random and A-phage ensembles, with
perhaps a somewhat more prominent left tail (with many fewer samples) for 1. Both
Flory distributions are quite broad and asymmetric, as are both 4?] (S) histograms which
have a notable and abrupt effective maximum close to 180 bp.

In each panel of Figure P1.4.3 the values of the associated persistence lengths for the
six distinct poly-dinucleotide sequences are also shown as circles (see Table P1.4.2).
It is evident that for these particular sequences there is particularly strong sequence
dependence of both persistence lengths.

We take this opportunity to use a similar approach to compare the c¢gDNA parameter
set cgDNAparamset?2 extracted using a new parameter fitting procedure of |[GonPetPas]
that involves maximum (absolute) entropy fitting of Chapter P1.1 with the original
cgDNAparamset! of [Pet2012; GonPetMad2013; PetPasGonMad2014]. This is to say that
we study the difference of predictions of persistent lengths for the c¢gDNA model equipped
with either of the two parameter sets using our Monte Carlo simulations. Figure P1.4.4
shows normalized histograms of persistence length €LO] (S) computed using both parameter
sets (the blue histogram in Figure P1.4.4 is the same as the blue one of Figure P1.4.3d).
It can be seen that in case of c¢DNAparamset! the histogram is shifted towards much
higher values with the harmonic average equal to 187 bp. This is one of the justifications
that cgDNAparamset2, used throughout this thesis, has been put forward as the currently
preferred parameter set for the c¢gDNA model [GonPetPas].
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Figure P1.4.4. Comparison of the normalized histogram of persistence lengths {’E](S) for
the random ensemble of Figure P1.4.3d, obtained for cgDNAparamset2, with analogous
data computed in the c¢gDNA model based on cqgDNAparamsetl. We recall that for

cgDNAparamset?2 the harmonic average of {’g)] (Sj) is 160 bp. For cgDNAparamsetl the
harmonic average of f?](sj) 18 187 bp.
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P1.4.3.3 Sensitivity to the Jacobian perturbation

Figure P1.4.5 provides two examples showing differences between tangent-tangent cor-
relation data for the two ensembles that are small, but perceptible, and accumulating
with base pair index. We accordingly conclude that while the effect of the Jacobian
perturbation to the equilibrium ensemble deserves further investigation in the case of long
segments of DNA, it has a negligible influence on the computation of tangent-tangent
persistence lengths at the scale of 200 bp and the simulations yielding the presented

results do not include it.

0 0
[0 (Metropolis MC) [0 (Metropolis MC)
[0 (directMC) [0 (directMC)
-0.5| -0.5 |
£ -1f £ -1
4 4
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| | | | | | | | | |
0 50 100 150 200 25 0 50 100 150 200 25
Base pair Base pair
(a) (b)

Figure P1.4.5. Sensitivity of tangent-tangent correlation data to inclusion of the cgDNA
Jacobian factor. Direct Monte Carlo simulation (which does not use the Jacobian) in
black, Metropolis Monte Carlo (which incorporates Jacobian) in red. Panel (a) is for

300 bp poly(G) fragment with €LO] (G) = 173 bp for direct and 175 bp for Metropolis Monte

Carlo. Panel (b) is for S* with 55)](8’1) = 162 bp for direct Monte Carlo and 167 bp for
Metropolis. In each case 10 bp were excluded from either end.
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P1.4.3.4 Convergence of MC simulations

Irrespective of sequence, estimates of the Flory persistence vectors appeared to be
converged to a standard error of less than 0.5 nm for fragments of 1500 bp for multiple
estimates each with 10° direct Monte Carlo samples. Similarly, in the computation of
tangent-tangent correlations of 300 bp fragments, 105 direct Monte Carlo samples give a
standard error of less than 1bp in fg)]. For Metropolis MC simulations, longer runs are
required for the same level of accuracy: 10° accepted samples for £ p and 3 - 106 for £g.
All our reported values for single-molecule £, and {r come from samples that meet or
exceed these requirements. Figure P1.4.6 shows example convergence plots.
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Figure P1.4.6. Example convergence plots of direct Monte Carlo sampling (left column,)
and Metropolis Monte Carlo (right column) for the S* sequence. In panels (a) and (b) the
curves show the norm of the Flory vector (averaged over MC samples of different sizes)
plotted against base-pair number. The error bars give the standard error obtained for ten
independent MC runs and are plotted every 100 bp. Panels (¢) and (d) show the last 50 bp
of the tangent-tangent correlation plot relevant for computing f,?] of a single repeat of A3
(averaged over MC samples of different sizes). The error bars, (plotted every 5 bp) give

the standard error obtained for ten independent MC runs. The acceptance rate for the
Metropolis Monte Carlo was 4% in case (b) and 37% in case (d).
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P1.4.3.5 Sequence-averaged persistence lengths

Table P1.4.3 provides estimates for €5 and EIEO] from evaluation of the sequence ensemble
formulae in (P1.4.4b, P1.4.5b) for both of our examples (namely 1000 random 220 bp
fragments, and the collection of two hundred and twenty fragments of the A-phage genome
of length 220 bp, as described in Section P1.4.3.2). For the random ensemble, we sample
sufficient sequences and MC configurations for each sequence, to produce standard errors
below 1 bp/0.1nm for EI[JO] and € (by sampling 10° configurations for each of the 1000
random sequences). In contrast, A-phage is a fixed sequence, which we have chosen to
divide into consecutive 220 bp fragments; we draw sufficient MC samples to produce the
same small standard error for the average over that particular set of fragments, but this
does not guarantee the same small variation over different choices of A-fragments.
s

random ensemble 53.5nm 160 bp

A ensemble 53.4nm 160 bp

Table P1.4.3. Sequence averaged persistence lengths for the random and A sequence
ensembles.

—I0 —
These single ensemble estimates of € ,E ] and {p are very close to the appropriate averages
of the histograms of the sequence-dependent quantities illustrated in Figure P1.4.3.
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Continuum DNA modelling
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P2.1 Numerical issues with birod DNA co-
efficients

In this short chapter we address practical issues arising in numerical computations on
the birod system (B.3.57) using the Hamiltonian version (B.3.54), (B.3.58) of the DNA
coefficients of [Gra2016| (described in Section B.3.3.3). Identification of those issues, as
well as verification of the proposed results was highly facilitated by use of the bBDNA
software presented in Chapter P2.2.

The first problem is related to the numerical stiffness of the birod system with DNA
coefficients. What we mean here is that standard numerical solvers of Initial Value
Problems (IVP) of ordinary differential equations cannot reconstruct birod DNA solutions
from initial values even with a very small step size This not only makes it practically
impossible to reconstruct birod DNA solutions using an IVP solver but also hinders
computations in the AUTO-07p continuation package (see Section B.2.4) by affecting the
provided bifurcation detection procedure. We accordingly present a modification of the
original bifurcation detection function in AUTO-07p that overcomes this problem.

As indicated by Equation (B.3.49) the DNA coefficients are piecewise continuous within
each DNA junction. The rapid variation of coefficients within junctions and discontinuities
at base pair positions are, however, very pronounced and pose yet another pragmatic
problem. We have observed that computations with AUTO-07p fail to converge unless
the ends of the discretization mesh intervals are chosen to exactly match the base pairs.
This means that the total number of collocation points required to perform continuation
in the continuum DNA model needs to be ~ 4 times higher than the number of base pairs.
Given the necessity of such a fine discretization the use of a continuum model might seem
questionable, even though to date it provides the only way of performing analysis of the
kind presented in Chapter P2.3, and the efficiency of such computations is acceptable.
We address this issue by applying of a coefficient homogenization technique based on the
one presented in [Gra2016, sec. 7.3] in the context of rod models.
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P2.1.1 Bifurcation detection in AUTO-07p

Difficulties with numerical treatment of the birod system with the DNA parameters
described in Section B.3.3.3 manifested themselves when parameter continuation com-
putations using the AUTO-07p package were first performed in the model. During each
continuation run nearly every computed point was reported to be a bifurcation point.
Bifurcation detection in AUTO-07p is done by tracking the sign of the determinant of
the Jacobian matrix G, (see Equation (B.2.7)) used for computing the solutions (see
Section B.2.3), so the supposed rapid changes in the sign seemed to suggest that the
Jacobian was close to singular. It has been observed, however, that the matrix remained
invertible during the continuation. The conclusion was that the issue had to be related
to the method of evaluating the so called bifurcation function that represents the sign of
the determinant of the Jacobian in AUTO-07p.

It should be pointed out that the same deficient behaviour was observed in the case of
uniform coefficients obtained through averaging of the sequence dependent ones. Hence,
the problem could not be attributed to the aforementioned discontinuities of the coefficient
functions at the values of the birod independent parameter s = sle) corresponding to
base pairs. Moreover, parameter continuation could be performed in the birod system
without trouble for certain randomly generated non-physical coefficients, although no
physically sensible scaling introduced in the DNA case was found to eliminate the failures

in bifurcation detection.

The conclusion that the DNA birod system is a stiff one came when all the solvers
provided by MATLAB®, including ones designed for stiff problems, were failing to solve
the birod IVPs with initial values obtained from a known solution, computed in AUTO-07p.
During numerical integration after reaching a value of the birod independent variable
s corresponding to around 30 base pairs the birod started to differ significantly from
the respective AUTO-07p solutions. Figure P2.1.1 presents example results of analysis
of linear numerical stiffness of the IVP for the minimum energy minicircle solution of
sequence S” of the following section.

To explain how the fact that our problem is numerically stiff affects bifurcation detection
in AUTO-07p we need to briefly outline the original implementation of the detection
procedure. The process of parameter continuation involves solving the Jacobian system
presented in Equation (B.2.4) using Newton’s method. As detailed in [DoeKelKer1991b,
the linear solve implemented in AUTO-07p (needed in every Newton iteration) uses the
sparse structure of the Jacobian of the boundary value problem (different from the IVP
Jacobian considered above). Using Gauss elimination with full pivoting the system is
separated into a large triangular part and a small, dense part. Two sub-blocks of the
small square system are related to an approximation of the linearized mapping from
the state variables at s = 0 to those at s = L. Inspection of the source code revealed
that the bifurcation function was computed using the determinant of one of those blocks,
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which for our system happens to be numerically badly conditioned. We associate the
ill-conditioning of the linearized end-to-end mapping with the stiffness of the DNA birod

system.
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Figure P2.1.1. Ezample analysis of numerical stiffness of a birod DNA Initial Value
Problem (IVP). Panel (a) shows the condition number of the numerical approzimation of
the Jacobian of the linearized IVP evaluated in MATLAB® for the particular case of the
mintmum enerqy fully closed solution of sequence S¥ presented in the following section.
The average value of the condition number of 2.0 x 1010 indicates the system is highly
stiff. Panels (b) and (c) present all the (non-zero) eigenvalues A; of the Jacobian with the
lowest and highest condition number, respectively, indicated by circles in Panel (a). The
zero eigenvalue with algebraic multiplicity three and geometric multiplicity six is associated
with the fact that the right hand side of the birod system (B.3.16) does not depend on
the average rod position r(s). The real and imaginary parts of the eigenvalues have been
transformed through a quartic root to better differentiate the small values. Note that one
congugate pair of eigenvalues is always extremely close to being pure imaginary — its real
part is below 9.4 x 1077 for all values of the independent variable.
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Our proposed solution is very straightforward. The original bifurcation function is replaced
with another one that is also, but more directly, related to the sign of the determinant
of the Jacobian matrix. As the Gauss elimination of the system is performed the new
procedure tracks the sign of each diagonal element ji r of the resultant triangular system
as well as the number n, of all row and column exchanges due to pivoting. The new
choice of the bifurcation function is:

Ng
— 3 ; (1 \Ne .
f3(Ga) = _amin {ljkl} - (<1) Bsgnok,k) (P2.1.1)

were Ng is the dimension of the Jacobian matrix G,. Note that the definition (P2.1.1)
is closely related to the standard expression (—1)" sz\igl jk.k for the determinant of a
triangular system that is e.g. implemented by the det function in MATLAB®. The
dimension Ng of the system is so big that the numerical value of the determinant exceeds
the capacity of a double precision floating point number representation. Hence only
signs of the diagonal elements are multiplied through in the definition (P2.1.1). The
multiplication of the expression for the sign by the minimum absolute value amongst
the pivots jix makes the bifurcation function continuous, which is a requirement of
AUTO-07p. This choice is supported by the fact that it is the smallest diagonal entry of
the reduced system that vanishes when the system becomes singular.

The AUTO-07p package with the proposed modification has been used with success to
produce all rod and birod examples of Chapter B.3, all the results of Chapter P2.3, all
the test cases of Section P2.1.2, as well as all DNA birod model examples of [Gra2016].
It also passed all the standard tests provided with AUTO-07p. We note here that the
modified code might be faster or slower than the original, depending on the dimensions
of the state variable and adopted discretization. In any case evaluation of the bifurcation
function constitutes a very small fraction of all calculations required to compute each
solution. For the DNA birod model the difference in time efficiency is unnoticeable.

P2.1.2 Homogenization of the DNA birod coefficients

(joint work with A. Grandchamp)

Parameter continuation in AUTO-07p in a birod system (B.3.57) with the original version
of the DNA coefficients requires a very fine spacial discretization to be used. For example
with coefficients as computed using the procedure (B.3.49), (B.3.54) for an oligomer of 158
base pairs 633 collocation points are necessary for convergence of the numerical method.
Nevertheless the computations can be performed rather efficiently. Symmetry breaking
resulting in generation of a bifurcation diagram of the kind presented in Section P2.3.2,
containing around 500 solutions, takes around 15 minutes.

As argued in [Gra2016, sec. 6.3] solutions computed through such continuation in the
birod DNA model, when discretized, provide very good starting points for a discrete
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solver that given an initial approximation of a cgDNA shape finds the critical point of
the c¢gDNA energy. For reference we only mention here that the current version of the
discrete solver takes approximately 5 minutes to converge for a single solution.

We recall here that the c¢gDNA model was shown to reproduce well the ground state
statistics of molecular dynamics simulations [Pet2012; GonPetMad2013| and for that
reason was chosen as reference of the birod DNA model. So far the only way to find
stationary solutions for c¢DNA, is exactly to run the discrete solver on guesses constructed
from continuous solutions computed in the DNA birod model. In this context non-local
and non-linear constraints in c¢gDNA variables are replaced by simple boundary conditions
in the birod formulation. This technique will also be used to evaluate the appropriateness
of the procedure for homogenization of DNA coeflicients that is presented below.

The procedure of homogenization of the DNA birod coefficients presented here is a direct
application of the method presented in [Gra2016, sec. 7.3] in the context of computing
certain expectations in the rod model, where a theoretical justification of the process,
based on an argument of scale separation can be found. Here we only state the method
and evaluate its efficacy using the mentioned discrete solver for the cgDNA model.

The procedure comprises three steps. At first the piecewise helix E)(N)(s) defined by E(s)
(see Equation (B.3.42)) is factored out:

£,(s):==0€eR’ (P2.1.2a)
I I I I

Hy(s):= | ~ 1242 26 gy | TP ;M : (P2.1.2b)
I6><12 Adﬁ(N)(s) I6><12 Adﬁ(w)(s)

where Adﬁ(m(s) is defined in Equation (B.3.47).
Next the actual homogenization of the Hamiltonian matrix H (s) is performed by window
averaging for a chosen half-window size As as:

s+As

Hy(s) = — H . P2.1.
2(8) 1= 5 N 1(s)ds ( 3)

Finally a constant helix that matches the final base pair frame, defined as:

[UOX] Z ::%ln{ﬁ(N)(L)} (P2.1.4)
%5(3) =D [UOX] Z , (P2.1.5)

(with In{-} as in Equation (B.3.41)), is factored in through a procedure inverse to (P2.1.2).
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Chapter P2.1. Numerical issues with birod DNA coefficients

The last step, which can be written as:

. U
= — P2.1.6
&3(s) v ( a)
I I I I
Has) = 12x12 1246 | b 12x12 126 (P2.1.6b)
-1 =T
Igy12 Adﬁ(s) Igy12 Adg(s)

ensures that the last frame (r(L), R(L)) is the same for the original coeflicients and
the homogenized ones. This is necessary for consistency in the definition of boundary
conditions at s = L. Simpler versions of this factorization for rod models have previously
been published in [KehMad2000; ReyMad2000].

For practical reasons coefficients have to be given to the birod AUTO problem script
as piecewise polynomials (see Section P2.2.1). As a result the implementation of the
homogenization described above after the first step (P2.1.2) divides the entire sequence
into subregions of requested number of base pairs Nj;, possibly different for different
intervals. The actual homogenization step (P2.1.3) is performed in each interval for
possibly different values of the half-window As;. Finally after the last step (P2.1.6) a 4th
degree polynomial is fit to 2,-‘\3(3) and H3(s) in each interval and the piecewise polynomial
is returned.

This approach allows for selection of regions of interest in the sequence where the
coefficients are only weakly homogenized and others where the homogenization smoothing
is stronger. A comprehensive study of effects of such homogenization remains to be
performed. Below we will show an evaluation of the (uniform) choice of sub-region length
N; = 10 base pairs and the half-window size Hs(s) = 3A (i.e. around 1 base pair) made
for the purposes of this thesis. This kind of homogenization reduces the required density of
the discretizations ten times so that, roughly speaking, one collocation point can be used
every 2.5 base pairs. A comparison of non-homogenized coefficients for the sequence S¥ of
[KahCro1992| with the result of such homogenization is presented in Figures P2.1.2 and
P2.1.3, respectively. An almost tenfold speed-up in “homogenized” vs “non-homogenized”
computations can be observed, e.g. the 849 solutions constituting the bifurcation diagram
of Figure P2.3.4 were computed in under 3 minutes.

The boundary value problem chosen as a test case are the closed loop boundary con-
ditions in the average rod part (see Equation (B.3.26)), and free end conditions in the
microstructure (see Equation (B.3.61)). This choice was motivated by the fact that such
boundary conditions are consistent with the constraints of the mentioned cgDNA discrete
solver of [Gra2016, sec. 6.3]. The solver was used to assess how well the birod solutions
of the homogenized system approximate stationary solution of the c¢gDNA model.
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Figure P2.1.4. Comparison of 3D shapes of fully closed DNA birod loops computed with
and without homogenization of coefficients. Left column presents the minimum energy
fully closed loop of sequence SY, with Lk = 15. The right column shows the second lowest
energy Lk = 15 fully closed loop of sequence S*”. Configurations in the top row are results
of the discrete solver, while the other two were computed in bBDNA. The middle row was
computed with non-homogenized coefficients, while the computations for the bottom row
used homogenized coefficients. In case of the S¥ sequence differences between all three
solutions are almost impossible to see. For the S sequence small differences in register
can be observed (particularly for the homogenized solution (f)), which is manifested as
higher differences reported for that sequence in Tables P2.1.1 and P2.1.2.
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Chapter P2.1. Numerical issues with birod DNA coefficients

Two DNA sequences were considered in our test, namely a highly bent one S” [KahCro1992]
and a relatively straight one 1" (the same as the sequences used in Section P2.3.2). For
each sequence four fully closed loops (for which both r(0) = r(L) and R(0) = R(L)) will
be considered, namely the lowest energy (conjectured to be stable, labelled as Eioy) and
second lowest energy (most likely unstable, labelled as Ey;) solutions of linking number
Lk =14 and Lk = 15. Note that in Figure P2.1.4 the compared solutions are aligned by
the base pair, where the closure conditions were requested in bBDNA. On the other hand
the data in Tables P2.1.1 and P2.1.2 was computed after aligning the solutions by the
rigid body displacement that minimizes the least squares distance between respective

base pair positions.

N st
Lk =14 Lk =15 Lk =14 Lk =15
Eiow Ey; Eiow Ey; Eiow Ep; Eiow Ey;
AE 12% 14% 03% 1.7% 15% 11% 13% 1.9%

Armay (s™)[A] 07 09 03 14 10 16 04 20
ARpay (si))  34°  37° 37° 38 67° 620 46° 7.1

Table P2.1.1. Comparison of base pair positions and orientations between fully closed
loops computed with and without homogenization and sampled at base pairs. The first
row presents relative differences AE of the Lagrangian energy, as computed using bBDNA
— see Chapter P2.2. The second row contains maximum distance Aryax (s,(,N) between

positions of respective base pairs. In the last row relative rotations between respective base
pair orientations are indicate using the angle of rotation.

SY
Lk =14 Lk =15 Lk =14 Lk =15
Elow En; Eiow Ep; Elow En; Eow Ep;

nh 73% 66% 82% 9.7% 77% 73% 92% 94%
h 84% 80% 84% 112% 91% 84% 104% 11.1%

AE

Ar (s(N))[A] nh 0.14 0.50 0.03 0.15 0.23 0.25 0.22 0.23
e A h 084 053 0.40 1.68 0.67 1.33 1.13 2.36

(N) nh 1.7 3.6° 1.7° 3.3° 2,70 3.1° 2.1° 3.3°
ARmaX(S" ) h 3.7 57 3.0° 6.2° 5.6°  8.8° 5.8° 9.8°

Table P2.1.2. Comparison of base pair positions and orientations between fully closed
loops computed with bBDNA and sampled at base pairs with the respective stationary
solutions of the c¢gDNA model. The rows of the table are analogous to those of Table P2.1.1.
Here, however each of the three rows compares the cgDNA stationary solution to its two
continuous approximations computed with non-homogenized (nh) and homogenized (h)

birod coefficients.
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P2.1.2. Homogenization of the DNA birod coefficients

Table P2.1.1 presents a comparison of solutions computed with and without homogeniza-
tion. The errors due to homogenization are presented as differences of the Lagrangian
energy, maximum displacement between positions of respective base pairs and angles
of relative rotations between respective base pair orientations. Table P2.1.2 presents a
comparison of the continuous birod DNA solutions (both homogenized and not) with
the respective stationary solutions of the cgDNA model. The cgDNA solutions were
obtained using the discrete solver of [Gra2016, sec. 6.3]. We note that in all eight
test cases the discrete cgDNA solver converged to the same discrete solution when ini-
tialized from discretized non-homogenized and homogenized birod solutions. Finally,
Figure P2.1.4 presents the 3D configurations of both continuous solutions (homogenized
and non-homogenized) and the discrete one for two test cases. One of the test cases is
the higher energy Lk = 15 loop for S*”, which shows the biggest discrepancy in all three
presented numerical values of Table P2.1.1. The other selected test case is the lower
energy, Lk = 15 solution for S¥, which happens to be the minimum energy fully closed
loop for that sequence. This minimum energy loop of S” shows the smallest difference of
continuum energies.

The most striking observation based on the presented results is the big (~ 10 %) discrepancy
between the discrete and continuum energies demonstrated in Table P2.1.2. This error
is of the same order for solutions computed using homogenized and non-homogenized
coefficients. This difference is conjectured to be due to the use of piecewise polynomial
instead of piecewise helical interpolation for computing continuum solutions, although
this question is still being investigated.

The errors in the 3D configuration are also generally greater for the higher energy solution
for the same sequence and the same linking number. This might be associated with the
conjectured stability of the lower energy solutions and instability of the higher energy
ones (these conjectures are further discussed in Section P2.3.2).

The generally higher discrepancies in the case of sequence $*” as compared to S” should
most certainly be attributed to the intrinsic shape of those sequences. In case of §” the
plane in which the loops are formed is strongly determined by the high intrinsic bend
of that sequence. On the other hand in the case of the intrinsically straight S the
energy landscape around the chosen fully closed loops is much more flat. As a result a
small difference in register (i.e. a rotation of each cross section locally around dz — see
Section B.3.2.3) occurred, which is visible between Figures P2.1.4d and P2.1.4f. The
intrinsic shapes of both sequences are presented in Section P2.3.2.

Other than that, in accord with [Gra2016, sec. 6.3], we find good agreement between the
solutions of birod DNA computations and their c¢DNA counterparts. The proposed ho-
mogenized birod DNA model provide satisfactory approximation to the non-homogenized
one. The homogenization introduces only small errors in the resulting solutions, which
pose no difficulty to the discrete cgDNA solver when discretizations of those continuous
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Chapter P2.1. Numerical issues with birod DNA coefficients

solutions are used as initial guesses. Nevertheless the subject of smoothing the DNA
birod coefficients requires further study. For example the effect of different parameters of

the described homogenization remain to be investigated.

In short, AUTO-07p computations on the birod DNA model with homogenized coefficients
are notably faster than those with non-homogenized coefficients. No significant additional
error is introduced, as running the discrete solver of [Gra2016, sec. 6.3] on sampled
solutions for homogenized coefficients converged to the same discrete solution as when
running the solver from initial guesses sampled from solutions for non-homogenizes

coefficients.
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P2.2 The bBDNA software for interactive
parameter continuation and visualiza-
tion of birod DNA

This chapter introduces the bBDNA software which is an interactive parameter continua-
tion and visualization tool for the continuum birod model of DNA [Gra2016] as described
in Section B.3.3. The design of core aspects of the user interface of the application was
modelled on an older package, called Visualization for Bifurcation Manifolds (VBM) of
[Paf1999a; Paf1999b]. Certain ideas were also drawn from the graphical user interface
to AUTO-07p called PLAUTO0/4 [DoeChaDer2009]. That is to say that bBDNA provides
a graphical user interface that allows for visualizing families of solutions to the birod
system as one-dimensional bifurcation diagrams with special solutions, such as branch
points, marked accordingly. It also allows inspection of the data of each solution in the
diagram through probes. For a given solution a probe allows reconstruction of the 3D
configurations of the DNA molecule represented by the solution at different levels of
details. It also provides 2D plots of the dependent variables of the birod system and
predefined functions of these variables as well as access to raw numerical data. A key
feature of bBDNA is the ability to extend bifurcation diagrams by interactively starting
computations from a solution selected using a probe and to include the outcome in the

diagram.

However, it should be pointed out that bBDNA is not exactly a successor of VBM. The
latter provided a general framework for solving various parameter continuation problems
using different solvers. From the very beginning bBDNA was meant to be specialized for
solving boundary value problems in the continuum birod DNA model of [Gra2016|, using
the AUTO-07p solver [DoeChaDer2009]. The goal was to build a tool that would allow
the study of DNA molecules using an approach that has been successfully applied to an
elastic rod model of DNA [ManMadKah1996; FurManMad2000|. The birod model is a
natural extension of the rod model but, unlike for rods (as shown in [LanGonHef2009]),
for birods there exist apparently accurate sequence-dependent DNA coefficients |Gra2016].
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We also point out that bBDNA was developed alongside the DNA birod model of Grand-
champ. Computations performed using the application influenced the final formulation of
the birod system, briefly described in Section B.3.3. They also helped in identifying prac-
tical issues (addressed in Chapter P2.1) concerning the sequence-dependent DNA birod
coefficients as extracted from the c¢gDNA model [Gra2016, sec. 4.2] (see Section B.3.3.3).

All birod DNA results of this thesis were computed within bBDNA and all the related
figures were made using it. In fact all the figures of the background Chapter B.3 also
originated from bBDNA.

P2.2.1 The design of the software

We remark here that what we describe in this section is the entire software pipeline
developed to prepare and run parameter continuation in the birod DNA model. This
includes MATLAB® scripts for preparing input coefficients files for the AUTO birod
DNA problem script, the AUTO script itself and finally the bBDNA GUI that constitutes
the largest part of the mentioned pipeline. This way bBDNA can be explained in a wider
context and certain design decisions become clear.

P2.2.1.1 Scripts for computing birod DNA coefficients

Sequence-dependent DNA birod coefficients are a prerequisite for any computation in the
birod model of DNA. As discussed in Section B.3.3.3, the Lagrangian coefficients (z’.e.
the stiffness matrix K (s), the boundary intra stiffness matrices Ky, K, and the intrinsic
shape internal parameters y(s), Eff (s) and E(s)) can be computed using a parameter set
of the c¢gDNA model [Gra2016, sec. 4.2]. In all our cases this is done using the latest
available cgDNAparamset2 introduced in Chapter P1.1, but any other c¢gDNA parameter
set could be used.

As subsequently explained in Section B.3.3.4, in the final formulation of the DNA birod
Hamiltonian system the coefficients are only the intrinsic macrostructure strains E(s) and
the Hamiltonian matrix H (s), which can be computed from the stiffness K (s) using the
Legendre transform (B.3.54). This is because the microstructurs variables y(s), Ef,’ (s)
describe perturbations from the respective intrinsic values y(s), ff (s) and the intrinsic
values do not appear in the Hamiltonian formulation (B.3.57), (B.3.58). The boundary
intra stiffness matrices Ky, K| are necessary for the free end microstructure boundary
conditions (B.3.61).

We recall that the coefficients mentioned so far are piecewise continuous with discontinu-
ities at base pairs. As pointed out in Section P2.1.2 the discontinuities were found to be
very pronounced and as a result excessively fine discretization mesh was required in order
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P2.2.1. The design of the software

for the AUTO-07p solver to converge. For that reason we introduced the procedure
described in Section P2.1.2 that yields homogenized version of the Hamiltonian coefficients
(see Equation (P2.1.6)), where the macrostructure strains €5 are constant along s.

To include both the original piecewise discontinuous coefficients and their homogenized
version, as well as possible future modifications of the birod parametrization procedure a
piecewise polynomial representation of H(s) and E(s) has been proposed for the birod
DNA coefficient file. The division of the interval |0, L| into polynomial pieces can be
arbitrary. So can the degree of the polynomial, although it must be the same for all
pieces. Such an approach allows for a complete decoupling of the implementation of the
birod DNA system from the actual functional form of H (s) and E(s), which can be highly
complicated. It also introduces an approximation error, which can however be minimized
by careful choice of the polynomial degree and intervals.

Note also that in order to reconstruct the 3D configuration together with other quantities,
such as the (dimensional) stresses m(s) and n(s) additional information is required. For
that reason the bBDNA supplementary data including the sequence of the oligomer, the
values sf,N) of the independent birod parameters relating to base pairs, the values of the
(piecewise linear) microstructure intrinsic coordinates y(s), as well as the value of the
energy scale kgT are all included in coefficient files. Keeping all data in a single file
reduces the probability of error, while the storage cost of including the extra information

is small with respect to the size of the entire file.

The procedures of extracting the Lagrangian coefficients from cgDNA (see Section B.3.3.3),
transformation to Hamiltonian coefficients (see Section B.3.3.4), homogenization (see
Section P2.1.2) and piecewise polynomial fitting were all implemented in MATLAB®.
The resultant sequence-dependent DNA coefficients together with uniform coefficients for
starting points (obtained by averaging) and the supplementary data are stored in a text
file that serves as input for the AUTO birod DNA problem script. The data is also used
by bBDNA for the reconstructions of computed solutions.

P2.2.1.2 The AUTO birod DNA problem script

As mentioned before the tool chosen for performing computations in the birod DNA model
is the AUTO-07p parameter continuation package [DoeKelKer1991a; DoeKelKer1991b;
DoeChaDer2009] (see Section B.2.4). In AUTO-07p a Boundary Value Problem (BVP) is
defined in a problem script. The solver requires that the problem scripts are implemented
either in ANSI C or Fortran. For the birod DNA model script ANSI C language was
chosen. The choice was motivated by the higher flexibility of ANSI C over Fortran.
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Additionally, as described in the following section, the code can be directly reused in
bBDNA (which is written in C++03). The birod DNA AUTO problem script defines four
required functions:

e func evaluates the right-hand side of the birod Hamiltonian system (B.3.57) for
a given value of the state variables; helper functions are provided to evaluate the
(piecewise polynomial) Hamiltonian coefficients H (s) and :‘.E(s), and the constitutive
relations (B.3.58); an extra state variable has to be included for the birod indepen-
dent variable s because AUTO-07p requires the defined system to be autonomous;
yet another state variable is added, whose derivative is the shifted quadratic energy
density of the Lagrangian (B.3.40) with an initial value given by the boundary
terms (B.3.40b, B.3.40c); the energy density can easily be computed during eval-
uation of the constitutive relations; as a result, at virtually no extra cost, the
Lagrangian energy of the oligomer is provided as the value at s = L of the second
extra state variable; this is what is described as the value of energy in all our

examples.

e stpnt depending on the chosen options evaluates either the pulling and twisting
starting point (B.3.24) or the closed loop starting point (B.3.27) for the birod
macrostructure; as explained in Section B.3.4.1 the microstructure variables of
starting points are always set to be identically equal to zero;

e bend evaluates the boundary condition functions, defined as in Equation (B.2.9),
depending on the selected options; the macrostructure and microstructure boundary
conditions can be selected independently.

e pvls defines solution measures through the AUTO-07p mechanism called parameter
overspecification |DoeChaDer2009, sec. 10.7.10]; the measures defined for the DNA
birod system include the value of the Lagrangian energy of the oligomer (as the
value of the extra energy state variable described above at s = L) and the third
component gs(p) of the average rod quaternion at s = L, which can be used for
detecting fully closed solutions (see Section P2.2.2).

A data structure BirodData to store the DNA birod coefficients together with the
supplementary data has been implemented. Functions to initialize and finalize instances
of BirodData, as well as a function to read the data from a given coefficients file (of the
form described in the previous section) have been provided.

In addition to the birod coefficients and supplementary data the BirodData structure
includes member fields related to the options specifying the problem to be solved. These
options include a path to the coefficients file to be used, the type of the BVP (pulling
and twisting/closed loop), parameters of the starting point and versions of boundary
conditions. For the pulling and twisting problem a starting point option defines the
rotation Ry of the first base pair (see Equation (B.3.24)). For the closed loop problem,
starting point options select a planar solution branch and a starting point within it (see

136



P2.2.1. The design of the software

the description of the ideal rod solution set of Figure B.3.3a Section B.3.2.3). Options
should be provided in a simple key-value ‘options.ini’ file.

For each AUTO parameter continuation run the options file and the selected coefficient
file are read once only, at the very beginning during initialization. The data is stored in a
global instance of BirodData, which is then used during the run. This global instance is
scheduled to be deleted at program termination.

Necessary linear algebra operations are performed using LAPACK [AndBaiBis1999]
through a simplified interface based on introduced Matrix and Vector structures equipped
with a set of helper functions.

The birod DNA AUTO problem script does not depend on bBDNA in any way and can
be run in AUTO-07p separately. On the other hand bBDNA includes the script to reuse
some of the functions implemented in it.

P2.2.1.3 The functional layer of bBDNA

The bBDNA software itself should be seen as consisting of two layers: the functional
layer and the user interface layer. We first describe the design of the functional layer
that is responsible for managing output data files generated by AUTO-07p, organizing
and interpreting the data and running AUTO-07p itself. It was implemented entirely
in C++03 and uses the established boost 1.58 ! library for handling XML files and file
system paths. It also makes use of the algebra3d library introduced in Chapter P1.4.
We point out that the functional layer can be used independently of the GUI layer. For
example the automatic symmetry breaking script of Section P2.2.2 is a command line
tool implemented using only the functional layer of bBDNA.

Interaction with AUTO-07p is based on two main types of files described briefly in
Section B.2.4. All aspects of a continuation run, such as details of discretization, solver
accuracy, step size along the solution branch or stopping conditions are controlled through
AUTO constants files. A Constants class is used to store data of AUTO constants files
and provides methods of reading and writing of such files. Solutions generated during a
run are stored in another type of file. A Solution class provides functions of reading and
writing of solutions in the format used by AUTO-07p. In this format the state variables
of an AUTO solution are stored as values of the continuous piecewise polynomial at
points uniformly distributed within each polynomial piece.

A Probe class provides a base for classes that give problem-specific interpretation of the
raw data stored in an underlying Solution. The superclass defines only a very general
interface that allows for a problem-specific method of sampling the piecewise polynomial
data defined by a Solution. The default sampling #; € |0, 1| defined by Probe matches

Thttp:/ /www.boost.org/
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exactly that of the underlying Solution, with the possibility of denser sampling through
Lagrange interpolation [PreTeuVetF1a2007, sec. 3.2|. The data that can be obtained from
a Probe can be categorized into two main types:

e a pointwise data field is given by a scalar-valued function of the AUTO independent
variable t and describes a quantity defined along the solution; the function is
returned as its values at points of #; € [0, 1] defined by the sampling introduced
above; in case of Probe the only pointwise data fields are the state variables

e solution measure data that provides a single number characterizing a given solution;
this can for example be the value of a continuation parameter or the value of a given
pointwise data field at a boundary (i.e. at t =0 or t = 1 of the AUTO independent

variable).

Probe implements a lazy computation approach in the sense that data provided by the
underlying Solution is (re)sampled only once on first access to the particular data field.

Instances of Probe can also be equipped with a pointer to an instance of the class
SolutionCoefficients. SolutionCoefficients is an abstract base class for classes
that store problem-specific data, such as system coefficients.

bBDNA has two specializations of the Probe class. The RodProbe interprets data generated
by the FortranAUTO problem script for closed loops of elastic rods used in VBM
[Paf1999a]. In addition to the state variables RodProbe defines other pointwise data
fields such as the norms of the stresses |n|, jm(s)| or the components of moment in the
laboratory frame m;(s) and the body frame m;(s) (see Section B.3.1.1). This type of
probe was added to allow the use of the VBM [Paf1999a] rod AUTO script in bBDNA

for verification purposes.

The other specialization of Probe is the BirodProbe meant for the birod DNA AUTO prob-
lem script. For full functionality the class should be equipped with a pointer to an instance
of the BirodSolutionCoefficients (which is a subclass of SolutionCoefficients) that
can be seen as a wrapper of the BirodData structure of the birod DNA AUTO problem
script described in the previous section. It also serves as an interface to the func-
tions of the birod AUTO script. Thanks to BirodSolutionCoefficients a BirodProbe

can use a sampling of the pointwise data fields based on base pair locations s,gN)
with the possibility of denser sampling. If homogenized coefficients are used data in
BirodSolutionCoefficients also allows for reconstruction of the true 3D configuration
and stresses of the oligomer by factoring back in the intrinsic shape removed during

homogenization (see Section P2.1.2).

BirodProbe defines additional pointwise data fields including those defined by RodProbe
with the addition of the norms of microstructure internal parameters |1(s)|, |[w(s)| and of
the microstructure stress variables |r71? (s)|, )’ﬁT (s)| (see Section B.3.3.4).
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Probes in bBDNA are wrapped in DiagramNodes. The DiagramNode class allows for
defining connectivity between probes, which is based on the continuation parameter used
to generate a subsequent Solution from a previous one during continuation. Using this
connectivity information DiagramNodes are organized in a BifurcationDiagram class
into a tree structure. BifurcationDiagram provides a method of loading a portion of a
branch of solutions from an AUTO output solution file that includes the loaded solutions
into the diagram structure.

The description of the set-up of a problem to be solved using bBDNA can be defined in
a computation configuration XML file that is handled by a class called Configuration.
Configurations files define such aspects of a computation as:

e the problem type

e the working directory,

e the AUTO problem script to be used,

e an AUTO constants file with initial values of AUTO constants

e a coefficients file (necessary in case of computations in the birod DNA model)

e additional compilation flags required to build the AUTO binary using the chosen

script

e any precomputed data to be loaded.

The problem type specifies what kind of Probe should be used. Currently three types are
available: a generic problem that adds no interpretation to the data, for which Probes
are used, a rod problem that assumes a VBM rod script is provided (Probes are used),
and a birod problem that requires a birod DNA script and birod DNA coefficients file
(BirodProbes are used). The DiagramNode and BifurcationDiagram are agnostic of the
particular implementation of the Probe that they handle. Creation of Probes based on
the chosen problem type is delegated to a ProbeFactory class.

Global management of data as well as execution of AUTO-07p continuation runs is per-
formed by a ComputeEngine class. Given an instance of Configuration a ComputeEngine
sets up a working directory for the continuation with all the necessary files. It provides
methods for building a binary for the chosen AUTO-07p problem script as well as for
running continuations described by an internal instance of the Constants class. The
AUTO input files ‘fort.2’ and ‘fort.3’ (see Section B.2.4) are created accordingly. Child
process spawning as well as interprocess communication is realized using the standard
UNIX interfaces execlp() /waitpid() and dup2() /pipe(), respectively.

A Result class was introduced for reporting the outcome of different operations from
loading of AUTO solution files to execution of continuation runs. This slightly simplistic
solution avoids exception handling and replaces a possibly large hierarchy of exceptions.
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P2.2.1.4 The graphical user interface of bBDNA

The graphical user interface layer of bBDNA was built in C++03 using the Qt 4.8 2
windowing library. 3D visualization is realized with the Coin3D 3.1.8 3 implementation
of the Open Inventor 2.1 API which is a high level, retained-mode 3D graphics toolkit.
The interface between Qt 4.8 and Coin3D 3.1.3 is realized by the SoQt 1.5 # library.
Two-dimensional plotting uses the Qwt 6.0 ° library.

Certain extensions to the SoQt 1.5 library have been implemented and gathered in a
library called SoQtFExtensions, used by bBDNA. These extensions, which can be used in
other contexts than the bBDNA user interface, include the user interface of the 3D scene
viewer of SoQt 1.5 (e.g. additional mouse and keyboard interaction methods, GLSL
shaders suited for use with orthographic projection, a widget for setting scales of the 3D
scene) and definition of certain 3D objects (e.g. arrows, tube representation of curves,
box representation of DNA oligomers).

The bBDNA application can be compiled for both Linux and Mac OS X. For Mac OS X
a self-contained DMG installation file has also been prepared, built on version 10.7.5 of

the operating system.

The class hierarchy of the graphical user interface part of bBDNA closely reflects the
structure of the functional layer, described in Section P2.2.1.3. In fact two groups of
classes can be identified: one related to 3D representations of bifurcation diagrams, and
DNA birod solutions themselves, and another one related directly to the GUI i.e. the
main window of the application and other dialog windows. A short description of the
graphical user interface follows.

When bBDNA is started the user is presented with the main window of the application (see
Figure P2.2.1b). From here all the necessary settings can be adjusted and continuation
runs can be set up (see Figure P2.2.1a). It also allows for continuation to be run in
AUTO-07p and for dialog windows to be opened for viewing the bifurcation diagram
and for particular solutions (ProbeDialog). A configuration of a run can be saved in
or loaded from an XML configuration file suitable for the Configuration class (see
Section P2.2.1.3). The settings of the application (including all chosen options) are saved
between subsequent runs, but can also be stored in an INI file. The INI files provide a
way of preparing demonstrations based on precomputed data.

2http://doc.qt.io/qt-4.8/

3https:/ /bitbucket.org/Coin3D/
4https:/ /bitbucket.org/Coin3D /soqt
Shttp://qwt.sourceforge.net/
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Figure P2.2.1. Screenshots of the main window of bBDNA. The different tabs of the main
window can be selected using (1). The Settings and Continuation tabs are presented
wn the figure. The View external solution tab is meant for quick previews of a single
AUTO birod solution file without the need to set up a continuation run. Panel (a) shows the
settings tab of the main window as it appears on Mac OS X. Global preferences (path where
AUTO-07p is installed, compilers to be used) can be changed using (2). Configuration of
a run (see description of the Configuration class in the previous section) can be defined
using (3) including a choice of precomputed data to be loaded (4). A configuration of a run
can be loaded from (5) or saved into (6) an XML file appropriate for the Configuration
class. The Set up button (7) prepares a continuation run by creating a working directory
(if it doesn’t already exist) and copying all the necessary files into it. All the options chosen
i all widgets of the main window can be loaded from (8) or stored into an INI file (9).
Panel (b) shows the continuation tab as it appears on Linuz in the KDE 4.14 environment.
From here new bifurcation diagram viewers can be open with (11) possibly with all the
settings loaded from an INI file (10) (see Figure P2.2.2). Probe viewers (see Figure P2.2.3)
can be opened by adding a new probe in the bifurcation diagram (13) or by opening a
viewer for the probe that is currently selected in the diagram (14) (see Figure P2.2.2).
All settings of the newly opened probe viewer can be loaded from an INI file (12). The
currently selected probe can also be removed (15), together with all the attached viewers.
Continuation runs in AUTO-07p can be started using (17), in which case bBDNA asks
for the AUTO constants (see Section B.2.4) and birod boundary condition options to use.
By default runs are started from the solution pointed to by the currently selected probe.
If necessary the birod DNA AUTO script is compiled. The output from AUTO-07p is
reported in (19). Runs can be stopped on demand using (18).
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Computed solution sets can be visualized in three dimensions in bifurcation diagram dialog
windows (see Figure P2.2.2). Bifurcation diagram viewers allow three solution measures
to be chosen (as defined in the description of the Probe class in Section P2.2.1.3) and
used as the spatial coordinates. Another two solution measures can be indicated as colour
of the line/tube representation of the diagram and colour of solution point indicators
(as in Figure P2.2.2b). Solutions are divided into thee categories: regular solutions
(indicated with balls), bifurcation points (indicated with boxes) and user requested points
reported by AUTO-07p (indicated with crosses — see description of AUTO-07p constants
in Section B.2.4 for the definition of user points).

Markers representing solution probes are also shown in the bifurcation diagram viewers
with colour matching the colour of the probe dialog window. These markers can be moved
around the diagram using the keyboard arrows or by picking a point in the diagram
using the mouse. This not only allows the user to select a solution to visualize, but also
provides a way of selecting points to start new continuation runs from. Probe marker
indicators are balls, boxes or crosses (depending on the type of solution they point to)
that are bigger than analogous solution indicators mentioned above (see Figure P2.2.2b).

Important elements of the GUI of all 3D viewers in b BDNA are labelled in red in both
panels of Figure P2.2.2. We describe these widgets in the context of the bifurcation
diagram viewer using these labels. A settings panel can be opened or closed by dragging
the handle (20) with a mouse. Different settings of the presented view can be set here.
In case of bifurcation diagram viewers these settings include e.g. the choice of spatial
coordinates (2), visibility of the different types of solution indicators, choice of line/tube
representation of the diagram. 3D viewer settings can be saved to or loaded from an INI
file. The settings panel is divided into tabs, which can be selected using (1).

The right-hand side toolbox provides the following buttons:

e (3) for turning on the mouse picking mode; in this mode left mouse button clicks
select solutions or probe markers in the diagram,

(4) for turning on the mouse view rotation mode; the view can be panned with
Shift button pressed,

(5) for going back to a saved view of the scene,

(6) for saving the current view of the scene to be loaded using (5),

(7) for resetting the view so that all elements of the 3D scene are included,

(8) for turning on scene lighting options mode; this button is inactive; instead
a lighting options dialog window can be shown by pressing the L. button on the
keyboard)

(9) for switching between orthographic and perspective view.
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P2.2.1. The design of the software

The dials allow for zooming (10) and rotating the scene (11), (12). The toolbox (3-9)
together with the dials (10-12) can be shown or hidden by pressing Enter on the keyboard.
The zoom value widget (13) sets a prescribed camera zoom. Through this option different

viewers can use the same scale to allow direct comparison.

birod bifurcation diagram
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(a) (b)

Figure P2.2.2. Screenshots of bifurcation diagram viewers of bBBDNA on Mac OS X (left)
and on Linuz (right). Panel (a) shows a different projection of the bifurcation diagram
of Figure P2.3.3a. Branches of the bifurcation diagram are shown as tubes coloured by a
user defined solution measure meant to visually separate different parts of the solution
set. The blue crosses are indicators of user requested points reported by AUTO-07p (see
description of AUTO-07p constants in Section B.2.4). The red cross (19) is a marker of
a red probe that points to a user requested solution. Note that the marker cross indicator
is bigger than the other crosses. Altogether four probes are marked in the diagram: (16),
(17), (18) and (19). The one currently selected is (16), which is indicated by the bigger
size. The selected probe can be moved around the diagram using keyboard arrows or by
picking a point in the bifurcation diagram with the right mouse button. Continuation can
be started from a point selected in this way. The middle of the coordinate system can
be marked using a frame (15). An additional, constantly visible, orientation indicator is
provided by the viewer in the bottom right hand corner of the window (14). Panel (b)
shows a different projection (mg(L) vs. |n|) of the bifurcation diagram of Figure B.3.3a.
Branches are indicated with lines coloured as in Figure B.3.3a. Additionally indicators of
all regular points and bifurcation points are shown and coloured by the energy E. A single
probe marker (21) is also visible. Different elements of the GUI, labelled in red, which are
common for all 3D viewers in bBDNA are described in main text. In panel (b) (almost)
all of those GUI elements are hidden to extend the 3D viewer.
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Particular solutions can be studied in probe viewers (see Figure P2.2.3). The 3D config-
uration of the oligomer can be presented at different levels of detail. Tube and ribbon
representation of the average rod (as in Figure P2.2.3b) and of the two interacting rods
can be shown. Due to the particular embedding of the base frame used by the cgDNA
model (see Section B.1.1), the distance between the two rods is very small with respect to
the length of the oligomer. In fact the two-rod visualization is turned on in Figure P2.2.3b,
but the rods are indistinguishable by eye from the average rod. For that reason an offset
within the base pair plane can be added between the two rods. By default this offset is
set to the average position of the C| atom of the deoxyribose that the nucleobases are
covalently bonded to. This default offset is used in all birod examples in the thesis.

The probe viewer also allows for visualization of each base of the oligomer. This is done by
evaluating the piecewise polynomial solution of AUTO-07p at values of the independent
birod parameter s = s,(lN) corresponding to base pairs. The values s,(lN) are given in the
DNA coeflicients file, as explained in Section P2.2.1.1. Bases can be visualized as boxes
coloured by the type (by default: A is red, T is blue, G is green and C is yellow). Another
possibility is to show all atoms of idealized bases as in Figure P2.2.3a (by default carbon

is black, nitrogen is blue and oxygen is red). The ideal base data is provided with cgDNA.

Another way to look at the DNA birod data in a probe viewer is by plotting selected state
variables (or predefined function of those) against the birod independent variable s of the
base pair index. An example of such a plot is presented in Figure P2.2.3d). Numerical
values of the data can also be inspected (as shown in Figure P2.2.3c).

The layout of the user interface of probe dialog windows is analogous to that of the
bifurcation diagram dialogs. We describe the elements specific to probes using the
red labels of Figure P2.2.3 as references. All settings can be adjusted in the settings
panel, which can be opened exactly as in the case of bifurcation diagrams. The way the
piecewise polynomial solution computed by AUTO-07p is sampled can be defined using
(1-3). The sampling can be based on the values s,(,N) of the birod independent variable
corresponding to base pairs ((2) checked) or on the discretization mesh used in AUTO-07p
((2) unchecked). The 3D configuration and 2D plots can be shown for data before intrinsic
shape refactoring (3). As is clear from the comparison of Figures P2.2.3a and P2.2.3b, the
refactoring is required to allow interpretation of the data if the homogenized coefficients

of Section P2.1.2 are used.

Different viewer panes can be turned on by selecting the corresponding settings tabs (4).
The 3D viewer is selected together with tabs 3D Mesh, 3D Colours and 3D View,
2D plotting is turned on by the 2D Plot tab and numerical data is shown with Data
tab. The settings of the 3D view consist of parameters of the tubes, ribbons and the
discrete representations of bases including the possibility to hide some of them. In the 2D
Plot tab the variables to be plotted can be selected (14) and plot styles can be altered.
2D plots allow for zooming into a selected fragment (15) and provide a way to check the
numerical values of the point under the mouse cursor (16).
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Figure P2.2.3. Screenshots of probe viewers of bBDNA on Mac OS X (left) and on Linux
(right). Panels (a) (b) show two different visualizations of the lowest energy minicircle
of linking number Lk = 14 of the S¥ sequence (see Figure P2.3.4d). In panel (a) the
3D configuration of the solution is shown with all base atoms indicated. The two tubes
are coloured with |n(s)| and |w(s)|. Panel (b) shows the same solution as computed in
AUTO-07p using the homogenized coefficients of Section P2.1.2 (without the intrinsic
shape refactoring (3)). The tube and ribbon represent the average rod configuration,
coloured by the norm of the (non-refactored) moment |m(s)|. Panels (¢) and (d) show
data of the pulled and under-twisted configuration of the S* oligomer of Figure P2.3.3c.
Panel P2.2.3c shows the numerical data inspection pane, with continuation parameters
section (7) open. The pulling force (11) is 2pN, while the twisting moment (12) is
—~150 pNA. The value of the Hamiltonian homotopy parameter of 1 in (10) means that
full DNA sequence-dependent coefficients were used. Panel (d) shows the 2D plotting
pane with plots of the norms of microstructure internal parameters [n(s)| and |w(s)|. A
description of the GUI elements labelled in red can be found in the main text.
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The numerical data pane allows for inspecting the values of continuation parameters (7)
as well as the AUTO constants (8) and solution (9) exactly as read from AUTO-07p
output files. Figure P2.2.3c presents all four continuation parameters that can be used in
case of the DNA birod system. These are the Hamiltonian homotopy parameter (10) that
allows continuation from uniform to sequence-dependent coefficients, the pulling force
n3 (11) and twisting moment m3 (12) used in the pulling and twisting boundary value
problem (see Section B.3.2.2) and the angle @ of rotation between the first and the last
cross section (13) of the closed loop boundary value problem (see Section B.3.2.3).

P2.2.2 Automatic symmetry breaking

As mentioned before, in our efforts to provide computational tools for the birod model
of DNA we have assessed the applicability of the symmetry breaking technique for the
closed loop boundary value problem used in the Hamiltonian formulation of rods (e.g.
[LiMad1996; DicLiMad1996; MadManPaf1997] — see Section B.3.2.3) in case of the birod
DNA Hamiltonian of [Gra2016| (see Section B.3.3.4). We have found that indeed the
method can easily be extended to the birod case. Symmetry breaking from an inextensible
and unshearable, straight, uniform, transversely isotropic rod can be performed directly
to a fully DNA sequence-dependent birod.

In particular for a set of target sequence-dependent Hamiltonian coefficients H (s) and
&(s) the initial uniform birod Hamiltonian coefficients H,, and &, of an ideal rod are
defined as:

H” O12x6
H, = LY 0 (P2.2.1a)
O3x3  Osxs
E,:=[0 0 Ty 00 1] . (P2.2.1b)

with 0719x6, O6x12, 019x6, 03x3 — zero blocks of indicated dimensions. The block H? e

R!2%12 is an average over s of the respective elements of H(s). In the diagonal block

%(El +ﬁ2) 0 0
HY = 0 S(H +Hy) 0 (P2.2.2)
0 0 Hs

the values Hy, Ho and H3 are averages over s of the elements Hi3(s), Hi4(s) and His(s)
of H(s), respectively. Finally Us is the average over s of the third component of &£(s).

These coefficients were chosen to make the initial uniform parameters close to the target
sequence-dependent ones. It is easy to see that as long as the microstructure variables
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are decoupled from the macrostructure (the zero blocks in Hy,) the value of the leading
diagonal block H? of H,, is immaterial for the boundary value problem with boundary
conditions on the microstructure that allow them to stay zero (e.g. periodic or zero
Dirichlet boundary conditions).

In this setting the symmetry breaking procedure in exactly the form previously used
for elastic rods [LiMad1996; MadManPaf1997; ManMad1999| (see Section B.3.2.3) can
be performed automatically. The results of such a computation are indicated in Fig-
ures P2.2.4a and P2.2.4b as blue and red balls that are the fully sequence dependent
DNA birod solutions that originated from a single ideal rod starting point.

n|
E ms(L)

(a)

Figure P2.2.4. Example results of the automatic symmetry breaking procedure of bBBDNA.
The two presented bifurcation diagrams are different projections of those shown in Fig-
ures P2.5.4 (for the highly bent sequence S” of [KahCro1992]) and Figures P2.3.5 (for the
close to straight sequence S’I"). The blue and red balls mark the ends of the symmetry
breaking that were the starting points for the fully sequence-dependent computations. The
crosses mark the closed solutions of linking number 13 (blue), 14 (cyan), 15 (green), 16
(yellow). Fully closed solutions are used by the automatic procedure to detect closure of
the components of the solution set (see text). The blue branch of panel (a) as well as
the orange branch of panel (b) is closed. The red branch of the bifurcation diagram in
panel (a) has not been continued past the two end points as the requested mazimum energy
of 100 kgT was reached. Note the different connectivity of the components of the solution
sets in the two cases. Note also that in both cases other components of the solution set
exist in the shown subspace.
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Subsequently our automated procedure starts continuation runs in the angle a between the
director vectors dj(0) and d(s) (or equivalently between d2(0) and da(s)). Continuation
is done in both the positive and negative directions of @ in steps that are terminated
when a fully closed solution is found. The detection of full closure can be done by
tracking the value of the third component gs(L) which vanishes in such a case (z’.e.

q(L) = [O 0 0 1]T or q(L) = [O 0 0 —1]T). After each such step the initial values
of the two fully closed solutions that are the ends of the branch being extended are
compared. If the initial values all agree up to the accuracy requested from AUTO-07p
a branch is deemed closed. For example the blue branch of Figure P2.2.4a was closed
after 5 such steps, while the orange branch of Figure P2.2.4b was closed after 15 steps.
For the red branch computations where finished at the two visible ends due to another
termination condition which was the value of the Lagrangian energy reaching 100 kpT.
The maximum number of required steps as well as the maximum value of energy are

parameters of the automatic procedure.

Note that the connectivity of the perturbed solution set depends on the sequence, which
is indicated in Figure P2.2.4. The connectivity of the solution set for the highly bent
sequence S¥ of [KahCro1992| (Figure P2.2.4a) resembles closely the one of the lowest
part of the rod perturbed diagram of Figure B.3.3b (the corresponding blue and red
components are marked with the same colour in both figures). The connectivity of
Figure B.3.3b seems to be a common feature in cases where the problem is perturbed
primarily in shape (i.e. when the shape seems to predominate the response of the system).
This is the case for most diagrams presented e.g. in [LiMad1996; ManMadKah1996;
MadManPaf1997] where the perturbation was in shape only.

For the intrinsically close to straight sequence S'” (Figure P2.2.4a) the entire lower
energy part of the solution set is a single connected component. In fact two continuations
started from the blue and red solutions in Figure P2.2.4a yielded the same component.
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This chapter presents example results of computations using the birod DNA model of
[Gra2016|, described in Section B.3.3. All the computations were performed using the
bBDNA software described in Chapter P2.2. The results of Section P2.3.1 were obtained
through interactive computational steering performed using the graphical user interface of
bBDNA. The solution sets of Section P2.3.2 were generated by the automatic symmetry
breaking script of Section P2.2.2.

In our examples we make use of some of the results presented in the other chapters.
First of all we point out that the DNA coefficients used throughout this chapter are
the homogenized ones of Section P2.1.2. The pulling and twisting numerical experiment
uses two of the repeating sequences with pronounced superhelical structure introduced
in Chapter P1.3, as well as an, on average, straight oligomer from Chapter P1.4. These
sequences are shown to exhibit considerably different responses to over- and under-
twisting. We also show how the periodic cgDNA parameters of Chapter P1.2 can be used
in modelling of short, covalently bonded loops of DNA. A comparison of properties of
such loops for two sequences: an intrinsically bent one and an intrinsically straight one
(both analysed in Chapter P1.4) are presented in this context.
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P2.3.1 Pulling and twisting of DNA in the birod model

We present here the pulling and twisting boundary value problem first introduced in
Section B.3.2.2 in the simpler context of elastic rods. As mentioned in Section B.3.4 for
the birod system in this problem we ask the average rod to be fixed in the laboratory
frame at one end, while force and moment along the vertical axis are applied at the other
end. This is expressed more precisely in Equation (B.3.21). The microstructure of the
birod is left free to equilibrate by application of the free end boundary conditions (B.3.61).

As our DNA fragments we have chosen tandem (i.e. consecutive) repeats of two of
the example sequences of Chapter P1.2 shown to have well pronounced superhelical
structure. Specifically, the selected sequences are: S%¢ (26 repeats of the decanucleotide
§% = A5CACG2) and S¢q (the 264 base pair long fragment constructed as 22 repeats of the
dodecanucleotide S* = A5CACGy).

Intrinsic shapes of both of these oligomers are of very similar length and are superhelices
with very close values of radius and pitch, but of opposite chirality (see Figure P2.3.1).
The length was chosen in such a way that both superhelices have nearly exactly two
helical repeats. As a result they were expected to exhibit very different responses when
over- and under-twisted. All of these choices were highly facilitated by the results of
Chapter P1.3.

For reference a third sequence with no particular motif in the unstressed configuration
was subjected to the same loading conditions. This fragment is made of base pairs
36901-37160 of the genome of A-phage [SanCouHon1982|. In fact these are the first 260
base pairs of the S* fragment presented in Chapter P1.4 as the one with mean persistence
length among all consecutive 300 bp long fragments of the genome (see Section A.2.2.1).

The exact boundary conditions imposed on each of the sequences involve pulling and
twisting in the direction of the respective end-to-end vector r(L) — r(0) of the intrinsic
configuration. This could be achieved in boundary conditions (B.3.21) by asking for an
appropriate rotation Ry to be applied to the first average rod cross section orientation.

Figures P2.3.2a, P2.3.3a and P2.3.3b show bifurcation diagrams of twist versus extension of
the numerical experiments for $*’, §%, 8¢, respectively. Blue crosses indicate the unstressed
shapes, obtained through homotopy continuation in the Hamiltonian coefficients (see
Equation B.3.31) from starting points computed using Equations (B.3.24). The coefficients
H, and Eu of the starting points were computed as averages over s of the sequence-
dependent ones for each sequence separately. An analogous approach for rods was
discussed in Section B.3.2.2.

Subsequently, the oligomers were pulled up to the value of the vertical force of ng = 2 pN.
This continuation is represented by the green branch that ends with a red cross. The 3D
configurations corresponding to the resulting stretched solutions are shown in the red
panels P2.3.3d for %, P2.3.3g for S* and P2.3.2¢ for s
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P2.3.1. Pulling and twisting of DNA in the birod model

The other branches of the bifurcation diagrams correspond to continuations in the imposed
torque mg. The over- and under-twisting was performed at 4 different values of the pulling
force: 0 (dark blue branch), 0.5 (bright blue branch), 1 (orange branch) and 2 (red branch),
all units pN. One under-twisted and one over-twisted solution on the red branch is selected
for each sequence. The value of the twisting moment for all of them is +150 pNA. These
solutions are marked with bright blue (under-twist) and orange crosses (over-twist) and
their 3D configurations are shown with coloured frames indicating the correspondence.

(a) Sa26 (b) S/V (C) SCQQ

Figure P2.3.1. The unstressed shapes of the sequences used for the pulling and twisting
example. Note that S%¢ and S99 form superhelices of comparable pitch and radius but
opposite handedness. All three configurations are oriented so that the respective end-to-end
vectors r(L) —r(0) are aligned with the vertical azis es. The presented solutions (a), (b)
and (c¢) correspond to the dark blue crosses in the bifurcation diagrams of Figures P2.3.3a,
P2.3.2a and P2.53.3b, respectively. The tubes in all visualizations of the 3D shapes in
this section are coloured using the morm of the average rod moment |m(s)| with blue
representing |m(s)| = OpNA and red representing lm(s)| = 175 pNA.
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Chapter P2.3. Examples of birod DNA computations

Figure P2.3.2. Results of the pulling and twisting numerical experiment for a straight
oligomer. Panel (a) shows a load-extension bifurcation diagram of the experiment with
r3(L) € [800 A, 847.1 A] and mz € |[-450 pNA, 450 pNA]. The scale of the r3(L) axis of
the bifurcation diagram is twice the one used in Figure P2.3.2, which is indicated by the
label of the respective axis. Panels (b), (c¢) and (d) correspond to the bright blue, red and
orange crosses in the bifurcation diagram, respectively.
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P2.3.1. Pulling and twisting of DNA in the birod model

Figure P2.3.3. Results of the pulling and twisting numerical experiment for left- and right-
handed DNA superhelices. The conventions used here are the same as in Figure P2.3.2.
The left set of panels corresponds to the sequence S, the right set to S°. The two
bifurcation diagrams are shown in the same scale, with r3(L) € [T00A, 826.9 A| and
m3 € [-450 pNA, 450 pNA].
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Chapter P2.3. Examples of birod DNA computations

We conjecture that all the visualized stationary points are stable, as they were all achieved
by continuation without fold points.

As expected all three solutions reacted very differently to the applied stresses. In case of
S barely any change in shape can be seen. In fact even the bifurcation diagram had to be
plotted with twice the scaling of the r3(L) component used in case of the other sequences,
to visually separate the different twisting branches. Nevertheless a little shoulder can be
observed suggesting that for small values of the twisting moment, over-twisting induces
extension and under-twisting induces shortening for all the studied pulling forces.

Seemingly analogous behaviour can be observed in the bifurcation diagram for §%, but the
shoulder is much more pronounced. Specifically the extension between the red and orange
solution is 9 times bigger (33.1 A vs 3.7 A) than the analogous value for $*’. As is clear
from the reconstructed shapes. The reason for this is that right-handed twist unravels
the left-handed superhelical structure lengthening the configuration, while left-handed
twist tightens it, leading to shortening.

The most interesting response to loading is demonstrated by the S* fragment. For very
small pulling forces the tightening of the superhelix through right-handed twist causes
its extension, while unravelling under left-handed twist shortens it. As the pulling force
is increased such response is weaker and weaker until for the pulling force of 2 pN it is
exactly opposite: the superhelix is shortening as it is tightened and vice versa.

Our findings confirm the argument of [DurGorMad2013] that the answer to the question
whether a polymer such as DNA extends or contracts under over- and under-twisting
depends on the particular constitutive relations of the polymer. In particular, we have
shown that both responses to twist loading may arise at different force loadings.
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P2.3.2. Computing equilibria of DNA minicircles using birods

P2.3.2 Computing equilibria of DN A minicircles using birods

The other example of a computation within the birod DNA model is solving the closed
loop boundary value problem, outlined for the elastic rod system in Section B.3.2.3. In
this problem the ends of the elastic rod are required to close. Additionally the cross
sections at both ends are required to share a common director vector d3. As a result the
only freedom left is a rotation of the cross section orientation R(L) with respect to R(0)
around d3(L). In the computations the angle a between d;(L) and d;(L) (or equivalently
d2(L) and da(L)) is used as a continuation parameter.

This formulation was previously used in the elastic rod model to model so-called minicircle,
i.e. rigs of relatively short fragments of DNA (< 1000 bp) both backbones are covalently
bonded (see e.g. [FurManMad2000]). In this approach solutions for different values of
a are computed through parameter continuation. The solutions of the angle reaching a
multiple of 27 represent minicircles in the rod model.

In the birod DNA model to assure full closure (i.e. exact matching of both backbones)
periodicity in both macro- and microstructure is required. Consequently in our approach
we will use periodic boundary conditions on the microstructure, as in Equation (B.3.62).
As was done with rods we will treat all other @ # 0 solutions only as intermediate steps
of the chosen numerical method.

Another requirement of the proposed modelling technique is that the base pairs at s =0
and at s = L should be identified. To achieve that we will use a similar concept to the one
proposed in the definition of the periodic cgDNA coeflicients. Specifically, for a sequence
of length N, we will introduce an extra Nth junction modelling the interactions between
base pair N and 1. This new junction replaces the end terms in the Lagrangian (B.3.52),
which in our periodic case will take the form:

N L Y® y(s)
Ep[g,?(y)]=f £ G) [ K@) | &) |ds . (P2.3.1)
£(s) —&(s) £(s) —&(s)

All in all, the periodic birod DNA coefficients are constructed exactly the way described
in Section B.3.3.3, but an extra junction is introduced instead of the end stiffness matrices
Ky, K;. The periodic c¢gDNA shape w,, is used in place of the standard one w and the
periodic version of the 3D configuration reconstruction procedure is used to define the
interpolation.

We note that in light of the above discussion the formulation of the birod closed loop BVP
of Section P2.1.2 that used the original procedure of constructing birod parameters as
well as natural boundary conditions on the microstructure served only for the verification
purposes of that section. These solutions should not be treated as representing real, fully
closed loops of DNA. They could however be important for computing DNA J-factors,
i.e. the probability of fully closed loops forming.
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Conclusions

Symmetry breaking computations have been performed using the automatic symmetry
breaking script of Section P2.2.2 for the present periodic birod coefficients. Two sequences
of length 158 bp have been used. The first one, labelled S”, was engineered to have a
big intrinsic bend (see Section A.3.1.1) and was used in in vitro cyclization experiments
[KahCro1992|. The other one, $1” is taken as base pairs 36901-37058 of the A-phage
genome [SanCouHon1982| and is intrinsically close to straight. The latter sequence is a
fragment of S*” used in the pulling and twisting experiment, which in turn is a fragment
of $* introduced in Chapter P1.4. The results of symmetry breaking computations for
these oligomers are presented in Figures P2.3.4 and P2.3.5.

As expected the high intrinsic bend of S¥ has a great impact on cyclization of that
oligomer as it determines the most preferable direction of bending. For the lowest energy
minicircles of linking number Lk = 14 and Lk = 15 the closed loop is formed exactly in
the direction of the bend (see Figures P2.3.4d and Figures P2.3.4e). In the corresponding
second lowest energy solutions the bent region is turned “inside out” (Figures P2.3.4b and
Figures P2.3.4¢). This can be inferred from the distribution of the norm of the moment
|m|, represented by the colour of the backbone tubes in the figures. This fact is related
to the conjecture of Section P2.2.2 stating that the two lower energy solutions are local
minima, while the higher energy ones are saddle points. This is known to be true in

analogous rod computations.

In case of $*”" the most preferred direction of bending for the oligomer is much less clear.
As a result the moment distribution along the oligomer in the 3D configurations presented
in Figure P2.3.5 is much more uniform than for §?. Also for $*” the energy differences
between the two solutions of the same linking number are much lower than for S” (see
Table P2.3.1).

s st
Lk =14 Lk =15 Lk =14 Lk =15
Solution (d) (b) (e) (c) (d) (b) (e) (c)

E [ksT] 21.08 3531 17.10 34.67 24.54 3227 21.26 24.44
AE [kgT] 14.24 17.57 7.73 3.18
AE [%) 67.5 102.8 315 15.0

Table P2.3.1. The energies of the four lowest energy minicircles of oligomers S” and S*" .

Note also that, as already discussed in Section P2.2.2, the connectivity of the components
of the solution sets is very different for the two oligomers. The blue and red branches
of the bifurcation diagram for S” in Figure P2.3.4a are analogous to the blue and red
branches of Figure B.3.3. However, in the case of $*” the lowest energy part of the
solution set is a single closed component. It is shown in Figure P2.3.5a in its entirety.
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In an attempt to develop tools that allow the study of sequence-dependent mechanics
of DNA we have focused our attention on two particular coarse-grained models. In
part P1 we have addressed matters regarding c¢gDNA — the discrete, rigid-base, nearest
neighbour model of [Pet2012; GonPetMad2013; Pet2012]. Part P2 has been dedicated
to the continuum elastic birod model of DNA of [Gra2016|, originally proposed in
[MoaMad2005|. Necessary background material concerning both models is outlined in
part B.

Part P1 begins with more theoretical considerations concerning improvements and exten-
sions of the cgDNA model itself and moves on to a more applied discussion of methods of
analysing mechanical properties of DNA within the model.

Chapter P1.1 presents a simple procedure of constructing maximum entropy fits for
covariance matrices with particular overlapping squares sparsity patterns illustrated in
the top left panel of Figure P1.1.2. The scheme of building the inverse covariance matrix
of the fit (presented schematically in Figure P1.1.3) involves summation of local inverses
of the overlapping diagonal sub-blocks defining the sparsity and of local inversions of
their overlaps. A recursive algorithm for maximum entropy completion of such partially
specified covariance matrices is also outlined and illustrated in Figure P1.1.4. Arguments
of [GonPetPas| have been quoted that the parameter set of the c¢gDNA model obtained
using the presented maximum entropy fit, labelled cgDNAparamset2, provides better
predictive capabilities than the original cgDNAparamset1of [Pet2012; GonPetMad2013].
This is also supported by the findings of Chapter P1.4, presented in Figure P1.4.4, where
the sequence averaged persistence length with cgDNAparamset? is significantly closer to
the consensus value than that of cgDNAparamset!. For those reasons cgDNAparamset2
has been used to obtain all results of the hereby thesis.

In Chapter P1.2 we have developed a way to construct what we call a periodic ¢¢gDNA
stiffness matrix K,(S) and ground state configuration vector w,(S) for a given DNA

sequence S that characterize the energy of a long linear DNA tandem repeat Sy; = SS...S

M
(with M — c0) of that sequence. We have laid out a rigorous argument that the standard

cgDNA energy of any finite tandem repeat can be approximated using the periodic
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coefficients up to a constant that depends on the magnitude of the end effects. A
numerical study of a large ensemble of tandem repeats of fragments of various sizes has
led to the conclusion that in fact w,(S) for any sequence S well approximates w(S) five
or more base pairs away from either end of the molecule. We have argued that the same
coefficients can be used to characterize covalently bonded loops of DNA | as they preserve
the periodicity of the loop. As a consequence the periodic ground state configuration
vector has been used to parametrize the example computations of closed loops of DNA in
Section P2.3.2.

Chapter P1.3 describes a method of characterizing the superhelices formed by base pair
positions of ground state configurations of DNA tandem repeats in the ¢¢gDNA model with
periodic coefficients. The few special cases of 3D configurations for which the method
could fail have been pointed out, but were deemed very unlikely in case of real DNA
oligomers. We have shown that the quantities such as the radius and pitch as computed
by the method do not depend on the number M of repeats of the basal sequence S in
the tandem repeat Sy;. It has been also proven that the same values of those quantities
are computed for any cyclic shift of the sequence S, provided that the periodic c¢gDNA
coefficients are used.

The method has been shown to calculate pitch and radius of the primary DNA double
helix instead of the superhelix for some (but not all) of the very straight fragments,
depending on subtleties of the 3D configuration. This has been observed in cases where
the superhelix could not be distinguished from the primary double helix. Such fragments
have been named atypical, while all others were called typical.

Using our approach we have analysed superhelices formed by intrinsic shapes of all possible
basal sequences of length up to 12 bp. The outcome of the study is summarized in the
scatter plots of Figure P1.3.5. All oligomers of length up to 7 were found to be atypical
and so extremely close to straight. We have shown that all typical superhelices of basal
sequences of length under 11 bp are left-handed, while those of oligomers 12 bp long are
all right-handed. 3D configurations for oligomers with extreme pitches and radii among
those of length 8, 9, 10 and 12 are presented in Figure P1.3.6.

Undecanucleotides were found to be exceptional in many aspects, in particular compared
to both decanucleotides and dodecanucleotides. Amongst them 15% formed left handed
helices, while the rest are right-handed. Also the ranges of radius and pitch in this group
have been found to be several orders of magnitude greater than those for decanucleotides
and dodecanucleotides. This uniqueness of undecanucleotides could be explained by a
conjecture that the helical DNA repeat in the c¢gDNA model with cgDNAparamset? is
just under 11bp. As depicted clearly in Figure 1 of [DubBedFur1994| this could also
the reason why many of the oligomers in this group form helices with a very low pitch
to radius ratio. The 3D configuration of the superhelix closest to circular amongst all
studied sequences, which happens to be an undecanucleotide, is shown in Figure P1.3.7.
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Chapter P1.4 presents results of computations of DNA persistence lengths using c¢gDNAme
— an efficient Monte Carlo code for the c¢gDNA model. Details of the design choices in the
cgDNA code are presented, e.g. the application of Cholesky factorization in direct Monte
Carlo sampling that takes advantage of the sparsity of the c¢DNA model. The efficiency
of the code has been evaluated. Presented statistics of performed simulations indicate
strong sequence-dependence of the persistence lengths. The observed sequence-averaged
values of persistence lengths of 53.5nm (in the sense of Flory) and 160 bp (in the sense of
apparent tangent-tangent correlation), computed using cgDNAparamset2, are in notably
better agreement with the accepted values of 50 nm and 150 bp, respectively, than those
of the original cgDNAparamset!.

In part P2 we turn our attention to the continuum DNA birod model. Originally
introduced in [MoaMad2005|, it was further studied in [Gra2016]. Most specifically it has
been equipped with a Hamiltonian formulation that can be parametrized from the cgDNA
model. The remainder of the thesis is therefore devoted to describing a software tool
called bBDNA and to the adaptation of numerical techniques introduced in the context
of elastic rods to the computation of stationary solutions of the birod DNA model.

In Chapter P2.1 we have addressed two issues of using the DNA coefficients of [Gra2016]
of the birod Hamiltonian system in parameter continuation computations using the latest
implementation of AUTO package [DoeKelKer1991a; DoeKelKer1991b| called AUTO-07p
[DoeChaDer2009] introduced briefly in Chapter B.2.

First we have described the problem of failing bifurcation detection in A UTO-07p observed
when any parameter continuation was run for the DNA birod model — nearly every
computed solution was reported as a bifurcation point. The problem was identified as
numerical stiffness of the birod system in the particular case of the DNA coefficients, which
affected the method of evaluation of the so called bifurcation function. The bifurcation
function is used by AUTO-07p to assess when the Jacobian matrix of the discretized
system becomes singular for a given solution. Such solutions are recognized as bifurcation
points. We have proposed an alternative definition of the bifurcation function directly
related to a standard method of evaluating determinants, and have implemented it in
AUTO-07p. The modified version of the continuation package have been used with success
to compute all the stationary DNA birod solutions of this part of the thesis as well those
presented in [Gra2016].

The other issue with birod DNA computations in AUTO-07p was the necessity of excessive
discretization of the system. We found that ~ 4N discretization points are required for the
solver to converge for an oligomer N base pairs long. As described in Section B.3.3.3 the
DNA coefficients of the birod system are only piecewise continuous with discontinuities
at every base pair. In practice we observed that the discontinuities are very pronounced
which is the reason that a fine discretization is required. We pointed out that despite the
apparent excessive discretization required, computations in the DNA birod model are still
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rather efficient. Additionally, the only technique currently known of obtaining stationary
solutions in the ¢gDNA model is through discrete solves of the finite dimensional system
described in [Gra2016, sec. 6.3], initialized with approximate solutions coming from
discretized birod DNA solutions. Nevertheless the criticism of applying a continuum
DNA model that requires more discretization points than the number of base pairs seem
to be justified. Hence we have proposed a coefficient homogenization technique based on
the ideas of [Gra2016, sec. 7.3] presented in the context of elastic rods. The method is
a three step process. At first the intrinsic piecewise helix is factored out. Subsequently
a window averaging procedure is applied. Finally a constant helix is factored in. This
constant helix represents the relation between first and last frame of the factored out
intrinsic configuration. The final step is crucial to ensure that boundary condition on
the average rod configuration of the original system have the same meaning as in the

homogenized one.

To validate our proposition we have compared a number of solutions of the homogenized
birod DNA model with corresponding solutions of the original, non-homogenized system.
We have observed only minor differences between corresponding configurations (the results
are summarized in Table P2.1.1). The solutions for the homogenized birod DNA system
have been found also to serve as good approximations of cgDNA stationary solutions when
used to provide initial guesses for the aforementioned discrete cgDNAsolver (the results are
summarized in Table P2.1.2). Therefore all birod DNA solutions presented in the following
chapters have been computed using the suggested homogenization of coefficients. We have
to stress here, however, that although the presented results of coefficient homogenization
suffice for the purposes of our presentation they are still preliminary and warrant further
investigation, e.g. to identify optimal window size necessary for convergence.

Chapter P2.2 describes the bBDNA framework for performing parameter continuation in
the birod model of DNA. The complete procedure (written in MATLAB®) of computing
coefficients of a given DNA oligomer for the birod AUTO problem script has been
presented, as well as the details of the ANSI C implementation of the AUTO problem script
itself. The structure of the functional part of the bBDNA software has been outlined and
the user interface of the application has been presented. Finally the procedure of symmetry
breaking from straight, inextensible, unshearable, uniform, transversely isotropic rods
directly to DNA sequence-dependent birods has been described, as implemented in the
bBDNA framework. This particular technique of symmetry breaking was introduced in
the context of elastic rods [LiMad1996; DicLiMad1996] and was used also for modelling
of DNA [ManMadKah1996; FurManMad2000|. Example results of using this approach
within the DNA birod model are presented in Chapter P2.3.

The last Chapter P2.3 presents results of example computations in the birod model of
DNA performed using the bBDNA software. Section P2.3.1 is devoted to the pulling and
twisting boundary value problem. Reaction to under- and over-twisting has been studied
for three different sequences of length ~ 260 bp: one intrinsically close to straight (S’l/)
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and two with distinct superhelical structure of the intrinsic shape (left-handed for $* and
right-handed for S¢). The oligomers have been stretched with a pulling force of up to
2pN applied in the direction of the end-to-end vector of their intrinsic configurations.
Subsequently positive and negative twists of up to +450 pNA have been applied (see
Figures P2.3.2 and Figures P2.3.3). As expected the three sequences have been found
to exhibit notably different behaviour. For the intrinsically straight $*” fragment the
effect of the loads on the 3D configuration was the least pronounced, although a slight
extension has been observed in the case of moderate over-twisting and shortening for
under-twist. Analogous relations between twist and extension have been observed for the
left-handed superhelix of S%, yet the magnitude of the effect was nearly nine times higher
than for S*". Under positive twist the superhelix was unravelled and stretched while for
negative twist, tightening of the superhelix caused its shortening. The most interesting
case was the reaction of the right-handed superhelix $%. For small pulling forces (< 1pN)
as the superhelix was tightened through a positive twist it extended and vice versa, while
for the pulling force of 2 pN the superhelix tightened by the twist of 150 pNA was shorter
than the unravelled one for —150 pNA.

Section P2.3.2 presents examples of the closed loop boundary value problem. The
considerations begin with a description of the boundary conditions appropriate for
modelling minicircles, i.e. covalently bonded loops of DNA. A small modification of the
DNA coefficients defined in [Gra2016| has been proposed, which uses periodic c¢DNA
coefficients of Chapter P1.2 and reflects periodicity of covalently bonded minicircles.
Results of symmetry breaking for two sequences of 158 bp have been analysed. One of the
sequences (S?) has been designed to have a large intrinsic bend [KahCro1992|. The other
one (SAN) is an initial fragment of the intrinsically close to straight $*" used in P2.3.1.
The automatic symmetry breaking script of bBDNA has been used to generate the low
energy part of the solution set for the two sequences (see Figures P2.3.4 and P2.3.5).
The sequence dependence of the results is clearly visible in the bifurcation diagrams of
Figures P2.3.4a and P2.3.5a. In case of S” the geometry of the blue and red branches
is rather simple. The correspondence to the blue and red branches of the bifurcation
diagram for rods of Figure B.3.3b is clear. The energy differences between lowest and
second lowest energies of loops of linking number 14 and 15 are considerable. This is due
to the large intrinsic bend in the sequence, which clearly dictates the preferable direction
of bending of the oligomer. For the intrinsically straight sequence S” the respective energy
differences are much smaller and the bifurcation diagram is more complicated. This can
be attributed to the fact that the oligomer is much closer to having the register symmetry
of the ideal, transversely isotropic, rod case.

The two examples presented in this chapter are an illustration of how the bBDNA software
of Chapter P2.2, together with the numerical methods proposed for treatment of the
birod DNA model can be used to study sequence-dependent mechanical properties of
DNA. In the case of the pulling and twisting boundary value problem we showed that the
response (extension or shortening) of DNA under moderate under- and over-twisting can
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strongly depend on the intrinsic shape of the given fragment. In the context of modelling
minicircles we have also found strong dependence on the intrinsic shape of the closed
DNA configurations as well as the connectivity of the solution set.

In an overall summary we have presented ideas, frameworks and software tools to facilitate
the study of the sequence-dependent statistical mechanical properties of DNA. Of course
both the tools and their underlying models could be further improved and extended.
One of the most important restrictions is that currently our computations are limited
to studying the first order conditions governing stationary solutions, and a formulation
of the second variation governing stability properties within the birod DNA model, as
well as efficient methods of its evaluation, are still a topic of active research. A complete
such theory in terms of Jacobi fields is available for rods, but the stiffness of the birod
equations suggest that the generalization to birods is not immediate. Nevertheless we
believe that the results presented here provide a valuable contribution to the field of
modelling of sequence-dependent DNA mechanics. In particular the bBDNA software
provides a first step towards practical application of the continuum birod formalism to
modelling of scientifically important aspects of DNA mechanics.

Outwith the field of DNA mechanics, and although the numerical stiffness in the birod DNA
model is not yet fully understood, the proposed modification of the bifurcation function
of the AUTO-07p [DoeChaDer2009] code resolves issues with bifurcation detection, which
might also be useful in boundary value problems arising in other contexts. Similarly,
we consider the maximum entropy procedure for fitting Gaussian stiffness matrices of a
prescribed overlapping squares sparsity patterns, as described in Chapter P1.1, deserves
to be more widely known.
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A.1 Algebra of 3D transformations

A.1.1 3D Rotations

We begin by recalling Euler’s rotation theorem [Eull776, pp. 201-203|, which states that
every thee dimensional displacement of a rigid body that does not change the position
of the reference point of the body can be expressed as a right-handed rotation by a
given angle 6 € |0, ] around a given axis. For a rotation axis given as a unit vector
é a right-handed rotation by 6 is equivalent to a left-handed rotation by 27 — 6 in the
opposite direction. To remove ambiguity from here on only right-handed (with respect to
é) rotations by 6 € [0, 7] will be considered. Note that rotations through n are a special
singular case in the sense that a right-handed and left-handed rotation by n yields the
same result. For that reason rotations by m will require special treatment in parts of what
follows.

Rotations in three dimensions (under composition) form a group SO(3), which can be
parametrized in multiple ways. Each of those parametrizations has its strengths and
weaknesses, and different applications require a different choice. This short (and far from
exhaustive) summary underlines three particular parametrizations used for computations
in the thesis. These parametrizations are: rotation matrices, quaternions (e.g. [Kuil999;
Han2006])) and Cayley vectors (in the specific sense defined in [LanGonHef2009; Pet2012]).
In this review we focus on relations that will allow for efficient and accurate numerics, as
detailed in Section P1.4.2.3.

A.1.1.1 Rotation matrices

A very natural choice for parametrizing rotations in three dimensions is the group of
orthogonal 3 x 3 matrices with determinant +1 that is isomorphic to SO(3). Indeed in this
parametrization composition of rotations is achieved using regular matrix multiplication:

R2 o R1 = R2R1 (A.l.l)
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Appendix A.1. Algebra of 3D transformations

The unique inverse rotation is represented by the inverse of the rotation matrix, which in

the case of orthogonal matrices is equivalent to transposition.

It can be shown that the set of eigenvalues of each R € SO(3) can be written as
o(R) = {1, e e~ . The the unit eigenvector & for the ecigenvalue 1 defines the axis of
rotation, which is invariant under that rotation. The argument 6 of the exponentials can
be interpreted as the rotation angle.

Note that if 6 = 0 (modn ) all the eigenvalues are real and the matrix is diagonalizable in
R. It is easy to see that an orthogonal matrix is diagonalizable if and only if it is also
symmetric, and as a result is its own inverse. There are two particular cases of such

symmetric rotation matrices:

a) 0 =2kn, (k € Z) when R is the identity matrix and has one real eigenvalue A =1
of geometric multiplicity 3; In this case the rotation axis is not well defined because
the eigenspace of the eigenvalue 1 is the whole of R?;

b) 6 = (2k + 1)x, (k € Z) when R has two distinct eigenvalues: 1 with multiplicity
A1 =1 and A5 = —1 with multiplicity 2 (a rotation through x). Note that the same
matrix represents the rotation by m around é and around —é.

A rotation represented by a matrix R € SO(3) can be applied to a vector v through the
regular matrix vector product:

rot (R,v) :== Rv . (A.1.2)

A.1.1.2 Quaternions

Quaternion algebra is discussed at length e.g. in [Kuil999, ch. 5|). Here only basic
concepts will be mentioned. As originally introduced by Hamilton [Ham1844] the quater-
nion algebra was defined as an extension to the complex number algebra to rank 4. A

quaternion can be seen as:

R4 9q=q1i+q2j+C]3k+CI41 (Al?))
with the basis:

i=[t 000, j=[0 100, k=00 10, (A.1.4a)

1=[0 0 0 1]’ (A.1.4b)
For any quaternion q = (g1t + g23 + g3k + q41) define:

T 3
Im(q) := [ql qo qg] eR (A.1.5a)
Re(q) :=qg4 € R (A.1.5b)

as the imaginary (vector) part and real (scalar) part of the quaternion in a manner
analogous to complex numbers.
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T
For any vector v = [v1 2 l}3] € R3 define the pure imaginary quaternion:

v = [vl vy U3 O]T (A.1.6)

Let p = (p1t + p2g + psk + ps1l) and q = (q1% + g27 + g3k + g41) be two quaternions.
Equality of quaternions is defined as equality of all the components and addition is defined

component by component:
P=q << p1=q1 AN p2=qG2 AN p3=qg3 N p1=qs (A.1.7a)
P+q=(p1+q)i+(p2+q2)J+(p3+qg3)k+(ps+qi)l . (A.1.7b)

The Quaternion product is defined by the famous Hamilton formulae [Ham1844|:
i2:j2:k2:ijk:_1 , (A18)
which lead to

pq = (p1i + p2j + p3k + ps1) (g1t + q25 + g3k + q41)

= (p194 + p2g3 — P3qz2 + paq1)t
+(=p1g3 + p2qa + p3q1 + paqga)J
+ (p192 — p2g1 + p3qa + paqgs)k
+(=p1g1 — p2g2 — p3q3 + paqa)l (A.1.9)

|
_ |qalm(p) + p41m<q|> + Im(p) x Im(q) (A.1.10)
paqs + Im(p) - Im(q)

Conjugation in quaternion algebra is defined as:
q=-qit—q23 —qsk+qsl . (A.1.11)

The norm af a quaternion q is defined as:

gl= Vg = a}+ a3 +ai+ai (A-112)

From Equations (A.1.9) and (A.1.11) it is easy to see that the inverse ¢! of a quaternion
q # 0 (such that gg=! = g7'q = 1) can be written as:

q = . (A.1.13)

q

|\l
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It can be shown that the set of quaternions constrained to have unit norm equipped with
the quaternion product forms the special unitary group SU(2) (e.g. [Han2006, ch. 7])).
It can also be shown that ST (2) is a double covering of SO(3). The two quaternions
representing a rotation around a unit axis & by the angle 6 € [0, 7| can be written as:

q+ Z[sin(g)é cos(%)]T (A.1.14)
q- =G+

In this representation the composition of rotation is expressed by the quaternion prod-
uct (A.1.9):

q2 ° q1 = q2q;- (A.1.15)

Note that under the unit norm constraint the inverse (A.1.13) simply becomes the
conjugation (A.1.11). After (A.1.14) the inverse (conjugate) quaternion g~ = @ can be
seen as representing a rotation by the same angle around the opposite axis with respect

to g € SU(2).

Note also that quaternions well represent the aforementioned special cases of rotations by
kn, k € Z. It should be pointed out that the double covering of SO(3) by SU (2) reflects
the fact that the quaternions are able to track the angle of rotation modulo 4x. This
feature of SU(2) can be used to explain certain aspects of sequences of rotations that
cannot be explained using e.g. rotation matrices including the Calugareanu-White-Fuller
formula Lk = Tw + Wr, pertinent in DNA modelling, see e.g. [HofManMad2003|.

It can be also shown that for any unit quaternion q = (g1t + g23 + g3k + g41) € SU(2)
the matrix R € SO(3) representing the same rotation can be written as:

a?—qs—qs+4q;  2(q192 — q3q4) 2(q193 + G244)
R=| 2(qig2+q3q1) —q4; +q5—q5+q;  2(42q3 — 41q4) (A.1.16)
2(q193 — G244) 2(q2q3 + q194)  —qi — 43 +qG3 + G}

Note that from the above formula and the unit norm constraint we get:

lg1l = 3 VI+ Ri1 — Rys — Rss
g2l = 3 VI = Ri1 + Rz — Rs3
lgsl = 3 VI—Ri1 — R + Rs3
|94l = 3 VI + T (R)

(A.1.17)

Using the double covering any one component of a quaternion to be computed can be
assumed positive and so computed using the above formulae. In practice, for the sake of
accuracy and efficiency this component is chosen to be far from zero. The others can be
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recovered from (A.1.16) as:

R21 + R12 R13 + R31 R32 — R23
— = = A118a
> 4q1 @ 4q: 9 4q: ( )
0 = R> + Ry gs = Ra3 + R3o g1 = Ry5 - R3; (A.1.18b)
4q2 4q2 4q2
R31 + R13 R23 + Rgg R21 - ng
_ - ;2 - LT M2 A 118
n 4q3 > 4qs3 " 4qs3 ( )
R3s — Ros Ri3— R3; Ry1 — Ryo
_ _ 2tz — M1 - TR A q18d
T I a2 ™ qs 0 (A.1.18d)

The above procedure together with the geometric interpretation (A.1.14) provides a way
to extract the rotation axis for a given rotation matrix whenever it is well defined (i.e. for
all rotations except the identity — see considerations about identity in Section A.1.1.1).

T
Considered the following triple quaternion product with g € SU (2) and v = [1/1 ) 1/3] €
RS

w = quig (A.1.19)

It can be shown that w is a pure imaginary quaternion and Im(w) represents the vector
that is a result of applying the rotation g to the vector v. Given (A.1.10) Equation (A.1.19)
leads to the following definition of the quaternion rotation operator [Kuil999, ch. 5]

rot (g, v) := (q; — Im(q) - Im(q))v
+2(v - Im(q))Im(q)
+2¢4(Im(q) X v) € R3 (A.1.20)

For a more complete characterization of quaternions see e.g. [Kuil999; Han2006|.

A.1.1.3 Cayley vectors

In this section only rotations by 7 will be excluded as a singular case of the transformations
used below. Rotations around é by angles a € [, 27| are represented as rotations by
2n — a around —é.

Before introducing the Cayley vector representation of rotations it will be convenient to
define the set of skew symmetric (antisymmetric) matrices:

A={AeR¥ . a=-4AT) . (A.1.21)

It is easy to see that A is isomorphic to R3.
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T
In fact for each vector a = [a1 as ag] define:

0 —das a9
[a*]=]a3 0 -a|eA (A.1.22)
—as al 0

which can be interpreted as a cross product operator associated with the vector a as
follows:

[aX]b=axb, beR® . (A.1.23)
Similarly, for each matrix A € A define:
vec (A) = [A32 A1z Agl]T eR? . <A124)

The Rodrigues’ rotation formula that rotates a vector v around the axis & by the angle 6
[Rod1840] reads:

Rv =vcosO+ (éxv)sinh + é(e-v)(1 —cosh) (A.1.25)

which is equivalent to:

R =TIcosf+ [&"]sinf + ée’ (1 —cosh) (A.1.26a)
=T cosf + |&*]|sinf + ([éx]2 + I) (1 —cos0) (A.1.26Db)
=TI +[&X]sin 6 + [X]*(1 - cos b) (A.1.26¢)

where R € SO(3) is the respective rotation matrix applied to v. Using the identities:

1 —tan? (& 2tan? (4
cosf = —(2) = 1-cosf = A (A.1.27a)
1 + tan? (g) 1 + tan? (g)
2
= l+4cosf=——— (A.1.27b)
1 + tan? (g)
2tan (&
sinf = (2) (A.1.27c)
1 + tan? (g)
Equation (A.1.26¢) can be rewritten as:
n (¢ 2tan? (2
R=1+[e" 3) +[éx]2A (A.1.28)
1 + tan? (%) 1 + tan? (%)
4 1
_7 ( 42 x2) _ A1.29
S enrd (CARE T (A1.29)
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where
n=2tan(§)e (A.1.30)
is the Cayley vector representation of the rotation R, as defined e.g. in [LanGonHef2009;

Pet2012].

From Equation (A.1.26a) and the fact that I and [*|* are symmetric, while [*] is skew
symmetric we get:
tr(R) = 3cos0 + 0+ |&|](1 — cos0) (A.1.31)
tr(R) =1+2cos6 . (A.1.32)

From Equations (A.1.27¢) and (A.1.32) we have for 6 € [0, 7):

2sin 6 4sin 0
2t 9) = = . A.1.33
an(z) 1+cosf tr(R)+1 ( )

Finally we can combine (A.1.33) with (A.1.29) to invert it:

R - R" = [&¥]2sin6 (A.1.34a)
2 R-R") = [¢"] 4sin@ (A.1.34D)
@) 1 e ® 1 -
X7 _ 2 _pT
7] = @I E-RD (A.1.34c)

Note that in case of a rotation by 6§ = n we have sinf = 0 and R - RT = 0 (because R
is symmetric, as discussed in Section A.1.1.1). As a result the formula (A.1.34a) holds
(0 = 0), but cannot be used to extract the rotation axis even though the axis is well
defined. The formula (A.1.33) is undefined because tr(R) = 1 + 2 cos(n) = —1.

After Equations (A.1.29) and (A.1.34c) we define the notation (used e.g. in |Lan-
GonHef2009)):

cay(n) := I + ([nx] - %[nX]Q) € SO(3), for n e R (A.1.35)

4+ |nl?

and

cay H(R) := vec (R - RT) eR3 for R € SO(3). (A.1.36)

2
tr(R) + 1

Note that (A.1.35) is well defined for any vector n € R3. The expression (A.1.36) is well
defined for the identity matrix, whose Cayley vector representation is cay~!(I) = 0. It is
undefined, however, for any rotation through n, with:

| cay L (Ry)| = )Qtan (%)| — 400 for 06— . (A.1.37)

for Ry a rotation by angle 6 around any given axis. As a result in what follows Cayley
vectors will only be used to represent relative (i.e. smaller than 7) rotations.
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The name Cayley vector comes from the Cayley transform that, in its original description
[Cay1846|, provides a mapping between SO(3) and the set of skew symmetric matrices A.
With the definition (A.1.35) of Cayley vector i (which is adapted from [LanGonHef2009])
the Cayley transform gives an alternative form of the formula (A.1.35):

cay(m) = (1 + % 1) (1~ % [nX])_1 (A.1.38)

where I is the identity matrix. Note that the matrix (I +M) with M € R3*3 is non-singular

if and only if -1 is not an eigenvalue of M. Any matrix A € A has a single eigenvalue 0,
hence the formula (A.1.38) is well defined.

From Equation (A.1.38) we have:

1 1
cay(m) (1= 5 1n%]) = 1+ 5 [n"] (A.1.39)
2(cay(n) - I) = (I + cay(m)) [n*] (A.1.39b)

so that the inverse transform can be computed provided that (I + cay(7)) is non-singular
(i.e. for rotations by 0 € [, ) — see considerations about spectral decomposition of rotation
matrices). Therefore for any R € SO(3) with the exclusion of rotations through 7 we
can write formula (A.1.36) in the alternative form:

cay ' (R) = 2vec (R+ 1) (R~ 1)) (A.1.40)

Formulae (A.1.14) and (A.1.35) allow the definition of the relation between a Cayley
vector n = [m M2 173] and a quaternion representing the same rotation:

/ 4 N, N2.. 13 )
= — — — 1 2) . A.1.41
quat(n) |n|2+4(2z+23+2k+ € SU(2) ( )

Note that this definition is well defined for any Cayley vector and always computes the
q+ variant of Equation (A.1.14). For any quaternion g = (q1% + g2 + g3k + q41) € SU(2)
such that g4 # 0 (not a rotation by n) define also the Cayley vector representing the same

rotation as:
t(q) = [22 22 23] A1.42
quat™(q) : q4 q4 q4 ’ ( o )
The Cayley vector 15 o 11 representing the composition of rotations represented as Cayley
vectors 1 with 7; can be e.g. expressed using formula (A.1.1) as:

m2 0 M1 = cay ™ (cay (n2) cay (1)) (A.1.43)

or alternatively, by formula (A.1.15) as

n2 oM = quat™' (quat(nz) o quat(n:)) (A.1.44)
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A.1.1.4 Half rotations

Given a rotation it is sometimes necessary to compute the half rotation (rotation by half
the angle — see e.g. Section B.1.3). For a rotation matrix R € SO(3) a half rotation can
be computed as the principal square root of the matrix VR.

Note that for 6 € |0, 7] we can invert the trigonometric identities:

4 0
COS(Q)ZQCOS2 (Q)_l N COS(Q): COS(2)+1 _ COS(2)+1
2 4 4 2 2(cos (Q) )
2
(A.1.45)
U
sin (& sin (¢
4 cos (5

(A.1.46)

As aresult for a quaternion q = (q12+q2J+qsk+q41) € SU(2) the geometric interpretation
(A.1.14) allows for a simple explicit formula for the quaternion of the half rotation:

+8 n* 1 1 . . *
Vg = q+sen (g1 _ (@12 + q23 + g3k + (g4 +sgn (q4))1)  (A.1.47)

V2 + 1) A20qa + 1)

where

" 1 fora >0
sgn (a) = (A.1.48)
-1 fora<0

The norm of ¢4 has to be taken and the multiplication by sgn” (q4) has to be added in
(A.1.47) compared to [Han2006, ap. F.2| to make the formula true not only for g, but
also q- of (A.1.14).

To define an analogous formula for Cayley vectors for angles 6 € [0, 1) we use (A.1.45)
and (A.1.46) and the identities:

1

cos () = ——— (A.1.49a)

(2) 4/ tan? (g)+1

)

sin (§) = tan (8) (A.1.49b)

tan? (g) +1

to get:
o (Q) _ sin (%) _ sin (%) _ tan (g) (A.1.50)
Vo) e +1 1r Jme (3 el '
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This, together with the definition (A.1.30), finally implies that the half rotation Cayley
vector can be expressed as a function of the full rotation n as:

V7 = (A.1.51)

2
——n
2+ 4+ nl?

A.1.2 Homogeneous coordinates and rigid body motions

A position and orientation of a rigid body in three dimensional space can be described
using an element of the special Euclidean group S&(3) (also called the group of rigid
body motions). Each element of SE(3) can be seen as a pair (R, r) where R € SO(3)
describes the orientation of a rigid body and r € R3 the position of its reference point.

In this section we describe the homogeneous coordinates for R3, introduced by August
Ferdinand Mébius in the context of projective geometry [M6b1827|, that allow for a very
convenient parametrization of SE(3). In homogeneous coordinates a point [x ¥ z] eR3
is represented as the tuple [x Yy z 1] € R%. It can be verified by direct calculation that
in these coordinates the rotation operator ® for the rotation R € SO(3) and translation
operator T for a translation by v € R? can be written as the 4 x 4 matrices:

R O I v
= , = A.1.52
where 0 € R3 and I is the 3 x 3 identity matrix. The inverse operators write:
g-t= |0 i S (A.1.53)
~lo" 1|’ SloT 1| o

Any rigid body motion Q € SE(3) of a rotation R € SO(3) and a translation by v € R3
can be parametrized using a 4 X 4 matrix as:

R v I v||R O
= = A.1.54
< [OT 1] o’ 1} o' 1 ( )
The group inverse Q ~! can be written as:
RT w||I -v R" -R™v

-1
_ - A.1.55
Q [OT 1] of 1 } [OT 1 l ( )

For more details see e.g.. [Kuil999, ch 14].
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A.2 Supplementary material
for Chapter P1.4

A.2.1 Downloading the software

The C++03 code cgDNAmc, along with two libraries it depends upon, algebra3d and
cgDNArecon, is freely available with online instructions on how to download, compile,
and run it.! The user can supply any desired problem-specific, post-processing code
fragments.

A.2.2 DNA sequences

A.2.2.1 A-phage genome

The sequence S* consists of base pairs 3690137200 of the A-phage genome of Sanger et
(0]
p
all consecutive fragments of length 300 bp of the genome. The full sequence is available

(0]

online?. A single repeat was used for £ ,;)

al. [SanCouHon1982|. It has been chosen as the one with median value of €},' among

computations, 5 repeats for {r.

TAGAGCGATT TATCTTCTGA ACCAGACTCT TGTCATTTGT TTTGGTAAAG
AGAAAAGTTT TTCCATCGAT TTTATGAATA TACAAATAAT TGGAGCCAAC
CTGCAGGTGA TGATTATCAG CCAGCAGAGA ATTAAGGAAA ACAGACAGGT
TTATTGAGCG CTTATCTTTC CCTTTATTTT TGCTGCGGTA AGTCGCATAA
AAACCATTCT TCATAATTCA ATCCATTTAC TATGTTATGT TCTGAGGGGA
GTGAAAATTC CCCTAATTCG ATGAAGATTC TTGCTCAATT GTTATCAGCT

Lsee http://levmwww.epfl.ch/cgDNA
http:/ /www.ncbi.nlm.nih.gov /nuccore /215104
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A.3 Supplementary material
for Chapter P2.3

A.3.1 DNA sequences

A.3.1.1 Kahn and Crothers [KahCro1992] c11t15 (S”)

A 158 bp long sequence designed to be intrinsically bent through the introduction of six
phased A-tracts, originally used for in wvitro cyclization experiments.

GATGAATTCA CGGATCCGGT TTTTTGCCCG TTTTTTGCCG TTTTTTGCCC
GTTTTTTGCC GTTTTTTGCC CGTTTTTTCC GGATCCGTAC AGGAATTCTA
GACCTAGGGT GCCTAATGAG TGAGCTAACT CACATTAATT GCGTTGCGCC
ATGGAATC
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