
 

 

ELiSeD – An Event-Based Line Segment Detector 
 

Christian Brändli1, Jonas Strubel1, Susanne Keller1, Davide Scaramuzza2 Tobi Delbruck1 

1: Institute of Neuroinformatics, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.  

2: Robotics and Perception Group, University of Zurich, Andreasstrasse 15m Zurich, Switzerland,  

 
Abstract— Event-based temporal contrast vision sensors 

such as the Dynamic Vison Sensor (DVS) have advantages such 

as high dynamic range, low latency, and low power 

consumption. Instead of frames, these sensors produce a stream 

of events that encode discrete amounts of temporal contrast. 

Surfaces and objects with sufficient spatial contrast trigger 

events if they are moving relative to the sensor, which thus 

performs inherent edge detection. These sensors are well-suited 

for motion capture, but so far suitable event-based, low-level 

features that allow assigning events to spatial structures have 

been lacking. A general solution of the so-called event 

correspondence problem, i.e. inferring which events are caused 

by the motion of the same spatial feature, would allow applying 

these sensors in a multitude of tasks such as visual odometry or 

structure from motion. The proposed Event-based Line 

Segment Detector (ELiSeD) is a step towards solving this 

problem by parameterizing the event stream as a set of line 

segments. The event stream which is used to update these low-

level features is continuous in time and has a high temporal 

resolution; this allows capturing even fast motions without the 

requirement to solve the conventional frame-to-frame motion 

correspondence problem. The ELiSeD feature detector and 

tracker runs in real-time on a laptop computer at image speeds 

of up to 1300 pix/s and can continuously track rotations of up to 

720 deg/s. The algorithm is open-sourced in the jAER project. 

Keywords—event-based; computer vision; machine vision; 

line segment detector; visual feature; DVS; DAVIS; silicon retina 

I.  INTRODUCTION  

Real-time interaction with the environment on mobile 

platforms such as mobile robots or mobile devices requires 

low reaction times on a small power budget. On actuated 

mobile platforms, such as drones, the control problem can be 

facilitated if the sensing delay is minimized and the control 

error can be measured instantaneously [1]. For an immersive 

experience of virtual or augmented reality a system latency 

of 20ms or below must be achieved [2]. With frame-based 

vision sensors, low latencies can be achieved by increasing 

the frame rate which in turn increases the power 

consumption. Achieving low latencies without increasing 

power consumption requires a more efficient way of 

encoding the visual information. This efficiency can be 

achieved by avoiding the processing of redundant data of 

pixels that do not change in between frames. 

A novel type of vision sensor, called the Dynamic Vision 

Sensor (DVS) [3], performs such redundancy suppression by 

asynchronously  communicating only the addresses of pixels 

where the change in the log light intensity exceeds an upper 

or lower threshold [4]. Thereby, the sensors achieve real-

world sub millisecond latencies and an intra-scene dynamic 

range of 130 dB at an average power consumption of 10 

mW [5]. Instead of sampling the visual information with a 

fixed frame rate, changes in the visual information are 

encoded by the pixels without the requirement of external 

signals. This way even fast motions are captured, which 

allows tracking objects continuously and circumventing the 

motion correspondence problem. This paper presents an 

algorithm to detect and track simple generic contours and 

shapes as a set of line segments that are extracted from the 

event stream without prior knowledge on the structures. 

II. EVENT-BASED VISION SENSORS 

The most common form of event-based vision sensors is 

based on the dynamic vision sensor pixel [3], [6]. The 

principle of these pixels is shown in Fig. 1a: The light 

intensity at the pixel is log compressed, asynchronously 

sampled and changes are amplified. As soon as a change 

exceeds an upper (θON) or lower threshold (θOFF), the pixel is 

reset, the latest value sampled and it generates a so-called 

“ON event” if it gets brighter or an “OFF event” if it gets 

darker. The information transmitted with each event is its 

“polarity” (ON or OFF, i.e. the sign of the change), its address 

and the time of its creation (with microsecond resolution). 

The output of the sensor is therefore a continuous stream of 

such timestamped address-events which are usually 

communicated in event packets. Each event nominally 

represents a quantized change of log intensity, although 

sensor non-idealities can cause significant deviations from a 

uniform response. To render the output, the events in a given 

time interval are integrated for each pixel and its brightness 

is increased or decreased according to the polarity of the 

events as shown in Fig.1b. 

The manufacturer of the first commercially available 

event-based vision sensor DVS128 

(http://www.inilabs.com), released an improved sensor in 

2014. This new sensor is called the Dynamic and Active Pixel 

Vision Sensor (DAVIS). The model DAVIS240 [5] camera 

used in this paper has a higher resolution of 240x180, higher 

dynamic range, lower power consumption and allows a 

concurrent readout of global shutter image frames, which are 

captured using the same photodiodes as for the DVS event 

generation. This frame output is not used for ELiSeD but only 

for ground truth measurements with the frame-based LSD 

algorithm). 

This research has been supported by the European Union funded project 
SeeBetter (FP7-ICT-2009-6), the Swiss National Science Foundation through 

the NCCR Robotics and the Gebert Rüf Foundation through GRS-048/14. 

http://www.inilabs.com/


 

 

A. Related Work 

Due to a lack of event-based, low-level features which 

parametrize the event stream by assigning the events to 

spatial features, existing algorithms directly relate the events 

to trackers which can be classified by two groups: event 

clusters trackers and shape trackers.  

Event cluster trackers [7]–[9] assign incoming events to 

the closest event cluster in the spatio-temporal 

neighbourhood. The position, orientation and size of these 

event clusters are temporally weighted averages of the 

assigned events. These algorithms are very cheap to compute 

and work reliably as long as the camera is fixed and tracked 

objects are continuously moving and spatially confined. 

Several robots with reaction latencies of under 5ms have been 

built using these trackers [9], [10] and typically the 

desktop/laptop CPU load in these applications is under 5%; 

for simple tracking even an embedded fixed-point 

microcontroller can suffice [10]. A more recent approach to 

cluster trackers approximates moving objects as spatially 

bivariate Gaussian distributions [11] or spatially connected 

sets of such distributions [12]. But since all these algorithms 

track event activity blobs and not specific spatial features, 

they are unselective and tend to merge trackers of arbitrary 

objects. For these reasons they are not appropriate for moving 

backgrounds or cluttered scenes.  

Shape trackers use a pre-defined parameterization of the 

objects they track. These parametrizations range from lines 

[10], to arbitrary Gaussian kernels [11] or arbitrary pre-

defined shapes [11], [13]. To track these shapes, the events 

are used to infer the most probable transformation of the 

parameters that describe the shape using various methods, 

such as an adapted Hough transform [10], a spatial 

probability measure [11] or an iterative closest point 

approach [13]. While shape trackers can robustly track even 

complicated shapes, they require prior knowledge on the 

scene content and the possibility to parametrize the objects or 

features of interest. 

To improve the distinctiveness of cluster trackers or the 

generality of shape trackers, they should track specific spatial 

features. To achieve this, a solution to the event 

correspondence problem is needed as described in the 

following. 

B. Event Correspondence Problem 

In frame-based machine vision applications, such as 

visual odometry or structure from motion, spatial features 

must be matched across frames; which is known as motion 

correspondence problem. The high temporal resolution and 

continuous nature of the DVS events allow continuously 

tracking the position of a feature and thereby circumventing 

the motion correspondence problem. But another matching 

problem must be solved: To allow a continuous event-based 

position update of a feature, each event has to be attributed to 

a source of temporal contrast. Under the assumption of a 

constant scene illumination, a noise-free sensor, and spatial 

structures that do not change reflectance or shape, the only 

source of temporal contrast is relative motion of structures 

with spatial contrast according to the brightness constancy 

assumption and the resulting optical flow equation: 

𝜕𝐼

𝜕𝑥
∙ 𝑣𝑥 +

𝜕𝐼

𝜕𝑦
∙ 𝑣𝑦 +

𝜕𝐼

𝜕𝑡
= 0           (1) 

where I is the (log) light intensity, vx, vy the two components 

of the velocity/optical flow and ∂I/∂t is the temporal contrast. 

Each DVS event encodes a step in log intensity ∆log⁡(𝐼) and 

if an event could be attributed to a spatial structure this would 

allow inferring the motion of said structure. The event 

correspondence problem is therefore the following: which 

events in a stream of events correspond to the motion of the 

same spatial structure? Without direct access to images of the 

spatial structures or their spatial derivatives, e.g. through the 

frame readout in the DAVIS, these structures have to be 

inferred from the event stream. 

The assumptions behind the proposed algorithm are that 

most events are generated by the relative motion of contours 

and that these contours can be modelled and parametrized as 

a set of piecewise linear segments. The proposed solution to 

the event correspondence problem is based on attributing the 

events to line segments. This results in a line segment 

tracking algorithm that has the generality of event cluster 

tracker as well as the specificity of a shape tracker. In 

 
Fig. 1. a) Block diagram of the DVS pixel. b) Example output of the DVS events from the DAVIS240 sensor. The image is a 2D histogram of a 20ms time 

slice of accumulated ON events (in white) and OFF events (in black). A total of about 20k events are shown, color scale is 6 events for full black or full white. 

 



 

 

addition, this parametrization of the event stream into a set of 

line segments could eventually allow for feature descriptors 

and cross-stream matching through descriptions of local 

subsets of line segments.  

C. Event Notation 

Multiple publications on event-based algorithms use an 

event notation that defines an event as a function of its 

coordinates x and y, e.g. in the form of p(x,y) as well as its 

timestamp 𝐸𝑣(𝑝, 𝑡) = −1⁡𝑜𝑟⁡1 depending on its polarity e.g. 

[13] which leaves the function undefined for most inputs. The 

notation used in this paper is more general and closer to the 

data representation used to communicate and process the 

events. An event Ev is understood as a tuple of an address k 

and timestamp ts with index i: 𝐸𝑣𝑖 = (𝑘, 𝑡𝑠). The address k 

carries all information about the sender; in the case of a DVS 

it contains x, y and pol (0 for ON and 1 for OFF) which are 

bitwise concatenated into a single address k. Functions 

Addr(Ev), Ts(Ev), X(Ev), Y(Ev), Pol(Ev) return the variables 

of the tuple and the function Sign(Ev) returns -1 for OFF and 

+1 for ON events. 

III. METHOD 

Line detection in images has been extensively researched 

in frame based computer vision and many algorithms have 

been developed around the Hough transform [14]. While the 

Hough transform allows simple line detection and has already 

been applied to events [10], it has several drawbacks when it 

comes to event-based line segments detection. To preserve 

the low latency of the events as well as the compactness of 

the data, any event-based algorithm is preferentially updated 

on each event. But Hough projection, peak detection and 

endpoint determination for each event are computationally 

expensive and require finicky selection of binning and peak 

selection criteria. For this reason, a more bottom-up approach 

for line segment detection has been used as starting point: the 

LSD line segment detector [15]. The basic idea behind the 

LSD is to compute the orientation of the spatial derivative for 

each pixel (called level lines) and cluster pixels with similar 

orientation into support regions which are used to fit a line 

segment. The following sections explain how the idea behind 

the LSD algorithm was adapted to DVS events to form the 

event-based line segment detector algorithm (ELiSeD). This 

algorithm is released as open-source code as described in the 

paper conclusion. 

A. Event Clustering Criterion 

ELiSeD should cluster only events from the same line 

segment. This clustering is achieved by attributing an 

orientation to each event and only clustering events of a 

similar orientation. This orientation is computed similar to 

[7] or [16] as edge detection on a map TL that stores the latest 

event timestamps per pixel (Fig. 2: latest timestamps). The 

underlying principle is the following: if a sharp edge of 

sufficient spatial contrast moves through the field of view of 

the DVS, it will trigger one or multiple events per pixel and 

TL then contains the information when the last edge passed a 

specific pixel. The entries in TL along the contours of a 

moving object are similar and fall off smoothly in a direction 

perpendicular to the contour on one side, while falling off 

abruptly on the other side where the edge has not yet passed 

(Fig. 2, latest timestamps). The orientation of an edge can 

therefore be computed using the spatial derivative on TL. In 

ELiSeD, for a stable and cheap edge detection, Sobel filters 

[17] SFx, SFy are employed to compute the orientation angle 

v for each event: 

𝜔(𝐸𝑣) = ⁡atan2(𝑆𝐹𝑦(𝑇𝐿(𝑥, 𝑦)), 𝑆𝐹
𝑥(𝑇𝐿(𝑥, 𝑦)))       (2) 

The Sobel operators SFx and SFy are 3x3 matrices that 

compute the x and y discretized gradients, smoothed in the 

perpendicular direction. The atan2 computes the gradient 

direction from these timestamp surface gradients. 

For a better performance ON and OFF events have 

separate TL arrays and the TL array used to compute the level 

line angle is chosen according to the event polarity. To 

 
Fig. 2. ELiSeD algorithm overview: A corner with spatial contrast moves through the field of view and generates events with increasing timestamps (encoded 

from bright to dark pixels). By computing the level line orientation of this timestamp gradient, the pixels in the buffer (thick black border lines) can be clustered 

into support regions and line segments can be fitted. The green and blue regions show how clustered into support regions with similar timestamp gradient 

directions. 



 

 

improve the accuracy of ω, timestamps that are older than a 

given threshold (typically in range of 30ms to 100ms) are 

ignored. This threshold sets a lower bound on edge speeds 

that are detected. It could be made adaptive, e.g. by making 

the threshold inversely proportional to average pixel event 

rate. 

B. Support Regions and Line Fitting 

Similar to the original LSD algorithm, pixels with the 

same level line angle are clustered into line support regions. 

For each incoming event, the corresponding support regions 

are updated: After the level line angle ω is computed, the 8 

neighbouring pixels are searched for other pixels with the 

same angle or an existing line support with the same 

orientation. If the averaged level line angle, i.e. the 

orientation of a support region is close enough (within a 

tolerance angle ρ) to the level line angle at the event position, 

the pixel is added to the support region. If a number of pixels 

(at least minNeighbors) have a similar level line angle (±⁡ρ, 

typically 23 deg) and none of them is assigned to a support 

region, the pixels form a new support region.  

To make sure that support regions do not rely on obsolete 

data and grow infinitely large, the level line angle of pixels 

as well as their allocation to a support region must be purged. 

Purging is achieved by using a circular buffer (with typical 

length 2500 to 8000 events): Every time a new event is added, 

the oldest event is removed from the buffer, the level line 

angle is set to null and it is removed from any support region. 

By using a removal method that does not depend on time, the 

filter output becomes velocity independent: no matter how 

fast or slow a stimulus is moving, the tracking output is the 

same (as shown in Fig. 4) because it does not rely on a 

temporal window of constant length or decay constant for 

“forgetting” event-based data unlike [9]–[12]. The trade-off 

for using constant number of events in a single global buffer 

is that can lead to the buffer containing only a single or few 

fast moving edges, as discussed in the paper conclusion. 

The original LSD algorithm fits a rectangular box 

covering the full line support region. This would require a 

bounding box update on every event added to or removed 

from a support region which is computationally expensive. 

The line segments in ELiSeD are therefore approximated by 

the major elliptic axis computed from the image moment of 

the support region [18] which can be computed efficiently 

according to [19].  

ALGORITHM 1: ELISED ALGORITHM 
 

1: while hasNextEvent(packet)  

2: Ev = getNextEvent(packet)  

3: removeEventFromPixel(buffer.getOldest())  

4: buffer.add(Ev) Circular Buffer 

5: TL(X(Ev), Y(Ev)) = Ts(Ev)  

6: ω(Ev)=computeAngle(TL, X(Ev), Y(Ev)) According to (2) 

7: setAngle(LevelLine(X(Ev), Y(Ev)), ω)  

8: for neighbour:getNeighbourPixels(X(Ev), Y(Ev))   

9: if neighbour.hasBufferedEvents() &&   

angleDifference(neighbour.getAngle(), ω) < ρ 

 

10: candidates.add(neighbour)  

11: end if  

12: end for  

13: candidates.add(LevelLine(X(Ev), Y(Ev)))  

14: oldestSupport = findOldestSupport(candidates)  

15: if oldestSupport != null  

16: assignCandidates(oldestSupport, candidates)   

17: updateLineSupport(oldestSupport)  

18: else if size(candidates) > minNeighbours  

19: addNewLineSupport(candidates)  

20: end if  

21: candidates.clear()  

22: end while  

 



 

 

C. The ELiSeD Algorithm 

The ELiSeD algorithm is described in pseudocode 

(ALGORITHM 1). The main elements in the algorithm are 

an event packet packet containing the latest events, a circular 

buffer buffer that stores the coordinates of the latest n events, 

a 2D array TL containing the latest timestamp per pixel, a set 

of the active line supports SA containing all pixels assigned to 

a given line support and a 2D array AS containing following 

information for each pixel: the level line angle ω, the number 

of buffered events with the pixel coordinate and the assigned 

support region. For each event the 8 neighbouring pixels 

(neighbour) are searched for candidate pixels with the right 

orientation which are then allocated to the oldest line support 

regions among them. 

The events are processed in packets and for each new 

event, the oldest event in the circular buffer is removed from 

TL (“removeEventFromPixel”) and if there are no more 

events with the according pixel coordinate in the buffer, the 

orientation of this pixel is set to null and it is removed from 

all support regions. In the next steps the new event is buffered 

and it is used to compute the level line angle ω of the pixel 

with the event coordinates. Then the algorithm iterates over 

the 8 pixel neighbourhood of the pixel to collect candidates 

with a level line angle that does not differ more than ρ 

(typically 23 deg) from the computed ω. If the neighbour is 

already assigned to a support region, “getAngle()” returns its 

orientation. From these candidates the oldest support region 

is determined and all candidates including their support 

regions are assigned. 

To prevent support regions growing too large through 

accidental merging with other support regions, after every 

packet the width of all support regions is assessed and any 

that are above a certain threshold (typically 15 pixels) are 

split. 

 

IV. EXPERIMENTS 

To assess the performance of the proposed algorithm, 
several experiments have been conducted with the events of a 
DAVIS240 camera. 

A. Accuracy 

To assess the accuracy of the line feature, two horizontal 

black bars of different length were placed on a white barrel 

rotating upwards along the longitudinal axis (Fig. 3). The 

ELiSeD output was compared to the output of the LSD 

algorithm by capturing global shutter frames for the LSD 

algorithm in parallel to recording the events for the ELiSeD 

 
 

Fig. 4. Frequency of ELiSeD segment lengths for different bar speeds.  

 
Fig. 3. ELiSeD tracking vs LSD tracking of a thick black line on a rotating barrel. a) DVS Events: blue, ELiSeD Segment traces: coloured according to ID, 

LSD performed on DAVIS frames: black crosses. b) Setup with rolling barrel spinning upwards along arrow. 



 

 

algorithm. The accuracy was measured by computing the 

difference in y coordinates of the horizontal LSD segments 

and the closest ELiSeD segment, resulting in an accuracy of 

1.36 pixels. This offset results from the buffer-induced lag as 

well as synchronization issues between event stream and 

frames.  

B. Speed 

The ELiSeD algorithm ran on a QuadCore Intel Core i7 Q820 

1.73GHz laptop in real-time for a single black bar up to 

rotation frequency of 2Hz which corresponds to about 1m/s 

surface speed at 50cm distance (f=12mm) or 1300pix/s. 

Fig. 4 shows how the accuracy of the tracker (same setup as 

in Fig. 3) degrades when the barrel spins too fast. Ideally each 

histogram should have two peaks at about 70 and 130 pixel 

long segments. When the sensor produces too many events 

(500,000 events per second), they cannot be processed 

anymore and the longer of the two black bars (~130 pixel 

wide) is only rarely covered with a full line segment in the 

cyan histogram for 2000 pixels/second bar speed. 

C. Line Segment Coverage 

To compare the performance of the ELiSeD algorithm with 

the original LSD algorithm, Fig. 5 shows how the static 

image frames of the DAVIS from two different scenes (a,e) 

were used to detect line segments using the conventional LSD 

(b,f), at the same time as ELiSeD was used to detect segments 

(d,h) using the events (c,g). ELiSeD does not detect and track 

small line features but it can still detect the most prominent 

contours in natural scenes as well as in man-made 

environments with more straight lines. It can further be noted 

that only line segments perpendicular to the camera motion 

can be detected because spatial contrast close to parallel to 

the motion generates fewer events.  

 
Fig. 6. a) Lifetime of ELiSeD line segments of a rotating disk b) Setup. 

 
Fig. 5. DAVIS frames / events and LSD / ELiSeD line segments ot two scenes: a)-d) outdoor scene with stone and trees, e)-h) building frontage with balconies  



 

 

D. Stability 

For many applications, it is important that line segments 

can be tracked stably over sufficient time to exploit the 

motion correspondences. Tracker stability is demonstrated 

using a spinning disk with a black bar as shown in Fig. 6. The 

position of the line segment was logged every 5000 events 

and the line segments are coloured according to their ID. It 

can be seen that the color of the segment tracking the main 

bar (red) does not change over time and the contour of the bar 

can be continuously tracked. The tracker was capable of 

tracking the rotating stimulus at speeds up to about 720 deg/s 

in real-time on said laptop, limited by the (currently rather 

inefficient) Java implementation.  

CONCLUSTION AND OUTLOOK 

The proposed algorithm for an event-based line segment 

feature detector and tracker solves the event correspondence 

problem by assigning DVS events to a set of spatial line 

segment features. This Event-based Line Segment Detector 

(ELiSeD) algorithm parametrizes the contours of objects and 

shapes as a set of line segments extracted from the events of 

a DVS. ELiSeD allows circumventing the motion 

correspondence problem by continuously updating the 

position of spatial features. The line features are distinct 

enough to avoid unwanted merging so that they can be used 

as trackers in scenes with moving background and without 

the requirement of predefining the shape to be tracked. 

The implementation is open source code in the jAER 

project [20] as the Java package ch.unizh.ini.jaer.projects.elised. 

This package also has suggestions for parameter settings. 

A first step to improve the stability of the algorithm will 

be to replace the static global circular buffer with a more 

advanced, time-independent way of buffering the relevant 

events. A dynamic event buffering method that scales the 

buffer size will allow having the same performance 

independent of the amount of spatial contrast in a scene.  A 

local buffering method will allow handling objects moving at 

different velocities (otherwise fast objects dominate the 

buffer contents), e.g. [21]. To reduce the computational load 

simpler methods to perform the event-based level line 

extraction could be used such as in [22].  

Apart from improving the algorithm, the line segments 

features could be applied to Simultaneous Localization and 

Mapping (SLAM) (e.g. as in [23] or [24]) for a deeper 

evaluation of its generality and robustness.   

ACKNOWLEDGEMENTS 

The authors would like to thank anonymous reviewers for 

their useful suggestions for improved presentation. 

REFERENCES 

[1] A. Censi, “Efficient Neuromorphic Optomotor Heading Regulation,” 

in The 2015 American Control Conference, Chicago, USA, 2015. 

[2] J. Carmack, “Latency Mitigation Strategies,” Twenty Milliseconds, 

25-Oct-2014.  

[3] P. Lichtsteiner, C. Posch, and T. Delbrück, “A 128 x 128 120dB 15us 

Latency Asynchronous Temporal Contrast Vision Sensor,” IEEE J 

Solid-State Circuits, vol. 43, no. 2, pp. 566–576, 2008. 

[4] T. Delbruck, B. Linares-Barranco, E. Culurciello, and C. Posch, 

“Activity-Driven, Event-Based Vision Sensors,” in Proceedings of 

2010 IEEE International Symposium on Circuits and Systems 

(ISCAS), Paris, 2010, pp. 2426–2429. 

[5] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 

240x180 130 dB 3 us Latency Global Shutter Spatiotemporal Vision 

Sensor,” IEEE J. Solid-State Circuits, vol. 49, no. 10, pp. 2333–2341, 

Oct. 2014. 

[6] S.-C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R. Douglas, 

Eds., Event-Based Neuromorphic Systems. John Wiley and Sons Ltd., 

UK, 2015. 

[7] T. Delbruck, “Frame-free dynamic digital vision,” in Proceedings of 

Intl. Symp. on Secure-Life Electronics, Tokyo, Japan, 2008, vol. 1, 

pp. 21–26. 

[8] S. Schraml, A. N. Belbachir, N. Milosevic, and P. Schön, “Live 

demonstration: Dynamic stereo vision system for real-time tracking,” 

in Proceedings of 2010 IEEE International Symposium on Circuits 

and Systems (ISCAS), 2010, pp. 1408–1408. 

[9] T. Delbruck and M. Lang, “Robotic Goalie with 3ms Reaction Time 

at 4% CPU Load Using Event-Based Dynamic Vision Sensor,” Front. 

Neurosci., vol. 7, p. 223, Nov. 2013. 

[10] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, R. J. Douglas, and T. 

Delbruck, “A Pencil Balancing Robot Using a Pair of AER Dynamic 

Vision Sensors,” in IEEE International Symposium on Circuits and 

Systems (ISCAS) 2009, Taipei, 2009, pp. 781–784. 

[11] X. Lagorce, C. Meyer, S.-H. Ieng, D. Filliat, and R. Benosman, 

“Asynchronous Event-Based Multikernel Algorithm for High-Speed 

Visual Features Tracking,” IEEE Trans. Neural Netw. Learn. Syst., 

vol. PP, no. 99, pp. 1–1, 2014. 

[12] D. R. Valeiras, X. Lagorce, X. Clady, C. Bartolozzi, S.-H. Ieng, and 

R. Benosman, “An Asynchronous Neuromorphic Event-Driven 

Visual Part-Based Shape Tracking,” IEEE Trans. Neural Netw. 

Learn. Syst., vol. PP, no. 99, pp. 1–1, 2015. 

[13] Z. Ni, A. Bolopion, J. Agnus, R. Benosman, and S. Regnier, 

“Asynchronous Event-Based Visual Shape Tracking for Stable Haptic 

Feedback in Microrobotics,” IEEE Trans. Robot., vol. 28, no. 5, pp. 

1081–1089, Oct. 2012. 

[14] V. F. Leavers, “Which Hough Transform?,” CVGIP Image Underst., 

vol. 58, no. 2, pp. 250–264, Sep. 1993. 

[15] R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, 

“LSD: a Line Segment Detector,” Image Process. Line, vol. 2, pp. 

35–55, Mar. 2012. 

[16] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi, 

“Event-Based Visual Flow,” IEEE Trans. Neural Netw. Learn. Syst., 

2013. 

[17] I. Sobel and G. Feldman, “A 3x3 Isotropic Gradient Operator for 

Image Processing,” Pattern Classif. Scene Anal., pp. 271–2, 1968. 

[18] B. B. Chaudhuri and G. P. Samanta, “Elliptic fit of objects in two and 

three dimensions by moment of inertia optimization,” Pattern 

Recognit. Lett., vol. 12, no. 1, pp. 1–7, Jan. 1991. 

[19] L. Rocha, L. Velho, and P. C. P. Carvalho, “Image moments-based 

structuring and tracking of objects,” in XV Brazilian Symposium on 

Computer Graphics and Image Processing, 2002. Proceedings, 2002, 

pp. 99–105. 

[20] “jAER Open Source Project,” jAER Open Source Project, 23-Mar-

2007. [Online]. Available: http://jaerproject.org. [Accessed: 23-May-

2016]. 

[21] E. Mueggler, C. Forster, N. Baumli, and G. Gallego, “Lifetime 

Estimation of Events from Dynamic Vision Sensors,” in International 

Conference on Robotics and Automation ICRA, Seattle, WA, USA, 

2015. 

[22] K. Lee, H. Ryu, S. Park, J. H. Lee, P. Park, C.-W. Shin, J. Woo, T.-C. 

Kim, and B.-C. Kang, “Four DoF gesture recognition with an event-

based image sensor,” in 2012 IEEE 1st Global Conference on 

Consumer Electronics (GCCE), 2012, pp. 293–294. 

[23] P. Smith, I. Reid, and A. Davison, “Real-Time Monocular SLAM 

with Straight Lines,” presented at the British Machine Vision 

Conference, 2006, vol. 1, pp. 17–26. 

[24] L. Zhang and R. Koch, “Hand-Held Monocular SLAM Based on Line 

Segments,” in Machine Vision and Image Processing Conference 

(IMVIP), 2011 Irish, 2011, pp. 7–14. 

 


