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Abstract— Because standard cameras sample the scene at
constant time intervals, they do not provide any information
in the blind time between subsequent frames. However, for
many high-speed robotic and vision applications, it is crucial
to provide high-frequency measurement updates also during
this blind time. This can be achieved using a novel vision
sensor, called DAVIS, which combines a standard camera and
an asynchronous event-based sensor in the same pixel array.
The DAVIS encodes the visual content between two subsequent
frames by an asynchronous stream of events that convey pixel-
level brightness changes at microsecond resolution. We present
the first algorithm to detect and track visual features using
both the frames and the event data provided by the DAVIS.
Features are first detected in the grayscale frames and then
tracked asynchronously in the blind time between frames using
the stream of events. To best take into account the hybrid
characteristics of the DAVIS, features are built based on large,
spatial contrast variations (i.e., visual edges), which are the
source of most of the events generated by the sensor. An event-
based algorithm is further presented to track the features using
an iterative, geometric registration approach. The performance
of the proposed method is evaluated on real data acquired by
the DAVIS.

I. INTRODUCTION

Feature detection and tracking are the building blocks of
many robotic and vision applications, such as tracking, struc-
ture from motion, place recognition, etc. Extensive research
has been devoted to feature detection and tracking with
conventional cameras, whose operation principle is to tem-
porally sample the scene at constant time intervals. However,
conventional cameras still suffer from several technological
limitations that prevent their use in high speed robotic and
vision applications, such as autonomous cars and drones: (i)
low temporal discretization (i.e., they provide no information
during the blind time between consecutive frames), (ii) high
redundancy (i.e., they wastefully transfer large amounts of
redundant information even when the visual content of the
scene does not change), (iii) high latency (i.e., the time
needed to capture and process the last frame). Since the
agility of an autonomous agent is determined by the latency
and temporal discretization of its sensing pipeline, all these
advantages put a hard bound on the maximum achievable
agility of a robotic platform.

Bio-inspired event-based sensors, such as the Dynamic
Vision Sensor (DVS) [1], [2], [3] or the Asynchronous Time-
based Image Sensor (ATIS) [4], [5], [6], overcome the above-
mentioned limitations of conventional cameras. In an event-
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Fig. 1: Spatio-temporal view of the output of the DAVIS
(frames and events) and the trajectories of the tracked fea-
tures (in different colors, one for each feature). In this exam-
ple, the scene consists of a rotating object. The motion in the
blind time between consecutive frames is accurately tracked
using the stream of events; e.g., rotation is clearly visible in
the spiral-like trajectories of the event-based tracked features.
To facilitate the visualization, only 10% of the events is
displayed.

based sensor, each pixel operates independently of all other
pixels, and transmits asynchronously pixel-level brightness
changes, called “events”, at microsecond resolution at the
time they occur. Hence, an event camera virtually eliminates
latency and temporal discretization. Also, it avoids redun-
dancy, as no information is transmitted if the scene does not
change. However, this comes at a price: the output of an event
camera (a stream of events) is fundamentally different from
that of conventional cameras; hence, mature computer vision
algorithms cannot be simply adapted, and new, event-driven
algorithms must be developed to exploit the full potential of
this novel sensor.

More recently, hybrid vision sensors that combine the
benefits of conventional and event-based cameras have been
developed, such as the Dynamic and Active-pixel VIsion
Sensor (DAVIS) [7]. The DAVIS implements a standard
grayscale camera and an event-based sensor in the same pixel
array. Hence, the output consists of a stream of asynchronous
high-rate (up to 1 MHz) events together with a stream of
synchronous grayscale frames acquired at a low rate (on
demand and up to 24 Hz).

We present the first algorithm to detect features from
the DAVIS frames and perform event-driven high-temporal
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resolution tracking of these features in the blind time between
two frames. The key challenge consists of designing an
algorithm that best takes into account the hybrid charac-
teristics of the DAVIS output to solve the detection-and-
tracking problem (Fig. 1). Since events are generated by
changes of brightness in the scenes, features are built based
on large, spatial contrast variations (i.e., visual edges), which
are the source of most of the events generated by the sensor.
An event-based algorithm is further presented to track the
features using an iterative, geometric registration approach.

The paper is organized as follows. Section II reviews the
related work on event-based feature detection and tracking.
Section III describes the DAVIS sensor. Section IV describes
the proposed detection and tracking algorithm. Section V
presents the experimental results. Finally, section VI draws
the conclusion and gives future perspectives.

II. RELATED WORK

A. From Frame-based to Event-based Tracking

Feature detection and tracking methods for frame-based
cameras are well-known [8], [9], [10]. The pixel intensities
around a corner point are used as a template that is compared
frame-by-frame with the pixels around the estimated position
of the corner point. The photometric error is then used to
update the parameters describing the position and warping
of the template in the current frame. These appearance-
based methods do not apply to event cameras; however, the
approach of using a parametric template model and updating
its parameters according to data fitting still applies.

From a high-level point of view, two relevant questions
regarding event-based tracking are what to track and how
to track. The first question refers to how are the objects of
interest modeled in terms of events so that object instances
can be detected in the event stream. The answer to this ques-
tion is application dependent; the object of interest is usually
represented by a succinct parametric model in terms of shape
primitives. The second question, “how to track?”, then refers
to how to update the parameters of the model upon the
arrival of data events (caused by relative motion or by noise).
For a system that answers the aforementioned questions,
a third relevant question is “what kind of object motions
or distortions can be tracked?” The above-mentioned three
questions are key to understand existing tracking approaches.

B. Event-based Tracking Literature

Early event-based feature trackers were very simple
and focused on demonstrating the low-latency and low-
processing requirements of event-driven vision systems,
hence they tracked moving objects as clustered blob-like
sources of events [11], [12], [13], [14], [15] or lines [16].

Accurate tracking of general shapes can be performed by
continuously estimating the warping between the model and
the events. This has been addressed and demonstrated for
arbitrary user-defined shapes using event-based adaptions of
the Iterative Closest Point (ICP) algorithm [17], gradient
descent [18], or Monte-Carlo methods [19] (i.e., by matching
events against a uniformly-sampled collection of rotated and

scaled versions of the template). Detection and tracking of
locally-invariant features, such as corners, directly from event
streams has been addressed instead in [20].

Notice, however, that all above-mentioned papers were
developed for event-only vision sensors. In this paper, we
build upon these previous works and present the first algo-
rithm to automatically detect features from the DAVIS frames
and perform event-driven high-temporal resolution tracking
of these features in the blind time between two frames.

III. THE DYNAMIC AND ACTIVE-PIXEL VISION SENSOR

The DAVIS [7] is a novel vision sensor combining a
conventional frame-based camera (active pixel sensor - APS)
and a DVS in the same array of pixels. The global-shutter
frames provide absolute illumination on demand and up to
24 Hz, whereas the event sensor responds asynchronously
to pixel-level brightness changes, independently for each
pixel. More specifically, if I(t) is the illumination sensed
at pixel (x, y) of the DVS, an event is triggered if relative
brightness change exceeds a global threshold: |∆ ln I| :=
| ln I(t) − ln I(t − ∆t)| > C, where ∆t is the time since
the last event was triggered (at the same pixel). An event
is a tuple e = (x, y, t, p) that conveys the spatio-temporal
coordinates (x, y, t) and sign (i.e., polarity p = ±1) of the
brightness change. Events are time-stamped with microsec-
ond resolution and transmitted asynchronously when they
occur, with very low latency 15 µs. The DAVIS has a very
high dynamic range (130 dB) compared with the 70 dB of
high-quality, traditional image sensors. The low latency, the
high temporal resolution, and the very high dynamic range
make the DAVIS extremely advantageous for future robotic
applications in uncontrolled natural lighting, i.e., real-world
scenarios.

A sample output of the DAVIS is shown in Fig. 1. The
spatial resolution of the DAVIS is 240× 180 pixels. This is
still limited compared to the spatial resolution of state-of-the-
art conventional cameras. Newer sensors, such as the color
DAVIS (C-DAVIS) [21] will have higher spatial resolution
(640× 480 pixels), thus overcoming current limitations.

IV. FEATURE DETECTION AND TRACKING
WITH THE DAVIS

Since events are generated by changes of brightness, this
implies that only edges are informative. Intersecting edges
create corners, which are “features” that do not suffer from
the aperture problem and that have been proven to be opti-
mally trackable in frame-based approaches [10]. Therefore,
event-based cameras also allow for the perception of corners,
as shown in [20]. We exploit these observations to extract
and describe features using the DAVIS frames, and then track
them using the event stream, as illustrated in Fig. 2. Our
method builds upon the customized shapes in [19] and the
update scheme in [17]. The technique comprises to main
steps: feature detection and tracking, as we detail in the next
sections.
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Fig. 2: Feature detection and tracking. (a) Frame with centers of detected features (green crosses). (b) Edge map (black and
white) and square patches defining the features (i.e, model point sets, in red) (b)-(c) Zoomed views of the data point sets
(i.e., events; blue circles) and model point sets (red stars) of the features, shortly after initialization.

Algorithm 1 High temporal resolution tracking

Feature detection:
- Detect corner points on the frame (Harris detector).
- Run Canny edge detector (returns a binary image, 1 if
edge pixel; 0 otherwise).
- Extract local edge-map patches around corner points, and
convert them into model point sets.
Feature tracking:
- Initialize a data point set per patch
for each incoming event do

- Update the corresponding data point set.
for each corresponding data point set do

- Estimate the registration parameters between the
data and the model point sets.

- Update registration parameters of the model points.

A. Feature Detection From Frames

The absolute brightness frames of the DAVIS are used
to detect edges (e.g., Canny’s method [22]) and corners
(e.g., Harris detector [23]). Around the strongest corners,
we use the neighboring pixels of the Canny edge-map to
define patches containing the dominant source of events. We
simplify the detection by converting the edge-map patches
to binary masks indicating the presence (1) or absence (0)
of an edge. The binary masks define the interest shapes for
tracking in terms of 2D point sets, called “model point sets”.
These steps are summarized at the beginning of Algorithm 1.

We use square patches of the same size, which is an
adjustable parameter. However, it is straightforward to extend
the method to consider different aspect ratios and sizes.

Frames are not required to be provided at a constant rate
since they are only used to initialize features; they can be
acquired on demand to replace features that are lost or fall
out of the field of view of the sensor.

B. Feature Tracking From the Event Stream

Extracted features are tracked using subsequent events
from the DAVIS. The input to the event-based tracking
algorithm consists of multiple, local model point sets. The
second part of Algorithm 1 summarizes our tracking strategy.

1) Sets of Events used for Feature Registration: For every
feature, we define a data point set of the same size as the
model point set. Therefore, the size can be different for
every feature, depending on edge information. Data point sets
consist of local space-time subsets of the incoming events:
an event is inserted in a data point set if the event coordinates
are inside the corresponding patch. Once a data point set has
been filled, registration of the point sets can be done. Hence,
a data point set defines the set of events that are relevant
for the registration of the associated feature. Registration
is carried out by minimization of the distance between the
data and the model point sets, as explained next. Data point
sets are continuously updated: the newest event replaces the
oldest one and the registration iteration proceeds.

This procedure is event-based, i.e., the parameters of the
tracked feature are updated every time an incoming event
is considered relevant for that feature. The algorithm is
asynchronous by design, and can process multiple features
simultaneously. Several strategies to assign an incoming
event to one or more overlapping patches can be used, in
a way similar to [18]. We updated all models around the
ambiguous event.

2) Registration: The data point set from the events, {pi},
is registered to the model point set (feature), {mi}, by
minimization of the Euclidean distance between the sets, and
including outlier rejection:

arg min
A

∑
(pi,mi)∈Matches

‖A(pi)−mi‖2, (1)

where A is the registration transformation between the
matched point sets. For simplicity, we choose A within the
class of Euclidean motions, but the method can be extended
to more complex transformations. We choose the iterative
closest point algorithm (ICP) [24] to minimize (1). Matches
pi ↔ mi are established according to nearest neighbor; a
predefined distance of 2 pixels between the events in the data
point set and the model point set is used for outlier rejection.
Each algorithm iteration has three stages: first, candidate
matches are established, then the geometric transformation
is estimated, and, finally, the transformation is applied to
the model point set. The operation proceeds until the error
difference between two consecutive iterations is below a
certain threshold.



(a) Before registration (b) After registration

Fig. 3: A feature tracker, with the model point set (in red), the
data point set (in blue). Same color notation as in Figs. 2c-
2d. The black square represents the patch around the model
point set. (a) Before registration: the current event (in green)
updates the data point set and is used for registration of the
point sets. (b) After registration: the events marked in yellow
are classified as outliers, and the registration parameters are
updated, aligning the model and data point sets.

Fig. 3a shows both the model and the data point sets. When
a new event arrives, the geometric transformation that defines
the tracker is updated according to the minimization of (1).
The result is depicted in Fig. 3b. By discounting the points
classified as outliers by the algorithm (in yellow), registration
is accurate. Feature trajectories are given by the positions of
the features returned by the registration step.

Due to the high temporal resolution of the DAVIS, the
transformation between consecutive events (in the same
feature) is close to the identity (Fig. 3b), and so, our method
yields good results even after a single iteration. In practice,
it is more efficient to compute the registration transformation
every M events, e.g., of half the size of the model point set.

V. EXPERIMENTS

We present the tests performed to validate the algorithm
and to study its performance in different scenes with increas-
ing level of complexity: a very large contrast (i.e., black
and white) scene, a piecewise constant scene (a cartoon),
and a natural scene (the leaves of a tree; see Fig. 11). The
first scene depicts a black star on a white background; this
scene has sharp transitions between the two intensity levels,
showing clear edges (Fig 1) and well-localized features. The
second scene consists of a cartoon image with piecewise
constant regions (Fig 8a); intensity is concentrated in a few
grayscale levels and there are moderately abrupt transitions
between them. The third scene is a representative of a natural
image, rich in texture and brightness changes of different
magnitudes (Fig. 11a) coming from the leaves of a tree. The
scene datasets show dominant translational and rotational
motions.

We used patches of 25×25 pixels, which is approximately
1/10 of the image width. This size was empirically found to
be best for a broad class of scenes.

We measured the tracking error over time. The tracking
error is computed against ground truth, which was generated

using a frame-based Lucas-Kanade tracker [8] and linearly
interpolating the feature motion in the time interval between
frames. The ground truth has sub-pixel accuracy. Features
were detected in the first frame (t = 0) and then tracked
over the entire sequence using only events. In all scenes, the
mean tracking error is less than 2 pixels. Notice that in spite
of the sequences being short, they contain several million
events.

A. Large-Contrast Scene (“Star”)

1) Translation: We moved a 10-point star sideways, back
and forth, in front of the DAVIS. The algorithm detected one
feature every two edges of the star (so there are 20 corners).
The mean tracking error plot for all features is shown in
Fig. 4. As it can be observed in the plot, there is a short pause
after 1.5 s, marked with a constant error, before changing
direction. In this interval, there are virtually no events, and
so, the feature tracks do not move, waiting to observe new
events in order to keep updating the features’ position and
orientation.

Fig. 4: Star (translation) dataset: feature tracking error of our
event-based algorithm on translational motion facing the star
shown in Fig. 1. The mean tracking error of all features is
marked in black. The blue bands around the mean indicate
the ±1 standard-deviation confidence interval. The overall
mean error is 1.52 pixels.

2) High-Speed Rotation: Next, we made the 10-point star
pattern rotate, accelerating from rest to 1.600 °/s (see Fig. 5)
using a electro-mechanical device. Observe that, while the
overall motion of the star is a rotation approximately around
the center of the image, features are much smaller than
the whole star and so they only “see” parts of the peaks,
consisting of at most two lines. Nevertheless, these very
simple features are able to track the motion of the scene
very well.

Because of the offset of the features from the rotation
center of about 65 pixels, the features translate at high
speeds (more than 1800 pixels/s on the image plane). For this
dataset, ground truth was annotated since the frame-based
solution failed: since the star is rotating by up to two points
(peaks) between frames, aliasing prevented from obtaining
the correct motion. This speed at which there is frame-
based aliasing is not a problem for event-based tracking due
to the microsecond temporal resolution of the pixels. The
orientation error of the features is shown in Fig. 6. The mean



orientation error remains below 20° over more than two full
revolutions, leading to a relative error of 2.3 %. The feature
tracks form spirals in image space-time, as shown in Fig. 7.
All of the 20 features (one per vertex) of the 10-point star
were accurately tracked during the entire sequence.

Fig. 5: Star (rotation) dataset: angular speed of rotating star.
With an approximately constant acceleration (i.e., linear ve-
locity profile), the angular speed reaches more than 1600 °/s.

Fig. 6: Star (rotation) dataset: feature tracking error of our
event-based algorithm on the dataset shown in Fig. 1. The
mean tracking error of all features is marked in black.
The blue bands around the mean indicate the ±1 standard-
deviation confidence interval. The overall mean error is 6.3°.

Fig. 7: Star (rotation) dataset: space-time locations of the
features. Due to the rotation of the star, the feature tracks
form spirals. The spiral step gets smaller as the angular speed
increases, in this case, with constant acceleration.

B. Cartoon Scene (“Lucky Luke”)
Fig. 8 shows several snapshots of the tracked features on

a sequence of the cartoon scene. The dominant motion is a
horizontal translation, back and forth. We observe that 81
features well distributed in the object are correctly tracked
throughout the event stream. The tracking error is reported in
Fig. 9. As observed in the plot, there is a short pause after
1 s (constant error), before changing the motion direction.
A slight increase of the error can be observed when the
motion resumes. However, the mean error in this part of the
motion is less than 2 pixel and the overall mean error is small:
1.22 pixel. Tracking in this scene is very good due to two
reasons: (i) most of the events are located at the strong edges,
which are captured by the features, and regions of constant
intensity do not generate events. (ii) there are more than two
edges per feature, and with a complex shape (edges in several
directions) that make them distinctive for alignment. The
tracked features in image space-time are shown in Fig. 10.

Fig. 9: Lucky Luke dataset: feature tracking error of our
event-based algorithm. The mean tracking error of all fea-
tures is marked in black. The blue bands around the mean
indicate the ±1 standard-deviation confidence interval. The
overall mean error is 1.22 pixels.

Fig. 10: Lucky Luke dataset: space-time view in the image
plane of the tracked features’ trajectories. The sideways
motion is clearly visible in the feature trajectories.



(a) DAVIS frame for initializa-
tion.

(b) Events (white over black) and
features (solid colors) shortly af-
ter initialization.

(c) Features during motion. (d) Features during motion, at a
later time than (c).

Fig. 8: Lucky Luke (cartoon) dataset. The DAVIS is moving sideways while viewing a natural scene consisting of leaves (a).
Individually tracked features (model point sets) are marked in different colors in (b) to (d).

(a) DAVIS frame for initializa-
tion.

(b) Events (white over black) and
features (solid colors) shortly af-
ter initialization.

(c) Features during motion. (d) Features during motion, at a
later time than (c).

Fig. 11: Leaves dataset. The DAVIS is moving sideways while viewing a natural scene consisting of leaves (a). Individually
tracked features (model point sets) are marked in different colors in (b) to (d).

C. Natural Scene (“Leaves”)

In natural scenes (Fig. 11a), edges can have all sort of
different magnitudes, but our features still track the most
dominant ones. In this experiment, we moved the DAVIS
in front of a natural scene containing both edges (mostly
at leave borders) and smooth intensity variations (within
the leaves). The motion was oscillatory and predominantly
translational (Fig. 11). Fig. 12 shows the feature position
error; the mean error is 1.48 pixels.

Fig. 12: Leaves dataset: feature tracking error of our event-
based algorithm. The mean tracking error of all features is
marked in black. The blue bands around the mean indicate
the ±1 standard-deviation confidence interval. The overall
mean error is 1.48 pixels.

Feature tracks in image space-time are shown in Fig. 13.
Fewer features are tracked compared to the simpler scenes

Fig. 13: Leaves dataset: space-time view in the image plane
of the tracked features’ trajectories. The oscillating motion
of the DAVIS is correctly captured by the feature trajectories.

(large contrast and cartoon) because of two reasons: (i) the
detected features are based on a binary edge-map of the
scene (resulted from the Canny detector), but such binary
map is an exact representation of the underlying grayscale
scene only if the contrast is sufficiently large. (ii) we do not
model many of the non-linearities of the DAVIS, such as
non-white noise and other dynamic properties, which have a
larger effect on natural scenes than in simpler ones because
events are triggered all over the patches. Notwithstanding,



for some robotics applications there is no need to track many
features; for example, in perspective-N-point problems) it is
sufficient to track as few as three features [25].

Notice that, overall, all the experiments show that our
proposed and automatically-detected features can be tracked
for a considerable amount of time, much larger than the
time between consecutive frames. Hence, lost features (e.g.,
falling out of the field of view) could be replaced by new
ones that would be initialized using frames at a much lower
rate (e.g. 1 Hz) or on demand.

Our method has been tested with real data, with different
types of motion, and the results show accurate tracking (less
than 2 pixels mean error). Better and more accurate results
could be obtained by incorporating the edge strength and the
event generation model.

VI. CONCLUSIONS

We have developed a high-temporal tracking algorithm
for hybrid sensors such as the DAVIS. We used principled
arguments of event data generation to justify our choice of
relevant features to track, and proposed a pipeline to extract
those features from the frames. Then we used an event-
based tracking algorithm that exploits the asynchronous
and high temporal resolution of the event stream. In our
method, features are automatically and accurately initialized,
and are adapted to the scene content, thus overcoming the
shortcomings of existing methods. We tested the algorithm
on real data from several sequences, and the results validate
the approach.

Inspired by the achieved tracking accuracy, we intend to
build a visual-odometry pipeline on top of this event-based
feature tracking method. Finally, the frames used in our
algorithm to initialize the features suffer from motion blur
and limited dynamic range, as in any standard camera. To
overcome these limitations, we plan to investigate methods
to extract features directly from the event stream.
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