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ABSTRACT: The identification of kinetic models for multi-
phase reaction systems is complex due to the simultaneous
effect of chemical reactions and mass transfers. The extent-
based incremental approach simplifies the modeling task by
transforming the reaction system into variant states called
vessel extents, one for each rate process. This transformation is
carried out from the measured numbers of moles (or
concentrations) and requires as many measured species as
there are rate processes. Then, each vessel extent can be
modeled individually, that is, independently of the other
dynamic effects. This paper presents a modified version of the
extent-based incremental approach that can be used to identify
multiphase reaction systems in the presence of instantaneous
equilibria. Different routes are possible depending on the number and type of measured species. The approach is illustrated via
the simulated example of the oxidation of benzyl alcohol by hypochlorite in a batch reactor.

1. INTRODUCTION
Multiphase chemical reaction systems are often used in the
chemical and biochemical industry to convert feed materials into
value-added products.1 The chemical reactions involved in these
systems can be either kinetically controlled or nearly
instantaneous.2,3 Kinetic models are important for process
design, scale-up, and operation. Since rapid equilibria affect the
concentrations of numerous species, their effects need to be
accounted for when developing kinetic models. Note that the
complexity of the modeling task is further increased by the
presence of mass transfers between phases that alter the
equilibria in each phase.
The model-identification task can be carried out in either a

simultaneous or an incremental manner. The simultaneous
approach is based on a single identification stepall rate models
are identified simultaneously, while the incremental approach
decomposes the identification task into a set of subproblems of
lower complexitythe rate laws and the model parameters are
identified individually for each reaction.4 A detailed comparison
between the simultaneous and incremental approaches has been
proposed.5 Incremental model identification can be carried out
using two different approaches, namely, via the rate-based
method that relies on data differentiation6 or the extent-based
method that uses data integration.4 In the rate-based method,
the rates of the various dynamic processes are first computed by
differentiation of measured concentrations, and each rate is
subsequently modeled individually. In contrast, in the extent-
based method, measured concentrations are first transformed to
vessel extents, and each extent is then modeled individually by
integration of the corresponding differential equation. These
two incremental methods have been compared via a case study.7

The number of measured species required for transforming the

measured concentrations into rates or extents is the main
limitation of incremental approaches. The possibility of using
additional indirect measurements such as calorimetry8 and
spectroscopy9 has also been documented.
Chemical reaction systems with instantaneous equilibria can

be reduced to kinetically controlled reaction systems using
quasi-steady state approximations via the method of singular
perturbation.10,11 Once reduced, the reaction systems can be
identified using either the simultaneous or the incremental
approach. In the present work, instantaneous equilibria are
treated in an exact way in the extent domain and combined with
kinetically controlled reactions. Three different cases are
considered for the extent-based incremental model identifica-
tion of multiphase chemical reaction systems comprising
instantaneous equilibria.
1. In the first case, the extents are computed directly from the

measured concentrations of “all species” present in the reaction
system. This yields extents for all reactions, that is, for both
kinetically controlled and instantaneous equilibrium reactions,
in addition to extents of mass transfers, inlets, and initial
conditions. Note that the extents of equilibrium reactions
capture the instantaneous shift in concentrations caused by the
equilibria. This approach allows estimating the equilibrium
constants from the measurements.
2. In the second case, the extents are computed from the

concentrations of the “kinetic species” and the “equilibrium
components”. These species represent the minimal set that is
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necessary to describe both the kinetically controlled and the
equilibrium reactions. This leads to the computation of extents
for the (slow) kinetically controlled reactions, but not for the
instantaneous equilibria that are treated as algebraic equations.
The number of measured species required in this formulation is
reduced compared to the first case, but the knowledge of
equilibrium constants is needed to reconstruct all species
concentrations.
3. In the third case, the extents are computed from a mix of

available measurements that includes some of the “kinetic
species”, “equilibrium components”, and “equilibrium species”.
In such a case, the reconstruction of all species concentrations
requires the knowledge of equilibrium constants and the
solution of nonlinear algebraic equations. Then, the trans-
formation developed in the previous two cases can be applied to
compute the extents.
This paper is organized as follows. Section 2 describes the

material balance equations for the general case of two-phase
reaction systems. After a description of various types of species
and components, the balance equations are written first for all
species (case 1 mentioned above), and then in terms of “kinetic
species” and “equilibrium components” (case 2). Section 3
presents the corresponding transformations to vessel extents,
including the case of a mix of available measurements (case 3).
The extent-based incremental identification method for two-
phase reaction systems in the presence of instantaneous
equilibria is proposed in section 4 and illustrated in section 5
via a simulated example. Finally, section 6 concludes the paper.

2. MODEL OF TWO-PHASE CHEMICAL REACTION
SYSTEMS

Consider a two-phase chemical reaction system with the phases
G and L (for example, a gas and a liquid phase, or two liquid
phases). The two phases are connected by pm mass transfers. In
addition, the reaction system has pg inlets and one outlet in
phase G, and pl inlets and one outlet in phase L. The following
assumptions are made:
1. The phases G and L are homogeneous.
2. The kinetically controlled reactions and the instantaneous

equilibria occur only in the bulk of each phase.
3. The driving forces for mass transfer are the concentration

gradients of the transferring species. Mass transfer is described
by the steady-state film theory, and the flux is considered
positive for a species transferring from phase G to phase L.
2.1. Species and Components. Species. The system has S

species living in the S-dimensional set . Among these S species,
Sf species are present in phase F and constitute the set f , with F
∈ {G, L}, f ∈ {g, l}, and S = Sg + Sl. These Sf species are involved
in Rf reactions in phase F, of which Rf,k are kinetically controlled
reactions and Rf,e are instantaneous equilibria, with Rf = Rf,k +
Rf,e. The subscripts (·)k and (·)e refer to kinetically controlled
reactions and instantaneous equilibria, respectively. Note that if
a species is present in both phases, it contributes to both Sg and
Sl.
Kinetic and Equilibrium Species. The set f can be

partitioned into the set f,k of kinetic species and the
complementary set f,e of equilibrium species. The Sf,k kinetic
species are only involved in the Rf,k kinetically controlled
reactions, that is, not in the instantaneous equilibria. The Sf,e
equilibrium species are involved in the Rf,e instantaneous
equilibria (and possibly in some of the kinetically controlled
reactions). Hence, = ∪f f,k f,e and Sf = Sf,k + Sf,e.

Equilibrium Components. An equilibrium component is a
molecule constituent that is conserved by instantaneous
equilibria. The set f,c contains the Sf,c equilibrium components
that are found in f,e and whose total numbers of moles are
conserved in the instantaneous equilibria. The subscript (·)c will
be used to indicate an equilibrium component that is conserved
by the instantaneous equilibria.

Mix of Available Measurements. To complete the
terminology, let us define the set f,a describing a mix of Sf,a
available measurements that includes some of the kinetic
species, equilibrium species, and equilibrium components.

Example. To illustrate the notation, let us consider the
instantaneous equilibrium reaction Q+ + OCl− ⇋ QOCl that
involves three equilibrium species and the two equilibrium
components labeled Qc (including Q+ and QOCl) and OClc
(including OCl− and QOCl). The reduction of the Sf,e
equilibrium species to the Sf,c equilibrium components is a
linear operation that can be represented by the matrix Ef of
dimension Sf,c × Sf,e.

12 The matrix Ef consisting of 0 and 1
elements indicates in which equilibrium species the various
equilibrium component are present: a 1 in a given row and
column indicates that the equilibrium component in that row is
present in the equilibrium species of the corresponding column.
In this simple example, with f,e = {Q+, OCl−, QOCl} and f,c =
{Qc, OClc},

=
⎡
⎣⎢

⎤
⎦⎥E

1 0 1
0 1 1f

To continue with this example, consider the aqueous phase
(denoted as phase G) of the heterogeneous oxidation of benzyl
alcohol with hypochlorite that will be described in the case study
of section 5:

⇋ ++ −R : QCl Q Cl (kinetically controlled)g,1 (1a)

+ ⇋+ −R : Q OCl QOCl (fast)g,2 (1b)

+ ⇋+ −R : Q Br QBr (fast)g,3 (1c)

This reaction system in phase G consists of one kinetically
controlled reaction (eq 1a) and two instantaneous equilibria
(eqs 1b and 1c), thus giving Rg = 3, Rg,k = 1, and Rg,e = 2. The set
of species in this phase is g = {Cl−, QCl, Q+, OCl, Br−, QOCl,

OBr}, with the set of kinetic species g,k = {Cl−,QCl} and the

set of equilibrium species g,e = {Q+, OCl−, Br−, QOCl, QBr}.

The set of components g,c = {Qc, OClc, Brc} can be

constructed from g,e using the (3 × 5) matrix Eg,

where the element Eg(i,j) is the number of times the equilibrium
component i appears in the equilibrium species j.
For a reaction system consisting of both kinetically controlled

and equilibrium reactions, the balance equations for phase F can
be written in two ways, namely, in terms of the set of all species
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f or in terms of the kinetic species f,k and the equilibrium
components f,c, as discussed in the next two subsections.
2.2. Balance Equations for All Species. The mole balance

equations for all species f in phase F are13

ζ ω̇ = ± + −
=

t t t t t tn N r W W u n
n n

( ) ( ) ( ) ( ) ( ) ( ),
(0)

f f
T

v,f m,f in,f in,f f f

f f0

(2)

where nf is the Sf-dimensional vector of numbers of moles, Nf
T is

the Sf × Rf stoichiometric matrix, rv,f(t) ≔ Vf(t) rf(t) is the Rf-
dimensional vector of reaction rates, with Vf the volume of phase
F,Win,f the Sf × pf inlet matrix expressing the composition of the
inlets to phase F, uin,f the pf-dimensional vector of inlet mass
flow rates to phase F, ω(t) ≔ uout,f(t)/mf(t) is the inverse
residence time, with uout,f the outlet mass flow rate and mf the
mass of phase F, and nf0 is the vector of initial numbers of moles.
The pm mass transfers are treated as pseudo-inlets with
unknown flow rates and involve the Sf × pm mass-transfer
matrix Wm,f, where in each column the elements corresponding
to a transferring species are one and the other elements are zero,
and ζ is the pm-dimensional vector of mass-transfer rates
expressed in moles/time units. By convention, a positive sign is
assigned to mass transfers from phase G to phase L, and a
negative sign in the other direction, which leads to the signs
−Wm,gζ(t) for phase G and +Wm,lζ(t) for phase L. Note that the
reaction rate vector rv,f is of dimension Rf, that is, it includes both
the kinetically controlled and the equilibrium reactions.
Concentrations can be computed as cf(t) ≔ nf(t)/Vf(t).
2.3. Balance Equations for Kinetic Species and

Equilibrium Components. From Sf = Sf,k + Sf,e, the (Sf ×
Rf)-dimensional stoichiometric matrix Nf

T can be partitioned
into two submatrices, the (Sf,k × Rf)-dimensional matrix Nf,k

T

associated with the Sf,k kinetic species and the (Sf,e × Rf)-
dimensional matrix Nf,e

T associated with the Sf,e equilibrium
species:

=
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥N

N

N
f
T f,k

T

f,e
T

(3)

Similarly, the matrices Win,f and Wm,f are partitioned into
submatrices that are associated with the Sf,k kinetic species,
Win,f,k andWm,f,k, and the Sf,e equilibrium components,Win,f,e and
Wm,f,e:

= =
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥W

W

W
W

W

W
,in,f

in,f,k

in,f,e
m,f

m,f,k

m,f,e (4)

Considering that the numbers of moles of the equilibrium
components can be written as nf,c(t) = Ef nf,e(t), the mole
balance equations for the Sf,k kinetic species and the Sf,c
components read:

ω

ζ
̇

̇
= ±

+ −

̇

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

    

   

t

t
t t

t t
t

t

n

n

N

E N
r

W

E W

W

E W
u

n

n

( )

( )
( ) ( )

( ) ( )
( )

( )

t

,e

t

n N W

W n

f,k

f,c

( )

f,k
T

f f,e
T v,f

m,f,k

f m,f

in,f,k

f in,f,e
in,f f

f,k

f,c

( )

f f
T m,f

in,f f (5)

where nf,k is the Sf,k-dimensional vector of numbers of moles of
the kinetic species, nf,c is the Sf,c-dimensional vector of numbers
of moles of the equilibrium components, and (·) indicates a
quantity of dimension S̅f ≔ Sf,k + Sf,c ≤ Sf. The initial conditions
for eq 5 are

̅ = =
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥n

n

n

n

n(0)
(0)

(0)
f

f,k

f,c

f,k0

f,c0

The matrix N̅f
T of dimension S ̅f × Rf has a special structure

with only zeros in the Rf,e columns corresponding to the
instantaneous equilibria. This follows from the way the kinetic
species and the equilibrium components have been chosen,
namely, (i) the Sf,k kinetic species are only involved in the Rf,k
kinetically controlled reactions and not in the instantaneous
equilibria and (ii) the Sf,c equilibrium components are conserved
by the instantaneous equilibria, and therefore all their
corresponding stoichiometric coefficients are zero. It follows
that N̅f

T has rank Rf,k ≤ Rf, and the columns corresponding to the
instantaneous equilibria can be discarded. The resulting matrix
N̅f,k

T has dimension Sf̅ × Rf,k and the vector rv,f reduces to rv,f,k of
dimension Rf,k. The mole balance eq 5 becomes

ζ ω̇ = ̅ ± ̅ + ̅ − ̅
̅ = ̅

t t t t t tn N r W W u n

n n

( ) ( ) ( ) ( ) ( ) ( ),

(0)
f f,k

T
v,f,k m,f in,f in,f f f

f f0

(6)

Note that because Rf,e columns of N̅f
T are 0S̅f, it follows from

the rank-nullity theorem that Sf,c + Rf,e = Sf,e.
To illustrate the matrix notation, consider again the reaction

system given by eqs 1a−1c, with Rg = 3, Rg,k = 1, Rg,e = 2, and Sg
= 7, Sg,k = 2, Sg,e = 5, and Sg,c = 3. The stoichiometric matrix Ng

T

with respect to all species (Cl−, QCl, Q+, OCl−, Br−, QOCl,
QBr) can be written as

=

−
− −
−

−

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

N

1 0 0
1 0 0

1 1 1
0 1 0
0 0 1
0 1 0
0 0 1

g
T

The corresponding stoichiometric matrix in terms of the kinetic
species and the equilibrium components is

̅ = =
−⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
N

N

E N

1 0 0
1 0 0

1 0 0
0 0 0
0 0 0

g
T g,k

T

g g,e
T

The last two columns of the matrix N̅g
T corresponding to the

equilibrium reactions are all zeros and hence can be discarded,
thus giving:

̅ =
−

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
N

1
1

1
0
0

g,k
T
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3. TRANSFORMATION TO VESSEL EXTENTS

Extent-based incremental identification encompasses two steps;
namely (i) the measured numbers of moles are transformed to
vessel extents, and (ii) each extent is used individually to identify
the corresponding rate law and parameters.4 This section recalls
the linear transformation to vessel extents, first in terms of the
numbers of moles of all species and then in terms of the
numbers of moles of the kinetic species and the equilibrium
components. The choice of the transformation depends on the
number and the nature of the available measurements. Then, the
general case of a mix of available measurements is considered.
Finally, a transformation that uses flow rate information to
reduce the number of required measured species is also
presented.
3.1. Using Measurements of All Species. Let rank ([Nf

T

± Wm,f Win,f nf0]) = df, with df ≔ Rf + pm + pf + 1, and the (Sf ×
qf)-dimensional matrix Pf describe the null space of the matrix
[Nf

T ± Wm,f Win,f nf0]
T, with qf ≔ Sf − df. Then, the

transformation f = [Nf
T±Wm,fWin,f nf0 Pf]

−1 converts the
numbers of moles nf into Rf extents of reaction xr,f, pm extents of
mass transfer xm,f, pf extents of inlet xin,f, one extent of initial
conditions xic,f, and qf invariants xiv,f that are identically equal to
zero:

=

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

t

t

t

x t

t

t

x

x

x

x

n

( )

( )

( )

( )

( )

( )

r,f

m,f

in,f

ic,f

iv,f

f f

(7)

The transformation f transforms eq 2 to the following system
of variant and invariant states:

ζ

ω

ω

ω

ω

̇ = − =

̇ = − =

̇ = − =

̇ = − =

=

t t t t

t t t t

t t t t

x t t x t x

t

x r x x 0

x x x 0

x u x x 0

x 0

( ) ( ) ( ) ( ), (0)

( ) ( ) ( ) ( ), (0)

( ) ( ) ( ) ( ), (0)

( ) ( ) ( ), (0) 1

( )

R

p

p

q

r,f v,f f r,f r,f

m,f f m,f m,f

in,f in,f f in,f in,f

ic,f f ic,f ic,f

iv,f

f

m

f

f (8)

The dynamic expressions in eq 8 represent the vessel extents
associated with the reactions rv,f(t), the mass transfers ζ(t), the
inlet flows uin,f(t), and the initial conditions nf0. The vessel
extents represent the amount of material produced, consumed,
or handled by a particular rate process that is still in the reactor
at time t, the negative terms on the right-hand side of eq 8
expressing the amount of material that has left the reactor via the
outlet stream. The invariants express relationships between
numbers of moles that must be met at all times. A detailed
description and interpretation of the transformation is available
in Rodrigues et al.14

Using −
f

1 = [Nf
T±Wm,fWin,f nf0 Pf], and taking into account

the fact that the invariants are identically equal to zero, the
numbers of moles can be reconstructed as

= ± + +t t t t x tn N x W x W x n( ) ( ) ( ) ( ) ( )f f
T

r,f m,f m,f in,f in,f f0 ic,f

(9)

Remark 1. The Rf,k extents of reaction xr,f,k capture the effect
of the kinetically controlled reactions, whereas the remaining Rf,e
extents xr,f,e describe the effect of the instantaneous thermody-
namic equilibria on the numbers of moles of each species, thus

=
⎡
⎣⎢

⎤
⎦⎥x

x

xr,f
r,f,k

r,f,e

Remark 2. The mole balance eq 2 contains qf invariants,
which can be expressed as algebraic relationships:

=tP n 0( ) qf
T

f f (10)

For batch and semi-batch reactors, the numbers of invariants
are qf = Sf − Rf − pm and qf = Sf − Rf − pm − pf, respectively, with
the invariant relationships being Pf

T (nf(t) − nf0) = 0qf (see ref 15
for details).
These invariant relationships can be used for data

reconciliation.15,16

3.2. Using Measurements of Kinetic Species and
Equilibrium Components. Let rank ([N̅f,k

T ± W̅m,f W̅in,f n̅f0])
= d ̅f, with df̅ ≔ Rf,k + pm + pf + 1, and the (Sf̅ × qf̅) matrix P̅f
denote the null space of [N̅f,k

T ± W̅m,f W̅in,f n̅f0]
T, with qf̅ ≔ S̅f −

d ̅f. Note that qf̅ = qf since Sf = Sf,k+ Sf,e, Rf = Rf,k+Rf,e, and Sf,c + Rf,e

= Sf,e. Then, the matrix ̅f = [N̅f
T ± W̅m,f W̅in,f n̅f0 P̅f]

−1

transforms the Sf̅-dimensional vector of numbers of moles n̅f
of the kinetic species and equilibrium components into Rf,k
extents of kinetically controlled reaction xr,f,k, pm extents of mass
transfer xm,f, pf extents of inlet xin,f, one extent of initial
conditions xic,f, and qf̅ invariants xi̅v,f that are identically equal to
zero, as

̅

= ̅ ̅

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

t

t

t

x t

t

t

x

x

x

x

n

( )

( )

( )

( )

( )

( )

r,f,k

m,f

in,f

ic,f

iv,f

f f

(11)

The transformed system reads

ζ

ω

ω

ω

ω

̇ = − =

̇ = − =

̇ = − =

̇ = − =

̅ = ̅

t t t t

t t t t

t t t t

x t t x t x

t

x r x x 0

x x x 0

x u x x 0

x 0

( ) ( ) ( ) ( ), (0)

( ) ( ) ( ) ( ), (0)

( ) ( ) ( ) ( ), (0)

( ) ( ) ( ), (0) 1

( )

R

p

p

q

r,f,k v,f,k f r,f,k r,f,k

m,f f m,f m,f

in,f in,f f in,f in,f

ic,f f ic,f ic,f

iv,f

f,k

m

f

f

(12)

Compared to the transformation matrix f , the matrix ̅f
computes Rf,k reaction extents, as it only extracts extents
corresponding to the kinetically controlled reactions. The
numbers of moles of the kinetic species and equilibrium
components can then be reconstructed as

̅ = ̅ ± ̅ + ̅ + ̅t t t t x tn N x W x W x n( ) ( ) ( ) ( ) ( )f f,k
T

r,f,k m,f m,f in,f in,f f0 ic,f

(13)

Remark 3. The transformation of kinetic species and
equilibrium components to extents does not require the
knowledge of equilibrium constants. However, as will be
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discussed in section 4.1, the reconstruction of all species from
the measurements of the kinetic species and equilibrium
components will require the knowledge of these constants.
Remark 4. The mole balance in eq 5 contains qf̅ invariants,

which can be expressed as the algebraic relationships.

̅ ̅ = ̅tP n 0( ) qf
T

f f (14)

For batch and semibatch reactors, the numbers of invariants
are qf̅ = S ̅f − Rf,k − pm and qf̅ = S ̅f − Rf,k − pm − pf, respectively,
with the invariant relationships being P̅f

T (n̅f(t) − n̅f0) = 0q̅f (see
ref 15 for details).
3.3. Using a Mix of Available Measurements. For the

cases where the two previous approaches are not feasible
because of a lack of rank condition for the transformation (either
qf < 0 or qf̅ < 0), it is possible to include measurements of
equilibrium species to reconstruct the concentrations of all
species. For this, assume that the measurements of at least Sf,a =
d ̅f kinetic species, equilibrium components, and equilibrium
species are available. Provided that the values of all Rf,e
equilibrium constants are known, the numbers of moles of all
Sf species and Sf,c equilibrium components can be computed by
solving a set of nonlinear algebraic equations.
The number of relationships necessary to compute the

numbers of moles of all Sf species and Sf,c equilibrium
components from the Sf,a measurements can be assessed as
follows:
• Sf + Sf,c quantities to compute
• Sf,a available measurements
• Sf + Sf,c − Sf,a = Rf,e + Sf,c + qf independent relationships,

since Sf = df + qf = df̅ + Rf,e + qf and Sf,a = df̅.
These relationships can be put together as follows: First, we

assume that Rf,e equilibrium relationships are available. For the
notation, let us define the value of the equilibrium constant of
the jth instantaneous equilibrium in the phase F as Kf,j and its
model structure as gf,j(·) and group all these values and
structures into the vectors Kf and gf(·), respectively. Second,
there are Sf,c numbers of moles of equilibrium components that
can be computed from the knowledge of matrix Ef, which
converts the equilibrium species into the equilibrium
components. Third, there are qf invariant relationships defined
by eq 10 that can be used. Hence, there are as many equations as
unknowns, and the following system of Rf,e + Sf,c + qf nonlinear
equations can be solved for the Rf,e + Sf,c + qf unknown numbers
of moles that constitute the set complementary to f,a.

− =( ) Rg K 0 equilibrium relations
t

V t R
n

f
( )

( ) f f,e
f,e

f,e (15a)

− =t t Sn E n 0( ) ( ) equilibrium componentsSf,c f f,e f,cf,c

(15b)

=t qP n 0( ) invariant relationshipsf
T

f f (15c)

If Sf,a > df̅, the system of eqs 15 is solved in the least-squares
sense, since there are more equations than unknowns. Note that
the invariant relationships for batch and semibatch reactors read
Pf
T (nf(t) − nf0) = 0qf.
This system of nonlinear algebraic equations can be solved for

discrete time instants using the Newton−Raphson algo-
rithm.12,17 Then, the extents can be computed either in terms
of all species (using the transformation of section 3.1) or in
terms of the kinetic species and equilibrium components (via
the transformation of section 3.2). Note that, since qf̅ = qf, the

invariant relationships in terms of kinetic species and
equilibrium components given by eq 14 can be used in place
of eq 15.

4. EXTENT-BASED MODEL IDENTIFICATION
Once extents have been computed from measured numbers of
moles (or concentrations) using any of the approaches
described in section 3, model identification and parameter
estimation can be performed for each reaction and each mass
transfer individually. For the case where the numbers of moles of
the kinetic species and equilibrium components are measured,
the extents can be computed using the approach outlined in
section 3.2. However, since the rate expressions remain
functions of the equilibrium species, and not of the equilibrium
components, this requires redistributing the numbers of moles
of the components to the species using the equilibrium
constants.

4.1. Computation of Concentrations of Equilibrium
Species. To compute the concentrations of the equilibrium
species from the concentrations of the equilibrium components,

the Sf,e-dimensional vector of concentrations =tc ( )
t

V t

n
f,e

( )

( )
f,e

f
is

partitioned into independent and dependent equilibrium species,
whose concentrations are cf,e,i (of dimension Sf,e,i) and cf,e,d (of
dimension Sf,e,d), respectively, with the number of independent
equilibrium species being equal to the number of equilibrium
components, Sf,e,i = Sf,c. The concentrations of the dependent
species are computed as functions of the concentrations of the
independent species via the knowledge of the equilibrium
constants.
The concentrations of the independent species cf,e,i can be

computed by forcing the component concentrations Ef cf,e(t) to
match the measured values cf̃,c(t), under Sf,e,d nonlinear
constraints hf(·) corresponding to the known equilibrium
relationships. The expressions of the equilibrium constants qf
are rearranged to explicit concentrations of the dependent
equilibrium species cf,e,d(t) = hf(cf,e,i(t), Kf,1, ..., Kf,Rf,e

).

̃ − = ∀ ∈

=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥t

t

t
t t t

t t K K

c E
c

c
0

c h c

( )
( )

( )
{ , ..., }

( ) ( ( ), , ..., )

S H

R

f,c f
f,e,i

f,e,d
1

f,e,d f f,e,i f,1 f,

f,c

f,e

(16)

where the symbol ·͠( ) is used to define a measured quantity, Kf,j, j
= 1, ..., Rf,e, denotes the value of the jth equilibrium constant in
phase F, the matrix Ef of dimension (Sf,c × Sf,e) is used to convert
the equilibrium species into equilibrium components, and H is
the number of measurements points. In practice, eq 16 is
typically solved for cf,e,i(t) using the Newton−Raphson
algorithm.12,17

4.2. Estimation of Kinetic Parameters. For each rate
process to be modeled, a set of candidate models is postulated,
and a nonlinear regression problem is solved for each of these
candidates. For example, the regression problem to be solved for
the ith reaction based on all concentration measurements is

∑ θ

θ θ θω

̃ − ∀ =

̇ = ̃ −

=

θ =

x t x t i R

x t r t t x t

x

c

min ( ( ) ( , )) , 1 ,...,

s.t. ( , ) ( ( ), ) ( ) ( , ),

(0) 0

h

H

h h
1

r,f,i r,f,i f,i
2

f,k

r,f,i f,i v,f,i f f,i f r,f,i f,i

r,f,i

f,i

(17)
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where θf,i is a vector of uncertain parameters for the reaction rate
rv,f,i and cf(t) = nf(t)/Vf(t) is the Sf-dimensional concentration
vector. A similar problem can be formulated when working with
the reduced set of kinetic species and equilibrium components,
or when a mass-transfer expression has to be identified from its
corresponding extent of mass transfer. Note that the parameter
estimation problem has been formulated in the least-squares
sense.18

4.3. Estimation of Equilibrium Constants. If the numbers
of moles of all species are measured, it is possible to estimate the
equilibrium constant for each instantaneous equilibrium. The
equilibrium constant Kf,j of the jth instantaneous equilibrium in
phase F has the model structure gf,j(·). This model structure
provides a constant valuethe equilibrium constantonce the
involved concentrations have reached their thermodynamic
equilibrium. This equilibrium is fulfilled at all times since the
instantaneous reactions are constantly at quasi steady state.
Hence, it is possible to compute the value of the equilibrium
constant of the jth instantaneous equilibrium at any time as
Kf,j(t) = gf,j(cf,e(t)).
One can compute an estimate of the equilibrium constant at

time th as K̃f,j(th) = gf,j(cf̃,e(th)). In the absence of measurement
noise, the value computed at time th is the same as the value
computed at time th+1. However, since this is no longer true in
the presence of noise, one typically computes a reliable estimate
by averaging over the H time instants t1, ..., tH. Such an estimator
is statistically justified in the presence of zero-mean white noise.
To identify the equilibrium expression from a set of candidate

models, one can select the expression with the minimal variance
computed for the time instants t1, ..., tH. The mean value of this
model expression is an approximation of the equilibrium
constant. For example, for the j instantaneous reaction, given
the two candidate models gf,j

(1)(·) and gf,j
(2)(·) and assuming

Var[gf,j
(1)(cf̃,e(th))] < Var[gf,j

(2)(cf̃,e(th))], one identifies the first
model expression gf,j

(1)(·) and estimates the equilibrium constant

as ̃ = ∑ ̃=K g tc( ( ))j H h
H

j hf,
1

1 f,
(1)

f,e .

In more general terms, the estimation of the equilibrium
constant Kf,j consists in finding, among the set of possible
models j = {gf,j

(1), ..., gf,j
(Mj)} of dimension Mj, the pair of

equilibrium constant and model structure K̃f , j*(th) =

gf,j
(m*)(cf̃,e(th)) of minimal variance computed over the time
instants th ∈ {t1, ..., tH}:

* = ̃

∀ = ∈ ∈

m g

m g t t t

carg min Var[ ( (t ))]

1 ,..., , , { , ..., }
m j

m
h

j j
m

h H

f,
( )

f,e

f,
( )

j 1 (18)

The equilibrium constant can be estimated from gf,j
(m*)(·) as

̃ = ∑ ̃=
*K g tc( ( ))j H h

H
j
m

hf,
1

1 f,
( )

f,e .

5. CASE STUDY

The application of the extent-based incremental identification to
two-phase reaction systems is illustrated via the simulated
example of the oxidation of benzyl alcohol by hypochlorite in a
batch reactor.19 Three cases are considered, namely, (i)
measurements of all species in both phases, (ii) measurements
of the kinetic species and equilibrium components in the phase
where the instantaneous equilibria take place (phase G), and
(iii) measurements of a mix of kinetic species, equilibrium
components, and equilibrium species in phase G.

5.1. Reaction System and Available Measurements.
The reaction system consists of an aqueous phase (labeled G)
with one kinetically controlled reaction and two instantaneous
equilibria (Rg = 3, Rg,k = 1, Rg,e = 2):

⇋ ++ −R : QCl Q Cl (kinetically controlled)g,1 (19a)

+ ⇋+ −R : Q OCl QOCl (fast)g,2 (19b)

+ ⇋+ −R : Q Br QBr (fast)g,3 (19c)

and an organic phase (labeled L) with a single kinetically
controlled reaction (Rl = Rl,k = 1):

+ → + +R : QOCl C H CH OH QCl C H CHO H Ol 6 5 2 6 5 2
(20)

The volume of both phases is assumed to be constant and equal
to 0.5 L. The mass-transfer resistance between the two phases is
described by a thin film on each side of the interface, under quasi
steady-state conditions. The characteristics of these two films
surface area, mass-transfer rate laws, and parametersare
assumed to be the same.
In the aqueous phase, cetyltrimethylammonium bromide

(QBr) dissociates instantaneously to form the ions Q+ and Br−

(eq 19c). The Q+ ions react instantaneously with the
hypochlorite ions (OCl−) to form QOCl (eq 19b), which
transfers to the organic phase. In the organic phase, benzyl
alcohol (C6H5CH2OH) in excess reacts with QOCl coming
from the aqueous phase and forms benzyl aldehyde
(C6H5CHO), QCl, and water. The species QCl formed in the
organic phase transfers to the aqueous phase, where its
dissociation in ions Q+ and Cl− (eq 19a) is kinetically
observable.
The reaction and mass-transfer rate expressions as well as the

equilibrium constants used for simulating the reaction schemes
19 and 20 are

= − + −r t k c t k c t c t( ) ( ) ( ) ( )g g,1 QCl,g g,2 Q ,g Cl ,g (21)

=r t k c t( ) ( )l l QOCl,l (22)

ζ = −t k A V c t c t( ) ( ( ) ( ))QOCl m,QOCl l l QOCl,g QOCl,l (23)

ζ = −t k A V c t c t( ) ( ( ) ( ))QCl m,QCl l l QCl,g QCl,l (24)

=
+ −

K
c t

c t c tg,2
( )

( ) ( )
QOCl,g

Q ,g OCl ,g (25)

=
+ −

K
c t

c t c tg,3
( )

( ) ( )
QBr,g

Q ,g Br ,g (26)

with Al being the specific interfacial area. The various sets of
species present in this reaction system are listed in Table 1. Note
that =l,k l with l,e and l,c empty.
The stoichiometric matrices Ng

T and Nl
T and the mass-transfer

matrices Wm,g and Wm,l are
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0 0
0 1
0 0
0 0
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1 0
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T

l
T
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m,l

The Sg,e = 5 equilibrium species in the aqueous phase G can be
reduced to Sg,c = 3 equilibrium components that represent the
following conserved quantities:

≔ + +

= + +

+

+ − −

c c c c

c K c K c(1 )

Q ,g Q ,g QOCl,g QBr,g

Q ,g g,2 OCl ,g g,3 Br ,g

c

(27a)

≔ + = +− − +c c c c K c(1 )OCl ,g OCl ,g QOCl,g OCl ,g g,2 Q ,gc (27b)

≔ + = +− − +c c c c K c(1 )Br ,g Br ,g QBr,g Br ,g g,3 Q ,gc (27c)

where the concentrations of the equilibrium products cQOCl,g and
cQBr,g have been replaced by their expression obtained from the
thermodynamic equilibrium (eqs 25 and 26). The values of the
model parameters used in the simulation are given in Table 2.
The aqueous phase G is loaded with 0.125 kmol of OCl− in

ionic form, 0.04 kmol of QBr, and 0.005 kmol of QCl. The initial
amount of benzyl alcohol in the organic phase L is 0.968 kmol.
The numbers of moles in both phases are simulated for 10 min,
and all the measured numbers of moles are corrupted with 2%
zero-mean Gaussian noise with respect to the maximal number
of moles of each species. Another set of data is obtained by
corrupting the measured numbers of moles with 5% zero-mean

Gaussian noise to be used for parameter estimation in section
5.3.

5.2. Computation of Extents. For the computation of
extents, three situations with the following measurements are
considered: (case 1) all species in both phases, (case 2) all
species in phase L and the kinetic and equilibrium species in
phase G, and (case 3) all species in phase L and a mix of kinetic
species, equilibrium components, and equilibrium species in
phase G.

5.2.1. Case 1: Measurement of All Species. The extents are
obtained from the measured numbers of moles using the
transformations l and g of section 3.1. For phase L, Rl = 1
extent of reaction and pm = 2 extents of mass transfers are
extracted from the Sl = 5 measured numbers of moles. For phase
G, Rg,k = 1 extent of (kinetically controlled) reaction, Rg,e = 2
extents of equilibria, and pm = 2 extents of mass transfers are
extracted from the Sg = 7 measured numbers of moles. The
measured numbers of moles as well as the extents of reaction
and mass transfer are shown in Figure 1. Note that, since
C6H5CH2OH is in large excess, its concentration in the organic
phase is constant and thus not shown. The amount of Q+ in the
aqueous phase is also too small to be represented in Figure 1. In
addition, since the reaction system has no outlet (batch
conditions), the extents of mass transfer xm,g and xm,l are the
same.

Minimal Number of Measured Species. The transformations
of section 3.1 require the measurement of Rl + pm = 3 species in
the organic phase and Rg + pm = 5 species in the aqueous phase.
This condition can be relaxed by considering the dynamic
relationship that exists between xm,g(t) and xm,l(t). In the case of
steady-state mass transfer, xm,g(t) and xm,l(t) only differ due to
ωg(t) and ωl(t). If this information is known or measured, the
extents of mass transfer in one phase can be converted to the
extents of mass transfer in the other phase.8 This allows
reducing the number of required measured species by two,
down to a minimum of six in total. Among these six species, Rl =
1 numbers of moles must be measured in the organic phase,
while Rg,k + Rg,e = 3 numbers of moles must be measured in the
aqueous phase, with the remaining pm = 2 measured numbers of
molesrequired to compute the extents of mass transfer
coming from either of the two phases.

5.2.2. Case 2: Measurement of All Species in Phase L and of
Kinetic Species and Equilibrium Components in Phase G. The
extents are obtained using the transformation l of section 3.1
for the organic phase L and the transformation ̅g of section 3.2
for the aqueous phase G. For phase L, Rl = 1 extent of reaction
and pm = 2 extents of mass transfers are extracted from the Sl = 5
measured numbers of moles. For phase G, Rg,k = 1 extent of
(kinetically controlled) reaction and pm = 2 extents of mass
transfers are computed from the Sg,k + Sg,c = 5 measured
numbers of moles. Using the knowledge of equilibrium
constants, the numbers of moles of the Sg,c = 3 components
are redistributed into the Sg,e = 5 equilibrium species according
to eq 16 to obtain the numbers of moles of the Sg = 7 species in

Table 1. Sets of Species and Components Involved in the
Oxidation of Benzyl Alcohol with Hypochlorite

set species dimension

l {QOCl, C6H5CH2OH, QCl, C6H5CHO, H2O} Sl = 5

l,k {QOCl, C6H5CH2OH, QCl, C6H5CHO, H2O} Sl,k = 5

l,e {⌀} Sl,e = 0

l,c {⌀} Sl,c = 0

g {Cl−, QCl, Q+, OCl−, Br−, QOCl, QBr } Sg = 7

g,k {Cl−, QCl } Sg,k = 2

g,e {Q+, OCl−, Br−, QOCl, QBr } Sg,e = 5

g,c {Qc, OClc, Brc} Sg,c = 3

m {QOCl, QCl} Sm = 2

Table 2. Kinetic, Thermodynamic, and Surface Parameters Used in the Simulation

parameter value unit parameter value unit

kg,1 1.663 × 10−2 s−1 kl 22.7 s−1

kg,2 2.5 m3 kmol−1 s−1 km,QOCl 8.02 × 10−5 m s−1

Kg,2 1.157 × 103 m3 kmol−1 km,QCl 8.91 × 10−5 m s−1

Kg,3 0.235 × 103 m3 kmol−1 Al 200 m−1
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phase G. The measured numbers of moles and extents are
shown in Figure 2.
Minimal Number of Measured Species. The use of the

transformation of section 3.1 requires the measurement of Rl +
pm = 3 species in the organic phase, whereas the transformation
of section 3.2 requires Rg,k + pm = 3 kinetic species and
equilibrium components to be measured in the aqueous phase.
As mentioned earlier, this requirement can be relaxed using the
dynamic relationship between the extents of mass transfer in
different phases, which reduces the number of required
measured species by two down to a minimum of four in total.
Among these four species, Rl = 1 number of moles must be
measured in the organic phase, while Rg,k = 1 number of moles
must be measured in the aqueous phase, with the remaining pm
= 2 measured numbers of molesrequired to compute the
extents of mass transfercoming from either of the two phases.

5.2.3. Case 3: Measurement of All Species in Phase L and of
a Mix of Species in Phase G. Let the set of available
measurements in the aqueous phase be {Qc,g, Qg

+, QClg} of
dimension Sg,a = Rg,k + pm. Since this set consists neither of all Sg
species nor of the Sg,k kinetic species and the Sg,c equilibrium

components, the transformations g and ̅g cannot be applied.
Instead, the procedure described in section 3.3 is used to
compute the numbers of moles of all Sg = 7 species and Sg,c = 3
equilibrium components, knowing the structure of the
equilibrium relationships and the values of the equilibrium
constants. The Rf,e + Sf,c + qf = 2 + 3 + 2 = 7 equations used to
compute the Sg + Sg,c − Sg,a = 7 + 3 − 3 = 7 unknown states at
each time instant are as follows:

Figure 1. Case 1: Measurement of all species. (Top, a and b) simulated (noise-free, continuous lines) and measured (noisy, 2%) numbers of moles of
species H2O (○), QCl (*), and QOCl (△) in the organic phase and of species Cl− (○), QCl (*), OCl− (×), Br− (•), QOCl (△), and QBr (◊) in the
aqueous phase. (Center, c and d) Experimental (computed from measurements) and modeled (continuous and dashed lines) extents of reaction in the
organic phase, with xr,l (○), and in the aqueous phase, with xr,g,k (×), xr,g,e,1 (□), and xr,g,e,2 (○). (Bottom e) Experimental and modeled (continuous
lines) extents of mass transfer of QOCl (*) and QCl (○) in the aqueous phase.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.6b01283
Ind. Eng. Chem. Res. 2016, 55, 8034−8045

8041

http://dx.doi.org/10.1021/acs.iecr.6b01283


− =
+ −

n t

n t n t
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( ) ( )
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QOCl,g

Q ,g OCl ,g
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− =
+ −
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QBr,g
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− + + =+n t n t n t n t( ) ( ( ) ( ) ( )) 0Q ,g Q ,g QOCl,g QBr,gc (28c)

− + =−n t n t n t( ) ( ( ) ( )) 0OCl ,g OCl ,g QOCl,gc (28d)

− + =−n t n t n t( ) ( ( ) ( )) 0Br ,g Br ,g QBr,gc (28e)

+ + −

= + + −

− − − +

− − − +

n t n t n t n t

n n n n

( ) ( ) ( ) ( )OCl ,g Cl ,g Br ,g Q ,g

OCl ,g0 Cl ,g0 Br ,g0 Q ,g0 (28f)

+ = +− −n t n t n n( ) ( )Br ,g QBr,g Br ,g0 QBr,g0 (28g)

Eqs 28a and 28b are equilibrium relations; eqs 28c, 28d, and 28e
are derived from the definition of equilibrium components; and
eqs 28f and 28g are invariant relationships under batch
conditions (see comment on eq 10 in section section 3.1).
The measured and computed numbers of moles in the aqueous
phase are shown in Figure 3. The extents can be computed using
the transformation g or ̅g (not shown).

5.3. Model Identification and Parameter Estimation.
For the kinetically controlled reactions, the rate laws are

Figure 2. Case 2: Measurement of all species in phase L and of kinetic species and equilibrium components in phase G. (Top, a and b) Simulated
(noise-free, continuous lines) and measured (noisy, 2%) numbers of moles of species H2O (○), QCl (*), and QOCl (△) in the organic phase and of
kinetic species Cl− (○) and QCl (*) and equilibrium components Qc (□), OClc (×), and Brc (△) in the aqueous phase. (Center, c) Simulated
(continuous lines) and reconstructed numbers of moles of the equilibrium species OCl− (×), Br− (•), QOCl (△), and QBr (◊) in the aqueous phase.
(Center, d; bottom, e) Experimental (computed from measurements) and modeled (continuous lines) extents of (kinetically controlled) reaction in
the aqueous and organic phases. (Bottom, f) Experimental and modeled (continuous lines) extents of mass transfer of species QOCl (*) and QCl (○)
in the aqueous phase.
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identified from the extents xr,l, xr,g (case 1), and xr,g,k (case 2)
according to eq 17. The identification results are summarized in
Table 3 for two competing models in each phase. Based on the
residual sum of squares (RSS), the rate models rg

(2) and rl
(2),

which correspond to the rate expressions 21 and 22 used in the
simulation, are correctly identified. Note that the mass-transfer

rate expressions are assumed to be known, thus limiting the
identification to the estimation of their parameters.
As shown in Table 4, the rate parameters kg,1, kg,2, kl, km,QOCl,

and km,QCl are correctly estimated within 99% confidence
regions. Figure 4 shows the resulting fit for the extent of reaction
in the organic phase when the correct rate expression is used,

Figure 3. Case 3: Measurement of all species in phase L and of a mix of species in phase G. (Top, a and b) Simulated (noise-free, continuous lines) and
measured (noisy, 2%) numbers of moles of component Qc (□), kinetic species QCl (*), and equilibrium species Q+ (▽) in the aqueous phase (a) and
reconstructed values of equilibrium components OClc (×) and Brc (△) in the aqueous phase (b). (Bottom c) Simulated (continuous lines) and
reconstructed numbers of moles of the species OCl− (×), Br− (•), QOCl (△), Cl− (○), and QBr (◊) in the aqueous phase.

Table 3. Extent-Based Incremental Model Identification of the Kinetically Controlled Reactions in Phases G and L (2% noise),
with the Corresponding Residual Sum of Squares (RSS)

RSS RSS

Rg,1 rate expression xr,g (case 1) xr,g,k (case 2) Rl rate expression xr,l

rg
(1) kg,2

(1)cQ+
,gcCl−,g 2.01 × 10−2 2.04 × 10−2 rl

(1) kl
(1)cC6H5CH2OH,l 3.4 × 10−3

rg
(2) kg,1

(2)cQCl,g − kg,2
(2)cQ+

,gcCl−,g 7.34 × 10−5 1.12 × 10−4 rl
(2) kl

(2)cQOCl,l 1.6 × 10−3

Table 4. Estimated Rate Constants for Reactions Rg,1 and Rl and Mass-Transfer Coefficients for QOCl and QCl, with their
Corresponding 99% Confidence Intervals (C.I.) for Noise Levels of 2% and 5%

parameter true value fitted extent 2% noise [99% C.I.] 5% noise [99% C.I.]

kg,1 1.663 × 10−2 xr,g 1.62 [1.38−1.86] × 10−2 1.62 [1.08−2.16] × 10−2

xr,g,k 1.67 [1.58−1.76] × 10−2 1.74 [1.33−2.15] × 10−2

kg,2 2.5 xr,g 2.68 [1.13−4.25] 2.17 [0.00−5.20]
xr,g,k 2.64 [1.56−3.74] 2.71 [0.88−4.54]

kl 22.7 xr,l 23.70 [22.6−25.9] 24.30 [21.6−27.0]
km,QOCl 8.02 × 10−5 xm,g 7.90 [7.50−8.28] × 10−5 7.89 [6.54−9.24] × 10−5

xm,l 7.96 [7.43−8.49] × 10−5 8.10 [7.13−9.07] × 10−5

km,QCl 8.91 × 10−5 xm,g 8.83 [7.60−10.66] × 10−5 8.83 [8.42−9.27] × 10−5

xm,l 8.97 [8.46−9.48] × 10−5 9.04 [7.85−10.2] × 10−5
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with the estimated value of kl for two different noise levels given
in Table 4. For the aqueous phase, both fitting methods based
on xr,g or xr,g,k lead to correct estimates of the two parameters.
The small difference between these methods stems from the
difference in the noise structure of xr,g and xr,g,k, which results
from the fact that all species are used to compute xr,g (case 1)
but only the kinetic species and the equilibrium components to
compute xr,g,k (case 2).
When a mix of species is measured (case 3), minor variations

in the results compared to the other cases are observed (not
shown). In addition, there are slight variations depending on the
choice of the measured subset g,a. Note also that case 3 leads to

two subcases depending on whether the transformation g or

̅g is used to compute xr,g or xr,g,k, respectively. There are also
minor variations in the results due to differences in error
propagation through the transformations g and ̅g (not
shown).

6. CONCLUSIONS
Modeling heterogeneous chemical reaction systems that
comprise instantaneous equilibria has always been a difficult
task. The presence of fast reactionswhich can be modeled via
instantaneous equilibria in the time scale of interestaffects the
numbers of moles of other species, that is, also the other rate
processes such as the kinetically controlled reactions and the
mass transfers. Conventional modeling using the simultaneous
approach requires modeling the effect of equilibria in addition to
the other rate processes. In contrast, the incremental extent-
based model identification technique simplifies the modeling by
generating a single extent for each rate process. As a
consequence, a kinetically controlled reaction can be modeled
independently of the instantaneous equilibria.
This paper has investigated the use of incremental extent-

based identification for two-phase reaction systems with
instantaneous equilibria. Different alternatives for decoupling
the reaction system based on the nature and the number of
available measurements have been discussed. It has been shown
that statistically correct estimation of the extents of reaction and
mass transfer is possible from (1) measurements of all species,
(2) measurements of kinetic species and equilibrium components
only, and (3) measurement of a mix of kinetic species, equilibrium
components, and equilibrium species. Case 1 allows estimating the
equilibrium constants, whereas both cases 2 and 3 require the
knowledge of equilibrium constants, case 2 for the identification

step and case 3 already for the transformation to extents. All
these different cases have been illustrated via the simulated
example of the oxidation of benzyl alcohol using hypochlorite in
a batch reactor.
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■ GLOSSARY

Scalars
A = specific surface area
d = dimensionality (R + p + pm + 1)
H = number of measured time instants
K = equilibrium constant (evaluation of function g)
k = rate constant
M = number of equilibrium model expressions
m = mass or index of equilibrium model (in section 4.3)
p = number of independent inlet flows
q = number of invariants (S − d)
S = number of species
R = number of independent reactions
uout = outlet mass flow rate
V = volume of the reaction mixture
ω = inverse residence time

Vectors Dimension
c = concentrations (S × 1)
n = numbers of moles (S × 1)
r = reaction rates (R × 1)
uin = inlet mass flow rates (p × 1)
x = vessel extents (S × 1)
θ = adjustable kinetic parameters (nθ × 1)
ζ = mass-transfer rates (pm × 1)

Matrices Dimension
E = transformation of equilibrium species to components
(Sc × Se)
N = stoichiometry (R × S)
P = null space matrix (S × q)
Win = inlet composition (S × p)
Wm = matrix of mass transfer (S × pm)

= transformation of numbers of moles to extents (S × S)
Subscripts

a = available quantities
c = equilibrium components
d = dependent equilibrium species (as opposed to i)
e = equilibrium species
f = phase F, F ∈ {G, L}
g = phase G
h = specific time instant
i = independent equilibrium species (as opposed to d)
ic = initial conditions
in = inlet flows
iv = invariants
k = kinetic species
l = phase L
m = mass transfers
out = outlet flow
r = kinetically controlled reactions
v = premultiplication by the volume
0 = initial conditions

Figure 4. Experimental (2% noise, ○) and modeled extent of reaction
in the organic phase predicted using the rate expressions rl

(2) (,
correct model) and rl

(1) (−−, incorrect model) of Table 3.
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Superscripts
T = vector or matrix transposition
−1 = matrix inversion
(i) = ith candidate model, with ∈ +i
· ̇( ) = derivative with respect to time
·( ) = reduction to kinetic species and equilibrium
components

·͠( ) = measured quantity
* = value at the minimum

Sets
= equilibrium model expressions, dimension: M
= kinetic species, equilibrium species or components,

dimension: S

Functions
g(·) = equilibrium model expression
h(·) = expression for the dependent equilibrium species
(rearrangement of the function g, knowing K)
r(·) = reaction rate expression
Var[·] = variance function
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