
Space Odyssey - Efficient Exploration of Scientific Data

Mirjana Pavlovic¶, Eleni Tzirita Zacharatou¶, Darius Sidlauskas¶, Thomas Heinis†¶, Anastasia Ailamaki¶
¶École Polytechnique Fédérale de Lausanne, Switzerland

†Imperial College, London, United Kingdom

ABSTRACT
Advances in data acquisition—through more powerful supercom-
puters for simulation or sensors with better resolution—help scien-
tists tremendously to understand natural phenomena. At the same
time, however, it leaves them with a plethora of data and the chal-
lenge of analysing it. Ingesting all the data in a database or indexing
it for an efficient analysis is unlikely to pay off because scientists
rarely need to analyse all data. Not knowing a priori what parts of
the datasets need to be analysed makes the problem challenging.

Tools and methods to analyse only subsets of this data are rather
rare. In this paper we therefore present Space Odyssey, a novel
approach enabling scientists to efficiently explore multiple spatial
datasets of massive size. Without any prior information, Space
Odyssey incrementally indexes the datasets and optimizes the ac-
cess to datasets frequently queried together. As our experiments
show, through incrementally indexing and changing the data layout
on disk, Space Odyssey accelerates exploratory analysis of spatial
data by substantially reducing query-to-insight time compared to
the state of the art.

1. INTRODUCTION
In astronomy, biology, neuroscience and other disciplines, sci-

entists are increasingly overwhelmed by the amount of data they
have at their disposal. With advances in sensor technology, i.e., in-
creased resolution, and supercomputing for large-scale simulations,
the amounts of data scientists have to analyse grow rapidly. Today’s
tools are frequently inadequate to analyse the data and answer key
questions as already executing simple queries such as spatial range
queries becomes challenging given the amount of data. Datasets
can, of course, be indexed a priori to accelerate access but the areas
analysed are rarely known beforehand and also only touch a subset
of the entire dataset, making indexing an undue overhead.

In neuroscience, for example, scientists need to explore multiple
massive datasets originating from different sources [11] to investi-
gate particular areas of the human brain. The data in this use case is
spatial and originates from different instruments (e.g., patch clamp,
brightfield spectroscopy, MRI) of different resolutions. To perform
an analysis, they need to query small parts of different combina-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ExploreDB’16, June 26-July 01 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4312-1/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2948674.2948677

tions of datasets, each of a size in the order of Terabytes. What
areas of the datasets they need to access and what combinations
of them are not known a priori. It is consequently unclear what
parts of what datasets need to be indexed. It is however clear that
fully indexing all datasets introduces considerable overhead which
is unlikely to pay off.

More formally, the problem is the efficient exploratory analysis
of multiple spatial datasets through the execution of range queries:
given n datasets and a subset of datasets m ⊆ n, scientists need to
efficiently execute a spatial range query q on each of the datasets
m. What combinations of datasets m will be queried together and
what spatial ranges q will be accessed is not known beforehand.
The challenges thus are twofold (a) what areas in the datasets are
accessed and (b) what datasets are accessed together.

Multiple spatial indexes have been developed to accelerate ac-
cess to spatial datasets addressing the first challenge [3]. All of
them, however, require the whole dataset to be indexed at once.
Incremental approaches to indexing (or reorganising data layout)
have been developed for one-dimensional data stored in main mem-
ory [7, 8], but not for spatial data on disk. The first challenge of
incrementally indexing spatial data on disk as well as the second,
accelerating access to multiple datasets queried together, remain
unaddressed in literature to the best of our knowledge.

Space Odyssey, the approach we develop, addresses both chal-
lenges and enables the efficient exploration of multiple spatial data-
sets. While the datasets are being queried, it incrementally indexes
spatial datasets (based on space-oriented indexing) to accelerate ac-
cess to the datasets in general and to the areas frequently queried in
particular. At the same time, it reorganises the layout of the data on
disk so that parts of the datasets queried together can be retrieved
more efficiently. By incrementally indexing and reorganising the
data, Space Odyssey accelerates explorative analysis of spatial data
by substantially reducing query-to-insight time: Space Odyssey an-
swers up to several hundred queries (more than half the queries of
the benchmark) by the time the fastest existing approach has merely
indexed the data.

In the remainder of this paper we give a brief overview of the
related work in Section 2 before we discuss our approach in detail
in Section 3. We subsequently analyse our approach experimentally
in Section 4 before we conclude in Section 5.

2. RELATED WORK
Several approaches have been developed in recent years to adapt

the data layout in response to incoming queries.
To accelerate access to the data, database cracking [7, 8] itera-

tively refines the layout of the data in memory. Cracking essentially
amortizes the cost of index building over query processing and with
each query the physical layout is refined to accelerate subsequent

12

queries. It partially sorts the one-dimensional data in memory ac-
cording to the queries.

Similarly, incremental indexing [4, 5] chooses and creates in-
dexes as a side-effect of query processing. A user neither config-
ures or creates indexes nor does she provide a representative work-
load. Instead, based on the queries executed, an adaptive index
is only partially materialized and optimized such as to fit the cur-
rent workload and storage budget. As queries arrive, the index is
adapted on the physical level to suit the workload. Known adaptive
indexing techniques, however, require all data to be loaded upfront.

Finally, several approaches skip pre-processing to reduce the cost
of raw data querying. NoDB [1] accesses CSV data in situ to adap-
tively build positional and binary caches as a side-effect of query
execution. RAW [9] extends NoDB and adapts its access layer us-
ing code generation techniques.

Numerous approaches have been developed to index spatial data [3].
Almost all spatial indexes, however, require the entire dataset to
be loaded upfront and do not adapt to the query workload. One
representative exception are adaptive index structures [14] which
rearrange the nodes of data-oriented hierarchical indexes (includ-
ing the spatial R-Tree [3]) in response to queries so that they can
be accessed sequentially on disk. However, this reorganisation is
performed only after the index has been fully built.

3. SPACE ODYSSEY
Space Odyssey enables exploratory access to multiple spatial

datasets such that scientists can efficiently access particular areas
in combinations of spatial datasets. Crucially, our novel approach
enables efficient access without having to preprocess the data. In-
stead, Space Odyssey uses incoming queries to reorganize the phys-
ical layout of the data to better serve queries.

First, to enable efficient access to precisely the areas queried in
individual spatial datasets, Space Odyssey incrementally indexes
the datasets. Second, to better support querying the same areas
in different datasets, it adapts the physical layout on disk, storing
together the areas that are queried together to accelerate retrieval.

Figure 1: Space Odyssey: components, data structures and a
snapshot of the physical layout.

Figure 1 illustrates the architecture of Space Odyssey – its com-
ponents, data structures and a snapshot of the physical layout. The
Adaptor is responsible for the incremental indexing and the Merger
performs operations related to the physical layout. Finally, the
Query Processor orchestrates the overall query execution process
using information provided by the Statistics Collector.

3.1 Incremental Indexing
Indexing all datasets a priori has the major drawbacks that (a)

scientists must wait until all data is indexed before they can start
to query and (b) data that is never queried is indexed in a time-
consuming process.

Space Odyssey therefore uses incremental indexing where in ev-
ery step (with every query) we additionally refine the index struc-
ture in the frequently queried “hot” areas to accelerate future queries.
At the same time, to keep the overhead of incremental indexing low,
we use space-oriented indexing, as it introduces minimal process-
ing overhead (compared to data-oriented partitioning [3]).

Figure 2: Incremental indexing strategy (in 2D).

3.1.1 Refinement Concept
More precisely, Space Odyssey incrementally builds an Octree [3]

on each dataset queried. The Octree is the index of choice since we
want to introduce minimal overhead during the query execution and
thus, we split each dimension to a minimal number of partitions
which corresponds to 2d partitions in d-dimensional space. Fig-
ure 2 illustrates the indexing process with d = 2, i.e., 4 partitions
per level. The indexing process starts with the first query Q1 where
Space Odyssey partitions the space uniformly into four partitions
(p1, p2, p3, and p4). It scans the dataset and assigns each object to
the partitions it overlaps with. When the second query arrives (Q2),
Space Odyssey identifies the partitions that it intersects with (only
p2 in our example), refines this partition, i.e., divides p2 into four
sub-partitions (p21, p22, p23, and p24) and reassigns its objects to
the new partitions. In the same process it checks for the objects
in the qualifying new partitions whether or not they are inside Q2.
Space Odyssey applies the same procedure for query Q3 and all
subsequent queries.

Space Odyssey refines partitions to curb the amount of data re-
trieved and checked for intersection with the query. Otherwise, en-
tire massive partitions need to be checked even only for a small
query. Intuitively, we want the partition size to approximate the
query size. Then, in the best case, a query hits only one partition
which covers just the queried range so that a single sequential scan
of the partition retrieves all required objects. In the worst case,
2d partitions are intersected by the query. Refining a partition fur-
ther only incurs unnecessary processing overhead (the actual refin-
ing as well as retrieving and scanning multiple resulting partitions).
Therefore, to control the degree of refinement Space Odyssey uses
a refinement threshold (rt). A partition is refined following the ex-

ecution of a query if the ratio
Vp
Vq

> rt where Vp and Vq are partition

and query volumes, respectively.
With this incremental refinement strategy the overhead of build-

ing the index and reorganizing the data on disk is spread over sev-
eral queries. Areas frequently queried will be indexed fully, i.e.,
very fine granular such that range queries in these areas can be ex-
ecuted efficiently, as efficient as if executed on a fully built Octree.

Areas previously untouched will be partitioned at a coarser granu-
larity thus queries in these areas can also benefit from the adaptive
partitioning performed due to previous queries.

3.1.2 Optimizations
In case the query size is significantly smaller than the partition

currently hit, it might require a considerable number of queries un-
til the partition is refined enough. We can compute by how many
queries a partition needs to be hit before it reaches the finest level
of refinement (or put differently, before the Octree reaches the tar-
geted depth) with the refinement threshold. The following equation
gives the number of queries (or levels in the Octree built) required:

logppl (Vp/(Vq×rt))

where ppl is the number of partitions per level and ppl = 2d in
a standard Octree. To allow for faster convergence we can set
Space Odyssey to use a bigger ppl.

Since we use space-oriented partitioning a spatial object can in-
tersect with several partitions which introduces additional intersec-
tion tests. To avoid object replication and thus curb the memory
footprint while avoiding unnecessary comparisons, we translate the
problem of indexing volumetric objects to indexing point objects by
using the query window extension technique [13]. Space Odyssey
assigns each object o to a partition based on o’s center and keeps
track of the maximum object extent (maxExtent) in each dimension.
Then, to answer a query correctly ensuring that all intersecting ob-
jects are retrieved, its range is extended by maxExtent and the cells
the extended query overlaps with are inspected.

Finally, Space Odyssey performs the updates in-place, i.e., it
reads a partition p, refines it and uses the pages where partition
p was stored for the newly created partitions. After refining p we
may require more disk pages than were initially required to store p;
we append these pages at the end of the file.

3.2 Combining Datasets
By building data structures incrementally we can significantly

decrease the data-to-query time. At the same time we have the
opportunity to optimize the placement of data structures on disk to
accelerate the queries executed.

Particularly in the case where multiple datasets are analysed,
apart from building an index structure incrementally for each dataset,
Space Odyssey also rearranges the data on disk such that the ar-
eas in different datasets which are queried together are also stored
together. Doing so allows Space Odyssey to avoid random disk
access for retrieving the same area in different files and thereby
accelerates access.

3.2.1 Merging Partitions
While executing queries Space Odyssey keeps statistics about

the datasets queried together and the partitions retrieved from them.
More precisely, given queries of the form Q = {A;DS1, . . . ,DSN}
where A is the area queried in datasets DS1 through DSN , it will
store: 1) how often a given combination C = {DS1, . . . ,DSN}
is accessed and 2) what partitions are retrieved from C, i.e., what
partitions P overlap with A.

Once the number of retrievals for a particular combination C of
datasets exceeds a preset merging threshold (mt), Space Odyssey
merges the data for all the partitions p ∈ P retrieved in the context
of C. It iterates over all partitions that have been queried for in
C, retrieves them from every dataset DS ∈ C and merges them on
disk. Note that some of the merged partitions may be retrieved less
frequently by past queries than others, but the overhead of including
them in the merged file is minimal while there is a benefit in case

they are accessed more frequently in the future.
Lastly, Space Odyssey merges data only for combinations of size

|C| ≥ 3 because merging is more beneficial for bigger combinations
as it prevents (random) accesses to a large number of datasets.

3.2.2 Data Structures
Space Odyssey creates a new merge file where it stores the par-

titions P from different datasets queried together in a combination
C so they can be read sequentially and hence more efficiently once
they are again queried together. The partitions in the merge file are
copies, meaning that Space Odyssey also keeps the original parti-
tions to support efficient querying on an individual dataset DS.

For a given partition p, the merge files physically stores the ob-
jects contained in p from each dataset DS sequentially. Given for
example datasets DSx,DSy,DSz, Space Odyssey stores objects from
DSx on the first disk pages, followed by objects from DSy followed
by DSz. Doing so allows to retrieve efficiently only the objects
belonging to a queried subset of all datasets merged (e.g. DSx
and DSz) by reading them sequentially while skipping over the rest
(DSy). The merge file is append-only, i.e. new partitions are always
added at the end of the file.

Space Odyssey incrementally builds index structures per dataset
and the same regions in different datasets may thus have a differ-
ent level of refinement. In dataset DSx, for example, the area may
still only be covered by one partition p while it is divided into eight
partitions in DSy. Including copies of the unrefined partition p in
merge files adds the challenge of having to refine all the copies
once refinement of p is triggered by a new query, thereby introduc-
ing substantial overhead. Space Odyssey addresses this issue by
only merging partitions which are at the same level of refinement.
Additionally, in our current implementation the merged partitions
are not refined any further.

3.2.3 Querying
To efficiently execute queries and take advantage of merge files,

i.e., to decide whether to retrieve areas from individual datasets DS
or from merge files, Space Odyssey maintains a directory where it
keeps information about what partitions of what combinations of
datasets are stored together.

Once a query Q = {A;DS1, . . . , DSN} is to be executed, Space
Odyssey checks what partitions intersect with A and whether these
partitions are stored in a merge file. There are four possibilities:
Exact merge file: if the exact combination Cq = {DS1, . . . , DSN}
is stored in a merge file and contains the partitions intersecting with
A, then it is used to retrieve those partitions sequentially.
Superset: if a superset C ⊃Cq is stored, i.e. the merge file contains
more datasets than the ones requested, then the merge file will still
be used. Using the merge file is more efficient than accessing in-
dividual datasets thanks to the internal organization of merge files:
the objects from each dataset are organized sequentially, meaning
that they can be read efficiently but also that if data from a particu-
lar dataset is not needed it can be skipped.
Subset: if a subset C ⊂ Cq is stored, i.e. the merge file con-
tains fewer datasets than the ones requested, then Space Odyssey
uses the merge file to retrieve all data from the subset C as well
as other merge files or individual files to retrieve the remaining
datasets Cq \C. The decision which of the merge files to use is
based on maximizing the number of datasets already stored in a
merge file and thus minimize (random) access to individual files.
Space Odyssey chooses the one merge file which contains the most
datasets queried for.
No merge file: if no merge file exists for a combination C, individ-
ual files are used.

14

3.2.4 Managing Storage Space
Space Odyssey maintains a space budget for merge files (and

thus replicated partitions). Once the space budget is exceeded it
removes the least recently used merge files to adhere to the budget.

3.2.5 Open Issues
Building a merged index for the hot areas where multiple data

sets are queried together significantly accelerates queries but sev-
eral challenges need to be addressed to fully automate the merging
and maximize the performance gains. In particular, we plan to de-
velop a cost model which indicates how to adapt the parameters
(minimum size of combination to be merged |C| and mt) at runtime
based on the workload. Additionally, we plan to investigate the
benefits of merging partitions at different refinement levels and ex-
amine alternative strategies for doing so, e.g., should all partitions
be refined to the same level as the finest partition before merging
or as the coarsest, or shall we allow multiple refinement levels to
coexist in the merged index. Lastly, we plan to improve disk space
management to avoid the replication of a dataset which is used in
several different combinations whenever possible.

4. EXPERIMENTAL EVALUATION
In this section we first describe the experimental setup and method-

ology and then demonstrate the behavior of Space Odyssey by com-
paring it against state-of-the-art spatial indexing approaches using
real neuroscience datasets.

4.1 Experimental Setup
Hardware Configuration: The experiments are run on a Linux
Ubuntu 12.04 machine equipped with 2x Intel Xeon Processors
each with 6 cores running at 2.8GHz, with 64kb L1, 256KB L2
and 12MB L3 cache and 48GB RAM at 1333MHz. The storage
consists of 2 SAS disks of 300GB capacity each.
Competing Approaches: We have implemented Space Odyssey
and set its configuration parameters rt = 4, ppl = 64, and mt = 2.
Also, we consider the following three approaches:

FLAT: the state-of-the-art indexing technique for spatial range queries
for which we obtained the source code from the authors [15].

RTree: the most widely used spatial indexing technique. We use an
available implementation of a bulk-loaded variant of R-Tree
(STR [10])1.

As we need to index multiple spatial datasets, we implemented
two strategies for each one of the above approaches: one-for-each
(1fE) and all-in-one (Ain1). The first strategy, 1fE, builds one index
for each dataset. To perform a query, all the indexes corresponding
to the queried datasets are probed and the union of the retrieved
results forms the final answer. The second strategy, Ain1, builds
only one index structure containing all the spatial objects from all
the datasets. To perform a query, the index is probed and items
belonging to datasets which are not queried are filtered.

Grid: a static, uniform grid-based technique where the indexed
space is uniformly partitioned into a fixed number of cells.
We use our own implementation. The objects are assigned to
the grid cells in-memory and flushed to disk when the mem-
ory buffer becomes full. Similarly to Space Odyssey, repli-
cating objects to multiple grid cells is avoided by using the
query window extension technique [13]. The configuration
is set to 603 cells, which we determine through a parameter
sweep, given the absence of heuristics.

1https://github.com/libspatialindex

Figure 3: Clustered (red) and uniform (green) range queries on
one neuroscience dataset (grey).

Software Setup: All implementations are written in C++, they are
single-threaded and compiled using g++ (v4.9.2) with the -O3 opti-
mization flag. The disk page size is set to 4KB. To obtain realistic
run-times, where dataset sizes are significantly larger than the main
memory size, all techniques are restricted to have the same main
memory footprint (1GB). For all experiments only one disk is used
(i.e., no RAID configuration) while the OS caches and disk buffers
are cleared (overwritten with an empty file) before each query is
executed (i.e., to avoid caching effect).
Datasets: We use 10 real neuroscience datasets that we obtained
from our collaboration with neuroscientists in the Human Brain
Project [11]. Each dataset represents a subset of neurons contained
in the same brain volume. The neurons are modeled with a 3D sur-
face mesh. Figure 3 shows a 2D projection of one brain area. An
identifier is attached to each object to distinguish items belonging
to different datasets. Each dataset requires approximately 5 GBs of
storage on disk (and ∼ 50 GBs in total).
Queries: Based on the previously described use cases, we syn-
thetically generate queries each having a fixed volume (qvol) of
10−4% of the queried brain volume. We use a clustered distribu-
tion and choose a number of clustercenters (|clusterscenters|= 10).
Query centers are distributed around the cluster centers following
the Gaussian distribution (μ = 0, σ = qvol×10). For complete-
ness and to test non-skewed cases, we also generate uniformly dis-
tributed query centers. Figure 3 illustrates the query ranges of both
distributions.

To choose which subset of datasets is queried for each query
range, we use a synthetic distribution generator based on Gray et
al. [6]. The distributions we use are: (1) heavy hitter, (2) self-
similar, (3) Zipf, and (4) uniform. These distributions have been
used in other studies for similar purposes (e.g., in [2, 12]). In
the heavy hitter distribution, one combination of queried datasets
accounts for 50% of all possible combinations, while the other
queried combinations are chosen uniformly from the remaining
ones. The self-similar distribution uses an 80–20 proportion, and
the Zipf distribution uses an exponent of 2. For non-skewed sce-
narios, we also choose the combination of datasets randomly using
the uniform distribution.

4.2 Experimental Analysis
Total Processing Cost: Figure 4 depicts the total workload pro-
cessing time when the number of queried datasets is increased from
1 to 9 (note that while the number of possible combinations to
query increases from 10 and peaks at 252, the actually queried
combinations are often smaller and depend on the distribution; also
shown on the x axis). For Space Odyssey’s competitors, the pro-

15

1 (6) 3 (22) 5 (29) 7 (15) 9 (8)

#datasets queried (#combinations queried)

0

2

4

6

8

10
R

u
n

-t
im

e
,

s
e

c
 (
×
1
0
3

)
a) query ranges: clustered, dataset ids: zipf

1 (10) 3 (118) 5 (216) 7 (118) 9 (10)

#datasets queried (#combinations queried)

0

2

4

6

8

10
b) query ranges: clustered, dataset ids: heavy-hitter

Approach:

FLAT-Ain1

FLAT-1fE

RTree-Ain1

Grid-1fE

Odyssey

Approach:

FLAT-Ain1

FLAT-1fE

RTree-Ain1

Grid-1fE

Odyssey

1 (10) 3 (108) 5 (186) 7 (107) 9 (10)

#datasets queried (#combinations queried)

0

2

4

6

8

10

R
u

n
-t

im
e

,
s
e

c
 (
×
1
0
3

)

c) query ranges: clustered, dataset ids: self-similar

1 (10) 3 (120) 5 (246) 7 (120) 9 (10)

#datasets queried (#combinations queried)

0

2

4

6

8

10
d) query ranges: uniform, dataset ids: uniform

Approach:

FLAT-Ain1

FLAT-1fE

RTree-Ain1

Grid-1fE

Odyssey

Breakdown:

Indexing

Querying

Figure 4: Performance when varying the number of queried datasets for each distribution.

cessing time is additionally broken down into indexing and query-
ing. For Figures 4a, b, and c, we fix the query range distribution
to clustered. For Figure 4d we uniformly choose both the query
ranges as well as the queried datasets in order to demonstrate the
worst-case performance where neither hot areas nor popular com-
binations exist.

First, building sophisticated spatial indexes (FLAT and RTree)
takes at least 2 times longer than processing the entire workload of
1000 queries with Space Odyssey. The FLAT variants are the slow-
est to build among all competitors. Indexing with FLAT is slightly
slower than RTree and up to ×5 slower comparing to the simple
uniform Grid2. As such, only Grid is competitive in terms of over-
all data-to-query time when compared to Space Odyssey. Never-
theless, by the time Grid finishes indexing the data, Space Odyssey
has already answered half of the queries on average.

Second, once the related approaches have indexed the data they
may process individual queries faster than in Space Odyssey. While
FLAT is the slowest to build, its variants report the fastest querying
times compared to other approaches – up to ×5, ×6, and ×9 faster
than the RTree, Grid, and Space Odyssey, respectively (considering
just the querying time for static approaches and the total time for
Space Odyssey). The important aspect of Space Odyssey however
is that it has the lowest data-to-query time, because there is no need
to build indexes for all the datasets in advance. The one-for-each
(1fE) strategy accesses individual (smaller) indexes and only for
the datasets queried. Consequently, the query processing cost in-
creases with the number of queried datasets. The all-in-one (Ain1)
strategy, on the other hand, always operates on a huge index struc-
ture and suffers from unnecessary data accesses. As such, when
the number of queried datasets is less than 5, 1fE is preferred over

2Favoring Grid, we assume that the optimal configuration is
known. Otherwise, several builds of Grid are required to tune it.

Ain1. Space Odyssey follows a hybrid strategy, where the individ-
ual datasets are indexed adaptively (similarly to 1fE) but hot areas
from different datasets are merged together (similarly to Ain1).

Third, while all related approaches are insensitive to skew in
the workload, the adaptive mechanisms in Space Odyssey are able
to exploit it. For example, in Figure 4, when the queried dataset
combinations are coming from the very skewed zipf (a) and heavy-
hitter (b) distributions, Space Odyssey quickly refines the hot ar-
eas, merges the partitions of the popular datasets together, and is
often able to perform most of the queries before even Grid finishes
building. This is not the case with the less skewed self-similar dis-
tributions (Figure 4c), where Grid (once its building phase is over)
answers individual queries faster than Space Odyssey most of the
time. When both query ranges and queried datasets are uniformly
distributed (Figure 4d), Space Odyssey cannot benefit from adap-
tive refining and thus takes longer than Grid to process the entire
workload of 1000 queries.
Query Performance: In Figure 5 we show the response time for
each query in the sequence when 5 datasets are queried. In Fig-
ure 5a the queries are clustered and the queried combinations are
chosen from the self-similar distribution while in Figure 5b both the
queries and the combinations are chosen from a uniform distribu-
tion. We study Space Odyssey and two approaches that were previ-
ously identified as the most competitive ones (in terms of query-
ing performance): FLAT-Ain1 and Grid-1fE. In both cases, the
very first query is the most expensive for Space Odyssey as it fully
scans and partitions at the first (coarsest) level the raw data files
for all 5 datasets in the combination. Nevertheless, we observe that
Space Odyssey converges to the speed of the fully indexed case
under both skewed (Figure 5a) and uniform (Figure 5b) scenarios.
As expected, however, the convergence is slower in the uniform
scenario. FLAT-Ain1 has consistently better and more robust per-

16

0 200 400 600 800 1000
10

-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
 p

e
r

q
u

e
ry

,
s
e

c
a) query ranges: clustered, dataset ids: self-similar, #datasets queried: 5 (out of 10) FLAT-Ain1

Grid-1fE

Odyssey

0 200 400 600 800 1000
10

-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
 p

e
r

q
u

e
ry

,
s
e

c

b) query ranges: uniform, dataset ids: uniform, #datasets queried: 5 (out of 10) FLAT-Ain1

Grid-1fE

Odyssey

0 200 400 600 800 1000

Query sequence (query id)

10
-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
 p

e
r

q
u

e
ry

,
s
e

c

c) query ranges: clustered, dataset ids: zipf, #datasets queried: 5 (out of 10)
Odyssey w/o merging

Odyssey

Figure 5: Query times for each query in a sequence.

formance than Grid-1fE because it is less sensitive to data skew.
Once Space Odyssey has converged, its querying performance is
between FLAT-Ain1 and Grid-1fE, while it performs some queries
even faster than FLAT-Ain1. Finally, when an area that has not been
previously refined and/or merged is queried, the querying time for
Space Odyssey is still higher.
Effect of Merging: Lastly, to isolate the effect of merging parti-
tions that are often queried together, we run Space Odyssey with
and without merging enabled. In this experiment, clustered queries
are produced using 5 instead of 10 clustercenters in order to ensure
that the queries can benefit from merging. In Figure 5c, we plot
the times only for the queries that request the most popular com-
bination (for the zipf distribution, this combination is queried 751
times). While the same combination may still request completely
different ranges (e.g., in different clusters), we see that eventually
Space Odyssey benefits from the merged partitions for the majority
of the queries. We observe 25% performance gain on average for
the queries accessing the merged partitions.

5. CONCLUSIONS
In this paper we identify the challenge of efficiently exploring

multiple spatial datasets with the same range query—a common
type of analysis across scientific applications. State-of-the-art meth-
ods fall short in supporting this challenge efficiently as they require
to index all data a priori including the parts never analysed.

As a consequence we develop Space Odyssey, an approach which
incrementally indexes the bits of the data needed and that adapts
the physical layout of the data on disk to efficiently support the

queries executed. Our novel approach to incrementally indexing
and reorganizing spatial data on disk shows benefits in decreasing
the data-to-insight time.

Although the current implementation of Space Odyssey already
achieves a speedup, we primarily consider it a starting point demon-
strating the potential of our idea. In particular, we believe that re-
fining the cost model for merging and indexing can further increase
performance benefits.

Acknowledgements
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agree-
ment No 650003.

17

6. REFERENCES
[1] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and

A. Ailamaki. NoDB: Efficient Query Execution on Raw Data
Files. In SIGMOD ’12.

[2] J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye. Automatic
Contention Detection and Amelioration for Data-intensive
Operations. In SIGMOD ’10.

[3] V. Gaede and O. Günther. Multidimensional Access
Methods. ACM Computing Surveys, 30(2), 1998.

[4] G. Graefe and H. Kuno. Adaptive Indexing for Relational
Keys. In ICDEW ’10.

[5] G. Graefe and H. Kuno. Self-selecting, Self-tuning,
Incrementally Optimized Indexes. In EDBT ’10.

[6] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly Generating Billion-record Synthetic
Databases. In SIGMOD ’94.

[7] S. Idreos, M. L. Kersten, and S. Manegold. Database
Cracking. In CIDR ’07.

[8] S. Idreos, S. Manegold, H. A. Kuno, and G. Graefe. Merging
What’s Cracked, Cracking What’s Merged: Adaptive

Indexing in Main-Memory Column-Stores. In VLDB ’11.

[9] M. Karpathiotakis, M. Branco, I. Alagiannis, and
A. Ailamaki. Adaptive Query Processing on RAW Data. In
VLDB ’14.

[10] S. T. Leutenegger, M. Lopez, et al. STR: A Simple and
Efficient Algorithm for R-tree Packing. In ICDE ’97.

[11] H. Markram et al. Introducing the Human Brain Project.
Procedia Computer Science, 7:39–42, 2011.

[12] D. Šidlauskas, C. S. Jensen, and S. Šaltenis. A Comparison
of the Use of Virtual Versus Physical Snapshots for
Supporting Update-intensive Workloads. In DaMoN ’12.

[13] E. Stefanakis, Y. Theodoridis, T. Sellis, and Y.-C. Lee. Point
Representation of Spatial Objects and Query Window
Extension: A new Technique for Spatial Access Methods.
IJGIS, 11(6), 1997.

[14] Y. Tao and D. Papadias. Adaptive Index Structures. In VLDB
’02.

[15] F. Tauheed, L. Biveinis, T. Heinis, F. Schürmann,
H. Markram, and A. Ailamaki. Accelerating Range Queries
For Brain Simulations. In ICDE ’12.

18

