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Abstract—To increase their dependability, distributed control
systems (DCSs) need to agree in real time about which hosts
have crashed, i.e., they need a real-time membership service. In
this paper, we prove that such a service cannot be implemented
deterministically if, besides host crashes, communication can also
fail. We define implementable probabilistic variants of member-
ship properties, which constitute what we call a synchronous
membership service (SYMS). We present an algorithm, ViewSnoop,
that implements SYMS with high-probability.

We implement, deploy and evaluate ViewSnoop analytically as
well as experimentally, within an industrial DCS framework. We
show that ViewSnoop significantly improves the dependability of
DCSs compared to membership schemes based on classic heart-
beats, at low additional cost. Moreover, ViewSnoop distinguishes,
with high probability, host crashes from message losses, enabling
DCSs to counteract losses better than existing approaches.

I. INTRODUCTION

Among the many financial hazards of industrial plants,
downtime (the time during which a plant’s normal operation
is halted) is one of the most expensive (=~ 12,5008/hr) [1].
Automated control systems, which manage these plants, hence
require increased dependability.

An automated control system comprises a set of control
applications; each being a program that handles (parts of)
an industrial system and generally adheres to hard real-time
constraints. In order to tolerate crashes, control systems are
often decentralized [2]-[4]. Such distributed control systems
(DCSs) require however to learn about hosts (processes) which
have crashed in order to initiate proper recovery measures.

A. Distributed control systems (DCSs)

Most control applications running on DCSs are cyclic [5]—
[7]. Such applications consist of several small fasks that
execute periodically. Some of these tasks run concurrently on
several hosts, possibly on behalf of different control applica-
tions. A scheduler, a distributed DCS module, typically maps
tasks to non-crashed hosts and specifies the order in which
these tasks execute (Figure 1(a)).

A DCS cannot avoid host crashes and message losses.
Control systems typically experience host crash rates of about
10~%/hr and message loss rates in the range of 107°/hr
(permanent losses) and 10~3/hr (transient losses) [8], [9]. In
order to “recover” from crashed hosts, DCSs need to know
about these crashes and react in real-time; for example, to
have the scheduler re-map tasks to non-crashed hosts, ensuring
proper execution of all applications [10], [11] (see Figure 1(b)).
Besides the real-time necessity, hosts in DCSs need to have
consistent views of which hosts in the system have crashed.
Inconsistent views imply that hosts might consider different
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Figure 1. A DCS with three hosts running two control applications.

hosts as crashed. The state of the scheduler module in a DCS,
as a result, might be invalidated yielding improper executions
of applications and causing downtime [7]. Basically, a DCS
needs a group membership service [12]-[18] to coordinate the
information regarding crashed hosts in real time.

B. Membership in a DCS

In short, an ideal membership in DCSs amounts to a
service that synchronously reports, to all (non-faulty) hosts,
perfect information about host crashes and within fixed bounds
(see Figure 2). In the presence of message losses, however,
implementing such a service deterministically is impossible as
we show in this paper (Section III).

In fact, known implementations of deterministic mem-
bership services either assume no message losses, provide
eventual (not real-time) guarantees or use additional help [18]—
[22]. The implementable membership guarantees in contexts
similar to DCSs can, at best, be probabilistic [8], [13], [23].
We define accordingly a synchronous membership service
(SYMS), a new abstraction encapsulating a probabilistic form
of the ideal membership properties needed by DCSs.

We propose ViewSnoop, a new algorithm that ensures
SYMS properties with high probability (relative to other mem-
bership mechanisms and which persists with increasing system
size, see Section V). The main idea underlying ViewSnoop is to
(a) have hosts maintain local suspicion lists that are not visible
to the scheduler of a DCS and at the same time (b) let hosts
snoop into each others’ local views by modifying the structure
of heartbeats, precisely by piggybacking local suspicion lists
on heartbeats. Heartbeats are disseminated periodically via a
broadcast primitive (not necessarily reliably) as in most DCSs
to facilitate crash detection [7], [8], [12]-[14]. Appending
suspicion lists to heartbeats helps hosts know about other alive
hosts, despite possible message losses. This property increases
the probability of having a global consistent view and hence a
better accuracy. Combined with (a), ViewSnoop can, with high



probability, discern message losses from host crashes, better
than using sequence numbers [24] (see Section V). Having
losses mistaken for host crashes, and removing correct hosts
as a result, not only worsens accuracy!, but also depletes
processing resources, threatening availability.

C. Results

We first evaluate analytically the performance metrics of
ViewSnoop. We compare with membership services based on
classic heartbeats [7], [8], [12], [13]. We show that:

1. ViewSnoop provides better guarantees, on both view agree-
ment among hosts and accuracy, compared to membership
services based on classic heartbeats alone, e.g., 9.2x better
agreement probability and 1.6x better accuracy probability for
a system with 10 hosts. This improvement increases exponen-
tially and un-boundedly with system size.

2. ViewSnoop distinguishes host crashes from message losses,
without jeopardizing accuracy (which all membership services
based on classic heartbeats suffer from). ViewSnoop, thus,
allows better configurations to be computed, accounting for
bad links rather than excluding correct hosts.

We then report on a full implementation of ViewSnoop in
an industrial DCS framework, called FASA [7]. We evaluate
ViewSnoop’s performance experimentally (on FASA), compar-
ing it to a classic heartbeat-based implementation, deployed in
most existing DCS frameworks [7], [8], [12], [13].

We show experimentally that ViewSnoop is significantly
more dependable than the classic heartbeat-based implemen-
tation. More precisely, ViewSnoop provides a higher accuracy,
ranging from 2.5x up to 4x better than the classic imple-
mentation. The higher the accuracy, the fewer correct hosts
are excluded. Thus, the risk of downtime, due to the lack
of processing resources, becomes smaller. This improvement
increases as the system size grows.

We also assess the trade-offs underlying ViewSnoop’s design
and implementation:

1. ViewSnoop notifies hosts about crashes in real-time, with
a lower downtime risk compared to using classic heartbeats.
The trade-off is only one extra control cycle (or round, see
definition in Section II) to recognize crashes and recoveries.
ViewSnoop, always excludes crashed hosts from the system
in less than three cycles after crashing (real-time). ViewSnoop
also allows recovering hosts, given no message losses, to join
the system in less than two cycles. The classic heartbeat-
based implementation requires one cycle less. It is crucial to
note though, that if this trade-off is eliminated, precisely by
allowing classic heartbeat-based memberships for an additional
cycle to recognize crashes and recoveries, we show that
ViewSnoop still provides better accuracy and availability.

2. ViewSnoop induces 0.3 us (7%) processing overhead and
200 bytes/sec (11%) network overhead (for UDP over Eth-
ernet), over the classic heartbeat-based implementation. How-
ever, the added delay neither affects FASA, nor the upper layer
applications, as ViewSnoop fully executes within the idle time
of a host, while the network overhead is 1.6% (IPv4) and 1.2%
(IPv6) of the packet size being sent in the classic mechanism.

IThe probability of not excluding non-crashed hosts.
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Figure 2. Overview of an ideal membership service for a DCS.

3. ViewSnoop periodically broadcasts suspicion lists, rather
than broadcasting classic heartbeats. Broadcasting suspicion
lists will likely lead to a bandwidth bottleneck in large-scale
distributed systems if host crashes and losses are common.
Yet, ViewSnoop is targeted for DCSs, i.e., environments where
crashes and losses typically seldom occur [8], [9].

D. Summary of Contributions

The main contributions of this paper are the following:

1. A specification of the membership requirements for DCSs
running cyclic applications. We prove that a deterministic
form of these ideal requirements is impossible to implement
in a system with both host crashes and message losses. We
define SYMS, a probabilistic abstraction of the requirements
of DCSs. SYMS can be implemented despite message loss.
2. ViewSnoop, an algorithm implementing SYMS with high
probability. ViewSnoop’s design allows it to distinguish host
crashes from message losses, better than using message se-
quence numbers [24], and without affecting accuracy.

3. An experimental and an analytic evaluation of ViewSnoop’s
performance showing that ViewSnoop provides a significantly
more dependable service, enhancing a DCS’s availability,
compared to methods relying on classic heartbeats [7], [8],
[12], [13].

Road-map. Section II recalls the notion of DCSs in more
details. Section III identifies the membership requirements
for DCSs and proves the impossibility of deterministically
implementing an ideal service before introducing SYMS (its
probabilistic variant). Section IV presents ViewSnoop, our
algorithm for implementing SYMS, and computes its prob-
abilistic guarantees. Section V presents an analytic evaluation
of the probabilistic guarantees of ViewSnoop compared to
memberships using classic heartbeats. Section VI discusses
platform, application and implementation details. Section VII
evaluates our implementation of ViewSnoop in FASA, an
industrial DCS framework. Section VIII discusses related work
and Section IX concludes the paper. For better illustration, we
defer some computations to a dedicated Appendix.

II. DCSs For CycLIiC CONTROL APPLICATIONS

A distributed control system (DCS) for cyclic control
applications consists of a set of hosts, I = {hy,ha, ..., An},
physically mapped to cores of the same or different machines.
Clearly, these hosts can fail (crash) [8], i.e., stop executing
operations. Hosts have access to local synchronized clocks
with bounded skew. Accordingly, all hosts define control
cycles (rounds) of the same fixed duration. Control cycles
are synchronized among hosts, i.e., the start and end of a
cycle occur at all hosts at the same time (with a bounded
skew). During every control cycle, each host executes the tasks
assigned to it by the scheduler (recall Figure 1).
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Figure 3. An example of a DCS tolerating two cycles of stale input, which

result from the failure of the host responsible to refresh the data.

Scheduler. This is a distributed module that specifies which
application tasks run on which hosts and in what order.
The allocation of tasks to hosts is called a configuration. A
scheduler makes sure that all hosts can execute the assigned
tasks without exceeding the total cycle duration. Moreover,
the scheduler ensures that configurations allow all applications
to meet their deadlines (timing constraints). As such, a host
requiring some input, in some configuration, expects the value
of this input to be refreshed, every cycle (e.g., by another
host driving this input, see Figure 3). A value that is not
refreshed in time is called a stale input. Typically in DCSs,
hosts can tolerate to read stale input up to a bounded number of
consecutive cycles, say s.. If the input remains stale for more
than s, cycles, then a new configuration has to be installed.

A DCS requires to exclude a crashed host: (i) within
a bounded number of cycles after crashing (real-time) and
(ii) synchronously at all alive hosts, i.e., in the same cycle.
Violating (ii) might lead the scheduler state to be inconsistent,
resulting in hosts executing different configurations (mapping
of tasks to hosts). Applications, as a result, might execute
incorrectly, as communication and/or the order of execution
between tasks of the same application might be invalid.

Communication. Every pair of hosts is connected by two
logical uni-directional links. Links here for example abstract
a physical bus or a dedicated network link. Arguably, all
communication is prone to random disturbances resulting
from bad channel quality, collisions, stack overflows etc [25].
Messages can thus be lost. When there is no loss, we assume
that messages have a bounded delay, say d. Configurations
computed by the scheduler account for the delay d. As such,
any message scheduled to be sent in cycle r, if not lost, is
assumed to be received in the same cycle r.

Specifically, we model losses as follows: a message sent
by h; is received by h; with probability p. Sending a message
reliably at any point in time from one host to another, thus, can
take an unbounded amount of time, due to losses and follow-
up re-transmissions. We assume, for the theoretical analysis,
that p is independent of time and links and is the same for all
links. Nevertheless, correlated losses, although not considered
theoretically for the tractability of our analysis, can occur in
our experimental evaluation (Section VII).

Crash monitoring. In this paper, we consider monitoring
schemes that rely only on message exchange and synchronized
local clocks (time-outs). Specifically, a host sends messages,
known as heartbeats, every cycle to at least one other host
in the system (hosts do not send heartbeats to themselves).
We assume no causality between heartbeats sent in the same
cycle; the content of heartbeats sent by a host during cycle r
is the same and can be affected only by the heartbeats sent at
cycles < 7. A host is “alive” at cycle r, if that host does not
crash during r (during r a host is either crashed or alive). Hosts
do not crash themselves on purpose, as resources for running

tasks become scarcer, risking some applications to halt.

III. OVERVIEW OF SYMS

After our description of the operation of a DCS, we identify
now the ideal membership, following the traditional way of
defining its properties [18]-[20]. For simplicity, we specify
the properties for host crashes in the fail-stop model [26], i.e.,
without recovery (we discuss recoveries in Section VII-D).

We first introduce some terminology. We denote a view
by the tuple (id, M), where M is the set of hosts declared
in a view as alive (not crashed). Variable id denotes the view
identifier (namely the cycle in which the view is installed).
Initially all hosts install the view V = (id, M), where M
includes all hosts in the system. Consequent views are obtained
from monitoring, as described in Section II. We assume that
if a host h; receives a heartbeat sent by a host ; in round 7,
then h; cannot exclude? h; in round r+1. The ideal properties
for DCSs can be expressed as follows:

P1: Monotonicity: If a host installs a view V = (id, M) and
later V' = (id’, M’), then id < id’ and M’ C M.

P2: Agreement: If a host installs a view V = (id, M) at round
r, then all alive hosts at  install V' = (id, M) at r.

P3: Completeness: If a host h crashes, then after a maximum
of s, rounds elapse after the crash, all hosts that remain alive
sc rounds after the crash, install V' = (id, M) where h ¢ M.
P4: Accuracy If a host installs view V = (id, M) where h ¢
M, for some host h, then h has already crashed.

P5: Non-triviality: Let C be the set of hosts alive at round r,
during which host A installs a view V = (id = r, M). Then,
it is possible that {C N M’} C M, where V' = (id’ < r, M’)
is the most recent view h installed before the view at r.

In contrast with traditional membership properties [18]—
[20], which detect crashes eventually and not necessarily in a
synchronous manner (i.e., in the same synchronous round by
all hosts), completeness (P3) and accuracy (P2) here stipulate
real-time and synchronous detection of crashes respectively.

Theorem 1. No algorithm can deterministically guarantee
both completeness (P3) and accuracy (P4) in a DCS with
message losses.

Proof: Both properties, P3 and P4, are related to failure
detection, precisely perfect failure detection®. A perfect failure
detector [26] cannot be implemented in case of message loss,
because finite executions where a host crashes cannot be
distinguished from finite executions where all messages from
this host are lost [52]. For better illustration, we showcase this
fact again below.

Consider an example of a DCS with two hosts, i1 and ho,
and the following executions:

e el. an execution where host ho fails at cycle r.

>This assumption is analogous to our assumption that hosts cannot be
crashed on purpose, in the sense that, as long as h; receives heartbeats from
h;j, then h; is certainly alive (at least up to the moment of sending the last
heard heartbeat). Acting otherwise might risk the system’s availability (higher
downtime) as fewer hosts become available.

3P3 is a stronger version of the strong completeness property (defined
in [26]), as it has a bound on the detection time (s. control cycles versus
eventually). P4 is the strong accuracy property. P3 and P4 together define a
stronger version of the perfect failure detector [34] (a perfect failure detector
with a bound on detection time).



e  ¢2. an execution where host h; and hs are both correct
but lose all messages sent (if any) at all cycles in the
range [r,7 + Sc).

Since the control cycle duration is fixed, a finite number of
messages can be sent during a control cycle, say n;. Execution
e2 is valid, since e2 can occur with the positive probability,
(1 — p)*i(s=+1) p being the probability that a sent message
is successfully received. h; cannot monitor he (to know if
ho is alive) except through message exchange and time-outs
(see Section IT). With respect to h; executions el and e2 are
indistinguishable during [r,r + s.], for any finite value of s,
(since h; cannot know if ho has failed or all messages from
hq are lost).

By P3, in execution el h; declares hy as failed at most
by cycle r 4 s.. Since el and e2 are indistinguishable during
[r, 7+ s.] then h; declares hs as failed at most by cycle r+ s,
also in e2. This violates P4 in execution e2. ]

Theorem 2. No algorithm satisfying non-triviality (P5) can
deterministically guarantee agreement (P2) and completeness
(P3) in a DCS with message losses.

Proof: Assume by contradiction that an algorithm .o
satisfies the non-triviality property (P5) and deterministically
guarantees agreement (P2) and completeness (P3) in a DCS
with losses.

Hosts in algorithm .7 install an initial view as specified by
our assumption in Section III, i.e., a view in which no host is
excluded.

Lemma 1. Assuming that no hosts have been excluded, an
algorithm < satisfying P5 means that exactly one of the
following cases is true.

For every host hj such that h; € C, a host h; installing a view
V(id, M) can:

Case 1. Decide if h; € M regardless of any received
heartbeats. In this case h; can decide to

a) Include h; in all views installed.

b)  Exclude h; in a randomly chosen cycle.
Case 2. Decide whether h; € M depending on the
heartbeats received by h;.

Proof: Any view to be installed by any host has to be
constructed by the monitoring scheme depicted in Section II.

Assuming that no hosts are excluded (precisely, that no
views besides the initial one are installed), P5 can be restated
as follows:

Consider some round r in which a host h; in .o/ installs a view
V(r, M). Then, there is a positive probability that C C M,
where C is the set of hosts alive at round r.

For every host h; such that h; € C, h; can:

Case 1. Decide if h; € M regardless of any received
heartbeats. In this case h; can decide to

a) Include h; in all views installed.

b)  Exclude h; in a randomly chosen cycle.

c) Exclude h; deterministically in some prede-

termined cycle 7.

Case 2. Decide whether h; € M depending on the
heartbeats received by h;.

h; cannot decide based on any other means, as Section II con-
strains monitoring to be solely based on exchanging heartbeats.

In fact, having h; decide according to case 1(c) violates P5.
Assume that h; is a correct host, i.e., a host that does not crash.
Then having h; exclude h; at any cycle r’ deterministically,
regardless of any received heartbeats, means that the view at r’
can never include h; as alive, which contradicts P5. As such, in
order to satisfy P5, one of the other statements should be true.

| |

We will now show that in a system with two hosts h; and
ha, deciding according to Case 1 or Case 2 will not allow P2
and P3 to be satisfied deterministically.

If Case 1(a) is true, then &/ would violate completeness
(P3): Consider an execution where hy is correct, i.e., does
not crash during the entire execution of the algorithm, and ho
crashes at some point. If Statement 1(a) is true, then h; would
never declare ho as crashed.

If Case 1(b) is true then .« might violate agreement (P2):
Consider an execution where both hosts h; and ho are alive.
Let v’ be the cycle in which h; excludes hs from its view and
let 7"/ be the cycle in which ho excludes itself from its own
view. Since r’ and "’ are randomly chosen, there is a positive
probability that ' # 7. In that case, hosts install different
views and P2 is violated.

If Case 2 is true, the following is a necessary condition to
satisfy completeness (P3): a host in &/ should exclude some
host after not hearing (directly or indirectly) from that host
for d; consecutive cycles, such that d; < s, (given that every
host sends a heartbeat at every cycle to at least one other host).
According to our monitoring assumptions in a DCS (Section II)
any host sends heartbeats to at least one other host in the
system.

In a DCS with two hosts, this means that: in every cycle,
hi1 sends heartbeats to ho and ho sends heartbeats to hi. In
other words, ki can receive heartbeats only from ho and ho
can receive heartbeats only from h;.

Consider the case where ho loses all heartbeats sent by A
for more than s. consecutive cycles (which can happen with
positive probability). By the completeness property (P3), hs
should install (after d; consecutive cycles of loss) a view V'
excluding hy. Also, ho has to decide whether to include or
exclude itself from V. The decision taken by ho, whether to
exclude itself from V" or not in that case, is independent of what
happens to the heartbeats sent by ks to hy in the past d; cycles
(i.e., if these heartbeats are lost or not). This statement is valid
since in that duration Ao did not receive any heartbeats and thus
cannot know any information. Similarly, such a scenario can
also happen with h;. Let us refer to such a scenario, which
can occur with either hosts, as Scenario S.

A host in scenario S installs a view V (excluding the other
host) and decides either to exclude itself from V' or not. We
discuss both cases below.

1) A host decides to exclude itself in scenario S. Consider
an execution e satisfying both conditions below:

a. hp and hs correct, i.e., never fail.
b.  Starting from cycle r, all heartbeats sent by hy to
hy are lost for « - s. cycles, i.e., for all cycles in



[r,7 4+ « - sc], Vo > 1, while all heartbeats sent by
hs to hi, in this same interval, are not lost.

Condition (b) can happen with positive probability (see proof
of Theorem 1). In execution e, ho cannot hear any heartbeats
in [r,r+«- s.]. In this case and by the completeness property
(P3), ho excludes h; and itself at cycle r + d;.

We recall now the following assumption of Section III:
if a host h; receives a heartbeat sent by host h; at round 7,
then h; cannot exclude h; in round r + 1. Since h; receives
all heartbeats from ho (regardless of the content of these
heartbeats) in [r,r 4+ « - s¢], hq would still include hs as alive
during cycle r + d;, which violates agreement (P2).

It is very important to note that in [r,7 + d;], ho stops
obtaining any additional information. This is due to the fact
that ho receives no heartbeats in that interval. Thus, at begin-
ning of cycle r, hy already has all the information it needs
upon which it can base its decision of whether to include or
exclude itself from the view. Since execution e does not make
any assumptions about heartbeats prior to cycle r, this means
that the decision of ho to exclude itself in e covers all the
possible cases in which ho might decide to exclude itself.

2) A host decides not to exclude itself in scenario S.
Consider now an execution €’ satisfying both conditions below:

a. hy and ho correct, i.e., never fail.

b.  Starting from cycle r, all heartbeats sent by h; to hg
are lost for «- s, cycles and all heartbeats sent by ho
to hy are lost for « - s. cycles, i.e., for all cycles in
[ryr+a-s.], Ya > 1.

Condition (b) can happen with positive probability (this can be
inferred from the proof of Theorem 1 and the fact that losses
are independent of links). In execution €’, ho cannot hear any
heartbeats in [r, 7+« s.]. In this case and by the completeness
property (P3), hy excludes hq at cycle r+d;; hence hy installs
a view at cycle r + d; where hy considers only itself as alive.

Similarly, also by the completeness property (P3) and the
fact that a host in scenario S decides not to exclude itself, iy
installs at cycle r + d; a view where h; is only alive, which
violates agreement (P2).

In [r,r+dy], ho stops obtaining any additional information
(he receives no heartbeats in that interval). Thus, at beginning
of cycle r, he already has all the information it needs upon
which it decides to include or exclude itself. The same applies
for hy. Since execution e’ does not make any assumptions
about heartbeats prior to cycle r, this means that the decision
of ho not to exclude itself in e’ covers all the possible cases in
which hg might decide not to exclude itself. Combined with
the previous case (the case in which ho excludes itself at r+d;)
we cover all possible cases that might affect hy’s decision.

The same can be constructed for A;. This result concludes
the proof as it shows that an algorithm that satisfies P5 and P3
has a positive probability of violating agreement (P2), given
the monitoring families considered in this paper (Section II).

|

Both theorems hold even if only one host can crash.

Given these impossibilities, an implementable form of the
desired ideal properties can only be probabilistic. We define
such a probabilistic form under an abstraction we call SYMS:

SYMS 1, SYMS 3 and SYMS 5 : respectively as P1, P3 and
PS5 above.

SYMS 2: If some host installs view V = (id, M) at round
r, then with probability pggree, all alive hosts at r install
V = (id, M) at round r.

SYMS 4: If some host installs view V' = (id, M) such that
h ¢ M, for some host h, then with probability pyccurates P
has already crashed.

We highlight two probabilistic metrics. The first is pggree,
the probability that all alive hosts agree on the view (list of
hosts that are considered alive) to be installed at a round. The
second iS Pgccurate, the probability of an excluded host to
have actually crashed. To increase the dependability of a DCS,
SYMS algorithms need to maximize both metrics.

IV. THE ViewSnoop ALGORITHM

ViewSnoop implements SYMS by building local suspicion
lists above which membership views are constructed . Sus-
picion lists combined with the process of constructing views
allow ViewSnoop to detect and act upon stale input resulting
from message losses and not only host crashes (details in
Section V-C). In particular, ViewSnoop seeks to increase the
probability of having synchronous consensus on views given
message losses and to always detect host crashes in real-time.

Let n; be the maximum number of heartbeats a host h;
can send in some cycle r (every heartbeat, if not lost, is
received in r). For illustration, we assume that n; is the same
at all cycles and for all hosts. We first describe ViewSnoop
for s, = 3 (consecutive cycles in which a host can tolerate
stale data); s, = 3 represents the minimum upper bound on
the number of cycles to exclude a crashed host in ViewSnoop
(as we show below). Later, in Section IV-B, we discuss how
to extend ViewSnoop to any value of s, > 3.

Every host in ViewSnoop maintains a list of suspected hosts
(localsyspect). In each cycle, every host broadcasts a copy of
its suspicion list tagged with the control cycle number, as a
heartbeat, n; times to all hosts. At the end of the cycle the list
for the next cycle is prepared. In ViewSnoop, a view installed
at cycle r has id = r.

A. ViewSnoop’s Functionalities

1) Synchronous View Agreement. This functionality of
ViewSnoop constructs the view that a host installs in a control
cycle. At the end of the control cycle (i.e., after broadcasting
the suspicions list), every host performs a merge on all the
suspicion lists received: the result is a new view to be installed
at the beginning of the next cycle. For every host h; in the
current view, a host h; performs the merge as follows:

If h; belongs to the localsyspect list of h; and hj; is in
the suspected list of all heartbeats received by h;, then h;
excludes h; from the view to be installed in the following
cycle. Otherwise h; considers h; alive.

Consider a host /; that belongs to the local sy spect list of all
alive hosts at cycle . Then the merge guarantees the following:
all alive hosts at cycle r + 1 exclude h;. The reason is that
alive hosts at r 4 1, can receive messages (if any is received)
of hosts which append their localsyspect lists at 7.

2) Host Crashes Detection in Real-time. ViewSnoop aims
at excluding crashed hosts in real-time, i.e., within a fixed
number of cycles, s.. This second functionality of ViewSnoop
ensures that a crashed host belongs to the localsyspect list of



all alive hosts (and which remain alive) at most two cycles
after crashing. By satisfying this condition, the synchronous
view agreement, precisely the merge, guarantees that the
crashed host gets excluded at most one cycle later, i.e., by
the third cycle.

Detecting crashes in real-time relies on the n; heartbeats
sent by every host in every cycle. Initially the localgyspect list
of host h only contains h. A host i always suspects itself. At
the end of a cycle, every host updates its local s, spect list based
on the non-excluded hosts it hears from during that cycle. For
example, if h; did not receive any message from h; (which is
part of h;’s current view), then h; places h; in the localgyspect
list. Note that placing h; in the suspected list does not mean
that h; is excluded from h;’s view; excluding hosts is governed
by the synchronous view agreement.

h;, thus, gets suspected (not excluded), at most two cycles
after crashing, by all hosts that remain alive (since h; stops
sending heartbeats after crashing and might send a heartbeat
and directly crash). The merge of Section IV-Al, excludes h;
at most one cycle later, i.e., by the third cycle.

B. Tolerating s, > 3 Stale Control Cycles

To tolerate s. > 3 cycles, a host h; needs an array variable
(with one entry per host), countgsiqe-

The only modification to ViewSnoop is induced in the syn-
chronous view agreement part, precisely the merge operation.
Hosts now perform merge as follows: h; is declared failed
by h;, according to the description below (otherwise h; is
declared alive).

For every hj
IF (countsigre(hj)=s.) DO
Declare h; failed
ELSE
IF (condl && cond2) DO
// condl: hj belongs to localsyspect of hj.
// cond2: hj is in the suspected list of all heartbeats received by h;.
countsiate(hy) + +;
ELSE
countsiqre(hy) = 1;
ENDIF
ENDIF

C. Approximating ViewSnoop’s Probabilistic Guarantees

ViewSnoop satisfies properties SYMS 1 SYMS 3 and
SYMS 5 (details are found in Appendix A). We determine,
in what follows, pagree and pPaccurate With which ViewSnoop
satisfies properties SYMS 2 and SYMS 4. We approximate
Dagree and Dgccurate 1N crash-free executions, i.e., only con-
sidering false suspicions resulting from message losses, since
we do not assume any particular probability for host crashes
(we show in Section VII that crashed hosts are excluded by
all alive hosts using ViewSnoop in at most 3 cycles). We defer
all proofs in this section to Appendix A.

Lemma 2. The probability, pugree, that all alive hosts
in ViewSnoop agree on the view to be installed at a
round can be approximated by pagree = 1 — Ddisagree, Where:

‘kc:‘l (‘il) [Prob(dz’sagreeA)]k 1- Prob(disagreeA)]‘cl*k,

Pdisagree = 3
Progb(disagreeA) = [Prob(1l|ma) + Prob(2|ma)] P(ma),
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such that T 4 is the the set of hosts which do not have some
host A in their localsyspect list at the beginning of cycle r and
C is the set of alive hosts in v — 1, assuming that no host has
excluded any other host.

Lemma 3. The probability paceurate 0f a host excluded
in ViewSnoop to have actually failed can be approximated

by 1 — [Prob(l|lrg) + Prob(2|rg) + Prob(3|rp)] P(rp),
where:

Prob(1llrp) = (1 — p)™>75,
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such mwp is the set of hosts that heard from some host B
in cycle 1 — 1 and C is the set of all alive hosts in cycle r
(assuming no exclusions at all hosts).

V. ANALYTIC EVALUATION OF ViewSnoop

Probabilistic performance metrics, like pggree and
Paccurates cannot be evaluated accurately via experimentation
and are best measured analytically,. We hence conduct
extensive theoretical analyses and simulations addressing: (a)
ViewSnoop’ dependability (b) the effect of network load on the
dependability of ViewSnoop and (c) ViewSnoop’s capability
of differentiating between network and host failures.

We address the above points of ViewSnoop’s performance
and compare with membership schemes based on classic
heartbeats. First, we describe the different classic heartbeat-
based schemes with which we compare and compute their
probabilistic guarantees.

a) Simple fault-exclusion mechanism (SFTM). This
mechanism is employed as the basis of most existing mem-
bership protocols with real-time guarantees [7], [8], [12],
[13]. These existing protocols typically augment SFTM with
additional help not supported in the context of this paper, such
as allowing hosts to be killed and using additional hardware
(see Section VIII). In SFTM, every host broadcasts a heartbeat
in every cycle and at the end of a cycle, suspects and excludes
all hosts from which it did not hear. A heartbeat here represents
an “I am alive” message. Let us denote by pugrec(SFTM)
and pgccurate(SFTM), the probability of installing the same
view by all alive hosts (C) in some cycle and the probability
of a host declared as failed to have actually crashed respec-
tively, given that a messa%e loss probability is 1 — p. Then
Pagree(SFTM) = plcIUCI=1) and

paCcuT'ate(SFTM) =1- Z‘T(::‘Il (|C‘Tf1)(1 p)rp\c|71fr.



b) M-SFTM. A variant of SFTM where every host
broadcasts n; heartbeats per cycle, as opposed sending a single
heartbeat. Sending more heartbeats makes M-SFTM more
robust than SFTM to message losses in ways supported by the
DCS context discussed in this paper. At the end of a cycle,
every host in M-SFTM suspects and excludes all hosts from
which it did not hear any heartbeat. A heartbeat has the same
structure as in SFTM. Alive hosts in M-SFTM install the same
views if each host hears some heartbeat from every other alive
host. Hence, pagree(M-SFTM) = [1 — (1 — p)m]/€I€I=1 A
host h is falsely excluded by at least one other alive host if at
least one other host receives none of host h’s heartbeats. Thus:

\’\Clel (\C\k—l) [(1 _ p>n1]k [(1 _ (1 _p)nz)]\C\—l—k )

c) Ring Algorithm. A variant of SFTM, this time
not using all-to-all communication, inspired from Larrea et
al. [27]-[29]. Hosts send heartbeats following a ring structure.
Initially host 1 sends heartbeats only to host 2, host 2 to host
3, ..., and host n to host 1 (n : total number of hosts). Similar
to Section IV, we describe the algorithm for s, = 3.

The ring algorithm uses a boolean variable, “suspect”,
initially set to false.

1- paccurate(M'SFTM) =

In every cycle, host; sends a heartbeat tagged with the cycle
number, n; times to host;; following it on the ring of the
current system view. The heartbeat has the same structure as
in SFTM. At the end of the control cycle, every host; checks if
it received some heartbeat from host;_; of the current system
view. If no such message is received, then host; updates its
suspect variable to true (false otherwise).

At the beginning of cycle 7, every host; executes:

Install V = (r,M) such that M = M’, where (r — 1,M’)
is the view of the previous control cycle.
IF (suspect) DO
Broadcast < id(host;_1),crash > message n; times.
Declare host;_; failed & install at the beginning of
cycle r+1, V=(r+1,M"”): host,—1 & M".
Set suspect = false
Listen in control cycle r+ 1 to heartbeats of
host;—1 in the new V =(r+1,M).
ELSE
Install at beginning of cycle r+1, V= (r+1,M), M
being the system view at cycle r.
ENDIF
At the end of a control cycle 7, every host; executes:
IF (< id(hosty),crash > is received) DO
Declare host, failed and install at beginning of
cycle r+1, V=(r+1,M") such that host;—1 ¢ M".
ENDIF

The probability that hosts are in agreement (details are deferred
to Appendix D) is: pygree(Ring) =[1 — (1 — p)""]‘cl.

The probability that a correct host is falsely suspected and
excluded in a cycle, i.e., the probability that a host is placed in
the suspected list of at least one other host in some cycle is:
l_paucurate (ng) = (1 - p)ni

[Cl—1 cl -1
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Now we evaluate the dependability of ViewSnoop compared
to the aforementioned classic heartbeat-based schemes.
A. ViewSnoop’s Dependability

We evaluate ViewSnoop’s dependability by comparing the
values of pugree and pgccurate achieved by ViewSnoop versus

those obtained using SFTM, M-SFTM and the ring algo-
rithms. Any gain in pggree and/or pgecurate translates into
a more dependable SYMS implementation and a better DCS
availability*. We simulate the values of Pagree ad Doccurate
for all algorithms using n; € {1,2,4,8} broadcast mes-
sages per control cycle. Note that for n; = 1, SFTM and
M-SFTM become the same algorithm. Simulations are run
for p € {0.8,0.9,0.99,0.999,0.9999, 0.99999, 0.999999} and
C € {3,10,100,1000}, where p is the probability of a host
receiving a broadcast message successfully and C is the number
of alive hosts in the system. Due to space limitations, we report
our results, in Figure 4, for C € {10,100}, additional values
for C € {3,1000} can be found in Appendix B.

1) Gain in Agreement Probability. Figure 4A (a),(b) and
(e),(f) report respectively the ratios of pggree Obtained by
ViewSnoop w.r.t. that obtained by M-SFTM (SFTM) and ring.

The following remarks are in order:

1. ViewSnoop has a higher agreement probability compared
to all other classic heartbeat-based mechanisms and under all
settings, i.e., for all values of p, n; and C.

2. For a fixed value of p and a fixed n;, the gain in the
agreement probability for ViewSnoop over all other classic
heartbeat-based mechanisms increases exponentially as the
number of alive hosts C increases.

3. Given a fixed number of alive hosts (C), the positive gain
in the agreement probability of ViewSnoop compared to all
other mechanisms tends asymptotically to zero (i.e., no gain)
as p — 1 and as n; increases (when messages losses are fully
masked all algorithms provide the same guarantees).

2) Gain in Accuracy. The gain in the probabilistic accuracy
of ViewSnoop over that of all classic heartbeat-based mecha-
nisms can be observed in Figure 4A (c),(d) and (g),(h). The
probability of falsely excluding an alive process achieved by
all classic heartbeat-based mechanisms is lower bounded by
the probability achieved by ViewSnoop, allowing it to have the
best accuracy. This lower bound becomes tighter as p — 1 and
n; — oo while it becomes more relaxed as C — oo.

Conclusion. ViewSnoop indeed offers a more dependable ser-
vice, compared to SFTM, M-SFTM and the ring algorithm,
enhancing thus the availability of a DCS. The significance of
this improvement relies on: (i) the number of heartbeats sent
every cycle, (ii) the reliability of the communication and (ii)
the size of the DCS. For DCSs suffering from communication
losses, our algorithm provides superior probabilistic guarantees
for critical cyclic control applications (where the number of
sent heartbeats per cycle is scarce) compared to mechanisms
based on sending simple heartbeats. In fact, we show in
Appendix C that both probabilities with which ViewSnoop
implements SYMS properties, i.€., Pagree and Paccurate, tend
to 1 as the number of hosts in the system tends to oc.

B. The Effect of Network Load

We study, at a finer granularity, the effect of network load
on the guarantees of algorithms implementing SYMS. Network
load can be split into: (i) message complexity, i.e., the number
of heartbeat messages sent per host per cycle, and (ii) message
size. We study the impact of these factors individually.

4Lower accuracy means more correct hosts get excluded, increasing the risk
of downtime due to the lack of processing resources.
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Figure 4. A. The ratio of the agreement probability and accuracy of ViewSnoop w.r.t. to other algorithms; B. Values of pagree and paccurate of all algorithms

versus varying values of n; for p = 0.99.

1) Message complexity. The table below summarizes the
message complexitiesin the absence of host crashes and losses.

Algorithm | Message Complexity | Message Content
SFTM 0o(C?) 2 integers

M-SFTM O(n;C?) 2 integers
Ring O(n;C) 2 integers

ViewSnoop O(n;C?) 2 integers +1 string

Observation 1. Allowing hosts to send more heartbeats per
cycle improves an algorithm’s probabilistic guarantees.

Our results in Figure 4B show that both, p,gree and
Daccurates tor all algorithms, i.e., ViewSnoop, M-SFTM and
ring, increase as n; (the number of heartbeats sent per host per
cycle) increases. This is expected as sending the same message
multiple times helps mask potential losses of that message.

Observation 2. Consider algorithms A and B with message
complexities O(A) and O(B) respectively. If O(A) > O(B)
then the statement: “B is at most as good as A”, w.r.t. the
ensured reliability and availability, does not hold.

Our results in Figure 4B show that the ring algorithm (with
lower message complexity) provides better guarantees than M-
SFTM for p = 0.99, both in terms of pygree and Paceurate- This
result also holds for various values of p (see Appendix B).

Conclusion. Increasing the number of heartbeats sent per
host per cycle of an algorithm implementing SYMS increases
the probabilistic guarantees of that algorithm; however this
relation does not hold across algorithms. In other words, the
performance of distinct algorithms cannot be compared solely
based on their message complexity.

2) Message Size and Structure. We investigate whether
ViewSnoop benefits from sending more information in a heart-
beat than simply: “I am alive”, to achieve better guarantees.
We compare M-SFTM and ViewSnoop, as they have the
same message complexity but differ in message size. Such a
comparison shows the impact of exchanging local views versus
simple heartbeats. Figure 4B shows a positive improvement
in pagree and in pgccurate When local views are exchanged.
The improvement over M-SFTM, for 10 hosts, is about 9.2,

increasing exponentially with the increasing system size.

Conclusion. Appending local views to heartbeats allows ViewS-
noop to increase its probabilistic guarantees and thus the
availability of the DCS. The improvement is most significant
in large DCSs running critical applications (small n;).

C. Distinguishing Host Crashes from Message Losses

Distinguishing host crashes from message losses is very
important in DCSs. In case of message losses where hosts are
still alive, a DCS can benefit from this information to update
the configurations such that tasks requiring communication
would not be allocated to hosts connected by bad links or
different routes for communication are used instead. In all
classic heartbeat-based mechanisms, roughly speaking, a host
A knows the state of host B (if B is alive or not) only if
A and B can communicate, even with the use of sequence
numbers [24]. As long as communication between A and B
is down then A has no idea about B’s state. In contrast,
ViewSnoop, by exchanging views, allows A to know about the
state of B from other hosts even if communication between
A and B is down. ViewSnoop can detect the failure of
communication, when for example host B is in the suspect
list of host A while A still sees that host B is not in
the suspect list of all other hosts that A hears from. Let
Deom_fail De the probability that a host A detects correctly the
communication failure between itself and another host. Note
that all other classic heartbeat-based mechanisms are incapable
of detecting correctly a communication failure without a trade-
off in pyccurate, While ViewSnoop can do it with probability:
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Notice that peom_fqir tends to 1 as n; and |C| increase. This
means that ViewSnoop can detect communication failures with
high probability in large systems where hosts are not limited
in the number of heartbeats they can send per control cycle.
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Figure 5. (a) A FASA control cycle; (b) Waveform: an example application.

VI. RUN-TIME ENVIRONMENT, APPLICATION AND
IMPLEMENTATION DETAILS

A. Run-time Environment

We implemented ViewSnoop and deployed it in FASA [7],
an industrial automated DCS framework, whose behavior ad-
heres to the description in Section II. A cycle in FASA consists
of a phase called the “execution period”, followed by a phase
called the “slack period” (see Figure 5 (a)). The execution
period is the time a host utilizes for executing tasks assigned
to it. The slack period is the remaining time of the cycle
(used for running background operations if any is needed). The
scheduler in FASA computes global configurations statically
and installs the configurations relative to the alive hosts. The
scheduler, based on the configuration, knows which hosts
need to communicate with each other. Accordingly, the FASA
scheduler builds abstract communication channels between
communicating hosts on top of the unidirectional links. These
channels can be configured to use different underlying links.

For our experiments, we deploy ViewSnoop in a FASA sys-
tem where the scheduler can accommodate a maximum of one
failure. The scheduler embodies pre-computed configurations
to re-distribute application tasks on hosts, when only a single
host can crash. The failure of more than one host would cause
the system to stop executing.

B. Application

We execute on FASA a cyclic control application called
Waveform (see Figure 5 (b)). Waveform is a simplified example
of an industrial control application (extracted from a real
setting) that reads some input variable, performs calculations
(e.g., a cascaded feedback loop), and finally writes some output
to a field-bus I/O interface. The application is executed every
cycle, by periodically executing the application’s tasks. In the
example, a new input value is provided by the Sensor task
at the beginning of each cycle. The input follows a triangular
periodical signal. The WaveTransform task performs certain
calculations that change the input signal. Specifically, the
WaveTransform task in this example observes the input signal
to learn its amplitude, base, and period and increases the upper
half of the triangular wave amplitude by a factor of 1.5 every
third period. This output is fed into a Monitor task, which
prepares the value for output to a field-bus I/O interface.

C. ViewSnoop Implementation

ViewSnoop is implemented within the FASA distributed
scheduler (see Figure 6) in C++. For communication, ViewS-
noop has access to a UDP broadcast primitive (without ac-
knowledgments and prone to communication failures).

At the beginning of every cycle, the ViewSnoop module
on every host broadcasts a heartbeat message. In our current
implementation, ViewSnoop sends a single heartbeat per cycle,
ie.,, n; = 1. This scheme could be extended to multiple
broadcast messages, however, taking into account the cycle
time (in Section V we evaluate ViewSnoop with n; > 1).

Host 1 Host 2 Host 3
FASA Scheduler FASA Scheduler FASA Scheduler
List of alive hosts List of alive hosts List of alive hosts

Received
msgs

Received
msgs

Received

Update msgs

Update Update

ViewSnoop ViewSnoop ViewSnoop

List of suspected hosts List of suspected hosts List of suspected hosts

o e Y O e [ B A B R

—— Y ——

Architecture of ViewSnoop within FASA.

Figure 6.

The ViewSnoop module on each host maintains a local list
of suspected hosts (see Figure 6). This list is implemented
as a vector containing the host_ids of suspected hosts. The
heartbeat message in ViewSnoop is implemented as an ob-
ject encapsulating the control cycle number and the list of
suspected hosts. For programming simplicity, this object is
parsed into a string when transmitted on the network. During
the slack period, the ViewSnoop module on h; checks for
the current_host_ids: the ids of the hosts from which h;
received heartbeat messages for the current cycle. ViewSnoop
decides based on its local list of suspected processes and the
current_host_ids to update the list of alive hosts observable
by the scheduler. Upon observing a change in the list of alive
hosts, the scheduler activates the corresponding configuration.

VII. EXPERIMENTAL EVALUATION OF ViewSnoop

We evaluate experimentally the performance and cost of
ViewSnoop addressing the following points: (a) the time for
detecting and excluding crashed hosts, (b) the time the system
remains available in the presence of communication losses,
given no host failures, (c) the overhead ViewSnoop adds to a
DCS and (d) how fast ViewSnoop accommodates host recov-
eries. We compare the performance of ViewSnoop with that of
SFTM, the mechanism employed in most existing membership
protocols with real-time guarantees (described Section V).
Whenever needed, we inject message losses in the network at
the receiver side; we assign a fixed success probability p with
which a sent message is successfully received by a destination
host (unreliable broadcast). This is besides any other message
losses that can happen in the network; these losses can be
correlated and can result from collisions, contention, etc, since
we conduct our evaluation in a real production DCS.

Hardware Description. We deploy ViewSnoop within
FASA [7] and precisely in the same industrial setting in which
FASA was originally implemented, tested and run [7]. That
is, three Mac Minis with dual-core Intel i7-2620M @2,7GHz
CPU, 4 GB RAM, and Gigabit Ethernet network connection
(a similar implementation setting was also used for example
in the RTCAST real-time membership protocol [12]). Our
implementation on three machines is used to validate and
estimate the overhead of ViewSnoop versus that of SFTM
(also deployed in FASA [7]). Performance on larger DCSs
is rigorously simulated in Section V.

The machines are given unique ids (1,2 and 3) and we
refer to them as hosts. All machines run Ubuntu 12.10, Kernel:
3.5.0—24x86_64. The hosts use control cycles of 5 ms and are
synchronized using PTP [30]. The cycle duration in practice
varies according to the applications, e.g., 8 ms to 10 ms for
substation automation and low-level robot interfaces [31] and
up to 1 s for less critical temperature-drive applications.
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Figure 7. 1. Time to suspect (Ts) and exclude (7%, ) crashed hosts; II. Number
of control cycles until an alive host is excluded (the higher the better): (a)
mean; (b) distribution.

A. Time to Exclude Crashed Hosts

We verify experimentally our theoretical claims (Sec-
tion IV) regarding ViewSnoop’s speed of excluding crashed
hosts, and compare them to those achieved by SFTM. To this
end, we crash host 1 at the 50** cycle in two manners: (i)
before sending a heartbeat in the 50" cycle and (ii) after
sending that heartbeat. We measure the following:

1. The time span until some host in the system suspects
host 1 after it fails (75).

2. The time span until host 1 gets excluded after its failure
by all hosts in the system (7,).

Theoretically, T < 2 and T., < 3 cycles in ViewSnoop
(see Section IV) and Ty, = T., < 2 in SFTM (implied
from SFTM’s description earlier this section). We repeat the
experiment 50 times and report the values in Figure 7-I.
Our results show that when host 1 crashes before sending a
heartbeat, host 1 gets suspected, in ViewSnoop, after ~ 1 ms,
i.e., at the same cycle it crashed in (the 50*" cycle) and gets
excluded from the system after 6 ms (at the 515 cycle). When
host 1 crashes after sending a heartbeat, host 1 gets suspected,
in ViewSnoop, 8 ms after crashing (at the 51°¢ cycle) and
excluded from the system 11 ms after crashing (at the 52"¢
cycle). Our results also show that, in SFTM, T, = T,, and
that host 1 is suspected at the same cycle as in ViewSnoop but
excluded one cycle earlier than in ViewSnoop.

B. Mean Time to Failure

We assess the system’s reliability by measuring the mean
time to failure of ViewSnoop, focusing here on violating P4
of the group membership properties. To this end, we count
the number of control cycles in a crash-free execution until an
alive host is excluded by ViewSnoop by mistake. We consider
crash-free executions (we do not crash any host) and simulate
message losses on the network by specifically having a receiver
of a broadcast heartbeat deliver that message randomly with
fixed probability p € {0.8,0.85,0.9,0.95,0.99}; the message
is dropped otherwise. We do not consider values of p > 0.99
in experimentation since it requires weeks or even months to
obtain the desired numbers. We account, however, for such
values of p in our analytic evaluation (Section V).

For each value of p, we run the system for 50 times,
measuring in each how long it takes the system to declare

10

200

(bytes/sec)

Size of suspected list
50 100

0

Mean Bandwidth Increase

0005 007
Cycle Duration (sec)
ViewSnoop

1 1000 2000
# of repetitions

SFTM
°° %8 o g

Processing delay (us)

" 1200 2000 0 600 1200 2000

0 600
Instance number of the experiment being repeated

()

Figure 8. I. Network overhead: (a) 1 out of 3000 heartbeats contained a 3
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versus cycle duration; II. Processing delay of SFTM and ViewSnoop in ps.

a correct host as failed. We plot the average values and the
detailed distribution in Figure 7-1I (a) and (b) respectively.
Our results show that ViewSnoop can keep a correct host
in the system for a much longer time than SFTM. This
means that a system with ViewSnoop is expected to have
a higher availability (processing resources are available for
longer times) and reliability (falsely suspects processes at a
lower rate) than with SFTM. We also consider a variant of
SFTM: a host is excluded if no heartbeat is received from that
host for two consecutive cycles. This variant is considered to
compare ViewSnoop and SFTM when having the same speed
of excluding crashed hosts. Even with this variant, ViewSnoop
amounts to a better reliability than SFTM. The probability of
excluding a correct host in ViewSnoop is [(1 — p)?(1 — p?)]
versus (1 — p)? in SFTM. Correct hosts are thus expected
to stay included in the system using ViewSnoop for a longer
duration. The reason is that ViewSnoop allows hearing about
hosts from other alive ones.

C. Costs of ViewSnoop on a DCS

1) Network cost. We quantify the network overhead of
ViewSnoop by measuring the additional bandwidth required by
our ViewSnoop implementation in comparison to that needed
by SFTM. ViewSnoop requires every host to append to the
heartbeat of SFTM, a string containing the ids of the suspected
hosts. Such a heartbeat is sent every control cycle, in this
case every 5 ms. As in Section VII-B, we introduce message
losses; messages are successfully received with probability
p € {0.9,0.99,0.999}. We run the system until it halts and
record the size (in bytes) of all suspected lists appended to
heartbeats in that run by all hosts. For each value of p, we
repeat this experiment ~ 20 times (3,000 heartbeats). We
report the values in Figure 8-I(a). Our results show that the size
of the suspicion lists is consistent in all repetitions: 1 out of
3000 heartbeats contained a 3 byte instead of 1 byte suspicion
list. 3 bytes lists are observed at the end of the experiments,
since we run the system until one host is falsely detected as
failed, after which all hosts stop operation. This causes all
hosts to suspect each other increasing the size of the list.
These values do not vary between the different values of p.
An Ethernet packet in SFTM is 62 bytes (IPv4) and 82 bytes
(IPv6), meaning that our algorithm induces, on average, an
overhead of 1.6% and 1.3% respectively, compared to SFTM.



We also plot, in Figure 8-1(b) the average additional bandwidth
of ViewSnoop (compared to SFTM) as a function of the cycle
duration (varying from 5 ms to 1 s). The additional bandwidth
for ViewSnoop is 200 bytes/sec for 5 ms cycles and decreases
exponentially as the cycle duration increases.

2) Processing cost. Under the same experimental setup
as for evaluating network costs, we measure ViewSnoop’s
processing cost, i.e., how much delay does ViewSnoop add to
the regular processing time of hosts. To that end, we measure
during a control cycle the time a host spends to check for
crashed hosts, suspect hosts, update the list of suspected hosts
and update the content of the heartbeat message to be sent.
The statistics are consistent for the different values of p, so
for brevity we report statistics for p = 0.99. Figure 8-II shows
that, on average, ViewSnoop requires 0.3 ps more processing
time per cycle compared to SFTM. More importantly, such
processing is done in the slack period of a cycle, which
typically is 20% of the cycle duration, i.e., 1 ms for a 5 ms
cycle. Our algorithm thus does not delay any application as
it consumes on average 0.46% of the slack period, which is
entirely dedicated for background operations by design. We
also observe that processing delays above 5 us occur fewer
times, attributed to cases when hosts are falsely suspected.

D. Host Recoveries

For simplicity, we have discussed in the main paper SYMS
and ViewSnoop, our implementation of SYMS, without consid-
ering host recoveries. In fact, both SYMS and ViewSnoop can
be easily extended to encompass recoveries. In this recovery
setting, the maximum number of hosts in the system is known
ahead of time. However, since hosts can be excluded from the
system view, due to actual crashes or communication faults,
these hosts can try to enter the system again. Let WW(r) be the
set of non-crashed hosts at the beginning of cycle r (a non-
crashed host does not have to be part of the system view).
For coherence, an “alive” host here is a host that has not
been declared yet as crashed by any host. A recovered host
B becomes “alive” only starting from the cycle in which B’s
view includes all alive hosts and the views of all alive hosts
include B. To allow recoveries, SYMS 1 is updated to: if a
host installs a view V' = (id, M) and then V' = (id' = r, M),
then id < r and {M' — {M N M'}} C W(r). Accordingly,
ViewSnoop is adapted to account for recoveries as follows:

1)

A recovered host B, wanting to join the system,
broadcasts heartbeats at the beginning of every cycle.
Initially, B only has itself in its view. B learns about
the alive hosts in the system and includes them in
its view according to (2) below.

2) If a host A receives a heartbeat from host B in cycle
r (where B is not in A’s view), then A removes B
from its suspected list. A includes B in its view in
cycle r’ if A does not suspect B and all hosts that A
heard from in cycle ' do not suspect B.

We implement this crash recovery extension of ViewSnoop and
evaluate how long it takes a recovering host to be included
in the view of all other alive hosts. A broadcast heartbeat is
delivered by a host with probability p € {0.8,0.85,0.9,0.99}.
We force host 1 to stop sending heartbeats at the 5" cycle and
start sending heartbeats again at the 11*" cycle. This behavior
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Figure 9. Time for recovered hosts to join the system in ViewSnoop.

ensures that host 1 is declared failed by both host 2 and host
3, before trying to join the system back at the 11*" cycle.
We measure T).ccoper, the time from the beginning of the 11th
control cycle until host 1 is included in the view of both host
2 and host 3. For each value of p we repeat the experiment
50 times and report our results in Figure 8-III. We notice that
as p increases, i.e., less losses, the time for a new host to
join the system approaches two control cycles. This duration
is an upper bound on the time a process needs to re-join the
system in the absence of message losses. We can see for p €
{0.8,0.85,0.9} cases where a host can re-join in one cycle.
This happens when host 2 and host 3 receive host 1’s heartbeat
at the 11t* cycle, but do not hear from each other (such fast
re-joins can only happen in unreliable communication).

In comparison, in SFTM host 2 and host 3 include host 1
in their views as soon as they receive a heartbeat from
host 1. Host 1, thus, joins the system in the same cycle with
probability p?, after one cycle with probability (1—p?)p?, and
after s cycles with probability (1— p2)(5*1) p?. In the presence
of losses, host 1 joins the system, on average, after

1— p2
p2
cycles. Given no message losses, a recovered host, in SFTM,

is recognized by all alive hosts in the system in less than one
cycle (one cycle less than ViewSnoop).

VIII. RELATED WORK

Membership services have been addressed in different con-
texts [3], [4], [32]-[43]. For example, detecting host crashes
in real-time while guaranteeing the desired quality of ser-
vice needed by applications has been targeted in [44]-[51].
However, none of these works addressed membership issues,
precisely the issue of providing a consistent view of failures.

So in what follows, we focus on existing work on mem-
bership services in real-time context.

Kopetz and Griinsteidl [8] proposed the time-triggered
protocol (TTP) for distributed real-time control applications.
TTP provides many services including membership. TTP as-
sumes time division multiple access (TDMA)® as means to
organize sender transmission. A node is considered failed
when no message is received from that node in its designated
transmission slot. Also, a sender node itself can decide if it
is not operating correctly, and accordingly crash itself, based

STDMA divides the medium access into slots such that in each TDMA
round nodes transmit a fixed amount of traffic in the preallocated slots.



on: (i) internal detection mechanisms, (ii) acknowledgments
received relative to a window of previous transmissions and
(iii) frame rejections (by preforming a specific CRC check).
Disagreement is resolved, with high probability, by excluding
nodes that do not agree with the majority. Barbosa et al. [13]
devised a protocol using TDMA, where each node must
acknowledge messages from k other nodes in the membership
group. Membership agreement is guaranteed if f < &k — 1
failures occur during n consecutive transmission slots (n being
the total number of nodes in the system). Rufino et al. [23]
proposed failure detection and membership services to enhance
the dependability of distributed systems interconnected by
field-bus technologies, namely CAN, to levels comparable to
TTP-based systems. The major component in their technique is
the CAN enhanced layer: a combination of the CAN standard
layer with some simple machinery and low-level protocols.
Abdelzaher et al. [12] proposed RTCast, a multicast and mem-
bership service for real-time process groups sending periodic
or aperiodic messages. RTCast relies on a ring topology in
which processes take turn in sending heartbeats. RTCast relies
on processes being able to crash themselves, namely when
detecting receive omissions. Amir et al. proposed Totem [15],
a reliable total ordered broadcast protocol assuming a ring
topology. The Totem protocol depends on acknowledgments
and retransmission mechanisms to overcome communication
faults and can provide real-time message delivery with high
probability. Clegg and Marzullo [16] designed group mem-
bership with low overhead, low cost of handling failures
and supporting simple schedulability analysis. The proposed
solution abstains from sending heartbeats but rather relies on
other layers to exchange enough messages to ensure failure
accuracy and liveness of membership agreement.

The work in this paper differs essentially at two levels: (i)
required guarantees and (ii) implementation. On the level of
guarantees, we require crashes to be synchronously detected on
all alive hosts and within bounded periods from the crash. In
contrast with existing work, disagreement, even for few rounds
after which agreement maybe achieved, must be avoided. We
thus define a probabilistic notion of agreement which we seek
to maximize. Implementation wise, our protocol (ViewSnoop)
relies on the periodic exchange of messages, however not in a
TDMA fashion as opposed to [8], [13] enabling ViewSnoop to
tolerate message collisions. Also, as opposed to [23], we do not
assume a specific type of interconnection between hosts (i.e.,
field-bus), we just consider communication is prone to losses,
not relying on additional hardware or acknowledgments. Pro-
cesses in ViewSnoop do not kill themselves, as opposed to [8],
[12], where the DCS’s computing resources can be easily
depleted, jeopardizing the system’s availability. To this end, we
employ a technique not explored in any of the previous work.
Our approach relies on exchanging local views as opposed
to exchanging classic heartbeats (as [8], [12], [13], [15]) and
having self-crashing capabilities.

IX. CONCLUDING REMARKS

In this paper, we defined the membership properties re-
quired in DCSs. In their implementable form, these properties
take the form of a probabilistic real-time membership service
called SYMS. We proposed ViewSnoop, an algorithm based on
exchanging local views between hosts, as a way to implement
SYMS with high probability guarantees and low overhead. We
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evaluated ViewSnoop both analytically as well as experimen-
tally via an implementation within FASA, an industrial DCS
framework. Our results convey that ViewSnoop indeed provides
a more dependable service, compared to classic heartbeat
mechanisms, thus enhancing a DSC’s availability. Additionally,
ViewSnoop can distinguish host failures from message losses.
Schedulers in DCSs can thus compute better configurations,
in the sense that tasks requiring information exchange are not
allocated to hosts connected by bad links.
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APPENDIX A
DETAILS OF VIEWSNOOP’S GUARANTEES

ViewSnoop guarantees property SYMS 1 due to two rea-
sons. First, the id of the view to be installed at control cycle r
is r, the control cycle number itself. Second, crashed hosts do
not recover and if host A excludes host B at cycle r, then A
does not install any view at cycles > r where B is considered
alive (after excluding B, A ignores any heartbeats from B).
SYMS 3 is ensured in ViewSnoop of the following reasons:

e A host h that fails at cycle 7, stops sending heartbeat
message from cycle r + 1 onward.

e Since h sends no heartbeats at cycles in [r + 1, 00|,
then h is included in the suspected list of all host alive
at cycles in [r + 1, 00].

e As indicated in Section IV-Al, a host h suspected all
alive hosts at cycle 41 is declared as failed at cycle
T+ 2.

ViewSnoop guarantees property SYMS 5, since: (i) every
host broadcasts to all other hosts a heartbeat at every cycle
and (ii) a host h; receiving a heartbeat from a non-excluded
host h; at cycle r declares h; as alive. In this sense, any host
at cycle r has a positive probability (probability of heartbeats
being not dropped) of installing a view containing the set of
hosts that have not crashed or been excluded up to cycle 7.

We detail in what follows how to derive the probabilistic
guarantees, Pagree and Pqccurate, With which ViewSnoop satis-
fies properties SYMS 2 and SYMS 4, and thus prove Lemma 2
and Lemma 3.

A. Proof of Lemma 2

Consider host A and two sets of hosts:

1)  ma: hosts which do not have A in their localsyspect
list at the beginning of cycle r.
2) w4 hosts which have A in their localgyspect at the

beginning of r.

Assume that host A is not included in any of these sets. Let C
be the set of alive hosts in 7 — 1 and assume that no host
has excluded any other host, then |[C| = |ra| + |7z] + 1.
Disagreement in cycle r occurs if any condition below holds:
1)  Host A does not receive any message from all hosts
in m4 and at least one host in 74 |Jmz receives a
message from A Jm4.
At least one host in 7 ;7 does not receive any message
from all hosts in A|J74 and:

2)

a) Host A hears from at least one host in 74
OR
b) At least one host in w4 hears from some

other host in A|Jma.

Condition (1) happens with probability Prob(1|m4):

Prob(l|ma) =
P(Host A does not receive any message from all hosts in 74)

x P(at least one host in 74 U T4 receives a message from AUWA)A



In our computations, we do some approximations for pre-  B. Proof of Lemma 3

sentation simplicity of closed-form expressions. The value of ]

Prob(1|m) can be approximated as follows: Let E be the event that some correct host B is excluded,
then Prob(E) = 1 — paccurate-

Prob(1|ma) ~ P(Host A does not receive any message from all hosts in 74)

x P(at least one host in 7 4 receives a message from AUﬂ'A). We define the following:
P(Host A does not receive any message from all hosts in 7 4) = (1 — p)"*I7al, 1) mp: the set of hosts which do not have B in their
localsyspect list at the beginning of cycle r.
P(at least one host in 75 receives a message from A Ja) = 2)  mp: the set of hosts which have B in their localgyspect
lel=lmal=t o ) lmal—h— list at the beginning of cycle r.
ICl=1mal =1\ 1] _ g _ pymilmal+n]” _ pyniimal4n] €Il ginning Y .
2 ( h ) [1-0-p) ] < [a-» ] : 3)  The set of all alive hosts in cycle r (assuming no host
S has excluded any other host), C = np+ mz+{B}.
o,
Prob(1|ma) ~ (1 — p)miImal A correct host B gets declared as crashed and thus is

[C]=|mal-1

S (IC\ —Jral - 1) {1 a _p)mwwr 5 {(1 _p)n,umﬂ)}‘C‘*‘“'*h’*" excluded by some host if any of the following happens:

— h

o ) . 1) B does not hear any message from all hosts in 7.
Condition (2) happens with probability Prob(2[m4): This event occurs with probability:

Prob(2|ma) = ng X
— _ iXTB
P(At least one host in 75 does not receive any message from all hosts in A U‘ITA) PTOb(l |7TB) - (1 p) .
X [P(Host A hears from at least one host in 74) .
2) At least one host in 75 does not hear any message

+ P(At least one host in 74 hears from at least one other host in AU ma)]. X . K
from all hosts in B|Jwp. This event occurs with

) probability:
We approximate Prob(2|r4) as follows:
C|~|mp|—1
Prob(2|7.4) IC| —|7p| -1 (lrsl+Dn: "
~ P(At least one host in 75 does not receive any message from all hosts in AUn-A) Prob(2|rp) = Zl ( r [(1 -p)
—

x P(Host A hears from at least one host in 74).

x [L= (1= o] ST

P(At least one host in 74 does not receive any message from all hosts in AU‘ITA> = 3) At least one host in wg does not hear any message
fel- Imal-1 —fral -k from all hosts in B|Jmwp. This event occurs with
€|l —|mal -1 Cmmaln]F P 1 R LN 11 B
; ( k > e I ‘ probability:
P(Host A hears from at least one host in m4) = 1 — (1 — p)™*™4. I7B| <
5] (ImB])ni
Prob(3|mp) =) (1—p) i
s
SO, s=1
o ‘7TB|7.S
Prob(2ima) ~ 1 - (1 = p)" "] % [1 (1- p)m\m}
s el -1 R ALk
> ( " ) [ = pytmared] o [1 - (1= pystimat+] ‘
k=1

Prob(E|rpg), the probability that some correct host B is
declared crashed given that mp hosts heard from B, can be

Prob(1|m4) and Prob(2|m4) are probabilities conditioned approximated by

on the probability, P(m4), of having |m4| hosts that do not

have A in their localsy,spect list at the beginning of cycle 7.
The probability P(m4) can be expressed as: Prob(ljmp) + Prob(2ms) + Prob(3|ms).

Ic| We have:

= |c\f\zw;\:2 (\C\ LC:m) L

Prob(ENmg) = Prob(E|rg) * Prob(rg),

As a result the disagreement probability can be estimated ~ where Prob(wpg) is the probability that exactly |7 | have host

as follows: B in localsyspect list at the beginning of cycle r. Thus,
Prob(disagreea) = [Prob(1|ma) + Prob(2|ma)] P(ma). Ic| ¢
Prob(E)= > (IC\ " |7r5|> Prob(ENwp)
The probability to have a disagreement (pg;sagree) is the Ic| il
probability to disagree about at least one alive host: = Y (\CI |C“ OPT‘O?)(E\#B) x Prob(rg)
le|= s = C B
Pdisagree = ‘,‘Cz‘l (‘il) [Prob(dz’sagreeA)]k 1- Prob(dz’sagTeeA)]‘cl*k, ‘ ic| ’

_ ( [C] >(1 —pymtiei=lrzh 1 (1 pymiimel ¢ prob(E|rg).
where: Pagree = 1-—- Pdisagree- Cl=Im5|=2 (¢l I
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Figure 10. The ratios of the agreement and failure
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Figure 11. Values of pggree and paccurate of all algorithms versus varying

values of n; for p = 0.99.

APPENDIX B
ANALYTICAL RESULTS EXTENDED

In this section, we show more results of our analytic
simulation which were omitted in the main part of the paper
for space limitations.

We compare the values of pggree and paceurate achieved by

accuracy probabilities of ViewSnoop w.r.t. those of other algorithms.

ViewSnoop versus those obtained using SFTM, M-SFTM and
the ring algorithms. Precisely, we simulate the values of pggree
and Paceurate for all algorithms using n; € {1, 2,4, 8} broad-
cast messages per control cycle. Note that for n; = 1, SFTM
and M-SFTM become the same algorithm. Simulations are run
for p € {0.8,0.9,0.99,0.999,0.9999, 0.99999, 0.999999} and
C € {3,10,100,1000}, where p is the probability of a host
receiving a broadcast message successfully and C is the number
of alive hosts in the system.

In Figure 10(a)-(d) and (e)-(h), we report the ratio of ViewS-
noop’s agreement probability over that of M-SFTM and that
of the ring algorithm respectively. We also report the ratio of
ViewSnoop’s accuracy probability over the accuracy probability
of M-SFTM and of the ring algorithm in Figure 10(m)-(p) and
(q)-(t) respectively. The results in these figures are a further
support to the conclusion drawn in Section V-A. Namely,
ViewSnoop offers a more dependable service, compared to
SFTM, M-SFTM and the ring algorithm, enhancing thus the
availability of a DCS. The significance of this improvement
relies on: (i) the number of heartbeats sent every cycle, (ii) the
reliability of the communication and (ii) the size of the DCS.
For DCSs suffering from communication losses, our algorithm
provides superior probabilistic guarantees for critical cyclic
control applications (where the number of sent heartbeats per
cycle is scarce) compared to mechanisms based on sending
simple heartbeats.

In Figure 10(i)-(1) and (u)-(x), we respectively show the



ratio in the agreement probability and the accuracy proba-
bility of M-SFTM over the ring algorithm. In Figure 11,
we show the agreement probability ((a)-(c)) and the accuracy
probability ((d)-(f)) of each of ViewSnoop, M-SFTM and the
ring algorithm when the probability of successfully receiving
a sent message is p = 0.99. The results of Figure 11 are
reported for n; € {1,2,4,8} broadcast messages per control
cycle and C € {10,100,1000} alive hosts in the system.
Note that for n; = 1, SFTM and M-SFTM become the same
algorithm. Again these results further validate our conclusions
in Section V-B which namely state that:

1)  Increasing the number of heartbeats sent per host per
cycle of an algorithm implementing SYMS increases
the probabilistic guarantees of that algorithm; how-
ever this relation does not hold across algorithms;
the performance of distinct algorithms cannot be
compared solely based on their message complexity.
Appending local views to heartbeats allows ViewS-
noop to increase its probabilistic guarantees and thus
the availability of the DCS. The improvement is most
significant in large DCSs running critical applications
(small n;).

2)

APPENDIX C
PROOF OF VIEWSOOP’S HIGH PROBABILITY GUARANTEES
FOR LARGE SYSTEMS

Lemma 4. The probabilistic guarantees of ViewSnoop,
Dagree And Dgccurate, both tend towards 1, as the number of
hosts in the system tends towards oo.

Proof: Similar to Appendix A, consider a host A and two
sets of hosts defined below:

1) ma: hosts which do not have A in their localsyspect
list at the beginning of cycle r.
2)  mj4: hosts which have A in their localsyspect at the

beginning of r.

Let C be the set of alive hosts at cycle r. We compute pagree
and pgccurate When the number of alive hosts is very big, i.e.,
when C — oo.

Hosts in 74 (7 7) are those hosts which do not have (have)
host A in their localsyspect list at the beginning of cycle r. In
other words, hosts in w4 (7 7) are those hosts which received
(did not receive) a heartbeat from host A in cycle r — 1. Since
an infinite number of hosts is alive (C — o0), then an infinite
number of hosts receive A’s heartbeat in cycle » — 1 and an
infinite number of hosts do not receive A’s heartbeat in cycle
r— 1, ie., |ma|,|7z] — oo. (An analogy with A sending a
message to an infinite number of hosts is flipping a coin an
infinite number of times where a head presents a successful
message delivery and a tail represents a loss. Flipping a coin
an infinite number of times will result in observing an infinite
number of heads and an infinite number of tails).

Recall from Appendix A, that disagreement in cycle r
occurs if any condition below holds:

1)  Host A does not receive any message from all hosts
in m4 and at least one host in 74 |J7 5 receives a
message from A(Jma.
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2)  Atleast one host in 7 ;7 does not receive any message

from all hosts in A|J74 and:

a)  Host A hears from at least one host in 74 OR
b) At least one host in w4 hears from some
other host in A|Jma.

Condition (1) happens with probability Prob(1|ma):

Prob(l|ma) =
P(Host A does not receive any message from all hosts in 7,4)

x P(at least one host in 74 U 4 receives a message from AUTFA).

Condition (2) happens with probability Prob(2|m4):

Prob(2|ma) =
P(At least one host in 74 does not receive any message from all hosts in AUTFA)
x [P(Host A hears from at least one host in 74)

+ P(At least one host in w4 hears from at least one other host in AUﬂA)].

We prove in what follows that the probability of any host
in 75 |J A not receiving a message from a host in 74 tends
to zero, and hence Prob(1|ma), Prob(2|m4) tend to zero as
well. The probability that a host in 75 |J A does not hear any
heartbeat from all hosts in 74, given that |74| hosts do not
have A in their localsyspece list at the beginning of cycle r,
P(H|ra) is: P(H|ra) = (1 — p)ni¥Imal,

However, since |m4| — oo then P(H|ma) — 0. This
implies that every host in 7 5 | J A hears a message from some
host in w4 and thus Prob(disagrees) — 0, i.e., Pagree 18 in
1-0((1 = p)lml), v p €0,11.

Following similar reasoning, if host A is correct (does not
fail during the entire execution), then the probability that a
host H does not declare A as crashed in cycle  + 1 can be
guaranteed if H hears from some host in m4. This happens
with probability: Pa(H|ms) =1 — (1 — p)™i¥I7al,

Since m4 — oo when C — oo, then Py(H|ma) — 1
in that case. The probability, psccurate, that an excluded host
has actually crashed can be restated as the probability of not
excluding a correct host. This means pgecurate = Pa(H|mA)
for some correct host and also tends to 1. [ |

These results show that ViewSnoop implements the agree-
ment and accuracy probabilities of the SYMS with high
probability (tend to 1 as the number of hosts increases).

APPENDIX D
PROBABILISTIC GUARANTEES OF THE RING ALGORITHM

We present in this section the details for approximating
the probabilistic guarantees of the ring algorithm presented in
Section V. The probability of hosts installing the same view
in the ring algorithm boils down to two cases:

1)  If every alive host receives at least one heartbeat from
the host that precedes it in the ring, i.e., if there are
no false suspicions.

2)  If all hosts receive the < id(host,),crash > of any

host, whenever sent.

In the second case, i.e., (2), a host h; which is falsely suspected
agrees to install a view where h; is not alive in that view.
As such, according to the description of the algorithm h; no
longer receives heartbeats from the alive host h; preceding



it. Since h; is still alive, despite being excluded form the
view, h; eventually suspects h; and broadcasts the message
< id(h;),crash >. Upon receiving such messages, we face
two cases:

1) Hosts exclude h; and then h; leads the host preceding
it to get excluded and so on, until all hosts get even-
tually excluded. This case means that the accuracy
of the algorithm drops to zero, as a correct host gets
excluded for sure.

2)  Hosts ignore messages received from the excluded
host h;. In this case, h; becomes in disagreement
with the rest of hosts in the system.

To this end, the probability of agreement among hosts in the
ring algorithm is approximated with the probability that all
correct hosts do not get falsely suspected. In other words:

pagree(Ring) = [1 — (1 _p)ni]\C| ]
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