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Abstract 
This paper investigates the vibration behavior of micro-resonators 
based on the strain gradient theory, a non-classical continuum the-
ory capable of capturing the size effect appearing in micro-scale 
structures. The micro-resonator is modeled as a clamped-clamped 
micro-beam with an attached mass subjected to an axial force. The 
governing equations of motion and both classical and non-classical 
sets of boundary conditions are developed based on the strain gra-
dient theory.  The normalized natural frequency of the micro-reso-
nator is evaluated and the influences of various parameters are as-
sessed. In addition, the current results are compared to those of the 
classical and modified couple stress continuum theories.  
 
Keywords 
Strain gradient theory; Micro-resonator; Size-dependency; Length 
scale parameter; Free vibration. 
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1 INTRODUCTION 

Today, micro-scale structures such as microbeams, microplates, microbars, etc are widely used in 
Micro-Electro-Mechanical-Systems (MEMS) such as micro-actuators (Padoina et al., 2015), micro-
switches (Joglekar, and Pawaskar, 2011), Atomic Force Microscopes (AFMs) (Kahrobaiyan et al., 
2010), micro-resonators (Hassanpour et al., 2007, Ghanbari et al., 2015) and etc. Micro-resonator is a 
micro-scale structure supposed to vibrate at a certain frequency (usually one of its natural frequencies) 
and play an important role in MEMS (Hassanpour et al., 2007, Ghanbari et al., 2015). Hence, mod-
eling the micro-resonators accurately and investigating their vibration behavior seem to be crucial.   
The experimental observations have indicated that the mechanical behaviors of the micro/nano struc-
tures are size-dependent (Fleck et al., 1994, Stolken and Evans, 1998, Lam et al., 2003). Since the 
classical continuum mechanics is incapable of capturing the size effect and consequently unable to predict 
and interpret the size-dependent static and vibration behavior observed in micro-scale structures, during 
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past years, some non-classical continuum theories such as the nonlocal, strain gradient and couple stress 
theories have been introduced, developed and employed to study the micro-scale structures. In these 
non-classical theories, some material parameters are considered in addition to the two classical parame-
ters, elastic modulus and Poisson ratio, which enable these theories to capture the size-dependency. For 
example, in the modified couple stress theory, due to the micro structure rotation gradient, an additional 
length scale parameter is considered while in the strain gradient theory, there exist three additional 
length scale parameters corresponding to the micro structure rotation gradient, the micro structure 
dilatation gradient and the micro structure stretch gradient. 

Since the characteristic length of micro-resonators is in the order of microns or sub-microns, their 
mechanical behavior is size-dependent. So, investigating the size-dependency in micro-resonators by 
applying some non-classical continuum theory, such as the strain gradient theory, seems to be neces-
sary. In this paper, the strain gradient theory is employed as a non-classical theory to study the size-
dependent vibration behavior of micro-resonators. Hereafter, a literature review on the non-classical 
continuum theories is presented: 

The couple stress theory is a non-classical continuum theory in which higher-order stresses, known 
as the couple stresses exist (Asghari et al., 2011). A modified couple stress theory has been proposed 
by Yang et al. (2002) in which a new higher-order equilibrium equation, i.e. the equilibrium equation 
of moments of couples, is considered in addition to the classical equilibrium equations of forces and 
moments of forces. This theory has been employed to formulate the size-dependent static and dynamic 
behavior of linear and nonlinear Euler-Bernoulli and Timoshenko microbeams (Park and Gao, 2006, 
Ma et al., 2008, Asghari et al., 2010, Liang et al., 2015), linear homogenous Kirchhoff microplates 
(Tsiatas, 2009, Ansari et al., 2014), buckling of composite laminated beams (Abadi and Daneshmehr, 
2014), and also nonlinear three dimensional curved microtubes (Tang et al., 2014). Recently, static 
pull-in instability and free vibration of electrostatically actuated microplates are studied based on the 
modified couple stress theory (Wang et al., 2015). 

In a similar way utilized by Yang et al. (2002) for the modification of the couple stress theory, 
Lam et al. (2003) introduced a modified strain gradient theory, which reduces in a special case to the 
modified couple stress theory. Henceforth, when the strain gradient theory is used in the text, it 
denotes the version of the theory presented by Lam et al. (2003). 

In the strain gradient theory, there exist three length scale parameters corresponding to the micro 
structure rotation gradient, the micro structure dilatation gradient and the micro structure stretch 
gradient. In studies associated with the strain gradient theory, for numerical evaluations, the research-
ers usually consider these three length scale parameters to be the same and indeed equal to the length 
scale parameter used in the modified couple stress theory (Kong et al., 2009, Koochi et al., 2014). In 
order to determine the length scale parameter for a specific material, some typical experiments such 
as micro-bend test, micro-torsion test and specially micro/nano indentation test can be carried out. 
As an example, according to the micro-torsion test of thin copper wire (Fleck et al., 1994), the copper 
length scale parameter has been reported 4μm. Also, according to the micro-bend test of thin nickel 
and epoxy beams, the length scale parameter for nickel and epoxy has been estimated 5μm (Stolken 
and Evans, 1998) and 17.6 μm (Lam et al., 2003), respectively. Utilizing the micro-indentation exper-
iments performed by McElhaney et al. (1998), Nix and Gao (1998) evaluated the material length 
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scale parameter of annealed single crystal copper and cold worked polycrystalline copper to be 12 μm 
and 5.84 μm, respectively.   

The strain gradient theory is utilized to formulate the static and dynamic behaviors of linear 
Euler-Bernoulli by Kong et al. (2009). The torsional static and dynamic behavior of microbars is 
investigated by Kahrobaiyan et al. (2011) using the strain gradient theory. Vatankhah et al. (2013a, 
2014a, 2014b, 2015a, 2015b) presented the problem of vibration control strain gradient micro-scale 
beams. In addition, employing the strain gradient theory, the size-dependent nonlinear forced vibra-
tion of a vibrating non-classical Euler–Bernoulli micro-beam has been investigated by Vatankhah et 
al. (2013b). 

In this paper, based on the strain gradient theory, the size-dependent free vibration of micro-
resonators is studied. The results are compared to those of the modified couple stress and classical 
theories and the effects of different parameters such as the length scale parameter and the design 
parameters like the gyration radius of the attached mass are assessed on the frequency of micro-
resonators. 
 
2 PRELIMINARIES  

According to the strain gradient theory proposed by Lam et al. (2003), the stored strain energy U  
for a linear elastic material occupying region W  having infinitesimal deformations is written as 
(Vatankhah et al., 2013b): 
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where iu , ig  and iq  denote the components of the displacement vector u , the dilatation gradient 

vector γ , and the infinitesimal rotation vector φ . Also, the components of the strain tensor ε , the 

deviatoric stretch gradient tensor η(1) , and the symmetric part of the rotation gradient tensor χs  are 
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represented by ije , (1)ijkh  and s
ijc . The parameters which are obtained by differentiating the strain 

energy density with respect to kinematics parameters ε , γ , η(1)and χs  are, respectively, symbolized 

by σ , p , τ(1) and ms . The parameters p , τ(1) and ms  are usually called the higher-order stresses. 

According to the constitutive equations for a linear isotropic elastic material, the components of the 
stresses are related to the kinematic parameters effective on u  as follows (Lam et al., 2003) 
 

( )ε 2ij ij ijtrs l d me= +  (7) 
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In above equations, the Lame constants appeared in the constitutive equation of the classical 
stress σ  are denoted by l  and m . Also, the additional independent material length scale parameters 

appeared in the constitutive equations of higher order stresses are represented by 0l , 1l , and 2l . The 

Lame constants can be written in terms of the Young modulus E  and the Poisson ratio u  as 
/ (1 )(1 2 )El n u u= + -  and / 2(1 )Em u= + . 

For a linear Euler-Bernoulli beam with uniform cross-section A and length L subjected to a 
uniform axial load P and distributed lateral load ( ),F x t , the governing equation of motion and 

boundary conditions are derived as (Vatankhah et al., 2013b):  
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where ρ denotes the beam density, w represents the lateral deflection, V̂  stand for the resultant 

transverse forces in a section caused by the classical stress components acting on the section, ˆhQ  

refers to the higher-order resultants in a section, work conjugate to 2 2/w x¶ ¶ , caused by higher-order 

stresses acting on the section and M̂  is the resultant moment in a section caused by the classical and 
higher-order stress components. Also: 
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in which I denotes the area moment of inertia of the beam cross-section defined as: 2

A
I z dA= ò .  

 
3 MODELING 

In this section, the free-vibration characteristics of a micro-resonator are going to be investigated. To 
that end, consider a micro-resonator modeled as a clamped-clamped Euler-Bernoulli beam having a 
concentrated mass attached along its length and subjected to a tensile axial load (see figure 1). 
 

 

Figure 1: A micro-resonator: Geometry, coordinate system, kinematic parameters and  
resultants acting on the attached mass.  

 
In this figure, P refers to the tensile axial load. In addition, M and r respectively denote the value 

and gyration radius of the attached mass. Moreover, the beam length is represented by L where L1 
stands for the length of the beam from the attached mass up to the left clamped end and L2 denotes 
the length of the beam from the attached mass up to the right clamped end as indicated in the figure. 
Normalization of the governing equation of motion mentioned in Eq. (11) would be helpful. Hence, 
utilizing the following dimensionless parameters:  
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equation (11) changes into the following normalized form:  
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noted that in previous equations, the dimensionless axial load, longitude coordinate, time and lateral 
deflection are represented by P , x , t  and w  respectively.  

In order to deal with the problem, the beam is considered to be made of two separated beams as 
depicted in figure 1. The normalized form of the governing equation of motion of the left beam can 
be expressed as: 
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in which  L1 denotes the length of the left beam and x1 is shown in figure 1.  
Using separation of variables approach, one can express: 
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where Y1 and 1T
  are the parts of the deflection associated with the longitude coordinate and time 

respectively. Substituting Eq. (24) into Eq. (21) leads to:  
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The solutions of Eqs. (25) and (26) are respectively:  
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where a1, b1 and ci i = 1,…6 are some constants that can be determined by applying appropriate 
initial and boundary conditions. In addition, λi i = 1,…, 6 can be determined from the following 
characteristic equation:   
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The same procedure as the one carried out for the left beam can be done for the right beam. The 
normalized governing equation of motion of the right beam is expressed as: 
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in which L2 denotes the length of the right beam and x2 represents the longitude coordinate of the 
right beam depicted in figure 1. Applying the separation of variables approach to Eq. (31) as: 
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Equation (35) and (36) are linear homogenous differential equations with constant coefficients 
that respectively have solutions as: 
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It is noted that in Eqs. (38) and (39), where 2a , 2b  and 7,...,12ic i =  are some constants that 

can be determined by applying appropriate initial and boundary conditions whereas 7,...,12i il = , 

can be obtained from the characteristic equation of Eq. (36) that would be 
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Now, the boundary conditions of the micro-beam are applied in order to determine its natural 
frequencies and mode shapes. The normalized boundary conditions of the left-side clamped end of 
beam is 
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in which the first and the second terms are respectively associated with the zero deflection and zero 
slope of the clamped end while the third term is the non-classical boundary conditions appearing due 
to the implementation of the strain gradient theory of elasticity.  

Similarly, the boundary conditions of the right-side clamped end would be 
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Since the micro-beam composed of the left and the right beams is continuous, the continuity 
conditions should be applied to the left and right beams. Henceforward, the boundary conditions 
ensuring the micro-beam to be continuous at the origin of the left and right beams will be presented. 
The continuity conditions of the deflection of the micro-beam at the origin are expressed as: 
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Moreover, one can express the continuity conditions of the beam slope at the origin as 
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  In addition, considering figure 1, the equilibrium equations along z-axis and about y-axis are respec-
tively as follows: 
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in which iV  and iM  1,2i =  respectively denote the shear force and bending moment acting on the 

beam sections.  
Equations (45) and (46) can be rewritten in the following forms: 
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The equality of the higher-order (non-classical) moments at the left and right sides of the origin, 
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Furthermore, the continuity of the non-classical kinematic parameter of the micro-beam at the 

left and right sides of the origin, 2 2
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2 2/d Y dx  leads to: 
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It is noted that Eqs. (50) and (51) appear due to employing the strain gradient theory of elasticity 
to investigate the vibration behavior of the micro-resonators.  
Applying the boundary conditions introduced in Eqs. (41)-(51) to the Eqs. (29) and (39), the following 
homogenous set of algebraic equations is achieved: 
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Noted that eigen-values and eigen-vectors of the matrix [ ]A  respectively give the natural frequen-

cies and mode shapes of the micro-resonator.  
 
4 RESULTS AND DISCUSSION 

In this section, the natural frequency of the micro-resonator is going to be evaluated and the effects 
of different parameters such as, the normalized axial load p , the normalized mass m , the normalized 

position of the attached mass g  and the normalized gyration radius h  on the normalized natural 

frequency of the micro-resonator w  are assessed. The aforementioned dimensionless parameters are 
defined as: 
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1 2
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 . (54)

 

The normalized natural frequency of the micro-resonator is respectively delineated as a function 
of the normalized axial load, mass, attached mass position and gyration radius in Figures 2-5 for 
various values of the ratio of the beam thickness to the material length scale parameter /h l . It is 

considered that the ratio of the beam width b  to the beam thickness h  to be / 5b h = . 
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Figure 2: The micro-resonator normalized natural frequency versus the normalized axial load for  
various values of the ratio of the microbeam thickness to the length scale parameter.  

 

 

Figure 3: The micro-resonator normalized natural frequency versus the normalized mass for various  
values of the ratio of the microbeam thickness to the length scale parameter.  
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Figure 4: The micro-resonator normalized natural frequency versus the normalized position of the  
attached mass for various values of the ratio of the microbeam thickness to the length scale parameter.  

 

 

Figure 5: The micro-resonator normalized natural frequency versus the normalized gyration radius of the  
attached mass for various values of the ratio of the microbeam thickness to the length scale parameter.  
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dependent and as the ratio of the beam thickness to the material length scale decreases, the frequency 
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and attached mass position leads to decrease of the normalized frequency whereas the increase of the 
normalized axial load results in increase of the normalized frequency. 

The normalized natural frequency of the micro-beam is depicted in figure 6 versus the ratio of 
the beam thickness to the material length scale parameter for three continuum theories; the classical 
theory, modified couple stress theory and strain gradient theory. It is noted that the two latter theo-
ries; unlike the first one; are the non-classical continuum theories capable of capturing the size-effect 
appearing in micro-scale structures. In addition, the two former theories are indeed special cases of 
the latter theory. In figure 6, the frequency evaluated by the classical, couple stress and strain gradient 
theory are represented by CLw , CSw  and SGw  respectively. 

 

 

Figure 6: A comparison between the results of the strain gradient theory and those of the  
classical and couple stress theories.  

 
The figure indicate that the frequency evaluated by the strain gradient theory is greater than 

that evaluated by the classical and couple stress theory, noted that the couple stress theory predicts 
higher values for the frequency than dose the classical theory. Hence, it is inferred that the micro-
beams modeled by the non-classical theories are in fact stiffer than those modeled by the classical 
theory as it is reported by other researchers (Kong et al., 2009, Koochi et al., 2014, Vatankhah et al., 
2013b). Moreover, it is deduced that the strain gradient theory predicts the micro-beams stiffer than 
does the couple stress theory. The figure also shows that the difference between the results of classical 
and non-classical theories increases as the ratio of the beam thickness to the material length scale 
parameter decreases. In fact, when the aforementioned ratio is greater than 10, the difference will be 
ignorable.   

It would be helpful to evaluate the error of using the classical continuum theory instead of the 
non-classical theories to obtain the frequency of the micro-resonator. To that end, the relative error 
for the frequency is defined as: 

0 2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

h/l



 

 

SG

CS

CL



R. Vatankhah and M.H. Kahrobaiyan / Investigation of Size-Dependency in Free-Vibration of Micro-Resonators Based on the Strain…     511 

Latin American Journal of Solids and Structures 13 (2016) 498-515 
 

% 100SG CL

SG

error
w w

w

-
= ´ . (55)

 

The effects of the normalized axial load, mass, position of the attached mass and gyration radius 
together with effect of the ratio of the beam thickness to the material length scale parameter on the 
relative error are assessed in Figures 7-10. 

 

Figure 7: The relative error of the frequency as a function of the ratio of the microbeam thickness  

to the length scale parameter and the axial load.  

 

Figure 8: The relative error of the frequency as a function of the ratio of the microbeam thickness  
to the length scale parameter and the mass.  
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Figure 9: The relative error of the frequency as a function of the ratio of the microbeam thickness  

to the length scale parameter and the position of the attached mass.  

 

 

Figure 10: The relative error of the frequency as a function of the ratio of the microbeam thickness  

to the length scale parameter and the gyration radius of the attached mass.  

 
These figures indicate that relative error is significant when the ratio of the beam thickness to 

the length scale parameter is small but it diminishes as the ratio increases. The great values of the 
relative error imply that using the classical continuum theory to investigate the mechanical behavior 
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of micro-scale structures such as micro-resonators leads to wrong results specially, when the charac-
teristic length of the structure, i.e. thickness, diameter, etc, is comparable to the length scale param-
eter. However, the strain gradient theory, as a non-classical continuum theory, is successfully able to 
capture the size effect happening in micro-scale structures and model the micro-resonator more accu-
rately. The figures also indicate that the effects of the normalized mass, gyration ratio and position 
of the attached mass are ignorable on the relative error, whereas, the effect of the normalized axial 
load is tangible, specially for small values of /h l . It can be seen that as the axial load increases, the 

relative error decreases.  
 
5 CONCLUSIONS 

Since the attempts of the classical continuum theory to capture the size-dependency happening in the 
micro-scale structures have been in vain, utilizing the non-classical continuum theory to investigate 
the mechanical behavior of such structures seems to be crucial. The strain gradient theory, as a non-
classical continuum theory, is employed in this paper in order to investigate the vibration behavior 
of micro-resonators. The micro-resonator is modeled as a clamped-clamped beam with an attached 
mass subjected to an axial force. To obtain the natural frequencies of the system, it is assumed that 
the micro-resonator comprises two microbeams; one is located at the left-side of the attached mass 
while the other is at the right-side. The governing equations of motions of each beam are derived 
individually. Afterward, the appropriate boundary and continuity conditions are applied in order to 
obtain the natural frequencies of the micro-resonator. The effects of some parameters including: nor-
malized, mass, axial load, position of the attached mass, gyration radius of the attached mass and 
the ratio of the beam thickness to the material length scale parameter are assessed on the normalized 
frequency of the micro-resonator. Furthermore, the results of the strain gradient theory are compared 
to those of the modified couple stress and classical continuum theories. The results can be outlined 
as: 

 The vibration behavior of micro-resonators is size-dependent. 
 The frequency of the micro-resonator increases as the ratio of the microbeam thickness 

to the length scale parameter decreases.  
 The axial load has an increasing effect on the frequency while the effects of the mass, 

gyration radius and position of the attached mass are decreasing.  
 The non-classical theories predict stiffer microbeams (beams with greater frequencies) 

than does the classical continuum theory.  
 The microbeams modeled by the strain gradient theory are stiffer than those developed 

by the modified couple stress theory.  
 The relative error of using the classical theory to model the micro-resonators is significant, 

especially when the microbeam thickness is comparable with its length scale parameter. 
 The difference between the classical and non-classical results diminishes as the ratio of 

the beam thickness to the length scale parameter increases.  
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