Semiconducting materials for photoelectrochemical energy conversion

To achieve a sustainable society with an energy mix primarily based on solar energy, we need methods of storing energy from sunlight as chemical fuels. Photoelectrochemical (PEC) devices offer the promise of solar fuel production through artificial photosynthesis. Although the idea of a carbon-neutral energy economy powered by such 'artificial leaves' is intriguing, viable PEC energy conversion on a global scale requires the development of devices that are highly efficient, stable and simple in design. In this Review, recently developed semiconductor materials for the direct conversion of light into fuels are scrutinized with respect to their atomic constitution, electronic structure and potential for practical performance as photoelectrodes in PEC cells. The processes of light absorption, charge separation and transport, and suitable energetics for energy conversion in PEC devices are emphasized. Both the advantageous and unfavourable aspects of multinary oxides, oxynitrides, chalcogenides, classic semiconductors and carbon-based semiconductors are critically considered on the basis of their experimentally demonstrated performance and predicted properties.


Related material