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Abstract
We hypothesize that optimal deep neural networks (DNN)
class-conditional posterior probabilities live in a union of low-
dimensional subspaces. In real test conditions, DNN posteriors
encode uncertainties which can be regarded as a superposition
of unstructured sparse noise over the optimal posteriors. We
aim to investigate different ways to structure the DNN outputs
by exploiting low-rank representation (LRR) techniques. Us-
ing a large number of training posterior vectors, the underly-
ing low-dimensional subspace of a test posterior is identified
through nearest neighbor analysis, and low-rank decomposition
enables separation of the “optimal” posteriors from the spurious
uncertainties at the DNN output. Experiments demonstrate that
by processing subsets of posteriors which possess strong sub-
space similarity, low-rank representation enables enhancement
of posterior probabilities, and leads to higher speech recogni-
tion accuracy based on the hybrid DNN-hidden Markov model
(HMM) system.
Index Terms: Deep neural network (DNN), posterior probabil-
ity, low-rank representation (LRR), k-nearest neighbor (kNN)
search, automatic speech recognition (ASR).

1. Introduction
Speech is produced through activation of a few highly con-
strained articulatory mechanisms leading to various phonetic
components and sub-phonetic attributes living in an union of
low-dimensional subspaces [1, 2, 3]. Recent developments in
speech processing research have recognized DNN as the best
computational method to estimate sub-word class-conditional
posterior probabilities from the input acoustic features. How-
ever, unlike the one-hot output class labels used for DNN train-
ing, the real posteriors obtained after the forward pass encode
high variability along many dimensions. It has been demon-
strated that the actual information learned by DNN is embed-
ded in low-dimensional subspaces [4, 5]. The goal of this paper
is to provide further investigations of these structure underlying
DNN posteriors.

The fact that DNN estimates of posterior probabilities en-
code large uncertainties can be quantified through evaluation of
the entropy. We group the posteriors in two categories depend-
ing on whether the maximum a posteriori (MAP) class label
is the correct label associated to that posterior vector or not.
The histogram of the distribution of entropy in both groups is
depicted in Figure 1 (see Section 3.1 for details of the experi-
mental setup). It is evident that increase in the posterior uncer-
tainties as measured in terms of entropy leads to less accuracy
in acoustic modeling. This problem is critical in DNN-hidden
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Figure 1: Distribution of normalized entropies of DNN context-
dependent phone posteriors for correctly/incorrectly classified
sets based on maximum a posteriori classification.

Markov model (HMM) automatic speech recognition (ASR)
system as it leads to several competitive path likelihoods under
Viterbi algorithm. In this paper, we study these uncertainties
with regard to their structure exhibited in a space of large num-
ber of posterior vectors. More specifically, if the uncertainties
are re-occurring patterns, they encode variability pertained to
common linguistic features. Otherwise, they introduce unstruc-
tured sparse noise. Constructing a matrix by stacking similar
posterior vectors, the re-occurring structures result in a low-rank
matrix. Sparse error can thus be separated from the structured
part through low-rank and sparse decomposition methods [5, 6].

Previous work on exploiting the low-dimensional structures
for posterior estimation includes approaches that either con-
strain the DNN architecture, or transform the DNN outputs.
Approaches in the former category include low-rank decompo-
sition of the neural network’s weight matrices [7, 8, 9, 10, 11]
to reduce DNN complexity. The goal is often smaller footprint
for portable devices, such as ASR on smart phones, without
compromising the performance. Another technique [12] applies
manifold based regularization within DNN architecture to pre-
serve low-dimensional relationships in speech features. Later
approaches include enhancement of posterior probabilities by
employing HMM topological constraints [13], or by hierarchi-
cal application of two neural networks to obtain more accurate
posterior estimates [14, 15].

Recently, we considered sparse representation to character-



ize the low-dimensional space of DNN outputs through dictio-
nary learning [16]. It is demonstrated that sparse reconstruc-
tion leads to projection on the space of training data dictionary
which significantly reduces the rank of class-specific test pos-
teriors. Further analysis verified the correlation between rank
reduction and ASR accuracy [5]. This paper builds on our re-
cent findings, and aims to exploit the underlying low-rank rep-
resentation of DNN posteriors using low-rank representations.
Previous work on speech enhancement using low-rank repre-
sentations consider spectral features [17, 18]. To the best of
authors’ knowledge, low-rank representation for enhancement
of posterior probabilities has not been investigated before.

In the rest of the paper, we explain low-rank representation
in Section 2. Experimental analysis is presented in Section 3,
and finally, the conclusions are drawn in Section 4.

2. Low-Rank and Sparse Decomposition
In this section, we discuss how to construct matrices corre-
sponding to posterior subspaces on which low-rank represen-
tation (LRR) [6] algorithm can be applied.

2.1. Neighboring Posterior Matrices

DNNs compute a vector of class-conditional posterior probabil-
ities zt = [p(q1|xt) . . . p(qk|xt) . . . p(qK |xt)]

> for a context
appended input acoustic feature vector xt at time twhere qk de-
notes the kth class and .> stands for transpose operator. DNN
training relies on one-hot posterior outputs where the proba-
bility of the class that the acoustic feature is associated is 1
and other classes are all 0. The hard labels are obtained us-
ing HMM forced alignment with the ground truth speech tran-
scription. Once DNN is trained, test posterior probabilities are
estimated through forward pass, and they may exhibit high un-
certainty.

We group the posteriors according to their nearest neigh-
bor based similarities, and stack a collection of n neighboring
posterior vectors as a matrix M = [zt1 . . .ztn ]. We propose
that M can be decomposed as superposition of a low-rank part
and a sparse error. The low-rank component encapsulates the
enhanced posteriors, and the DNN uncertainties present in the
form of sparse unstructured noise is separated.

Due to the skewed distribution of the posteriors, LRR based
analysis presented in this work is performed on logarithms of
posterior probabilities.

2.2. Low-Rank Representation Algorithm

We consider low-rank representation (LRR) algorithm [6] for
decomposition of a noisy low-rank matrix M into data lying
on union of multiple low-rank subspaces and sparse noise as
expressed in

min
Z,E

‖Z‖∗ + λ‖E‖1 , s.t. M = DZ + E (1)

The rank is quantified by the (relaxed) nuclear norm function
denoted by ‖.‖∗ to obtain a convex cost function where the nu-
clear norm is the sum of matrix singular values. Dictionary D
characterizes the (multiple) subspaces underlying the data. Z is
a low-rank matrix such that the product DZ captures the true
low-rank component of M . λ is the regularization parameter.
‖.‖1 denotes the `1 norm which is defined as the sum of abso-
lute values of the vector elements. It encourages sparsity of the
error term. Another approach, namely robust principal compo-
nent analysis (RPCA) [19]), used earlier for rank analysis in our
previous work [5] will be compared with LRR in Section 3.3.1.

3. Experimental Analysis
We aim to study the appropriate choice of low-rank representa-
tion parameters in posterior probability space. In addition, we
integrate neighborhood clustering and classification methods
with LRR algorithm for unsupervised and supervised frame-
works of posterior enhancement. We present an example use
case for speech recognition.

3.1. Databases and DNN Setup

The experiments are conducted on digits subset of Num-
bers’95 [20]. Separate DNNs are trained to estimate context-
independent (monophones) and context-dependent tied tri-
phone state (senone) posterior probabilities with three hidden
layers and 1024 nodes in each layer. Input features of the DNN
consist of Mel-frequency cepstral coefficients (MFCC) concate-
nated with ∆ and ∆∆ features by making use of a context of 9
frames where features are computed at every 10ms. We obtain
27 context-independent and 557 senone posteriors.

Kaldi toolkit is used for DNN-HMM hybrid architecture for
speech recognition [21] and LRSLibrary [22] is used for LRR.

3.2. Low-rank Representation Parameters

There are two parameters affecting the LRR performance,
namely (1) choice of dictionary D and (2) regularization pa-
rameter λ.

3.2.1. Dictionary

LRR algorithm presented in (1) relies on dictionary D for char-
acterizing the underlying subspaces [6]. Assuming the poste-
rior subspaces corresponding to the individual classes are lin-
ear, we use the left eigenvectors of singular value decomposi-
tion (SVD) of class-specific posterior matrices M as the basis
vectors to form class-specific dictionaries for low-rank repre-
sentation. Number of eigenvectors in D is selected so as to
preserve 95% variability after truncated SVD reconstruction.

From test data, we create matrix M by randomly choosing
senone posterior vectors from multiple classes and apply LRR
over it. The choice of dictionary is either concatenation of their
95%-variability preserving eigenvectors (as explained above) or
the matrix M itself (D = M ). In case of SVD, if class-specific
dictionaries of correct classes are concatenated to form the dic-
tionary D, the dictionary is referred to as “correct-SVD” other-
wise, all SVD class-specific dictionaries are concatenated with-
out any knowledge of the correct underlying subspaces/classes.
Size of M in all scenarios is 557×1000, but the number of pos-
teriors from each class is arbitrary. Results are listed in Table 1,
and represent MAP accuracy after applying LRR for different
number of posterior classes present in M . The enhanced pos-
teriors M̂ are the low-rank component, M̂ = DZ.

We can see that if the underlying subspaces are known,
“correct-SVD” is the best choice for LRR dictionary. This ob-

Table 1: MAP accuracy after LRR using either data itself or
SVD dictionaries for different number of class combination.

#Classes Data Correct-SVD All SVD

10 71.2% 89.9% 53.8%
50 61.5% 78.2% 51.1%
100 57.3% 68.9% 49.2%
250 52.1% 58.1% 50.8%
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Figure 2: MAP accuracy of senone posteriors after LRR using
data itself as the dictionary for different choices of matrix size
and regularization parameter λ. Yellow: 100%, blue: 0%.
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Figure 3: MAP accuracy of senone posteriors after LRR using
correct-SVD as dictionary for different choices of matrix size and
regularization parameter λ. Yellow: 100%, blue: 0%.

servation suggests that the underlying posterior subspaces of
each individual class can be well characterized by using SVD
eigenvectors. In real case scenario when classes are unknown,
using data directly as the dictionary is a reasonable trade-off
against the aggregation of all class-specific SVD based dictio-
naries. Indeed the choice of data as dictionary can exploit the
self expressiveness property of the data lying on union of low-
dimensional subspace [6], and the empirical observation pre-
sented in Table 1 demonstrate its efficiency.

Furthermore, we can see that LRR can effectively exploit
the multi-subspace structure of the data through the use of dic-
tionary D for low-rank representation. ASR performance de-
grades with increasing number of subspaces in M . Although
the number of posteriors per class in M is an arbitrary num-
ber, if the distribution of posteriors among different classes is
too unbalanced, and a subspace is not well represented through
enough number of posterior vectors, LRR can lead to subspace
displacement where some of the posterior vectors from that sub-
space are structured as per some other dominant subspace. Ex-
ample of a dominant subspace is the silence class due to which
neighboring posteriors are forced to be the silence. To have
fewer subspaces in M as well as prevent this issue of over-
dominance of popular classes, we are motivated to apply clus-
tering and classification techniques (Section 3.3) before appli-
cation of LRR. This ensures having enough representatives for
all posterior classes in M . Nevertheless, LRR is theoretically
applicable on large collection of multiple subspaces.

3.2.2. Regularization Parameter

The best value for the regularization parameter λ yields the
highest MAP accuracy of enhanced posteriors. This value is
proportional to the size of matrix M . We conduct further in-
vestigations on the appropriate choice of λ. The evaluation
principle is to compute the MAP accuracy after applying LRR
algorithm for various lengths (between 10 and 1000) of matrix
M constructed from the senone posteriors for different values
of λs (between 0.01 to 1).

LRR is applied on class-specific posterior exemplars using
either data or “correct-SVD” as the dictionary. The MAP ac-
curacy is averaged over all classes. The results are depicted in
Figures 2–3.

The dependency of the best choice of regularization param-
eter on the matrix size is evident, however the quality of en-
hanced posteriors is fairly stable in particular in the case of us-
ing data as the dictionary. In practice, the regularization param-
eter can be either learned for different sizes and used through
a look-up table for LRR enhancement, or the development set
can be used for tuning a reasonable λ.

One interesting observation is that the LRR performance
is far more stable (better spread of yellow region in Figure 2 as
compared to sharp yellow-blue transition in Figure 3) when data
is used as the dictionary for low-rank representation compared
to the “correct-SVD” dictionaries. Although higher MAP accu-
racy can be obtained in the later case, sensitivity to the appropri-
ate selection of the regularization parameter is higher. Hence,
in the subsequent tests on neighboring posterior enhancement
on test data, the DNN posterior matrix i.e. data itself is chosen
as the LRR dictionary.

3.3. Low-rank Representation of Neighboring Posteriors

To enhance posterior estimation of test data, neighboring poste-
riors are first identified through clustering or classification tech-
niques. This procedure ensures that M has 1) data from fewer
subspaces and 2) enough number of posteriors are present for
each underlying subspace for low-rank representation. How-
ever, due to clustering/classification inaccuracies, neighboring
posteriors exhibit a multi-subspace structure in M . To demon-
strate this property, we conduct an experiment using single sub-
space low-rank representation (RPCA) and compare it to the
LRR performance in the following Section 3.3.1.

3.3.1. Multi-Subspace Structure

For this experiment, we apply k-means clustering to group the
neighboring posteriors based on the principle of low-rank ma-
trix factorization [23]. Next, RPCA [19] and LRR are applied
on each group to separate the underlying low-rank matrix of en-
hanced posteriors from the sparse errors. RPCA formulation
assumes data lying on a single subspace whereas LRR gener-
alizes this idea through the use of dictionary for characterizing
the multi-subspace structures. Table 2 lists the results of MAP
classification accuracies. Senone posteriors are used for this ex-
periment.



Table 2: MAP accuracy of low-rank representation posteriors
using RPCA and LRR on clusters of similar posteriors obtained
from k-means. MAP accuracy of the initial DNN posteriors is
61.3%.

Low-rank representation MAP accuracy

RPCA 68.5%
LRR 77.0%

We can see that LRR outperforms RPCA based single sub-
space low-rank representation. This experiment also confirms
that application of LRR on neighboring posteriors can improve
MAP classification. The next step is to show an example use
case of this method in DNN-HMM speech recognition relying
on posteriors for acoustic modeling.

3.3.2. Enhanced Posteriors for DNN-HMM ASR

To speed up the computation, monophone posteriors are used
for this experiment. Test posteriors are processed in small
groups of neighboring posteriors. We consider (1) MAP clas-
sification, (2) k-means clustering and (3) k nearest neighbor
(kNN) classification method. For k-means, the value of k is set
to the maximum number of classes, i.e. dimension of posterior
vectors or number of DNN outputs which is 27. The k param-
eter for kNN is tuned using development set, and it is equal to
1500. Cosine distance is used as the similarity measure in both
k-means and kNN.

Once the neighboring test posteriors are identified through
either of the methods stated above, subsets of 1000 posterior
vectors are used for LRR decomposition. Corresponding vec-
tors in the low-rank component, M̂ = DZ, are normalized
to sum to one, and used as the enhanced posteriors for DNN-
HMM ASR on digits subset of Numbers’95 database. Results
are presented in Table 3.

Table 3: ASR accuracy using LRR on neighboring posteriors
for enhanced monophone posteriors estimation.

Posterior estimation WER%
DNN 5.9
MAP+LRR 4.9
k-Means+LRR 4.8
kNN+LRR 3.5

It can be seen that kNN outperforms all the other meth-
ods and achieves a relative WER improvement of nearly 40%
with respect to the baseline where DNN posteriors are used for
acoustic modeling. The reason is that kNN exploits the vari-
ability encoded in the training posteriors, and yields to accu-
rate classification [24]. On the other hand, if no labeled data
is available, unsupervised clustering based on k-means is ben-
eficial to enhance the posteriors through low-rank representa-
tion. Figure 4 illustrates the consistent reduction of the rank
and WER using kNN along with LRR. The approximate rank
(aRank) quantifies the number of singular values to preserve
99% variability. Figure 5 shows a kNN followed by LRR en-
hanced posteriors for a sample utterance.

4. Conclusions and Future Work
This paper investigates the intrinsic low-dimensional structure
of high-dimensional space of DNN posterior probabilities. We
have devised a simple framework of grouping the neighboring
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Figure 5: DNN monophone posteriors vs. their low-rank repre-
sentation for a sample utterance.

posteriors following by low-rank representation to enhance pos-
terior estimation. This procedure alleviates some of the DNN
uncertainties due to mismatch or unseen condition leading to
unstructured sparse errors in posterior estimation.

kNN was found the best method to identify the neighbor-
ing posteriors through the use of training posterior variabilities.
However, if no labeled data is available, unsupervised k-means
clustering relying on the principle of low-rank matrix factoriza-
tion [23] is an effective method as well to enhance posterior esti-
mation and acoustic modeling. Considering the posterior space
as a union of low-dimensional subspaces, alternative clustering
techniques such as subspace clustering can exploit this property
in splitting the space into neighboring vectors according to their
subspace similarity [25].

An example use case was shown on DNN-HMM speech
recognition. Beyond ASR, other applications that rely on es-
timation of DNN posteriors can also benefit from the pro-
posed approach, such as spoken query detection [26], paramet-
ric speech coding [27] and linguistic parsing [28]. Thorough
experiments on large speech corpora for a broad range of appli-
cations is planned for future research.
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