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Polarity control in WSe2 double-
gate transistors
Giovanni V. Resta1, Surajit Sutar2,3, Yashwanth Balaji3, Dennis Lin3, Praveen Raghavan3, 
Iuliana Radu3, Francky Catthoor3, Aaron Thean3, Pierre-Emmanuel Gaillardon1,4 &  
Giovanni de Micheli1

As scaling of conventional silicon-based electronics is reaching its ultimate limit, considerable effort has 
been devoted to find new materials and new device concepts that could ultimately outperform standard 
silicon transistors. In this perspective two-dimensional transition metal dichalcogenides, such as MoS2 
and WSe2, have recently attracted considerable interest thanks to their electrical properties. Here, we 
report the first experimental demonstration of a doping-free, polarity-controllable device fabricated 
on few-layer WSe2. We show how modulation of the Schottky barriers at drain and source by a separate 
gate, named program gate, can enable the selection of the carriers injected in the channel, and 
achieved controllable polarity behaviour with ON/OFF current ratios >106 for both electrons and holes 
conduction. Polarity-controlled WSe2 transistors enable the design of compact logic gates, leading to 
higher computational densities in 2D-flatronics.

Two-dimensional (2D) materials of the transition metal di-chalcogenides (TMDCs) family1, such as molybde-
num disulphide (MoS2) and tungsten diselenide (WSe2), have been shown to exhibit excellent electrical proper-
ties2–14 and are currently drawing considerable attention as viable candidates for beyond-CMOS (complementary 
metal-oxide semiconductor) flatronics15–18. The peculiar layered structure of these materials allows for the growth 
or exfoliation of few- and monolayer films that have shown to provide exceptional electrostatic control when used 
as channel material of a field-effect transistor (FET), making them robust to short-channel effects19,20 and well 
suited for beyond-CMOS logic applications17,18,20. In conventional CMOS technology21, the ability of an electronic 
device to conduct both electrons and holes, without changing the channel doping or the contact material, known 
as ambipolarity, is usually considered a drawback. In fact the core elements of CMOS logic circuits are doped, n 
or p, unipolar devices. Transistor scaling to the nanometer dimensions has brought considerable problems to the 
doping process, as fluctuations on the number of dopants in the channel cause an undesirable shift in the thresh-
old voltage of the devices22. A device concept that does not require any doping would thus be highly desirable 
for new generation electronic devices, and 2D TMDC materials provide an excellent platform for exploring the 
development of such technology. The most studied amongst TMDCs, MoS2

2–4, suffers from Fermi level pinning to 
the conduction band at the contact interface23 which makes it challenging to achieve p-type conduction. Reports 
of p-type behaviour are, to date, limited to peculiar substrate conditions24, thick flakes24,25, ionic-liquid gating26, 
and use of high work function non-stoichiometric molybdenum oxide (MoOx, x <​ 3) at the contact interface27. 
Other 2D-chalcogenides, such as tungsten diselenide (WSe2)5–14 and molybdenum telluride (MoTe2)28,29, have 
recently gained considerable interest thanks to their ability to efficiently conduct both electrons and holes. In 
MoTe2, electrostatically reversible polarity has been shown29 with on-off current ratios of the order of 102 for 
p-type and 103 for n-type conduction. Holes conduction has been demonstrated and high mobility values have 
been reported in WSe2

5,6. Ambipolar behaviour has been achieved by using different metals to contact the n-type 
and p-type devices8,11,12, by introducing dopants to create separate n and p-type devices with the same channel 
material7,8,13 and by using ionic-liquid gating to modulate the work-function of graphene contacts14. WSe2 is the 
only 2D-chalcogenide for which a stable complementary technology has been demonstrated13 and is arguably the 
most promising candidate for the realization of high-performance polarity-controllable devices and circuits. In 
this article, we show how we exploited the ambipolar behaviour of WSe2 to realize double-back-gate devices and 
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to experimentally demonstrate, for the first time on WSe2, the control of carrier injection by tuning the contact 
Schottky barriers with the additional program gate (PG). The device can be turned ON and OFF by gating the 
central channel region with a second gate, named control gate (CG), while the PG is able to control the device 
polarity without the need of changing metal contacts and without introducing any physical doping. The transis-
tor polarity can thus be dynamically configured and thanks to the introduction of the additional PG the device 
abstraction at the logic level is a comparison-driven switch (device changes status only when the signals applied 
on CG and PG represent the same logic level). The enhanced functionality of a single device, as compared to 
conventional MOSFETs enables the realization of smaller, faster, less power-hungry circuits with higher compu-
tational density30.

Results and Discussion
For our experiments we used WSe2 flakes, prepared by mechanical exfoliation of WSe2 bulk crystal on a 20 nm 
SiO2/Si substrates, with the standard scotch-tape technique originally developed for graphene31. The optimal 
surface roughness of the SiO2 substrate (as low as 0.16 nm) allowed exfoliation of high-quality defect-free flakes. 
Thanks to the different optical contrast given by flakes with different thicknesses, we selected thin flakes (4–8 nm) 
with optical inspection32, and further characterized them with atomic force microscope (AFM)33 measurements 
to determine the exact thickness and verify the absence of folds and cracks (Fig. 1a). The thickness of the flake, 
extracted from the cutline shown in Fig. 1a, is presented in Fig. 1b. In order to realize our double back-gated geom-
etry (see Supporting Information S1) the flake was transferred (see Methods and Supporting Information S2)  
to a target substrate and aligned with respect to predefined buried features, which will be acting as the pro-
gram gate (Fig. 1c). The flake was aligned with respect to the buried structures and metal contacts, Ti (2 nm)/Pd 
(50 nm), were defined by electron-beam lithography and lift-off (see Methods). The metal contacts were evapo-
rated with an electron-gun evaporation tool and the Ti layer was used only to improve the adhesion of Pd to SiO2, 
while only the thicker Pd film determined the contact properties. The final fabricated device is shown in Fig. 1c 
and a schematic cross-section respect to the cut-line in Fig. 1c is presented in Fig. 1d. The device has 1.5 μ​m chan-
nel length, of which 1 μ​m is gated by the bulk-Si (CG) and two ~0.25 μ​m regions near the contacts are controlled 
by the buried PG. The channel width is ~5.5 μ​m. The thickness of the SiO2 layer is 270 nm and the Al2O3 is 20 nm. 
The peculiar position of the flake with respect to the PG allowed us to control the carrier concentration under-
neath the contacts by electrostatic doping, but also to gate a region of the channel. The PG could thus modulate 

Figure 1.  WSe2 flake properties and device fabrication. (a) AFM topography image of the exfoliated flake 
after cleaning of tape residues with hot (50 °C) acetone bath. The red line indicated the cutline used to extract 
the flake thickness. (b) Height profile for the cutline showed in a. The extracted flake thickness is 7.5 nm, which 
corresponds to ~10 monolayers. (c) Optical image of the realized device. The channel length, including all gated 
regions, is 1.5 μ​m long of which 1 μ​m is gated by the bulk-Si (acting as the CG) and two 0.25 μ​m regions, near 
the contacts, are controlled by the buried program gate (horizontal parallel metal lines marked as PG). The red 
dotted line indicated the cutline used to represent the device schematic. (d) 3D-schematic cross-section of the 
device along the red cutline in (c).
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the Schottky barrier at drain and source allowing for the selection of the carriers preferably injected in the chan-
nel. The bulk silicon wafer was used as CG to create a potential barrier in the central region of the channel for 
either electrons or holes, according to the applied voltage polarity, and allowed us to control the ON/OFF status 
of the device (see Supporting Information S3).

The flakes exfoliated on the 20 nm SiO2 were used to study contact properties and the effect of thermal anneal-
ing. In our experiments, Ti/Pd-contacted WSe2 FETs on SiO2 dielectric substrate showed a considerably higher 
electron current with respect to the hole current (100×​ difference), when measured (see Methods) after contact 
lift-off and without any additional treatment (Fig. 2a). This pronounced difference between the p- and n-type 
conduction properties is not ideal for the realization of polarity-controllable devices, as it will lead to asymmetric 
current-voltage (I-V) characteristics. Hence we performed a contact annealing step (see Methods), following 
what already reported in literature10,34–37, in order to improve the ON-current levels. The effect of contact anneal-
ing was found to be reproducible and consistent, with an asymmetric increase of the ON-current levels and a 
decrease of the OFF-current. For the particular device presented in Fig. 2a, we obtained a 10×​ increase of the 
hole ON-current (Fig. 2a) and a 4×​ decrease of the OFF-current, while the electron ON-current did not show a 
significant improvement. This behavior cannot be attributed to a Fermi level shift at the contacts, which results in 
a change of the Schottky barrier height, since such effect would increase the current for one type of carriers but 
reduce it for the other one by a similar amount. The increase in both n- and p-type currents suggests an improved 
physical contacts between the Ti/Pd contacts and the WSe2 flake, possibly coupled with an improvement in the 
mobility of the charge carriers. This effect can result from removal of impurities (e.g. photoresist) and desorption 
of surface adsorbates (e.g water molecules) from the channel region34–37. The asymmetry in the improvement 
could point-out to an n-type doping of the channel by the impurities, which are then removed by the contact 
annealing. However, two-terminal measurements, such as those conducted in this study, obscure the intrinsic 
properties of the material and do not allow decoupling the decrease of contact resistance from an increase in the 
mobility of the charge carriers. We performed the same contact annealing procedure on devices realized after 
transferring the flake to the Al2O3 substrate with the buried PG (see Supporting Information S1) and we meas-
ured the full back-gate transfer characteristics leaving the PG floating, thus no control of the Schottky barriers 
was used. Thanks to the annealing procedure we managed to reduce the asymmetry between p- and n-type con-
duction and we achieved a more pronounced symmetry, with 15× difference in ON-current between the electron 
and hole branch (Fig. 2b). The symmetric ambipolar behavior achieved is a key step towards the realization of 
polarity-controllable devices without the addition of any physical doping.

Considering the ambipolar I-V characteristics presented in Fig. 2b, we now show how applying a voltage 
on the PG allowed us to modulate the Schottky barriers at drain and source and to select the type of carriers 
(electrons or holes) that are favorably injected in the channel. For negative voltage values of the PG (Fig. 3a), we 
completely suppressed electron injection in the channel and we introduced local p-type electrostatic doping in the 
contact regions. Further decreasing the program gate applied voltage induced more positive charges and caused 
the effective Schottky barrier height to decrease (thinning of tunnelling barrier and thus increased tunnelling 
probability for holes). For the lowest negative applied voltage (−​12 V in Fig. 3a) the on/off-current levels were 
restored to the previous values extracted from the back-gate measurement with the program gate floating. In a 

Figure 2.  Characterization of ambipolar behavior. (a) Transfer characteristics of a back-gates device 
fabricated with a 6 nm thick WSe2 flake exfoliated on 20 nm SiO2 substrate before and after annealing. The 
hole current is improved by 1 order of magnitude and the electron current remains unvaried. In this case, the 
positive and negative Vg sweeps were taken separately, thus the non-continuity of the curves at Vg =​ 0 V. Both 
curves were taken with VDS =​ 1 V. (b) Transfer characteristic of the double-gate device presented in Fig. 1 
measured with floating program gates. The device shows a good ambipolar behaviour, with ON currents of 4 μA​ 
for electrons and of 0.25 μA for holes. The OFF current is well below the pA range (100 fA). The three coloured 
dots mark the 3 operating regions in this configuration: OFF state (red), ON state n-type (yellow) and ON state 
p-type (green). The inset shows the electrical connections used during the measurement.
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similar fashion, when applying a positive voltage to the PG, electrons are preferably injected in the channel and 
the hole current is completely suppressed for all negative voltages applied on the CG (Fig. 3b). Again we showed 
that for the highest program gate applied voltage (10 V in Fig. 3b) the on/off-current levels matched with the 
ones extracted in Fig. 2a. Schematic band-diagrams relative to the 4 operation modes of the device are reported 
in Fig. 3c–f. We achieved ION/IOFF ratios of 107 for n-type operation and of 106 for p-type operation indicating an 
optimal electrostatic control on the channel for both carriers and the potential for low-power applications, thanks 
to the low leakage floor (off-current) measured in both configurations (see Supporting Information S4 for further 
device characterization and S5 for measurements on additional device).

As we mentioned, the ON-current levels corresponding to the highest applied PG values are comparable to the 
ones extracted from Fig. 2(b). There is instead, a marked discrepancy between the ON-current levels reported in 
Fig. 3(a,b) and the ones in Fig. 2(b) for smaller positive and negative PG voltages. We believe this is a consequence 
of capacitive coupling between the CG and the contact pad of the PG, that leads to an increased capacitance acting 
on the channel region. A similar effect has been reported to occur for conventional double-gated structures38, caus-
ing an overestimation of mobility values extracted from conventional back-gated characteristics. Thus, in order to 
extract relevant parameters (such as carrier’s mobility and sub-threshold slopes), we focused on the two curves 
taken at the highest positive and negative PG voltages (see Supporting Information S4). The maximum extrinsic 
low-field mobility measured for electrons (µe) was 5.5 cm2V−1s−1 and 0.23 cm2V−1s−1 for holes (µh). These values are 
smaller than those reported in literature for WSe2

5,6, and we attribute this difference to the presence of large Schottky 
barriers at the contacts, the lack of high-k passivation and the presence of interface charges at the Al2O3/WSe2 inter-
face, that increase the scattering in the channel. The presence of interface charges is also reflected by the values of 
sub-threshold swing (S factor) extracted from the measurements. We computed an S factor of 0.875 V/dec over 4 
decades of current for n-type conduction and of 0.92 V/dec over 3 decades of current for p-type conduction. These 
values could be greatly improved by reducing the gate-oxide thickness (switching to a top-gated structure) and by 
increasing the interface quality between the 2-D material and the dielectric substrate. These steps will be essential to 
further develop 2D-based polarity controllable electronics and should be explored in the future.

We further characterized the switching properties of the device by sweeping the PG while fixing the value of the 
CG (Fig. 4a). In this configuration the polarity of the transistor was changed during each sweep showing the ability 
of the device to transit from a p- to n-type behaviour, or vice-versa, in the same measurement, thus demonstrating 
“on-the-fly” polarity transition. To further understand the impact of this device on circuit design we look more 
closely at its switching properties. While a standard 3-terminal device acts as a binary switch, our device compares 
two values (voltages applied on PG and CG) and when loaded implements an exclusive OR function (XOR) (Fig. 4b).

Figure 3.  Device characteristics. (a,b) Transfer characteristics of the device obtained for different negative (a) 
and positive (b) voltage values applied to the program gate as a function of the control gate bias. The inset in 
(a) shows the connection used for the measurements. The dashed squares represent the 4 region of operation 
(ON p-type, OFF p-type, OFF n-type, ON n-type) of the transistor for which the corresponding band-diagram 
is shown in (c–f). The transparent colored circles report the current values extracted from Fig. 2(b) and show 
how the current levels are not altered by the polarity-control mechanism. (c–f) Band-diagrams of the 4 region of 
operation.
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Indeed when the transistor is not conducting, in the ‘01’ and ‘10’ cases, then no current would be flowing in 
the device leaving the output to ‘1’ (high). When the values of PG and CG have the same logic value, both high 
or both low, then the transistor is conducting and the output of the logic gate would be ‘0’ (low) (Fig. 4b inset). 
The comparison-driven switching property of our device can be exploited at a circuit level because it gives the 
possibility of realizing logic gates (e.g. XOR, majority gates, as well as other circuit primitives) with smaller area, 
delay and power consumption for next generation digital electronics.

In conclusion, we showed the first polarity controllable device realized with few-layer WSe2, using a 
double-back-gate geometry. We operated our device with fixed polarity, by setting the program gate voltage to 
either positive or negative values, and we also demonstrated “on-the-fly” polarity control in 2D devices showing 
a p-to-n or vice-versa transition during the same measurement sweep. We achieved high ON/OFF ratios for both 
n-type (107) and p-type (106) operation modes. This work represents a major step on the path to exploiting the 
full potential of this technology for the realization of novel digital circuits with dynamically controllable polarity 
gates in WSe2 flatronics.

Methods
Exfoliation and transfer.  The WSe2 flakes were exfoliated from commercially available synthetic crystal, 
provided by HQ-graphene, using a standard low-tack dicing tape. The flake characterization was performed with 
a dimension edge AFM from Bruker in tapping mode. For the dry-transfer process we used thick (~10 μ​m) spin-
coated poly-methyl methacrylate (PMMA) as transferring agent. After selecting the flake for transfer, PMMA 
was spin-coated on the sample and annealed at 165 °C on a hot-plate. We then diced the PMMA around the flake 
using a micro-engraver and, upon release of the WSe2/PMMA stack, we picked it up using a microneedle. The 
WSe2/PMMA stack was then transferred to the target substrate and aligned with respect to the buried program 
gate by a manual pick-and-drop process. Adhesion of the WSe2/PMMA stack was assured by 2 min hot-plate 
annealing at 190 °C. Finally PMMA was dissolved using dichloromethane (DCM) and the sample was cleaned 
with an hot acetone bath (~12 hours) to ensure the absence of PMMA residues.

E-beam lithography and lift-off.  We used a single layer PMMA resist (solution with 3% Chlorobenzene). 
The resist was spinned for 60 seconds at 4500 rpm with a resulting layer thickness of around 180 nm. The resist 
was then baked on a hot-plate for 3 minutes at 165 ° C. After exposure the resist was developed in a 1:1 solution 
(at room temperature) of methyl-isobutyl ketone (MIBK) and Isopropyl alcohol (IPA) for 55 seconds. After metal 
deposition, done with a commercial electron gun evaporator tool, lift-off was carried out in hot acetone (50 °C) 
for around 2 hours.

Contact annealing.  Contact annealing was performed at 200 °C for 12 hours in a Nabetherm open-tube 
furnace in vacuum with a constant Argon (Ar) flow of 0.5 l/hr.

Device Characterization.  All electrical measurements were performed at room temperature in N2 envi-
ronment using a Keithley 4200 semiconductor characterization system (SCS) with pre amplifiers probe station. 
The current measurements were performed with auto-range setting allowing for highest accuracy (1% of read-
ing +​ 10fA) on off-current measurements. The voltage step for both VCG and VPG sweeps was fixed at 200 mV, and 
the gate leakage currents Ipg and Icg were measured during all sweeps.

Figure 4.  Polarity change “on-the-fly” and XOR behaviour. (a) Transfer characteristics obtained for fixed 
values of the control gate bias and sweeping the program gate voltage. We can see how for VCG =​ 0 the device 
shows its OFF-state ambipolar behaviour by conducting both electrons and holes, according to the value of VPG. 
The inset shows the measurement configuration. (b) 3D view of the device switching properties, highlighting 
the XOR operation based on the values of the program and control gates. The inset shows the truth table of the 
pseudo-logic function implemented.
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