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HELICITY EIGENSTATES BASIS

To fix the notation, let us start by giving some details
on the helicity eigenstates basis. The helicity operator
is defined as S = [p̂⇥ ~�]z and its eigenstates, |ksi, with
s = ±1, satisfy the relation S|k±i = ±|k±i. A sim-
ple calculation shows in particular that |k±i can be ex-
pressed in terms of the standard spin eigenstates, |k "i
and |k #i, as |k±i = (exp (�i✓k)|k "i± i|k #i)/

p
2 with

✓k = arctan(ky/kx). Consequently, the matrix Uk which
implements the rotation from the spin to the helicity
eigenstates basis has the form

Uk =
1p
2

✓

e�i✓k e�i✓k

i �i

◆

. (1)

In the basis spanned by the states |ksi the total Hamil-
tonian (Eq. (3) in main text) can be recast as follows:

H =
X

k

c†k Hk ck +
X

q,k

Vimp(q)c
†
k+qU

†
k+qUkck (2)

where ck = (ck+, ck�) and c†k = (c†k+, c
†
k�) are spinor

creation and annihilation operators, Hk is the Hamilto-
nian of the clean Rashba model, i.e. Hk = diag(E+

k �
E0, E

�
k � E0) with E±

k = (k ± p0)2/(2m), p0 = m↵ and
Vimp(q) denotes the Fourier transform of the impurity po-
tential, Vimp(q) = 1/V

P

j e
iq·Rjvimp. Di↵erently from

the main text, in this Supplementary Material where not
di↵erently specified we use units ~ = e = 1.

GREEN’S FUNCTION

The Green’s function obeys the standard Dyson equa-

tion: G�1 =
�

G0
��1 � ⌃, where G0 is the Green’s func-

tion of the Rashba model in the absence of disorder and ⌃
is the self-energy. Specifically, in the helicity eigenstates
basis, G0 has the form

[G0]↵� = (i"l � E↵
p + EF )

�1�↵�

where "l is a fermionic Matsubara frequency, and from
now on we set the zero of the energy to �E0. Thus, as in
the main text, the dominant spin-orbit (DSO) regime is
identified by EF < E0. Within the self-consistent Born
approximation (SCBA), ⌃ = ⌃(p, i"n) is determined by
solving the following equation

⌃(k, i✏n) =
niv

2
imp

V
X

p
U †
pUkG(p, i✏n)U

†
kUp (3)

Figure 1: Wigwam diagrams which describe the self-energy
within Born approximation. The solid line correspond to the
dressed Green function, G, while the crosses indicate averag-
ing over disorder [1, 2].

which corresponds the “wigwam diagram” depicted in
Fig. 1 as described e.g. in Refs [1, 2]. Note that in the
helicity basis to each impurity-scattering vertex, chang-
ing the electron momentum from k to p, one has to as-
sociate the spin rotation U†

pUk. Equation (3) admits a
momentum- and spin- independent solution. Indeed, as-
suming [⌃(p, i✏n)]↵� = ⌃(i✏n), the momentum depen-
dent part on the r.h.s. of this equation averages away.
Within SCBA the Green’s function G(p, i✏n) is thus rep-
resented by the following diagonal matrix in the helicity
eigenstates basis:

[G(p, i"l)]↵� = (i"l � E↵
p + EF � ⌃(i✏l))

�1�↵� . (4)

By analytical continuation to real frequencies of Eq. (3)
(see e.g. [2]) we obtain the following self-consistent equa-
tions for the scattering rate �

� = �Im[⌃R(0)] =
niv

2
imp�

2V
X

p

⇥

|gR+(p, 0)|2 + |gR�(p, 0)|2
⇤

(5)
and the retarded self-energy ⌃R(!)

⌃R(!) =
niv

2
imp

2V
X

ps
gRs (p,!)✓(pc � p) (6)

where gR±(p,!) =
⇥

! � E±
p + EF � ⌃R(!)

⇤�1
is the

Green’s function of each chiral eigenstate. To simulate
a finite Brillouin zone, in Eq. (6) we introduced an
upper momentum cut-o↵, pc. The latter is needed, in
particular, to regularize the real part of the self-energy,
Re[⌃R(!)], which would otherwise diverge logarithmi-
cally at the band edge, see e.g. Ref.[3]. In these re-
gards, we notice that, contrarily to what happens in
standard half-filled systems where Re[⌃R(!)] is approx-
imately !-independent and it can be absorbed in a re-
definition of the Fermi level, in the low-doping regime
investigated here Re[⌃R(!)] acquires a non-trivial fre-
quency dependence. We thus need to calculate self-
consistently both Re[⌃R(!)] and Im[⌃R(!)]. Such self-
consistent solution identifies the elastic scattering rate,
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Figure 2: Structure of the real and imaginary part of the
self-energy close to the lower band-edge for E0 = 40�0.

� = �Im[⌃R(0)] and the renormalized density of states
(DOS) N(E) = � 1

⇡V
P

p Im[GR(p, E)]. The electronic

density at T = 0 is given by n =
R EF

�1 N(E)dE. At
low doping the impurities lead to a smearing of the van-
Hove singularity in the DOS, which reflects in the be-
havior of the scattering rate �, as described in the main
text (Fig. 3a). In addition, the presence of impurities
gives a shift, �edge, of the lower band edge, so that the
lower “e↵ective” band edge where n = 0 is identified by
ẼF = EF +�edge = 0.In Fig.2, as an example we show
the structure of the real and imaginary parts of the self-
energy as functions of the frequency, for frequencies close
to the lower band-edge, located at EF = ��edge. No-
tice that these two quantities are connected by Kramers-
König relations.

DC CONDUCTIVITY FROM DIAGRAMMATIC
PERTURBATION THEORY

Current response function

Within SCBA the static conductivity is given by
Eq.(14) of the manuscript, that we report here for con-
venience

�dc =
1

2⇡

�

PAR
xx � Re[PRR

xx ]
�

. (7)

The derivation of the above equation in the absence of
spin-orbit coupling is standard textbooks material (see
e.g. Refs. [1, 2]) and, since it does not change in the
presence of spin-orbit coupling, we do not review it here.

By applying diagrammatic perturbation theory, one
easily sees that the calculation of �dc implies the sum-
mation of all ladder diagrams shown in Fig. 3. This
in turn corresponds to calculate the following current-

+ + + ..+
Figure 3: Ladder diagrams describing the conductivity within
Born approximation. Solid lines and empty circles represent
respectively G(p, i"

l

) and j
x

(p).

current response function in Matsubara frequencies:

Pxx(i"l, i"l+n) =
1

V
X

p

Tr {G(p, i"l)jx(p)G(p, i"l+n) ·

· Jx(p, i"l, i"l+n)} (8)

where jx is the bare velocity operator introduced in the
main text. We recall that in the helicity basis jx = evx
is represented by the following matrix:

vx =
px
m

�0 + ↵ cos ✓p�z + ↵ sin ✓p�y (9)

where �0 is the 2⇥2 identity matrix and �i with i = x, y, z
are the Pauli matrices. The renormalized charge current
Jx(p, i"l, i"m) satisfies the diagrammatic equation shown
in Fig. 4 that in helicity space can be written as

Jx(k, i"l, i"m) = jx(k) +
niv

2
imp

V
X

p

h

U †
kUpG(p, i"l)·

Jx(p, i"l, i"m)G(p, i"m)U†
pUk

⇤

(10)

Before coming to the solution of the above equation,
we remark, that, as usual [2], the AR and RR response
functions appearing in Eq.(7) correspond respectively to
Pxx(0� i�, 0 + i�) and Pxx(0 + i�, 0 + i�).
As it can be easily verified, by symmetry arguments

one finds that Jx has the same matrix structure of the
bare current (9), so that we can write:

Jx(k, i✏l, i✏m) =
px
m

�0 + ↵̃ cos ✓�z + ↵̃ sin ✓�y (11)

where ↵̃(i"l, i"m) satisfies the following self-consistent
equation:

↵̃ = ↵+
niv

2
imp

2

X

p

Tr
⇥

U†
p�yUpG(p, i"l) ·

·Jx(p, i"l, i"m)G(p, i"m)
⇤

. (12)

+=

Figure 4: Diagrams describing renormalization of the charge
current vertex.
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Equation (12) can be solved explicitly to obtain to the
following result for the renormalized anomalous vertex:

↵̃(i"l, i"m) =
↵+ ↵0(i"l, i"m)

1�A(i"l, i"m)
(13)

where we introduced the quantities A(i"l, i"m) and
↵0(i"l, i"m) given by:

A(i"l, i"m) =
niv

2
imp

4V
X

kss0

gs(k, i"l)gs0(k, i"m), (14)

↵0(i"l, i"m) =
niv

2
imp

4V
X

ks

k

m
s gs(k, i"l)gs(k, i"m). (15)

By replacing Eqs.(9) and (11) in Eq. (8), we arrive
at the following expression for the correlation function
Pxx(i"l, i"m),

Pxx(i"l, i"m) = P0(i"l, i"m) +
m [(↵+ ↵̃)↵0 + ↵ ↵̃A]

�0
.

(16)
On the r.h.s. of the above equation the frequency depen-
dences of ↵̃, ↵0 and A, defined in Eqs.(12-15), is implied
and we introduced the function P0(i"l, i"m),

P0(i"l, i"m) =
1

2V
X

ks

k2

m2
gs(k, i"l)gs(k, i"m), (17)

that in the absence of Rashba coupling yields the only
non-vanishing contribution to the conductivity.

Once the analytical continuation is performed, Eq. (16)
is equivalent to Eqs. (17-18) of the main text. This
can be easily seen by inserting in Eq. (16) the explicit
expression of A, ↵0 and P0, given above. One then finds
that PLM

xx (0, 0) can be recast as

PLM
xx =

1

2V
X

p

⇢✓

p2

m2
+ ↵↵̃LM

◆

(gL+g
M
+ + gL�g

M
� )

�

+

p(↵+ ↵̃)

m
(gL+g

M
+ � gL�g

M
� ) + ↵↵̃LM (gL+g

M
� + gL�g

M
+ )

�

.

From the above equation we see Pxx is the sum of an
inter- and intra-band contribution, i.e.

PLM
xx =

1

2V
X

p

n

X

s

h⇣ p

m
+ s↵

⌘⇣ p

m
+ s↵̃LM

⌘

gLs g
M
s

i

+

+↵↵̃LM
X

s 6=s0

gLs g
M
s0

o

⌘ PLM
intra + PLM

inter. (18)

Eventually, since ( p
m + s↵)( p

m + s↵̃LM ) ⌘ ~vps · ~V LM
ps we

arrive at Eq. (18) of the main text.

Analytic approximations in the weak-disorder limit

Starting from the above results in this section we de-
rive approximate analytical expressions for the renormal-
ized vertex and the conductivity. We assume that we are

in the weak-disorder limit (WDL), where we can (i) ap-
proximate the spectral functions with a delta, i.e. set
A±(p, 0) = (�/⇡)|gR+(p, 0)|2 = �(E±

p � EF ); (ii) neglect
the RR contributions.
The WDL approximation for ↵̃RA can be derived start-

ing from the analytic continuation of Eqs.(13-15). Per-
forming the angular integral, ARA and ↵RA

0 can be then
cast as

↵RA
0 (0, 0) =

niv
2
imp

8m⇡

Z 1

0
p2

⇥

|gR+(p, 0)|2 � |gR�(p, 0)|2
⇤

dp,

(19)

ARA =
niv

2
imp

8⇡

Z 1

0
p |gR+(p, 0) + gR�(p, 0)|2dp. (20)

The latter equation can be simplified using the self-
consistent self-energy equation to obtain:

ARA(0, 0) = 1/2 +
niv

2
imp

4⇡

Z 1

0
pRe

⇥

gR+(p, 0) g
R
�(p, 0)

⇤

dp.

(21)
Approximating the spectral functions with a delta, as
stated above, we immediately see that, except in a small
density range around EF ' E0, we can neglect the second
term and the r.h.s. of Eq.(21), since there is no overlap
between the two-chiral bands and we obtain ARA(0, 0) =
1/2. In the same approximation, setting ⇠±p = E±

p �EF ,
we can write ↵RA

0 (0, 0) as follows

↵RA
0 (0, 0) =

niv
2
imp

8m�vF

Z

p2
⇥

�(⇠+p )� �(⇠�p )
⇤

dp , (22)

which leads to

↵RA
0 (0, 0) ' � �0

4m2vF�
·
⇢

(p2� � p2+) EF > E0

(p2+ + p2�) EF < E0
(23)

with �0 = niv
2
impm/2. We recall that here, as in the

main text, p± are the momenta on the inner and outer
Fermi surface, so that their subscripts refer to the value
of the transport helicity ⌘, introduced in the main text
in the context of Boltzmann transport. The sign change
on the r.h.s. of Eq.(23) is thus due to the fact that for
EF > E0 the two contributions come from the two chiral
bands in Eq. (22), while for EF < E0 only the E�

p band
contributes, with a two-folded Fermi surface. Using the
explicit expression p±, i.e.

pEF>E0
± = mvF ⌥ p0 and pEF<E0

± = p0 ⌥mvF . (24)

with vF =
p

2EF /m, we eventually obtain:

↵RA
0 (0, 0) '

⇢

�↵ EF > E0

�(E0 + EF )/p0 EF < E0
(25)

Here we also used the WDL results for �, that can be
derived from Eq. (5) in the WDL where |gR±(p, 0)|2 =
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(⇡/�)�(E±
ps � EF ) as

�WDL =

⇢

�0 EF > E0

�0

p

E0/EF = �0p0/(mvF ) EF < E0

(26)
that coincides with the Boltzmann result from Eq. (6) of
the main text. By replacing the result (25) into Eq. (13),
along with ARA(0, 0) = 1/2, we then obtain the estimate
of ↵̃RA quoted in the main text, i.e.

↵RA(0, 0) '
⇢

0 EF > E0

↵(1� EF /E0) EF < E0
(27)

Let us now discuss the analytic approximation of the
conductivity. As discussed in main text in the WDL we
can put

�dc '
PRA
intra

2⇡
(WDL) (28)

where the intraband term PRA
intra coincides with the first

term on the r.h.s. of Eq. (18). By using the result (27)
for the anomalous vertex we can rewrite it as follows

PRA
intra =

⇥

p2+ + p2�
⇤

4m�
EF > E0 (29)

PRA
intra =

⇥

p2+ � p2� �m↵̃RA(p+ � p�)
⇤

4m�
EF < E0.

(30)
Using the expression of p±, � and ↵̃RA derived above,
along with the expressions for the particle density in the
WDL, i.e.

n =

⇢

(m/⇡)(EF + E0) EF > E0

(p20/⇡)
p

EF /E0 = n0

p

EF /E0 EF < E0
(31)

Eq.s (29-30) lead to the final expression for the conduc-
tivity quoted in Eq.s (1)-(2) of the main text.

To conclude this section we would like to show that the
inclusion of vertex corrections is crucial in both regimes.
The “bare-bubble” conductivity �bb, corresponding to
the first diagram in Fig. 3, is given by the term P0 de-
fined in Eq. (17). It can be directly computed from Eq.
(18) by replacing ↵̃ with ↵, so that the renormalized ve-
locity ~Vps is replaced by the bare one ~vps. In the WDL
we then easily obtain

PRA
bb =

⇡

2�V
X

p,s

~v2ps�(E
s
p � EF ) =

vF
4�

(p+ + p�) (32)

Thus, using Eq.s (24), (26) and (31) into Eq. (28) one
easily obtains that (restoring the charge e)

�bb =
e2(n� n0/2)

2m�
= �Drude � �n0 , EF > E0(33)

�bb =
e2n

4m�
=

�WDL
Drude

2
, EF > E0 (34)
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Figure 5: (Color online) (a) Di↵erent contributions to the
conductivity as a function of the density for E0 = 40�0 ,
�0 = 0.5meV and m = 0.7m

e

. (b) Comparison of the total
the AR mobilities. Parameters as in panel (a).

where, as in the main text, �Drude = e2n/(2�0m), �n0 =
e2n0/(4�0m) and �WDL

Drude = e2n/(2�WDLm). We there-
fore see that the bare-bubble result is inadequate at all
densities and chemical potentials. This also shows that
even recovering the Drude conductivity at EF > E0 is a
non-trivial result, due to the crucial role of vertex cor-
rections. Indeed, even in the regime EF & E0, where EF

slightly exceeds the Rashba energy, so that two Fermi sur-
faces are clearly separated, any signature of the Rashba
interaction disappears in the dc conductivity, which is
given by the usual Drude formula. We also notice that
vertex corrections tend to enhance the conductivity with
respect to the bare-bubble result. As we shall discuss
below, this is the result one usually expects within a
Boltzmann picture, where backward and forward scat-
tering processes contribute to the transport scattering
time with di↵erent weights.

Relevance of the RR contribution

As we mentioned above, our analytical formulae are in
principle valid only in the WDL, realized for � ⌧ EF .
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In this limit we did two approximations, we replaced
the spectral functions of the chiral eigenstates with delta
functions and neglected the RR part in Eq. (7). As the
density decreases in the DSO regime these approxima-
tions are not valid anymore and the quantum result for
�dc starts to deviates from the analytical WDL result
�DSO. In this regime the RR current response func-
tion becomes as much relevant as the RA one, and it
is important to include it in order to reproduce phys-
ical results for the dc conductivity. In Figure 5(a) we
plot separately the contributions of the RR and AR re-
sponse function to the conductivity, defined respectively
as �AR = PAR(0, 0)/(2⇡) and �RR = �PRR(0, 0)/(2⇡).
As one can see, for our parameters choice, at n/n0 . 0.5
the RR contribution increases, while the AR one tends to
saturates with decreasing density. Neglecting �RR thus
leads to the unphysical result of a finite conductivity for
zero density. The vanishing of the conductivity as n ! 0
is indeed guaranteed by the cancellation between �AR

and �RR. This fact is also evident in Fig. 5(b) where
along with the total mobility µt we also plot the “AR”
mobility, µAR

t defined as µAR
t = �AR/n. We se that the

inclusion of the RR contribution significantly modifies
the structure of the mobility curves around the mini-
mum. Eventually we note that the cancellation between
RR and AR terms turns out to improve the agreement
between �dc and �DSO and it enlarges the range where
the DSO formula can be used to describe transport.

DC CONDUCTIVITY WITHIN SEMICLASSICAL
BOLTZMANN APPROACH

For a detailed discussion of Boltzmann equation we
refer the reader to Ref.[4], here we only outline the most
significant steps. Note that here we neglect the e↵ect
of the o↵-diagonal terms of the spin-density matrix in
the helicity basis at a given p since as discussed in the
main text they give only small corrections to dc charge
transport (see e.g. Refs.[5, 6, 9, 10]). Let us call ⇢p,s
the distribution function for the quasiparticle eigenstates
"p,s, where s denotes in general the band index, which
coincides in our case with the chiral index. The time
derivative of ⇢ is determined by the collision integral:

@⇢p,s
@t

= �
X

p0,s0

Qps
p0s0 [⇢p,s � ⇢p0,s0 ], (35)

where Qps
p0s0 is the scattering kernel from the state "p,s

to the state "p0,s0 . In the presence of an electric field E
the l.h.s. of the above equations is given by:

@⇢p,s
@t

= �eE · @⇢p,s
@p

' �eE · ~vps
@⇢eqp,s
@"ps

(36)

in the last passage we replaced ⇢ with its equilibrium
value ⇢eqp,s ⌘ f("ps), since we are interested in the lin-
ear response in E. In the relaxation-time approximation

we can express the time evolution of ⇢ via a transport
scattering time ⌧ trps, so that:

@⇢p,s
@t

= �
⇢p,s � ⇢eqp,s

⌧ trps
(37)

By combining Eqs. (36)-(37) we then have:

⇢p,s = ⇢eqp,s + eE · ~vps⌧ trps
@⇢eqp,s
@"ps

. (38)

For a field in the x direction the current can then be
written as:

jx = �e
X

ps

vxps⇢p,s = e2Ex

X

ps

(vxps)
2⌧ trps

✓

�
@⇢eqp,s
@"ps

◆

(39)
where we used the fact that there is no current in the
equilibrium state. At T = 0 we can put @⇢eqp,s/@"ps =
@f("ps)/@"ps = �("ps�µ). Thus, by identifying "ps�µ ⌘
Es

p � EF we arrive at Eq.(8) of the main text

�dc =
e2

2

X

ps

|~vps|2⌧ trps�(Eps � EF ) (40)

A set of equations for the transport scattering times
can be derived by substitution of Eq. (36) into Eq. (35),
once that one uses the Ansatz (37). By doing so, since
the scattering kernel Q conserves the energy, and the
equilibrium function ⇢eqp,s does not depend on the chiral
index but only on the energy, one is left with:

~vps =
X

p0s0

Qps
p0s0

⇥

⌧ trps~vps � ⌧ trp0s0~vp0s0
⇤

=

=
⌧ trps

⌧
�

Es
p

�~vps �
X

p0s0

Qps
p0s0⌧

tr
p0s0~vp0s0 , (41)

where we introduced the quasiparticle scattering time

1

⌧
�

Es
p

� =
X

p0s0

Qps
p0s0 . (42)

By using the fact that only the component of ~vp0s0 in the
direction of ~vps survives after momentum integration, Eq.
(41) finally reduces to Eq.(9) of the main text

⌧ trps

⌧
�

Es
p

� = 1 +
X

p0s0

Qps
p0s0⌧

tr
p0s0

~vp0s0 · v̂ps
|~vps|

(43)

Notice that Eq. (43) di↵ers from the one proposed e.g.
in Ref. [7], where the band-dependence of the transport
scattering times on the r.h.s. of Eq. (43) has been over-
looked, leading to decoupled equations for the ⌧ trps. Here
instead the set of coupled equations (43) is analogous to
the self-consistence equations (10) introduced above for
the renormalized current in the quantum language. This
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analogy can be exploited further by the identification of
the renormalized Boltzmann current as

JB
ps = e~vps

⌧ trps

⌧
�

Es
p

� (44)

As already discussed in Ref. [8] for the case EF > E0,
both the quantum and the Boltzmann approaches lead to
the same renormalized currents. This result also holds
in the DSO regime EF < E0, as one can see from the
explicit solution for the ⌧ ’s derived below.

Collision integral

By using Fermi Golden Rule, the scattering rate from
the state |p, si to the state |p0, si can be written as:

Qps
p0s0 =

2⇡

V
|hps|Vimp|p0s0i|2�("ps � "p0s0) (45)

Using the explicit expression of the helicity eigenstates
in plane waves, we can rewrite the above equation as
follows:

Qps
p0s0 =

2⇡

V2

�

�

�

�

Z

dr ei(p�p0)rVimp(r)W
pp0

s0s

�

�

�

�

2

�(Es
p � Es0

p0)

(46)
Here the matrix Ŵpp0

= U †
p0Up comes from the scalar

product of the helicity eigenvectors. Within our ap-
proximations, (self-averaging delta-correlated disorder
and Born scattering), we can write hVimp(r)Vimp(r0)i '
niv

2
imp�(r� r0) and we can recast the above equation as

Qps
p0s0 =

2⇡

V niv
2
imp

�

�

�

Wpp0

s0s

�

�

�

2
�(Es

p � Es0

p0). (47)

where

|Wpp0

s0s |2 =
1 + sign(ss0) cos(✓p � ✓p0)

2
,

so that one recovers Eq. (5) of the main text.

Solution of Boltzmann equations

Using the explicit expression of Qp0s0

ps , Eq.(43) reads

⌧ trps

⌧
�

Es
p

� = 1 +
⇡niv

2
imp

V
X

p0s0

(1 + ss0p̂ · p̂0)~vp
0s0 · v̂ps
|~vps|

·

·�(Es
p � Es0

p0)⌧ trp0s0 . (48)

Now recalling that ~vps = vpsp̂ and that |~vps| = vF =p
2mEF for Es

p = EF , for states at the Fermi level we

can rewrite the above equation as:

⌧ trps
⌧

= 1 +
⇡niv

2
imp

V
X

p0s0

(p̂ · p̂0)2⌘ps⌘p0s0�(EF � Es0

p0)⌧ trp0s0

(49)
where we set ⌧ (EF ) = ⌧ and ⌘ps = s(v̂ps · p̂) = ±1.
Performing the angular integral p0 and changing variables
from p, s to E, ⌘ we eventually recover equation (10) of
the main text:

⌧ tr⌘
⌧

= 1 +
1

4⌧0mvF

X

⌘0

⌘⌘0p⌘0⌧ tr⌘0 , (50)

where ⌧0 denotes as usual the quasiparticle scattering
time in the absence of spin-orbit, ⌧0 = 1/(mniv

2
imp), p⌘ =

p⌘(EF ) indicate the two Fermi momenta introduced in
Eqs.(24) and we set ⌧ tr⌘ = ⌧ tr⌘ (EF ).

To solve this equation it is useful to note that ⌧/⌧0 =
mvF /p̄F where p̄F = 1/2

P

⌘ p⌘ that allows us to recast
Eq. 50 as:

⌧̄ tr⌘ = 1 +
1

4

X

⌘0

⌘⌘0p̄0⌘ ⌧̄
tr
⌘0 . (51)

with ⌧̄ tr⌘ = ⌧ tr⌘ /⌧ and p̄⌘ = p⌘/p̄F . As one can easily
check, the solution of this equation reads: ⌧̄ tr⌘ = p̄⌘ that
coincides with Eq. (12) of the main text.
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