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Abstract
The third-order nonlinearity of silicon gives rise to a spontaneous four-wave mixing process in
which correlated photon pairs are generated. Sources based on this effect can be used for
quantum computation and cryptography, and can in principle be integrated with standard CMOS
fabrication technology and components. However, one of the major challenges is the on-chip
demultiplexing of the photons, and in particular the filtering of the pump power, which is many
orders of magnitude larger than that of the signal and idler photons. Here, we propose a photonic
crystal coupled-cavity system designed so that the coupling of the pump mode to the output
channel is strictly zero due to symmetry. We further analyze this effect in the presence of
fabrication disorder and find that, even then, a pump suppression of close to 40 dB can be
achieved in state-of-the-art systems. Due to the small mode volumes and high quality factors, our
system is also expected to have a generation efficiency much higher than in standard micro-ring
systems. Those two considerations make a strong case for the integration of our proposed design
in future on-chip quantum technologies.

Keywords: four-wave mixing, photon sources, photonic crystals

(Some figures may appear in colour only in the online journal)

1. Introduction

Photons are expected to play a major role in future quantum
computation technologies, serving as qubits for processing
and/or for transferring of quantum information [1–3]. One of
the mandatory requirements for these operations is a source of
indistinguishable single photons. Furthermore, a source of
correlated photon pairs would bring an additional advantage
to the functionalities of such a photonic platform. Ideally,
the platform should also be compatible with current com-
plementary metal-oxide-semiconductor (CMOS) production
techniques to ensure cost-effectiveness, scalability, and
integrability with standard electronic components [4].
Therefore, correlated photon-pair sources based on the third-
order nonlinearity of silicon have been widely studied [5–15],
and their potential to serve as heralded single-photons sources

[16, 17], as well as sources of entangled photon states [18–
21] has been demonstrated.

Correlated photon pairs in silicon are created through
spontaneous four-wave mixing (FWM) whereby two photons
from a pump source are converted into a signal and idler
photon under appropriate phase-matching conditions. This
process can also be stimulated, in which case input power at
the signal frequency increases the output power of the
idler frequency, which can be used for parametric oscillation
[22–25]. However, it is only through the spontaneous process
that the correlated photon pairs needed for quantum applica-
tions can be generated. The efficiency of the FWM can be
largely improved through the use of nano-engineered mate-
rials, such as micro-ring resonators [7, 12, 16, 19, 21], or
photonic crystal (PhC) slow-light waveguides [9, 10, 20,
23, 24] or cavities [13]. The PhC cavity platform is in fact
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largely unexplored, yet very promising, since ultra-high
quality factors (Q) above one million can be achieved in ultra-
small mode-volume (smaller than n 3( )l ) cavities [26, 27]. In
addition, the compatibility of PhC devices with CMOS
technologies has already been demonstrated [24, 28, 29].

One of the major problems with respect to integrating
FWM photon sources on-chip is the filtering of the pump
power, which is typically orders of magnitude larger than the
generated signal/idler power. Thus, the filtering has com-
monly been performed by an external band-pass filter. Very
recently, the first device that achieves sufficiently strong on-
chip filtering has been demonstrated [14], which, together
with recent results on multiplexing [17] and interfering [30]
silicon FWM-based sources, paves the way to large-scale
applications. In [14], the on-chip filtering was achieved
through an integrated distributed bragg reflector (DBR) with a
band-gap at the pump frequency. While the method proved
effective, this DBR had the largest size among all individual
components, thus significantly increasing the footprint of the
setup.

Here, we propose a silicon PhC device consisting of three
coupled high-Q cavities. The system supports three modes
that define the signal, pump, and idler frequencies for a
resonant-FWM process. We show that the device can be
designed so that only the signal and idler modes couple to an
output waveguide, while the pump mode has strictly zero
coupling due to a spatial symmetry. Coupling into the pump
mode can still be easily achieved through a waveguide that is
off the symmetry axis. The self-filtering of the pump and the
expected high efficiency of the nonlinear process as compared
to micro-ring resonators are both very promising features of
our proposal. To analyze its qualities in practice, we also
study the system in the presence of fabrication imperfections.
These break the underlying spatial symmetry, and introduce a
finite coupling of the pump mode to the output channel.
However, we find that, for state-of-the-art disorder magni-
tudes, a difference of the transmission between pump and
signal/idler of close to four orders of magnitude can still be
expected.

2. Device

The proposed design is based on a PhC made of a triangular
lattice of circular holes of radius R in a silicon slab of
thickness d suspended in air (figure 1). The values are set to
R a0.25= , d a0.55= , with a the lattice constant. The latter
is kept as a free parameter, but the design is such that for the
standard thickness of d 220 nm= of the silicon slab, the
operational wavelength is in the telecommunication window
around 1.55 mm . For the resonant FWM, three identical L3-
type cavities are introduced, marked as C C1, 2 and C3 in
figure 1. We use the optimized L3 designs from [26],
where the five holes on each side of the cavity (marked in
blue in the Figure) are shifted away by five different
values (S x1 5- ), such that the Q is maximum. The shifts are
S a0.337, 0.270, 0.088, 0.323, 0.173x1 5 [ ]=- , and a self-
standing cavity has a quality factor of Q 4.1 106= ´ . In our

case, the cavity modes are coupled, and mix to form three
eigenmodes of the structure, which we label M M M1, 2, 3.
We will also refer to those as the signal, pump, and idler
modes, respectively, and so we denote their frequencies as

,s pw w , and iw . The spatial distribution of the y-component of
the electric field of these modes is shown in figure 2. The
simulation was done using the guided-mode expansion
(GME) method [31].

The crucial observation that enables the pump filtering is
based on the symmetry of the structure with respect to
reflection in the xz-plane. As can be seen from figure 2, the
three modes have eigenvalues −1, 1, and −1 with respect to
the xzŝ reflection operator. Notice that, in the Figure, the Ey

electric field component is illustrated, which flips under xzŝ ,
and thus the spatial profiles have a symmetry opposite to the
eigenvalues quoted above. Nevertheless, the correct classifi-
cation is with respect to the global symmetry, which is why
throughout this paper we refer to M2 as the symmetric cavity
mode, and to M1 and M3 as the anti-symmetric ones. The
symmetry of the eigenmodes of a three-cavity system has
already been proposed as a means to provide some filtering of
the pump mode in FWM systems [13, 32]. However, only the
fact that the symmetric mode has very low electric field
intensity in the central cavity was exploited in those proposals
(see figure 2(b)), and not the opportunity to fully cancel the
field, offered by the symmetry. This is why the filtering was
only partial. Here instead, we will show that full filtering of
this mode can be achieved when the output channel does not
support modes of the corresponding symmetry.

In resonant FWM in a cavity system like ours, the phase-
matching condition simply reduces to the energy-matching
2 p s iw w w= + (within a tolerance defined by the spectral
linewidths). We must thus ensure that this condition can be
met in our device. In order to allow for some tunability, we
define two parameters, dR1 and dR2, corresponding to a radius
shift of the three holes marked in red and orange, respectively,
in figure 1. This is the simplest way to simulate a generic
tuning of the intra-cavity coupling between the cavities C1

Figure 1. The proposed PhC device for resonant FWM. There are
three L3 cavities (marked C1, C2, C3) optimized for a high quality
factor through the hole shifts S x1 5- (marked in blue). Furthermore,
we explore the possibility to tune the device through the radii of the
holes marked in red (orange), which are changed by a value dR1

(dR2) from the starting PhC value R.
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and C2 (dR1), and C2 and C3 (dR2). In practice this can also be
achieved through a local modulation of the photonic
environment, for example using electro-optic modulation
[33], or selective surface oxidation [34]. The possibility for
such a tuning is highly desirable since, even for perfectly
matched frequencies of the nominal structure, fabrication
imperfections introduce random fluctuations of the cavity
resonances [35]. In section 3 we will in fact analyze the
possibility to use these parameters to counter the negative
effect of fabrication disorder, both in view of the frequency
matching and in view of the pump filtering. As a first step
here, we verify that the modes can be tuned to the necessary
frequency relation already without disorder.

In figure 3, we plot the two frequency differences,
p sw w- , and i pw w- , versus a shift dR such that

dR dR Rd1 2= = . At this stage we keep the two shifts equal in
order to preserve the xz-symmetry. We will only study

different shifts in section 3, where this symmetry is already
broken by disorder. The frequencies were computed with the
GME, as well as with a commercial-grade simulator based on
the finite-difference time-domain (FDTD) method [36]. In the
latter simulation, a broadband, y-polarized Gaussian source
centered at C1 was used to excite all three modes, and the
spectrum was computed from the Fourier transform of the
time-dependent electric field recorded in the same spot, after
the decay of the source. The error bars are defined by the total
simulation time, which was set to 25 ps. Very good agreement
between the two computation methods is found, and, impor-
tantly, the two curves cross, demonstrating that the frequency
matching can be fulfilled. In fact, the best nominal structure is
the one with dR dR 01 2= = , i.e. with no extra hole
modulation.

Next, we add an input and an output channel to the three-
mode system. For this, we utilize the standard PhC waveguide
that results from a missing row of holes in the crystal lattice
(figure 4). The dispersion of the waveguide is plotted in
figure 4(b). There are two bands, which are respectively
symmetric and anti-symmetric with respect to the xzŝ reflec-
tion operator that was discussed earlier. The mode profile of
one mode along the symmetric (blue) band is shown in panel
(c), while that of an anti-symmetric mode is shown in panel
(d). The guided bands can be tuned in frequency for example
through changing the width of the guide by shifting the first
row of holes away from the center (panel (a)). We design the
device so that the three coupled-cavity modes (dashed lines in
panel (b)) are resonant with the anti-symmetric band only, but
not too close to the slow-light region at the band edge. This is
achieved for a shift S a0.075y = , which was used to compute
the dispersion of panel (b). In panel (e), we illustrate a pos-
sible integration of the cavities and the waveguides. The two
guides on the left are used for pump input. They couple to all
three modes, since the xz planes bisecting each of the guides
are not the same as the xz plane bisecting the coupled-cavity
system. We incorporate two guides into the design in order to
preserve the structural symmetry with respect to the y=0
plane. This plane is a symmetry of both the three-cavity

Figure 2. Electric field Ey component of the three eigenmodes of the device, with increasing frequency. (a): M1, at a c1.6154 ;sw = (b): M2,
at a c1.6191 ;pw = (a):M3, at a c1.6228iw = . The shifts S x1 5- are as given in [26], while dR dR 01 2= = (see also figure 1). The symmetry
of the spatial profile of Ey is opposite to the eigenvalue of the xzŝ reflection operator (see text). Thus, globally, M1 and M3 are antisymmetric,
while M2 is symmetric.

Figure 3. Frequency difference between the first and the second
modes ( p sw w- ) and between the second and the third modes
( i pw w- ) of the coupled-cavity system, as a function of a radius
shift dR dR dR1 2= = (see figure 1).
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system and the output waveguide on the right. Since the latter
supports only anti-symmetric modes, only the signal and idler
modes (M1 and M3) couple to this output channel, while the
coupling of the pump mode (M2) is strictly zero. This comes
from the symmetry consideration, but we will also verify it
with a simulation in section 3.

The FDTD-computed quality factors of the three-cavity
system (without the waveguides) are 0.78 10 , 1.5 106 6´ ´ ,
and 0.81 106´ , respectively. These were computed through
the time-decay of the electric field in the center of C1, after
selective excitation of each mode. Mode M2 can be easily
singled out by imposing symmetric boundary conditions at
the y=0 plane. Modes M1 and M3 were selectively excited
by imposing anti-symmetric boundary conditions, and by
using narrow-band sources of pulse-length 1ps centered
around the two corresponding resonant frequencies. The
eigenmodes of the coupled-cavity system thus have slightly
lower Q’s than the Q 4.1 106= ´ computed for a single
optimized L3 cavity. In principle, a procedure similar to the

one of [26] can be used to re-optimize the Q-s of our system,
but we consider the values sufficiently high as they are.
Furthermore, we design the system to be in the over-coupled
regime, in which the dominating losses are due to coupling to
the input and output waveguides. This is an obvious
requirement in terms of getting light in and out of the system,
and, in addition, a controlled broadening of the resonant line-
widths would help meeting the resonant condition
experimentally.

To study the coupling of the FWM modes into the
waveguides of figure 4(e), we compute the Q-s exactly as for
the three-cavity system, but this time in presence of either the
input or the output waveguides. In figure 5(a), we show the
dependence of the Q-s on the position of the input wave-
guides Xin, defined as the position of their last missing hole
(e.g. X a2in = - in figure 4(e)). Both of the input waveguides
are present in this simulation, while the output one is not.
Conversely, in panel (b), we plot the Q-s in the presence of
the output guide only, as a function of the position Xout of its
first missing hole (X a14out = in figure 4(e)). As can be seen,
the output waveguide affects Q2 much more weakly than Q1

and Q3, due to the symmetry consideration. The fact that Q2

Figure 4. (a) Unit cell of a PhC waveguide made of a missing row of
holes. For dispersion tuning, the holes on each side of the missing
row are shifted away by S a0.075y = . (b) Bloch bands of the
waveguide; the modes of the blue (red) band are symmetric (anti-
symmetric) with respect to the xz-plane bisecting the guide. The
dashed lines show the frequencies of the three coupled-cavity modes.
(c) Electric field Ey profile of the mode at the frequency given by a
blue circle in (b). (d) Same as (c), for the red circle in (b). (e) Input
(left) and output (right) channels for the three-cavity system. The
colored holes are shifted as defined in figure 1, and panel (a) here.

Figure 5. (a) Quality factor of the three-cavity modes in the presence
of input waveguides, versus the position Xin of the latter. Xin is
defined as the position of the last missing hole, see figure 4(e). (b)
Same as (a), but with the output waveguide.
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changes at all is most likely due to extra out-of-plane scat-
tering due to the perturbation introduced by the presence of
the waveguide. For a good compromise between Q-s and
waveguide coupling, in section 3 below we fix the positions
of the waveguides to X a2in = - , X a14out = , i.e. the values
illustrated in figure 4(e). This choice was made based on
figure 5, where the two channels were analyzed separately.
The quality factors of the three modes with both input and
output waveguides were finally computed with FDTD,
resulting in Q 0.97 101

5= ´ , Q 1.59 102
5= ´ , and

0.99 105´ . These values are perfectly matched by a model in
witch the total losses are obtained by summing the intrinsic
losses and the losses due to all the waveguides. In other
words, if we define superscripts so that Q0, Qin, Qout, and Qtot

refer to the structure with no waveguides, input waveguides
only, output waveguides only, or all waveguides, respec-
tively, then Qtot for each of the three modes i 1, 2, 3= can be
computed as [35]

Q Q Q Q

1 1 1 1
. 1

in
i
tot

i i
out

i
0

( )= + -

The bare-cavity losses are subtracted in the end because
they are actually counted twice when adding Qin and Qout.
The Qtot values obtained in this way are equal to the FDTD-
computed values quoted above within the given precision,
which illustrates that the input and output channels can be
studied separately, as in figure 5.

3. Pump-filtering and disorder

To verify that there is indeed no power radiated into the
output waveguide at the pump frequency, we use a power
monitor in the FDTD simulation, placed at x a y19 , 0= =
(refer to figure 4(e)). In figure 6(a), we show the recorded
power spectrum (Pout) upon excitation with two broadband
sources centered at C1 and C3. The blue curve (which also
appears in panels (b) and (c)) is recorded after antisymmetric

excitation. The two peaks correspond to the signal and idler
modes (i.e. the antisymmetric modes M1 and M3, see
figure 2). The oscillations are due to the finite time duration of
the simulation, which was again set to 25 ps. To test the pump
suppression, we further performed a simulation with a sym-
metric phase relation between the two sources. This config-
uration excites only M2, again due to symmetry.
Consequently, the recorded Pout shown in purple in
figure 6(a) is at the negligible level below 10−13, and is likely
due to numerical noise. This confirms the expected full fil-
tering of the pump mode in our proposed FWM design.

In the presence of random structural disorder that breaks
the xz-plane symmetry, a finite coupling of the pump mode to
the output channel is expected. To quantify this effect, we
perform simulations including random shifts in the position
and radius of each hole, taken from a Gaussian distribution
with zero mean and standard deviation σ. This commonly
employed disorder model has been found to capture well the
effects of fabrication imperfections [35, 37]. We set

a0.002s = , which is a typical magnitude for state-of-the-art
PhCs [27, 37], and simulate ten different disorder config-
urations. We use the symmetric excitation scheme, i.e. the one
that results in no output power in the disorder-less case. In the
presence of disorder, however, an output power signal is
recorded at all three mode frequencies. This is because the
broken symmetry introduces both a finite excitation of the
signal and idler modes, and a finite coupling of the pump
mode to the output waveguide. Among the ten configurations,
the two power spectra with the lowest and the highest Pout at
the pump frequency are shown in figure 6, panels (b) and (c),
respectively. Notice that, while it is non-zero, there is still a
significant suppression of 17–37 dB of the pump power when
compared to the signal/idler output of the blue curve.

We now explore the possibility to tune the device
through the shifts dR1 and dR2, in order to counter some of
the disorder effects. We take disorder configuration 9 (red
curve in figure 6), as it has the strongest power at the pump
frequency. Notice that we must pay attention to keep the
frequencies within the resonant condition. Because of this, in

Figure 6. Power spectra recorded in the output waveguide. Blue (in all panels): no disorder, asymmetric excitation. All the other data were
recorded after symmetric excitation—purple in (a): no disorder; yellow in (b): disorder configuration 10; red in (c): disorder configuration 9.
Notice that the y-scale in (a) is different from that of (b) and (c).
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figure 7(a) we plot the quantity 2 p i sw w w- - as a function
of dR1 and dR2. This quantity is still close to zero (equal
within the simulation error due to the finite time) for the
nominal case of dR dR 01 2= = . In other words, disorder, as
well as the presence of the waveguides, did not interfere
strongly with the resonance condition. Notice however that
there is a whole range of dR1, dR2 values for which the
condition is also met. Thus, in panel (b) of figure 7, we plot
Pout at the pump frequency as a function of these two shifts.
This varies over three orders of magnitude in the plotted
range, illustrating the potential for improvement of the fil-
tering. The minimum value is achieved for dR a0.011 = ,
dR a0.012 = - , for which in fact the resonant condition is still
met (see panel (a)). Thus, a slight tuning of the C1 –C2 and the
C2 –C3 couplings can lead to a significant improvement in
filtering. This is also illustrated in panel (c), where we plot
two power spectra as in figure 6—without and with the tun-
ing. The difference at the pump wavelength between the two
curves is 21 dB, meaning that a total pump suppression of
38 dB with respect to the signal and idler output (blue curve
in figure 6) can be achieved.

4. Discussion

A remark on the opposite signs of dR1 and dR2 for the best
pump suppression is due. This result makes sense, since
coupling to the output channel is not introduced by disorder
per se, but by the breaking of the xzŝ symmetry. In other
words, if we would introduce disorder invariant under that
reflection, the full filtering would be preserved. Realistic
disorder, however, does not have that property, and the pur-
pose of tuning dR1 and dR2, to a first approximation, is to
restore that symmetry as much as possible. Thus, asymmetric
values for the two quantities are logical. In practice,
depending on the tuning method, it might be that either only
positive or only negative values are achievable. In this case,
one should ideally start from a slightly smaller (respectively
larger) nominal hole radius of the six holes involved, in order

to fully benefit from the parameter space spanned by dR1

and dR2.
The efficiency of a resonant nonlinear processes like the

FWM discussed here generally increases with an increase in
the concentrated electromagnetic energy [22, 38]. This
increases with the quality factor of the modes, and, loosely
speaking, decreases with the mode volume. The latter has no
unique definition, but instead an effective quantity can be
defined for various applications. More specifically, the FWM
efficiency is inversely proportional to an integral that takes
into account the overlap between all three modes [22, 25].
Qualitatively, our system is similar to the one experimentally
characterized in [13], where three coupled PhC nanobeam
cavities were used. In that work, the measured spontaneous
generation rate was 300» (MHzmW−2)Pp

2, with Pp the pump
power expressed in mW. This is almost two orders of mag-
nitude higher than that of micro-ring systems: for example,
this same quantity is quoted as 5 (MHzmW−2)Pp

2 in [11]. The
generation rate is not explicitly quoted in [7, 14], but can be
inferred from the data presented there, and has a similar value
of 7» (MHzmW−2)Pp

2. The L3 cavities used here have a
mode volume similar to that of the nanobeam cavities of [13]
(compare [26, 39]). Thus, the generation rate is expected to be
similar, given comparable quality factors. In other words, a
strong improvement when compared to micro-ring systems
can reasonably be expected in our device simply due to the
stronger light confinement. Beyond that, however, the quality
factors of the modes of our system are more than an order of
magnitude higher than those of [13], and the FWM efficiency
is proportional to Q3 for modes of approximately equal
Q [5, 11]. In short, our expected efficiency is three orders of
magnitude higher than that of [13], which is already close to
two orders of magnitude higher than in micro-rings.

This consideration is qualitative, but it makes it very
reasonable to expect the efficiency of our system to be at the
very least two orders of magnitude larger than that of [14], the
only work where on-chip filtering was achieved. For this
purpose, a long DBR was used, providing a pump suppres-
sion of 65 dB while only weakly affecting the signal and idler

Figure 7. Tuning of the disordered system (configuration 9) using the parameters dR1 and dR2. (a) The frequency relation 2 p s iw w w- - ,
which has to be close to zero for FWM. (b) Pump power radiated into the output waveguide. (c) Power spectrum in the output waveguide for
two different dR1, dR2 values. The red plot is the same as the one in figure 6(c). The green curve represents the ‘fixed’ filtering, with dR1 and
dR2 taken from panel (b) such that the pump power is the lowest.
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modes. In contrast, our device is fully self-filtering in the
absence of disorder, i.e. the pump transmission is strictly zero
due to symmetry. Beyond that, we have shown that even in
presence of disorder, a pump suppression of close to 40 dB
can be achieved in state-of-the art silicon systems, especially
if some tuning of the cavity–cavity coupling is possible. This,
together with the higher nonlinear efficiency that can be
expected from our device, means that for the same generation
rates as in [14], the DBR would most probably be unneces-
sary, and thus the footprint of an integrated setup would be
significantly reduced. Additionally, the signal and idler losses
involved in guiding the light through the DBR or any other
filtering device would also be eliminated. Furthermore, the
idea of symmetry-imposed filtering could stimulate novel
proposals in which the signal and idler themselves can be
demultiplexed without the need for add-drop filters. This
would again decrease both the footprint and the losses of an
integrated device. Finally, apart from the pump-filtering
advantage, our design is also expected to have a higher
photon generation efficiency, which is anyway beneficial as it
leads to a lower power consumption and/or higher brightness
of the source.

In summary, we have presented a PhC coupled-cavity
system optimized for photon-pair generation through a reso-
nant FWM process. The main innovation is the self-filtering
of the pump, which does not couple to the output channel due
to symmetry. The filtering of the pump power is one of the
main challenges for the full on-chip integration of FWM-
based photon sources. Thus, our device, which also promises
a higher conversion efficiency when compared to microring
resonators, is an attractive component for future integrated
quantum technologies.
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