Second Harmonic and Sum-Frequency Generation from Aqueous Interfaces Is Modulated by Interference

The interfacial region of aqueous systems also known as the electrical double layer can be characterized on the molecular level with second harmonic and sum-frequency generation (SHG/SFG). SHG and SFG are surface specific methods for isotropic liquids. Here, we model the SHG/SFG intensity in reflection, transmission, and scattering geometry taking into account the spatial variation of all fields. We show that, in the presence of a surface electrostatic field, interference effects, which originate from oriented water molecules on a length scale over which the potential decays, can strongly modify the probing depth as well as the expected intensity at ionic strengths <10(-3) M. For reflection experiments this interference phenomenon leads to a significant reduction of the SHG/SFG intensity. Transmission mode experiments from aqueous interfaces are hardly influenced. For SHG/SFG scattering experiments the same interference leads to an increase in intensity and to modified scattering patterns. The predicted scattering patterns are verified experimentally.

Published in:
Journal Of Physical Chemistry C, 120, 17, 9165-9173
Washington, American Chemical Society

 Record created 2016-07-19, last modified 2018-12-03

Rate this document:

Rate this document:
(Not yet reviewed)