Journal article

Near-Field Integration of a SiN Nanobeam and a SiO2 Microcavity for Heisenberg-Limited Displacement Sensing

Placing a nanomechanical object in the evanescent near field of a high-Q optical microcavity gives access to strong gradient forces and quantum-limited displacement readout, offering an attractive platform for both precision sensing technology and basic quantum optics research. Robustly implementing this platform is challenging, however, as it requires integrating optically smooth surfaces separated by less than or similar to lambda/10. Here we describe an exceptionally high-cooperativity, single-chip optonanomechanical transducer based on a high-stress Si3N4 nanobeam monolithically integrated into the evanescent near field of SiO2 microdisk cavity. Employing a vertical integration technique based on planarized sacrificial layers, we realize beam-disk gaps as little as 25 nm while maintaining mechanical Qf > 10(12) Hz and intrinsic optical Q similar to 10(7). The combination of low loss, small gap, and parallel-plane geometry results in radio-frequency flexural modes with vacuum optomechanical coupling rates of 100 kHz, single-photon cooperativities in excess of unity, and large zero-point frequency (displacement) noise amplitudes of 10 kHz (fm) / root Hz. In conjunction with the high power-handling capacity of SiO2 and low extraneous substrate noise, the transducer performs particularly well as a sensor, with recent deployment in a 4-K cryostat realizing a displacement imprecision 40 dB below that at the standard quantum limit (SQL) and an imprecision-backaction product < 5h [Wilson et al., Nature (London) 524, 325 (2015)]. In this report, we provide a comprehensive description of device design, fabrication, and characterization, with an emphasis on extending Heisenberg-limited readout to room temperature. Towards this end, we describe a roomtemperature experiment in which a displacement imprecision 32 dB below that at the SQL and an imprecision-backaction product < 60h is achieved. Our results extend the outlook for measurement-based quantum control of nanomechanical oscillators and suggest an alternative platform for functionally integrated "hybrid" quantum optomechanics.


Related material